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Preface

The author has prepared the analytical and numerical solution, and simulation for the

research work in each chapter. Also, the author has written four journal papers for

publication and presented four conference for the results obtained in each chapter.

Chapters two to five in this dissertation address the problem of spacecraft formation

navigation. It is assumed that the relative positions are measured via a wireless local

positioning system. Four different approaches were developed to estimate the spacecraft

absolute and relative positions. These approaches are the extended Kalman filter, the

constrained Kalman filter, the differential geometric filter, and the weighted measurement

fusion Kalman filter. Chapters two to five where published in four different journals. The

analytical work presented in chapter six presents an attitude estimation method for

spacecraft formation. This work was published in the IEEE Aerospace conference.
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Abstract

Spacecraft formation flying navigation continues to receive a great deal of interest. The

research presented in this dissertation focuses on developing methods for estimating

spacecraft absolute and relative positions, assuming measurements of only relative

positions using wireless sensors. The implementation of the extended Kalman filter to the

spacecraft formation navigation problem results in high estimation errors and instabilities

in state estimation at times. This is due tp the high nonlinearities in the system dynamic

model. Several approaches are attempted in this dissertation aiming at increasing the

estimation stability and improving the estimation accuracy.

A differential geometric filter is implemented for spacecraft positions estimation. The

differential geometric filter avoids the linearization step (which is always carried out in the

extended Kalman filter) through a mathematical transformation that converts the nonlinear

system into a linear system. A linear estimator is designed in the linear domain, and then

transformed back to the physical domain. This approach demonstrated better estimation

stability for spacecraft formation positions estimation, as detailed in this dissertation.

The constrained Kalman filter is also implemented for spacecraft formation flying

absolute positions estimation. The orbital motion of a spacecraft is characterized by two

range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft’s

range vanishes. This motion constraint can be used to improve the position estimation

accuracy. The application of the constrained Kalman filter at only two points in the orbit

causes filter instability. Two variables are introduced into the constrained Kalman filter to

maintain the stability and improve the estimation accuracy. An extended Kalman filter is

implemented as a benchmark for comparison with the constrained Kalman filter.

Simulation results show that the constrained Kalman filter provides better estimation

accuracy as compared with the extended Kalman filter.

A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this

dissertation. In wireless localizing sensors, a measurement error is proportional to the

distance of the signal travels and sensor noise. In this proposed Weighted Measurement

Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each

measurement is weighted based on the measured signal travel distance. The obtained

estimation performance is compared to the standard Kalman filter in two scenarios. The

first scenario assumes using a wireless local positioning system in a GPS denied



environment. The second scenario assumes the availability of both the wireless local

positioning system and GPS measurements. The simulation results show that the WMFKF

has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied

environment. However, the WMFKF maintains the position estimation error within its

expected error boundary when the WLPS detection range limit is above 30km. In

addition, the WMFKF has a better accuracy and stability performance when GPS is

available. Also, the computational cost analysis shows that the WMFKF has less

computational cost than the standard KF, and the WMFKF has higher ellipsoid error

probable percentage than the standard Measurement Fusion method.

A method to determine the relative attitudes between three spacecraft is developed. The

method requires four direction measurements between the three spacecraft. The

simulation results and covariance analysis show that the method’s error falls within a three

sigma boundary without exhibiting any singularity issues. A study of the accuracy of the

proposed method with respect to the shape of the spacecraft formation is also presented.
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Chapter 1

Introduction

1.1 Overview

The relative and absolute positions estimation of spacecraft formations is a fundamental

task in many space missions. Relative position estimation plays an important role in

Spacecraft Formation Flying (SFF) missions, a subject that has received a great deal of

attention by researchers in recent decades. Some SFF missions require that multiple

spacecraft in different orbits communicate without interruption, e.g., the satellites utilize

the Computerized Ionospheric Tomography Radio Instrument in Space (CITRIS) under

the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC)

program, which is also known as the CITRIS-COSMIC system are required to

communicate with each other to monitor the ionospheric irregularities [1]. Relative

positions between satellites, such as Cluster and Cluster-II satellites that are launched by

the European Space Agency, are estimated and controlled to support many collaborative

tasks where satellites are required to maintain a specific formation in a continuous manner

within the mission period [2].

The relative position estimation in spacecraft formation has been extensively studied by

researchers. Ref. [3] and [4] have presented a spacecraft formation localization method

based on the ranging measurement between spacecraft in a three-spacecraft formation.

This ranging system is also known as the Autonomous Formation Flyer (AFF). The

fundamental localization process of this system is similar to the Global Positioning

System (GPS) localization, and it is able to provide high precision relative position



estimation. However, complex hardware is required on each spacecraft. This system does

not stand alone and requires a GPS system.

Given measurements of relative positions between two spacecraft, Ref. [5] proves the

feasibility of estimating the orbits of the two spacecraft. A detailed observability analysis

as well as a detailed implementation of a batch estimator were developed. Ref. [5] shows

that the orbital elements estimation accuracy depends on the relative distance between

spacecraft. Ref. [6] shows the feasibility of orbit navigation of two spacecraft using

line-of-sight (LOS) measurements, and suggests that LOS measurements can be used for

spacecraft formation navigation. Both Ref. [5] and [6] show that the inclination of the

spacecraft orbits impacts the estimation accuracy. The system becomes unobservable in a

few cases, such as the case when the two spacecraft are in the same zero inclination orbit

plane [5, 6].

Ref. [7] presents the relative position and attitude estimation in a two-spacecraft

formation using a Vision-Based Navigation System (VISNAV). A sensor installed on one

spacecraft measures the line-of-sight (LOS) measurements of multiple beacons installed

on the other spacecraft. The covariance study shows that the performance could be

affected by the relative distance between spacecraft. The accuracy factors of the

estimation depend on the number of beacons installed on the spacecraft. Three or more

beacons are suggested to ensure the observability of the system [7].

Besides that, relative attitude estimation receives a great deal of interest from researchers.

Missions that require relative attitude estimation include the spacecraft docking missions,

chaser and target space missions [8], and clusters that perform their tasks in specific

formations, such as Proba-3 [9] and LISA Pathfinder’s missions [10, 11]. In these

missions, the spacecraft are often required to maintain a specific orientation with respect

to each other. The relative attitude determination between spacecraft is a fundamental task

in these types of missions. Ref. [7] has presented both relative position and relative

attitude estimation method based on VISNAV.

In addition, Ref. [12] introduces a Relative Attitude Determination (RAD) method for a

three vehicle formation, using all three pairs of measurements between the three

spacecraft. The relative attitude between two spacecraft is determined using an angle and

a vector as the constraints. Then, the TRIAD method is used to find the relative attitude

between the other two spacecraft. Althought the previous work showed that the covariance

singularity due to the co-planar may be encountered [13], Ref. [12] showed that the
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proposed method does not process any singularity issue.

1.2 Optimal State Estimation and Navigation

The Kalman Filter (KF) [14] is a sequential linear estimation algorithm capable of

estimating both observable and unobservable variables in real time. It has been

extensively studied by researchers for application in several areas, such as navigation,

economic, and earth sciences [15]. The fundamental theory of KF consists of two

processes: (1) Predicting, and (2) Updating. The KF predicts the possible observation data

based on the estimated parameters. Then, the estimated parameters are updated by

integrating the predicted observation with the measured observation. The derivation of KF

has been extended to incorporate with different case studies, such as nonlinear system, bad

initial condition estimation, non-Gaussian error, and large data estimation.

The Extended Kalman Filter (EKF), a sequential nonlinear estimation algorithm, has been

widely implemented to estimate absolute and relative positions, and the relative attitude of

spacecraft in formation flying [7, 16]. However, the accuracy of the estimated initial

condition affect the EKF stability. Furthermore, the linearization process on the nonlinear

model results the EKF becoming unable to guarantee a stable estimation all the time.

The Unscented Kalman Filter (UKF) has been implemented for relative attitude and

position estimation in SFF [17, 18]. The UKF has better robustness to initial condition

error compared to the EKF [19]. Besides that, it does not assume the measurement errors

are Gaussian noise. However, its computational time is higher than a standard EKF [20].

If compared to the standard EKF, the UKF has a faster convergence rate, but the process

time required for each update is longer than the EKF [21]. The Batch filter [22], an offline

filtering method, has been implemented in Ref. [5] for absolute position estimation using

the relative position measurement. Both studies in references [16] and [5] show that the

configuration of SFF affects the stability and the accuracy of estimation.

Researchers are always interested in improving the performance of the Kalman Filter,

especially the estimation accuracy. The Constrained Kalman Filter (CKF) was introduced

for estimation when state variables are required to satisfy constraints [23, 24]. Both

equality and inequality constraints can be handled by the CKF. Several CKF algorithms

have been proposed in the literature, e.g., the perfect measurement approach [25, 26], and

3



the projection approach [27]. Some of the CKF methods may require special derivations

for different problems, such as the reduction method [28] and the Norm-Constrained

method in Ref. [29].

The constraint is handled as a perfectly known measurement in the perfect measurement

approach. The constraint is grouped with other sensor measurements to construct a

modified measurement vector, which affects the calculation of the Kalman gain [23].

Adding a perfect measurement (constraint) results in a singular noise covariance matrix.

This singularity in the noise covariance may lead to a divergence in the estimation error.

This fact was pointed out in references [30] and [31], despite that, the original work of

Kalman [14] presents an example in which a perfect measurement was used [23]. To

overcome this singularity problem, Ref. [32] presents an extended maximum likelihood

method for computing the constraint gain.

In the projection approach, the constraint estimation is implemented by projecting the

unconstrained state estimate onto the constraint surface. In general, the constraint update

is applied after the standard Kalman filter update [23]. Ref. [23] has presented three

different constraint update methods that can be used for the projection approach.

However, different approximated solutions may be obtained from each method because

the constraint gain is not correlated with the sensor measurement [23]. The projection

approach has also been extended for inequality constraint [33] and nonlinear constraint

[27] problems. The Norm-Constrained method presented in Ref. [29] guarantees

non-singular estimation and correlates both the measurement and the constraint. However,

the derivation of the Kalman gain is specific to the attitude estimation problem, and

becomes rather complex when applied for the problem presented in this chapter. The

reduction method requires that one or more state(s) be expressed as a linear function(s) of

the other states. However, this method may not be applicable for the cases where the

constraint states are independent from each other. Ref. [34] presents a Smoothly CKF

(SCKF) where the constraint update via carried out iteratively until an end criteria is met.

Ref. [34] shows that the SCKF outperforms the Iterated EKF in terms of consistency.

Besides that, researchers are interested in reducing the computational load for the

estimation process in multisensor systems. One way to process measurements in a

multisensor system is to combine all the measurements into a single observation vector in

the KF. However, the computational load increases as the number of measurements

increases [35]. Ref. [36] presents a State-Vector Fusion (SVF) method in which each
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measurement is processed by its own local filter simultaneously. Then, the updated

estimated states and the predicted covariances are fused together [37]. The Measurement

Fusion (MF) method, introduced in Ref. [38], fuses multiple measurements and then the

KF is applied to the result. Ref. [39] has analytically shown that, under certain conditions,

the MF method is similar to the standard KF. Both SVF and MF methods require less

computational load compared to the standard KF [38]. However, the derivation of these

fusion methods assumes uncorrelated measurement noise for multisensor systems

[37, 40]. In most of the multisensor systems, the sensors’ noises are correlated due to the

interference signal between sensors [40]. Ref. [41] has presented a weighted MF method

in which the input and measurement noises could be correlated. In addition, the

computational load of the weighted MF method is significantly lower than the KF [41].

The Differential Geometric (DG) Theory has been widely implemented in the control and

guidance research area [42, 43]. In calculus, the Differential Geometry represents the

linear approximation of a smooth curve [44]. Ref. [45] and [46] introduced the

Differential Geometric approach into the missile tracking applications. In Ref. [45], the

system model is transformed from the arc length domain into the time domain; then the

guidance law is applied. Both papers have shown the feasibility of implementing the DG

for missile guidance. The Differential Geometric approach for nonlinear systems has been

extended recently for the nonlinear estimation purpose [47]. The DG estimation avoids the

linearization step in the EKF. In DG estimation, the nonlinear dynamics are mapped to a

linear domain, where a linear estimator can be implemented. Then, the inverse

transformation is applied to the estimator [47]. Ref. [47] details how the DG estimation

can be implemented when the number of available measurements are too few to handle all

the system nonlinearities, and shows that both the optimal control and the linear filtering

approaches can be applied in the mapped linear domain.

1.3 Navigation/Localization Sensors

Radio interferometer has been used as a spacecraft position tracking system in many

applications. Ref. [48] presents different angular measurement technique for spacecraft

navigation based on the radio interferometer. Besides that, the Laser Interferometer, which

provides a long range line-of-sight measurement has been under development as an

instrument for spacecraft formation guidance, navigation, and control [11].
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The AFF has been introduced as a relative position measurement instrument for spacecraft

formation flying in recent decades [3, 4]. The AFF positioning system is similar to the

GPS system. However, it also requires additional instrumentation to provide the absolute

positioning. Besides that, the Vision-Based Navigation System (VISNAV) has been

developed by a group in Texas A&M University [49]. This system is capable of providing

the line-of-sight (LOS) measurement of the beacon attached on a target. The VISNAV

consists of a Position Sensing Diode (PSD) sensor and an array of LED source beacons

installed on a plate. The PSD detects the energy of the light source emitted by the beacons.

Then the PSD generates a current flow to four terminals that are installed on the PSD

plate. At that point, the centroid of the current flow is determined to measure the direction

of the energy source. The application of this sensor has been studied in several areas, such

as spacecraft docking, air refueling and spacecraft formation flying problems [7, 50, 51].

The one-way ranging system requires clock synchronization between the two nodes [52],

e.g., the Global Positioning System (GPS) [53]. For example, Ultra WideBand (UWB)

communication for spacecraft formation navigation presented by Ref. [52] requires clock

synchronization between transmitter and receiver, to allow the receiver to compute the

relative distance by receiving the pulse signal sent by the receiver.

On the other hand, two way transmission does not require clock synchronization. The

Two-Way Satellite Time and Frequency Transfer (TWSTFT) method has been

implemented for decades. The TWSTFT allows two ground stations to measure the round

trip signals that are transmitted from the ground to the satellite, and then back to a ground

station [54–56]. The TWSTFT method has shown that if both the transmitted and received

signals are reciprocal, then the error due to the signal transmission time delay is canceled

out. Despite that fact, there are few other non-reciprocal errors which cannot be avoided.

However, in general, it has been shown that the ranging accuracy obtained from this

method can be up to 1.5 nanoseconds [57].

In this dissertation, spacecraft formation navigation is studied based on the Wireless Local

Positioning System (WLPS) [58]. The WLPS is a localization system capable of providing

relative localization between two nodes [58]. The WLPS consists of two components: the

dynamic base station (DBS) and transponder (TRX). The DBS installed on one spacecraft

measures the relative position of the TRX installed on another spacecraft, which is located

in its coverage area via Time-of-Arrival (TOA) and Direction-of-Arrival (DOA)

estimation. The TOA is the time needed by the transmitted signal to travel from DBS to
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TRX and back from TRX to DBS. The signal arrives at the two-dimensional antenna array

in DBS, enabling the system to compute DOA (azimuth and elevation angles).

1.4 Objectives of this Dissertation

The main research objective is to implement the Wireless Local Positioning System

(WLPS) into the SFF and apply different estimation methods to enhance the estimation

performance. The WLPS consists of two components: the dynamic base station (DBS)

and transponder (TRX). The DBS installed on one spacecraft measures the relative

position of the TRX installed on another spacecraft, which is located in its coverage area

via Time-of-Arrival (TOA) and Direction-of-Arrival (DOA) estimation. The TOA is the

time needed by the transmitted signal to travel from DBS to TRX and back from TRX to

DBS. The signal arrives at the two-dimensional antenna array in DBS, enabling the

system to compute DOA (azimuth and elevation angles).

The research objectives are shown as follows:

1. Implement the WLPS into SFF navigation to improve the estimation accuracy [59];

2. Implement the Differential Geometric Filter into the SFF navigation using the

WLPS as measurement [60];

3. Apply the constraint at orbit’s perigee and apogee point to improve the overall

estimation accuracy [61];

4. Propose an alternate attitude determination method for a three-spacecraft formation

flying [62]; and,

5. Implement a measurement fusion method into the Kalman Filter to improve the

estimation performance [63].

1.5 Organization of this Dissertation

The dissertation is organized as follows: Chapter Two presents the Spacecraft Formation

Orbit Estimation using WLPS-based localization. Chapter Three presents the

7



Implementation of a Differential Geometric Filter. for Spacecraft Formation Orbit.

Chapter Four presents the Constraint Estimation of Spacecraft Positions. Chapter Five

presents the Spacecraft Formation Relative Attitude Determination. Chapter Six presents

a Weighted Measurement Fusion Kalman Filter Implementation. Finally, Chapter Seven

presents the conclusion of the dissertation objectives.
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Chapter 2

Spacecraft Formation Orbit Estimation

using WLPS-based Localization



2.1 Introduction

The relative and absolute positions estimation of spacecraft formations is a fundamental

task in many space missions.* Relative position estimation plays an important role in

Spacecraft Formation Flying (SFF) missions, a subject that has received a great deal of

attention by researchers in recent decades. Some SFF missions require that multiple

spacecraft in different orbits communicate without interruption, e.g., satellites in the

CITRIS-COSMIC system are required to communicate with each other to monitor the

ionospheric irregularities [1]. Relative positions between satellites, such as Cluster and

Cluster-II satellites launched by the European Space Agency, are estimated and controlled

to support many collaborative tasks where satellites are required to maintain a specific

formation in a continuous manner within the mission period [2].

Several relative positions estimation systems have been developed. The Autonomous

Formation Flyer (AFF) technology was developed for SFF [3, 4], where each spacecraft is

equipped with a communication system to localize other spacecraft in the formation. This

system provides high precision estimates for relative positions. A relative position and

attitude estimation through a Vision Based Navigation system (VISNAV) has been studied

extensively in the literature [7, 49–51]. The VISNAV enables one spacecraft to measure

the line-of-sight (LOS) measurements of the other spacecraft. Estimation performance of

this technique is a function of the relative distance of spacecraft and the number of

beacons installed on the spacecraft [7].

Given measurements of relative positions between two spacecraft, Ref. [5] proves the

feasibility of estimating the orbits of the two spacecraft. A detailed observability analysis

as well as a detailed implementation of a batch estimator were developed. Ref. [5] shows

that the orbital elements estimation accuracy depends on the relative distance between

spacecraft. Ref. [6] shows the feasibility of orbit navigation of two spacecraft using

line-of-sight (LOS) measurements, and suggests that LOS measurements can be used for

spacecraft formation navigation. Both Ref. [5] and [6] show that the inclination of the

spacecraft orbits impacts the estimation accuracy. The system becomes unobservable in a

few cases, such as the case when the two spacecraft are in the same zero inclination orbit

plane [5, 6].

*The material contained in this chapter was previously published in the International Journal of Naviga-
tion and Observation.
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Ref. [52] presents a study on the implementation of Ultra WideBand (UWB)

communication for spacecraft formation navigation. A transmitter, at one spacecraft,

sends a pulse to a receiver installed on another spacecraft. Next, the receiver computes the

relative distance between the two spacecraft through measuring the difference between the

signal transmission time and arrival time. In this technique, a synchronization between the

transmitter and receiver clocks is required to allow precise range measurement.

The one-way ranging system requires clock synchronization between the two nodes [52],

e.g. the Global Positioning System (GPS) [53]. Sources of measurement error include the

signal transmission time delay which reduces the accuracy performance of the range

measurement. The Two-Way Satellite Time and Frequency Transfer (TWSTFT) method

has been implemented for decades. The TWSTFT allows two ground stations to measure

the round trip signals that are transmitted from the ground to the satellite, and then back to

a ground station [54–56]. The TWSTFT method has shown that if both the transmitted

and received signals are reciprocal, then the error due to the signal transmission time delay

is canceled out. Despite that fact, there are few other non-reciprocal errors which cannot

be avoided. However, in general, it has been shown that the ranging accuracy obtained

from this method can be up to 1.5 nanoseconds [57].

When an observing spacecraft transmits a signal to a target spacecraft, the signal

transmission time delay causes errors in the measured relative position [64, 65]. Ref. [66]

shows that the signal transmission time delay can be computed if either the observer or the

target is stationary. Also, the TWSTFT has shown that the signal transmission time delay

between ground stations and spacecraft can be omitted [54–56]. However, when both

observer and target spacecraft are moving, the complexity of estimating the signal

transmission time delay increases. Different modifications of filtering methods have been

proposed in the literature to compensate the measurement errors due to the time delay

[67, 68]. In Ref. [69], a closed form time delay approximation has been proposed using a

Taylor series expansion. Ref. [69] shows that, in some cases, the state estimate error does

not converge within the covariance boundary if the time delay is not modeled.

In this chapter, the orbits of two or more spacecraft in a formation are estimated through

the implementation of a Wireless Local Positioning System (WLPS) that enables relative

localization [58]. The WLPS consists of two components: the dynamic base station (DBS)

and transponder (TRX). The DBS installed on one spacecraft measures the relative

position of the TRX installed on another spacecraft, which is located in its coverage area
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via Time-of-Arrival (TOA) and Direction-of-Arrival (DOA) estimation. The TOA is the

time needed by the transmitted signal to travel from DBS to TRX and back from TRX to

DBS. The signal arrives at the two-dimensional antenna array in DBS, enabling the

system to compute DOA (azimuth and elevation angles).

This chapter investigates:

(1) The feasibility of absolute position estimation of spacecraft formation flying using

only one-dimensional DOA (1-DOA) in the WLPS. The 1-DOA WLPS uses one

dimension antenna arrays to measure the range and only the azimuth angle. The

two-dimensional DOA (2-DOA) WLPS uses two dimension antenna arrays to measure

range and both azimuth and elevation angles. It is technologically more complicated

compared to the 1-DOA WLPS;

(2) The absolute position estimation of spacecraft in formation using 2D WLPS, taking

into consideration the signal time delay. One implementation issue with the WLPS is the

time delay that is due to the processing time in the WLPS and due to the signal

transmission between different spacecraft nodes. Even though the time delay due to signal

transmission is very small, the high velocity of spacecraft makes it non-negligible in some

formation scenarios; and

(3) The estimation performance of a GPS standalone system is compared to a combined

GPS and WLPS.

Simulations are conducted to investigate how the position estimation performance is

affected by the number of spacecraft in the formation, the size of the formation, the WLPS

and GPS measurement noise variance, and the altitudes of spacecraft. The accuracy and

the speed of convergence of the estimator is numerically studied. The Extended Kalman

Filter (EKF) is implemented in all studies presented in this chapter.

The proposed study is critical for the implementation of localization sensors for many

applications, including for space-based solar power transfer applications [70, 71]. In the

futuristic space-based solar power harvesting techniques proposed in Ref. [70] and [71],

the position of multiple satellites in charge of collection of solar power, should be properly

estimated to maintain synchronized solar power transfer to an energy collecting unit on

the earth. This study also has applications for deep space multi-spacecraft missions when

GPS is not available.

This chapter is organized as follows: Section 2.2 presents an overview on WLPS. Section

2.3 presents the dynamics, the time delay modeling, and GPS mathematical model.
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Section 2.2 presents the EKF implementation. Section 2.5 discusses the simulation

results.

2.2 Wireless Local Positioning System (WLPS)

The WLPS consists of two basic components [58]: A dynamic base station (DBS) and a

transponder (TRX). Each DBS is capable of localizing TRXs that are located in its

coverage area via TOA and DOA measurements, as shown in Figure 2.1. The DBS

periodically broadcasts an identification (IDR) signal once every ID Request Repetition

Time (IRT) as shown in Figure 2.2. A TRX that falls within the DBS coverage area

receives the IDR signal and transmits a response signal that includes its own ID back to

the DBS within the IRT period. The ID of each TRX allows the DBS to distinguish one

TRX from another. It also allows the DBS to easily track multiple TRXs located in its

coverage area.

As shown in Figure 2.2, the range of TRX is measured by comparing the TOA of the

signal from the TRX at the DBS receiver and the time of transmission of the signal from

the DBS transmitter. The processing time estimate can be included in the signal packet

transmitted from TRX to DBS in order to allow DBS to correctly measure the range. The

DBS, equipped with antenna arrays, allows DOA estimation and beamforming. In

addition, beamforming enhances the performance of the DBS by reducing the interference

effects [72]. The DOA is measured by each spacecraft relative to its body fixed coordinate

system. In this chapter, we assume that the attitudes of all spacecraft are known. Hence,

the DOA measurements can be computed relative to a fixed reference frame.

Figure 2.1: (Left)Signal transmission between DBS and TRX. (Right) TRX’s signal arrives at antenna array.
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Figure 2.2: DBS ID signal and TRX response signal in an IRT period.

Thus, a WLPS allows single node positioning. In other words, each node equipped with a

DBS can independently localize the TRXs located in its coverage area and its

field-of-view (FOV). Now, if all spacecraft are equipped with both DBS and TRX, each

spacecraft can find the position of other spacecraft located in its FOV and coverage area.

The position information across multiple spacecraft can be fused to improve the

localization performance [73].

2.3 System Model

In this section, the state and measurement models are derived. The estimated states are the

spacecrafts’ absolute positions and their velocity vectors. In this chapter, we assume that

the spacecrafts’ orientations are known, and hence the WLPS measurements can be

expressed in the inertial reference frame. The spacecraft orientation is represented by the

Direction Cosine Matrix [74].

2.3.1 State Model

The estimated state vector, x̂, and its time derivative vector, ˙̂x, for a formation of n

spacecraft, are defined as:

x̂ =
[
rT

1 rT
2 . . . rT

n ṙT
1 ṙT

2 . . . ṙT
n

]T
, (2.1)

˙̂x =
[
ṙT

1 ṙT
2 . . . ṙT

n r̈T
1 r̈T

2 . . . r̈T
n

]T
, (2.2)
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Figure 2.3: Relative position vector between two spacecraft.

The ith spacecraft’s absolute position is ri =
[
ri,x ri,y ri,z

]T
, the velocity vector is

ṙi =
[
ṙi,x ṙi,y ṙi,z

]T
, and the acceleration vector is r̈i =

[
r̈i,x r̈i,y r̈i,z

]T
(all in the Earth

Centered Inertial (ECI) frame). The sign .̂ refers to the estimated values.

The spacecraft’s motion with respect to the earth’s center is represented by the two-body

model [75, 76]:

r̈ =
−μ

r3 r (2.3)

where μ is the Earth gravitational constant, the vectors, r and r̈ are the absolute position

and acceleration vectors of the spacecraft, respectively, and r denotes the magnitude of the

vector r.

2.3.2 Measurements Model

In this study, we assume each spacecraft is equipped with both DBS and TRX. Thus, it

can localize other spacecraft and can be localized by other spacecraft.

In Figure 2.3, ri and r j represent the ith and the jth spacecraft absolute position vectors

expressed in the ECI frame. The relative position vector of the jth spacecraft observed by
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the ith spacecraft that is equipped with DBS is:

ri j = r j − ri (2.4)

ri =
[
ri,x ri,y ri,z

]T
(2.5)

r j =
[
r j,x r j,y r j,z

]T
(2.6)

If the orientation of the spacecraft is known, the relative position vector, Ri j, expressed in

the ith spacecraft reference frame would be:

Ri j =Ciri j (2.7)

where Ci is the Direction Cosine Matrix (also known as Attitude Matrix [22]) of the ith

spacecraft relative to the ECI frame. Let hTOA
i j be the time of the ID signal transmission, as

the ID signal travels from the DBS node i, received by the TRX node j, transmitted again

from the TRX node j, until received back at the DBS node i. Assume, for now, that the

both DBS i and TRX j are stationary, then we can write:

hTOA
i j = 2×‖ri j‖/c

= 2×‖r j − ri‖/c
(2.8)

where r j is the position of node j at the time it receives the ID signal, c is the speed of

light and ‖.‖ refers to the magnitude of vector. In the above equation, we assumed zero

processing time at the TRX. Let Ri j =
[
Ri j,x Ri j,y Ri j,z

]T
, then the DOA between the

two nodes i and j is given by the two measurements:

hDOA
i j =

[
θi j

φi j

]
=

⎡
⎢⎢⎣

tan−1
(

Ri j,y
Ri j,x

)
tan−1

(
Ri j,z√

R2
i j,x+R2

i j,y

)
⎤
⎥⎥⎦ (2.9)

Here, θi j is the relative azimuth angle and φi j is the relative elevation angle between the

two nodes i and j. Using Eqs. (2.8) and (2.9), we can express the WLPS measurement
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between the ith and the jth nodes as:

ỹi j =

[
hTOA

i j

hDOA
i j

]
+νWLPS,i j (2.10)

where νWLPS,i j denotes WLPS measurement noise, which is assumed to be zero-mean

Gaussian with the covariance matrix E[νWLPS,i jν
T
WLPS,i j] = ℜWLPS,i j.

The observation matrix of the nonlinear measurement model in Eq. (2.10), is linearized

using the first order Taylor series expansion, which corresponds to [14, 22]:

h(x)� h(x̂)+
∂h
∂x

∣∣∣∣
x=x̂

(x− x̂) (2.11)

where h(x) and h(x̂) are the nonlinear measurement models and they are expressed in

terms of the true state vector, x, and the estimated state vector, x̂ respectively. In addition,
∂h
∂x ≡ H, is the jacobian matrix of the nonlinear measurement model, (Eq. (2.10)), which is

also known as the sensitivity matrix. Here, the sensitivity matrix for Eq. (2.10), HWLPS is

given as:

HWLPS =
[
−∂h

∂r
∂h
∂r 03×6

]
(2.12)

where,

∂h
∂r

≡

⎡
⎢⎢⎣

ri j,x/ri j ri j,y/ri j ri j,z/ri j
−sin(θ)
ri j cos(φ)

−cos(θ)
ri j cos(φ) 0

−cos(θ)sin(φ)
ri j

−sin(θ)sin(φ)
ri j

−cos(φ)
ri j

⎤
⎥⎥⎦Ci (2.13)

Here, HWLPS is derived assuming that we have only two spacecraft in the formation.

However, the procedure can be extended to any number of spacecraft.

2.3.3 Time Delay Modeling

Time delay estimation has been extensively studied in the literature. The wide separation

between spacecraft and the high velocity of spacecraft may result in a significant error in

position measurements due to the signal transmission time delay. One approach to address

time delay error is to consider the time delay as a Gaussian random variable, and its effect

can be removed through Kalman Filter implementation. However, Ref. [77] shows that the

error distribution due to the transmission time delay is not always a normal distribution.
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Figure 2.4: Illustration of signal transmission time delay

Ref. [69] presents an approximation method to model the signal transmission time delay

between two spacecraft and its effect on elative position estimation, for one-way signal

trips. States of past time are expanded as functions of the states at current time using the

Taylor series expansion [69]. The WLPS measures the TOA of the round trip signal

between the DBS and the TRX. Figure 2.4 illustrates the time delay due to the WLPS

processing time and due to signal transmission. The true signal transmission path is

described in the solid line. The dashed line is the signal path if the time delay is neglected

(both DBS and TRX are stationary, Eq. (2.8), or moving at with low velocities).

In Figure 2.4, the DBS transmits its ID signal to TRX at time t1. The TRX receives the

signal at time t2 and it requires Tpr time to process the signal. Then, the TRX transmits the

signal back to the DBS at time t3 and the DBS recieves the signal at time t4. When the

DBS receives the ID signal at time t4, it measures the Time-of-Arrival (TOA) of the signal

(t4 − t1). The TOA is measured at the DBS receiver, thus, the clock synchronization

between DBS and TRX is not required. It is to be noted that Tpr can be determined, offline

or online, by computing the clock pulse needed to process each DBS signal. In this

chapter, we assume Tpr is a known constant.

However, it is important to note that both spacecraft have travelled from their original

position at time t1 to a new position at time t2 when the signal is transmitted from DBS to

TRX. This is also applied for the signal transmission between time t3 and t4. Let the ith
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spacecraft equipped with DBS and jth spacecraft equiped with TRX; the round trip TOA

measurement shown in Figure 2.4 can be expressed as:

ỹdelay,TOA = ‖ri,t4 − r j,t3‖/c+‖r j,t2 − ri,t1‖/c+Tpr +νd,TOA (2.14)

where νd,TOA is the measurement noise.

All positions of both spacecraft at t1, t2, and t3 need to be expressed in terms of the

positions at time t4. By adapting the strategy developed in Ref. [69], the estimated round

trip TOA based on Eq. (2.14) is given as:

ŷdelay,TOA = ‖ri,k − r j,k−1‖/c+‖r j,k−2 − ri,k−3‖/c+Tpr (2.15)

where t3 ≡ k−1, t2 ≡ k−2, t1 ≡ k−3.

In Figure 2.4, the Time-of-Flight (TOF) of signal transmission between ith and jth

spacecraft defined in Ref. [69], is presented as Ttr. Let ri j,k be the distance between DBS

and TRX at time t4, and Ttr = ri j,k/c+ τ . Then, we can write:

ri j,k + τc = Ttr × c

=

√(
r j,k−1 − ri,k

)T (r j,k−1 − ri,k
)

(2.16)

It is noted that the true value of Ttr is unknown, and we can only compute an estimate for

the transmission time. The position of jth spacecraft at time t3 can be estimated via the

first order Taylor series expansion, which is given as:

r j,k−1 � r j,k −Ttrv j,k (2.17)

where v j,k is the velocity of jth spacecraft at time k.

By substituting Eq. (2.17) into Eq. (2.16), a closed form for τ can be obtained [69]:

τ =
−B±

√
B2 −4AC

2A
(2.18)
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where,

A = (c2 − v2
j,k) (2.19)

B = 2(rT
i j,kv j,k − ri j,kv2

j,k/c+ cri j,k) (2.20)

C = 2rT
i j,kv j,kri j,k/c− v2

j,k(ri j,k/c)2 (2.21)

where v j,k =
√

vT
j,kv j,k, which is the magnitude of the jth spacecraft’s velocity vector.

Then, Ttr can be computed using Eqs. (2.16) and (2.18). We assume that t4 − t1 is small.

Because t1 is known, the position of ith spacecraft, ri,k−3, at t1 can be approximated as:

ri,k−3 � ri,k −T41vi,k (2.22)

where T41 = t4 − t1.

The position of jth spacecraft at time t2, r j,k−2, can be approximated in a similar way:

r j,k−2 � r j,k − (Ttr +Tpr)×v j,k (2.23)

By substituting Eqs. (2.17), (2.22), and (2.23) into (2.15), the estimated TOA, ŷdelay,TOA

can be expressed in terms of the spacecraft position and velocity vectors at time k.

Similarly, in Figure 2.4, the time delay in signal transmission also impacts the DOA

measurement [69]. However, the DOA measurement is defined as the angle of arrival of

the signal transmitted by TRX to DBS. Therefore, the signal transmission and processing

delay between t1 and t3 has no impact on DOA measurement. Here, a vector L and its

components X , Y , and Z are defined as:

L =
[
X Y Z

]T
= r j,k−1 − ri,k

= r j,k −Ttrv j,k − ri,k

(2.24)

The measured DOA between the ith and the jth spacecraft for both relative azimuth and

elevation angles θ̄i j and φ̄i j are:

ỹdelay,DOA =

[
θ̄i j

φ̄i j

]
+νdelay,DOA (2.25)
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where,

θ̄i j = tan−1 Y
X

(2.26)

φ̄i j = tan−1 Z√
X2 +Y 2

(2.27)

As in the case of the WLPS measurement model without the time delay effect (see Eqs.

(2.12) and (2.13)), Eqs. (2.15) and (2.25) are nonlinear. Thus, the sensitivity matrix

should be calculated to facilitate the process of linearization in the Extended Kalman

Filter. The sensitivity matrix is derived below.

2.3.3.1 Sensitivity matrix for TOA with Time Delay Model

From equation (2.18), τ is a function of ri,k, r j,k and v j,k. In this section, for simplicity, let

ri = ri,k, r j = r j,k, ri j = ri j,k, and so on. Let:

Sr =
∥∥r j,k−2 − ri,k−3

∥∥ (2.28)

The sensitivity matrix, Hdelay,TOA, for equation (2.15) corresponds to:

Hdelay,TOA =
[

∂Sr
∂ri

+
∂ ri j
∂ri

+ ∂τ
∂ri

∂Sr
∂r j

+
∂ ri j
∂r j

+ ∂τ
∂r j

∂Sr
∂vi

∂Sr
∂v j

+ ∂τ
∂v j

]
(2.29)

where,

∂τ

∂ri
=

1
A

[
v2

j

c

∂ ri j

∂ri
+vT

j +
1
D

{
−rT

i jv jvT
j + c2ri j

∂ ri j

∂ri
− v2

j ri j
∂ ri j

∂ri

}]
(2.30)

∂τ

∂r j
=

1
A

[
v2

j

c

∂ ri j

∂r j
− c

∂ ri j

∂r j
−vT

j +
1
D

{
rT

i jv jvT
j + c2ri j

∂ ri j

∂ri
− v2

j ri j
∂ ri j

∂ri

}]
(2.31)

∂τ

∂v j
= 2

τ

A
vT

j +
1
A

[
2

ri j

c
vT

j − rT
i j +

1
D

{
rT

i jv jrT
i j − r2

i jv
T
j

}]
(2.32)

The parameter D in equations (2.30) to (2.32) is given by:

D =
√
(rT

i jv j)2 + c2r2
i j − r2

i jv
2
j (2.33)
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And both ∂ ri j
∂ri

and ∂ ri j
∂r j

are given as:

∂ ri j

∂r j
=−∂ ri j

∂ri
≡ rT

i j

ri j
(2.34)

Finally, the partial derivatives of Sr in Eq. (2.28) with respect to the absolute position and

velocity vectors are given as:

∂Sr

∂ri
=− 1

Sr

{(
r j,k−2 − ri,k−3

)T
+
(
r j,k−2 − ri,k−3

)T v j

[
1
c

∂ ri j

∂ri
+

∂τ

∂ri

]}
(2.35)

∂Sr

∂r j
=

1
Sr

{(
r j,k−2 − ri,k−3

)T − (r j,k−2 − ri,k−3
)T v j

[
1
c

∂ ri j

∂r j
+

∂τ

∂r j

]}
(2.36)

∂Sr

∂vi
=

T41

Sr

(
r j,k−2 − ri,k−3

)T
(2.37)

∂Sr

∂v j
=− 1

Sr

{
(Ttr +Tpr)

(
r j,k−2 − ri,k−3

)T
+
(
r j,k−2 − ri,k−3

)T v j
∂τ

∂v j

}
(2.38)

2.3.3.2 Sensitivity matrix for DOA with Time Delay Model

The sensitivity matrix for DOA measurements can be derived in a similar way. The

sensitivity matrix for the azimuth angle, Hθ̄ , and elevation angle, Hφ̄ , are:

Hθ̄ = Sθ̄

[
1
X

∂Y
∂x − Y

X2
∂X
∂x

]
(2.39)

Hφ̄ = Sφ̄

[
1√

X2+Y 2
∂Z
∂x − Z

(X2+Y 2)3/2

(
X ∂X

∂x +Y ∂Y
∂x

)]
(2.40)

where,

Sθ̄ =
1

1+
(

Y
X

)2 (2.41)

Sφ̄ =
X2 +Y 2

X2 +Y 2 +Z2 (2.42)

and,

∂L
∂x

=
[
−I3×3 I3×3 03×3 −Ttr × I3×3

]
−v j,k

∂Ttr

∂x
(2.43)

∂Ttr

∂x
=

1
c

∂ ri j

∂x
+

∂τ

∂x
(2.44)
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where, ∂L
∂x =

[
∂X
∂x

T ∂Y
∂x

T ∂Z
∂x

T
]T

.

Therefore, the time delay model for the relative position measurement between the ith

spacecraft and the jth spacecraft is given as:

ỹi j =
[
ỹT

delay,TOA ỹT
delay,DOA

]T
(2.45)

and the sensitivity matrix is

Hi j =
[
HT

delay,TOA HT
θ̄

HT
φ̄

]T
(2.46)

2.3.4 GPS Measurements Model

In this section, the model of the GPS measurement is presented. We assume that there is

no multipath effect and no clock bias error in the GPS receiver. For any GPS satellite that

is in the ith spacecraft’s LOS, the pseudorange measurement is:

ρ̃i =
√

(ri − rGPS)T (ri − rGPS)+νGPS (2.47)

where rGPS represents the position of the GPS satellite, and νGPS represents the GPS

measurement noise which is assumed as zero mean white noise, with the noise covariance

as RGPS = E{νGPSνT
GPS}.

In reality, there might be more than four GPS satellites in the FOV of each spacecraft in

the formation. However, in this chapter, we assume that only four GPS signals are

observed at all times. Hence, the GPS measurement vector is:

ỹi,GPS =
[
ρ̃i,1 ρ̃i,2 ρ̃i,3 ρ̃i,4

]T
(2.48)

The pseudorange measurements, ρ̃1 to ρ̃4 represent any four GPS signals received by the

given spacecraft (ith spacecraft in this case). The corresponding sensitivity matrix, HGPS,
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is

Hi,GPS =

⎡
⎢⎢⎢⎢⎣

ri−rGPS,1
ρ1

01×3
ri−rGPS,2

ρ2
01×3

ri−rGPS,3
ρ3

01×3
ri−rGPS,4

ρ4
01×3

⎤
⎥⎥⎥⎥⎦ (2.49)

Equation (2.49) shows the sensitivity matrix for a single spacecraft. However, it can be

easily applied to spacecraft formation flying. For a GPS only scenario with n-spacecraft

formation, the measurement vector is given as:

ỹ =
[
ỹT

1,GPS . . . ỹT
n,GPS

]T
(2.50)

with the sensitivity matrix, H, is

H =

⎡
⎢⎢⎣

H1,GPS
...

Hn,GPS

⎤
⎥⎥⎦ (2.51)

For WLPS and GPS scenario, the measurement vector is given as:

ỹ =
[
ỹT

1,GPS . . . ỹT
n,GPS ỹT

12 ỹT
13 . . . ỹT

i j

]T
(2.52)

with the sensitivity matrix, H, is

H =
[
HT

1,GPS . . . HT
n,GPS HT

12 HT
13 . . .HT

i j

]T
(2.53)

where ỹi j and Hi j are defined in Eqs. (2.45) and (2.46) respectively, i = 1, . . . ,n,

j = 1, . . . ,n and i �= j.

2.4 Extended Kalman Filter Implementation

The EKF process begins with an initial estimated states, x̂(t0) = x̂0, and states covariance,

P(t0) = P0. At every time step, k, a measurement is received from the sensor onboard, a

gain matrix, K, is then computed as follows:

K = P−
k HT

k [HkP−
k HT

k +Rk]
−1 (2.54)
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where Rk is the measurement noise covariance at step k, and its matrix composition

depends on the availability of measurements (e.g. WLPS or GPS) in the estimation

processes. The matrix Hk is the sensitivity matrix, which is defined as:

Hk =
∂ ĥ
∂x

∣∣∣∣
x̂−k

(2.55)

Here, the superscript “-” denotes predicted (or pre-update) estimates.

Then, the pre-update estimated states, x̂−k , and states covariance, P−
k are updated through

the following equations:

x̂+k = x̂−k +K[ỹk − ĥk(x̂
−
k )] (2.56)

P+
k = (I −KHk)P

−
k (2.57)

where I is the identity matrix, ĥk(x̂
−
k ) is the estimated measurement, x̂+k is post-update

estimated states, P+
k is post-update states covariance, K is the gain matrix in Eq. (2.54)

and Hk is the sensitivity matrix.

Both post-update estimated states, x̂+k , and states covariance, P+
k are propagated to the

next time step.

˙̂x = f(t, x̂+k )+w (2.58)

Ṗ = FkP+
k +P+

k FT
k +GQGT (2.59)

where, w is the process noise vector which is a zero mean gaussian noise with

Q = E{wwT}, f(t, x̂+k ) is obtained from the equation of motion of the spacecraft (Eq.

(2.3)). Fk is defined as:

Fk =
∂ f
∂ x̂

∣∣∣∣
x̂+k

(2.60)

The Fk matrix is the linearized state model:

Δẋ = FkΔx+Gw (2.61)

where Δx ≡
[
ΔrT

1 . . . ΔrT
n ΔvT

1 . . . ΔvT
n

]T
, with Δri and Δvi are small changes in the

ith spacecraft position and velocity vectors. For n-spacecraft formation, the Fk matrix in

25



Eq. (2.61) is given by:

Fk =

⎡
⎣ 03n×3n I3n×3n

dF(x)
dx

∣∣∣
x=x̂+k

03n×3n

⎤
⎦ (2.62)

where,

dF(x)
dx

∣∣∣∣
x=x̂+k

=

⎡
⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

03×3 · · · 03×3

03×3
∂ f2
∂x2

· · · 03×3

...
. . . . . .

...

03×3 · · · · · · ∂ fn
∂xn

⎤
⎥⎥⎥⎥⎥⎦ (2.63)

∂ fi

∂xi
=

μ

s5

⎡
⎢⎢⎣

2r2
ix − r2

iy − r2
iz 3rixriy 3rixriz

3rixriy 2r2
iy − r2

ix − r2
iz 3riyriz

3rixriz 3riyriz 2r2
iz − r2

ix − r2
iy

⎤
⎥⎥⎦ (2.64)

where i = 1,2, . . . ,n, s =
√

r2
ix + r2

iy + r2
iz, and ri =

[
rix riy riz

]T
in Eq. (2.5). Here, μ is

defined as in Eq. (2.3).

For a configuration of n-spacecraft, the G matrix, in Eq. (2.59) and Eq. (2.61) is:

G ≡
[

03n×3n

I3n×3n

]
(2.65)

The Kalman Filter algorithm for all scenarios is processed as follows. The estimated states

(including both absolute position and velocity vectors) and the estimated state covariance

are initialized. Then, the estimated state and state covariance are updated using Eqs.

(2.56) and (2.57). It is noted that the sensitivity matrix and measurement vectors vary

from one scenario to another. Then, both estimated states and state covariance are

propagated using Eqs. (2.58) and (2.59) to next time step for future update.

2.5 Simulation Results and Discussions

Simulations are conducted to study and compare the estimation performance of the

spacecraft position with respect to the Earth center (or absolute position) using WLPS
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only, GPS only, and WLPS plus GPS. The performance is assessed through computing the

average of the Root Mean Square Error (RMSE), η , of the estimated absolute positions of

all spacecraft in the formation. The Mean Square Error (MSE) is the average of the square

of estimation errors along the x, y, and z axes of the spacecraft position.

ηi ≡ ‖r̂i − ri‖√
3

(2.66)

where ηi is estimated ith spacecraft’s absolute position’s RMSE, r̂i is the estimated

absolute position of the ith spacecraft and ri is the truth absolute position of the ith

spacecraft.

For n-spacecraft formation, the η is given as:

η =
1
n

n

∑
i=1

ηi (2.67)

The convergence time, Tconv, of the estimation is defined as the time needed by the

estimator until the RMSE falls below a given steady state threshold, ethres. The threshold

varies with the SFF configuration (e.g., formation size, number of spacecraft). There are

different approaches to determine the steady state threshold. In one of the approaches,

ethres is computed by taking the average RMSE of the estimator at the steady state RMSE

curve. However, the Tconv is undefined if the RMSE does not converge.

Two case studies are presented in this chapter: (1) one examining the implementation of

1D WLPS for spacecraft navigation; and (2) comparing the estimation performance

between a GPS standalone system, and a WLPS along with a GPS system with time delay

modeling. In the second case study, the estimation performance is examined with respect

to the following SFF configuration parameters: Size of formation, Measurement noise

level, Number of spacecraft, and Altitude of the formation (except GPS scenario).

The general simulation assumptions in this chapter are: (i) Process and measurement

noises for all spacecraft are zero-mean Gaussian; (ii) The attitude of each spacecraft is

well-known; (iii) The TOA and DOA measurement noise standard deviations are 1 meter

and 0.001 degrees respectively, unless otherwise specified; (iv) The GPS pseudo

measurement noise standard deviation is 10 meters, unless otherwise specified; (v) The

variance of the process noise is 10−14km2s−4; (vi) The initial estimated states covariance
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Table 2.1
Third and fourth spacecrafts’ orbital elements.

Inclination (deg) Arg. perigee (deg) RAAN (deg) Initial Anomaly (deg)
S/C 1 5 0 5 3
S/C 2 -5 0 0 2
S/C 3 -3 0 7 -4
S/C 4 3 0 -4 10
S/C 5 -2.5 0 -3 2
S/C 6 -10 0 0 .5

is 1 km2 along each position axis, and 0.01 km2/s2 along each velocity axis; and (vii) the

simulation is run at the interval time of Δt = 10 seconds for all scenarios.

In the simulations conducted in this chapter, we assume that each relative position in the

formation is measured only once. Thus, for a two spacecraft formation, there is one

relative measurement. Similarly, for three, four, and six spacecraft formation, there are

three, six, and fifteen relative position measurements, respectively.

Figure 2.5 shows the accuracy performance of the EKF estimation using only the WLPS

measurement with respect to different numbers of spacecraft in the formation. All the

spacecraft have the same true semimajor axis of 7000km and eccentricity of 0.05. The

orbital elements of all spacecraft are shown in Table 2.1. Figure 2.5 shows that the

performance improves as the number of spacecraft in formation increases. The

convergence time of the EKF process is about 400 minutes for the two-spacecraft

formation. It is 300 minutes in the three-spacecraft formation, and is about 70 minutes for
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Figure 2.5: WLPS only - RMSE Performance.
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four spacecraft formations. The number of measurements in the three-spacecraft

formation is three times higher than that of the two-spacecraft formation, and the number

of measurements in the four-spacecraft formation is two times higher than that of the

three-spacecraft formation. This leads to higher spacecraft orbit observability gain and

results in significant convergence time improvement.

2.5.1 One DOA measurement

In this section, we compare the estimation performance between one DOA measurement

and two DOA measurements. Both case studies include a TOA measurement. To study the

feasibility of estimating the absolute positions from measurements of only the range and

the azimuth angle, an observability analysis is needed. The EKF algorithm of 1-DOA is

similar as the 2-DOA case. However, only the first two row of the sensitivity matrix in Eq.

(2.12) is considered, because only one TOA and one DOA measurement available.

It is common that the observability analysis is conducted by linearizing the nonlinear

problem. A numerical method for observability investigation is presented in detail in Ref.

[5]. It can be shown that in this problem, the system is observable except in some special

configurations of formations. One of those special cases is when two spacecraft are in the

same circular orbit. In this section, we present simulation results for one observable case.

A two-spacecraft formation is considered. The spacecraft orbits have a semimajor axis of

7000km. The first spacecraft (observer) orbits in a circular orbit, with 0 degrees in

Inclination, Argument of perigee, RAAN and initial true anomaly. The second spacecraft

(target) orbits in an elliptic orbit with eccentricity of 0.05 degrees, inclination of 15

degrees, Argument of perigee of 0 degree, Right ascension of ascending node (RAAN) of

0 degree and initial true anomaly of 5 degrees.

We assume that only spacecraft 1 (S/C 1) is equipped with a DBS, while spacecraft 2 (S/C

2) is equipped with only a TRX. In this case study, the WLPS antenna array is rotated at 5

degrees about the body x-axis, and both spacecraft experience no spinning motion. In this

simulation, we assume the initial condition for both spacecraft is known and there is no

signal transmission and signal processing time delay.

Figures 2.6(a) and 2.6(b) compare the RMSE performance between one DOA

measurement and two DOA measurements, for different levels of measurements noises.
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(a) Low TOA-DOA measurement noise.
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Figure 2.6: RMSE comparison of Azimuth only (1 DOA) versus Azimuth and Elevation (2 DOA) measure-
ments.

The results indicate that it is possible to estimate the spacecraft absolute position with

only one DOA measurement along with a TOA measurement, in the case presented.

Figure 2.6(b) compares the RMSE performance when both TOA and DOA noise levels are

increased to 0.1 meter and 0.1 degrees respectively. The result shows that there is a

significant difference between one DOA measurement performance and two DOA

measurements performance. The two DOA measurements has a better overall accuracy

compared to the one DOA measurement performance.

2.5.2 GPS and WLPS versus GPS standalone system

In this section, the performance of an orbit estimation algorithm using only GPS for

position measurements is compared with the estimation algorithm that has an additional

WLPS sensor (GPS/WLPS) installed on the spacecraft. We assume signal transmission

time delay occurs between the DBS and TRX. Here, a four-spacecraft formation flying is

considered. These comparisons will be carried out for several parameter ranges as detailed

below.
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Table 2.2
Four Spacecraft Configuration for different formation size.

Formation size 100km/200km 700km/1400km 1445km/2450km
Min. Max Min. Max Min. Max

Inclination (deg) -0.5 0.3 -5 5 -10 10
Arg. perigee (deg) 0 0 0 0 0 0

RAAN (deg) -0.5 0.2 -4 7 -3 3
True Anomaly (deg) 0 0.5 -4 10 -2 5

2.5.2.1 Formation size

First, the impact of formation size on the performance is studied. All spacecraft orbit at a

semimajor axis of 7000km, with eccentricity of 0.05. There are a total of four spacecraft

in the formation. Here, ranges for the orbital elements of each spacecraft are listed in

Table 2.2.

Table 2.3 compares the estimation performance with respect to different formation sizes.

The results show that if only GPS measurement is available, the formation size does not

impact the estimation performance in terms of accuracy. Because the GPS provides

independent absolute position for each spacecraft in the formation, the relative spacing

between spacecraft does not really affect the estimation accuracy, if GPS measurements

only are used. In addition, the simulation results show that the convergence rate for all

case studies is the same, which is 20 minutes. This is because the GPS measurement has

more impact on the convergence rate of the estimation process than the WLPS

measurement.

When the WLPS is implemented into the formation along with the GPS, the results show

that the formation size impacts the estimation accuracy. Table 2.3 shows that as the

Table 2.3
Performance comparison between different formation size.

Form. Size Set up Ave. RMSE (m)

100km/200km
GPS/WLPS 1.068

GPS 2.114

700km/1400km
GPS/WLPS. 1.214

GPS 2.087

1445km/2450km
GPS/WLPS. 1.384

GPS 2.042
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Table 2.4
Performance comparison between high GPS noise and high WLPS noise.

Noise level Set up Ave. RMSE (m) Conv. time (min)
High GPS

Noise
GPS/WLPS 9.529 70

GPS 62.745 70
High WLPS

Noise
GPS/WLPS 1.669 20

GPS 2.090 20

formation size decreases, the estimation accuracy increases. Although the improvement

may seem insignificant (only 30 decimeters) when the WLPS is implemented together

with GPS, there is about 25% improvement when the formation size decreases from

1445km/2450km to 100km/200km. For other cases where the RMSE is higher, the impact

may become more significant.

2.5.2.2 Measurement noise level

Next, consider the 700km/1400km formation size configuration shown in Table 2.2. The

measurement noises of WLPS and GPS are varied in the following order: a. High GPS

noise: Both TOA and DOA noises levels are 0.001km and 0.001 degrees respectively, and

GPS noise level is 1km; and, b. High WLPS noise: Both TOA and DOA noises levels are

0.01km and 0.01 degrees respectively, and GPS noise level is 0.01km.

Table 2.4 compares the RMSE and convergence rate with respect to two different noise

levels, high GPS noise level and high WLPS noise level. With high GPS noise (such as

signal jamming), the result shows that we are still able to achieve good estimation

accuracy (up to meters accuracy) with the aid of WLPS measurements. Besides that,

additioinal WLPS measurement is capable of improving the estimation performance if

compared to the GPS standalone system; even though the WLPS measurement noise level

is high. In addition, the convergence rate is increased if GPS measurement noise

increased. This result confirms that the GPS has more impact on the convergence rate of

estimation.
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Figure 2.7: Position RMSE comparison of GPS-only and GPS/WLPS, and three sigma boundaries plot.

2.5.2.3 Number of spacecraft in formation

The impact of different number of spacecraft on the estimation performance is studied.

Four formations are considered: two, three, four, and six spacecraft. The size of the

formation in the four cases is 700km/1400km.

Figure 2.7(a) compares the accuracy and convergence performance with respect to the

number of spacecraft in the formation. Because GPS offers absolute position

measurements for each spacecraft, independent from other spacecraft in the formation,

increasing the number of spacecraft in the formation does not affect the estimation

accuracy, if no WLPS is used. Figure 2.7(a) shows that as the number of spacecraft

increases, the RMSE performance improves. It is noted that we assume spacecraft i

measures spacecraft j’s relative position, but spacecraft j does not measure spacecraft i’s

relative position in the simulation.

Figure 2.7(b) shows the spacecraft’s estimated absolute position error with a three sigma

boundary for the WLPS and GPS scenario. The simulation is processed for 100 Monte

Carlo runs with the initial condition error of 1km in absolute position vector and 1ms−1 in

absolute velocity vector for each spacecraft in the formation. The initial state covariance

remains the same as presented in the simulation assumption. Figure 2.7(b) shows that the

estimated absolute position error falls within the three sigma boundary. The estimated

state error converges at the same pace as the state covariance in the presence of GPS
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measurements.
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Chapter 3

Implementation of a Differential

Geometric Filter For Spacecraft

Formation Orbit Estimation



3.1 Introduction

The relative and absolute positions estimation of spacecraft formations is a fundamental

task in many space missions.* Relative position estimation plays an important role in

Spacecraft Formation Flying (SFF) missions, a subject that has been the focus of much

research during last decade. Some SFF missions require that multiple spacecraft, in

different orbits, communicate without interruption, e.g., satellites in the CITRIS-COSMIC

system are required to communicate with each other to monitor the ionospheric

irregularities [1]. Relative positions between satellites, such as Cluster and Cluster-II

satellites launched by the European Space Agency, are estimated and controlled to support

many collaborative tasks where satellites are required to maintain a specific formation in a

continuous manner within the mission period [2]. Several relative position estimation

methods have been developed. A GPS-like technology that can be applied to SFF has

been introduced [3, 4], where each spacecraft is equipped with a communication system to

localize other spacecraft in the formation. This system provides high precision estimates

for relative positions. Yet, complex hardware is required on each spacecraft. This system

does not stand alone and requires a GPS system.

A relative position and attitude estimation through a Vision-Based Navigation System

(VISNAV) has been addressed extensively in the literature [7, 49–51]. The VISNAV

consists of a Position Sensing Diode (PSD) sensor and an array of LED source beacons

installed on a plate. The PSD detects the energy of the light source emitted by the

beacons. Then the PSD generates a current flow to four terminals that are installed on the

PSD plate. At that point, the centroid of the current flow is determined to measure the

direction of the energy source. The covariance study shows that the performance could be

affected by the relative distance between spacecraft. The accuracy factors of the

estimation depend on the number of beacons installed on the spacecraft. Three or more

beacons are suggested to ensure the observability of the system [7].

Mark Psiaki proved the feasibility of estimating the orbits of two spacecraft through

measuring their relative distance and azimuth and elevation angles [5]. The orbital

elements estimation accuracy depends on the relative distances between the spacecraft.

Only two spacecraft formations were considered. As shown in Ref. [5], the relative

position between spacecraft impacts the estimation performance. In addition, the system

*The material contained in this chapter was previously published in the International Journal of
Aerospace Engineering.
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becomes unobservable in a few cases, such as zero inclination.

The Extended Kalman Filter (EKF) has been widely implemented into the nonlinear

system to estimate the relative and absolute positions in SFF [7, 16, 78, 79]. The system

nonlinearity causes the EKF estimation to be sensitive to initial condition errors, and the

linearization step in the EKF may result in estimation instability. The Unscented Kalman

Filter (UKF) has been implemented for relative attitude and position estimation in SFF

[17, 18]. The UKF has a better robustness to initial condition errors compared to the EKF.

However, its computational complexity is higher than the standard EKF. If compared to

the standard EKF, the UKF has a faster convergence rate, but the computational time

required for each update is longer than that of the EKF [80]. The Batch filter [22], an

offline filtering method, has been implemented in Ref. [5] for absolute positions

estimation using the relative positions measurements. Both studies in [16] and [5] show

that the configuration of the SFF affects the stability and the accuracy of estimation.

The Differential Geometric (DG) Theory has been widely implemented in the control and

guidance research area [42, 43]. In calculus, the Differential Geometry represents the

linear approximation of a smooth curve [44]. Ref. [45] and [46] introduced the

Differential Geometric approach into the missile tracking applications. In Ref. [45], the

system model is transformed from the arc length domain into the time domain; then the

guidance law is applied. Both papers have shown the feasibility of implementing the DG

for missile guidance.

The Differential Geometric approach for nonlinear systems has been extended recently for

the nonlinear estimation purpose [47]. The DG estimation avoids the linearization step in

the EKF. In DG estimation, the nonlinear dynamics are mapped to a linear domain, where

a linear estimator can be implemented. Then, the inverse transformation is applied to the

estimator [47]. Ref. [47] details how the DG estimation can be implemented when the

number of available measurements are too few to handle all the system nonlinearities, and

shows that both the optimal control and the linear filtering approaches can be applied in

the mapped linear domain.

In this chapter, the DG filter is implemented in estimating the spacecraft relative and

absolute positions in formation. While most of the developments in the literature focus on

the estimation of relative positions [3, 7], this chapter estimates relative and absolute

positions of all spacecraft. The Differential Geometric (DG) Estimation and the Extended

Kalman Filter (EKF) are implemented and compared for estimation using Wireless Local
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Positioning System (WLPS) measurements. The WLPS installed on each spacecraft

enables that spacecraft to determine the relative positions of other spacecraft located in its

coverage area via Time-of-Arrival (TOA) and Directional-of-Arrival (DOA)

measurements [16, 58, 81].

In this chapter, two scenarios are considered: (1) observations include WLPS

measurements only, and (2) observations include WLPS measurements in addition to the

absolute position of one spacecraft measured by radar systems installed on the earth.

Section 3.2 presents the radar measurement model. The derivation of the DG Estimation

equations for the problem of relative and absolute positions estimation are presented in

Section 3.3. Section 3.4 presents the EKF implementation. Section 3.5 discusses the

simulation results and presents a complexity analysis that compares the computational

costs between the DG filter and the EKF.

3.2 Measurement Model

In this section, the measurement models for each scenario are derived. Two sets of models

are derived for two scenarios: (1) Only WLPS measurements are available, and (2) WLPS

measurements and those taken by a tracking system (such as a radar installed on the

ground) are available. For the first scenario, a four-spacecraft formation is considered.

Each spacecraft is equipped with both a DBS and a TRX. For the second scenario, a

two-spacecraft formation is considered; one spacecraft is equipped with a DBS and the

other spacecraft is equipped with a TRX. The radar measures the absolute range and the

absolute azimuth and elevation angles of one spacecraft with respect to a ground station.

Since the position of the ground station is known, we assume the absolute position

measurement is expressed with respect to earth center [82].

The estimated states are considered to be the spacecrafts’ absolute and relative positions,

and their velocities. If the spacecrafts’ orientations are known, the WLPS measurements

can be expressed in the inertial reference frame.
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3.2.1 WLPS Measurements Model

The WLPS measurement model without the time delay transmission has been derived in

Section 2.3.2. Using (2.8) and (2.9), we can express the WLPS measurement between the

ith and the jth spacecraft as:

ỹp,i j =

[
hTOA

i j

hDOA
i j

]
+ν p,i j (3.1)

where ν p,i j denotes WLPS measurement noise, which is assumed to be zero-mean

Gaussian with E[ν p,i jν
T
p,i j] = ℜp,i j.

Using (8.4) - (8.6) in Appendix 8.1, the WLPS measurement vector in Cartesian

coordinates is:

ỹc,i j =

⎡
⎢⎣

ri j,x

ri j,y

ri j,z

⎤
⎥⎦+νc,i j (3.2)

The new measurement noise νc,i j is a function of ν p,i j, hTOA
i j and hTOD

i j defined in (3.1).

3.2.2 Radar System Model

In the second scenario, an additional radar system that measures the spacecraft range,

azimuth and elevation angles is included. It is assumed that the ith spacecraft that is

observed by the radar is also equipped with a DBS. The absolute position measurement

made by the radar is:

ỹr,i =
[
ρi λri ξri

]T
+νr,i (3.3)

where νr,i is radar system noise, which is assumed to be zero-mean Gaussian, and

E[νrν
T
r ] = ℜr. The ri is the absolute distance of the ith spacecraft from the radar, λri is the

azimuth angle and ξri is the elevation angle of ith spacecraft with respect to a radar-fixed

coordinate system. The radar position is known in the ECI frame. So, using radar

measurements, it is straightforward to calculate the absolute distance of the ith spacecraft

from the earth’s center, ‖ri‖, and the azimuth, λi, and elevation, ξi, angles with respect to

the ECI frame. In this preliminary analysis, we will assume for simplicity that we measure

directly ‖ri‖, λi, and ξi. Azimuth and elevation angles are related to the coordinates of the
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spacecraft through:

λi = tan−1 ri,y

ri,x
(3.4)

ξi = tan−1 ri,z√
r2

i,x + r2
i,y

(3.5)

where ri,x, ri,y and ri,z are defined in (2.5).

3.2.3 Measurement Models for Simulation

In the first scenario, only the linear filtering method presented in Section 3.3 will be

implemented. Four-spacecraft formation is required, as discussed in Section 3.3.3. Thus,

the measurement vector, ỹ is:

ỹ ≡
[
ỹT

c,12 ỹT
c,23 ỹT

c,34 ỹT
c,41

]T
+ν (3.6)

where ν ≡
[
νT

c,12 νT
c,23 νT

c,34 νT
c,41

]T
is the measurement noise vector. The

corresponding measurement noise covariance is given as:

ℜ1 =

⎡
⎢⎢⎢⎢⎣

ℜc,12 03×3 03×3 03×3

03×3 ℜc,23 03×3 03×3

03×3 03×3 ℜc,34 03×3

03×3 03×3 03×3 ℜc,41

⎤
⎥⎥⎥⎥⎦ (3.7)

The ℜc,i j which denotes the relative position measurement noise covariance in the ECI

frame in equation (3.7) is given as:

ℜc,i j = E{(ri j −DT
i νc,i j)(ri j −DT

i νc,i j)
T}

= DT
i ℜc,i jDi

(3.8)

where ℜc,i j is the noise covariance of the relative position measurement, expressed in

cartesian coordinates, and Di is the attitude matrix [22]. ℜ is given as a function of ℜp,i j

[82]. The transformation from ℜp,i j to ℜ is shown in Appendix section.
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For the second scenario, both the linear filtering method and pole placement, which are

presented in Section 3.3, will be implemented for estimation purposes. Only

two-spacecraft formation is considered. The measurement vector ỹ is:

ỹ ≡
[
ỹT

c,12 ỹT
r,1

]T
+ν (3.9)

where ν ≡
[
νT

c,12 νT
r,1

]T
. The corresponding measurement covariance matrix ℜ2 is:

ℜ2 =

[
ℜ12 03×3

03×3 ℜr

]
(3.10)

where ℜr = diag
[
σ2

ρ σ2
λ σ2

ξ

]
, which the “diag” represents the diagonal matrix, and σ2

ρ ,

σ2
λ and σ2

ξ are the measurement noise variances for absolute distance, azimuth, and

elevation angle, respectively.

3.3 Differential Geometric Filter

DG estimation was recently extended to deal with nonlinear dynamic systems with fewer

measurements than required to handle all nonlinearities [47]. DG estimation avoids the

linearization step encountered in the EKF. In the DG estimation, the nonlinear system is

transformed into a linear system. The transformation requires the state vector, x, to be

expressed as a function of the measurements vector, y, i.e., x = s(y).

The DG estimation development is explained in Ref. [47] and is briefed here for

completness of presentation. The system model for DG estimation is constructed by

defining a new state vector z such that the measurement vector y can be expressed as a

linear function of z:

ż = Az+Bg(z)+Gw (3.11)

y =Cz+ν (3.12)

Here, A, B, C, and G are linear matrices, w is the process noise, and ν is the measurement

noise. The state equation (3.11) includes a linear system, Az, and a nonlinear input

function, Bg(z).
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When the available measurements are not enough to handle the nonlinearities in the

system, a set of pseudo-measurements, z′, is required. The pseudo-measurements can be

obtained by taking the derivatives of y, i.e., z′ = ẏ.

The pseudo-errors are defined as:

e = z′ − ẑ′ (3.13)

Then, the estimated state vector, ẑ, that includes the pseudo-measurements is:

ẑ ≡
[
ŷT ˙̂y

T
]T

=
[
ŷT z′T

]T
(3.14)

Letting m be the total number of measurements, Eq. (3.14) shows that the size of the

estimated state vector, z, is twice the size of the measurement vector, n = 2m. In addition,

it can be shown that the time rate of change of the pseudo-errors are [47]:

ˆ̇e = Am+1,nê−−Lm+1,n(ỹ− ŷ) (3.15)

where L is the gain matrix which will be presented in the next section, and Am,n and Lm,n

denotes mth to nth row of the A and L matrices respectively.

In Ref. [47], two gain computation methods are presented, which are the pole placement

method and Kalman Filter (or Linear Filtering) method.

3.3.1 Linear Filtering Gain

The state equations (3.11) are linear. Thus, the Kalman Filter theory can be applied. Note

that the input function, g(z), is not used in the updating process in both DG estimation and

EKF. The DG estimation gain matrix, L, is determined by:

L = PCT (CPCT +R)−1 (3.16)

where P is the state covariance matrix corresponding to the z vector, and R is the

measurement noise covariance matrix. Then, the state estimates, z, and its covariance are
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updated as follows:

ẑ+ = ẑ−+L1,m(ỹ− ŷ) (3.17)

ẑ′+ = ẑ′−+Lm+1,n(ỹ− ŷ) (3.18)

P+ = (I −LC)P− (3.19)

where I is the identity matrix, the superscript − denotes pre-update estimates and the

superscript + denotes post-update estimates. The ẑ′ denotes any estimated

pseudo-measurements vectors and the estimated state vectors that are not observed by

measurements. Lm,n denotes mth to nth row of the gain matrix, L.

The DG estimation filtering process works as follows [47]. The gain matrix, L, is

determined using (3.16). Then the estimated states and state covariance matrix are

updated using (3.17) to (3.19). The updated states and the pseudo-errors are propagated

by (3.11) and (3.15) with their respective input function. The state covariance matrix is

propagated using the equation (3.20):

Ṗ = AP+PAT +GQGT (3.20)

where Q is the process noise covariance, which is defined as Q = E{wwT}.

Both the A and G matrices in (3.11) and (3.20) are linear time invariant matrices; thus,

(3.20) can be expresed in time discrete representation, which is given as:

Pk+1 = ΦPkΦT +Q (3.21)

where, subscript k and k+1 denote the current and next time step respectively, Φ is the

state transition matrix and Q is the discrete-time process noise covariance. Both Φ and Q

are calculated as follows [83]. Let,

A =

[
−A GQGT

0 FT

]
Δt (3.22)

B = eA ≡
[
B11 B12

0 B22

]
(3.23)

where Δt is the time interval between two successive measurements, eA is the exponential
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matrix of A matrix, and F is the matrix representation of the system dynamic model. For

the nonlinear dynamic model case, e.g., Eq. (2.3), F is the first order Taylor series

expansion (or Jacobian matrix) of the dynamic model. Both Φ and Q are given as:

Φ = B
T
22 (3.24)

Q = ΦB12 (3.25)

3.3.2 Pole Placement Method

Another filtering method presented in Ref. [47] is the pole placement method. The pole

placement method has been widely used in controls and estimation. Unlike the Kalman

Filter, the gain, L, in pole placement, does not change dynamically. Pole placement also

requires full system observability. However, the pole placement method guarantees the

linearity of the measurement model, and hence guarantees stability.

The pole placement gain matrix L is computed as follows. Given that the A matrix has

n×n dimensional and canonical form:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.26)

and C matrix has n×m dimensional. The system is considered to be fully observable if

the rank of O(C,A) matrix is full rank [84]:

O(C,A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.27)

If the full rank observability condition in equation (3.27) is fulfilled, the gain matrix L is
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calculated using the following equation:

λ = eig(A−CL) (3.28)

where λ is the eigenvalue vector, and eig represents the eigenvalue.

If a set of eigenvalues is given, the gain matrix L can be computed using the Ackermann’s

formula [22]. The selection of the eigenvalues impacts both stability and accuracy of

estimation. Therefore, negative eigenvalues are always selected to ensure the stability of

the estimation process.

Here, our goal is to set up the DG estimation filter for the two scenarios introduced in

Section III. For the first scenario, only the WLPS measurement is available while we

intend to estimate the spacecraft absolute position. Thus, it is required to derive the

expression of absolute position of spacecraft in terms of relative position. For the second

scenario, an additional absolute position measurement of spacecraft is included.

3.3.3 Scenario One - Relative Position Estimation with WLPS-only

measurement.

The absolute distance of a spacecraft j from the Earth’s center is:

r2
j = r2

i + r2
i j +2rT

i jri (3.29)

where ri and ri j denote absolute and relative positions respectively defined in (2.4) to

(2.6).

The orbital equation of spacecraft is [75]:

r =
a(1− ε2)

1+ ε cosυ
(3.30)

In (3.30), r represents the distance of spacecraft to the Earth’s center, a is the semimajor

axis, ε is the eccentricty, and υ is the true anomaly. In this scenario, it is assumed that all

spacecraft in the formation have the same semimajor axis, eccentricity, and true anomaly.

Hence, Eq. (3.30) shows that the distances from all spacecraft to the Earth’s center would
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be the same. In this case, r j = ri, leads to:

r2
i j +2rT

i jri = 0 (3.31)

If we consider a four-spacecraft configuration, then (3.31) can provide a closed form

solution for absolute positions using relative position measurements. For example, the

absolute position of spacecraft 1 can be obtained from:

⎡
⎢⎣

r12,x r12,y r12,z

r13,x r13,y r13,z

r14,x r14,y r14,z

⎤
⎥⎦
⎡
⎢⎣

r1,x

r1,y

r1,z

⎤
⎥⎦=−

⎡
⎢⎢⎣

r2
12
2

r2
13
2

r2
14
2

⎤
⎥⎥⎦ (3.32)

Here, ri,x, ri,y, ri,z and ri j,x, ri j,y, ri j,z are the absolute and relative position elements

introduced in (2.4), respectively. The right hand side of (3.32) are the square of relative

distances between the spacecraft. Similarily, we can determine the absolute positions of

the other spacecraft. Note that the solution in (3.32) requires the computation of inverse of

the relative position measurements matrix. Therefore, the closed form solution needs an

accurate estimation or unbiased relative position measurements.

Consider the four sets of WLPS measurements mentioned in Section III where the total

number of measurements, m, in (3.6) is 12. However, there are 24 states to be estimated;

thus, at least 12 pseudo-measurements are required. The pseudo-measurements are

defined as the relative velocities. Using the dynamic motion of spacecraft defined in (2.3),

the relative accelerations between spacecraft are:

r̈i j =
μri

r3
i

− μr j

r3
j

(3.33)

When all spacecraft in the formation have the same semimajor axis, a, eccentricity, ε , and

true anomaly, υ , at all times, (3.33) can be simplified to:

r̈i j =−μri j

r3 (3.34)

The nonlinear input function, g(z), in (3.11) is defined as a function of measurements, ỹ,

and pseudo measurement, z′. The only nonlinear function of the dynamic system in this

scenario is the relative acceleration introduced in (3.34). Therefore, the input function
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consists of the relative acceleration between the spacecraft, which is:

g(ỹ,z′) =
[
−μrT

12
r3 −μrT

23
r3 −μrT

34
r3 −μrT

41
r3

]T
(3.35)

where z′ is the pseudo-measurements vector defined in Eq. (3.13), which can be written as

z′ = ẑ′+ e.

Equation (3.35) depicts that the absolute range of spacecraft is required for the relative

dynamic model. Equation (3.32) determines the absolute position using relative position

measurements. However, (3.32) is vulnerable to the error in ri j, which could result in a

large estimation error in the absolute range, r. Then, we consider two additional

pseudo-measurements which are the absolute range and eccentric anomaly, E. The rate of

change of absolute range is [75]:

ṙ = aε sinEĖ (3.36)

where a and ε were defined in (3.30). The rate of change of eccentric anomaly is:

Ė =

√
μ

a
1
r

(3.37)

Substituting (3.37) into (3.36), we obtain the expression of ṙ in terms of eccentric anomaly

and range only. Adding (3.36) and (3.37) into the input function, g(ỹ,z′) in (3.35), we

obtain:

g(ỹ,z′) =
[
−μrT

12
r3 −μrT

23
r3 −μrT

34
r3 −μrT

41
r3

√
μaε sinE

r

√
μ
a

1
r

]T
(3.38)

Then, the estimate state vector, z is:

z = [r12 r23 r34 r41 ṙ12

ṙ23 ṙ34 ṙ41 r E]T
(3.39)

The linear matrices A, B, and G in (3.11) associated with state models in (3.38) and (3.39)

correspond to:
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A =

[
012×12 I12×12 012×2

014×12 014×12 014×2

]
(3.40)

B =
[
014×12 I14×14

]T
(3.41)

G =
[
014×12 I14×14

]T
(3.42)

For the WLPS-only measurement, the C matrix in (3.12) associated with the measurement

model in (3.6) is:

C =
[
I12×12 012×14

]
(3.43)

3.3.4 Scenario Two - Relative Position Estimation with WLPS and

Radar measurement.

Consider a radar tracks one of the spacecraft in the two-spacecraft formation, e.g. ith

spacecraft where i represents either spacecraft 1 or spacecraft 2. The absolute distance to

the spacecraft is measured at all times. Then, the range and eccentric anomaly

pseudo-measurements in (3.39) can be ommitted. Therefore, the state vector for the

second scenario becomes:

z =
[
rT

12 ri λi ξi ṙT
12 ṙi λ̇i ξ̇i

]T
(3.44)

where, ri is the absolute range, λi is the absolute azimuth angle, ξi is the absolute elevation

angle, and ṙi, λ̇i, ξ̇i are their time derivatives, respectively. Based on (3.44), the nonlinear

function are the relative acceleration and the acceleration in terms of r̈i, λ̈i and ξ̈i. Then,

the modified input function, g(ỹ,z′) is:

g(ỹ,z′) =
[

μrT
1

r3
1
− μrT

2
r3

2
r̈i λ̈i ξ̈i

]T
(3.45)

where r̈i, λ̈i, and ξ̈i are the spacecraft polar accelerations, which are the second order time

derivatives of the absolute range, absolute azimuth, and elevation shown in (3.3) - (3.5)

respectively. Their corresponding equations are:
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r̈i = riξ̇i
2
+ riλ̇

2
i cos2 ξi − μ

r2
i

(3.46)

λ̈i =−2ṙiλ̇i

ri
+2λ̇iξ̇i tanξi (3.47)

ξ̈i =−2ṙiξ̇i

ri
−2λ̇ 2

i cosλi sinξi (3.48)

where the first order time derivation of polar coordinate and cartesian coordinate are

presented in Appendix A.

In this case, the A, B, G, and C matrices for DG estimation’s state and measurement

models in (3.11) and (3.12), are:

A =

[
06×6 I6×6

06×6 06×6

]
(3.49)

B =
[
06×6 I6×6

]T
(3.50)

G =
[
06×6 I6×6

]T
(3.51)

C =
[
I6×6 06×6

]
(3.52)

The process noises in the G matrix in (3.51) are assumed along the acceleration axes only.

3.4 Implementation of Extended Kalman Filter

The standard EKF has been implemented for both scenarios. The state model, (2.3), and

the measurement models, (3.6) and (3.9), correspond to the first and second scenarios

respectively. In section 2.4, the EKF has been derived for the WLPS-measurements

expressed in polar coordinates.

For n-number of spacecraft in the formation, the state estimate vector for EKF is:

x̂ =
[
rT

1 rT
2 . . .T rT

n vT
1 vT

2 . . . vT
n

]T
(3.53)
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For the first scenario, the measurement model is:

Hk1 =

⎡
⎢⎢⎢⎢⎢⎣

−I3×3 I3×3 03×6 03×6

03×6 −I3×3 I3×3 03×6

03×6 03×6 −I3×3 I3×3

I3×3 03×6 03×6 −I3×3

⎤
⎥⎥⎥⎥⎥⎦ (3.54)

For the second scenario, the linearized measurement model is:

Hk2 =

[
−I3×3 I3×3 03×6

∂hradar
∂r 03×3 03×6

]
(3.55)

where ∂hradar
∂ri

is the Jacobian of the three radar measurement components introduced in

(3.3) with respect to the ith spacecraft absolute positions and velocities [82], which is

given by:

∂hradar

∂r
=

⎡
⎢⎢⎣

ri,x/ri ri,y/ri ri,z/ri
−sinλri
ri cosξri

cosλri
ri cosξri

0
−cosλri sinξri

ri

−sinλri sinξri
ri

cosξri
ri

⎤
⎥⎥⎦ (3.56)

where ri =
[
ri,x ri,y ri,z

]T
, and ri, λri, and ξri are defined in equation (3.3).

Using the measurement noise covariance obtained in (3.7) and (3.10) together with the

linearized state and measurement models, the EKF for relative position estimation is

implemented.

3.5 Simulation Results and Discussions

Simulations are conducted to study and compare the accuracy and convergence

performance between Differential Geometric Estimation and EKF. Two Differential

Geometric Estimation methods discussed in Section 3.3 are implemented in the

simulation, which are the pole placement and the linear filter. The accuracy performance

measured is their Root Mean Square error (RMSE). Here, the Mean Square Error (MSE)

is the average of the square of estimation error over x, y, and z axes of spacecraft position.
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Thus,

RMSE ≡ ‖r̂i − ri‖√
3

(3.57)

where r̂i is the estimated absolute position of the ith spacecraft and ri is the true absolute

position of the ith spacecraft.

The convergence rate is determined by the amount of time required by the estimator’s

RMSE to fall within a RMSE threshold, ethres. The ethres is determined as the average

RMSE at the estimator’s RMSE steady state. In addition, the complexity of DG

Estimation and EKF are compared through the number of multiplications required by each

estimator in an iteration.

In the simulation, all spacecraft are in Low Earth Orbit (LEO), with a semimajor-axis of

7000 km, the eccentricity of 0.04, and 0 degree of initial true anomaly. The argument of

perigee (ARGPER), the Right Ascension of the Ascending Node (RAAN) and the

inclination (INC) of each spacecraft are specified in each scenario in order to meet the

formation configuration requirements.

The initial attitude of each spacecraft is constructed using a Euler Angle with 3-1-3

orientation at periapsis [74]. The first rotation is the spacecraft RAAN angle, followed by

a second rotation (inclination angle). Then, the third rotation angle is 90 degrees for

spacecraft 1, 3, and 4, and -90 degrees for spacecraft 2. To ensure that one of the

spacecraft reference frame axes points toward the center of the Earth at all times, all

spacecraft are set to rotate at a constant angular velocity, which is, ω i =
[
0 0 ω

]T
.

Here, ω i is the angular velocity vector expressed in the ith spacecraft reference frame.

Then, the angular velocity of spacecraft expressed in ECI is, ωN = DT
i ω i. The mean

motion is ω =
√

μ/a3; where μ is the earth grativational constant and a is the semimajor

axis.

The simulation assumptions are as follows: (i.) Process and measurement noises for all

spacecraft are zero-mean Gaussian; (ii.) Initial conditions of spacecraft are well known;

(iii.) The attitude of each spacecraft is well-known; (iv.) All spacecraft are equipped with

a DBS and TRX; thus, each one of them can localize others; (v.) The reference frame of

the DBS is aligned with the corresponding spacecraft’s attitude reference frame; (vi.) The

radar system measurement is available at all times for the second scenario; (vii.) no signal

transmission delay; and, (viii.) The process noise variance is 10−7km/s2 along each axis

for all scenarios.
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3.5.1 Observability analysis

The pole placement method presented in Section 3.3.2 requires the system to be fully

observable. In this section, the system observability analysis of these two scenarios is

presented. For simplicity, we consider a two-spacecraft formation case for the first

scenario in this observability analysis. The estimated states for DG estimation, after the

transformation, is z =
[
rT

12 vT
12 r E

]T
. The A matrix for the dynamic model in (3.11)

is:

A =

[
I3×3 03×5

05×3 05×5

]
(3.58)

We assume that only relative position is measured in Cartesian coordinates. The C matrix

is given as:

C =
[
I3×3 03×5

]
(3.59)

The rank of the observability matrix using (3.27) is three, which is not full rank.

Therefore, the pole placement method presented in Section 3.3.2 is not applicable.

In the second scenario, a radar measures one spacecraft’s absolute position (see Eqs. (3.9)

and (3.44)). Both the A and C matrix are given in the Eqs. (3.49) and (3.52) respectively.

The rank of the observability matrix is twelve, which is full rank. Then, the pole

placement method will be implemented in this scenario and compared with other

estimation methods.

3.5.2 Scenario One

Consider only WLPS measurements are available in the four-spacecraft formation. The

measurements vector, state vector, and its corresponding nonlinear model and matrices are

given in Eqs.(3.6), (3.38) to (3.42) respectively. Three formation configurations that

represent the short range (� 0.25km), medium range (� 60km), and long range

(� 1200km) are considered. The spacecraft formation configurations for different

formation size are shown in Table 3.1. We study the impact of formation size on both EKF

and DG Estimation performance.

The measurement noise of WLPS is assumed to be 1 meter in distance (computed based

on TOA measurement) and 0.001 degree in DOA. Then, the measurement noise
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Table 3.1
Spacecraft formation’s configuration for short, medium and long range formation.

Short
S/C 1 S/C 2 S/C 3 S/C 4

RAAN (deg) 0 0 0 0
INC (deg) 15 15 15 15

ARGPER (deg) 0 0.001 -0.001 0.002
Medium

S/C 1 S/C 2 S/C 3 S/C 4
RAAN (deg) -0.1 0 0 0.1

INC (deg) 14.5 14 15.5 15
ARGPER (deg) 0.2 0 -0.1 0.1

Long
S/C 1 S/C 2 S/C 3 S/C 4

RAAN (deg) 0.2 0 -0.1 0.1
INC (deg) 15 20 25 10

ARGPER (deg) 0 5 -5 10

Table 3.2
Comparing Mean RMSE in Absolute Position: DG Est. vs EKF.

Distance DG Est. EKF
Short (� 0.25 km) 4.447×103 km 2.657×10−4 km

Medium (� 60 km) 16.59 km 4.153×10−4 km

Long (� 1200 km) 0.901 km 7.616×10−3 km

covariance matrix is constructed using (3.7).

The process noise parameter, w in (2.3) and (3.11), is assumed to be 10−7 on each

absolute and relative acceleration axis for both EKF and DG Estimation. The initial states

standard deviations for EKF are 1 km and
√

0.5 km/sec in absolute position and velocity

respectively. The initial states standard deviations for DG Estimation are 1 km in relative

position, 0.5 km/sec in relative velocity, 2 km in absolute range, 0.001 degree in eccentric

anomaly, and 0.001 km/sec for the pseudo errors.
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3.5.3 Discussion - Scenario One

Table 3.2 shows the mean RMSE in absolute position for DG Estimation and EKF with

respect to different mean relative distances. The results show that the performance of DG

Estimation improves as the mean relative distance increases when the measurements

consist of WLPS only. In Figure 3.1, the signal-to-noise ratio (SNR) between estimation

error and relative distance decreases when the spacecraft in the formation gets closer (or

1/SNR increases), in which case the errors in the transformation from relative positions to

absolute positions using (3.32) become significant.

Table 3.2 depicts that the EKF has a better accuracy compared to DG Estimation, when

only WLPS measurements are used. The EKF does not require the inverse transformation

(3.31). However, when the relative distance between spacecraft increases, the effect of

DOA estimation error on the positioning error increases (see Figure 3.2). Accordingly, the

performance of EKF drops slightly as the mean relative distance increases.

If only one DBS is available in a three-spacecraft configuration [16], the EKF would be

unstable when the mean relative distance between spacecraft falls within a certain range

(≤10km). EKF stability can be improved by increasing the total number of DBSs installed

in the formation, which is shown in Table 3.2. In addition, increasing the number of DBSs

improves the estimation accuracy.
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Table 3.3
Measurement noise’s set configuration.

Minimum Maximum Increment
Relative Distance,(km) 0.001 0.04 0.004

Relative Azimuth 0.001 0.04 0.004
and Elevation, (deg)

Absolute Range, (km) 0.1 4 0.4
Absolute Azimuth 0.001 0.4 0.004

and Elevation, (deg)

3.5.4 Scenario Two

Consider WLPS and radar measurements are available. Here, the two-spacecraft

formation with only the medium range formation configuration is considered. The radar is

measuring the absolute range, azimuth, and elevation angles of spacecraft 1 at all time.

The configuration of both spacecraft is similar to the configuration of S/C 1 and S/C 2

shown in Table 3.1. The measurement vector, state vector, and its corresponding nonlinear

model and matrices are given in Eqs. (3.9), (3.44) to (3.52) respectively. The performance

of the EKF and the DG Estimation for a given range of measurement noise is studied. The

measurement noises of WLPS and radar are depicted in Table 3.3. The measurement noise

covariance matrix is constructed using Eq. (3.10).

The process noise parameter, w, is assumed to be 10−7 for all axes in EKF. For DG

Estimation, the standard deviation of process noises for the relative position acceleration

is 10−7, the absolute distance’s acceleration is
√

10×10−4, and the absolute azimuth and

elevation angles’ acceleration is
√

10×10−7. The initial states standard deviations for

EKF are 2 km in absolute position and 0.1 km/sec in absolute velocity. The initial states

standard deviations for DG Estimation are 0.1 km in relative position, 0.05 km/sec in

relative velocity, 1 km in absolute range, and 0.05 degrees in azimuth and elevation angles.

In addition, the initial variance for the rate of change of the range is 0.1 km/sec, and the

rate of change of the absolute azimuth and elevation angles is 0.001 degree.

The simulation for each set of corresponding measurement noise is repeated 10 times to

compare the consistency of results produced by both filters. Then the maximum,

minimum, and mean RMS of each set of measurement noise for both EKF and DG

Estimation are compared.
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Figure 3.4: EKF RMSE.

3.5.4.1 Linear Filtering Gain

First, the DG Estimation is compared with the EKF performance using the gain

computation presented in Section 3.3.1. Figures 3.3 and 3.4 show the RMSE of DG

Estimation and EKF for measurement noise standard deviation of 0.001 km in relative

range, 0.001 degree in relative azimuth and elevation angle, 0.01 km in absolute range,

and 0.01 degree in absolute azimuth and elevation angle. Figure 3.3 shows that the DG

Estimation converges faster than EKF, because the DG Estimation avoids the linearization

steps in the estimation.

However, Figure 3.4 shows that EKF is more accurate than DG Estimation. The nonlinear

dynamic model in DG estimation is expressed in terms of measurements and

pseudo-measurements (see (3.38) and (3.45)). While the linearization step is eliminated in

the DG estimator, the propagation step is dependent on the measurements noises. On the

other hand, the nonlinear dynamic model of EKF is expressed in terms of the estimated

state vector with additional linearization steps. The EKF is able to achieve a better

accuracy if the estimation converges.

Figure 3.5 compares the minimum and maximum RMSE of DG Estimation and EKF for a

given set of measurement noise standard deviation. The DG gain is computed using the

method shown in Section 3.3.1. With additional radar measurement, the DG Estimation

accuracy is improved. In addition, the minimum and maximum RMSE of DG Estimation

are very close compared to EKF because the DG estimation does not require linearization

steps. Therefore, a stable estimation can be always achieved.
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Figure 3.5 also shows that the EKF has better accuracy performance than the DG

estimation. However, the stability of the EKF is not always guaranteed. In Figure 3.5, we

observe large RMSEs in the EKF estimation at higher measurement noise levels. The

large RMSE is caused by the unstable estimation of EKF, which is due to the linearization

of the nonlinear radar measurement and state models in the EKF algorithm. On the other

hand, the DG Estimation does not require any linearization step.

3.5.4.2 Pole Placement Method

Figures 3.6 and 3.7 compare the RMSE performance between the DG Estimation and the

EKF. The EKF’s configuration is the same as in the previous case. On the other hand, the
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pole placement method is as follows. The poles for the relative position are[
−0.001 −0.001 −0.001

]
, for the relative velocity vector are[

−0.0004 −0.0004 −0.0004
]
, and for the absolute position and velocity in polar

coordinates are
[
−0.1 −0.02 −0.02

]
and

[
−0.05 −0.01 −0.01

]
respectively.

The DG estimation gain is computed using the Ackermann’s formula [22].

Figure 3.6 shows that when the EKF estimation is stable, the EKF has better accuracy

performance than the DG Estimation. However, the linear system characteristic of the DG

Estimation allows it to converge faster than the EKF. Figure 3.7 shows that the EKF may

suffer instability due to the linearization steps in the algorithm. In Figure 3.7, the EKF is

able to converge to lower RMSE than the DG Estimation, but the RMSE diverges after a

certain time period. However, the DG Estimation does not suffer any instability.

Therefore, the pole placement method in DG Estimation does guarantee the fast

convergence and stability of estimation algorithm.

3.5.5 Complexity Analysis

In [85], a formalism of O function for complexity computational of matrices operation has

been introduced, which are:

SUM(N ×M,N ×M) = O(N ×M) (3.60)

SUB(N ×M,N ×M) = O(N ×M) (3.61)

MUL(N ×M,M×P) = O(N ×M×P) (3.62)

INV(N ×N) = O(N3) (3.63)

where, M, N, and P are the dimensions of matrices that perform these operations. Here, P

is the number of states in DG Estimation, N is the number of states in EKF, M is the

number of measurements, and Qp and Qn are the number of process noise in DG

Estimation and EKF, respectively.

We assume the computational complexity of the Jacobian matrices is in the order of O(1).

In addition, the propagation of the state models are considered to have the complexity of

O(1) in both filters. The EKF requires an order of O(M×N ×N) for measurement model

computation, while the DG estimation only requires an order of O(1) computation

58



complexity. Therefore, the EKF requires higher computational complexity to compute the

measurement.

The EKF requires the order of O(M3) and O(M×N2) computation complexity for gain

matrix. There are two different computation complexities in DG estimation for gain

matrix computation. For the pole placement method, there is no computational complexity

because the gain matrix is pre-determined. For the linear filtering method, the gain

computational complexity is in the order of O(M3) and O(M×P2). Both EKF and DG

estimation may have same computation complexity if all states are observed. However,

the DG estimation has higher computational complexity if not all states are observed

(P2 	 N2).

The covariance update and propagation’s computational complexity for the EKF are in the

order of O(N3), O(N2 ×Qn) and O(N3). There is no computational complexity for

covaraince update and propagation for DG estimation if the pole placement method is

used. However, for the linear filtering method, the computational complexities are in the

order of O(P3), O(P2 ×Qp) and O(P3).

Therefore, for the fully observable case, the DG estimation has lower computational

complexity. In addition, among the two DG estimation approaches implemented in this

chapter, the pole placement method has lower computational complexity compared to the

linear filtering method. But the EKF has lower computation complexity if not all states are

fully observed.
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Chapter 4

Constraint Estimation of Spacecraft

Positions



4.1 Introduction

The estimation of relative and absolute positions of spacecraft formations is a fundamental

task in many space missions.* Relative position estimation plays an important role in

Spacecraft Formation Flying (SFF) missions, a subject that has received much attention by

researchers during the last few decades. Some SFF missions require that multiple

spacecraft, in different orbits, communicate without interruption, e.g., satellites in the

CITRIS-COSMIC system are required to communicate with each other to monitor the

ionospheric irregularities [1]. Relative positions between satellites, such as Cluster and

Cluster-II satellites that are launched by the European Space Agency, are estimated and

controlled to support many collaborative tasks where satellites are required to maintain a

specific formation in a continuous manner within the mission period [2].

The Extended Kalman Filter (EKF) has been widely implemented to estimate absolute

and relative positions of spacecraft in formation flying [7, 16]. The initial condition of the

estimation of the SFF affects the stability of EKF. Also, the Unscented Kalman Filter

(UKF) has been implemented for relative attitude and position estimation in SFF [17, 18].

The UKF has better robustness to initial condition error compared to the EKF [19].

However, its computational time is higher than a standard EKF [20]. If compared to the

standard EKF, the UKF has a faster convergence rate, but the process time required for

each update is longer than the EKF [21]. The Batch filter [22], an offline filtering method,

has been implemented in Ref. [5] for absolute position estimation using the relative

position measurement. Both studies in references [16] and [5] show that the configuration

of SFF affects the stability and the accuracy of estimation.

The Constrained Kalman Filter (CKF) was introduced for estimation when state variables

are required to satisfy constraints [23, 24]. Both equality and inequality constraints can be

handled by the CKF. Several CKF algorithms have been proposed in the literature, e.g.,

the perfect measurement approach [25, 26], and the projection approach [27]. Some of the

CKF methods may require special derivations for different problems, such as the

reduction method [28] and the Norm-Constrained method in Ref. [29].

In the perfect measurement approach, the constraint is handled as a perfectly known

measurement. The constraint is grouped with other sensor measurements to construct a

*The material contained in this chapter has been accepted for publication in the Journal of Guidance,
Navigation and Control.
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modified measurement vector, which affects the calculation of the Kalman gain [23].

Adding a perfect measurement (constraint) results in a singular noise covariance matrix.

This singularity in the noise covariance may lead to a divergence in the estimation error.

This fact was pointed out in references [30] and [31], despite that, the original work of

Kalman [14] presents an example in which a perfect measurement was used [23]. To

overcome this singularity problem, Ref. [32] presents an extended maximum likelihood

method for computing the constraint gain.

In the projection approach, the constraint estimation is implemented by projecting the

unconstrained state estimate onto the constraint surface. In general, the constraint update

is applied after the standard Kalman filter update [23]. Ref. [23] has presented three

different constraint update methods that can be used for the projection approach.

However, different approximated solutions may be obtained from each method because

the constraint gain is not correlated with the sensor measurement [23]. The projection

approach has also been extended for inequality constraint [33] and nonlinear constraint

[27] problems.

The Norm-Constrained method presented in Ref. [29] guarantees non-singular estimation

and correlates both the measurement and the constraint. However, the derivation of the

Kalman gain is specific to the attitude estimation problem, and becomes rather complex

when applied for the problem presented in this chapter. The reduction method requires

that one or more state(s) be expressed as a linear function(s) of the other states. However,

this method may not be applicable for the cases where the constraint states are

independent from each other. Ref. [34] presents a Smoothly CKF (SCKF) where the

constraint update ia carried out iteratively until an end criteria is met. Ref. [34] shows that

the SCKF outperforms the Iterated EKF in terms of consistency.

The implementation of constraint estimation for attitude kinematics of spacecraft has been

widely studied by researchers. Ref. [86] presents an implementation of the SCKF to

improve angular motion estimation by using an orthogonal acceleration constraint.

Different approaches have been developed for implementing CKF to improve spacecraft

attitude estimation [29, 87, 88].

Ref. [89] and [90] present the implementation of constraint estimation to improve the

GPS/INS navigation system of a ground vehicle. In Ref. [89], the constraint estimation is

applied if the road geometry from the navigation system’s digital map is known. On the

other hand, Ref. [90] presents the implementation of a dynamic-aided method into the
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vehicle’s navigation system to improve the GPS/INS navigation performance during a

long GPS outage. Multiple constraints are addressed under each dynamic motion of the

vehicle. The corresponding constraint is applied if the vehicle meets a certain dynamic

motion criteria. The paper shows that the dynamic-aided method improves navigation

performance during a long GPS outage [90].

Reference [91] presents an orbit determination method for spacecraft formation, known as

the Link, Autonomous, Interplanetary Satellite Orbit Navigation (LiAISON). The

LiAISON method uses a three-body dynamic model. Solar radiation pressure,

non-symmetric gravity fields, and third-body gravity create asymmetry in the acceleration

model and lead to unique or locally unique orbits. The uniqueness of orbits helps the

determination of absolute orbits using only relative measurements [91].

In this chapter, the absolute positions of the spacecraft in a formation are estimated using

relative position measurements. A two-body dynamic model is used. In a two-body

dynamic motion, the spacecraft range from the Earth center has two extrema: perigee and

apogee points. For any orbital motion, the absolute position of spacecraft with respect to

the focal point (Earth center) changes continuously. The absolute distance attains its

maximum and minimum values at the apogee and perigee positions, respectively [75]. At

these points, the rate of change of the absolute distance is zero. Accordingly, a constraint

estimation can be incorporated to improve the absolute position estimation accuracy. A

projection approach CKF is implemented. Because the proposed constraints are applied at

only two points in the orbit, the estimation may encounter instability. A tuning algorithm

is suggested and tested on several cases.

Two scenarios are presented in this chapter. The first scenario assumes a single spacecraft

and radar measurements. Few studies in the literature prove the feasibility of estimating

spacecraft formation absolute positions using only relative positions measurements

[5, 16, 92]. The implementation of these algorithms, however, may suffer poor estimation

accuracy or instabilities in some formation flying configurations. The second scenario

investigates the impact of using CKF for estimating SFF absolute positions using relative

positions measurements. Relative measurements are assumed to be available using a new

Wireless Local Positioning System (WLPS) [58, 81]. The WLPS enables relative position

measurement between spacecraft in formation via relative range, azimuth, and elevation

angle measurements [16, 58, 81, 93]. We assume only WLPS is available in the SFF

system.
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Three case studies are investigated in this chapter. In the first case study, all spacecraft in

the formation are in the same circular orbit. In the second case study, we assume the time

when the spacecraft arrive at either perigee or apogee position is known at all times.

Lastly, we assume that the time for the spacecraft to arrive at perigee or apogee position is

unknown. An algorithm to determine the time required by the spacecraft to arrive at

perigee and apogee position is presented in this chapter.

Section 4.2 presents the Constrained Kalman Filter. The derivations of apogee and perigee

constraint for all case studies are presented in Section 4.3. Section 4.4 discusses the

simulation results.

4.2 Constrained Kalman Filter

In this chapter, the projection approach of CKF is implemented. The nonlinear system and

measurement models take the form:

ẋ = f(x)+w (4.1)

y = h(x)+ν (4.2)

where h(x) is the nonlinear measurement model defined in Section 2.3.2.

The EKF update equations take the form:

x̂+ = x̂−+K(ỹ− ŷ) (4.3)

P+ = (I −KH)P− (4.4)

where K is the Kalman filter gain,

K = P−HT (HP−HT +R)−1 (4.5)

where P− is the pre-update states covariance.

It is possible to show that the post-update state covariance, P+, is always symmetric if P−

is symmetric by substituting Eq. (4.5) into (4.4). If the estimated state at a particular time

step, x̂k, is subject to a constraint function, b = d(x̂k), then the post-update state estimate
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Figure 4.1: Estimation error and three sigma boundary plots for EKF and CKF

x̂+k and the state covariance Pk
+, in Eqs. (4.3) and (4.4), will be updated as follows:

x̃+k = x̂+k +λ (b−d(x̂+k )) (4.6)

P̃+
k = (I −λD)Pk

+ (4.7)

The overhead symbol tilde represents post constraint update, and D is the first order

linearization matrix of the given constraint function, D ≡ ∂d(x̂+)
∂x

∣∣∣
x=x̂+

.

The constraint gain, λ , is derived in a similar way as the Kalman gain, K, which is given

as:

λ = P+DT (DP+DT +Rd)
−1 (4.8)

It is noted that the constraint update is similar to the update of a perfect measurement. The

Rd in Eq. (4.8) serves as a control matrix. If DP+DT is singular, then Rd is assigned to a

small value to avoid the singularity [94]. If DP+DT is non-singular, then we select Rd = 0.

The implementation of the CKF (Eqs. (4.6) and (4.7)) in this problem results in instability

in the estimation. The reason is that the constraints are applied at only two points in the

orbit (perigee and apogee). Applying the constraint at the perigee and apogee positions

provides additional information to the estimator and causes a jump (discontinuity) in the

covariance. The discontinuity causes the covariance to converge abruptly and faster than

the estimated state. Figures 4.1(a) and 4.1(b) compares the error of the estimated state for

both the EKF and the CKF, with respect to the three sigma boundaries. Figure 4.1(b)
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Figure 4.2: Change of covariance boundary in Kalman Filter process.

shows that the covariance boundary of the CKF significantly reduces at each perigee and

apogee position. As a result, the error in the estimated state becomes higher than that

predicted by the estimated covariance (state estimate error curve is outside the three sigma

boundary). Thus, the system becomes unstable. Figure 4.2 shows an illustration for how

the covariances of both the EKF and CKF vary when the constraint is applied. A similar

covariance behavior was observed in Ref. [95].

If the EKF is run through a high number of observations and then the constraints are

applied at perigee and apogee points, the results show that estimation accuracy gets worse

due to constraint implementation, as shown in Figure 4.3.

To avoid the abrupt covariance convergence problem, two scalar weights, α and β , are
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Figure 4.3: Applying perigee/apogee constraints after implementing EKF for high number of observations.
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introduced into Eqs. (4.6) and (4.7):

x̃+ = x̂++αλ (d−Dx̂+) (4.9)

P̃+ = (I −βλD)P+ (4.10)

where 0 < α < 1 and 0 < β < 1.

The α and β parameters affect a smooth application of the constraint, through applying it

partially every time a perigee/apogee is encountered. The β parameter controls the speed

of convergence of the covariance. In general, increasing the value of β causes the

covariance to converge faster due to the constraint, and decreasing the value of β means

that our confidence in the estimated state does not change much due to the constraint

application. The α parameter controls the amplitude of update in the state, due to the

application of the constraint.

In this chapter, a numerical analysis is carried out to determine the optimal values for the

parameters α and β for different formation altitudes and orbits. The estimation process is

carried out as follows. The state estimate and its covariance are updated using the

measurements (Eqs. (4.3) and (4.4)). At the time of perigee or apogee, an additional

update is carried out using Eqs. (4.9) and (4.10). The estimated state vector is propagated

using the dynamic model in Eq. (2.3), and the covariance is propagated using the

following equation:

Ṗ(t) = P(t)FT (x̂(t), t)+F(x̂(t), t)P(t)+G(t)Q(t)G(t) (4.11)

where F(x̂(t), t) is the Jacobian matrix of Eq. (2.3), and G corresponds to:

G =

⎡
⎢⎢⎢⎢⎣

A 06×6 · · · 06×6

06×6 A · · · 06×6
...

. . . . . .
...

06×6 · · · · · · A

⎤
⎥⎥⎥⎥⎦ (4.12)

where,

A =

[
03×3 03×3

03×3 I3×3

]
(4.13)
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The F(x̂(t), t) matrix, for n spacecraft formation, is given as:

F(x̂(t), t) =

⎡
⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

06×6 · · · 06×6

06×6
∂ f2
∂x2

· · · 06×6

...
. . . . . .

...

06×6 · · · · · · ∂ fn
∂xn

⎤
⎥⎥⎥⎥⎥⎦ (4.14)

where,

∂ fi

∂xi
=

μ

s5

⎡
⎢⎢⎢⎢⎢⎣

03×1 03×1 03×1 I3×3

2r2
i,x − r2

i,y − r2
i,z 3ri,xri,y 3ri,xri,z 01×3

3ri,xri,y 2r2
i,y − r2

i,x − r2
i,z 3ri,yri,z 01×3

3ri,xri,z 3ri,yri,z 2r2
i,z − r2

i,x − r2
i,y 01×3

⎤
⎥⎥⎥⎥⎥⎦ (4.15)

where s =
√

r2
i,x + r2

i,y + r2
i,z, and i = 1, . . . ,n.

4.3 Spacecraft Position and Velocity at Perigee and

Apogee

At the perigee and apogee positions, the rate of change of the absolute distance between

the spacecraft and the Earth center vanishes. We define the absolute velocity vectors as

v =
[
vx vy vz

]T
, and the absolute distance as r =

√
r2

x + r2
y + r2

z . The time derivative of

the absolute distance is [76]:
∂ r
∂ t

=
rT v

r
(4.16)

The constraints at the apogee and perigee positions are defined as:

∂ ri,a/p

∂ t
≡

rT
i,a/pvi,a/p

ri,a/p
= 0 (4.17)

where the subscript i represents the ith spacecraft, while subscript a/p represents the

position and velocity vector at either apogee or perigee
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Then, the constraint function for the ith spacecraft, di(xi) in (4.6), can be written as:

di(xi) =
rT

i,a/pvi,a/p

‖ri,a/p‖
(4.18)

The constraint presented in Eqs. (4.17) and (4.18) can be applied at all points of a circular

orbit. For elliptic orbit, it applies only at perigee and apogee. Hence, the perigee and

apogee times need to be known in order to apply the constraint. Suppose that Δtp is the

time of travel from the current position to the perigee. Similarly, Δta is the time of travel

from the current position to the apogee. Three cases will be studied:

1. Circular Orbit: the true orbit is assumed to be circular;

2. Elliptic orbit with known Δtp and Δta: in this case study, it is assumed that both Δtp

and Δta are known; and

3. Elliptic orbit with unknown Δtp and Δta: this is a more practical case where Δtp and

Δta are unknown.

4.3.1 Circular Orbit

For a circular orbit, the spacecraft orbits around the Earth at constant absolute distance at

all times. Therefore, the constraint in Eq. (4.17) can be applied at all times. The CKF

estimation algorithm is applied as follows. The estimated states and states covariance are

updated using Eqs. (4.3) and (4.4). Then, both the post update estimated states and

covariance are updated with respect to the constraint using Eqs. (4.6) and (4.7). After that,

they are propagated to the next time step to predict the spacecraft position and the

covariance using Eqs. (2.3) and (4.11).

4.3.2 Elliptic orbit with well-known Δtp and Δta

For any elliptic orbit, the absolute distance between spacecraft and the Earth center

changes at all times. Let δ t be the time interval between two successive measurements (ỹk

and ỹk+1). At a particular time step, tk, both the estimated states and states covariance are

updated using Eqs. (4.3) and (4.4). Then, the known Δtp (or Δta) is compared to δ t. If
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Δtp < δ t (or Δta < δ t) is true, the updated estimated states and states covariance are

propagated to the respective perigee (or apogee) position, followed by the constraint

update using Eqs. (4.6) and (4.7). After that, the updated states and states covariance are

propagated to the next time step using Eqs. (2.3) and (4.11).

4.3.3 Elliptic orbit with unknown Δtp and Δta

When the time to perigee (apogee), Δtp (Δta), is not known, it can be computed from the

estimated states as follows [76]:

Δtp =−
√

â3

μ
(Ê − êsin Ê) (4.19)

Δta =

√
â3

μ
[π − (Ê − êsin Ê)] (4.20)

The algorithm to compute the semimajor axis, eccentric anomaly, and eccentricity, from

spacecraft position and velocity vectors can be found in several references [75, 76]. The

predicted spacecraft’s position and velocity vectors at apogee (or perigee) position are

carried out using the f and g functions representation of Kepler’s motion [76]:

ri,a/p = f ri,k +gvi,k (4.21)

vi,a/p = ḟ ri,k + ġvi,k (4.22)

where subscript i represents ith spacecraft, and subscript k is the time counter.

As seen in Eqs. (4.21) and (4.22), the f and g functions can be used to compute a

spacecraft’s position and velocity at a future time. This method of computing position and

velocity does not require integration, yet its accuracy is comparable to the two-body

dynamic model. There are several methods to determine the f and g functions. Here, the

Universal Variable method is implemented. The details on how to determine the Universal

Variable, χ , and the f and g functions can be found in Ref. [76].

At each measurement update, the Δtp (Δta) is computed. It is then compared to the time to

the next measurement (δ t). If Δtp < δ t (Δta < δ t), then the corresponding perigee

(apogee) position and velocity of the spacecraft are computed using Eqs. (4.21) and
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(4.22). At the current measurement time k, the state estimate and the covariance will be

updated twice. The first update is that of the measurements, using Eqs. (4.3) and (4.4).

The second update is that of the constraints, using Eqs. (4.6) and (4.7).

However, the expressions of a, E and e in Eqs. (4.19) and (4.20) are nonlinear expressions

in terms of spacecraft position and velocity vectors. Also, all the f , g, ḟ , and ġ are

nonlinear functions. Thus, a linearization is required for Eqs. (4.21) and (4.22), which is

given as:

∂d(x)
∂ri,k

= 2
f ḟ

DU2

rT
i,k

‖ri,a/p‖
+( f ġ+g ḟ )

TU
DU2

vT
i,k

‖ri,a/p‖

−
r2

i,a/pvi,a/p

‖ri,a/p‖3 (
f 2

DU2 rT
i,k + f g

TU
DU2 vT

i,k)+
dg(Δt,r,v)

dr

(4.23)

∂d(x)
∂vi,k

= 2gġ
TU2

DU2

vT
i,k

‖ri,a/p‖
+( f ġ+g ḟ )

TU
DU2

rT
i,k

‖ri,a/p‖

−
r2

i,a/pvi,a/p

‖ri,a/p‖3 (g2 TU2

DU2 vT
i,k + f g

TU
DU2 rT

i,k)+
dg(Δt,r,v)

dv

(4.24)

where the derivation for both dg(Δt,r,v)
dr and dg(Δt,r,v)

dv are shown in Eqs. (9.19) and (9.20)

(in Appendix).

4.4 Simulation and Discussion

Simulations are conducted to estimate the absolute positions and velocities of the

spacecraft. The Root Mean Square Error (RMSE) of estimation at any time k is given as:

ζk =
‖r̂i,k − rk‖√

3
(4.25)

The average RMSE over time is ζ . The average RMSE is determined by computing the

time average of the RMSE, after the RMSE has converged and is below a certain

threshold. The threshold may vary from one problem to another.

The performance of the CKF is evaluated by computing the ratio between the average

RMSE of the CKF (ζCKF ) and the average RMSE of the EKF (ζ EKF ), in the absolute
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Table 4.1
Spacecraft configuration.

S/C #
Orbital Elements

RAAN, (deg.) Inclination, (deg.) Arg. of Perigee, (deg.)
1 0.1 0.4 0
2 0.2 -0.4 0
3 -0.2 -0.4 0
4 -0.1 -0.4 0

position estimation. The performance ratio percentage is defined as:

PERF.=
ζ EKF

ζCKF

×100% (4.26)

If PERF. is larger than 100%, it means the CKF has a lower RMSE than EKF.

The simulation assumptions are as follows: (i) No signal transmission and processing time

delays in measurements; (ii) Process and measurement noises for all spacecraft are

zero-mean Gaussian; (iii) Initial conditions of spacecraft are well known; (iv) The attitude

of each spacecraft is well-known; (v) All spacecraft are equipped with DBS and TRX;

thus, each one of them can localize others; (vi) The standard deviation of the process noise

is 10−7km/s2; (vii) The standard deviation of WLPS measurement noises are 1 meter in

TOA and 0.001 degrees in DOA; and (viii) The WLPS transmits its signal at the frequency

of 0.1Hz (δ t = 10 seconds). Finally, in computing λ using Eq. (4.8), the reciprocal

condition number [96] of the matrix DP+DT is checked. If the reciprocal condition

number is lower than 10−14, then Rd is set to be 10−18.

Two different scenarios are simulated. The first is a single spacecraft in a Low Earth Orbit

(LEO). Measurements are assumed available from a ground radar. The second scenario is

for a four-spacecraft formation. Each case study listed in Section 4.3 will be simulated for

two different orbit sizes: a semimajor of 7000 km and a semimajor of 11000 km. All

spacecraft in a formation are assumed to have the same semimajor axis. The initial

anomaly for all spacecraft is 0 degrees. The spacecraft formation initial configuration for

all cases is shown in Table 4.1. The configuration shown in Table 4.1 maintains the

minimum distance between any two spacecraft at the range of 11km to 50km, and the

maximum distance between any two spacecraft in the formation at the range of 12km to
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110km.

4.4.1 Absolute Position Estimation with Radar Tracking

In this section, we assume that a single spacecraft is tracked by a radar system. The

constraint presented in Section 4.3 is applied with respect to the three cases, circular true

orbit, known Δtp and Δta, and unknown Δtp and Δta, as discussed in Section 4.3.

Spacecraft number 1, in Table 4.1, is simulated at the semimajor axis of 7000 km, and

eccentricity of 0.05 for non-circular orbit cases.

The radar tracking system measures the spacecraft absolute range, azimuth, and elevation

angles. The noise standard deviation of the absolute range measurement is assumed to be

0.1 km, and the noise standard deviation of each of the azimuth and elevation angles

measurements is assumed to be 0.01 degrees [97]. The sensitivity matrix for the radar

tracking system is similar to that in Eq. (2.13), where Ci is an identity matrix, and ri j ≡ ri.

Figure 4.4(a) shows the RMSE of the EKF estimation for the absolute position, versus

time. The results show that after 150 minutes of the estimation process, the EKF RMSE

falls below a threshold. The average RMSE of EKF, ζ EKF is 22.24 meters. Note that the

standard EKF corresponds to the case of α = β = 0. If the standard CKF is implemented

(α = β = 1), the resulting average RMSE is ζCKF = 30 meters.

To explain the impact of introducing the α and β parameters in the CKF estimation on the

accuracy of estimation, the PERF is computed for various values of α and β , as shown in

figure 4.4(b) for case C. When including α and β in the CKF, the estimation accuracy

improves in most of the regions of the two parameters. The CKF estimation is better than

the EKF estimation because the CKF incorporates additional information into the

estimation process. Specifically, the CKF incorporates the fact that at perigee/apogee the

rate of change of the range vanishes. To better see this accuracy improvement, consider

figures 4.4(c) and 4.4(d). The PERF is plotted at a constant β = 0.4 for all values of α ,

and is plotted for various values of β at a constant α = 0.4. It can be seen that for elliptic

orbits, the improvement ranges from 3% to 5%, depending on the values of α and β .

From figure 4.4, we can also conclude that β is best below 0.8 and that α variations does

not affect the PERF significantly.

Both EKF and CKF require a certain estimation period to achieve the steady state. Figure
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Figure 4.4: CKF and EKF estimation performance comparison.

4.4(a) shows that the EKF requires at least 100 minutes (about one orbital period) before

the RMSE converges to steady state. The time required by the CKF to achieve the steady

state is about the same as that of the EKF.

The results also show that the circular orbit has higher PERF compared to the two other

cases. Implementing the CKF in a circular orbit improves the estimation accuracy by

about 25% (more than 5 meters) compared to the EKF. This is because the constraint is

applied at all points in the circular orbit. In addition, the results also show that the

performance improvement is higher if both Δta and Δtp are known for the elliptic orbit

case, when α < 0.8.
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Table 4.2
Asbsolute Position Estimation’s Average RMSE of EKF.

Semimajor axis (km) Orbit Shape Initial Condition Average RMSE (meter)
7000 Circular well-known 3.097
11000 Circular well-known 5.195
7000 Elliptic well-known 6.080
11000 Elliptic well-known 22.358
7000 Elliptic small error 105.592
11000 Elliptic small error 172.740

4.4.2 Scenario two - formation flying

In this section, a four-spacecraft formation is assumed, as shown in Table 4.1. The three

cases presented in Section 4.3 are studied in this section. In addition, two types of initial

conditions are investigated for the case presented in Section 4.3.3. As benchmark results,

the average RMSE when implementing the EKF for the three case studies are summarized

in Table 4.2. In Table 4.2, two cases are simulated with small errors in initial conditions.

This error randomly generated in the initial position and velocity vectors. The standard

deviation for the initial position error is 1km, and for the initial velocity error is 1ms−1.

The effect of implementing the CKF with various values for α and β are detailed below. It

should be noted that since we estimate the absolute positions using only relative position

measurements, the estimation accuracy will be altitude dependent, whether we use EKF or

CKF. This is because the motion dynamics cause the relative positions between the

spacecraft to change differently at different altitudes.

4.4.2.1 Formation Flying in a circular orbit

Figures 4.5(a) and 4.5(b) show the PERF for two values of the semimajor axis: 7000 km

and 11000 km. Both figures show that the CKF performs better than the EKF for most of

the ranges of α and β , in terms of estimation accuracy. The estimation accuracy improved

by up to 500% at a = 7000km, and up to 350% at a = 11000km. Table 4.2 shows that the

EKF has higher average RMSE at the higher altitude, 3 meters at a = 7000km compared

to 5 meters at a = 11000km. Hence, the CKF implementation improves the estimation

accuracy to about 1.5 meters for both altitudes, when 0.5 < α < 1.0 and 0.4 < β < 0.7.

It is to be noted that if β is high and α is low, e.g., β > 0.8 and α < 0.2, the performance
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Figure 4.5: Estimation accuracy of CKF relative to that of EKF, for circular orbits

becomes worse than the EKF estimation performance. A higher value for β means more

confidence in the constraint update; and hence causes the covariance to converge faster.

This result confirms that the estimation performance becomes worse if the covariance

converges faster than the state, causing the estimated state’s error to go outside the

covariance boundary.

4.4.2.2 SFF in eccentric orbit - known perigee/apogee times

In this section, the eccentricity for all the spacecraft in the formation is 0.05. We assume

that both Δtp and Δta for each spacecraft are known at all times. Given the semimajor axis,

a, of each spacecraft in the formation, the orbital period of the spacecraft is:

T = 2π

√
a3

μ
(4.27)

where μ is the Earth gravitational constant.

If the spacecraft’s initial anomaly is known, the time required by each spacecraft to arrive

at either apogee or perigee position can be determined. For example, for the spacecraft

with initial anomaly of 0 degree, it will arrive at apogee position at t = 1
2T , and perigee

position at t = T . The algorithm presented in Section 4.3.2 is implemented for the

constraint estimation.
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Figure 4.6: Estimation accuracy of CKF relative to that of EKF, for eccentric orbits with known
perigee/apogee times

Figures 4.6(a) and 4.6(b) compare the PERF for different values of α and β , for

semimajor axis values of 7000 km and 11000 km. Both figures show that the CKF

improves the estimation performance at any α and β combination except when α is very

low and β is high, i.e., α < 0.2 and β > 0.9. This is in agreement with the discussion in

section 4.4.2.1. The results also show that the estimation accuracy is guaranteed to be

improved at any α value with β = 0.8. Also, by comparing the results in both Figures

4.6(a) and 4.6(b), higher altitude results in higher accuracy improvement. Recall the EKF

results listed in Table 4.2; and using the results from figure 4.6, it can be shown that the

CKF estimation improves the estimation accuracy to 6 meters at a semimajor axis of

11000km, and to 3 meters at a semimajor axis of 7000km.

4.4.2.3 FF in eccentric orbit - unknown perigee/apogee time

In this section, the spacecraft formation configuration is similar to Section 4.4.2.2. It is

assumed that the Δtp and Δta for all spacecraft are unknown. Therefore, the procedure to

determine Δta and Δtp presented in Section 4.3.3, is implemented.

Figures 4.7(a) and 4.7(b) compare the PERF of different values of α and β , for semimajor

axis values of 7000 km and 11000 km. Both figures show that the α has less impact on the

performance improvement, as opposed to β . Both Figures 4.7(a) and 4.7(b) emphasize the

previous remarks that β is best below 0.8. Table 4.2 shows that the EKF accuracy
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Figure 4.7: Estimation accuracy of CKF relative to that of EKF, for eccentric orbits with unknown
perigee/apogee times

decreases when the altitude of SFF increases. Therefore, Figure 4.7(b) implies that

implementing the CKF has more impact at higher altitudes.
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Figure 4.8: Estimation accuracy of CKF relative to that of EKF, for eccentric orbits with unknown
perigee/apogee times and initial guess errors, for a = 11000km.

Figure 4.8 shows the PERF when there are small errors in the initial guess of the position

and velocity vectors. Table 4.2 shows that the EKF has degraded performance when the

initial conditions are not perfectly known; the average RMSE is at least 10 to 20 times that

of the case when the initial conditions are well known. However, Figure 4.8 shows that

implementing the apogee and perigee constraints into the estimation does improve the

estimation accuracy. The overall results agree with the previous case studies, in which the

α has less impact on the CKF implementation, and very high β values degrade the CKF’s

accuracy performance.
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As mentioned earlier, the EKF accuracy depends on the altitude. On the other hand, the

CKF incorporates the constraints at perigee and apogee, and hence provides direct

information about the orbit size and hence the absolute range. So, the CKF estimation

accuracy in this chapter tends to be independent from the altitude. The higher impact of

the CKF, shown in the PERF figures, is because the EKF accuracy is worse at higher

altitudes (the PERF is a ration of EKF accuracy to CKF accuracy).
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Chapter 5

Spacecraft Formation Relative Attitude

Determination



5.1 Introduction

Relative Attitude Determination (RAD) continues to receive a great deal of interest from

researchers.* Missions that require RAD include the spacecraft docking missions, chaser

and target space missions [8], and clusters that perform their tasks in specific formations,

such as Proba-3 [9] and LISA Pathfinder’s missions [10, 11]. In these missions, the

spacecraft are often required to maintain a specific orientation with respect to each other.

The relative attitude determination between spacecraft is a fundamental task in these types

of missions.

The relative attitudes between spacecraft can be calculated if the absolute attitude of each

spacecraft is known. However, the determination of the absolute attitude for each

spacecraft requires a complete set of attitude sensors onboard each spacecraft [89]. On the

other hand, the direct determination of relative attitudes require less hardware on each

spacecraft. One of the fundamental approaches, to directly determine the relative attitudes

between spacecraft, is to use the measurements for the relative directions between

spacecraft for relative attitudes determination. From a cost prospective, the computational

complexity in computing relative attitudes directly is less than that of computing them

through the absolute attitudes [98]. Thus, if absolute attitudes are not needed, then

measuring relative attitudes directly offers a lower cost advantage. The determination of

relative attitudes between spacecraft can also be used to calculate the absolute attitudes, if

the absolute attitude for one spacecraft is known.

The literature includes descriptions for several sensors that are capable of providing

measurements for relative attitudes and relative positions. The Autonomous Formation

Flying (AFF) sensor of the Deep Space program [3] works in a similar way to that of the

Global Positioning System (GPS) [49–51, 99]. The Vision Based Navigation System

(VISNAV) has been introduced as a candidate for relative attitude and relative position

sensing [7, 49]. The measurements of the VISNAV along with the system’s dynamic

model can be integrated in an estimator, such as the Extended Kalman Filter (EKF), to

estimate the relative attitudes, as explained in reference [7]. However, the stability of

estimation, in this configuration of VISNAV sensor and EKF, is not guaranteed [100]. The

estimator’s stability is affected by several factors such as the initial condition errors, the

unexpected gyro drift rate, and the non line-of-sight measurements [7, 22, 101].

*The material contained in this chapter was previously published in the 2010 IEEE Aerospace conference
proceeding.
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Figure 5.1: TRIAD method requires two pairs of LOS measurements.

Moreover, in some Spacecraft Formation Flying (SFF) missions, such as the LISA

pathfinder mission, where each spacecraft is located at about 5×106 km away from the

other spacecraft [102], a small error in the Line-of-Sight (LOS) measurement results in a

large error in the relative position calculation. This instability issue in the estimator lowers

the reliability of the method, in this case, given that it is hard to predict when this

instability would occur.

Attitude determination methods, on the other hand, offer an attractive approach. A

fundamental three-axis attitude determination method is the TRIAD method, developed

by Shuster [103, 104], for absolute attitude determination. In general, attitude

determination methods can be categorized as optimal and non=optimal attitude

determination methods. Optimal methods determine the attitude by minimizing the

attitude error that is a function of the measurements errors [105–107]. Non-optimal

methods, on the other hand, determine the attitude geometrically from the measurements

sets. The TRIAD [103], CONES intersection [108], and EULER-2 [109] methods are

non-optimal methods; where Quaternion Estimator (QUEST) [110], Fast Optimal Attitude

Matrix (FOAM) [111] and Estimator of the Optimal Quaternion (ESOQ) [112] are

optimal attitude determination methods.

Consider a formation of three spacecraft as shown in figure 5.1. TRIAD method can be

used to find the relative attitude between two spacecraft (say spacecraft 1 and spacecraft 2)

only if the relative attitude of the third spacecraft (spacecraft 3) with respect to spacecraft

1 (or spacecraft 2) is known. The two LOS measurements between two spacecraft (i.e.,

spacecraft 1 measured by spacecraft 2, and spacecraft 2 measured by spacecraft 1), are
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called a pair of measurements. The TRIAD method requires two “pairs” of measurements

(see figure 5.1) expressed in two reference frames. The two reference frames are attached

to the two spacecraft (Spacecraft 1 and 2) between which we intend to determine the

relative attitude between them.

Ref. [12] introduced a RAD method for a three-vehicle formation, using all three pairs of

measurements between the three spacecraft. The relative attitude between two spacecraft

is determined using an angle and a vector as the constraints. Then, the TRIAD method is

used to find the relative attitude between the other two spacecraft. Althought the previous

work has shown that the covariance singularity due to the co-planar may be encountered

[13], Ref. [12] showed that the proposed method does not process any singularity issue.

In this chapter, we present an alternative RAD method that avoids the coplanarity issue.

we consider the case of a three-spacecraft formation, where each spacecraft is capable of

measuring the directions of the other two. The proposed method uses one pair of

measurements, along with two measurements from the other two pairs, to determine the

relative attitude between two spacecraft in a three-spacecraft formation. A fifth single

measurement may be added to determine the relative attitude between the other two

spacecraft. The proposed method benefits from the concept of the TRIAD method of

absolute attitude determination, through the introduction of an intermediate reference

frame, as detailed in Section 2.

Section 5.2 presents the derivation for the proposed relative attitude determination method

and covariance analysis for the parallel case. Section 5.3 presents the derivation of relative

attitude determination method and its covariance analysis for the non-parallel case. The

simulation is set up and discussed in Section 5.4.

5.2 Relative Attitude Determination

In this section, the algorithm to determine the relative attitude is presented. Figure 5.2

shows three spacecraft flying in a formation. Each spacecraft provides the line-of-sight

(LOS) measurement vectors of the other two in its respective coordinate reference frame.

We define the relative position of the jth spacecraft observed by the ith spacecraft as the

vector, rk
i j; where the superscript k designates that the vector components are in the kth

frame.
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Figure 5.2: Measurements in three spacecraft formation.

For simplicity, assume that it is required to compute only the relative attitudes between

spacecraft; not the relative positions. Hence, only the measurements for the directions

between spacecraft are needed. The determination of the relative positions may require

the measurements of relative position vectors. The direction of the jth spacecraft observed

by the ith spacecraft may be represented by a unit vector in the direction of rk
i j,

pk
i j =

rk
i j

‖rk
i j‖

(5.1)

where the subscript i j represents the observation of the D j spacecraft by the Di spacecraft,

and the superscript k indicates that the observation vector is expressed in the Dk reference

frame. Note that pk
i j =−pk

ji only if both observation vectors are measured in same

reference frame, k.

As shown in figure 5.2, we define the following unit vectors: w = p2
21, s = p2

23, v2 = p1
13,

and v1 =−p1
12 = p1

21. Note that the observation vector, v1 is the observation of D1

spacecraft by D2 spacecraft, expressed in the D1 spacecraft reference frame. Next, we

consider the relative attitude determination between the D2 and D1 spacecraft. As seen in

Figure 5.2, an intermediate reference frame (N) is introduced, which is defined by three

unit vectors n̂1, n̂2 and n̂3. The unit vector n̂1 is directed from D2 to D1, and so:

v1 = A1n̂1 (5.2)

where A1 is the relative attitude matrix, which is also known as the Direction Cosine

Matrix [74], between the intermediate frame (N) and the frame D1.
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The unit vector n̂3 is normal to the plane, defined by D1, D2, and D3 spacecraft. Also,

n̂3 = n̂1 × n̂2, and is given by:
v1 ×v2

‖v1 ×v2‖ = A1n̂3 (5.3)

Finally, n̂2 is perpendicular to n̂1 and lies in the plane defined by D1, D2 and D3

spacecraft. The n̂2 can be obtained using the cross product between (v1 ×v2) and v1,

which can be written as:
v2 − (vT

2 v1)v1

‖v2 − (vT
2 v1)v1‖

= A1n̂2 (5.4)

Using equations (5.2) to (5.4), the relative attitude matrix between the intermediate frame

(N) and the frame D1 is:

A1 =
[
v1

v2−(vT
2 v1)v1

‖v2−(vT
2 v1)v1‖

v1×v2
‖v1×v2‖

]
(5.5)

The relative attitude matrix between the intermediate frame (N) and the frame D2 may be

constructed in a similar way to A1:

A2 =
[
w s−(sT w)w

‖s−(sT w)w‖
w×s
‖w×s‖

]
(5.6)

where,

w = A2n̂1 (5.7)

s− (sT w)w
‖s− (sT w)w‖ = A2n̂2 (5.8)

w× s
‖w× s‖ = A2n̂3 (5.9)

The inverse of an attitude matrix is its transpose [74], that is (Ak)
−1 = (Ak)

T . Given that

v1 = A1n̂1, we may also write:

n̂1 = AT
1 v1 (5.10)

Substituting equation (5.10) into equation (5.7), we obtain:

w = A2AT
1 v1 ≡ A2

1v1 (5.11)
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where A2
1 is the relative attitude of D1 frame relative to D2 frame:

A2
1 = A2AT

1 (5.12)

Also, it is noted here that, Ai
j = (A j

i )
T , and so

v1 = (A2
1)

T w ≡ A1
2w. (5.13)

The relative attitude matrix between D1 and D3 (or between D2 and D3) can be obtained in

a similar fashion, if we have additional measurements between D3 and D1 (or between D3

and D2).

TRIAD method was originally developed to determine the absolute attitude of spacecraft.

The TRIAD method can also be used for spacecraft formation relative attitude

determination. If one of the relative attitudes between spacecraft is known, TRIAD can be

used to determine the other two relative attitudes. Assuming that the relative attitude

between D1 and D3, A1
3, is known, then the TRIAD method may be applied using two

“pairs” of LOS measurements, (p1
12, p2

21), and (p2
23, p3

32), to determine A2
1 and A3

2. In the

next section, the covariance associated with this RAD method will be developed. The

covariance analysis will also show that this RAD method does not have any singularity

problem.

5.2.1 Covariance Analysis

Here, the covariance of relative attitude determination error between any two spacecraft in

the formation is derived. The covariance, or often referred to as variance, is expressed in

matrix format. Due to measurements’ noises, the attitude determination process has a

certain degree of error. This error falls within the three sigma covariance boundary [22].

In addition to estimating the error boundary in attitude determination, the covariance

analysis in this section will address the singularity issue encountered when all

measurements are in the same plane, as detailed in Ref. [12]. We will show, in this

section, that the RAD method developed in this chapter avoids this singularity issue.

Let the true state vector be x, and the corresponding estimated state vector be x̂. The
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covariance of the estimated state vector is defined as [22]:

P2
1 = E{(x̂−x)(x̂−x)T} (5.14)

where E{.} denotes the expectation.

The true state is never known. To obtain a form for the covariance of the estimated state

vector, we set the covariance equal to the lower bound of Cramer Rao inequality [12]:

P2
1 ≡ E{(x̂−x)(x̂−x)T}= F−1 (5.15)

where F is the Fisher Information Matrix [22, 113], which is given by:

F =−E

{
∂

∂Δx∂Δx
J(Δx)

}
(5.16)

where J(Δx) is the loss function (or error function), and Δx ≡ x̂−x.

Equations (5.15) and (5.16) show that the lower bound of the covariance is equivalent to

the inverse of the Fisher Information Matrix. The relative attitude matrix between any two

spacecraft, derived in (5.5) to (5.12), will be used to evaluate the error function in (5.16).

Combining both equations (5.5) and (5.6):

w1 = A2
1v1 (5.17)

s− (sT w1)w1

‖s− (sT w1)w1‖ = A2
1

v2 − (vT
2 v1)v1

‖v2 − (vT
2 v1)v1‖

(5.18)

w1 × s
‖w1 × s‖ = A2

1
v1 ×v2

‖v1 ×v2‖ (5.19)

where A2
1 denotes the estimated relative attitude of spacecraft D2 with respect to spacecraft

D1.
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Let:

w3 =
s− (sT w1)w1

‖s− (sT w1)w1‖ (5.20)

w4 =
w1 × s
‖w1 × s‖ (5.21)

v3 =
v2 − (vT

2 v1)v1

‖v2 − (vT
2 v1)v1‖

(5.22)

v4 =
v1 ×v2

‖v1 ×v2‖ (5.23)

Then we can write equations (5.17) to (5.19) as:

w1 = A2
1v1 (5.24)

w3 = A2
1v3 (5.25)

w4 = A2
1v4 (5.26)

The vectors w1, w3, and w4 align with the coordinates of the body-fixed reference frame

on D2 with respect to the intermediate frame (N). Similarly, the vectors v1, v3, and v4

align with the coordinates of the body-fixed reference frame on D1 with respect to the

intermediate frame (N). If the measurements have any error or noise (which is usually the

case), equations (5.24) to (5.26) will not be satisfied. So, we construct the error function

as follows:

J =
1
2

(
w1 −A2

1v1
)T

R−1
1

(
w1 −A2

1v1
)
+

1
2

(
w3 −A2

1v3
)T

R−1
3

(
w3 −A2

1v3
)

+
1
2

(
w4 −A2

1v4
)T

R−1
4

(
w4 −A2

1v4
) (5.27)

where R1, R3 and R4 are the measurements covariances, which will be computed in

section 5.2.2.

Assume that the relative attitude errors are small error angles. Define δα
j
i to be the small

error angle vector in the relative attitude of D j with respect to Di. The estimated relative

attitude is expressed in terms of the true relative attitude and δα j
i as [12, 22, 80]:

A2
1 =

(
I3×3 − [δα2

1×]
)

A2
1t

(5.28)
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The operator, [a×] denotes the cross product matrix [22, 74] of a vector

a =
[
a1 a2 a3

]T
:

[a×] =

⎡
⎢⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎥⎦ (5.29)

Substituting equation (5.28) into equation (5.27), with Δx ≡ δα2
1, the loss function

becomes:

J(δα2
1) =

1
2

δα2T

1 [A2
1t

v1×]T R−1
1 [A2

1t
v1×]δα2

1 +
1
2

δα2T

1 [A2
1t

v3×]T R−1
2 [A2

1t
v3×]δα2

1

+
1
2

δα2T

1 [A2
1t

v4×]T R−1
3 [A2

1t
v4×]δα2

1

(5.30)

The error covariance matrix of equation (5.14) is determined by taking the second order

partial derivative of J with respect to δα2
1:

P2
1 =

(
[A2

1t
v1×]R−1

1 [A2
1t

v1×]T +[A2
1t

v3×]R−1
2 [A2

1t
v3×]T +[A2

1t
v4×]R−1

3 [A2
1t

v4×]T
)−1

(5.31)

The Fisher Information Matrix is:

F = [A2
1t

v1×]R−1
1 [A2

1t
v1×]T +[A2

1t
v3×]R−1

2 [A2
1t

v3×]T +[A2
1t

v4×]R−1
3 [A2

1t
v4×]T (5.32)

The cross product matrix in equation (5.29), for any vector, is always singular. Also

[a×][a×]T is always singular. Thus, if all three observation vectors p2
31, p2

32, and p2
21are in

the same plane, the Fisher Information Matrix becomes singular.

The vector v4, though, is perpendicular to both vectors v1 and v3 in equation (5.31); so

v1 �= c1v3+c2v4. The covariance matrix derived in equation (5.31) is always non-singular.

The covariance analysis for relative attitude determination between D1 and D3, and

between D2 and D3 may also be derived in a similar fashion as shown in equation (5.31).
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5.2.2 Measurement Covariance - Parallel Case

Here, the measurements covariances associated with equations (5.24) to (5.26) are

derived. The derivation follows a similar approach to that shown in Ref. [12] and [80], but

using the new RAD method presented in this chapter.

Let a measurement vector be expressed as:

p̃i = pi +ν i (5.33)

where pi is the true value for the measured quantity, p̃i is the measured quantity, and ν i

denotes the measurement noises of pi.

We assume that there is no correlation between the measurement noises in equation

(5.33). The measurement noise covariance, Ω(p̃i) is:

Ω(ν̃ i) = E{ν̃ iν̃
T
i }=

⎡
⎢⎣

σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

⎤
⎥⎦ (5.34)

where σx, σy and σz are the standard deviations of the three components of the

measurement noise vector, ν i.

Equations (5.24) to (5.26) are in the form of p̃i = Ap̃ j. The measurement noise covariance

for equations (5.24) to (5.26) can be written in matrix form as:

Ri = E{(p̃i −Ap̃ j)(p̃i −Ap̃ j)
T}= Ωi +AΩ jA

T (5.35)

Equation (5.35) can be used to find R1 directly because the R1 is a linear function of the

measurement noises. The covariances R3 and R4 associated with equations (5.18) and

(5.19), on the other hand, are not linear functions in the measurement noises. The

nonlinearity can be verified by comparing equations (5.25), (5.26), and (5.35). Andrle et

al. [12, 80] showed how to compute the covariance of the unit vector, b, of an arbitrary

noisy measured vector, r:

Ωb =

(
∂b
∂r

)
Ωr

(
∂b
∂r

)T

(5.36)
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where,
∂b
∂r

=−‖r‖−3[r×]2 (5.37)

In many estimation algorithms, the measurements noise covariance is assumed to be linear

additive to simplify the estimation process. However, Ref. [82] shows that the nonlinear

noise covariance could be derived without degrading the estimation quality. This method

may be applied to the relative attitude determination method presented in this chapter.

Assume that the variance of the noise is small, σ2 << 1, then we may conclude that

σ4 ≈ 0. Define the operator A�B as the element-by-element multiplication of the

matrices A and B. Define also M(b) as:

M(b) =
[
b b b

]T
(5.38)

Then, the covariance associated with equation (5.18) is:

R3 = E{(w3 −A2
1v3)(w3 −A2

1v3)
T}

=

(
∂w3

∂r1

)
Ω(s− (sT w1)w1)

(
∂w3

∂r1

)T

+A2
1

(
∂v3

∂r2

)
Ω(v2 − (vT

2 v1)v1)

(
∂v3

∂r2

)T

A2T

1

(5.39)

where the r1 represents s− (sT w1)w1 and r2 represents (v2 − (vT
2 v1)v1).

Both vectors, s− (sT w1)w1 and (v2 − (vT
2 v1)v1) in equation (5.39) have the general form

of (b j − (bT
j bi)bi). The covariance of this vector, Ω(b j − (bT

j bi)bi) is:

Ω(b j − (bT
j bi)bi) = Ω(ν j)+bT

j biΩ(ν i)−b jbT
j � [C(bi)−Ω(ν i)]−bibT

i � [C(b j)−Ω(ν j)]

+bibT
i [(b j �b j)

T σ2
bi
+(bi �bi)

T σ2
b j
]+2bT

j bi[(bibT
j +b jbT

i )�M(σ2
bi
)]

(5.40)

where,

C(bi) = M(σ2
bi
)+MT (σ2

bi
) (5.41)

The elements of the vector, σ2
bi

are the diagonal elements of the measurement covariance

matrix Ω(ν i).
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In a similar manner, R4 can be calculated as:

R4 = E{(w4 −A2
1v4)(w4 −A2

1v4)
T}

=

(
∂w4

∂r3

)
Ω(w1 × s)

(
∂w4

∂r3

)T

+A2
1

(
∂v4

∂r4

)
Ω(v1 ×v2)

(
∂v4

∂r4

)T

A2T

1

(5.42)

where the r3 represents (w1 × s), r4 represents (v1 ×v2). The covariance between the two

cross product vectors, bi ×b j, Ω(bi ×b j) is:

Ω(bi ×b j) = S(bi)S(bi)
T +S(b j)S(b j)

T (5.43)

with,

S(bi) = [bi×]�M(σbi) (5.44)

σbi =
[
(σx)bi (σy)bi (σz)bi

]T
(5.45)

Both R2 and R3, derived in equations (5.39) and (5.42), are singular in this case. However,

Shuster has shown that this type of matrices can be modified to become nonsingular

matrices [113]. For example, the matrix R2 may be replaced by

Rnew
2 = R2 +

1
2bbT trace(R2), where b = (s− sT ww)/(‖s− sT ww‖). Then, both Rnew

2 and

Rnew
3 are invertible.

5.3 Relative Attitude Determination - Non-Parallel Case

Figure 5.3 shows the four LOS measurements in three-spacecraft formation for the

non-parallel case. The vectors, v1, v2, w and s have been defined in the Section 5.2. Here,

figure 5.3 show that the vectors v1 and v2 become out of the plane formed by the vectors

w and s. Thus, this results in a non-parallel LOS measurement case.

Let F1 be the frame formed by the vector v1 and v2, and F2 be the plane formed by the

vector w and s, which can be defined as:

F1 → v2 ×v1 (5.46)

F2 → w× s (5.47)
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Figure 5.3: The line-of-sight measurement in three-spacecraft formation for non-parallel case.

Note that v1 and v2 are expressed in terms of D1 spacecraft reference frame, and s and w

are expressed in terms of D2 spacecraft reference frame. Therefore, we can define two

relative attitude matrices, AF1
1 and AF2

2 , which are the relative attitude between D1

spacecraft reference frame and F1 frame, and the relative attitude between D2 spacecraft

reference frame and F2 frame using the similar method developed in Section 5.2. AF1
1 and

AF2
2 are given as:

AF1
1 =

[
v1

v2×v1
‖v2×v1‖

v2−(vT
2 v1)v1

‖v2−(vT
2 v1)v1‖

]
(5.48)

AF2
2 =

[
w s×w

‖s×w‖
s−(sT w)w
‖s−(sT w)w‖

]
(5.49)

First, we consider the angle between vector v2 and s as one of the cost function in order to

determine the relative attitude matrix between any two spacecraft in the formation:

vT
2 A1

2s = cosθ (5.50)

Equation (5.51) can be also expressed in terms of AF1
1 and AF2

2 , which corresponds to:

cosθ =
(

AF1
1 v2

)T
AF1

F2
AF2

2 A1
2s

= eT
1 AF1

F2
e2

(5.51)
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where,

e1 = AF1
1 v2 (5.52)

e2 = AF2
2 A1

2s (5.53)

The attitude matrix, AF1
F2

, between F1 and F2 frame can be expressed in terms of principal

angle, Ψ [74], which is also the out-of-plane angle in Figure 5.3. The AF1
F2

is given as:

AF1
F2
= cosΨI3×3 +(1− cosΨ)n̄n̄T − sinΨ[n̄×] (5.54)

where I3×3 is 3 by 3 identity matrix and n̄ = AF2
2 w.

Because w is the first column vector in AF2
2 , thus, it can be shown that,

n̄ =
[
1 0 0

]T
(5.55)

We define the elements of both vectors, e1 and e2, as e1 =
[
e11 e12 e13

]T
and

e2 =
[
e21 e22 e23

]T
respectively. Then, by substituting equations (5.54) and (5.55) into

equation (5.51), we obtain:

(e12e22 + e13e23)cosΨ+(e13e22 + e12e23)sinΨ = cosθ − e11e21 (5.56)

Note that both v and s are perpendicular to one of the column vectors in (AF1
1 and (AF2

2

respectively. Therefore, either the second or the third element in each e1 and e2 vector is

always equal to zero, which implies that the term e13e22 + e12e23 = 0. Then, equation is

simplified to:

(e12e22 + e13e23)cosΨ = cosθ − e11e21 (5.57)

Finally, a closed form solution for Ψ can be obtained:

Ψ = cos−1
(

cosθ − e11e21

e12e22 + e13e23

)
(5.58)

Equation (5.58) states that there are always two principal angles, Ψ, that can be obtained.

Therefore, there are always two possible solution for the relative attitude between two
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spacecraft. Then, the relative attitude matrix between D1 and D2 can be calculated as:

A2
1 = AF1

1 AF2
F1

(
AF2

2

)T
(5.59)

5.3.1 Covariance Analysis - Non-Parallel Case

Here, the covariance of relative attitude determination error between any two spacecraft in

the formation is derived. We consider equation (5.50) as one of the cost function and the

relationship between v1 and w given in equation (5.17) as the other cost function. Then,

we can construct the error function for the non-parallel case as follows:

J =
1
2

{
(p3

31)
T p3

32 −
(
p2

23

)T
A2

1p1
13

}2
R−1

θ

+
1
2

{
p2

21 −A2
1p1

21

}T (
R2

21

)−1{
p2

21 −A2
1p1

21

} (5.60)

A similar covariance analysis method, as shown in Section 5.2.1, is applied on equation

(5.60). Then, the corresponding covariance is given as [12]:

P2
1 =

(
[A2

1p1
31×]p2

32R−1
θ

(
p2

32

)T
[A2

1p1
31×]T +[A2

1p1
21×]

(
R2

21

)−1
[A2

1p1
21×]T

)−1

=
(
[p2

31×]p2
32R−1

θ

(
p2

32

)T
[p2

31×]T +[p2
21×]

(
R2

21

)−1
[p2

21×]T
)−1

(5.61)

As discussed in Section 5.2.1, the Fisher Information Matrix of equation (5.61) is required

to be non-singular at anytime. Let the Fisher Information Matrix is:

F = [p2
31×]p2

32R−1
θ

(
p2

32

)T
[p2

31×]T +[p2
21×]

(
R2

21

)−1
[p2

21×]T (5.62)

The equation would only become singular if and only if p2
21 falls in the same plane as p2

31

and p2
32. Therefore, the Fisher Information Matrix in equation (5.62) has no singularity

issue except the Ψ angle (see Figure 5.3) is close to zero. One method that can be taken to

avoid the singularity is to check the φ angle. If φ is small enough, e.g. φ less than 0.1

degrees, then the covariance in equation (5.31) for the parallel case is considered.
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5.3.2 Measurement covariance - Non-Parallel Case

Here, the measurement covariance which corresponds to the covariance matrix in (5.61) is

presented. Both R2
21 and Rθ are required to be calculated in order to determine the

covariance in equation (5.61). The R2
21 can be calculated in a straight forward manner as

shown in equation (5.35), which is given as:

R2
21 = Ω2

21 +A2
1Ω1

21

(
A2

1

)T
(5.63)

where Ω2
21 denotes the measurement noise covariance for the measurement p2

21, and Ω1
21

denotes the measurement noise covariance for the measurement p1
21. In addition, Ω is

defined in equation (5.34).

The Rθ in equation (5.60) has been derived in Ref. [12], which is given as:

Rθ = 2
{(

p3
32

)T
Ω3

31p3
32 +

(
p3

31

)T
Ω3

32p3
31 +Tr

(
Ω3

31Ω3
32

)}
(5.64)

where Tr(.) denotes the sum of the diagonal elements of the matrix, and both Ω3
31 and Ω3

31

are calculated in the similar method as in equation (5.63).

In Section 5.2.1, the measurement covariance calculated experiences a singularity issue.

However, the singularity issue can be avoided by calculating a new covariance,

Rnew = R+ 1
2bbT Tr(R). Here, R2

21 is always non-singular. In addition, Rθ is a scalar

function, which guarantees the non-singularity except Rθ = 0.

5.4 Simulation

We consider an isosceles triangle shape of three spacecraft formation, such that θ1 = θ2,

see Figure 5.4. Each spacecraft has its absolute attitude expressed in the Earth Center

Inertial (ECI) frame. We describe the spacecraft attitude using the 3-1-3 rotation sequence

[22, 74]. The orientation of D1 is A1(30◦,15◦,−20◦), D2 is A2(25◦,15◦,30◦), and D3 is
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Figure 5.4: Three Spacecraft Formation Configuration.

A3(30◦,0◦,10◦). The attitude matrix is:

Ai(φ1,φ2,φ3) =

⎡
⎢⎣

cφ3cφ1 − sφ3cφ2sφ1 cφ3sφ1 + sφ3cφ2cφ1 sφ3sφ2

−sφ3cφ1 − cφ3cφ2sφ1 −sφ3sφ1 + cφ3cφ2cφ1 cφ3sφ2

sφ2sφ1 −sφ2cφ1 cφ2

⎤
⎥⎦ (5.65)

where c denotes cosine and s denotes sine.

The orientation of all spacecraft in the formation are the same in both the parallel and

non-parallel case. However, the line-of-sight measurement between each spacecraft is

varied for both cases.

5.4.1 Parallel Case

For simplicity, we assume that the plane of the formation is parallel to the Equatorial

plane, and the observation vector of D1 spacecraft measured by D2 spacecraft, expressed

in ECI frame, is:

pI
21 =

[
1 0 0

]T
(5.66)

I denotes the ECI frame of reference, and the observation vector of D3 spacecraft

measured by D1 spacecraft, expressed in ECI frame, is:

pI
13 =

[
−cosθ1 sinθ1 0

]T
(5.67)
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Figure 5.5: Errors in the relative attitude Ad2
d1
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Figure 5.6: Errors in the relative attitude Ad1
d3

.

and the observation vector of D3 spacecraft measured by D2 spacecraft, expressed in ECI

frame, is:

pI
23 =

[
cosθ2 sinθ2 0

]T
(5.68)

The measurement vector, pi j expressed in kth spacecraft reference frame is given by

pk
i j = AkpI

i j.

For the simulation, all relative position measurements are assumed to be unit vectors. The

measurement noise is assumed to be a linear additive, with the standard deviation of

17×10−6 radian on each axis. In order to study the effect of the shape of the spacecraft

formation on the relative attitude determination error, we vary the value of θ1 from 1 to 89

degrees in increments of 1 degree. The angle θ3 can be obtained since θ2 = θ1. For each

increment of θ1, the simulation is run for 1000 iterations. The average of Root Mean

Square Error (RMSE) over the 1000 iterations is plotted to study the performance in the

simulation.

Next, the performance of the RAD method is studied for a range of levels of the

measurement noise. The equilateral formation is considered. The measurement noise is

varied from 1μrad to 100μrad in increments of 1μrad. The simulation is run over 1000

iterations for each level of measurement noise. The mean of absolute error is compared

with the analytical error, which is the three sigma boundary of the covariance.

Figures 5.5, 5.6, and 5.7 show the three sigma boundary of relative attitude error in roll,

pitch, and yaw angles, respectively. The relative attitude error vector is computed using
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equation (5.28). The figures show that for 1000 iterations, the relative attitude

determination errors fall within the three sigma boundary, which means that the relative

attitude between spacecraft can be determined, using equations (5.5) to (5.12), with a

known expected accuracy level. The measurements covariances derived in equations

(5.39) and (5.42) are singular in nature. However, these matrices were replaced by other

nonsingular matrices as discussed in section 5.2.2.

Figure 5.8 shows the change of RMSE of relative attitude determination between the D2

and D3 spacecraft, as the shape of spacecraft formation changes. When θ1 is very small

(that is the D3 spacecraft is almost colinear with the D1 and D2 spacecraft), the RMSE is

higher. The RMSE is also high when θ1 becomes very large (D1 and D2 spacecraft
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become very close to each other). In both cases, the shape of the formation becomes close

to a straight line (colinear). Other than the previous two special cases, the proposed

method is capable of providing accurate results with errors below 100μrad.

Figure 5.9 compares the analytical and simulation error as the measurements noises vary.

The measurements noises in the figure are expressed in terms of standard deviation. The

analytical error is obtained through the determination of the three sigma boundary using

the covariance of relative attitude between two spacecraft (derived in equation (5.31)). As

expected, both analytical and simulation errors increase as the measurements noises

increase. In Figure 5.9, only the error on the roll axis of relative attitude between

spacecraft 2 and spacecraft 3 is considered. The errors on the pitch and yaw axes have the

same characteristics as the error on the roll axis. The three sigma boundary represents the

boundary that the RAD error would fall within. The average simulated error for each

increment is lower than the analytical error.

In some formation scenarios, the accuracy of estimated absolute attitude is in the order of

1×10−5 degrees of error on each axis [114, 115]. The relative attitude errors, as

estimated from absolute attitudes, are determined using the quaternion multiplication

properties: q̂ = q⊗δq, and q12 = q⊗q−1
1 , where q̂ is the estimated quaternion, q is the

true quaternion, q12 is the relative quaternion between spacecraft D1 and D2, and δq is the

attitude error quaternion [22, 114].

The accuracy of the proposed RAD method is compared to the accuracy of the RAD

presented in Ref. [12], and the relative attitude determined using the absolute attitude.
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Figures 5.5 to 5.7 show that the accuracy of the proposed RAD method falls within

100μrad (or about 0.005 degrees). The relative attitude errors presented in Ref. [12] fall

within 100μrad. Both RAD methods process equivalent accuracy. But the RAD method

presented in this chapter is not limited by any constraint as in Ref. [12]. If the accuracy of

absolute attitude is 1×10−5 degrees of error, the relative attitude errors will be in the

order of 1×10−4 degrees, on each axis. However, each spacecraft is required to be

equipped with a full set of star trackers to achieve the particular accuracy [116]. In terms

of algorithm complexity, the proposed RAD method requires 15 multiplication steps to

calculate the relative attitude matrix. In most cases, the absolute attitude is expressed in

terms of the quaternion vectors. This requires 12 multiplication steps to calculate the

relative quaternion vectors, and another 12 multiplication steps to calculate the relative

attitude using the relative quaternion vector.

5.4.2 Non-Parallel Case

Next, the relative attitude method developed for the non-parallel case is studied. Three

LOS measurements, p3
31, p3

32, and p1
12 are given as:

p3
31 =

[
sin(−30◦)cos(35◦) sin(35◦) cos(30◦)cos(35◦)

]T
(5.69)

p3
32 =

[
sin(30◦)cos(25◦) sin(25◦) cos(30◦)cos(25◦)

]T
(5.70)

p1
12 =

[
−cos(45◦)cos(10◦) sin(10◦) sin(−45◦)cos(10◦)

]T
(5.71)

If the true relative attitude is known, all six LOS measurements can be obtained from

equations (5.69) to (5.71). Similar to the previous case study, a simulation is set up for

1000 iterations run. In addition, the measurement noise standard deviation for each axis of

the LOS measurement is σ = 17×10−6 radian.

Figure 5.10 presents the two relative attitude error in three sigma boundary. Recall from

equation (5.58) that there are two possible Ψ solutions. Here, the corresponding principal

angles, Ψ, calculated are 12.54 degrees and 347.46 degrees respectively. Althought both

solutions are able to show that p2
21 = A2

1p1
21, only one of the Ψ solutions presents the

actual relative attitude between the two spacecraft (D1 and D2 spacecraft). Figure 5.10(a)

shows that the relative attitude obtained using Ψ = 12.54 degrees does not match the true
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Figure 5.10: Relative attitude error of A2
1 in three sigma boundary for two Psi solution.

relative attitude. This results in relative attitude errors always out of the three sigma

bound. However, the other relative attitude obtained using Ψ = 347.46 does match the

true relative attitude, which is shown in Figure 5.10(b). Furthermore, the result in Figure

5.10(b) also shows that the error always falls within the three sigma boundary.
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Chapter 6

A Weighted Measurement Fusion

Kalman Filter Implementation for UAV

Navigation



6.1 Introduction

Vehicular navigation has a variety of civilian and military applications and has been

widely studied since the last century. The radar sensor has been widely used in vehicle

tracking applications [75]. Recent technology advancement enabled the development of

small-size antenna arrays, such as the Wireless Local Positioning System (WLPS) for

measuring position[58]. Navigation systems based on the Global Positioning System

(GPS) can precisely estimate position; yet the GPS signal can be jammed. Several

methods are proposed in the literature to aid vehicle navigation in GPS-denied

environments [117]. Examples of these methods include the Inertial Navigation System

(INS) and the Terrain Aided Navigation System (TANS). The INS uses motion sensors to

calculate the position of a vehicle with respect to a bearing point, and the TANS uses the

terrain’s image stored in the database to estimate the vehicle position. The INS navigation

errors, however, may become high if the propagation errors are high [118]. Also, the

TANS may not perform well in unknown terrain environments [119].

The Kalman Filter (KF) has been widely used in many navigation applications. Ref. [119]

implements the KF in estimating moving a vehicle’s position and orientation, using GPS,

INS, and TANS. One way to process measurements in a multisensor system is to combine

all the measurements into a single observation vector in the KF. The computational load of

this implementation, however, increases as the number of measurements increases [35].

Ref. [36] presents a State-Vector Fusion (SVF) method in which each measurement is

processed by its own local filter simultaneously. Then, the updated estimated states and

the predicted covariances are fused together [37]. The Measurement Fusion (MF) method,

introduced in Ref. [38], fuses multiple measurements and then the KF is applied to the

result. Ref. [39] has analytically shown that, under certain conditions, the MF method is

similar to the standard KF. Both SVF and MF methods require less computational load

compared to the standard KF [38]. However, the derivation of these fusion methods

assumes uncorrelated measurement noise for multisensor systems [37, 40]. In most of the

multisensor systems, the sensors’ noises are correlated due to the interference signal

between sensors [40]. Ref. [41] has presented a weighted MF method in which the input

and measurement noises could be correlated. In addition, the computational load of the

weighted MF method is significantly lower than the KF [41].

Time measurements errors due to signal travel time and processing time (also known as
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out-of-sequence measurement (OOSM) problem) have been studied in the literature

[69, 120]. Several estimation algorithms that account for these errors have been proposed

[64, 120]. Ref. [84] implements the Unscented Kalman Filter (UKF) to estimate these

errors, and demonstrates a relatively high estimation accuracy. However, it has a higher

computational cost [84]. Ref. [121] implements a Particle Filter to solve the same

problem. Particle Filter implementation provides a suboptimal estimation and its

computational cost is high [122].

In this paper, it is assumed that UAVs are equipped with a Wireless Local Positioning

System (WLPS) at all times [58]. The WLPS enables UAVs to find their own position

with respect to some bearing points with known positions, via Time-of-Arrival (TOA) and

Direction-of-Arrival (DOA) measurements. The WLPS consists of two components, a

Dynamic Base Station (DBS) and a transponder (TRX). The DBS installed on the UAV

communicates with all the TRXs installed at known positions (e.g. on the ground or on

another vehicle such as the Airborne Warning and Control System (AWACS) aircrafts)

and localizes them via DOA and TOA measurements. Identification codes are allocated to

each TRX such that DBSs can identify different TRXs [58].

Given that the position of a TRX is known at all times, with a given accuracy, the position

and velocity of the UAV will be estimated. A Weighted Measurement Fusion Kalman

Filter (WMFKF), based on the MF method [39], will be implemented for estimation. In

the proposed WMFKF, all measurements from all TRXs are fused into one. Because the

measurements are received at different times at the DBS, a weighting factor is computed

for each measurement; this weighting factor is proportional to the time difference between

the measurement time and the time of fusing all the measurements. The resulting fused

measurement and its corresponding noise covariance are then processed in a way similar

to a KF. This weighting factor reduces the convergence rate of the predicted covariance to

ensure that estimation errors are within the three sigma boundary. The accuracy

performance of the WMFKF is compared to the standard KF. The error distribution

probability, also known as the Ellipsoid Error Probable (EEP), for the fused measurements

in the WMFKF method is evaluated and compared to the fused measurement in the MF

Kalman Filter (MFKF) presented in Ref. [38]. Also, the computational complexity of the

WMFKF is analyzed and compared to that of the standard KF. Two scenarios are

considered in this paper: (1) GPS-denied environment, and (2) available GPS

measurements.
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The purpose of this chapter is to explore use of TOA as a weighting factor in the fusion

process to improve the estimation stability. This implementation results in maintaining the

estimated state error within the estimated covariance boundaries, as shown in the results

presented. This implementation also avoids the complexity of estimating the

measurements’ time delays. In this chapter, the number of available TRXs varies over

time due to limited wireless transmission range. Also, the DBS transmits a signal after all

response signals from all TRXs are received (they arrive at different times due to time

delay errors.) The position of the TRXs are not perfectly known. This paper is organized

as follows: Section 6.2 presents the formulation of the navigation problem. Section 6.3

presents the WMFKF method. Section 6.4 presents how the EEP is computed. Sections

6.5 presents the simulation results.

6.2 Problem Formulation

A moving vehicle is assumed to travel from an origin to a destination and one or more

TRX(s) are placed along the vehicle’s travel path to assist the navigation system. The

vehicle is assumed to be equipped with only the DBS. It should be noted that the main

complexity of the WLPS is in the DBS, as it needs to be equipped with antenna arrays to

allow complex signal processing schemes for DOA-TOA estimation, beamforming,

localization, and tracking. However, the complexity of the TRX is very low when it is

compared to the DBS. The TRX is composed of a single antenna transmitter and receiver.

The role of the TRX is to detect the DBS’s signal and send a signal back to the DBS.

Therefore, multiple TRXs can be easily distributed in or around the path from origin to

destination. In Fig. 6.1, the DBS transmits periodic signals called ID request (IDR) to the

TRXs that fall within its coverage area. TRX responds back to the DBS as soon as it

receives the IDR signal. The DBS measures the TOA by calculating the total time required

by the signal to be transmitted from the DBS to the TRX, and back. This two-way TOA

measurement method avoids the need for clock synchronization. A two-way TOA

measurement, however, experiences signal transmission delay, multipath effects, and

higher atmospheric delay, which might reduce the accuracy of the measurement.

The DBS receives the response signal from each TRX at a different time; this is because

the distances between the TRXs and the DBS are different. In Fig. 6.1, TRX 1 is closer to

the DBS compared to TRX 2. Thus, t1, the TRX 1 signal arrival time is less than t2, the
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Figure 6.1: Illustration of transmission between DBS and TRX.

TRX 2 signal arrival time. Considering N number of TRXs, the DBS receives the

response signals from the TRXs at the times t1, t2 . . . , tN . The updating step is applied after

all TRXs’ measurements are received at the DBS, i.e., at t = tN (see Fig. 6.2). The

position errors due to these time delays in the measurements processing are not computed,

but rather these delays are accounted for through the weighting factor, as detailed in

Section 6.3

Let the position of the DBS at time ti be rti , and the position for the ith TRX be rB,i,

respectively. The TOA measurement between the DBS and the ith TRX is:

ỹi,T = ‖rt0 − rB,i‖/c+ tp +‖rti − rB,i‖/c+νi,T (6.1)

where νi,T represents the measurement noise, c is the speed of light, subscript ti is the time

at which the measurement from the TRX i is received, and tp is the signal processing time

delay. The DOA measurement between the DBS and the ith TRX is a function of rti , rB,i,

and corresponds to:

ỹi,θ = tan−1 rB,i,y − rti,y

rB,i,x − rti,x
+νi,θ (6.2)

ỹi,φ = tan−1 rB,i,z − rti,z√
(rB,i,x − rti,x)

2 +(rB,i,y − rti,y)
2
+νi,φ (6.3)

where rB,i =
[
rB,i,x rB,i,y rB,i,z

]T
, rti =

[
rti,x rti,y rti,z

]T
, i = 1,2, . . . ,N, νi,θ is the
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Figure 6.2: WMFKF fuses the measurements and updates the states only at times (tN)i.

relative azimuth angle measurement noise and νi,φ is the relative elevation angle

measurement noise.

The WLPS measurement between the DBS and the ith TRX in Eqs. (6.1) to (6.3) is

represented as ỹp
i =

[
ỹi,T ỹi,θ ỹi,φ

]T
, with the measurement noise covariance,

Rp
i = diag

{[
ν2

i,T ν2
i,θ ν2

i,φ

]}
. The term diag represents a diagonal matrix, with its

diagonal elements as ν2
i,T , ν2

i,θ , and ν2
i,φ .

For the sake of WMFKF derivation, both the measurement vector, ỹc
i , and the

measurement noise covariance, Rc
i , are expressed in Cartesian coordinates:

ỹc
i =

[
ỹi,x ỹi,y ỹi,z

]T
. It is noted that the measured TOA and DOA in Eqs. (6.1) to (6.3)

are functions of the signal transmission delay and the signal processing time delay, as

detailed in Ref. [69] and [59]. However, the signal processing time delay is assumed

known and the signal transmission time delay is ignored in this WMFKF derivation. Then,

the ỹi,x, ỹi,y and ỹi,z are given as:

ỹi,x = ỹi,D cos(ỹi,θ )cos(ỹi,φ ) (6.4)

ỹi,y = ỹi,D sin(ỹi,θ )cos(ỹi,φ ) (6.5)

ỹi,z = ỹi,D sin(ỹi,φ ) (6.6)

where ỹi,D is the distance between ith TRX and DBS with the assumption of no signal
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transmission time delay, ỹi,D = 1
2 (ỹi,T − tp)c. The transformation from the polar to

Cartesian coordinates for the measurement noise covariance is detailed in the Ref. [82],

and it is here presented in this functional form:

Rc
i = g(ỹi,D, ỹi,θ , ỹi,φ ,νi,T ,νi,θ ,νi,φ ) (6.7)

6.3 Weighted Measurement Fusion

In this section, the WMFKF method is presented. All the WLPS measurements are fused.

GPS measurement is not fused. Fig. 6.3 presents a block diagram of the WMFKF

algorithm. The WMFKF has a similar propagation and update model as the standard KF.

However, all the measurements from all TRXs are fused together into one, before it is

applied into the Kalman update process. Considering a linear system, the state models for

the state vector, x, and measurement vector, ỹ, are [14]:

xk+1 = Φxk +w (6.8)

ỹ = Hxk +ν (6.9)

where w is the process noise vector with a variance Q = E{wwT}, and ν is the

measurement noise vector with a variance of R = E{ννT}.

For N set of measurements, both ỹ and ν in Eq. (6.9) can be written as

ỹ =
[
(ỹc

1)
T (ỹc

2)
T . . . (ỹc

N)
T
]T

and ν =
[
νT

1 νT
2 . . . νT

N

]T
where

Figure 6.3: Block diagram of the WMFKF algorithm.
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ν i =
[
νi,x νi,y νi,z

]T
, and νi,x, νi,y, and νi,z are the measurement noise in the Cartesian

coordinates. The fused measurement covariance, R̄, and fused measurement vector, ȳ are

given as [39]:

R̄ =

(
N

∑
i=1

(Rc
i )

−1

)−1

(6.10)

ȳ = R̄
N

∑
i=1

[
(Rc

i )
−1(rB,N/B,i + ỹc

i )
]

(6.11)

where rB,N/B,i = rB,N − rB,i, rB,N is the position of the Nth TRX, and rB,i is the position of

ith TRX. The sensitivity matrix of the fused measurement vector is given as [39]:

H̄ = R̄
N

∑
i=1

[
(Rc

i )
−1Hi

]
(6.12)

where Hi is the corresponding sensitivity matrix of ỹc
i , which is given as:

Hi =
[
−I3×3 03×3

]
(6.13)

Ref. [39] has analytically shown that the estimation error of the MF method in Eqs. (6.10)

and (6.11) is similar to that of the standard KF, in some cases. It has been observed,

however, in this study that the estimation error does not always fall within the predicted

covariance boundary (or the confidence level of the estimated state error). This situation

specifically occurs when any of the TRXs is positioned close to the DBS (e.g. < 1km). To

keep the estimated error within the covariance boundaries, a weighting factor is added

during the fusion process.

A weighting factor, ci,y , is implemented into the MF method to reduce the convergence

rate of the predicted covariance. The ci,y is applied for each measurement vector, ỹc
i ,

sensitivity matrix, Hi, and the inverse measurement noise variance, (Rc
i )

−1, in Eqs. (6.10)

to (6.12), before they are fused. Therefore, the new fused measurement noise covariance

in Eq. (6.10) becomes:

R̄ = N

(
N

∑
i=1

ci,y(R
c
i )

−1

)−1

(6.14)

And the new fused measurement vector and sensitivity matrix in Eqs. (6.11) and (6.12)
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become:

ȳ =

(
N

∑
i=1

ci,y(R
c
i )

−1

)−1 N

∑
i=1

[
ci,y(R

c
i )

−1(rB,N/B,i + ỹc
i )
]

(6.15)

H̄ =

(
N

∑
i=1

ci,y(R
c
i )

−1

)−1 N

∑
i=1

[
ci,y(R

c
i )

−1Hi
]

(6.16)

The weighting factor, ci,y, is a function of the TOAs. The TOA vector, T is defined as

T =
[
y1,T y2,T . . . yN,T

]T
. The estimated error of standard MF method goes outside

the covariance boundaries when a TRX is close to the DBS. In the proposed WMFKF

method, the weighting factor for each TRX measurement is assigned based on the distance

(or TOA) between TRX and DBS. A higher weight will be assigned to the TRX that is

closer the DBS. In other words, the weighting factor, for the ith TRX, is selected to be

inversely proportional to the time difference between the TOA of the ith TRX. The last

measurement, yN,T , which is equivalent to max(T), has a higher weighting factor than the

other measurements. Define the ΔT and τ vectors as:

ΔTi = yN,T −yi,T (6.17)

τi = 1− ΔT
‖ΔT‖ (6.18)

where ΔT =
[
ΔT1 ΔT2 . . . ΔTN

]T
, and τ =

[
τ1 τ2 . . . τN

]T
.

Finally, ci,y is defined as:

ci,y =
τ2

i

τT τ
(6.19)

Note that
N
∑

i=1
ci,y = 1. The WMFKF algorithm is similar to that of the standard KF. First,

the measurement vectors and measurement noise covariances are fused using the Eqs.

(6.14) to (6.16). Then, the estimated state vector and the predicted covariance are updated

using the standard KF updates equations developed in Ref. [14]. Then, both the estimated

state vector and predicted covariance are propagated to the next time step.
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6.4 Ellipsoid Error Probable

The Circular Error Probable (CEP) and the Spherical Error Probable (SEP) [123] have

been used extensively in the literature to describe measurement accuracy. Ref. [124] and

[125] have presented a two dimensional and three dimensional EEP (E2EP, E3EP) for

radionavigation and surveillance systems. The E3EP is used to evaluate the accuracy of

the fused measurements, for both the MFKF and the WMFKF.

Given a random vector, χ , where χ = (Δx,Δy,Δz), N(0,σ), and Δx, Δy, and Δz are the x,

y, z components of the position measurement error between DBS and TRX; each Δx, Δy,

and Δz is assumed to have zero mean errors. The E3EP or the probability that the

magnitude of χ to fall within a magnitude, ρ , corresponds to [126]:

Pρ = P(χT χ < ρ2) =
∫ ∫ ∫

f (χ)dΔxdΔydΔz (6.20)

where f (χ) represents the probability density function of χ .

In this chapter, f (χ) is a function of Δr, Δθ , and Δφ which are the relative distance error,

relative azimuth, and elevation angles error between DBS and TRX respectively.

Therefore, Eq. (6.20) can be expressed in polar coordinates as:

Pρ = axayaz

∫ 2

0
π
∫ φ

0

∫ 1

0
f (χ)Δr2 sinΔθdΔrdΔθdΔφ (6.21)

where the ax, ay and az are the axes of the error ellipsoid.

Eq. (6.21) is computed numerically to determine the EEP. Let β be defined as the size

increment of the EEP. Then, the ax, ay, and az in Eq. (6.21) can be written as ax = βσx,

ay = βσy, and az = βσz, where σx, σy, and σz are the measurement noise standard

deviation in Cartesian coordinates presented in Ref. [82]. The EEP is studied with respect

to an arbitrary multiplier, β .

6.5 Simulation

Simulations are conducted to compare the performance of the proposed WMFKF and the

standard KF for two scenarios: (1) only WLPS measurements are available; and (2) both

114



Table 6.1
Position of TRXs.

TRX Pos. (X,Y,Z), km TRX Pos. (X,Y,Z), km TRX Pos. (X,Y,Z), km
1 1,-1,0.01 9 33,30,-0.001 17 77,70,-0.001
2 4,5, 0.007 10 38,31,0.001 18 81,73,0.003
3 8,11,0.006 11 45,40,0.005 19 85,78,0.005
4 13,13,-0.001 12 55,50,0.01 20 88,77,-0.001
5 17,15,-0.001 13 60,55,0.004 21 91,80,0.003
6 21,19,0.003 14 63,57,0.002 22 96,85,0.008
7 24,20,0.01 15 68,61,0.001 23 101,92,-0.001
8 29,30,0.009 16 73,68,0.01 24 106,94,0.01

25 109,98,0.009

GPS and WLPS measurements are available. In this simulation, the KF update process

only occurs at the time (tN)i (see Figure 6.2). Also, the KF assumes all signal arrives at

time (tN)i. The implementation of KF algorithm can be found in Ref. [22]. The proposed

WMFKF algorithm has been presented in Section 6.3.

In the first scenario, the sensitivity matrix, H, for the standard KF is

H =
[
HT

1 HT
2 . . . HT

N

]T
, where Hi is given in (6.13).

Two detection range limits of WLPS transmission are considered. In the first case, under

the Federal Communications Commission (FCC) regulation [127], the detection range of

a WLPS is assumed to be 10km. In the second case, the detection range limit of the

WLPS is increased to 30km. In this simulation, the position of the UAV and all TRXs are

expressed with respect to a bearing point, which is located at latitude 45 degrees and

longitude 60 degrees, at sea level. The transformation of geodetic coordinate to the Earth

Centered Earth Fixed (ECEF) position is presented in Ref. [22]. There are 25 TRXs

available along the flight path of the UAV. The position of each TRX is shown in Table 6.1.

In addition, we assume that TRX no.1 is the command center with well-known position,

and the other TRXs have a random position error with standard deviation of 1 meter.

In the second scenario, it is assumed that the UAV can detect a maximum 4 GPS signals at

the same time. Here, only the 30km detection range (second case) is considered. In

addition, the WMFKF only fuses the WLPS measurements. The GPS measurement is

then processed together with the fused WLPS measurement using a standard KF

procedure. Then the KF measurements vector is given as ỹWMFKF =
[
ỹT

GPS yT
]T

and
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ỹKF =
[
ỹT

GPS ỹT
]T

respectively. Thus, the sensitivity matrix for the WMFKF and the KF

are given as:

HWMFKF =
[
HT

GPS H
T
]T

(6.22)

HKF =
[
HT

GPS HT
]T

(6.23)

where the derivation of ỹGPS and HGPS can be found in Ref. [22], and the measurement

noise covariances are given as:

RWMFKF =

[
RGPS 04×3

03×4 R

]
(6.24)

RKF =

[
RGPS 04×3N

03N×4 RWLPS

]
(6.25)

where N denotes the number of WLPS within the detection limit range.

The initial position and velocity of the UAV are given as r =
[
0.1 −0.1 9.2

]T
km and

v =
[
0.06 0.05 −0.0048

]T
kms−1, respectively. The estimated state vector is

x̂ =
[
rT vT

]T
and the UAV’s dynamics is described by the matrix:

Φ =

[
I Δt × I3×3

03×3 I3×3

]
(6.26)

The simulation is run for 30 minutes of flight time. The simulation assumptions for both

WMFKF and KF are the same as follow: (1) No signal processing time delay; (2) The

standard deviation of measurement noise for TOA is 1/3×10−6s and for DOA is 0.1

degree; (3) The initial estimated error is a random error of 0.1km in position and 1ms−1 in

velocity; (4) The initial state covariance is 1km2 in position and 0.01km2s−2 in velocity;

(5) The WLPS operates at 10Hz frequency; (6) There are no multipath effects nor

atmospheric delay; (7) The GPS measurement noise standard deviation is 10m; and (8)

There are no clock error and atmosphere delay for the GPS signal. The process noise
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(b) Linear Kalman Filter.

Figure 6.4: Estimated position error (bold solid line) with three sigma boundary (dash-dotted line) plot for
10km range limits.

covariance, Q, in Eq. (6.8), is given as follow:

Q = σ2
v

[
1
3Δt3I3×3 0.5Δt2I3×3

0.5Δt2I3×3 ΔtI3×3

]
(6.27)

where σv = 10−3km/s3/2 [128] and Δt is the sampling time, which is 0.1 sec;

6.5.1 Scenario One: Accuracy Performance without GPS

Fig. 6.4(a) and 6.4(b) compare the estimated position error with three sigma boundary for

both WMFKF and standard KF. For 10km detection range limit, one to five TRXs always

fall within the DBS’s coverage area. Fig. 6.4(a) shows that the WMFKF’s estimated

position error falls within the three sigma boundaries for most of the time; Fig. 6.4(b),

however, shows that the KF’s estimated position error does not fall within the three sigma

boundaries. Similar to the MF method, Fig. 6.4(a) and 6.4(b) show that the WMFKF and

the KF have a similar estimation accuracy.

Fig. 6.5(a) and 6.5(b) compare the estimated position error with three sigma boundary for

both WMFKF and standard KF for the 30km detection range limit. Fig. 6.5(a) shows that

the WMFKF’s estimation error always falls within the three sigma boundary. However,

Fig. 6.5(b) shows that the KF’s estimation error does not always fall within the three
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(b) Linear Kalman Filter.

Figure 6.5: Estimated position error (bold solid line) with three sigma boundary (dash-dotted line) plot for
30km range limits.

sigma boundary. The results in Fig. 6.4 and 6.5 show that for the linear measurements

case, the reduction rate of the fused noise covariance in Eq. (6.10) is proportional to the

number of available measurements. The reduction rate of the fused noise covariance has a

direct impact on the reduction rate of the predicted covariance. The proposed WMFKF

algorithm assigns a higher weight to the measurement (and its covariance) that has lower

signal traveling time delay error. Hence, the weight factor in WMFKF can reduce the

convergence rate on the predicted covariance. Ref. [40] shows that the fusion algorithm in

Eqs. (6.10) to (6.12) is same as the KF in the linear estimation case. This also shows that

the KF has a faster convergence rate than the WMFKF in predicted covariance. Also, it

should be noted that both WMFKF and KF do not consider the error due to the signal

traveling time delay in their estimated measurement and observation matrix models,

which results the predicted measurement variance of the KF becomes lower than the

actual measurement error variance. Besides that, the results in both Fig. 6.4(a) and 6.5(a)

also show that maximum detection range limit affects the effectiveness of the WMFKF

method in reducing the convergence rate of the covariance.

6.5.2 Scenario Two: Accuracy Performance with GPS available

Fig. 6.6(a) and 6.6(b) compare the estimated position error for both WMFKF and standard

KF for the 30km detection range limit with GPS available. Fig. 6.6(a) shows that the
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Figure 6.6: Estimated position error (bold solid line) and three sigma boundary (dash-dotted line) plot for
30km range limits with GPS available.

WMFKF’s estimation error always falls within the three sigma boundary. Although

additional GPS measurements are included into the estimation algorithm, Fig. 6.6(b)

shows that the KF’s estimation error does not fall within the three sigma boundary.

Therefore, it can be concluded that additional GPS measurements do not improve the KF’s

estimation stability. On the other hand, both Fig. 6.6(a) and 6.6(b) show that the WMFKF

has a better estimation accuracy than the KF. The WMFKF maintains its estimation error

well within the three sigma boundary.

6.5.3 Ellipsoid Error Probable

We consider a specific position of the UAV, at r =
[
22 19.975 7.448

]T
in scenario one.

In addition, we consider that only TRXs no. 2, 3, 5, 6, 7 and 10 in Table 6.1 are available.

Three different WLPS detection range limits are considered; these are 10km, 20km and

30km. The given detection range limits also correspond to two, four, and six measurement

vectors fusion respectively.

Fig. 6.7 compares the error probability percentage for both the WMFKF method and the

MFKF for different numbers of available TRXs. Here, the x-axis represents the size of the

error ellipsoid with respect to the fused measurement noise covariance. Fig. 6.7 shows

that the WMFKF method has higher EEP compared to the MFKF method, for all cases. In

addition, the EEP significantly improves when more TRXs are available for the WMFKF
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Figure 6.7: Error Probability Percentage for bot the MFKF and the WMFKF.

method. Thus, the WMFKF adjusts the size of the error ellipsoid and increases the

confidence level in the measurements error boundaries.

6.5.4 Comparisons

There are several modified KF methods for fusing measurements. The following modified

KF methods are tested on the above case studies: the Unscented KF (UKF), the state

fusion KF method, and algorithm B in reference [120]. In the test cases in this chapter, the

system dynamics are linear and the results obtained by the UKF are similar to those of the

standard KF. The state fusion KF method and the algorithm B of reference [120] suffer

instability due to the high convergence rate of the error covariance.

6.5.5 Computational Loads

Table 6.2 compares the number of multiplications required by the WMFKF and the

standard KF. Only the GPS denied case study is considered in this computational cost

analysis. The m denotes the number of measurements, N denotes the number of TRXs

available, where the total number of coordinates in a single measurement is equal to Nm,

and n is the total number of estimated states.

For the simulation case presented in this chapter, we have m = 3, and n = 6. In the first
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Table 6.2
Comparison of number of multiplication required.

Algorithm
Number of Multiplication Required

WMFKF Standard KF
x̂+ = x̂−+K(ỹ−Hx̂−) nm+mn2 N(nm+mn2)

P+ = (I +KH)P n2m+n3 n2Nm+n3

K = P−HT (HP−HT +R)−1 2(n2m+nm2)+m3 +m2 2(n2Nm+nNm2)
+N3m3 +N2m2

cy = τ2/(τT τ) 5N 0

R̄ =

(
N
∑

i=1
cRR−1

i

)−1

(N +2)m3 +m3 0

ȳ =

(
N
∑

i=1
cyR−1

i

)−1

R̄
N
∑

i=1
cyR−1

i ỹi (N +2)m2 +3∗m3 0

case, we assume an average of three TRXs (N = 3) are available during the entire

simulation. The results show that the standard KF requires 2,700 multiplications for the

Kalman update process. However, the WMFKF only requires 1,050 multiplications. For

the second case, we assume an average of eight TRXs (N = 8) are available during the

entire simulation. The results show that the standard KF requires 19,080 multiplications

for the Kalman update process, and the WMFKF only requires 1,165 multiplications. The

results show that the multiplication required by the standard KF significantly increases as

the number of TRXs available increases. However, the WMFKF method avoids this issue.
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Chapter 7

Conclusion

The WLPS implementation as a relative position sensor for absolute position estimation in

SFF is introduced. It is depicted that 2D WLPS improves positioning accuracy when both

WLPS and GPS measurements are used. The results are compared to a GPS standalone

system. Moreover, the implementation of 1D WLPS is investigated and simulations are

conducted to show the feasibility of obtaining a converging estimation for the absolute

positions. The results confirm that the accuracy of 2D WLPS is higher than 1D WLPS. In

addition, increasing the number of spacecraft in the formation improves the estimation’s

convergence time when only relative position measurements are available. Simulation

results show, in general, that as the formation size decreases, the WLPS estimation

accuracy improves. The impact of formation size becomes significant when either GPS

noise is high or GPS measurements are not available. Examples of these situations are

deep space missions such as Mars exploration and the Lunar GRAIL mission, and in the

low altitude aircraft applications when ground reflection effects are significant. The results

also confirm that as the number of spacecraft in the formation increases, a better absolute

position estimation performance is attainable.

Chapter three presented an implementation of the Differential Geometric Estimation in

relative and absolute positions estimation for spacecraft formations. In the transformed

linear domain, two approaches have been implemented in this chapter: the pole placement

and the linear filtering approaches. Simulations are conducted to compare the estimation

performance of the differential geometric estimation and the extended Kalman filter. The

results show that the differential geometric estimation has a faster convergence rate, and
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has better stability, compared to the extended Kalman filter. The complexity analysis

shows that the differential geometric estimation has lower complexity when the system is

fully observable.

Chapter four presented an implementation of the Constraint Kalman Filter in orbits

estimation. Two parameters, α and β , were introduced in the Constraint Kalman Filter

equations to mitigate the impact of the single-point update on the Constrained Kalman

Filter process. Two problems were simulated in this chapter. The first problem is the

estimation of the absolute spacecraft position from radar measurements. The results show

that an improvement of about 25% (or 5 meters) in the steady state root mean square error

can be obtained when implementing the constrained estimation concept presented in this

chapter. The second problem is the estimation of formation orbits from measurements of

relative positions only. In this problem, the Constraint Kalman Filter performed better

than the extended Kalman filter for most of the ranges of α and β . In the circular orbit

case, the Constrained Kalman Filter improves the estimation accuracy up to one fifth of

the average root mean square error, as compared to the Extended Kalman Filter. For an

elliptic orbit, the Constraint Kalman Filter improves the estimation accuracy by reducing

the average root mean square error to one tenth of the Extended Kalman Filter’s average

root mean square error.

Several parametric studies were conducted to determine best values for the parameters α

and β . The β parameter controls how fast the covariance converges due to the application

of the constraint while the parameter α controls the amplitude of state update due to the

constraint application. From the simulations conducted, it can be concluded that, in

general, the β value is best if below 0.8 and above the α value. For the best values of α

and β for a specific problem, a simulation needs to be carried out.

A two-body dynamic model was assumed in all of the cases studied in chapter four.

Adding perturbations to the dynamic model is not expected to change the superiority of

the constraint estimation to the Extended Kalman Filter. This is due to the fact that, unlike

the Extended Kalman Filter, additional information are incorporated in the estimation

process in the constraint estimation. The tuning of the α and β parameters may become

different, though. Additional investigation is needed to study the impact of using

perturbed dynamic models on the selection of the parameters α and β .

The methods to determine the relative attitude between spacecraft in a three spacecraft

formation for both parallel and non-parallel cases are presented in chapter five. The
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covariance analysis is carried out to evaluate the level of confidence in the proposed

method. The covariance analysis shows that the relative attitude determination errors fall

within a three sigma error boundary. The proposed method is capable of providing an

accurate and consistent result if the three spacecraft are not close to being colinear.

A Weighted Measurement Fusion Kalman Filter approach is proposed for UAV navigation

in chapter six. We assume a UAV is equipped with a remote positioning system called

WLPS. The WLPS enables relative localization of the UAV with respect to some bearing

points with known positions. The WMFKF and the KF are compared in two cases; the

first assumes available GPS measurement and the second assumes a GPS-denied

environment. A weighting factor is introduced to reduce the convergence rate of the

predicted covariance. Simulation results confirm that the WMFKF has similar accuracy

performance as the standard KF when the GPS is not available. However, the weighting

method reduces the convergence rate of predicted covariance and ensures that the

estimation errors fall within the three sigma boundary. On the other hand, the WMFKF

has a better accuracy and stability performance when the GPS measurement is available.

In addition, the computational cost of the WMFKF is less than the standard KF.
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Chapter 8

Appendix

8.1 Linearization and covariance analysis in polar and

cartesian coordinate

8.1.1 Time derivative of state vectors in polar and cartersian

coordinate

For simplicity, in this section, we assume r ≡ ri, λ ≡ λi and ξ ≡ ξi.

1. First order time derivatives of polar coordinates is:

ṙ =
xẋ+ yẏ+ zż

r
(8.1)

λ̇ =
xẏ− yẋ
x2 + y2 (8.2)

ξ̇ =
ż(x2 + y2)1/2

r2 − z(xẋ+ yẏ)

r2(x2 + y2)1/2
(8.3)

2. The Cartesian representation in polar coordinates is:

x = r cosλ cosξ (8.4)

y = r sinλ cosξ (8.5)

z = r sinξ (8.6)
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3. First order time derivatives of cartesian coordinates is:

ẋ = ṙ cosλ cosξ − rλ̇ sinλ cosξ − rξ̇ cosλ sinξ (8.7)

ẏ = ṙ sinλ cosξ + rλ̇ cosλ sinξ − rξ̇ sinλ sinξ (8.8)

ż = ṙ sinξ + rξ̇ cosξ (8.9)

8.1.2 Conversion of measurement noise covariance from polar to

cartesian coordinate

Ref. [82] shows the expression cartesian coordinate measurement noise in terms of polar

coordinate vector. Given that r is the relative range, ψ and φ are the relative elevation and

azimuth angles at the current time step respectively. The corresponding measurement

noise in standard deviation are σr, σψ and σφ respectively. Then, the measurement noise

covariance, ℜi j, in cartesian coordinate is given as:

ℜi j = Tkdiag
{
(r2 +σ2

r )
(

1+ e−2σ2
ψ

)(
1+ e−2σ2

φ

)
/4− r2e−σ2

ψ +σ2
φ ,

(r2 +σ2
r )
(

1− e−2σ2
ψ

)(
1+ e−2σ2

φ

)
/4,

(r2 +σ2
r )
(

1+ e−2σ2
ψ

)(
1− e−2σ2

φ

)
/4,

(r2 +σ2
r )
(

1− e−2σ2
ψ

)(
1− e−2σ2

φ

)
/4
}

T T
k

(8.10)

where the “diag” represents the diagonal matrix, and Tk is given as:

Tk =

⎡
⎢⎣

cosψ cosφ −sinψ cosφ −cosψ sinφ sinψ sinφ

sinψ cosφ cosψ cosφ −sinψ sinφ cosψ sinφ

sinφ 0 −cosφ 0

⎤
⎥⎦ (8.11)
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Chapter 9

Appendix

9.1 Linearization of orbital elements, and f and g

function

9.1.1 Partial Derivatives for semimajor axis, eccentricity, and

eccentric anomaly

The semimajor axis, eccentricity, and eccentric anomaly are nonlinear functions of the

spacecraft’s absolute position vector, r, and the velocity vector v [75, 76]. For simplicity,

we assume r ≡ ri,k and v ≡ vi,k in Appendix section. According to Eqs. (4.19) and (4.20),

the eccentric anomaly and eccentricity are required to determined both Δta and Δtp, to

construct both f and g functions. The partial derivative (or linearization) of eccentric

anomaly and eccentricity with respect to spacecraft absolute position and velocity vectors

are presented below.

The partial derivatives of eccentricity with respect to position and velocity vectors are:

∂e
∂r

=
eT

√
eT e

∂e
∂r

(9.1)

∂e
∂v

=
eT

√
eT e

∂e
∂v

(9.2)
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where,

∂e
∂r

=
‖v‖2 × I3×3

μ
− vvT

μ
− I3×3

‖r‖ +
rrT

‖r‖3 (9.3)

∂e
∂v

=
2‖v‖rvT

μ
− rT v× I3×3

μ
− vrT

μ
(9.4)

and I3×3 is a 3 by 3 identity matrix.

The partial derivative of eccentric anomaly with respect to the position and velocity

vectors are:

∂E
∂r

=
1

1+
(√

1−e2 sinθ
e+cosθ

)2

{√
1− e2 cosθ

e+ cosθ

∂θ

∂r
− sinθ√

1− e2 cosθ

∂e
∂r

−
√

1− e2 sinθ

(e+ cosθ)2

(
∂e
∂r

− sinθ
∂θ

∂r

)} (9.5)

∂E
∂v

=
1

1+
(√

1−e2 sinθ
e+cosθ

)2

{√
1− e2 cosθ

e+ cosθ

∂θ

∂v

− sinθ√
1− e2 cosθ

∂e
∂v

−
√

1− e2 sinθ

(e+ cosθ)2

(
∂e
∂v

− sinθ
∂θ

∂v

)} (9.6)

where the partial derivatives of the true anomaly are:

∂θ

∂r
=

−1√
1−

(
eT r

‖e‖‖r‖
)2

{
eT

‖e‖‖r‖ −
eT rrT

‖e‖‖r‖3 +

(
rT

‖e‖‖r‖ −
rT eeT

‖e‖3‖r‖
)

∂e
∂r

}
(9.7)

∂θ

∂v
=

−1√
1−

(
eT r

‖e‖‖r‖
)2

{(
rT

‖e‖‖r‖ −
rT eeT

‖e‖3‖r‖
)

∂e
∂v

}
(9.8)

The partial derivatives of semimajor axis with respect to position and velocity vectors are:

∂a
∂r

=
2μ2rT

‖r‖(2μ −‖r‖‖v‖2)2 (9.9)

∂a
∂v

=
2μ‖r‖vT

(2μ −‖r‖‖v‖2)2 (9.10)
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9.1.2 Linearization of Δtp and Δta.

The Δta and Δtp in Eqs. (4.19) and (4.20) are expressed in terms of a, e and E. Let Δt

represent both Δta and Δtp, the partial derivatives of Δt with respect to a spacecraft’s

absolute position and velocity vectors are:

∂Δt
∂r

=

√
a3

μ

(
−∂E

∂r
+ sinE

∂e
∂r

+ ecosE
∂E
∂r

)
+

3
2

√
a
μ
[Eap − (E − esinE)]

∂a
∂r

(9.11)

∂Δt
∂v

=

√
a3

μ

(
−∂E

∂v
+ sinE

∂e
∂v

+ ecosE
∂E
∂v

)
+

3
2

√
a
μ
[Eap − (E − esinE)]

∂a
∂v

(9.12)

where the partial derivatives for a, e and E are shown in Eqs. (9.1) to (9.10), Eap = 0 for

Δt ≡ Δtp, and Eap = π for Δt ≡ Δta.

9.1.3 Linearization of f and g functions.

The derivation of
dg(Δt,r,v)

dr
and

dg(Δt,r,v)
dv

in Eqs. (4.23) and (4.24) are here presented.

The f , g, ḟ and ġ, in Universal Variables [76], are:

f = 1− χ2

‖r‖c2 (9.13)

g = Δt − χ3

√
μ

c3 (9.14)

ḟ =
√

μ

‖r‖R
χ(ψc3 −1) (9.15)

ġ = 1− χ2

R
c2 (9.16)

where R, c2, c3 and ψ are constant variables (detailed in Ref. [76]), and χ is:

χ =
√

μγΔt (9.17)

and,

γ =
−‖v‖2

μ
+

2
‖r‖ (9.18)
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Both
dg(Δt,r,v)

dr
and

dg(Δt,r,v)
dv

are given as:

dg(Δt,r,v)
dr

=

(
ḟ

DU2 rT r+ ġ
TU
DU2 rT v

)
∂ f
∂r

+

(
f

DU2 rT r+g
TU
DU2 rT v

)
∂ ḟ
∂r

+

(
ġ

TU2

DU2 vT v+ ḟ
TU
DU2 rT v

)
∂g
∂r

+

(
g

TU2

DU2 vT v+ f
TU
DU2 rT v

)
∂ ġ
∂r

−
rT

i,a/pvi,a/p

‖ri,a/p‖3

[
( f rT r+grT v)

∂ f
∂r

+( f rT v+gvT v)
∂g
∂r

]
(9.19)

dg(Δt,r,v)
dv

=

(
ḟ

DU2

T

r+ ġ
TU
DU2 rT v

)
∂ f
∂v

+

(
f

DU2 rT r+g
TU
DU2 rT v

)
∂ ḟ
∂v

+

(
ġ

TU2

DU2 vT v+ ḟ
TU
DU2 rT v

)
∂g
∂v

+

(
g

TU2

DU2 vT v+ f
TU
DU2 rT v

)
∂ ġ
∂v

−
rT

i,a/pvi,a/p

‖ri,a/p‖3

[
( f rT r+grT v)

∂ f
∂v

+( f rT v+gvT v)
∂g
∂v

]
(9.20)

where ri,a/p and vi,a/p are the apogee (or perigee) position and velocity vectors obtained

using Eqs. (4.21) and (4.22).

The partial derivatives of f , g, ḟ and ġ in Eqs. (9.19) and (9.20) are:

∂ f
∂x

=
−2χ

‖r‖ c2
∂ χ

∂x
(9.21)

∂g
∂x

= 1− 3χ2

√
μ

c3
∂ χ

∂x
(9.22)

∂ ḟ
∂x

=

√
μ

‖r‖R
(ψc3 −1)

∂ χ

∂x
(9.23)

∂ ġ
∂x

=
−2χ

R
c2

∂ χ

∂x
(9.24)

where,
∂ χ

∂x
=
√

μγ
∂Δt
∂x

(9.25)

where the vector x represents:

x =

[
r

v

]
(9.26)
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