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Abstract 
Duchenne muscular dystrophy (DMD) is a progressive disease affecting skeletal and cardiac 

muscle, as well as bone. Long term disuse and glucocorticoid treatments cause progressive 

osteoporosis in DMD patients, leading to an increase in fracture incidence. Treatments for 

osteoporosis in these patients have not been widely explored. Parathyroid hormone (PTH), an 

anabolic treatment for post-menopausal osteoporosis, could benefit DMD patients by improving 

skeletal properties and reducing fracture risk. Other PTH analogues are not currently FDA 

approved to treat osteoporosis, but may have improved osteogenic effects compared to the 

human analogue. Black bear PTH is especially promising as an osteoporosis treatment for the 

DMD population. Black bears are unique models of bone maintenance during disuse, since 

during six months of inactivity (hibernation), they maintain skeletal properties, unlike other 

hibernators. Additionally, black bear PTH has been correlated to bone formation markers during 

hibernation, indicating it may be, at least in part, the mechanism by which bears maintain bone 

during disuse. Employing black bear PTH as a treatment for osteoporosis in DMD patients 

could greatly improve quality of life for these individuals, and reduce the pain and expense 

associated with frequent fractures. 

  



14 

 

1 4BIntroduction 

1.1 11BOsteoporosis Background 
Osteoporosis is a widespread disease, currently affecting over 10 million Americans. With 

an aging population and declining global bone health, by the year 2020, the National 

Osteoporosis Foundation estimates that over one half of the American population will be at risk 

for the disease. Current health expenditures total $20 billion annually for treatment of the 

disease and osteoporosis-related fractures. That number is projected to exceed $45 billion 

annually by the year 2020 ("National Osteoporosis Foundation," 2011). Between the years of 

2000 and 2007, hospitalizations for major osteoporotic fractures increased by nearly 40% in 

Switzerland, and the trend is similar for most developed Western nations (Lippuner, et al., 

2004). 

 

Characterized by a weakening of load-bearing bones due to a decreased bone mineral 

density of 2.5 standard deviations below the young adult mean of the population, osteoporosis 

increases porosity and overall fracture risk (Kanis, et al., 1994). Commonly associated with 

menopause and aging, 5.6% of men and 12.7% of women over the age of 50 have experienced 

at least one osteoporosis-related fracture (Langsetmo, et al., 2007). In addition to commonly 

occurring age- and menopause-related osteoporosis, an increase in bone porosity and resulting 

decreases in bone mineral density and strength can be caused by chronic oxidative stresses 

occurring naturally with aging or from glucocorticoid use for inflammatory conditions (Lane 

and Yao, 2010), or from chronic disuse scenarios such as during spaceflight (Cavanagh, et al., 

2005), after spinal cord injury (Phaner, et al., 2004), or due to mobility-limiting diseases like 

Duchenne muscular dystrophy (DMD) (Bianchi, et al., 2003). Regardless of the cause, 
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osteoporosis results from an uncoupling of the bone resorption/formation response, leading to a 

coincident increase in porosity, decreased bone volume and bone mineral density, and cortical 

thinning. These changes lead to decreased bone strength and an increase in fracture incidence, 

particularly in the lumbar vertebrae, femoral neck, and the long bones of the arm. Hip (femoral 

neck) fractures make up approximately 50% of all major osteoporotic fractures, many occurring 

from only a low-trauma impact such as a fall from a standing height or from a seated position 

(Langsetmo, et al., 2007).  

 

1.2 Menopause- and Age-related Osteoporosis 

 

The most prevalent form of osteoporosis results from aging and menopause. As systemic 

estrogen levels decrease during menopause and in those with pathogenic estrogen deficiency, 

permanent bone loss and net bone calcium wasting has been observed (Frost, 1999, Riggs, et al., 

1998). Estrogen and estrogen-related receptor (ERR) proteins protect bone by reducing 

oxidative stresses, reducing osteocyte apoptosis, and by regulating mesenchymal stem cell 

differentiation into osteoprogenitors and adipocytes (Almeida, et al., 2004, Almeida, et al., 

2007, Mann, et al., 2007, Brennan, et al., 2010, Gallet and Vanacker, 2001). This decline in 

systemic estrogen affects both males and females, but to a lesser degree in males (Clarke and 

Khosla, 2010). In addition to losses due to estrogen deficiency, osteoporosis also increases with 

age in both sexes. Trabecular bone losses have been attributed to aging in those as young as 20 

years of age, with cortical losses being observed as early as age 30 with no underlying bone 

pathophysiology (Specker, et al., 2010). These losses progresses continually with age, with 

increased oxidative stresses leaching calcium from bone (Syed, et al., 2010, Kanis, et al., 1994, 
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Manolagas, 2010, Jilka, et al., 2010). In addition, as mesenchymal stem cells - the progenitors 

of osteoanabolic cells – age, they show a greater tendency to differentiate into fat-forming 

adipocytes rather than osteoprogenitors, leading to the greater fat store accumulation observed 

in the geriatric population (Syed, et al., 2010). Compounding the deleterious effects of age on 

bone, the elderly often experience impaired mobility due to osteoarthritis and decreased muscle 

strength. As a result, they tend to adopt more sedentary lifestyles, leading to decreased bone 

strain, which causes disuse osteoporosis. 

 

1.3 13BDisuse-related Osteoporosis 

 

Bone formation in healthy, young bone is heavily regulated by mechanical signaling. Added 

stresses from such things as long distance running or military cadet marching have an additive 

effect on bone through promotion of osteoblast proliferation and differentiation. Conversely, 

disuse scenarios, including a sedentary lifestyle, spaceflight, spinal cord injury, and mobility-

limiting diseases such as DMD, lead to a decrease in overall bone volume and strength. 

According to the mechanostat theory, load-bearing bone remodeling activity occurs to maintain 

a constant physiologic strain, and adjusts its geometry accordingly. This form-follows-function 

relationship is known as Wolff’s Law (Bartel, et al., 2006), and is the reason why a tennis 

player’s racket arm has substantially larger bones than the contralateral and why a sedentary 

person is more prone to fractures than an active one (Bikle and Halloran, 1999, Skerry and 

Suva, 2003). Disuse-related losses in load-bearing bones have been observed in astronauts 

spending lengths of time in microgravity, with changes in overall bone formation and mass as 

well as decreased cell differentiation and altered osteoblast morphology observed in vitro (Bikle 
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and Halloran, 1999, Bikle, et al., 2003, Carmeliet, et al., 2001). Spinal cord injury, resulting in 

paraplegia or quadriplegia, leads to substantial bone losses due to similar decreases in 

mechanical loading (Elias and Gwinup, 1992, Jiang, et al., 2006).  

 

Mechanical signaling plays a large role in regulating the formation and resorption responses 

in bone. Stretch-activated ion channels in the cellular membrane and cytoskeletal deformations 

control cell-to-cell signaling and proliferation responses in osteocytes, which in turn signal 

osteoblast and osteoclast activity (Srinivasan, et al., 2010). This mechanical signaling pathway 

is triggered by fluid flow across the bone cross-section. Since load bearing bones are loaded 

primarily in bending, fluid flow across a section is cyclic (Burger and Klein-Nulen, 1999). 

Mirroring fluid flow, piezoelectric forces generated in the bone mineral may also contribute to 

bone formation and maintenance (Elias and Gwinup, 1992). 

 

1.4 14BDuchenne Muscular Dystrophy 

 

Duchenne muscular dystrophy is a fatal X-chromosome linked disease occurring in 

approximately 1 in 3500 live male births, with 8000 boys currently affected in the United States 

(Emery, 1991, Novotny, et al., 2011). The gene at locus Xp21 on the X chromosome encodes 

the dystrophin protein. Dystrophin plays a role in skeletal and cardiac muscle maintenance and 

repair. Dystrophin deficiency leads to muscular fibrosis and necrosis, weakened force 

generating capacity, and, by the ages of 20-25, death due to failure of cardiac or respiratory 

muscle (Bianchi, et al., 2003). Boys with DMD experience progressive limitations in mobility, 



18 

 

and by the time they reach 12-15 years of age, are typically confined to a wheelchair (Nair, et 

al., 2001). To treat the fibroses observed in DMD muscle, patients are frequently prescribed 

anti-inflammatory glucocorticoids such as prednisone or deflazacort (Bianchi, et al., 2010, 

Straathof, et al., 2009).  Despite the positive outcomes observed in muscle after glucocorticoid 

treatment, glucocorticoids have deleterious effects on bone by causing an environment of 

increased oxidative stresses. These drugs increase the function of osteoclasts, decrease the 

function of osteoblasts, and lead to a net decrease in calcium phosphate absorption (Cohran, et 

al., 2008). The result is glucocorticoid-induced osteoporosis. In addition, the limited mobility in 

DMD patients leads to bone loss due to disuse. The result is progressive osteoporosis and an 

increase in risk of fractures in the DMD population. 

 

32B1.4.1 DMD and Bone 

 

Duchenne muscular dystrophy patients treated with glucocorticoids show decreases in bone 

mineral content and bone mineral density in load bearing bones (lumbar spine, hip, tibia, and 

femur). Compared to healthy age-matched controls, DMD patients show a 30-50% decrease in 

bone mineral density, with greater losses observed in trabecular bone due to its elevated surface 

area, and therefore, elevated metabolic potential (Soderpalm, et al., 2007, Bianchi, et al., 2010, 

Larson and Henderson, 2000, Aparicio, et al., 2002, Crabtree, et al., 2009, McDonald, et al., 

2002). These substantial changes in bone mineral lead to an increase in fracture incidence, 

despite the fact that DMD patients are typically less active and less likely to engage in risky 

behaviors than the average school-aged boy. In DMD patients treated with glucocorticoids, 44% 

of 71 boys evaluated sustained one or more long bone fractures (Larson and Henderson, 2000). 
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As DMD patients age and as the amount of time they undergo glucocorticoid treatments 

increases, fracture risk increases as well. By the age of 16, 67% of DMD patients had sustained 

at least one long bone fracture, with a large proportion of these fractures occurring after the loss 

of ambulation (Larson and Henderson, 2000). Regardless of corticosteroid treatment, one study 

found that over 20% of DMD patients had sustained a fracture. Of these fractures, 47% were in 

the lower limb long bones in mobile patients, and 30.4% were in the lower limb long bones in 

wheelchair-bound boys (McDonald, et al., 2002). Long bone fractures were more common in 

the femur than the tibia in both mobile and wheelchair-bound patients, with the majority of 

fractures occurring in the highly trabecularized proximal and distal regions of the femur 

(McDonald, et al., 2002, Siegel, 1977, Gray, et al., 1992, Hsu, 1982, Hsu, 1979, Hsu and 

Garcia-Ariz, 1981). Vertebral fractures are even more common than long bone fractures in 

DMD patients, but often go unnoticed, as these patients typically experience painful 

kyphoscoliosis due to weakening of the muscles supporting the spine, making the pain of 

vertebral fracture go unnoticed, or they may experience an asymptomatic vertebral fracture 

(Balaban, et al., 2005, Lord, et al., 1990, Smith, et al., 1989, Yasuma and Sakai, 1999). With 

glucocorticoid treatment, it was determined through regression analyses that beginning at 40 

months of treatment, 25% of glucocorticoid-treated DMD patients will sustain a vertebral 

fracture, and by 100 months of treatment, 75% of boys with DMD will have experienced at least 

one vertebral fracture, regardless of whether or not they are ambulant (Bothwell, et al., 2003). 

These fracture rates are drastically high, especially when compared to the approximately 1-4% 

fracture incidence in healthy boys of similar age (McDonald, et al., 2002). In addition, fractures 

in DMD patients most frequently occur from low trauma incidents, such as falls from a standing 

height or falls from a wheelchair onto outstretched hands or knees. These traumatic fractures are 

often the tipping point, transitioning patients who were mobile with assistance devices to being 

permanently wheelchair-bound, further accelerating muscle and bone loss due to disuse. 
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1.5 15BOsteoporosis Therapies 

 

Osteoporosis therapies have not been widely explored in DMD patients, despite the wide 

occurrence of fractures in this population. The major focus in pediatric osteoporosis is strictly 

dietary, including calcium and vitamin D supplementation. Current pharmaceutical osteoporosis 

therapies include antiresorptives and anabolic agents, but are not approved for use in a pediatric 

population. Antiresorptives work to inhibit the deleterious action of osteoclasts on bone, with no 

effect on osteoblastic action. Most currently approved treatments fall into this anti-catabolic 

category. Bisphosphonates including ibandronate, alendronate, zoledronate, and risedronate, 

known by brand names such as Boniva ® (Roche), Reclast ® (Novartis), and Fosamax ® 

(Merck), make up the majority of the osteoporosis drug market. Other anti-catabolic drugs 

include selective estrogen receptor modulators (SERMs), which signal estrogen receptors in a 

manner similar to endogenous estrogen (Lyritis, et al., 2010). Prior to SERMs, estrogen 

replacement therapy (ERT) had been explored to treat not only menopause-related osteoporosis, 

but other negative symptoms associated with menopause as well. However negative results 

from a single clinical trial where ERT administration was attributed to an increase in cancer risk 

effectively stifled the public’s confidence in such a treatment (Pinkerton and Stovall, 2010, 

Khosla, 2010). Currently, there is only one FDA approved anabolic treatment for osteoporosis. 

Teriparatide, branded as Forteo ® (Lilly), utilizes recombinant human parathyroid hormone 1-

34 and is administered via daily subcutaneous injection for a period of up to two years. 

Teriparatide increases bone anabolism by promoting osteoblast survival. The result is an 

improvement in the bone formation: resorption ratio without hindering bone’s remodeling 

capabilities which require resorption of old bone tissue to produce new bone in a targeted 

manner. 
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1.6 16BParathyroid Hormone 

 

In humans, parathyroid hormone (hPTH) is an 84 reside amino acid chain produced on the 

short arm of chromosome 11 in the parathyroid glands (Mallya, et al., 2010, Antonarakis, et al., 

1983). PTH is released in response to low serum calcium. The result is an increase in 

osteoclastic resorption and release of calcium ions into the blood (Marieb and Hoehn, 2007). 

But PTH is a dual-action hormone. In chronic hyperparathyroidism or from continual PTH 

injection (such as through a PTH pump) (Jilka, et al., 2006), bone properties, including cortical 

thickness and trabecular bone volume decrease as would be expected through the classic action 

of the hormone (Parfitt, 2002). However, when administered intermittently, PTH actually 

promotes osteoblast differentiation and survival through the prevention of osteoblast apoptosis, 

and leads to a net accrual of both trabecular and cortical bone (Parfitt, 2002, Aslan, et al., 2001, 

Bellido, et al., 2003, Jilka, et al., 1999, Jilka, 2007, Jilka, et al., 2009). As such, intermittently 

injected recombinant human parathyroid hormone has been shown to be an effective anabolic 

treatment for osteoporosis.  

 

1.6.1 PTH Variations 

 

Across species, there are several variations in parathyroid hormone structure, though its 

function in calcium homeostasis remains essentially the same. In a comparison dose-response 

study of rat and bovine PTH 1-34 administered to ovariectomized rats (a rodent model of post-
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menopausal bone loss), it was found that bovine (Bos taurus) PTH was 2-5 times more potent 

than rat (Rattus norvegicus) PTH when looking at outcome variables such as trabecular bone 

volume fraction, bone mineral content, bone mineral density, and mineral apposition rate (Li, et 

al., 2001). The varied bone properties resulted from a peptide treatment varying in only 6 amino 

acid residues across the 34 residue truncated sequence (Altschul, et al., 1997). A difference in 

only a few amino acid residues across the PTH peptide may drastically alter cyclic adenosine 

monophosphate (cAMP) signaling in target cells (Hilliker, et al., 1996, Reidhaar-Olson, et al., 

2000). These results suggest further exploration of various parathyroid hormone sequences may 

lead to the discovery of a more anabolic treatment for osteoporosis than the currently approved 

hPTH.  

 

1.6.2 Black Bear PTH 

 

Black bear parathyroid hormone (bbPTH), over the 84 amino acid residues of the full length 

protein (Figure 1.1), is an excellent choice to study as an osteoporosis treatment because of the 

unique bone maintenance observed in these animals during extended periods of disuse. Black 

bears spend up to six months in hibernation annually, during which they do not wake to eat or 

excrete waste (Schooley, 1994, Oli, et al., 1997), yet do not experience bone losses attributed to 

disuse (Donahue, et al., 2006, Donahue, et al., 2006). Other hibernators, such as bats and ground 

squirrels do not display this level of bone maintenance during disuse (McGee-Lawrence, et al., 

2010, Doty and Nunez, 1985, Krook, et al., 1977). Neither black bears nor grizzly bears display 

disuse-associated decreases in cortical geometry, cortical thickness, intracortical porosity, 

cortical strength, bone mineral content, or trabecular bone volume fraction after an extended 
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period of disuse (Donahue, et al., 2006, Donahue, et al., 2006, McGee, et al., 2008, McGee-

Lawrence, et al., 2009, McGee-Lawrence, et al., 2009). Additionally, in contrast to humans 

(Specker, et al., 2010), black bears show a decrease in intracortical porosity with age (McGee, 

et al., 2007). Black bear parathyroid hormone may be even more promising as a treatment of 

osteoporosis since bbPTH is positively correlated with bone formation markers during 

hibernation in these animals (Donahue, et al., 2006). 

 

 

Figure 1.1 Amino acid sequence of human PTH 1-84. Amino acid substitutions in bear PTH 1-84 

are highlighted next to the corresponding amino acid in the human sequence. 

 

1.7 DMD Models 

 

Duchenne muscular dystrophy is modeled in only a few species including dogs, chickens, 

and most commonly, mice (Askanas, et al., 1971, Bandman, 1985, Crowe and Baskin, 1979, 

DeMichele, et al., 1986, Saito, et al., 2007). These animals have been engineered to display 
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deficiencies in the dystrophin gene at locus Xp21 of the X chromosome. Animal models of 

DMD display the characteristic muscular weakness, myopathic lesions, and muscular fibrosis 

observed in DMD patients, along with associated declines in bone properties, as well as 

elevated levels of serum creatine kinase and pyruvate kinase (Ryder-Cook, et al., 1988, Sicinski, 

et al., 1989, Bulfield, et al., 1984, Call, et al., 2010). 

 

1.7.1 The mdx Mouse 

 

Osteoporosis in the mdx mouse, a dystrophin-deficient rodent model, has not been 

extensively studied. Available literature indicates these animals experience bone losses 

associated with dystrophin deficiency in a similar pattern as observed in DMD-induced 

osteoporosis. Even without glucocorticoid exposure, these mice demonstrate decreased bone 

mineral density in load bearing bones including the pelvis, femur, tibia, and lumbar vertebrae 

(Nakagaki and Camilli, 2012). In the first four months of life, mdx mice lose muscle and bone in 

the degenerative pattern of DMD. They display larger body sizes and limb muscles, though 

these muscles are heavily fibrosed and less capable of high muscular forces. In 4 month old 

female mdx mice, Montgomery et al observed increases in femur bone mineral density, bone 

mineral content, force to failure in 3-point bending, and spinal BMD (Montgomery, et al., 

2005). However, when normalized by the increased body mass of the mice, no significant 

changes were observed in skeletal properties (Novotny, et al., 2011). In a study comparing 

musculoskeletal properties of mdx mice over age, it was concluded that the first four weeks of 

life are characterized by progressive muscle weakness and associated skeletal declines, and by 

12 weeks of age, the mice begin recovery of lost muscle, being fully recovered to wild type 
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force production by 18 weeks. At four weeks, increased cortical porosity and decreased bone 

density were observed in the tibia of mdx mice compared to wild type controls. Breaking force, 

and deformation at fracture were significantly decreased in mdx mice regardless of age, 

supporting the idea that even though muscle is regained, bone takes much longer to recover 

(Anderson, et al., 1993). In 4-week old male mdx mice, micro-CT of the mid-diaphysis and 

metaphysis of the tibia showed decreases in bone volume fraction (BV/TV) of 35%, with an 

associated decrease in trabecular number and increase in trabecular spacing. Ultimate load and 

stiffness of the tibia were significantly lower than that of wild type controls (Novotny, et al., 

2011). Nakagaki et al showed decreases in mineral density at the hip, lower limbs, and lumbar 

vertebrae in mdx mice. At 3 weeks of age, mdx femurs displayed decreased trabecular area, 

trabecular area fraction, and trabecular thickness of ~40%. Static histomorphometry revealed 

decreases in both osteoblast and osteoclast surface area, with greater decreases in osteoblast 

surface. Cortical area and thickness of the femur was also significantly reduced in the femur of 

the mdx mouse. No change in body weight between mdx and wild type was observed at this 

young age (Nakagaki, et al., 2010). 

 

1.8 DMD and Osteoporosis Treatments 

 

Duchenne muscular dystrophy patients and other pediatric osteoporosis patients have 

historically been treated with nutritional supplementation. High doses of vitamin D and calcium 

in this population have shown only modest maintenance of skeletal properties (Bianchi, 2005, 

Bianchi, et al., 2010). A single study in 2003 administered alendronate to DMD patients. These 

patients were treated with the bisphosphonate therapy for a two year period, during which their 
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bone mineral densities and z-scores were evaluated using dual-energy X-ray absorptiometry. At 

the conclusion of the study, it was found that alendronate had prevented the expected decreases 

in bone mineral density that have been observed in untreated patients. However, as would be 

expected in a bisphosphonate therapy, no anabolic outcomes were observed (Hawker, et al., 

2005). An anabolic treatment for osteoporosis in DMD, such as intermittent administration of 

bbPTH could serve as an improved treatment to attenuate the fractures observed in this 

population. Indeed, PTH has been shown to reverse bone losses in both disuse (hindlimb 

suspension) and in glucocorticoid-treated scenarios better than bisphosphonates (Saag, et al., 

2009, Cavanagh, et al., 2005). 
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5BSpecific Aims and Hypotheses 

 

Aim 1: Establish black bear PTH as an effective anabolic treatment for osteoporosis in a mouse 

model of Duchenne muscular dystrophy 

Administer high dose bbPTH to mdx mice and measure bone histomorphometric and 

strength properties after treatment compared to vehicle-treated mdx mice 

Hypotheses:  High dose bbPTH will improve bone properties in both mdx and wild type 

mice.  

High dose bbPTH will restore bone properties in mdx mice to untreated wild 

type values. 

Aim 2: Determine black bear PTH’s relative potency as an osteoporosis treatment compared to 

human PTH in the mdx mouse 

Administer multiple doses (vehicle, low, medium, and high) of bbPTH or hPTH to 

separate groups of mdx mice. Evaluate skeletal outcomes including bone 

histomorphometric and strength properties associated with each dose. Determine 

relative potency by regressing bone properties against dose for each treatment, and use 

relative potency analyses to determine which is more effective to reach wild type 

vehicle-treated values. 

Hypotheses: bbPTH and hPTH will improve bone properties in a dose-responsive manner. 
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bbPTH will be more anabolic than hPTH , therefore, it will require a lower 

dose of bbPTH to reach untreated wild type values in mdx mice than hPTH to 

reach the same value  
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2 Chapter 2: Black Bear Parathyroid Hormone has Greater 

Anabolic Effects on Trabecular Bone in Dystrophin-

deficient Mice than in Wild Type Mice0F

1 
 

2.1  Introduction 

 

Boys with Duchenne muscular dystrophy (DMD) progressively lose muscle strength and 

between the ages of 12-15 years are usually confined to a wheelchair (Nair, et al., 2001). The 

condition is typically fatal by 20-25 years due to respiratory or cardiac muscle failure (Bianchi, 

et al., 2003). DMD induced muscular necrosis and fibrosis are treated with glucocorticoids (e.g., 

prednisone or deflazacort) (Bianchi, et al., 2010, Straathof, et al., 2009). DMD patients treated 

with glucocorticoids demonstrate a 30-50% decrease in bone mineral content and bone mineral 

density in the lumbar spine, hip, and long bones of the lower limbs as compared with healthy 

age-matched controls (Bianchi, et al., 2010, Soderpalm, et al., 2007, Larson and Henderson, 

2000, Aparicio, et al., 2002, Crabtree, et al., 2009). Greater losses occur in trabecular bone than 

cortical bone due to its greater surface area for remodeling activity (Bianchi, et al., 2010). 

Fracture risk increases as a result. One study found that 44% of 71 boys with DMD sustained at 

least one fracture; of boys over the age of 16 years, 67% sustained at least one fracture (Larson 

and Henderson, 2000). The majority of fractures occur in the proximal and distal femur in DMD 

patients (Hsu and Garcia-Ariz, 1981, Hsu, 1979, Gray, et al., 1992).  

 

                                                           
1 Reprinted from BONE, 51 (3), Gray, McGee-Lawrence, Sanders, Condon, Tsai, Donahue, Black 

bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice 
than in wild type mice, 578-585, 2012 with permission from Elsevier. 



30 

 

Like boys with DMD, mdx mice lack dystrophin (Ryder-Cook, et al., 1988, King, et al., 

2007, Sicinski, et al., 1989). These animals exhibit myopathic lesions characteristic of those 

seen in DMD patients (Bulfield, et al., 1984, Call, et al., 2010). Mdx mice display larger body 

sizes and limb muscles, though these muscles are heavily fibrosed and less capable of high 

muscular forces (Montgomery, et al., 2005). At 3 weeks of age, mdx femurs display ~40% 

reductions in trabecular area, trabecular area fraction, and trabecular thickness as compared to 

age-matched wild type mice. They show decreases in osteoblast surface and increases in 

osteoclast surface area, leading to increased resorption and decreased formation (Rufo, et al., 

2011). In 4 week old male mdx mice, the metaphysis of the tibia showed decreases in bone 

volume fraction of 35%, with a decrease in trabecular number and increase in trabecular 

spacing.  One study found no difference between mdx and wild type cortical thickness in the 

femur at 4 months of age (Montgomery, et al., 2005). However, at 6 months, mdx mice have 

decreased cortical bone properties relative to wild type mice and increased osteoclast number 

(Rufo, et al., 2011). Whole bone breaking force and deformation at fracture are reduced in mdx 

mice regardless of age (Anderson, et al., 1993). At 24 months of age, mdx mice show greater 

declines (relative to wild type mice) in trabecular and cortical properties in the tibia than at 7 

weeks of age (Novotny, et al., 2011). 

 

Treatments for DMD-related osteoporosis have not been widely explored. Treating DMD 

patients with the bisphosphonate alendronate prevented further decreases in bone mineral 

density over a two year period (Hawker, et al., 2005). The impaired osteoblast function seen in 

both DMD patients and mdx mice suggests that an anabolic treatment for osteoporosis (i.e., 

PTH therapy) would be an effective therapeutic for increasing bone mass in these patients. 

Indeed, PTH treatment leads to greater reductions in fracture risk than alendronate in patients 
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with glucocorticoid-induced osteoporosis (Saag, et al., 2009). Our laboratory has been 

investigating a novel PTH analogue linked to preservation of bone during disuse. Black bears 

(Ursus americanus) hibernate for 6 months of the year, and do not experience disuse-related 

osteoporosis (Donahue, et al., 2006, McGee-Lawrence, et al., 2009, McGee-Lawrence, et al., 

2009). Black bear parathyroid hormone (bbPTH) has been positively correlated to bone 

formation markers during hibernation and is implicated in the mechanism of bone preservation 

during disuse (McGee-Lawrence, et al., 2009, Donahue, et al., 2006, Donahue, et al., 2006).  

Furthermore, bbPTH 1-34 causes greater reductions in serum starved induced caspase activity 

in osteoblasts than hPTH 1-34 (McGee-Lawrence, 2009).  Thus, bbPTH may be well suited to 

improve bone mass in cases of dystrophin deficiency that impair mobility. We hypothesized that 

bbPTH treatment in mdx mice would demonstrate improved bone properties compared to 

vehicle treated mice, and that bbPTH treatment would restore mdx bone properties to wild type 

levels. 

 

2.2  Materials and Methods 

 

2.2.1 PCR cloning and sequencing of bbPTH 

 

Genomic DNA was extracted from black bear whole blood samples using the GenomicPrep 

Blood DNA Isolation Kit (Amersham Biosciences, Piscataway, NJ).  The genomic DNA was 

used for PCR amplification of PTH using consensus primers designed based on alignment of 

eight full-length mammalian PTH sequences available in GenBank including bovine (Bos 
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taurus, AAA30749), cat (Felis catus, Q9GL67), dog (Canis familiaris, P52212), human (Homo 

sapiens, NP_000306), macaque (Macaca fascicularis, Q9XT35), mouse (Mus musculus, 

NP_065648), pig (Sus scrofa, NP_999566), and rat (Rattus norvegicus, NP_058740).  PCR 

amplification was performed using 10-

were gel-purified using the UltraClean GelSpin Kit (MoBio Carlsbad, CA) and cloned into the 

pCRII vector using the TA cloning kit (Invitrogen, Carlsbad, CA).  DNA sequencing was 

performed using the DTCS Quick Start kit and the CEQ8000 Genetic Analysis System 

(Beckman Coulter, Fullerton, CA). Nucleotide sequences were searched against the GenBank 

protein database using BlastX (Altschul, et al., 1997) to confirm their putative identity as PTH.  

Multiple sequence alignment was performed by ClustalW version 1.82 (Chenna, et al., 2003).  

The sequence obtained for mature black bear PTH (bbPTH; GenBank #GU563375) is shown in 

Figure 1.1. 

 

Proteos (Kalamazoo, MI) recombinantly produced bbPTH 1-84 in E. coli. The purified 

protein were characterized by analytical HPLC and mass spectroscopy and subjected to 

quantitative amino acid analysis to determine exact protein concentration.  Lyophilized protein 

aliquots were stored at -80 °C.   

 

 

 

 



33 

 

2.2.2 cAMP Assay 

 

The PKA/cAMP pathway is primarily responsible for PTH’s anabolic effects on 

osteoblasts, and previous work suggests that small changes in the amino acid sequence of 

human PTH can produce a peptide that induces greater cyclic adenosine monophosphate 

(cAMP) production than the hormone’s native version (Langsetmo, et al., 2007). Thus, bbPTH 

peptide bioactivity was investigated via quantification of cAMP production. PTH receptor 

expression and PTH-stimulated cAMP production are temporally regulated during osteoblast 

differentiation (Bellido, et al., 2003, Schiller, et al., 1999), where maximal PTH-stimulated 

cAMP production in MC3T3 cells occurs in cells incubated for 5-10 days in osteogenic 

medium; therefore, this time frame was chosen for our studies. MC3T3-subclone 4 cells were 

seeded at 10,000 cells/cm2 -MEM, 10% FBS, 1% penicillin-

streptomycin). Cells were allowed to attach overnight, before medium was changed to 

-

glycerophosphate) (Day 0). The medium was replaced with fresh osteogenic medium on Day 3, 

and the cAMP assay was performed on Day 5. 

 

For the cAMP assay, the medium was aspirated and confluent cells were washed with PBS. 

The cells were stimulated with vehicle (1 mM acetic acid) or bbPTH (1-84) (10, 30, or 100 nM) 

in PBS containing 1 mM isobutylmethylxanthine (IBMX) for 10 min at 37oC with N = 3 wells 

per treatment. At the end of the treatment period, the PBS was collected and samples were 

prepared and assayed in triplicate without acetylation as per the manufacturer’s instructions 
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(Cayman Chemical, Ann Arbor, MI). Cell culture supernatants were assayed directly; samples 

were diluted as necessary in cAMP EIA buffer.  

 

2.2.3 Caspase-3/7 Activity Assay 

 

We performed a caspase-3/7 assay because human PTH has been shown to have an anti-

apoptotic effect on osteoblasts (Bellido, et al., 2003). MC3T3-S4 cells were seeded at 20,000 

cells/well in 96 well, tissue culture-treated white-walled plates. The cells were seeded in basal 

medium and allowed to attach overnight. The next day, the medium was aspirated, cells were 

washed with PBS, and then pretreated with vehicle (1 mM acetic acid) or bbPTH (1-84) (30 or 

100 nM) in basal medium for 1 hr with N = 6 wells per treatment. At the end of the pretreatment 

period, the medium was aspirated, the cells were washed with PBS, and either basal medium 

-MEM alone (serum-starved cells) was added to each well. After 6 hours, 

the medium was aspirated, the cells were washed with PBS, and 50 μl of both PBS and a 

luminogenic caspase-3/7 substrate (Caspase-Glo 3/7 Assay, Promega, Madison, WI) were 

added to each well. After 1 hour, luminescence was quantified using a Synergy HT Multi-

Detection Microplate Reader (Bio-Tek, Winooski, VT). Luminescence was converted to 

international units (U) of caspase-3/7 activity using a standard curve generated with human 

recombinant caspase-3 (Enzo Life Sciences, Farmingdale, NY).  
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2.2.4 Animals 

 

Twenty 4-week old male C57BL/10ScSn/DMD-mdx and 10 wild type control C57BL/10Sn 

mice were obtained from Jackson Laboratories (Bar Harbor, ME). Mice were co-housed six per 

cage in a 12-h dark, 12-h light environment at 20°C. Mice were fed a standard rodent diet 

containing 0.95% calcium (Purnia LabDiet Autoclavable Rodent Diet #5010) and given water 

ad libitum. All mice were euthanized at 10 weeks of age, after 6 weeks of PTH treatment, using 

carbon dioxide asphyxiation. Three mice (1 mdx bbPTH, 1 mdx vehicle and 1 wild type vehicle) 

died during the study and were not included in subsequent data analysis. This study was 

approved by the Michigan Tech Animal Care and Use Committee protocol L0206. 

 

2.2.5 PTH Treatment 

 

Mice were given daily subcutaneous injections of bbPTH 1-84 or an acidic vehicle solution. 

Vehicle injections were prepared with 0.15 M NaCl and 0.001 N HCl. bbPTH solutions were 

prepared by dissolving PTH in the acidic saline solution. Mice were injected once daily, 5 times 

per week with 28 nmol/kg bbPTH 1-84. After six weeks of daily injection, mice were 

euthanized and their long bones were removed. At 1 and 4 days prior to sacrifice, mice were 

given calcein injections to label bone formation surfaces (10 mg/kg).  
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2.2.6 Isolation, Culture, and Mineralization of Bone Marrow Stromal Cells 

(BMSCs) 

 

Bone marrow was flushed from the humeri of vehicle- and bbPTH-treated wild type and 

mdx mice. Cells were pooled by treatment group. Cells were seeded into 6 well plates (107 

cells/well) in osteogeni -MEM, 20% FBS, 1% antibiotic-antimycotic, 1% 

non- -glycerophosphate). BMSCs 

were identified by adherence; after 72 hrs, non-adherent cells were removed. Media changes 

continued every 3 days. BMSCs were cultured in osteogenic medium for 21 days to promote 

calcified matrix production. At the end of this period, BMSCs were fixed (10% neutral-buffered 

formalin) and stained (2% alizarin red). Calcified matrix was quantified as the percentage of 

alizarin red-positive area over total well area using image analysis software (Bioquant Osteo, 

Nashville, TN).  

 

2.2.7 Trabecular Bone Properties 

 

Proximal tibial and distal femoral metaphyses were scanned using micro-computed 

tomography (μCT) (SCANCO 35, SCANCO Medical, Switzerland) to determine trabecular 

properties.  The scan region started 0.5 mm from the physis and was 100 slices (0.7 mm) thick 

(Figure 2.1). From these data, trabecular number (Tb.n), trabecular spacing (Tb.sp), trabecular 

thickness (Tb.th), and bone volume/tissue volume (BV/TV) were calculated. Dynamic 

histomorphometry was evaluated in the same region of the proximal tibia (0.5 mm from the 
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physis and the endosteal surface) (Phaner, et al., 2004) by determining the distance between 

calcein labels on the trabecular surface and the lengths of single- and double-labeled surfaces 

using Bioquant Osteo software (Nashville, TN) (Figure 2.4). Static histomorphometry was 

evaluated by measuring osteoid surface, osteoid thickness, and eroded surface in slides stained 

in von Kossa with MacNeal’s tetrachrome stain (Figure 2.2). Osteoblast and osteoclast surfaces 

were measured in decalcified proximal tibia segments stained in toluidine blue and tartrate-

resistant acid phosphatase (TRAP) (Figure 2.3). 

 

 

Figure 2.1: Micro-CT image of the distal femur trabeculae 

 

Figure 2.2: Von Kossa MacNeal staining of trabecular bone was used to determine osteoid surface 

and thickness. Osteoid appears as a light blue seam surrounding black trabecular struts. 



38 

 

Figure 2.3: Tartrate-resistant acid phosphatase (TRAP) stained trabecular bone was used to 

measure osteoclast and osteoblast surface. Osteoclasts appear as pink streaks along the white 

trabecular struts, and osteoblasts appear as blue cuboidal cells along the trabeculae. 

 

Figure 2.4: Calcein-labeled trabecular bone was used to determine mineralizing surface/bone 

surface (MS/BS) and mineral apposition rate (MAR) based on label distance. 

2.2.8 Cortical Bone Properties 

The right femoral diaphysis was embedded in methylmethacrylate. A cross-section was cut 

at the midpoint using an Isomet diamond wafering blade (Beuhler, Lake Bluff, IL), ground to a 

thickness of <90 μm and mounted on a microscope slide. Cross-sections were digitized at 40X 
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magnification using a SPOT Insight camera (Diagnostic Instruments, Sterling Heights, MI). A 

custom macro and Scion Image software (Scion Corp., Frederick, ME) were used to quantify 

cross-sectional properties including medio-lateral (Iml), anterio-posterior (Iap), and maximum 

(Imax) moments of inertia (Figure 2.5). Mineral apposition rate was determined by measuring the 

distance between calcein labels using Bioquant software. Mineralizing surface was determined 

by measuring the ratio of single- and double-labeled surfaces to the total cortical surface (Figure 

2.6). Cortical thickness was measured as the average distance between the endosteal and 

periosteal surfaces. 

 

 

Figure 2.5: A custom macro and Scion Image were used to determine cortical geometrical 

properties including Iml, Iap, and Imax, and cortical area. Anatomical axes are indicated. Bioquant 

was used to calculate cortical thickness. 
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Figure 2.6: Calcein-labeled cortical cross sections were evaluated to measure single- and double-

labeled surfaces to determine mineralizing surface and mineral apposition rate on the periosteal 

and endosteal surfaces. 

 

2.2.9 Mechanical Properties 

Bending properties of the left femur were determined by a 3-point bend test at a rate of 1 

mm/min. The testing fixtures had a span of 10 mm and a radius of 1 mm (Figure 2.7). 

Mechanical testing was performed using an Instron test machine (Norwood, MA). Stress-strain 

plots were determined using asymmetric beam theory (Levenston, 1995), and used to calculate 

ultimate stress and modulus of toughness. Load-displacement plots were used to determine 

ultimate load and energy to failure in bending for each sample (Figure 2.8). 
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Figure 2.7: Three-point bending setup with anterior surface in tension 
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Figure 2.8: Load-displacement plot for 3-pt bending of a mouse femur 

2.2.10 Mineral Content 

Mineral content was determined through ashing. After mechanical testing, femoral 

diaphyses were cleaned of marrow, placed in a furnace at 100°C for 24 hours to remove all 

water, and weighed to obtain dry mass. Samples were returned to the furnace for 48 hours at 

600°C to burn off all organic material. Bones were again weighed to determine relative mineral 

content, defined as the ratio of ash mass to dry mass. 
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2.2.11 Statistics 

 

Bone properties and cell parameters were compared between bbPTH- and vehicle-treated 

animals using one-way ANOVA and Tukey’s post hoc analysis. 

 

2.3 Results 

 

2.3.1 Cell Studies 

 

All three concentrations of bbPTH increased cAMP production in MC3T3 cells compared to vehicle 

controls (p < 0.0001). No difference was observed between 10 nM bbPTH and 30 nM bbPTH, but 100 

nM bbPTH increased cAMP production more than the lower doses (p < 0.0001) (Figure 2.9). Caspase 3/7 

activity was reduced (p < 0.0001) in serum starved MC3T3 cells treated with both concentrations of 

bbPTH, with 100 nM bbPTH decreasing caspase 3/7 to unstarved control values (Figure 2.10).  
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Figure 2.9: bbPTH increased cAMP production in a dose-responsive manner (p < 0.0001). 

 

 

Figure 2.10: bbPTH was antiapoptotic in serum starved MC3T3 cells (p < 0.0001). Groups with 

different letters are significantly different from one another. 
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2.3.2 Bone Marrow Stromal Cells 

Alizarin red staining showed greater (p = 0.0021) mineralized matrix in BMSC cultures from 

vehicle-treated mdx mice than in cultures from bbPTH-treated mdx mice (Figure 2.11-A). In wild 

type mice, the difference (p = 0.09) between vehicle and bbPTH treatments was not as large (Figure 

2.11-B).  

 

Figure 2.11: Alizarin red stained mineralized matrix in 21 day BMSC cultures from the humeri of 

A) mdx and B) wild type mice. The percentage of well area stained for mineralized matrix was 

quantified. 
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2.3.3 Trabecular Bone 

 

Trabecular bone volume fraction was lower in the distal femoral and proximal tibial 

metaphyses of vehicle-treated mdx mice compared to wild type mice (p = 0.0024) (Figure 2.12-

A). Treatment with bbPTH improved trabecular bone volume in both the distal femur and 

proximal tibia in both mdx and wild type mice, but to a much greater degree in mdx mice 

(Figure 2.13). The increase in femoral bone volume fraction in mdx mice with bbPTH treatment 

was 7-fold, compared to a 2-fold change in wild type mice (Figure 2.12-A), with similar 

magnitude responses in the tibia (Table 2.1). 

 

Vehicle-treated wild type mice demonstrated greater trabecular thickness in the distal femur 

and proximal tibia than mdx mice (p > 0.0212). Trabecular spacing (p > 0.7780), trabecular 

number (p > 0.9813), and apparent mineral density (p > 0.7733) were not different between 

vehicle-treated mdx and wild type mice. 

 

Both trabecular number (Figure 2.12-B) and trabecular thickness (Table 2.1) increased (p < 

0.0001) with bbPTH treatment in mdx distal femurs and proximal tibias, but not in wild type 

mice. Trabecular spacing decreased (p < 0.0001) in mdx femurs, but not in wild type mice.  
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In the proximal tibia there was no difference in mineralizing surface between any groups (p 

= 0.7437). Trabecular mineral apposition rate increased with bbPTH in wild type mice (p = 

0.0202), but there was no difference in mineral apposition rate between vehicle- and bbPTH-

treatment in mdx mice (p = 0.6628). There were no differences in mineral apposition rate 

treatments between mdx and wild type mice in either treatment group (p > 0.245) (Table 2.1). 

 

Despite the observed anabolic effect of bbPTH on trabecular bone volume fraction, no 

differences were found between groups in osteoid thickness (p = 0.4047) or osteoid surface (p = 

0.966). However, bbPTH-treated mdx mice had increased osteoblast surface (p = 0.0435) and 

decreased osteoclast surface (p = 0.0336), compared to vehicle treatment. These changes likely 

contributed to the increased trabecular bone volume fraction that occurred with bbPTH 

treatment in mdx mice. Similar changes were seen in wild type mice treated with bbPTH, but 

the differences were not significant for osteoblast surface (p = 0.0711) or osteoclast surface (p = 

0.1242) (Table 2.2). Normally, PTH treatment increases both osteoblast and osteoclast surfaces 

(Wu, et al., 2011).  Increased osteoblast surface and decreased osteoclast surface, as seen in the 

bbPTH treated mdx mice, may be a feature unique to bbPTH. 
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Figure 2.12: A) Bone volume fraction was lower in vehicle-treated mdx femurs compared to wild 

type femurs. Mdx femurs showed greater response to PTH treatment than wild type femurs. B) 

Vehicle-treated mdx mice had lower trabecular number in the femur compared to wild type mice (p 

= 0.0028). Trabecular number increased with PTH treatment in mdx mice (p < 0.0001), but not wild 

type (p = 0.2047).  Mean values with standard error bars. Groups with different letters are 

significantly different (p < 0.05) from each other. 

 

Figure 2.13: Micro-CT images of distal femoral metaphyses show compromised trabecular 

architecture in mdx mice compared to wild type mice and improved trabecular architecture with 

PTH treatment, particularly in mdx mice. 
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Table 2.1 

 The  distal femur and proximal tibia trabecular regions show 1) compromised trabecular 

architectural parameters in mdx mice vs. wild type; 2) an anabolic effect of bbPTH in mdx and wild 

type mice, with a stronger effect in mdx; 3) bbPTH treatment increased mdx trabecular 

microarchitecture beyond vehicle-treated wild type values. Average ± SE. 

* p < 0.05 vs. vehicle-treated; ** p < 0.005 vs. vehicle-treated 
† p < 0.05 vs. wild type vehicle; ††p < 0.005 vs. wild type vehicle 

 

 

 

2.3.4 Cortical Bone 

 

No differences were found in femur length for either treatment or mouse type (p > 0.22). 

Mdx mice appeared to have an altered femoral cross-section, with a more prominent linea 

aspera than wild type mice, regardless of bbPTH treatment (Figure 2.14). No differences were 
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detected between mdx and wild type, or bbPTH and vehicle-treated mice for cortical thickness 

(p = 0.2803), Imax (p = 0.4344), or Iap (p = 0.4492). However, moment of inertia about the 

bending axis (Iml) was greater in bbPTH-treated mdx mice than vehicle-treated mdx mice (p = 

0.0097) (Table 2.2). 

 

No differences were detected in cortical bone mineralizing surface on the fluorescently 

labeled endosteal surface, either when analyzed by quadrant, or by total endosteal area (p > 

0.2579). Mineral apposition rate was not different between any groups, though bbPTH-

treatment tended to decrease endosteal mineral apposition rate (p = 0.0776). Similarly, no 

differences were found between any groups for periosteal mineralizing surface on the calcein 

labeled periosteal surface (p > 0.1970). bbPTH-treated mdx mice tended to have greater 

periosteal mineral apposition than vehicle-treated controls (p = 0.0764), unlike wild type mice 

(p = 0.8890). No other differences were detected in cortical bone mineral apposition rate 

between groups (p > 0.1492) (Table 2). 

 

Three-point bend testing of the femur showed no differences (p > 0.1314) between ultimate 

load or energy to failure between bbPTH- and vehicle-treated mice or between mdx and wild 

type mice. Normalizing by body weight had no effect (p > 0.1086). Similarly, no differences 

were found in ultimate stress (p = 0.9231) or modulus of toughness (p = 0.5541) (Table 2.2). 

 

Mineral content in the femoral diaphysis, as determined by ash fraction, was not different for 

mdx vs. wild type or PTH vs. vehicle-treated animals (p = 0.8516) (Table 2.2). 
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Figure 2.14: mdx femoral cross-sections (left) had a more prominent linea aspera than wild type 

mice (right). Images are femoral cross-sections of vehicle-treated animals, but are representative of 

all samples treated or untreated. 
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Table 2.2:  

bbPTH did not change mechanical properties of cortical bone in mdx or wild type, or strongly 

affect geometric values. The only change in geometry was Iml, the moment of inertia about the 

bending axis in PTH-treated mdx animals. Average ± SE. 

** p = 0.0097 vs. vehicle-treated 

 

 

 

2.4  Discussion 

 

We cloned the gene for black bear PTH and found nine amino acid residues were different 

from human PTH 1-84. We recombinantly produced bbPTH 1-84 and found it activates cAMP 

production as has been previously reported for  human PTH (Koh, et al., 1999). The 
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cAMP/protein kinase A pathway is belived to be responsible for the majority of PTH induced 

increases in histological and serum indices of bone formation (Fujimori, et al., 1991, Rixon, et 

al., 1994, Hilliker, et al., 1996). PTH also produces osteoanabolic activity via anti-apoptosis 

mechanisms in osteoblasts (Jilka, et al., 1999). We also found that treating osteoblasts with 

bbPTH prior to serum starvation reduces caspase 3/7 activity. Previously we found bbPTH 1-34 

causes greater reductions in serum starved induced caspase activity than hPTH 1-34 (McGee-

Lawrence, 2009). Here we demonstrate the ability of bbPTH 1-84 to have a greater 

osteoanabolic effect in dystrophin deficient mice than in wild type mice.  

 

Though a strong anabolic response to bbPTH treatment (i.e., increased trabecular bone 

volume fraction) was observed in both mdx and wild type mice, the relative effect was much 

greater in mdx mouse bone. The lower mineralization in BMSC cultures from mdx mice treated 

with bbPTH suggests that the majority of osteoblast precursors were differentiated and removed 

from the marrow to participate in bone formation during the course of treatment. Dystrophin 

deficiency alters calcium signaling and calcium reuptake in muscle cells, and calcium signaling 

is also an important biological mechanism in osteoblasts (Zayzafoon, 2006). Thus, there is 

potential that the mdx mouse also features differences in calcium signaling in osteoblasts in 

response to PTH and mechanical loading (Lansman and Franco-Obregon, 2006). These 

differences may help explain the low bone volume in mdx mice and the differential response to 

PTH treatment between mdx and wild type mice. Mdx mice display a low bone mass phenotype 

at 3 weeks of age, which precedes the onset of muscle weakness (Nakagaki, et al., 2010). 

Dystrophin deficiency may also affect primary spongiosa formation and the development of 

hypertrophic chondrocytes during development due to aberrant calcium signaling (Silbermann 

and Kadar, 1977). No connection between PTH and dystrophin has been established previously, 

but the marked difference in anabolic response to bbPTH in mdx as compared to wild type 
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mouse trabecular bone suggests that dystrophin or associated altered calcium signaling due to 

dystrophin deficiency plays a role in trabecular bone formation. However, surprisingly there is 

no difference in serum calcium concentrations between 2 month old mdx and wild type mice 

(Kikkawa, et al., 2009).  Bone losses attributed to the mdx phenotype may be due to decreased 

muscular force as well. Though mouse behavior was not markedly different by gross 

observation during this study, previous work has shown decreased muscle forces despite 

increased muscle size in mdx mice from ages 4 weeks to 24 months (Anderson, et al., 1993, 

Novotny, et al., 2011, Montgomery, et al., 2005).  Notably, PTH has been shown to attenuate 

bone loss in disuse scenarios, such as hind limb suspension (Cavanagh, et al., 2005). 

 

The bone volume fraction increases with bbPTH treatment were based on increases in 

trabecular thickness and coincident decreases in trabecular spacing in mdx mice. bbPTH 

increased bone volume fraction to a greater degree than has been observed in previous studies 

administering hPTH to mice, with a 91% increase in bone volume fraction in wild type mice in 

this study, compared to 14-38% increases in bone volume fraction in mice administered with 

high dose hPTH (Kanis, et al., 1994, Lippuner, et al., 2004).  Trabecular number was also 

increased in mdx bones, contributing to a large increase in bone volume fraction (Figure 5B). A 

possibility for the increase in trabecular number, since dystrophin deficiency leads to aberrant 

calcium signaling in muscle cells, and possibly other musculoskeletal cells, is that mdx mice 

have a greater number of hypertrophic chondrocytes or increased primary spongiosa since 

hypertrophic chondrocyte proliferation is regulated by a calcium signaling pathway (Li, et al., 

2011). Higher values of these parameters in mdx mice at the start of the PTH treatment period 

could lead to increases in trabecular number and bone volume fraction with PTH treatment 

(Silbermann and Kadar, 1977, Silbermann and Kadar, 1977). The increases in bone volume 

fraction and trabecular number lead to large increases in bone surface (BS) compared to vehicle 
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treated animals. The substantial increase in bone surface in the bbPTH treated mice may explain 

the lack of change in mineralizing surface (MS/BS), which is normally seen with PTH 

treatment. Furthermore, in vitro data suggest that bbPTH has an anti-apoptotic effect in 

osteoblasts, which would increase osteoblast survival, consistent with the increased osteoblast 

surface we observed histologically in bbPTH treated mdx mice.  

 

Cortical bone did not display the marked changes with bbPTH treatment that were observed 

in trabecular bone. This is similar to studies with PTH in other mouse models, which show 

approximately a 10% increase in cortical bone ultimate force with PTH (Washimi, et al., 2010, 

Zhou, et al., 2003). Our study showed a comparable increase in femoral ultimate force of 

approximately 8%, though the difference was not significant, and no change was detected in 

stress or modulus of toughness.  PTH did not have the expected effect on endosteal mineralizing 

surface, possibly because the majority of osteoblast precursors were mobilized in the heavily 

affected trabecular bone. However, bbPTH did significantly increase medio-lateral moment of 

inertia in mdx mice. This is important because the medio-lateral axis is the primary bending axis 

in the femur (Margolis, et al., 2004). This raises the possibility that bbPTH may have a 

moderate effect on mdx cortical bone, which may improve with longer duration treatment. 

 

The potent osteoanabolic response to bbPTH in mdx trabecular bone is clinically relevant to 

DMD patients, as the majority of fractures occur in the highly trabecularized regions of bone 

including the distal femur, proximal tibia, and vertebrae (Gray, et al., 1992, Hsu, 1979, Hsu and 

Garcia-Ariz, 1981, Bothwell, et al., 2003). An increase in trabecular bone volume, as occurs 

with parathyroid hormone treatment, could greatly reduce fracture risk due to compression by 

increasing trabecular bone density in DMD patients (Fields, et al., 2009). Additionally, a longer 

duration PTH treatment in DMD patients could have beneficial effects on cortical bone. 
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However, the potential of PTH to increase the risk of osteosarcoma in pediatric patients is a 

concern that would need further investigation. Decreasing fracture prevalence in DMD patients 

could improve overall quality of life by allowing greater mobility for a longer period of time, 

even with the use of glucocorticoids. Parathyroid hormone is effective in the treatment of 

glucocorticoid-induced osteoporosis (Weinstein, et al., 2010, Saag, et al., 2009). Therefore, 

treating DMD patients with parathyroid hormone could reduce the probability of fractures and 

prolong the amount of time these patients are independently mobile. Our data support the idea 

that bbPTH is an effective therapeutic to combat bone loss in cases of dystrophin deficiency.  

However, this study administered only high dose bbPTH. Future work comparing the dose 

responses of bbPTH and hPTH in mdx mice are needed to further elucidate the mechanisms by 

which PTH improves bone properties in the mdx model of Duchenne muscular dystrophy. 
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3 Chapter 3: Black Bear PTH is more Potent than Human 

PTH in a Dose-Responsive Manner in Trabecular Bone in 

Dystrophin-Deficient Mice 1F

2  

3.1  Introduction 

 

Duchenne muscular dystrophy (DMD) is a fatal X-linked disease that leads to wasting of 

skeletal and cardiac muscle. Glucocorticoids, the main treatment modality in DMD, have 

deleterious effects on the skeleton through the inhibition of osteoblast formation and the 

promotion of osteoclastic resorption (Cohran, et al., 2008). In addition to skeletal losses due to 

glucocorticoid treatments, DMD patients experience bone loss due to inactivity (lack of 

mechanical stresses) as they lose mobility. 

 

Fracture risk is elevated in DMD patients treated with glucocorticoids, and these boys 

experience a 30-50% reduction in bone mineral content in the lumbar spine, hip, femur, and 

tibia, with greater losses observed in trabecular bone (Bianchi, et al., 2010, Soderpalm, et al., 

2007, Aparicio, et al., 2002, Larson and Henderson, 2000, Crabtree, et al., 2009). When treated 

with glucocorticoids, one study found that 44-67% of boys experienced at least one 

osteoporosis-related fracture. Many of these fractures occurred after the loss of ambulation and 

resulted from low-trauma falls from a wheelchair or standing height (Larson and Henderson, 

2000). Even when glucocorticoid treatment is not taken into account, over 20% of DMD 

                                                           
2 This chapter consists of a paper prepared for peer-reviewed publication, but has not yet been 

submitted. Copyrights retained by author. 
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patients sustained at least one fracture (versus < 4% fracture rate in healthy boys of similar age) 

(McDonald, et al., 2002). The majority of fractures occur in the long bones of the lower limb in 

both ambulatory and wheelchair-bound boys, with more fractures occurring in the femur than 

the tibia (McDonald, et al., 2002, Siegel, 1977, Gray, et al., 1992, Hsu, 1982, Hsu, 1979, Hsu 

and Garcia-Ariz, 1981). In addition to long bone fractures, vertebral fractures occur commonly 

in DMD patients, but are often asymptomatic, leading to underestimated occurrence. One study 

looked at glucocorticoid treatment time and risk of vertebral fractures and found that fracture 

risk increases with age and with time on glucocorticoids, and by 100 months of glucocorticoid 

treatment, 75% of DMD patients will have sustained a vertebral fracture (Bothwell, et al., 

2003). 

 

The dystrophin-deficient mdx mouse is a model for DMD that demonstrates the myopathic 

lesions observed in human DMD (Ryder-Cook, et al., 1988, King, et al., 2007, Sicinski, et al., 

1989, Bulfield, et al., 1984, Call, et al., 2010). Regardless of glucocorticoid treatment, mdx mice 

display increasing indices of osteoporosis including decreased trabecular bone volume fraction, 

decreased osteoblast surface area, decreased cortical area, increased cortical porosity, and 

decreased force to failure and deformation at fracture from ages 3 weeks to 24 months 

(Novotny, et al., 2011, Nakagaki, et al., 2010, Anderson, et al., 1993, Rufo, et al., 2011). 

 

Anabolic treatments have not been widely explored. Human parathyroid hormone (hPTH) 

reduces fracture risk more effectively than alendronate in glucocorticoid-induced osteoporosis 

and attenuates osteoblast apoptosis (Saag, et al., 2009, Bellido, et al., 2003, Jilka, et al., 1999, 

Weinstein, et al., 2010). Even slight variations in amino acid reside sequence of the PTH 
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peptide can cause large changes in target organ cAMP response (Hilliker, et al., 1996, 

Langsetmo, et al., 2007). In a comparative dose-response study of rat and bovine PTH (1-34) in 

ovariectomized rats, relative potency analyses showed that bovine PTH, with 6 amino acid 

residues different from rat PTH, was 2-5 times more potent in trabecular and cortical bone 

volume and thickness indices (Li, et al., 2001). Black bear parathyroid hormone (bbPTH), with 

9 amino acid residue differences from hPTH, could be even more beneficial, since black bears 

hibernate for half the year, yet experience no disuse-related declines in bone properties 

(Donahue, et al., 2006, Donahue, et al., 2006, McGee, et al., 2008, McGee, et al., 2007, McGee-

Lawrence, et al., 2009, McGee-Lawrence, et al., 2009). High dose black bear PTH has been 

shown previously to be anabolic in the trabecular bone of the mdx mouse (Gray et al, ASBMR 

2011; Gray et al, ORS 2011). In this study, we administered 3 doses of bbPTH or hPTH to mdx 

mice to determine dose response and relative potency. We hypothesized that mdx mice treated 

with either PTH analogue would demonstrate an increasing osteoanabolic response with 

increased PTH, and that bbPTH would be more osteoanabolic (higher relative potency) at 

similar doses.  

 

3.2  Materials and Methods 

3.2.1 Animals 

 

Forty-nine 4-week old male C57BL/10ScSn/DMD-mdx and 24 wild type control 

C57BL/10Sn mice were obtained from Jackson Laboratories (Bar Harbor, ME). Mice were co-

housed six or seven per cage in a 12-h dark, 12-h light environment at 20°C. Mice were fed a 
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standard rodent diet containing 0.95% calcium (Purina LabDiet Autoclavable Rodent Diet 

#5010) and given water ad libitum. All mice were euthanized at 10 weeks of age, after 6 weeks 

of PTH or vehicle treatment, using carbon dioxide asphyxiation. Two mdx mice died during the 

study and were not included in subsequent data analysis. This study was approved by the 

Michigan Tech Animal Care and Use Committee protocol L0206. 

 

3.2.2 PTH Treatment 

 

Mice were given daily subcutaneous injections of bbPTH 1-84, hPTH 1-84 (Proteos, 

Kalamazoo, MI) or an acidic vehicle solution. Vehicle injections were prepared with 0.15 M 

NaCl and 0.001 N HCl. PTH solutions were prepared by dissolving bbPTH or hPTH in the 

acidic saline solution. Mice were injected once daily, 5 times per week with either 2.6, 8.7, or 

26.0 nmol/kg hPTH 1-84, or 3.5, 11.8, or 35.4 nmol/kg bbPTH 1-84, or an equal volume (0.05 

ml/g) of acidic saline. hPTH and bbPTH doses were different due to a discovered error in 

original mass measurements by the peptide supplier. After six weeks of daily injection, mice 

were euthanized and their femurs, humeri, and lumbar vertebrae were removed. Right hindlimbs 

and lumbar vertebrae were fixed in 70% ethanol and left hindlimbs were placed in 0.15 M 

saline and frozen at -24 C. At 1 and 4 days prior to sacrifice, mice were given calcein injections 

to label bone formation surfaces (10 mg/kg). 
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3.2.3 Trabecular Bone Properties 

 

Distal right femoral metaphyses and L4 lumbar vertebrae were scanned using micro-

computed tomography (μCT) (SCANCO 35, SCANCO Medical, Switzerland) to determine 

trabecular properties. The femoral scan region started 0.5 mm proximal to the physis and was 

100 slices (0.7 mm) thick. The vertebral scan region began 0.5 mm from the proximal cortical 

shell and spanned to 0.5 mm above the distal cortical shell. From these data, trabecular number 

(Tb.n), trabecular spacing (Tb.sp), trabecular thickness (Tb.th), and bone volume/tissue volume 

(BV/TV) were calculated. The distal femur and L4 were thin sliced to a thickness of 5 μm, and 

mounted on glass slides. Dynamic histomorphometry was evaluated in the region evaluated by 

μCT in the distal femur and L4 by determining the distance between calcein labels on the 

trabecular surface and the lengths of single- and double-labeled surfaces using Bioquant Osteo 

software (Nashville, TN). Static histomorphometry was evaluated by measuring osteoid surface, 

osteoid thickness, and eroded surface in slides stained in von Kossa with MacNeal’s 

tetrachrome stain. Osteoblast and osteoclast surfaces were measured in decalcified proximal 

tibia segments stained in toluidine blue and tartrate-resistant acid phosphatase (TRAP). 

 

3.2.4 Cortical Bone Properties 

 

The right femoral diaphysis was embedded in methylmethacrylate. A cross-section was cut 

at the midpoint using an Isomet diamond wafering blade (Beuhler, Lake Bluff, IL), ground to a 

thickness of <90 μm and mounted on a microscope slide. Cross-sections were digitized at 40X 

magnification using a Leitz fluorescence microscope (Leica, Germany) and a SPOT Insight 
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camera (Diagnostic Instruments, Sterling Heights, MI). A custom macro and Scion Image 

software (Scion Corp., Frederick, ME) were used to quantify cross-sectional properties 

including medio-lateral (Iml), anterio-posterior (Iap), and maximum (Imax) moments of inertia. 

Mineral apposition rate was determined by measuring the distance between calcein labels using 

Bioquant software on both the periosteal and endosteal surfaces Mineralizing surface was 

determined by measuring the ratio of single- and double-labeled surfaces to the total cortical 

surface on both the periosteal and endosteal surfaces. Cortical thickness was measured as the 

average distance between the endosteal and periosteal surfaces around the entire cortex at 5 μm 

increments. 

 

Vertebral cortical thickness and bone volume fraction were determined from μCT images of 

the entirety of L4, subtracting the region (described previously) evaluated as trabecular bone. 

 

3.2.5 Mechanical Properties 

 

Bending properties of the left femur were determined by a 3-point bend test at a rate of 1 

mm/min. The testing fixtures had a span of 10 mm and a radius of 1 mm. Mechanical testing 

was performed using an Instron test machine (Norwood, MA). Stress-strain plots were 

determined using asymmetric beam theory (Levenston, 1995), and used to calculate ultimate 

stress and modulus of toughness. Load-displacement plots were used to determine ultimate load 

and energy to failure for each sample. 
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3.2.6 Mineral Content 

 

Mineral content was determined through ashing. After mechanical testing, femoral 

diaphyses were cleaned of marrow, placed in a furnace at 100°C for 24 hours to remove all 

water, and weighed to obtain dry mass. Samples were returned to the furnace for 48 hours at 

600°C to burn off all organic material. Bones were again weighed to determine relative mineral 

content, defined as the ratio of ash mass to dry mass. 

 

3.2.7 Statistics 

 

Bone properties were regressed against dose were compared between bbPTH- and hPTH 

treated mdx mice using Analysis of Covariance (ANCOVA) with treatment and dose as 

covariates. Relative potency was determined through relative potency analysis as described 

previously (Li, et al., 2001). Confidence intervals were established using the Delta Method 

(Hogg, et al., 2005). Since ANCOVA regresses outcome variables against dose, the plot line 

was used to determine p-values. Since individual data points were not used, the difference in 

hPTH and bbPTH doses does not affect statistical outcomes. 
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3.3  Results 

3.3.1 mdx vs. Wild Type: Vehicle Treatment 
 

Vehicle-treated mdx mice were significantly heavier (p = 0.019) at sacrifice than wild type mice 

treated with vehicle, but no differences were detected in femur length (p = 0.341) between these 

mice. Differences in cortical properties included increased periosteal surface (p = 0.042), 

increased cortical area (p = 0.033), increased Imax (p = 0.045), as well as tendencies toward 

increase in Iap and Iml (p = 0.051 and 0.057, respectively) in mdx mice. No changes were 

observed (p > 0.1) in mechanical testing parameters including ultimate stress and energy to 

failure. Trabecular properties, including bone volume fraction (Figure 3.1), trabecular number, 

trabecular thickness, trabecular spacing, osteoclast surface, and osteoblast surface were not 

different (p > 0.2) between mdx and wild type mice. However, trabecular mineralizing 

surface/bone surface was increased (p = 0.033) in mdx mice (Table 3.1). 
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Table 3.1: 

 Bone parameters for vehicle treated mdx and wild type mice 

 

 

average standard error average standard error p-value % Change in mdx
Femur Length (mm) 15.282 0.049 15.192 0.071 0.341 0.59
Sac Weight (g) 30.500 0.253 28.333 0.272 0.019 7.65

Fmax/BW (N/g) 0.468 0.011 0.447 0.012 0.308 4.72
Energy/BW  (N*mm) 0.444 0.039 0.493 0.041 0.637 -10.08

stress 208.549 5.642 207.564 1.524 0.472 0.47
mod tough (mj/mm^3) 5.626 0.332 7.376 0.603 0.838 -23.73

lap,  μm^4 41655834.574 1668677.647 33604006.551 760028.298 0.051 23.96
lml, μm^4 22456921.326 816445.951 18487381.229 515566.652 0.057 21.47
lmax,  μm^4 42373911.264 1701669.113 33736459.084 774805.762 0.045 25.60

Ash Fraction 0.632 0.015 0.633 0.008 0.504 -0.07

Cortical Thickness (μm) 206.677 3.928 191.622 2.891 0.119 7.86
Cortical Area (μm) 10019.378 236.133 8631.853 150.191 0.033 16.07

endosteal MS/BS 0.389 0.011 0.464 0.011 0.958 -16.11
periosteal MS/BS 0.475 0.025 0.506 0.011 0.669 -6.06
endosteal MAR (μm/day) 2.399 0.051 2.388 0.139 0.488 0.46
periosteal MAR (μm/day) 3.934 0.134 3.322 0.109 0.091 18.41

Trabecular MAR (μm/day) 1.115 0.028 1.003 0.093 0.327 11.16

Femur BV/TV 0.145 0.008 0.171 0.009 0.820 -15.67
Femur Tb.N (1/mm) 5.675 0.094 5.865 0.079 0.729 -3.23
Femur Tb.Th (mm) 0.039 0.001 0.043 0.002 0.800 -9.20
Femur Tb.Sp (mm) 0.175 0.003 0.170 0.002 0.286 3.35

LV BV/TV 0.102 0.001 0.123 0.007 0.867 -16.78
LV Tb.N (1/mm) 4.233 0.032 4.322 0.024 0.806 -2.06
LV Tb.Th (mm) 0.040 0.000 0.046 0.001 0.912 -12.85
LV Tb.Sp (mm) 0.236 0.002 0.228 0.002 0.105 3.82

Cort BV/TV 0.650 0.002 0.667 0.010 0.749 -2.64
LV Cort SMI 0.791 0.024 0.826 0.018 0.680 -4.24
LV Cortical Thickness (mm) 0.829 0.020 0.904 0.023 0.827 -8.28
LV Cort AMD (g/mm^3) 673.763 2.968 690.856 8.080 0.777 -2.47
LV Cort MMD (g/mm^3) 925.586 4.952 931.164 4.420 0.631 -0.60

OC Surf./Bone Surf. 0.157962495 0.0098 0.152906397 0.0062 0.376 3.31
OB Surf./Bone Surf. 0.168343818 0.0149 0.156473564 0.005 0.333 7.59

mdx wild type
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Figure 3.1: Bone volume fraction was not greater in wild type mice compared to mdx mice 

 

3.3.2 bbPTH vs. Vehicle: Wild Type Mice 
 

bbPTH treatment increased maximum force to failure (p = 0.0192) as well as Fmax normalized 

by body weight (p = 0.0032) in wild type mice. Iap and Imax increased in bbPTH treated wild 

type mice (p = 0.0027 and 0.0482, respectively) and Iml showed a tendency (p = 0.0645) toward 

increase with bbPTH. In trabecular bone, bbPTH increased femoral bone volume fraction (p = 

0.0238) (Figure 3.2) and femoral trabecular thickness (p = 0.0402), with no changes noted in 

osteoblast or osteoclast surface (p > 0.3) (Table 3.2). Table 0.2 lists regression values 

(determined through ANCOVA) of bbPTH treatment values, compared to vehicle treatment 

(single value).  
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Table 3.2:  

Bone parameters in bbPTH-treated and vehicle-treated wild type mice

 

vehicle value slope intercept stderr p-value 
Femur Length (mm) 15.19 -0.006 15.25 0.091 0.82 

Sac Weight (g) 28.33 0.28 27.13 0.36 0.32 

Fmax (N) 12.62 0.25 14.2 0.39 0.01 
Energy (N*mm) 14.03 0.07 17.9 1.14 0.26 
Fmax/BW (N/g) 0.44 0.0003 0.52 0.01 0.003 

Energy/BW  (N*mm/g) 0.49 -0.003 0.66 0.04 0.19 

stress 207.5 -0.38 218.2 4.04 0.60 
mod tough (mj/mm^3) 7.37 -0.06 8.84 0.62 0.79 

lap,  μm^4 18487381 112500 2E+07 822.91 0.064 
lml, μm^4 43778945 0 4E+07 0 0.002 

lmax,  μm^4 33736460 144078 4E+07 1396513 0.048 

Ash Fraction 0.63 0.0006 0.63 0.0141 0.73 

Cortical Thickness (μm) 191.6 0.29 195.28 3.47 0.22 
Cortical Area (μm) 8631.8 22.41 9107.9 227.3 0.07 

endosteal MS/BS 0.46 0.002 0.35 0.02 0.17 
periosteal MS/BS 0.50 -0.002 0.53 0.02 0.96 

endosteal MAR (μm/day) 2.38 0.02 2.10 0.17 0.81 
periosteal MAR (μm/day) 3.32 0.013 3.38 0.18 0.41 

Trabecular MAR (μm/day) 1.00 0.001 1.06 0.09 0.69 

Femur BV/TV 0.17 0.0062 0.17 0.021 0.023 
Femur Tb.N (1/mm) 5.86 0.14 4.95 0.47 0.11 
Femur Tb.Th (mm) 0.04 0 0.04 0.001 0.04 
Femur Tb.Sp (mm) 0.16 -0.02 0.19 0.009 0.18 

LV BV/TV 0.12 0.001 0.11 0.008 0.2025 
LV Tb.N (1/mm) 4.32 0.0068 4.07 0.089 0.4566 
LV Tb.Th (mm) 0.04 0.0003 0.04 0.001 0.1688 
LV Tb.Sp (mm) 0.22 -0.0004 0.24 0.005 0.222 

Cort BV/TV 0.66 0.0008 0.62 0.01 0.21 
LV Cort SMI 0.82 0.0007 0.82 0.03 0.93 

LV Cortical Thickness (mm) 0.90 0.003 0.83 0.05 0.89 
LV Cort AMD (g/mm^3) 690.8 0.45 656.26 8.10 0.11 
LV Cort MMD (g/mm^3) 931.1 -0.4 915.89 5.29 0.048 

OC Surf./Bone Surf. 0.15 -0.001 0.19 0.009 0.33 
OB Surf./Bone Surf. 0.15 0.0002 0.16 0.008 0.36 
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Figure 3.2: bbPTH increased BV/TV in a dose-responsive manner in wild type mice 

 

3.3.3 bbPTH vs. hPTH in mdx Mice: Relative Potency Analysis 
 

In the mdx mouse, no differences were observed (p > 0.3) in general properties including weight 

at sacrifice and femur length comparing bbPTH and hPTH treatment. In cortical bone, hPTH 

tended (p = 0.0805, relative potency bbPTH dose/hPTH dose = 0.55) to mildly increase 

periosteal mineralizing surface/bone surface in the femur hPTH increased cortical shell 

thickness in the lumbar vertebrae (p = 0.0187, relative potency = 0.32), and bbPTH increased 

Iap compared to hPTH (p = 0.0001, relative potency = 1.09), but no other differences (p > 0.1) 

were detected for cortical bone properties including mechanical testing values in either the 

femur or the lumbar vertebrae. In trabecular bone, bbPTH increased bone volume fraction (p = 

0.001, relative potency = 2.03) (Figure 3.3), trabecular number (p = 0.0003, relative potency = 
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2.06) and decreased trabecular spacing (p = 0.0384, relative potency = 1.87) in the femur, and 

tended to increase trabecular number in L4 (p = 0.09925, relative potency = 1.01) (Table 3.3 

and Table 3.4). Table 3.3 lists the slopes and intercepts of the linear regression against dose, as 

determined by ANCOVA, of bbPTH and hPTH parameters, respectively. Table 3.4 lists PTH 

doses required to reach wild type vehicle values as determined from the regression lines, along 

with calculated relative potency analyses for each variable. In cases where dose was determined 

to be negative (i.e. requiring extrapolation of the dose beyond the y-axis), potency and p-values 

are not listed. No differences between bbPTH and hPTH were detected for any of these 

parameters. 
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Table 3.3: 

 Dose response curves for PTH treated mdx mice. Slopes and intercepts correspond to regression 
determined by ANCOVA. 

 

  bbPTH hPTH   
  slope intercept slope intercept stderr 

Femur Length (mm) 0.0085 14.9 -0.0034 15.0 0.09 
Sac Weight (g) 0.0826 27.2 -0.065 29.2 0.49 

            
Fmax (N) 0.0753 12.6 0.024 14.0 0.47 

Energy (N*mm) -0.0166 16.6 -0.013 16.3 1.11 
Fmax/BW (N/g) 0.0011 0.46 0.002 0.48 0.012 

Energy/BW  (N*mm/g) -0.0025 0.61 0.0006 0.56 0.041 
            

stress -0.0077 7.91 -0.015 8.4275 7.71 
mod tough (mj/mm^3) 2.19 103.93 5.09 85.03 0.77 

            
lap,  μm^4 120126 20000000 101241 20000000 824773 
lml, μm^4 398669 30000000 302654 30000000 650925.1 

lmax,  μm^4 13225 3000000 59748 2000000 1687754.3 
            

Ash Fraction -0.0014 0.69 0.0006 0.65 0.013 
            

Cortical Thickness (μm) 0.09 8.44 0.16 8.28 0.56 
Cortical Area (μm) 0.59 195.34 -0.0031 223.56 237.0 

            
endosteal MS/BS -0.0009 0.40 -0.0044 0.48 0.02 
periosteal MS/BS 0.0015 0.43 0.0019 0.45 0.03 

endosteal MAR (μm/day) -0.0013 2.44 -0.026 2.76 0.20 
periosteal MAR (μm/day) 0.024 3.41 0.0071 3.53 0.22 

            
Trabecular MAR (μm/day) 0.0051 0.97 -0.0089 1.06 0.11 

            
Femur BV/TV 0.009 0.11 0.0037 0.12 0.014 

Femur Tb.N (1/mm) 0.19 4.14 0.054 4.85 0.24 
Femur Tb.Th (mm) 0.0001 0.04 0.0001 0.043 0.001 
Femur Tb.Sp (mm) -0.004 0.22 -0.0014 0.20 0.0073 

            
LV BV/TV 0.0018 0.08 0.0012 0.083 0.004 

LV Tb.N (1/mm) 0.0062 3.76 0.0086 3.74 0.063 
LV Tb.Th (mm) 0.0003 0.03 0.0002 0.03 0.0006 
LV Tb.Sp (mm) -0.0004 0.26 -0.0004 0.26 0.0042 

            
Cort BV/TV 0.0008 0.60 0.0007 0.61 0.0086 
LV Cort SMI 0.0065 0.73 -0.003 0.93 0.04 

LV Cortical Thickness (mm) 0.0012 0.79 -0.0028 0.98 0.042 
LV Cort AMD (g/mm^3) 0.7381 633.18 0.73 638.54 6.43 
LV Cort MMD (g/mm^3) 0.5379 889.86 9314 894.5 4.97 

            
OC Surf./Bone Surf. -0.0027 0.19 -0.0006 0.17 0.0097 
OB Surf./Bone Surf. -0.0022 0.26 0.0003 0.19 0.0152 
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Table 3.4:  

Relative potencies of bbPTH and hPTH in mdx mice. Relative potency determined as dose 
bbPTH/dose hPTH to achieve wild type vehicle-treated values. 

 

Variable wild type value 
bbPTH dose 
(nmol/kg) 

hPTH dose 
(nmol/kg) Potency 

95% CI for dose 
(± nmol/kg) p-value 

Femur Length 15.19 mm 24.50 -49.8 -- -- 0.30 

Sac Weight 28.3 g 12.52 13.9 1.11 0.046 0.78 
              

F Max 12.62 N -0.48 -57.1 -- -- 0.28 

F Max/Body Weight 0.44 N/g -16.91 -17.1 -- -- 0.11 

Energy to Failure 14.03 N*mm 155.49 165.2 1.06 0.89 0.84 

Energy/BW 0.4934 N*mm/g 50.52 -111.4 -- -- 0.78 
              

Ultimate Stress 207.563 Mpa 21.36 -14900 -- -- 0.09 

Modulus of Toughness 7.3761 mJ/mm^3 87.25 78.73 0.90 0.81 0.77 
              

Iap 4.37 (10^7) μm^4 30.52 33.39 1.09 475.8 0.0001 
Iml 1.84 (10^7) μm^4 -9.27 -4.25 -- -- 0.62 

Imax 3.37 (10^7) μm^4 -1.12 -1.85 -- -- 0.77 
              

Ash Fraction 0.63 40.46 -32.63 -- -- 0.57 
              

Cortical Thickness 191.6 μm -7.72 -5.32 -- -- 0.43 

Cortical Area 8630 μm^2 -8.56 -6.07 -- -- 0.75 
              

endosteal MS/BS 0.46 -64.75 4.08 -- -- 0.54 

periosteal MS/BS 0.50 47.24 26.02 0.55 1.63 0.08 

endosteal MAR 2.38 μm/day 42.13 14.16 0.33 0.087 0.99 

periosteal MAR 3.32 μm/day -3.84 -29.37 -- -- 0.62 
              

Trabecular MAR 1.00 μm/day 5.36 7.17 1.33 1.55 0.77 
              

Femur BV/TV 0.17 6.50 13.27 2.03 4.29 0.001 

Femur Tb.N 5.86 1/mm 8.91 18.42 2.06 0.05 0.0003 

Femur Tb.Th 0.42 mm -9.96 -2.8 -- -- 0.50 

Femur Tb.Sp 0.16 mm 12.94 24.32 1.87 1.55 0.038 
              

LV BV/TV 0.12 20.68 32.22 1.55 3.55 0.12 

LV Tb.N 4.32 1/mm 65.68 66.66 1.01 0.29 0.09 

LV Tb.Th 0.04 mm 21.59 30.10 1.39 3.23 0.19 

LV Tb.Sp 0.22 mm 73.18 99.09 1.35 1.01 0.94 
              

LV Cortical BV/TV 0.66 74.79 83.64 1.11 0.6 0.84 
LV Cortical SMI 0.82 14.50 34.88 2.40 1.2 0.22 

LV Cortical Thickness 0.90 mm 89.09 28.92 0.32 1.19 0.018 
LV Cortical App.M.Dn 690.85 g/mm^3 78.13 71.48 0.91 1.64 0.52 

LV Cortical Mat.M.Dn 931.16 g/mm^3 76.77 39.36 0.05 1.44 0.11 
              

OC Surf./Bone Surf. 0.15 13.89 28.93 2.08 2.38 0.005 
OB Surf./Bone Surf. 0.16 51.81 71.93 1.33 1.91 0.003 
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Figure 3.3: Dose-response of PTH treatments in mdx mice showed greater BV/TV in bbPTH-

treated animals 

 

No significant differences were detected comparing relative changes compared to vehicle 

treatment with bbPTH in mdx and wild type mice. This is in contrast to the findings from our 

previous study where bbPTH increased bone volume fraction in the femur and tibia to a greater 

degree in mdx mice compared to wild type mice. This could be due to seasonality in bone 

properties in each mouse genotype (Kruczek and Gruca 1990), which may affect mdx mice to a 

greater or lesser degree compared to wild type mice. 
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3.4  Discussion 
 

3.4.1 mdx vs. Wild Type: Vehicle Treatment 
 

The increase in weight at sacrifice for mdx mice is consistent with previous literature 

indicating that mdx mice have larger body size and muscle mass, despite lessened force-

generating capacity (Novotny, et al., 2011). However, it was hypothesized that mdx mice would 

have weaker bones (evidenced by decreased Fmax, ultimate stress, energy to failure, and 

modulus of toughness) as seen previously (Novotny, et al., 2011), which was not the case in this 

study. We observed no change in this occurrence previously (Almeida, et al., 2004), so it is not 

entirely surprising that we again saw no decrease in strength parameters. In addition, we saw a 

changed femoral morphometry in mdx mice leading to increased cortical area and moments of 

inertia, which could contribute to the lack of change in ultimate stress and energy to failure, 

combined with the lack of change in ash fraction in either type of mouse. More surprisingly, the 

mdx mice in this study did not show significant decreases in any trabecular parameters, which 

disagrees with previously observed phenomena (Novotny, et al., 2011, Nakagaki, et al., 2010). 

In addition, mdx mice also showed an increase in trabecular mineralizing surface/bone surface, 

which is not supported by literature. This could be due to seasonality on the part of the mice, 

depending on such factors as photoperiod and birth month (Gerardin, et al., 2010). 
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3.4.2 bbPTH vs. Vehicle: Wild Type Mice 
 

As expected, bbPTH improved many skeletal outcomes in wild type mice as compared to 

vehicle-treated wild type mice, consistent with literature administering PTH analogs to healthy 

mice (Washimi, et al., 2010, Lippuner, et al., 2004, Frost, 1999, Kanis, et al., 1994, Lane and 

Yao, 2010). bbPTH treated mice showed improvements in force to failure, and moments of 

inertia, indicating an improved cortical structure consistent with increased strength. The lack of 

change in ultimate stress and modulus of toughness suggests these morphometric changes 

adapted to maintain a constant physiologic strain consistent with the mechanostat theory 

(Bartel, et al., 2006). Femoral trabecular bone properties improved with bbPTH treatment, 

including bone volume fraction and trabecular thickness. The bone volume fraction increase is 

especially important, since bone volume fraction is linked to overall compressive strength of 

bone tissue (Fields, et al., 2009, Keaveny, et al., 2008). In addition, the improvements in 

femoral bone volume fraction were measured in the distal femur, an important location where 

many fractures occur in boys with DMD (Gray, et al., 1992, Hsu, 1979, Hsu and Garcia-Ariz, 

1981). No significant improvements were observed in the lumbar vertebrae in bbPTH treated 

mice compared to vehicle treatment. This is not unexpected, since, though PTH is expected to 

improve these properties, the effects are very mild compared to the changes in long bone 

trabecular bone which experiences a greater loading scheme (Iida-Klein, et al., 2007). The lack 

of change in osteoblast and osteoclast surface is of particular note, since hPTH analogs have 

been previously observed to increase both osteoblast and osteoclast surface leading to increased 

bone turnover (Hilliker, et al., 1996, Jilka, et al., 2006, Sheehan, et al., Weinstein, et al., 2010). 

This lack of change, especially in osteoclasts, may suggest that bbPTH may have a slightly 

altered method in promoting bone formation, particularly in trabecular bone. 
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3.4.3 bbPTH vs. hPTH in mdx Mice: Relative Potency Analysis 
 

As hypothesized, bbPTH was shown to be more anabolic than hPTH in the mdx mouse, 

particularly in trabecular bone. Interestingly, the mild differences detected in cortical bone were 

in mdx mice treated with hPTH. Thickness of the cortical shell of L4 was improved at a greater 

rate in hPTH treated mdx mice compared to bbPTH treated mice, leading to a relative potency 

(bbPTH/hPTH determined at daily injection volume to achieve wild type vehicle-treatment 

levels) of 0.3246, as well as a mild increase in periosteal mineralizing surface. However, none 

of these changes resulted in a difference in mechanical testing parameters, indicating no 

significant increases in resistance to fracture in the femur. In the lumbar vertebrae, the cortical 

shell makes up a smaller proportion of the bone, leading to a larger contribution of the 

trabecular bone to overall vertebral strength. The mild (but insignificant) increases in trabecular 

properties observed with bbPTH treatment may be enough to offset, or even surpass the added 

strength gained from a thicker cortical shell in hPTH treated mdx mice. This is an important 

finding, as a large proportion of boys with DMD sustain vertebral compression fractures 

(Bothwell, et al., 2003), so restoring vertebral strength is a desirable outcome for an 

osteoporosis treatment in this population. Significant increases with bbPTH occurred in the 

trabecular bone of the distal femur contributing to an increase in femoral bone volume fraction 

with a relative potency of 2.039, indicating it requires over twice as much hPTH as bbPTH 

injected daily to achieve wild type values for this parameter. In addition, bbPTH here 

demonstrates an ability to decrease, in a dose-responsive manner, osteoclast surface area in mdx 

trabecular bone (potency = 2.0827). This may indicate that increasing doses of bbPTH actually 
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downregulate osteoclast proliferation, leading to decreased bone resorption, and the greater 

gains in trabecular bone volume fraction we observed here. 
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4 Conclusion 

The marked anabolic response to bbPTH in mdx mouse trabecular bone is a positive 

indication that bbPTH may be an effective treatment for DMD-induced osteoporosis. An 

anabolic treatment for osteoporosis in boys with Duchenne muscular dystrophy could greatly 

improve quality of life for these patients. A reduction in fractures associated with bbPTH 

therapy could eliminate extra hospitalizations, unnecessary pain, and disability associated with 

broken bones. In many DMD patients, long bone fractures are the transition point from being 

independently mobile or uprightly mobile with assist devices (braces, walkers, etc.) to being 

permanently wheelchair bound.  

 

Since muscle and bone, like most biological tissues, employ a “use it or lose it” philosophy, 

reduced mobility allows DMD muscular degradation to accelerate to eventual cardiac or 

respiratory muscle failure. From a seated position, the body’s demand for oxygen decreases due 

to lessened demand from postural muscles, eventually reducing cardiac muscle tone. 

Additionally, when seated in a wheelchair, DMD patients with moderate to severe 

kyphoscoliosis are in a position where it is more difficult for the diaphragm to efficiently 

contract and for the lungs to fully expand, increasing the probability of a respiratory emergency 

or death due to respiratory arrest. DMD patients, due to glucocorticoid use, also experience 

delayed fracture healing (Mann, et al., 2007). Therefore, a fracture that may take six to eight 

weeks to heal in a healthy boy may take several months to heal in a boy with DMD, or healing 

may not take place at all. Black bear PTH, a more potent anabolic osteoporosis treatment in 

murine trabecular bone, could greatly benefit DMD patients through fracture reduction, 

ultimately improving overall quality of life and perhaps even prolonging life span. 
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 However, before this drug can be administered to human patients, much work remains to 

be done. Future work could explore drug interactions of glucocorticoids and bbPTH in a rodent 

model in a dose-response study. In vitro drug interactions also need exploring, as well as in 

vitro testing to further elucidate the mechanisms behind bone anabolism due to bbPTH 

administration. Rodent bone is not a perfect analogue to human bone, however, as rodent 

cortical bone does not undergo intracortical remodeling like the bones of larger animals, 

including humans and bears does. bbPTH therapies may be explored in additional DMD models 

including dogs and chickens before safety and efficacy should be tested in a human pediatric 

population.  
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5 0BAppendices 

5.1 28BA1 MATLAB ANCOVA Plots 

 

Figure 5.1: Dose response for femur length 
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Figure 5.2: Dose response for weight at sacrifice 

 

Figure 5.3: Dose response for Fmax 
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Figure 5.4: Dose response for normalizing Fmax 

 

Figure 5.5: Dose response for energy to failure 
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Figure 5.6: Dose response for normalized energy 

 

Figure 5.7: Dose response for LV bone volume fraction 
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Figure 5.8: Dose response for LV trabecular number

 

Figure 5.9: Dose response for LV trabecular thickness 
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Figure 5.10: Dose response for LV trabecular spacing

 

Figure 5.11: Dose response for LV MMD 
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Figure 5.12: Dose response for LV AMD 

 

Figure 5.13: Dose response for femur bone volume fraction 



96 

 

 

Figure 5.14: Dose response for femur trabecular number 

 

Figure 5.15: Dose response for femur trabecular thickness 
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Figure 5.16: Dose response for femur trabecular spacing 

 

Figure 5.17: Dose response for femur MMD 
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Figure 5.18: Dose response for femur AMD 

 

Figure 5.19: Dose response for LV cortical bone volume 
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Figure 5.20: Dose response for LV cortical structural modulus 

 

Figure 5.21: Dose response for LV cortical thickness 
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Figure 5.22: Dose response for LV cortical AMD 

 

Figure 5.23: Dose response for LV cortical MMD 
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Figure 5.24: Dose response for ash fraction 

29B

 
Figure 5.25: Dose response for endosteal mineralizing surface 
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Figure 5.26: Dose response for periosteal mineralizing surface 

 

Figure 5.27: Dose response for endosteal mineral apposition rate 
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Figure 5.28: Dose response for periosteal mineral apposition rate 
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5.2 1BA.2 Dose Response Calculations Using the Delta Method 
 

95% confidence interval determined using Delta Method 

μ = wild type vehicle-treated mean 

a = bbPTH equation slope 

b = bbPTH equation intercept 

c = hPTH equation slope 

d = hPTH equation intercept 

var(x) = variance of x 

var( ) var *a dg
b c

 

2 2 2 2

2

var( ) var( ) var( ) var( ) var( )

var( ) 2covar( , ) 2covar( , )

dg dg dg dgg b d a
d db dd da

dg dg dg dg dgc a b c d
dc da db dc dd

 

 

 

 

 

 



105 

 

Relative potency calculated as ratio of dose of hPTH to achieve wild type vehicle levels to 

bbPTH dose to achieve wild type levels 

 

Figure 5.29: Sketch indicating determination of relative potency occurs at wild type vehicle levels 
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