
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2011

Potential for hardware-based techniques for reuse distance Potential for hardware-based techniques for reuse distance

analysis analysis

Justin R. Slepak
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

Copyright 2011 Justin R. Slepak

Recommended Citation Recommended Citation
Slepak, Justin R., "Potential for hardware-based techniques for reuse distance analysis", Master's report,
Michigan Technological University, 2011.
https://digitalcommons.mtu.edu/etds/539

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151507803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F539&utm_medium=PDF&utm_campaign=PDFCoverPages

THE POTENTIAL FOR HARDWARE-BASED TECHNIQUES FOR REUSE

DISTANCE ANALYSIS

By

Justin R. Slepak

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

(Computer Science)

MICHIGAN TECHNOLOGICAL UNIVERSITY

2011

c© 2011 Justin R. Slepak

This report, "The Potential for Hardware-Based Techniques for Reuse Distance Analysis,"

is hereby approved in partial fulfillment of the requirements for the Degree of MASTER

OF SCIENCE IN COMPUTER SCIENCE

Department of Computer Science

Signatures:

Co-Advisor
Dr. Steven M. Carr

Co-Advisor
Dr. Zhenlin Wang

Committee Member
Dr. Donald L. Kreher

Department Chair
Dr. Steven M. Carr

Date

Contents

List of Figures . viii

Abstract . ix

1 Introduction . 1

1.1 Background . 1

1.2 Motivation for Hardware-based Reuse Distance Analysis 2

1.3 Outcome . 4

2 Related Work . 5

i

2.1 Reuse Distance Analysis . 6

2.2 Hardware Performance Monitoring . 12

3 Data Collection Method . 15

4 Data Summary . 19

4.1 Per-Benchmark Examination . 20

4.1.1 Overview . 20

4.1.2 400.perlbench . 20

4.1.3 401.bzip . 21

4.1.4 403.gcc . 21

4.1.5 410.bwaves . 22

4.1.6 429.mcf . 23

4.1.7 434.zeusmp . 24

ii

4.1.8 435.gromacs . 25

4.1.9 436.cactusADM . 26

4.1.10 444.namd . 27

4.1.11 445.gobmk . 28

4.1.12 447.dealII . 28

4.1.13 450.soplex . 29

4.1.14 453.povray . 31

4.1.15 454.calculix . 31

4.1.16 456.hmmer . 32

4.1.17 458.sjeng . 33

4.1.18 459.GemsFDTD . 34

4.1.19 462.libquamtum . 35

4.1.20 464.h264ref . 36

iii

4.1.21 465.tonto . 37

4.1.22 470.lbm . 38

4.1.23 471.omnetpp . 38

4.1.24 473.astar . 38

4.1.25 481.wrf . 39

4.1.26 482.sphinx3 . 40

4.1.27 483.xalancbmk . 41

5 Conclusion . 43

5.1 Future Work . 43

5.2 Potential Applictions . 45

Bibliography . 47

iv

List of Figures

4.1 400.perlbench typical PEBS histogram . 21

4.2 401.bzip2 typical Pin histograms . 22

4.3 401.bzip2 typical PEBS histogram . 23

4.4 410.bwaves Pin histogram shapes . 23

4.5 410.bwaves PEBS histogram shape . 24

4.6 429.mcf PEBS histogram shape . 24

4.7 434.zeusmp typical Pin histogram (left) and PEBS histogram (right) 25

4.8 435.gromacs typical Pin histogram (left) and PEBS histogram (right) 26

v

4.9 436.cactusADM typical PEBS histogram (left) and associated Pin histogram

(right) . 27

4.10 This 444.namd PEBS histogram suggests the wrong interpretation at coarser

resolution. Bins on the left grow by a factor of 2, while those on the right

grow by a factor of 4
√

2 . 28

4.11 444.namd typical Pin histogram shapes . 29

4.12 PEBS histogram for 445.gobmk instruction responsible for largest number

of misses . 30

4.13 PEBS histogram for 447.dealII instruction responsible for largest number

of misses . 30

4.14 453.povray typical PEBS histogram . 31

4.15 454.calculix PEBS histograms, typical (0x54fd55 on the left) and atypi-

cal (0x4073db on the right) . 32

4.16 454.calculix Pin histograms corresponding to atypical PEBS histograms

(0x44ff43 and 0x4073db respectively) 32

4.17 456.hmmer typical Pin histograms . 33

vi

4.18 456.hmmer typical Pin histograms . 33

4.19 458.sjeng gradual histogram . 34

4.20 459.GemsFDTD typical PEBS histograms 35

4.21 459.GemsFDTD Pin histograms without short reuse distances 36

4.22 459.GemsFDTD Pin histograms with short reuse distances 37

4.23 471.omnetpp PEBS histograms with usual shape 39

4.24 471.omnetpp PEBS histograms with unusual shapes 39

4.25 473.astar example PEBS histograms . 40

4.26 481.wrf typical PEBS histogram . 40

4.27 481.wrf PEBS histograms with multiple patterns 41

4.28 482.sphinx3 typical PEBS histogram . 41

4.29 482.sphinx3 typical PEBS histogram . 42

4.30 483.xalancbmk typical (left) and atypical (right) PEBS histograms 42

vii

4.31 483.xalancbmk typical (left) and atypical (right) PEBS histograms 42

viii

Abstract

Reuse distance analysis, the prediction of how many distinct memory addresses will be

accessed between two accesses to a given address, has been established as a useful tech-

nique in profile-based compiler optimization, but the cost of collecting the memory reuse

profile has been prohibitive for some applications. In this report, we propose using the

hardware monitoring facilities available in existing CPUs to gather an approximate reuse

distance profile. The difficulties associated with this monitoring technique are discussed,

most importantly that there is no obvious link between the reuse profile produced by hard-

ware monitoring and the actual reuse behavior. Potential applications which would be made

viable by a reliable hardware-based reuse distance analysis are identified.

ix

Chapter 1

Introduction

1.1 Background

Despite regular increases in processor speed over time, memory accesses have not kept

up with this trend. Because memory operations form a significant proportion of a typical

program, the resulting speed disparity makes memory acces a serious performance bot-

tleneck. Techniques used for mitigating slow memory response require awareness of the

CPU architecture and the runtime behavior of a program. CPU caches hold recently-used

segments of data in the expectation that those segments will be accessed again soon. Be-

cause the cache is smaller than RAM and located on the CPU chip itself, the time needed

to access data in the cache is reduced compared to RAM. Holding recently-used data ex-

ploits two well-known tendencies of typical programs: that individual data elements are

1

often used once and then used again shortly afterwards ("temporal locality") and that data

elements near those recently used are likely to be used in the near future ("spatial locality").

Instruction scheduling by the compiler allows load instructions to be issued as early as pos-

sible, increasing the chance that the load will complete before the resulting data is needed

(otherwise, the CPU will have to stall execution while it waits for the data). Prefetching

requests data from memory in anticipation of future use. It can be done by the compiler

("software prefetching") by inserting special "prefetch" instructions into the compiled pro-

gram or by the processor ("hardware prefetching") using various techniques which analyze

memory usage patterns to predict near-future data use. Load speculation is the reordering

of program instructions so that a load instruction is issued before a store instruction which

precedes it in program order. Again, issuing the load earlier allows more time for it to

complete, but a recovery mechanism is needed in case it turns out that the speculated load

depends on the result of the prior store (i.e. they operate on the same memory address).

1.2 Motivation for Hardware-based Reuse Distance Analysis

For a pair of memory accesses to the same location (a "reuse pair"), the "reuse distance"

is defined as the number of distinct memory locations accessed between that reuse pair.

Because the cache operates by keeping recently-used data readily accessible, reuse dis-

tance identifies what data elements will be kept in or evicted from the cache before being

reused; thus a program’s reuse distance profile gives a metric for the temporal locality

2

of that program. Tracking a reuse distance profile for each individual memory instruc-

tion gives additional insight useful for the latency mitigation techniques described above.

Knowing approximately when a data element will be reused helps decide whether that

piece of data is worth keeping in the cache (n.b. perfect caching requires evicting the data

whose next use is farthest in the future, whereas the conventional "least recently used" pol-

icy is an approximation to this), when to schedule a load or prefetch instruction (or issue

a hardware prefetch), or whether a load is likely to depend on a particular store. Some

memory use optimizations require identifying a program’s critical instructions, which are

those responsible for most (typically 90%) of the program’s cache misses.

Despite algorithmic improvements such as replacing the LRU stack of Mattson et al. [10],

a stack-like structure holding memory references ordered by recency of use so that stack

depth is equivalent to reuse distance, with a tree-based structure [5], current techniques

for gathering reuse distance profiles run very slowly. Data is gathered via software in-

strumentation, and an instrumented program runs much slower than the original version

of that program. In practice, this means analysis must use training runs on smaller input

data. The technique proposed herein uses hardware performance monitors rather than in-

strumentation. The monitored program runs with little reduction in speed, and information

is accessible at runtime. This makes it possible to perform optimization at runtime, such as

by a JIT compiler, and to perform analysis on actual program input data rather than smaller

training inputs.

3

1.3 Outcome

The hardware-based measurement technique proposed herein produces similar per-instruction

output for a wide range of tested programs. In most cases, there is little variation between

the output for an individual benchmark’s critical instructions. Most of the variation is across

different benchmark programs, but one histogram shape appears in over half of the tested

programs.

4

Chapter 2

Related Work

This chapter describes prior research on which this report is based. The work comes primar-

ily from two areas, reuse distance analysis and hardware performance monitoring. Much

of the work deals with analysis of program cache usage for profile-based optimization pur-

poses.

The reuse distance for a consecutive pair of memory references to the same location is

defined as the number of unique memory locations accessed between the references in

question. For example, given a memory access trace (A, E, C, D, B, A, B, C, E), the reuse

distance between the two accesses to A is 4, while the reuse distance between accesses to

C is 3. Reuse distance gives a description of a program’s temporal locality; a cache using

LRU replacement will have available those memory locations corresponding to short reuse

5

distances. This allows reuse distance to be compared with cache capacity to identify data

which will be evicted before reuse, thereby leading to prediction of cache misses. This

prediction does not take into account conflict misses, but Fang et al. [6] find that they are

not common. It also ignores compulsory misses, but those are exactly the cache misses

where data reuse has not yet happened.

Processors typically include facilities for monitoring their own performance. This includes

specialized registers for counting performance-related events (such as retired instructions,

cache misses, etc.) as well as, in more recent processors, the capability to save data associ-

ated with an event (e.g. the address of the instruction which caused the event) into a buffer

in memory. Use of hardware performance monitoring allows profile-based optimization

with far less overhead than that associated with simulation- or instrumentation-based sys-

tems. Several authors describe techniques for monitoring via hardware and for making use

of the resulting data.

2.1 Reuse Distance Analysis

Memory references can be tracked in a stack-like structure, with new references being

added to the top and old references moved from the middle to the top when they reappear

in a program’s memory trace. The depth of a memory reference in the stack at the time it is

moved back to the top is the reuse distance between the current and prior references to that

6

address. However, this requires storing a history of the most recent access to each memory

location and searching linearly on each memory access, with a total space cost in O(m) and

time cost in O(m∗n), where m is the number of distinct memory locations accessed, and n

is the number of memory accesses made during runtime. This makes monitoring unfeasibly

slow on anything more than a small memory access trace. Ding and Zhong [5] and Zhong

and Chang [12] both describe techniques for reducing the performance overhead associated

with reuse distance monitoring.

Ding and Zhong propose a tree-based structure for tracking reuse distances, in which long

distances are approximated within a relative linear error bound, reducing the space cost to

O(logm) and the time cost to O(n∗ log logm). A modification which respects a constant er-

ror bound is also discussed. Because a full program run’s access trace can now be converted

to a reuse distance trace, two training runs on small data sets are used, and a histogram of

reuse distances for each run is constructed. This reference histogram is built by sorting

all memory accesses by reuse distance and then splitting the sorted list into equally-sized

bins. The value for each bin is the average reuse distance for memory accesses in that bin.

For each histogram bin, the training runs are used to model the histogram bin’s value as

an affine function of data size, which is defined as the largest single reuse distance in the

memory access trace (this is, in effect, the maximum size of the working set of program

data). Data size itself is estimated by sampling reuse distances which are greater than a

chosen threshold distance. From the sequence of above-threshold reuse distances, the ana-

lyzer selects the first k local maxima which cover at least m data samples (in practice, k = 1

7

and m = 2 were found to be sufficient for most of the programs tested). The largest of these

peaks is selected as the data size estimate; while it is really only linearly proportional to the

data size, this is enough for the linear fitting process described above (the actual factor by

which it differs depends on program structure). More discriminate methods are suggested

for selecting the peak, but they are not put to use.

Zhong and Chang [12] gather only partial segments of the full program’s memory reuse

trace using a sampling method based on bursty tracing. The sampling system is turned

on and off according to a timer or counter, thus profiling discrete sections of a program

run. This distinguishes it from the PEBS-based technique proposed herein, which sim-

ply selects individual instructions from a run rather than sequences of instructions. Naïve

sampling directly applies bursty tracing with preplanned "sampling" and "hibernating" in-

tervals. By sampling 1
r of the execution, sampling overhead is reduced by a factor of r,

but there is no guarantee of accuracy in measurement. Only reuses confined to a single

sampling interval can be measured accurately, and this technique allows a very high error

rate to go undetected. In biased sampling, the monitor still searches for the last access

time of memory references encountered during hibernating intervals. If it is found that the

previous access was during the same hibernating interval, the access is ignored. Otherwise,

an access-time table and access trace must be updated. If there was a prior occurrence of

this reference before this hibernating interval, its reuse distance is calculated and included

in the histogram. Under this technique, the measured reuse distance is always greater than

or equal to the actual reuse distance because of the references which are ignored during

8

hibernation. Not all distances have an equal chance of being sampled, because those not

long enough to reach before the current hibernating interval are ignored, while reuses with

distances longer than the hibernating interval are guaranteed to be included in the sample.

The final revision of the sampling technique is "history-preserved representative sampling,"

in which bookkeeping is performed during sampling and hibernating intervals. Only those

reuse pairs whose first element is in a sampling interval are measured for distance, equal-

izing the probability of inclusion in the sample for all possible reuse distances. Several

additional performance improvements for this algorithm are described as well. Using this

algorithm, the authors sample 1% of reuses and achieve an average speedup of 7.5 over

Ding and Zhong’s non-sampling algorithm.

Fang et al. [6] apply reuse distance analysis to individual instructions, again to predict reuse

distances based on training runs with smaller input data. The reuses are associated with

the instructions which caused them, generating a reuse histogram for every static memory

access instruction. A histogram is then split into access patterns, meant to correspond

the distinct behavioral patterns a single instruction may show. Each histogram pattern is a

region around a local maximum, bounded by local minima or zeroes. A pattern is described

with two linear functions, one from left minimum to maximum, and one from maximum

to right minimum. The predictive analysis focuses on mapping a program’s data size to an

individual instruction’s pattern arrangement. For critical instructions, increasing data size

typically shifts one or more patterns to the right, preserving the general distribution of reuse

distances within each single pattern. Software instrumentation is used on two training runs,

9

similar to the technique used by Ding and Zhong. Most tested benchmarks showed over

90% prediction coverage and accuracy, but prediction is limited when the training runs do

not achieve full code coverage.

In further study, Fang et al. [7] consider prediction of cache misses based on reuse distance

analysis. The cache size represents a cutoff point in the reuse distance histogram: bins

to the right of the cutoff represent cache misses due to reuse distance longer than cache

capacity, while those to the left are cache hits. While conflict misses are not taken into

account in this model, they turn out to be quite rare. The predicted miss count, the sum

of histogram bars right of the cutoff, is used to identify critical instructions, i.e. those

responsible for most of the program’s cache misses. These can also be identified using a

reuse histogram predicted based on training runs, a technique referred to as "predicted reuse

distance." This was compared against "reference reuse distance," the predicted miss count

calculated from a histogram generated by running the larger reference-data program run

under instrumentation, representing an upper bound on what can be learned about cache

miss rate via reuse distance analysis. It was also compared against "test cache simulation,"

measuring cache miss rates via a cache simulation on the smaller of the training data sets.

The test cache simulation was consistently beaten by the predicted reuse distance technique.

Keramidas et al. [8] apply reuse analysis to L2 cache management. The processor keeps

a table mapping program counters to predicted reuse times and confidence values. The

predicton is represented as the log of the expected reuse time, and the confidence value is

10

tracked as a 2-bit saturating counter. When a line is to be evicted, two candidates are iden-

tified. The first is the line whose predicted next access time is farthest in the future; this

candidate is selected to maximise score = (predictedreusetime− timesincelastaccess). If

a line has a negative estimated time of access, its time is clipped to 0. The second candi-

date is selected according to LRU policy, with score equal to the time it has been in the

cache. The candidate with the higher score is evicted. The confidence score is incremented

when actual reuse time matches the prediction and decremented on a mismatch. When a

confidence score is reduced to 0, the old prediction is replaced with the most recent actual

time. A table tracking 512 instructions with 39 bits per entry (32 for program counter, 5 for

predicted log, 2 for confidence counter) was found to be sufficient to capture most of the

benefit offered by this technique. Only a few instructions are traced at a time, limiting the

number of watchpoint registers. Keramidas et al. [9] found that this technique is advanta-

geous in comparison to shepherd caching and dynamic insertion policy, proposed by other

authors, because they do not take miss cost into account, and that it is superior to prior

work on replacement based on awareness of memory-level parallelism due to its capability

of handling LRU-hostile cache access behavior, which is commonly seen at the L2 cache.

The work by Keramidas differs from the technique proposed here in its characterization

of reuse behavior according to time rather than number of unique intervening memory

references and in its selection of individual instructions to track rather than sampling from

the entire memory access trace. Measuring reuse distance in hardware would require more

than just a single register per tracked reuse, as counting only unique intervening memory

11

references requires remembering which ones have already occured.

2.2 Hardware Performance Monitoring

Buck and Hollingsworth [2, 3] consider sampling L2 cache misses for profile-guided op-

timization. A miss count is associated with each dynamically-allocated memory block. A

system using separate cache miss counters for different sections of memory is also con-

sidered, but this proposal assumes hardware support for such counters (though they could

be approximated with PEBS-based monitoring). Both techniques are usable for identify-

ing what memory structures are responsible for the most cache misses. Early work used

instrumentation to identify the addresses responsible for cache misses.

Later work used an Itanium 2 processor which includes support for hardware-based sam-

pling of cache misses and makes their proposed sampling technique possible via hardware

performance monitoring. Load accesses to the L2 cache (i.e. floating point loads and L1

load misses) are sampled, and each miss address is associated with source-level data struc-

ture. The authors make a detailed examination of two SPEC CPU2000 benchmarks with

low L1 cache hit rates, equake and twolf. In equake, only 64% of loads hit the L1 cache,

with most of the high-latency loads coming from iterating over a single 3-dimensional ar-

ray of doubles. Changing the array allocation to one contiguous block of memory rather

than using a separate malloc call at each indirection level resulted in a 57% decrease in

12

L1 misses, a 30% decrease in L2 misses, and a 10% decrease in running time. twolf

had a cache hit rate of 74%, with a slightly higher average memory access latency than

equake. Most cache misses were attributed to a small handful of C struct types. Some

were small enough to fit within a single L1 cache line, and all were small enough to fit in an

L2 cache line. However, it is unlikely that multiple entire structures fit into a cache line due

to malloc’s space overhead. By writing a specialized memory allocator for these small

structures, they could be placed contiguously in memory. The custom allocator also accepts

hints from the caller about which structs include pointers to each other and co-locates such

structs. This optimization eliminated 57% of L1 misses and 27% of L2 misses, reducing

run time by 11%. A separate optimization focused on a variable-sized 2-dimensional array,

which was the next most frequent cause of L1 misses. Allocating the array in a contiguous

block, as was done in equake reduced L1 misses by 33%, L2 misses by 29%, and running

time by 16% versus the original twolf program.

This cache miss sampling technique is distinguishable from the technique proposed in this

report because it does not attempt reuse distance analysis, instead identifying the source-

level data structures responsible for the majority of cache misses. The optimizations per-

formed based on information thus gathered also involved extensive human intervention, as

the critical steps (providing structure names to the monitoring tool, identifying problematic

sections of source code, and transforming the source code) were all done manually.

Schneider et al. [11] and Cuthbertson et al. [4] demonstrate the use of hardware perfor-

13

mance monitoring in a just-in-time (JIT) compiler. Schneider et al. used a Java Virtual Ma-

chine (JVM) with a copying garbage collector designed to improve locality by co-locating

objects on the heap. The efficacy of co-location can be guided in advance and checked

afterwards by sampling cache misses via PEBS. Cuthbertson et al. used an Itanium pro-

cessor’s performance monitoring unit, which supplies the addresses of the instruction and

memory data associated with a sampled cache miss, as well as the latency of the memory

access. A JVM internally tracks the latencies associated with bytecode instructions and

maps them to specific segments of the JIT compiler’s internal representation of the code.

The resulting load latency profile is used for optimizing JIT compilation. Global instruction

scheduling attempts to take advantage of code motion opportunities. While it is common

to minimize the effect of memory latency by scheduling memory operations as early as

possible, this JVM is modified to deemphasize the early scheduling of low-latency loads,

thus shortening register live ranges and reducing the amount of data which must be spilled

to memory. Cuthbertson et al. also used an object co-locating garbage collector similar to

the technique described by Schneider et al.

14

Chapter 3

Data Collection Method

Experiments were run on an Intel Xeon processor designed around the Intel Core archi-

tecture. This is a four-core CPU with two 4 MB L2 caches, but all tested workloads are

single-threaded, and a single core can only make use of one L2 cache. SPEC CPU2006

benchmarks were run on Fedora 8 with the perfmon kernel modification.

The proposed monitoring technique is based on Intel’s Precise Event-Based Sampling

("PEBS"), a feature now included in several of Intel’s processor lines. PEBS allows a

particular performance-related event to be specified (in this case, L2 cache misses) for

sampling, as well as the sampling interval. When a sample is collected, the data includes

the instruction pointer (%eip in x86) of the instruction following the one responsible for

the event and the contents of the architectural integer registers when the event happened. In

15

most cases, this is sufficient information to identify the responsible instruction and recon-

struct the memory address it accessed. However, this analysis is difficult across function

calls or even basic block boundaries; in this study such samples are ignored. PEBS has

limitations in that it only works on a small subset of performance events, and it may inter-

fere with some uses of performance counter registers (e.g. it is not possible to both sample

L2 cache misses and count them).

The perfmon kernel extension and user-level library [1] provide an interface to hardware

performance monitoring unit (PMU) with the intent of abstracting some of the differences

between PMUs on various architectures and CPU models. In order to use perfmon for

monitoring a program’s execution, a separate monitor process is created and attached to

the program under test. The monitor program identifies a particular set of events to count

and/or sample. At most one event may be chosen for sampling, and some selections of

events to count/sample may be rejected by perfmon as unavailable. In this study, the mon-

itor program samples L2 cache misses, and it counts L1 cache misses to estimate the num-

ber of unique memory references between consecutive L2 cache miss samples. Because

the PEBS-based measurement tends to produce very long reuse distances, in the output

histograms shown here, the resulting count is divided by 1000 to shift the histogram to the

left.

The Pin instrumentation system was used for comparison. The tool used is a small mod-

ification to that used by Fang et al. in [7], in which each instruction is associated with

16

the distribution of its reuse distances among a series of histogram bins. While Fang et al.

used bins growing logarithmically in size from 1 to 1k, followed by bins of size 1k (up

to a maximum measurable distance of 64k), this technique focuses attention on long reuse

distances. As such, the logarithmic-linear bins are replaced with purely logarithmic bins,

with the maximum measurable distance increased to 230. Because this tool works by direct

measurement of program behavior, the histograms shown as Pin results are the actual reuse

profiles for the given instructions.

17

Chapter 4

Data Summary

In this chapter, PEBS and Pin histograms collected from 26 SPEC CPU 2006 benchmark

programs are described with a focus on looking for relationship between output of the two

collection methods. While a typical program may only show one to three visually dis-

tinct shapes in its PEBS histograms, there will usually be a wider range of Pin histogram

shapes. Some programs may have an unusually wide variety of PEBS shapes or an unusu-

ally narrow range of Pin shapes, but the general shape of an instruction’s PEBS histogram

is generally not enough to determine the general shape of its Pin histogram.

19

4.1 Per-Benchmark Examination

4.1.1 Overview

For most benchmarks, typical Pin and PEBS histograms for critical instructions are shown.

For a few specific benchmarks, especially those with cases of odd behavior or particularly

small critical sets, resulting data is discussed in more detail.

The most common PEBS histogram shape is made up of a single large pattern, usually

peaking the 5th bin, and tapering off to the left. Examples of this shape are generated

by the majority of these benchmarks (most benchmarks for which no PEBS examples are

shown only produce this shape), and its commonness presents an obstacle to analysis based

on this sampling technique.

4.1.2 400.perlbench

While this program’s critical instructions show more variation than normal in their Pin

histograms (the top ten instructions alone show six distinct histogram shapes), most of the

PEBS histograms (including nine of the top ten) have the same shape as seen in figure 4.1.

20

Figure 4.1: 400.perlbench typical PEBS histogram

4.1.3 401.bzip

The three common Pin histogram shapes are shown in figure 4.2. All three example in-

structions produce PEBS histograms with the same shape, as in figure 4.3

4.1.4 403.gcc

Most of the critical instructions in this program have PEBS histograms with multiple pat-

terns, and there is significant variation among their shapes, suggesting that 403.gcc may be

a good target for a PEBS-based reuse distance prediction technique.

21

Figure 4.2: 401.bzip2 typical Pin histograms

4.1.5 410.bwaves

This benchmark has two recurring Pin histogram shapes. One appears in 7 of the 21 critical

instructions and covers 71.2% of the cache misses; the other appears in 5 critical instruc-

tions and covers only 6.3% of cache misses. These patterns are shown in figure 4.4. The

program shows a nearly uniform shape in PEBS histograms, with minor variation on the

left side of the main pattern (see figure 4.5).

22

Figure 4.3: 401.bzip2 typical PEBS histogram

Figure 4.4: 410.bwaves Pin histogram shapes

4.1.6 429.mcf

Most PEBS histograms here have a single major pattern centered at very low distance. The

particular variation in which this pattern is a single column (with a smaller, disconnected

column at 0) appears in 14 of the 25 critical instructions, which account for 75.2% of cache

misses (an example is given in figure 4.6). Pin histograms have several groups of two or

three instructions sharing the same general shape, but there is much more variety among

23

Figure 4.5: 410.bwaves PEBS histogram shape

the shapes to reduce it to a few common cases.

Figure 4.6: 429.mcf PEBS histogram shape

4.1.7 434.zeusmp

Most Pin histograms show two or three well-separated groups, each typically composed

of one or two patterns. The left-most group is typically the largest and narrowest (often a

single column). Most PEBS histograms have one major pattern and some shorter-distance

24

noise. The instruction responsible for the largest number of cache misses gives a good

example (see figure 4.7).

Figure 4.7: 434.zeusmp typical Pin histogram (left) and PEBS histogram (right)

4.1.8 435.gromacs

Pin histograms in this benchmark have several shapes, but the one shown in figure 4.8 is

the only common shape, appearing in 7 of 18 instructions’ histograms (covering 68.6% of

cache misses). All PEBS histograms have the same general shape, a single group with one

large pattern (the main spike) and a fairly flat (and near-zero) range to the left (see figure

4.8).

25

Figure 4.8: 435.gromacs typical Pin histogram (left) and PEBS histogram (right)

4.1.9 436.cactusADM

This is the first of three benchmarks with unusually large critical sets. In this bench-

mark, 27.3% of the sampled instructions are needed to cover 90% of the sampled misses

(compared with a mean of 11.1% needed). However, two thirds of the sampled instruc-

tions, including all of the critical instructions, come from a single function, Bench_

StaggeredLeapFrog2, which is the core of the numerical algorithm used by the pro-

gram to solve a coupled system of nonlinear partial differential equations.

The pin histograms for the critical instructions almost all have two narrow patterns with

wide separation between them. Several instructions have narrower spacing between the

two patterns, but these instructions’ PEBS histograms are not shaped differently from those

of other instructions. Typical examples are shown in figure 4.9.

26

Figure 4.9: 436.cactusADM typical PEBS histogram (left) and associated Pin his-
togram (right)

4.1.10 444.namd

As in several other benchmarks, the typical PEBS histogram is made of two disconnected

patterns, with the rightmost one far larger than the other. At the standard bin resolution,

some instructions appear to give an upper pattern weighted fairly evenly or even towards

lower reuse distances, but at finer resolution, this is corrected (see figure 4.10 for compar-

ison). The appearance of reversed weighting may also be eliminated in the bin-merging

process used by Fang et al. [6], though because the resulting single bin is assumed to be

uniformly distributed, this is a change to a less wrong conclusion. Pin histograms show

three common patterns, shown in figure 4.11.

27

Figure 4.10: This 444.namd PEBS histogram suggests the wrong interpretation at
coarser resolution. Bins on the left grow by a factor of 2, while those on the right
grow by a factor of 4

√
2

4.1.11 445.gobmk

This benchmark produces PEBS histograms with a single major pattern. It has a slower

taper on the left than on the right, and the extension of the left taper is the primary difference

in the shape of these histograms. Figure 4.12 shows a typical example. A wide variety of

Pin histogram shapes appear among the critical instructions.

4.1.12 447.dealII

Again, the typical instruction’s PEBS histogram includes only one significant pattern, with

the histograms themselves differentiated primarily in the histogram’s left side taper. How-

ever, the patterns for this benchmark tend to be a bit narrower. This benchmark also shows

almost as many different pin shapes as 445.gobmk despite having a much smaller critical

28

Figure 4.11: 444.namd typical Pin histogram shapes

set.

4.1.13 450.soplex

Most PEBS histograms in this benchmark are similar to those in 444.namd, but 13 of the 83

critical instructions, including the top two miss-causing instructions, have a wider pattern

(though centered around the same bin). These wider instructions account for 41.4% of

the cache misses. One instruction comes from the SSVector::setup() function, one

29

Figure 4.12: PEBS histogram for 445.gobmk instruction responsible for largest
number of misses

Figure 4.13: PEBS histogram for 447.dealII instruction responsible for largest
number of misses

from the SSVector::setup_and_assign() function, six from the SSVector::

assign2productFull() function, and five from CLUFactor::

solveLleftNoNZ().

30

4.1.14 453.povray

There are a few small groups of Pin histograms which follow similar shape, but no single

shape is a genuinely common occurrence. Despite this variety, the PEBS histograms show

only one common shape, fitting entirely into bins 0 through 4 (see figure 4.14).

Figure 4.14: 453.povray typical PEBS histogram

4.1.15 454.calculix

2 critical instructions have PEBS histograms showing a single pattern with a gradual climb

followed by an abrupt peak, but the other 48 have this climb interrupted, leaving two sep-

arated patterns. An example of each type is shown in figure 4.15. The Pin histograms

corresponding to the two atypical PEBS histograms show slight similarity in shape (see

figure 4.16), though no other instruction matches either shape at all.

31

Figure 4.15: 454.calculix PEBS histograms, typical (0x54fd55 on the left) and
atypical (0x4073db on the right)

Figure 4.16: 454.calculix Pin histograms corresponding to atypical PEBS his-
tograms (0x44ff43 and 0x4073db respectively)

4.1.16 456.hmmer

Pin histograms from this benchmark show some variety, but two shapes occur quite fre-

quently. Both have two disconnected main patterns, with the left-most one gathered in a

single bin. They are distinguished by difference in width of the right-most pattern, as seen

in figure 4.17. The PEBS histograms all show a single one-pattern shape as in figure 4.18.

32

Figure 4.17: 456.hmmer typical Pin histograms

Figure 4.18: 456.hmmer typical Pin histograms

4.1.17 458.sjeng

The first, third, and seventh most frequent miss-causing instructions (totaling 31.8% of the

misses) here present two pin histogram patterns, each with gradually sloping sides, so that

they intersect with no null between them. An example pin histogram is given in figure

4.19, but the corresponding PEBS histogram has the same shape as those of other critical

instructions. One technique used by this chess engine is a hash table mapping previously-

33

Figure 4.19: 458.sjeng gradual histogram

considered board positions to the moves selected from them. Instructions presenting the

described gradual histogram are found in a condition check at the beginning of the function

which performs a lookup on this hash table. Although the instructions appear in separate

clauses of a short-circuited logical statement, they all exhibit similar histogram shape.

4.1.18 459.GemsFDTD

Again, the PEBS histograms have a single pattern, and the primary difference between

histograms is the pattern’s left and right taper. The range of this variation is shown in the

examples in figure 4.20. This benchmark has several critical instructions with no short-

distance reuse (see figure 4.21) as well as common patterns which do have short-distance

reuse (given in figure 4.22).

34

Figure 4.20: 459.GemsFDTD typical PEBS histograms

4.1.19 462.libquamtum

In the case of 462.libquantum, 99.8% of the cache misses were caused by 3 instructions

(however, this is a fairly small program, with only 65 instructions appearing in PEBS sam-

ples). Each is a reference to the state of a qubit in the quantum register. The quantum

register is defined as a struct which tracks some general information about itself, e.g.

number of qubits it contains, and an array of qubits, each of which is defined by its proba-

bility amplitude, a complex float in single-precision, and state, a maximum-length integer

35

Figure 4.21: 459.GemsFDTD Pin histograms without short reuse distances

type. On the test machine, this totals 16 bytes for the qubit structure, and the reference

input causes the program to generate a 56-qubit register.

4.1.20 464.h264ref

While several different patterns appear in Pin histograms, many of which appear for mul-

tiple critical instructions, only one general shape appears in PEBS histograms. The typical

PEBS histogram for this benchmark has an initially slow left-side taper leading up to a

36

Figure 4.22: 459.GemsFDTD Pin histograms with short reuse distances

peak, usually at the 10th bin, a pattern found in many other benchmarks as well.

4.1.21 465.tonto

This benchmark has a relatively flat distribution of cache misses among its instructions,

with its top ten instructions accounting for only 21.9% of the cache misses. While the

PEBS histograms for the top ten show the single right-skewed pattern typical of many

other benchmarks, wider variation of patterns can be found in PEBS histograms of other

instructions. Unfortunately, much of this variation is probably due to statistical noise, as the

instructions in the critical set for this benchmark have fewer associated cache misses than

those of most other benchmarks: the critical set distributes 62304 miss samples over 424

instructions (averaging 147 misses per instruction). A program like 465.tonto may resist

this sort of analysis because too little information is available about individual instructions

to have a good prediction of their behavior.

37

4.1.22 470.lbm

Several of the instructions identified as critical by cache miss sampling have pin his-

tograms with no long-distance reuses. Every critical instruction, except one, comes from

the LBM_performStreamCollide function, which performs a step of fluid dynamics

simulation. The remaining one comes from the LBM_showGridStatistics function,

which is used to display intermediate results. The reason for this disparity in measured

reuse distance (an instruction with only small reuse distances should only appear in PEBS

samples for non-reuse occurrences, i.e. compulsory misses) is uncertain.

4.1.23 471.omnetpp

Most critical instructions show the pattern given in figure 4.23, but several present patterns

other than this common one (figure 4.24).

4.1.24 473.astar

This benchmark’s critical set includes only 13 instructions. 10 of the 13 PEBS histograms

show two patterns with a narrow space between them (see figure 4.25). Most variation

appears in the tapering of the left pattern, whereas the right pattern is confined to a single

38

Figure 4.23: 471.omnetpp PEBS histograms with usual shape

Figure 4.24: 471.omnetpp PEBS histograms with unusual shapes

bin.

4.1.25 481.wrf

Of the 306 critical instructions, all but 16 instructions from 5 functions show the typical

shape (figure 4.26), with the peak at the 10th or 11th bin. The remaining 16 have two

separated groupings with one or two patterns each (figure 4.27).

39

Figure 4.25: 473.astar example PEBS histograms

Figure 4.26: 481.wrf typical PEBS histogram

4.1.26 482.sphinx3

A wide range of Pin histogram shapes for a critical set of 31 instructions all correspond

to the common single-pattern shape seen in figure 4.28. Two of the recurring Pin shapes

are given in figure 4.29. 9 of the critical instructions (accounting for 39.1% of the miss

samples) belong to the fairly small (static size of 179 instructions) mgau_eval function.

40

Figure 4.27: 481.wrf PEBS histograms with multiple patterns

Figure 4.28: 482.sphinx3 typical PEBS histogram

4.1.27 483.xalancbmk

This benchmark has a rather small critical set, 14 instructions, despite having 1284 instruc-

tions which generated cache miss samples. All critical instructions but one show the same

general shape in their PEBS histograms (see figure 4.30). Two repeated shapes appear in

Pin histograms, with examples of each shown in figure 4.31.

41

Figure 4.29: 482.sphinx3 typical PEBS histogram

Figure 4.30: 483.xalancbmk typical (left) and atypical (right) PEBS histograms

Figure 4.31: 483.xalancbmk typical (left) and atypical (right) PEBS histograms

42

Chapter 5

Conclusion

5.1 Future Work

While this hardware-based sampling technique makes gathering raw memory access data

much quicker, a fast way to construct an instruction and memory address trace is still

needed. In this case, the slow step is in identifying the miss-causing instruction when what

is given is the instruction immediately after it and an assembly dump of the program. As the

PEBS monitor executes as a different process, it does not have the ability to directly read

the memory of the monitored program, but some speedup may be achieved by reading from

the executable file and disassembling only the code surrounding the instruction identified

by the PEBS sample. This entire problem can be avoided on certain CPUs, such as the

Itanium, on which a PEBS sample includes the address of the miss-causing instruction and

43

the memory address it was trying to access (whereas this information must be reconstructed

on an Intel Core CPU) [3].

The more difficult of the remaining problems comes from the lack of variation among PEBS

histograms: there is no obvious way to link the shape of an instruction’s PEBS histogram

with the shape of the instruction’s Pin histogram. Training runs might be used to establish

the Pin histogram’s shape, but this has proven problematic in cases where the smaller data

size for the training input eliminates long-distance reuse patterns from the histogram. If the

PEBS histogram is more strongly linked to the program than to per-instruction memory use

patterns, whole-program analysis may still benefit from PEBS-based cache miss analysis.

A radically different data collection technique may be necessary in order for hardware

performance monitoring to be usable for reuse distance analysis.

A different technique for processing the instruction and memory address trace may prove

useful. As in 4.1.10, narrower bins may help distinguish between similarly-shaped his-

tograms. It may also be possible to find a correlation between some aspect of the PEBS

histogram and a part of the Pin histogram large enough to still be useful (e.g. the location of

the longest-distance pattern can still be useful for prefetching or for estimating a program’s

miss-rate curve).

44

5.2 Potential Applictions

Some compiler optimization techniques can already take advantage of reuse distance pre-

diction, but the time needed to construct a reuse distance profile make them prohibitive

for use other than static compilation. These include scheduling of memory instructions

with the knowledge that certain loads (i.e. those unlikely to cause cache misses) need not

be moved as early and insertion of prefetch instructions for loads that are likely to cause

cache misses. Constructing reuse data via hardware monitoring rather than instrumentation

makes these options available to a JIT compiler, similar to the technique demonstrated by

Cuthbertson et al. [4].

While reuse distance prediction can be used to identify critical instructions for arbitrary

input, as by Fang et al. [7], this can be subsumed by the process of collecting PEBS data:

for a given run of the program, the critical instructions, i.e. those which generate the most

cache misses, will be those which generate the most cache miss samples. This is a much

simpler prediction to make from PEBS data than the reuse distance patterns of particu-

lar instructions. Miss rate prediction, which does require more than identifying the critical

instructions, may be useful when attempting to efficiently allocate cache space among mul-

tiple running programs, and hardware-based monitoring could make reuse distance analysis

fast enough to be a viable strategy for predicting the live programs’ miss rate curves.

45

References

[1] Perfmon2 project. http://perfmon2.sourceforge.net/.

[2] B. R. Buck and J. K. Hollingsworth. Using hardware performance monitors to iso-

late memory bottlenecks. In Proceedings of the 2000 ACM/IEEE conference on Su-

percomputing (CDROM), Supercomputing ’00, Washington, DC, USA, 2000. IEEE

Computer Society.

[3] B. R. Buck and J. K. Hollingsworth. Data centric cache measurement on the intel

ltanium 2 processor. In Proceedings of the 2004 ACM/IEEE conference on Supercom-

puting, SC ’04, pages 58–, Washington, DC, USA, 2004. IEEE Computer Society.

[4] J. Cuthbertson, S. Viswanathan, K. Bobrovsky, A. Astapchuk, and E. K. U. Srini-

vasan. A practical approach to hardware performance monitoring based dynamic

optimizations in a production jvm. In Proceedings of the 7th annual IEEE/ACM

International Symposium on Code Generation and Optimization, CGO ’09, pages

190–199, Washington, DC, USA, 2009. IEEE Computer Society.

47

http://perfmon2.sourceforge.net/

[5] C. Ding and Y. Zhong. Predicting whole-program locality through reuse distance

analysis. SIGPLAN Not., 38:245–257, May 2003.

[6] C. Fang, S. Carr, S. Önder, and Z. Wang. Reuse-distance-based miss-rate prediction

on a per instruction basis. In Proceedings of the 2004 workshop on Memory system

performance, MSP ’04, pages 60–68, New York, NY, USA, 2004. ACM.

[7] C. Fang, S. Carr, S. Onder, and Z. Wang. Instruction based memory distance analysis

and its application. In Proceedings of the 14th International Conference on Parallel

Architectures and Compilation Techniques, PACT ’05, pages 27–37, Washington, DC,

USA, 2005. IEEE Computer Society.

[8] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache replacement based on reuse-

distance prediction. In ICCD’07, pages 245–250, 2007.

[9] G. Keramidas, P. Petoumenos, and S. Kaxiras. Where replacement algorithms fail:

a thorough analysis. In Proceedings of the 7th ACM international conference on

Computing frontiers, CF ’10, pages 141–150, New York, NY, USA, 2010. ACM.

[10] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for

storage hierarchies. Ibm Systems Journal, 9:78–117, 1970.

[11] F. T. Schneider, M. Payer, and T. R. Gross. Online optimizations driven by hardware

performance monitoring. In Proceedings of the 2007 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’07, pages 373–382, New

York, NY, USA, 2007. ACM.

48

[12] Y. Zhong and W. Chang. Sampling-based program locality approximation. In Pro-

ceedings of the 7th international symposium on Memory management, ISMM ’08,

pages 91–100, New York, NY, USA, 2008. ACM.

49

	Potential for hardware-based techniques for reuse distance analysis
	Recommended Citation

	Contents
	List of Figures
	Contents
	Abstract
	Introduction
	Background
	Motivation for Hardware-based Reuse Distance Analysis
	Outcome

	Related Work
	Reuse Distance Analysis
	Hardware Performance Monitoring

	Data Collection Method
	Data Summary
	Per-Benchmark Examination
	Overview
	400.perlbench
	401.bzip
	403.gcc
	410.bwaves
	429.mcf
	434.zeusmp
	435.gromacs
	436.cactusADM
	444.namd
	445.gobmk
	447.dealII
	450.soplex
	453.povray
	454.calculix
	456.hmmer
	458.sjeng
	459.GemsFDTD
	462.libquamtum
	464.h264ref
	465.tonto
	470.lbm
	471.omnetpp
	473.astar
	481.wrf
	482.sphinx3
	483.xalancbmk

	Conclusion
	Future Work
	Potential Applictions

	Bibliography

