
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2012

Simulation study on using moment functions for sufficient Simulation study on using moment functions for sufficient

dimension reduction dimension reduction

Lipu Tian
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Mathematics Commons

Copyright 2012 Lipu Tian

Recommended Citation Recommended Citation
Tian, Lipu, "Simulation study on using moment functions for sufficient dimension reduction ", Master's
report, Michigan Technological University, 2012.
https://digitalcommons.mtu.edu/etds/550

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Mathematics Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151507824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages

A Simulation Study on Using Moment Functions for Sufficient

Dimension Reduction

By

Lipu Tian

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

(Mathematical Sciences)

MICHIGAN TECHNOLOGICAL UNIVERSITY

2012

© 2012 Lipu Tian

This report, “A Simulation Study on Using Moment Functions for Sufficient

Dimension Reduction,” is hereby approved in partial fulfillment of the requirements

for the Degree of MASTER OF SCIENCE IN MATHEMATICAL SCIENCES.

Department of Mathematical Sciences

Signatures:

Report Advisor

 Andreas Artemiou

Committee Member

 Paul Ward

 Tom Drummer

Department Chair

 Mark Gockenbach

Date

1

1. Introduction

With the increase in computing storage power, researchers are able to collect and store

large datasets. Thus there is a need to improve analytical techniques for large datasets

as most of the times existing techniques are not adequate. Different dimension

reduction techniques will be introduced to handle this. In this work, we deal with

sufficient dimension reduction in regression and more specifically the use of inverse

moments to recover information of the relationship between predictor (X) and

response (Y). By projecting the p-dimensional predictor X onto k-dimension subspace

(where k≤p), which contains the most information about response Y, and calculating

the coefficient of each predictor X, the effective dimension reduction directions can

be obtained. The effective dimension reduction directions under mild conditions span

a subspace called the central dimension reduction subspace (CDRS). (see Cook, 1998)

Many algorithms were proposed in this regard. A set of algorithms were implemented

in an effort to estimate a p x k matrix 𝛽 that satisfies: Y is independent of X given

𝛽𝑇X. Some of those algorithms are Sliced Inverse Regression (SIR) (see Li, 1991),

Sliced Average Variance Estimation (SAVE) (see Cook, Weisberg, 1991), Directional

Regression (DR) (see Li, Wang, 2007), later Zhu, Zhu, Feng (2010) used cumulative

slicing and proposed Cumulative Mean Estimation (CUME), Cumulative Variance

Estimation (CUVE) and Cumulative Directional Regression (CUDR). The goal of this

study is to combine these ideas to create a new algorithm and achieve better results.

We will also utilize the idea of using all the points to do dimension reduction as in

Principal Support Vector Machine (PSVM) (see Li, Artemiou, Li, 2011). Towards this

direction we will modify the SIR and SAVE algorithm.

2. Literature Review

2.1 Sliced Inverse Regression

Sliced Inverse Regression (SIR) was introduced by Li (1991). SIR slices the response

variable and then it calculates E(X|Y) within each slice. In that sense, since no model

2

is assumed it results into more like a non-parametric method of estimation.

The algorithm to estimate effective dimension reduction directions via SIR is:

1. Standardize x to get 𝑧𝑖=∑ (𝑥𝑖 − �̅�
−1/2
𝑥𝑥)

2. Divide range of 𝑦𝑖 into H non overlapping slices, and count the number of

observations 𝑛𝑠 fall into each slice, where 𝐼𝐻𝑠 is the indicator function of this

slice: 𝑛𝑠=∑ 𝐼𝐻𝑠
𝑛
𝑖=1 (𝑦𝑖)

3. Calculate the sample mean within each slice: 𝑧�̅�=
1

𝑛𝑠
∑ 𝑧𝑖
𝑝
𝑖=1 𝐼𝐻𝑠(𝑦𝑖)

4. Conduct a principal component analysis on 𝑧�̅� to form the candidate matrix:

V̂=n−1∑ nsz̅s
H
s=1 z̅s

T

5. Calculate the estimates for the directions (estimated factor coefficients) based on

eigenvectors 𝑣�̂� of �̂�: �̂�𝑖=∑ 𝑣�̂�
−
1

2
𝑥𝑥

2.2 Sliced Average Variance Estimation

In SIR algorithm, when the response variable is symmetric about some predictor

variable around zero, the within-slice means will all be zeros. Thus, the eigenvalues of

the covariance matrix formed from the slice mean vectors will have the same values,

which will cause SIR to fail to obtain the correct directions. Under such circumstance,

although the slice means are zeros for all y, the slice variances are very likely to vary

from slice to slice. Therefore, by using second or higher moments the correct

directions can be found.

The algorithm to estimate effective dimension reduction directions via SAVE is:

1. Standardize x to get 𝑧𝑖=∑ (𝑥𝑖 − �̅�
−1/2
𝑥𝑥)

2. Divide range of 𝑦𝑖 into H non overlapping slices, and count the number of

observations 𝑛𝑠 fall into each slice, where 𝐼𝐻𝑠 is the indicator function of this

slice: 𝑛𝑠=∑ 𝐼𝐻𝑠
𝑝
𝑖=1 (𝑦𝑖)

3

3. Calculate the sample variance within each slice: 𝑣�̂�=Var(Z|𝑌𝑠)

4. Conduct a principal component analysis on 𝑣�̂� to form the candidate matrix:

Ŝ=n−1∑ ns(𝐼𝑝 − 𝑣�̂�)
H
s=1 (𝐼𝑝 − 𝑣�̂�)

T

5. Calculate the estimates for the directions (estimated factor coefficients) based on

eigenvectors ℎ�̂� of �̂�: �̂�𝑖=∑ ℎ�̂�
−
1

2
𝑥𝑥

3. Methods

3.1 Existing Methods

Sliced Inverse Regression (SIR)/ Sliced Average Variance Estimation (SAVE)

In SIR, we slice response variable Y into n slices and we calculate the inverse mean

within each slice as Figure 1 shown. In SAVE, we calculate the inverse variance

within each slice.

Figure 1

slice 1 slice 2 slice 3 … slice H

slice 1 slice 2 slice 3 … slice H

…

 slice 1 slice 2 slice 3 … slice H

Cumulative Mean Estimation (CUME)/Cumulative Variance Estimation (CUVE)

We consider each point a slice and we take n cumulative averages/variances. This way

it reduces the necessity to tune the number of slices, a parameter to which SIR and

especially SAVE and DR are highly sensitive.

Figure 2

slice 1 slice 2 slice 3 … slice n

slice 1 slice 2 slice 3 … slice n

…

slice 1 slice 2 slice 3 … slice n

3.2 New Methodology

Li, Artemiou, Li (2011) used machine learning algorithms instead of inverse moments

to do dimension reduction. They proposed two ways to implement their ideas: “Left

4

vs. Right” LVR and “One vs. Another” OVA. We will implement these two algorithms

with inverse moments to improve the performances of SIR and SAVE.

Left vs. Right (LVR)

In LVR, each dividing point we calculate the inverse mean of the slices on the left:

E(X|Y≤y) and the inverse mean on the right: E(X|Y>y), then we take the difference:

𝑚𝑑= E(X|Y>y)- E(X|Y≤y) as illustrated in Figure 3. In SAVE, we take a slightly

different approach that we will discuss later since we are dealing with covariance

matrices.

Figure 3

slice 1 slice 2 slice 3 … slice H

slice 1 slice 2 slice 3 … slice H

…

slice 1 slice 2 slice 3 … slice H

The algorithm to estimate effective dimension reduction directions using LVRSIR is:

1. Standardize x to get 𝑧𝑖=∑ (𝑥𝑖 − �̅�
−1/2
𝑥𝑥)

2. Divide range of 𝑦𝑖 into H non overlapping slices, and count the number of

observations 𝑛𝑠 fall into each slice, where 𝐼𝐻𝑠 is the indicator function of this

slice: 𝑛𝑠=∑ 𝐼𝐻𝑠
𝑛
𝑖=1 (𝑦𝑖)

3. For each of the H-1 cutoff points between the slices, calculate : 𝑧�̅�𝑉𝑅= E(𝑧�̅�|Y>y) -

E(𝑧�̅�|Y≤y) (see Figure 3)

4. Conduct a principal component analysis on 𝑧�̅�𝑉𝑅 to form the candidate matrix:

V̂=∑ ŵz̅LVR
H−1
s=1 z̅LVR

T, where �̂� is the weight

5. Calculate the estimates for the directions (estimated factor coefficients) based on

eigenvectors 𝑣�̂� of �̂�: �̂�𝑖=∑ 𝑣�̂�
−
1

2
𝑥𝑥

One vs. Another (OVA)

If there are H slices, there are (
𝐻

) pairs. We take different pairs each time and we

5

find the difference between E(X|Y=i) and E(X|Y=j), where i j.

Figure 4

slice 1 slice 2 slice 3 … slice H-1 slice H

slice 1 slice 2 slice 3 … slice H-1 slice H

…

 slice 1 slice 2 slice 3 … slice H-1 slice H

4. Simulations

4.1 Sample Generation

Five models are used to generate data points for this study, which are:

y = 𝑥1 + 𝑥2 + 𝜎𝜖 (1)

y =
𝑥1

0.5+(𝑥2+1)2
 + 𝜎𝜖 (2)

y = 𝑥1(𝑥1 + 𝑥2+1) + 𝜎𝜖 (3)

y = 𝑥1
2 + 𝑥2+ 𝜎𝜖 (4)

y = (𝑥1
2 + 𝑥2

2)1/2 ∙ log [(𝑥1
2 + 𝑥2

2)1/2] + 𝜎𝜖 (5)

* 𝜎 is the scaling factor for error 𝜖

The default setting for dimension p is 10, and 𝜖, 𝑥1, 𝑥2, … 𝑥𝑝 are generated from

standard normal distribution N(0,1), assuming they are independent to each other.

We will use trace correlation: trace [(𝑃𝛽
𝑇𝑃�̂�)/k], (where 𝑃𝛽 = 𝛽(𝛽𝑇𝛽)−1𝛽𝑇 ,

𝑃�̂� = �̂�(�̂�𝑇�̂�)−1�̂�𝑇 , 𝛽 and �̂� are the true beta and estimated directions) as a

measurement to compare the performance between the different methods. The value

of trace correlation ranges between zero and one, and the closest to 1 the better it is.

We will do simulations with different parameters, which will give us a general idea

about how the algorithms and slice calculation methods perform. The different

parameters we are going to try are: number of slices: 5, 10 and 20; dimensions of

predictor variables: 10, 20 and 30; sigma (scaling factor for random error): 0.2, 0.5, 1

and 2. To have a reasonably accurate estimation, each test will collect the mean from

6

500 simulations with sample size of 100 and 225 for SIR and SAVE respectively.

4.2 LVRSIR

Our results for LVR are summarized in tables 1 through 4. In Table 1 we see that as

sigma increases the performance decreases for all models. In all the cases but one, the

LVR algorithm performs better than CUME and classic SIR. In Table 2 we see that as

the number of slices increases the performance of LVR increases, which for SIR

seems to have fluctuating behavior. CUME is not affected by the number of slices. In

any case LVR seems to perform better. In Table 3 we can see that as dimension

increases the performance decreases as expected. It is clear that LVR performs better

than SIR and CUME.

We have tried an alternative weighting method for LVR in a hope to improve its

performance. Instead of calculating the difference between the means of left and right,

we obtain the summation of them. In Table 4 LVR with plus weighting method (LVR

2) does not appear to have a better estimation than LVR with original weighting

method.

We have also tried the OVA algorithm. The candidate matrix of OVA is

V̂=∑ �̂�𝑧O̅VA
(
𝐻
2
)

s=1 𝑧O̅VA
T, where �̂� is the weight and we have tried the following six

weighting schemes.

OVA 1: 1

OVA 2:
2

𝑛

OVA 3:
1

‖𝑚𝑒𝑎𝑛 1−𝑚𝑒𝑎𝑛 2‖

OVA 4: ‖𝑚𝑒𝑎𝑛 1 − 𝑚𝑒𝑎𝑛 ‖

OVA 5:
1

‖𝑚𝑒𝑎𝑛 1−𝑚𝑒𝑎𝑛 2‖2

OVA 6: ‖𝑚𝑒𝑎𝑛 1 − 𝑚𝑒𝑎𝑛 ‖2

* n is the number of slices

7

In Table 5 it seems OVA with weighting method #6 has a slightly more stable

performance with higher dimensions. But there is no significant improvement over

OVA with original weight and it is no better than classic SIR.

Table 1. Comparison between SIR, LVR and CUME with different sigmas

dimensions=10, slices=10

model sigma SIR LVR CUME

1

0.2 .993 (.004) .993 (.004) .987 (.008)

0.5 .980 (.012) .982 (.010) .976 (.012)

1 .937 (.031) .944 (.027) .938 (.033)

2 .742 (.159) .818 (.088) .808 (.094)

2

0.2 .824 (.096) .854 (.065) .863 (.067)

0.5 .680 (.130) .760 (.096) .742 (.107)

1 .517 (.119) .603 (.115) .577 (.118)

2 .346 (.122) .413 (.118) .399 (.113)

3

0.2 .610 (.170) .711 (.132) .689 (.134)

0.5 .518 (.162) .636 (.144) .603 (.141)

1 .433 (.149) .537 (.151) .512 (.149)

2 .339 (.133) .413 (.140) .395 (.137)

4

0.2 .523 (.088) .560 (.106) .538 (.089)

0.5 .512 (.087) .548 (.108) .530 (.096)

1 .476 (.100) .513 (.107) .492 (.095)

2 .373 (.116) .432 (.110) .419 (.102)

5

0.2 .119 (.150) .136 (.162) .122 (.138)

0.5 .109 (.137) .135 (.163) .113 (.139)

1 .110 (.146) .126 (.151) .111 (.135)

2 .113 (.134) .120 (.140) .114 (.141)

8

Table 2. Comparison between SIR, LVR and CUME with different slices

sigma=1, dimensions=10

model slices SIR LVR CUME

1

5 .930 (.036) .934 (.035) .938 (.031)

10 .937 (.032) .945 (.029) .938 (.031)

20 .928 (.037) .946 (.028) .938 (.031)

2

5 .519 (.120) .553 (.118) .569 (.121)

10 .520 (.117) .600 (.116) .569 (.121)

20 .486 (.122) .607 (.119) .569 (.121)

3

5 .444 (.153) .492 (.156) .510 (.148)

10 .431 (.140) .537 (.142) .510 (.148)

20 .387 (.155) .560 (.153) .510 (.148)

4

5 .472 (.088) .488 (.096) .495 (.094)

10 .464 (.086) .516 (.101) .495 (.094)

20 .454 (.103) .532 (.117) .495 (.094)

5

5 .102 (.127) .114 (.133) .118 (.141)

10 .108 (.140) .131 (.155) .118 (.141)

20 .102 (.135) .149 (.173) .118 (.141)

Table 3. Comparison between SRI, LVR and CUME with different dimensions

sigma=1, slices=10

model dimensions SIR LVR CUME

1

10 .935 (.033) .944 (.028) .938 (.031)

20 .861 (.051) .882 (.042) .868 (.045)

30 .771 (.072) .808 (.055) .787 (.060)

2

10 .511 (.117) .596 (.118) .570 (.119)

20 .355 (.096) .434 (.093) .410 (.094)

30 .259 (.086) .343 (.083) .318 (.081)

3

10 .429 (.151) .533 (.155) .508 (.156)

20 .266 (.120) .361 (.121) .332 (.115)

30 .182 (.104) .269 (.111) .245 (.103)

4

10 .469 (.093) .508 (.110) .494 (.101)

20 .334 (.084) .382 (.080) .369 (.071)

30 .250 (.080) .306 (.069) .297 (.066)

5

10 .111 (.133) .130 (.144) .116 (.134)

20 .058 (.082) .071 (.091) .061 (.077)

30 .036 (.052) .046 (.063) .042 (.059)

9

Table 4. Comparison between LVR and LVR 2 with different dimensions

sigma=2, slices=10

model dimensions LVR LVR 2

1

10 .818 (.087) .768 (.107)

20 .646 (.116) .583 (.130)

30 .522 (.118) .453 (.130)

2

10 .413 (.113) .340 (.118)

20 .262 (.089) .248 (.093)

30 .183 (.074) .173 (.077)

3

10 .414 (.142) .409 (.148)

20 .268 (.109) .262 (.110)

30 .181 (.087) .177 (.089)

4

10 .429 (.101) .416 (.108)

20 .278 (.085) .258 (.089)

30 .200 (.069) .180 (.069)

5

10 .110 (.138) .120 (.147)

20 .056 (.073) .059 (.078)

30 .038 (.051) .038 (.050)

Table 5. Comparison between SIR and OVAs with different dimensions

sigma=0.2, slices=10

model dimensions SIR OVA 1 OVA 2 OVA 3 OVA 4 OVA 5 OVA 6

1

10 .993 (.004) .993 (.004) .993 (.004) .991 (.005) .992 (.005) .986 (.009) .990 (.006)

20 .983 (.008) .983 (.008) .983 (.008) .981 (.009) .981 (.009) .974 (.014) .978 (.011)

30 .969 (.012) .969 (.012) .969 (.012) .966 (.013) .966 (.014) .956 (.019) .960 (.018)

2

10 .818 (.095) .818 (.095) .818 (.095) .810 (.101) .820 (.092) .793 (.112) .820 (.091)

20 .668 (.097) .668 (.097) .668 (.097) .662 (.100) .669 (.096) .648 (.102) .666 (.095)

30 .541 (.094) .541 (.094) .541 (.094) .536 (.094) .543 (.093) .524 (.094) .542 (.092)

3

10 .606 (.164) .606 (.164) .606 (.164) .586 (.164) .616 (.165) .538 (.160) .620 (.165)

20 .409 (.140) .409 (.140) .409 (.140) .393 (.136) .418 (.142) .359 (.133) .424 (.145)

30 .291 (.128) .291 (.128) .291 (.128) .277 (.123) .299 (.130) .254 (.116) .303 (.130)

4

10 .528 (.094) .528 (.094) .528 (.094) .524 (.089) .530 (.097) .515 (.082) .530 (.099)

20 .434 (.058) .434 (.058) .434 (.058) .431 (.057) .435 (.059) .424 (.057) .434 (.060)

30 .365 (.063) .365 (.063) .365 (.063) .363 (.063) .365 (.064) .357 (.063) .364 (.064)

5

10 .109 (.144) .109 (.144) .109 (.144) .096 (.130) .115 (.153) .086 (.111) .120 (.159)

20 .060 (.092) .060 (.092) .060 (.092) .056 (.085) .063 (.096) .052 (.078) .064 (.099)

30 .037 (.052) .037 (.052) .037 (.052) .035 (.049) .039 (.054) .034 (.048) .040 (.055)

* Each of the tables has the mean trace estimate out of 500 simulations and in

parenthesis, the standard deviation of the estimate.

10

4.3 LVRSAVE

To test the performance of these new weighting methods, 6 new models are added to

the existing 5 models used for LVRSIR, which are symmetric around zero and are

models SAVE will be more appropriate to be used.

y=(𝛽1
𝑇𝑥/4)2 + log(1 + |𝛽2

𝑇𝑥|2) + 𝜎𝜖 (6)

y=(𝛽1
𝑇𝑥/)2 + 4sin(𝛽2

𝑇x/4) + 𝜎𝜖 (7)

y=0.5(𝛽1
𝑇𝑥)3 + 0.5(1 + 𝛽2

𝑇𝑥)2 + 𝜎𝜖 (8)

y=0.4(+ 𝛽1
𝑇𝑥)3 + 0.5(1 + 𝛽2

𝑇𝑥/)2 + 𝜎𝜖 (9)

y=|𝛽2
𝑇𝑥/ |1/2 + 𝜎{(𝛽1

𝑇𝑥)2 + 1} 𝜖 (10)

y=exp[𝜎(𝛽1
𝑇𝑥 + 1)3 + 𝜎(1+(𝛽2

𝑇𝑥/)2) + 𝜎𝜖 (11)

* 𝛽1
𝑇

= [1 1 1 0 0 0 ⋯] , 𝛽2
𝑇

= [1 0 0 0 1 3 ⋯] , 𝜎 is the

scaling factor for error 𝜖

The results for SAVE are summarized in tables 6 through 8. The candidate matrix for

SAVE is Ŝ=n−1∑ ns(𝐼𝑝 − 𝑣�̂�)
n
s=1 (𝐼𝑝 − 𝑣�̂�)

T. Since we are dealing with covariance

matrices, we would try different approaches than with SIR. Here we have tried four

different approaches. In LVR 1 and LVR 2, 𝑣�̂� is replaced with 𝑐1 and

𝑐2 respectively. In LVR 3 and LVR 4, 𝐼𝑝 − 𝑣�̂� is replaced with 𝑐3 and 𝑐4

respectively.

LVR 1: 𝑐1 = variance of right + variance of left

LVR 2: 𝑐2 = variance of right – variance of left

LVR 3: 𝑐3 = (𝐼𝑝 – variance of right) + (𝐼𝑝 – variance of left)

LVR 4: 𝑐4 = (𝐼𝑝 – variance of right) – (𝐼𝑝 – variance of left)

In Table 6 it is clear that as dimension increases the performance decreases, which is

expected. LVR 3 and SAVE perform significantly better than other algorithms, where

LVR 3 performs slightly better than SAVE in most of the conditions. In Table 7 the

algorithms perform worse with larger number of slices, except CUVE, whose

performance does not depend on number of slices. LVR 3 performs the best among

11

the other algorithms and it is relatively less sensitive to number of slices. In Table 8

SAVE performs fairly well with low dimensions, but as the dimension goes up its

performance drops dramatically. LVR 3 and CUVE are less sensitive to increase in

dimension, where LVR 3 performs better in lower dimensions and CUVE performs

better in higher dimensions.

Table 6. Comparison between SAVE, CUVE and LVRs with different sigmas

dimensions=10, slices=10

model sigma SAVE LVR 1 LVR 2 LVR 3 LVR 4 CUVE

1

0.2 .978 (.084) .006 (.009) .025 (.040) .991 (.005) .018 (.026) .940 (.034)

0.5 .859 (.237) .006 (.009) .028 (.043) .984 (.008) .021 (.030) .915 (.057)

1 .151 (.203) .009 (.012) .043 (.060) .961 (.018) .027 (.038) .770 (.184)

2 .046 (.067) .019 (.027) .067 (.091) .576 (.326) .048 (.067) .294 (.247)

2

0.2 .476 (.164) .018 (.012) .151 (.110) .821 (.179) .267 (.147) .606 (.130)

0.5 .242 (.130) .026 (.021) .228 (.130) .600 (.154) .284 (.149) .592 (.139)

1 .190 (.104) .426 (.064) .106 (.083) .545 (.122) .498 (.063) .538 (.093)

2 .202 (.112) .165 (.098) .271 (.120) .306 (.142) .293 (.148) .354 (.159)

3

0.2 .480 (.093) .323 (.156) .211 (.123) .626 (.157) .577 (.111) .708 (.140)

0.5 .476 (.094) .353 (.151) .265 (.110) .563 (.107) .615 (.120) .691 (.138)

1 .242 (.231) .231 (.220) .020 (.029) .311 (.263) .356 (.279) .372 (.279)

2 .427 (.131) .383 (.146) .221 (.117) .525 (.112) .558 (.110) .567 (.109)

4

0.2 .598 (.131) .470 (.023) .038 (.031) .941 (.040) .523 (.069) .827 (.118)

0.5 .529 (.081) .469 (.026) .050 (.044) .918 (.068) .518 (.062) .756 (.144)

1 .490 (.052) .461 (.032) .066 (.056) .778 (.159) .507 (.058) .630 (.134)

2 .453 (.073) .426 (.064) .106 (.083) .545 (.122) .498 (.063) .538 (.093)

5

0.2 .456 (.320) .441 (.303) .007 (.010) .458 (.321) .472 (.332) .470 (.343)

0.5 .439 (.313) .409 (.299) .009 (.012) .437 (.317) .457 (.324) .484 (.322)

1 .395 (.289) .367 (.278) .011 (.016) .422 (.304) .447 (.312) .461 (.316)

2 .242 (.231) .231 (.220) .020 (.029) .311 (.263) .356 (.279) .372 (.279)

6

0.2 .586 (.111) .545 (.101) .048 (.071) .671 (.144) .709 (.141) .711 (.139)

0.5 .568 (.099) .525 (.094) .033 (.033) .630 (.135) .685 (.139) .695 (.137)

1 .533 (.088) .485 (.092) .034 (.026) .580 (.121) .633 (.130) .648 (.135)

2 .429 (.105) .348 (.117) .047 (.040) .475 (.098) .524 (.105) .547 (.113)

7

0.2 .697 (.169) .344 (.093) .044 (.038) .874 (.080) .438 (.054) .819 (.100)

0.5 .656 (.178) .342 (.094) .044 (.032) .870 (.084) .438 (.057) .794 (.115)

1 .520 (.172) .331 (.102) .051 (.042) .847 (.097) .434 (.056) .726 (.145)

2 .343 (.124) .289 (.111) .062 (.050) .776 (.126) .409 (.077) .551 (.147)

8

0.2 .555 (.131) .396 (.073) .043 (.034) .876 (.077) .498 (.053) .839 (.099)

0.5 .565 (.132) .393 (.087) .044 (.032) .870 (.083) .505 (.063) .837 (.089)

1 .536 (.117) .397 (.075) .045 (.033) .871 (.074) .493 (.053) .832 (.094)

2 .503 (.106) .395 (.076) .048 (.038) .856 (.084) .492 (.049) .824 (.103)

12

9

0.2 .652 (.172) .085 (.071) .048 (.038) .736 (.160) .456 (.045) .877 (.070)

0.5 .622 (.176) .084 (.078) .045 (.035) .740 (.155) .456 (.043) .879 (.059)

1 .618 (.175) .084 (.080) .048 (.039) .716 (.161) .455 (.048) .874 (.072)

2 .544 (.168) .094 (.084) .048 (.035) .695 (.152) .442 (.053) .855 (.081)

10

0.2 .728 (.127) .629 (.133) .268 (.096) .703 (.130) .811 (.083) .762 (.108)

0.5 .558 (.120) .520 (.082) .288 (.100) .529 (.101) .615 (.140) .636 (.153)

1 .503 (.087) .503 (.064) .304 (.102) .499 (.077) .524 (.098) .516 (.116)

2 .490 (.072) .507 (.066) .323 (.101) .494 (.068) .498 (.073) .474 (.084)

11

0.2 .662 (.139) .104 (.084) .054 (.041) .620 (.123) .383 (.093) .831 (.101)

0.5 .655 (.140) .102 (.084) .054 (.040) .623 (.126) .384 (.087) .835 (.098)

1 .658 (.138) .097 (.081) .050 (.038) .614 (.128) .383 (.094) .828 (.104)

2 .663 (.140) .100 (.084) .056 (.044) .619 (.125) .384 (.093) .833 (.099)

13

Table 7. Comparison between SAVE, CUVE and LVRs with different slices

dimensions=10, sigma=0.2

model slices SAVE LVR 1 LVR 2 LVR 3 LVR 4 CUVE

1

5 .992 (.004) .007 (.010) .028 (.040) .989 (.006) .019 (.029) .941 (.035)

10 .975 (.095) .006 (.008) .022 (.032) .990 (.005) .017 (.023) .941 (.035)

20 .007 (.010) .006 (.008) .021 (.035) .991 (.005) .014 (.019) .941 (.035)

2

5 .652 (.132) .020 (.015) .171 (.119) .910 (.094) .271 (.138) .608 (.132)

10 .477 (.161) .018 (.012) .152 (.110) .848 (.170) .288 (.147) .608 (.132)

20 .144 (.102) .016 (.011) .142 (.109) .689 (.203) .240 (.153) .608 (.132)

3

5 .547 (.089) .328 (.143) .238 (.124) .639 (.140) .593 (.118) .706 (.142)

10 .479 (.082) .328 (.151) .214 (.122) .619 (.160) .578 (.108) .706 (.142)

20 .377 (.142) .336 (.164) .220 (.129) .557 (.134) .576 (.121) .706 (.142)

4

5 .866 (.109) .472 (.023) .042 (.035) .948 (.020) .524 (.065) .822 (.121)

10 .606 (.133) .472 (.022) .040 (.037) .945 (.022) .531 (.076) .822 (.121)

20 .481 (.050) .467 (.027) .066 (.085) .901 (.098) .519 (.068) .822 (.121)

5

5 .447 (.331) .417 (.310) .008 (.010) .438 (.326) .455 (.335) .473 (.339)

10 .438 (.314) .422 (.230) .006 (.009) .451 (.313) .464 (.324) .473 (.339)

20 .432 (.308) .436 (.309) .008 (.016) .456 (.322) .474 (.340) .473 (.339)

6

5 .609 (.112) .544 (.087) .029 (.020) .676 (.138) .691 (.138) .712 (.136)

10 .578 (.102) .541 (.095) .046 (.073) .666 (.139) .709 (.133) .712 (.136)

20 .534 (.084) .537 (.098) .107 (.140) .629 (.140) .697 (.139) .712 (.136)

7

5 .826 (.102) .317 (.099) .048 (.042) .873 (.070) .433 (.055) .817 (.102)

10 .679 (.173) .345 (.096) .043 (.037) .877 (.082) .441 (.049) .817 (.102)

20 .344 (.113) .363 (.088) .040 (.033) .861 (.091) .438 (.049) .817 (.102)

8

5 .831 (.114) .404 (.062) .047 (.033) .892 (.052) .501 (.057) .836 (.098)

10 .557 (.127) .393 (.076) .044 (.032) .878 (.073) .499 (.057) .836 (.098)

20 .396 (.084) .393 (.076) .043 (.031) .819 (.132) .494 (.058) .836 (.098)

9

5 .857 (.087) .117 (.091) .043 (.032) .853 (.100) .462 (.042) .880 (.062)

10 .641 (.169) .084 (.084) .045 (.034) .740 (.165) .458 (.048) .880 (.062)

20 .284 (.118) .078 (.070) .043 (.031) .539 (.150) .446 (.051) .880 (.062)

10

5 .765 (.114) .692 (.126) .180 (.104) .743 (.116) .747 (.119) .755 (.116)

10 .725 (.123) .614 (.129) .260 (.102) .703 (.130) .813 (.086) .755 (.116)

20 .583 (.147) .579 (.124) .306 (.087) .627 (.139) .805 (.090) .755 (.116)

11

5 .755 (.128) .118 (.094) .060 (.047) .687 (.141) .390 (.085) .833 (.100)

10 .665 (.136) .098 (.079) .052 (.041) .623 (.131) .381 (.086) .833 (.100)

20 .228 (.116) .095 (.085) .052 (.040) .572 (.098) .372 (.098) .833 (.100)

14

Table 8. Comparison between SAVE, CUVE and LVRs with different dimensions

slices=10, sigma=0.2

model dimensions SAVE LVR 1 LVR 2 LVR 3 LVR 4 CUVE

1

10 .976 (.090) .006 (.007) .024 (.035) .991 (.005) .019 (.027) .938 (.037)

20 .007 (.009) .006 (.009) .011 (.015) .980 (.008) .008 (.011) .813 (.103)

30 .005 (.007) .006 (.008) .008 (.010) .958 (.064) .007 (.011) .619 (.175)

2

10 .476 (.156) .017 (.012) .145 (.107) .845 (.167) .268 (.142) .605 (.131)

20 .067 (.052) .015 (.010) .040 (.033) .487 (.019) .032 (.024) .384 (.081)

30 .038 (.030) .015 (.012) .024 (.018) .455 (.051) .020 (.014) .258 (.097)

3

10 .487 (.083) .321 (.147) .225 (.119) .638 (.156) .588 (.116) .713 (.141)

20 .290 (.139) .216 (.137) .102 (.085) .381 (.110) .471 (.074) .572 (.104)

30 .160 (.119) .142 (.109) .057 (.055) .229 (.127) .380 (.087) .503 (.067)

4

10 .598 (.132) .468 (.023) .039 (.032) .941 (.026) .526 (.079) .822 (.124)

20 .424 (.037) .411 (.038) .022 (.016) .746 (.165) .460 (.033) .576 (.110)

30 .345 (.067) .344 (.059) .017 (.013) .430 (.111) .413 (.033) .479 (.074)

5

10 .480 (.322) .465 (.310) .007 (.012) .496 (.328) .512 (.335) .505 (.345)

20 .395 (.281) .352 (.258) .006 (.008) .407 (.291) .439 (.314) .462 (.323)

30 .273 (.222) .244 (.205) .005 (.008) .321 (.243) .384 (.278) .409 (.293)

6

10 .585 (.110) .540 (.094) .043 (.068) .665 (.142) .706 (.139) .711 (.135)

20 .467 (.054) .431 (.058) .018 (.012) .483 (.079) .537 (.090) .566 (.093)

30 .384 (.053) .352 (.054) .014 (.010) .399 (.049) .462 (.055) .507 (.064)

7

10 .689 (.173) .347 (.091) .044 (.036) .879 (.072) .439 (.059) .813 (.103)

20 .220 (.106) .214 (.098) .020 (.015) .700 (.121) .322 (.074) .528 (.135)

30 .104 (.080) .126 (.078) .016 (.012) .551 (.110) .221 (.084) .337 (.108)

8

10 .563 (.140) .392 (.081) .042 (.030) .872 (.078) .494 (.053) .842 (.096)

20 .298 (.104) .256 (.104) .023 (.017) .591 (.172) .414 (.051) .612 (.109)

30 .161 (.101) .159 (.094) .019 (.013) .290 (.132) .331 (.075) .489 (.086)

9

10 .648 (.174) .091 (.084) .044 (.031) .746 (.156) .461 (.045) .880 (.065)

20 .159 (.094) .039 (.038) .023 (.015) .506 (.062) .272 (.117) .652 (.138)

30 .079 (.063) .024 (.021) .016 (.011) .449 (.054) .094 (.083) .421 (.130)

10

10 .728 (.129) .622 (.135) .263 (.105) .705 (.139) .812 (.092) .761 (.113)

20 .397 (.137) .442 (.093) .173 (.080) .451 (.116) .573 (.134) .535 (.119)

30 .216 (.099) .319 (.077) .123 (.065) .301 (.091) .367 (.117) .387 (.109)

11

10 .659 (.143) .098 (.084) .058 (.046) .619 (.126) .384 (.089) .832 (.103)

20 .119 (.085) .045 (.039) .026 (.018) .507 (.047) .168 (.108) .583 (.135)

30 .061 (.051) .031 (.027) .020 (.015) .475 (.028) .074 (.068) .393 (.111)

* Each of the tables has the mean trace estimate out of 500 simulations and in

parenthesis, the standard deviation of the estimate.

15

5. Real Data Test

Ecoli data set from University of California, Irvine (see Horton, Nakai, 1996) was

used for our real data test. In this data set there were 7 predictor variables and 1

response variable with a total number of 336 data points collected. The predictor

variables were score ratings based on different methods, where 𝑋3 and 𝑋4 were

discrete and the rest of them were continuous. The response variable denotes the

location site of proteins on the cell, which was discrete with following classifications:

1=cytoplasm, 2=inner membrane without signal sequence, 3= inner membrane, cleavable

signal sequence, 4= inner membrane lipoprotein, 5=inner membrane, uncleavable signal

sequence, 6=outer membrane, 7=outer membrane lipoprotein, 8=perisplasm.

Based on this data set we were trying to see if we can find directions that separate the

protein by localization site. In SIR, after the estimated directions (estimated

coefficients) were obtained, we used the betas corresponding to the largest two

eigenvalues to obtain SIR1 and SIR2, where SIR1=standardized X*𝛽𝑠𝑖𝑟1 and SIR2=

standardized X*𝛽𝑠𝑖𝑟2. Similarly, we calculated LVR1, LVR2, CUME1 and CUME2

using 𝛽𝑙𝑣𝑟1, 𝛽𝑙𝑣𝑟2, 𝛽𝑐𝑢𝑚𝑒1 and 𝛽𝑐𝑢𝑚𝑒2. Then we plotted SIR1 vs. SIR2, LVR1 vs.

LVR2 and CUME1 vs. CUME2 in order to identify possible group patterns, where

different colors mark response from different slices. The same methodology was used

to compare LVR with SAVE and CUVE.

Figure 5. SIR1 vs. SIR2

16

Figure 6. CUME1 vs. CUME2

Figure 7. LVR1 vs. LVR2

* Different colors were used to mark different response groups, where black=1, red=2,

green=3, blue=4, yellow=5, purple=6, grey=7, light blue=8.

17

In Figure 5, it showed a fairly clear group pattern, but there were 10 data points

located apart from the major clusters. Those 10 points had different values than the

rest of the points in two of the predictors. This showed that SIR is influenced by the

differences in those two predictors. Compared to Figure 5, all the data points in Figure

6 were relatively close to each other, and a pattern could be seen, which meant the

group identification based on the first two directions of CUME was fairly reliable.

Figure 7 also provided a relatively clear group pattern without any “outliers”. If we

look at the groups, group 1 was the cytoplasm and it formed one cluster, group 2 and

5 were from inner membrane and they formed another cluster, group 6 and 7 were

from outer membrane and they formed a third cluster, and finally group 8 was from

perisplasm and it formed a fourth cluster. Since group 3 and 4 had only 2 points in the

sample respectively, we ignored their roles here.

6. Discussion

In this work we propose the two algorithms for sufficient dimension reduction, one is

based on SIR and the second is based on SAVE. Through the simulations we

performed, we can see that the methodology proposed called LVRSIR and LVRSAVE

perform better than existing methodologies (SIR, CUME, SAVE and CUVE). SIR

performs worse when number of slices increases, but LVR’s performance improves

(see Table 2). CUME’s performance does not depend on number of slices and it has

fairly good averaged performance. When dimension increases each of the methods

performs worse, which is as expected (see Table 3). With increasing in sigma their

performances drop, but are not as rapidly as they drop with higher dimensions.

In SAVE, several different weighting methods were tested in an effort to maximize the

performance of LVR. LVR 3 is found to be the best among all LVRs, and it performs

better than SAVE for all models. Unlike in SIR, LVR does not perform better with

larger number of slices, although its performance does not drop as quickly as of SAVE

18

(see Table 7). Comparing to CUVE, LVR 3 is not necessarily superior, as it only

performs better than CUVE in some cases. CUVE and LVR 3 have their advantage

over SAVE when dimension is high, in other words, they perform more consistently

with increasing in dimension (see Table 8). More thorough analysis is needed for this;

one can extend this job in several directions. An immediate direction is a similar

algorithm modification of the DR algorithm to achieve dimension reduction. One can

try functions of moments i.e. OVA to do this.

We have tried 6 different weighting methods for OVA in a hope to improve its

performance (see Table 5). From the simulation, it seems OVA with new weighting

methods do not necessarily perform better than the original OVA. For example,

original OVA performs slightly better in the first model; OVA 4 and OVA 6 perform

better in model 2, 4 and model 3, 5 respectively.

19

References

Cook, R. D. (1998), “Regression Graphics: Ideas for Studying Regression Through

Graphics”, New York, Wiley and Sons

Cook, D. R. and Weisberg, S. (1991), “Sliced Inverse Regression for Dimension

Reduction: Comment”, Journal of the American Statistical Association, Vol. 86, No.

414, pp. 328-332

Horton, P. and Nakai, K. (1996), "A Probabilistic Classification System for

Predicting the Cellular Localization Sites of Proteins", Intelligent Systems in

Molecular Biology, pp. 109-115

Li, B., Artemiou, A. and Li, L. (2011), “Principal Support Vector Modeling for Linear

and Nonlinear Dimension Reduction”, Annals of Statistics, Vol. 39, No. 6, pp.

3182-3210

Li, B. and Wang, S. (2007) “On Directional Regression for Dimension Reduction”,

Journal of the American Statistical Association, Vol. 102, No. 479, pp. 997-1008

Li, K. C. (1991), “Sliced Inverse Regression”, Journal of the American Statistical

Association, Vol. 86, No. 414, pp. 316-327

Zhu, L. P., Zhu, L. X. and Feng, Z. H. (2010), “Dimension Reduction in Regressions

Through Cumulative Slicing Estimation”, Journal of the American Statistical

Association December 2010, Vol. 105, No. 492, pp. 1455-1466

	Simulation study on using moment functions for sufficient dimension reduction
	Recommended Citation

	tmp.1383694175.pdf.ISJqr

