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Abstract

Heterogeneous materials are ubiquitous in nature and as synthetic materials. These

materials provide unique combination of desirable mechanical properties emerging

from its heterogeneities at different length scales. Future structural and technologi-

cal applications will require the development of advanced light weight materials with

superior strength and toughness. Cost effective design of the advanced high perfor-

mance synthetic materials by tailoring their microstructure is the challenge facing the

materials design community. Prior knowledge of structure-property relationships for

these materials is imperative for optimal design. Thus, understanding such relation-

ships for heterogeneous materials is of primary interest. Furthermore, computational

burden is becoming critical concern in several areas of heterogeneous materials design.

Therefore, computationally efficient and accurate predictive tools are highly essential.

In the present study, we mainly focus on mechanical behavior of soft cellular mate-

rials and tough biological material such as mussel byssus thread. Cellular materials

exhibit microstructural heterogeneity by interconnected network of same material

phase. However, mussel byssus thread comprises of two distinct material phases. A

robust numerical framework is developed to investigate the micromechanisms behind

the macroscopic response of both of these materials. Using this framework, effect of

microstuctural parameters has been addressed on the stress state of cellular specimens

during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has

been developed to simulate the cellular microstructure. Micromechanisms (microin-

ertia, microbuckling and microbending) governing macroscopic behavior of cellular

solids are investigated thoroughly with respect to various microstructural and load-

ing parameters. To understand the origin of high toughness of mussel byssus thread,

a Genetic Algorithm (GA) based optimization framework has been developed. It is

found that two different material phases (collagens) of mussel byssus thread are opti-
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mally distributed along the thread. These applications demonstrate that the presence

of heterogeneity in the system demands high computational resources for simulation

and modeling. Thus, Higher Dimensional Model Representation (HDMR) based sur-

rogate modeling concept has been proposed to reduce computational complexity. The

applicability of such methodology has been demonstrated in failure envelope construc-

tion and in multiscale finite element techniques. It is observed that surrogate based

model can capture the behavior of complex material systems with sufficient accu-

racy. The computational algorithms presented in this thesis will further pave the

way for accurate prediction of macroscopic deformation behavior of various class of

advanced materials from their measurable microstructural features at a reasonable

computational cost.
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Chapter 1

Introduction

With the advent of composite materials, heterogeneous materials are finding increas-

ing applications in different fields of engineering and technology. Though homo-

geneous bulk materials such as metals and ceramics are still a major component

for different mechanical applications, heterogeneous materials systems incorporating

multiple laminates, second phase particles, grain boundaries and architectural details

are gaining importance due to their superior strength, thermal stability, tailorability

and multifunctionality. For example, commercial airplanes were made of metals up

to 70’s, but now they employ composite material in their structural components to

reduce the weight significantly ( 11% weight reduction in Boeing 777 (Smith, 2003)).

Designing a heterogeneous material is however still a challenge. Myriad design philoso-

phies can be applied to achieve a set of requisite functionalities and properties. The

latest trend is to mimic the design of biological materials, that are highly heteroge-

neous and optimized for a specific set of performance. In this thesis we will focus

on the origin of strength and toughness characteristics of cellular solids and tough

biological materials. We will study and quantify the measurable features of these
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materials systems at the microscopic level, and will predict the resulting deformation

and failure behavior at the macroscopic level.

1.1 Heterogeneous materials and their technolog-

ical importance

Heterogeneous materials can be composed of different materials or phases such as

composites, same material with large amount of porosity (e.g., cellular solids) or

the same material in different states such as polycrystal. Such materials abound in

the form of synthetic materials and in nature. Examples of synthetic heterogeneous

materials include composites, cellular solids, gels and concretes. Natural heteroge-

neous materials comprise of polycrystals, soil, granular media, wood, bone, blood,

animal and plant tissue and biological cells (Torquato, 2001; Buryanchenko, 2007),

to name a few. The heterogeneous materials are known to exhibit superior properties

in applications where multiple functional requirements are simultaneously expected.

Different properties and advantages of various components can be fully exploited by

introducing material heterogeneity. A variety of applications involving heterogeneous

materials can be found in mechanical, electrical, thermal, optical, biomedical, geo-

physical and other fields in past 40 years. These materials are widely being used as

structural components in aerospace, mechanical and civil engineering where the ap-

plications are driven by defense, space, consumer industries, aircraft, space vehicles,

automobiles, building construction industries, infrastructures etc. However, these

materials are highly complex due to their microstructural variations. Thus, determi-

nation of mechanical properties of these complex materials has attracted considerable

research efforts in the recent past. Among different class of heterogeneous materials,

cellular solids, structural biological materials and multiphase composites are finding
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increasing technological importance owing to their unique combination of mechanical

properties: mainly strength, stiffness and toughness characteristics. In the following

we briefly discuss these materials.

1.1.1 Cellular materials

Cellular materials are regarded as porous materials with very large porosity or very

low solid volume fraction. Interconnected network of solid struts or faces forms the

cellular architecture. These materials are ubiquitous in nature and man-made materi-

als (Gibson and Ashby, 1997; Hilyard, 1982). Biological as well as inorganic materials

can exhibit cellular architecture at different length scales, ranging from cytoskeleton

networks in eukaryotic cells to cellular organization of different biomaterials (such as

wood, bone and sponge), to synthetic foams for different structural applications. Cel-

lular microstructure renders multifuctionality to the structure/system while provid-

ing a lightweight design. Cellular microstructure typically provides superior specific

strength and toughness. Synthetic cellular solids (foams) are generally made by dis-

persing gas into liquid medium and then cooling it to solidify. Typically, cellular solids

are classified as open cell and closed cell cellular material. Based on the bulk materi-

als that are transformed to cellular solids, they are categorized as polymeric, metallic

and ceramic foams. Owing to their light weight, good shock absorption capability and

ease of fabrication, cellular materials are widely used as advanced structural compo-

nents in aircraft and automobile industries and as shock absorbing packaging elements

for electronic components. However, cellular materials are highly heterogeneous, and

can exhibit a wide set of statistical variabilities. Predicting macroscopic mechanical

behavior of these materials is an enormous challenge facing material designers and

product developers. Development of highly energy efficient cellular structure requires

in-depth understanding of energy absorption characteristics arising from its inherent
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microstructural variations especially in a high impact loading scenario.

1.1.2 Structural biomimetic materials

Future generation engineering materials must exhibit physical (mechanical, electrical

and thermal) and chemical (adhesive, reactive) properties optimized for particular ap-

plications. In this context, biomimicry, a new paradigm in material design, provides a

powerful tool for the development of advanced materials. However, biological materi-

als are multifuctional: Design principles behind a particular functionality is extremely

difficult to identify. From an engineering materials point of view, we are mostly inter-

ested in biological materials offering high strength, stiffness and toughness owing to

their smart design. Biological mineralized composites such as bone, dentin, sea shells

and sponge spicule offer higher values of fracture toughness although their constituent

materials are brittle. A prime example is nacre, which consists of 95 vol.% of layered

aragonite (CaCO3) platelets attached by a thin layer of organic materials, while ex-

hibiting a toughness several order higher than that of CaCO3 (Espinosa et al., 2009).

Biological polymer composites such as ligaments, silk and collagen offer remarkable

strength, toughness and extensibility. For example, spider dragline silk is considered

as nature’s high performance fiber with exceptional combination of the above prop-

erties such as Young’s modulus of 10-50 GPa, elongation to break of 10-30 % and

tensile strength of 1.1-1.4 GPa (van Hest and Tirrel, 2001). Mussel byssus thread,

another interesting biomaterial, also provides high specific strength, toughness and

extensibility to ensure its attachment with underwater surfaces (Gosline et al., 2002).

Such biological filaments can be a potential candidate for biomimetic development

of tough fiber and fabrics. The mussel byssus thread is composed of three distinct

components, namely the proximal region, distal region and adhesive plaque. The

proximal region is short and softer, while the distal region is long and much stiffer.
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The whole thread when subjected to tensile load shows a triphasic response render-

ing high overall toughness and extensibility. However, the distribution of the thread

components behind the origin of such properties has never been addressed.

1.2 Computational mechanics applied to the de-

formation and failure response of heterogeneous

materials

Modern technology necessitates the development of advanced high performance light

weight materials with remarkable strength, stiffness and toughness. However, achiev-

ing all of these properties simultaneously possesses critical challenges. As outlined

before, owing to strength, toughness and light weight, the cellular and composite ma-

terials are drawing their considerable attention within the material science and engi-

neering community. However, fundamental challenges lie in manufacturing of these

complex materials with the state of art in material science. The central paradigm

of material science is to design the material with desired performance with a goal

of reduced process cycle (cost effective design), as processing controls microstructure

and ultimately the bulk properties of the heterogeneous materials. Microstructure-

property relationship for these complex materials needs to be thoroughly understood

to fulfill this purpose. Present trends aim towards computational material design

modeling and simulation (e.g. finite element methods, homogenization techniques,

optimization method etc.) instead of costly iterative experimental procedures. There-

fore, development of synthetic materials, advanced biomimetic materials and compos-

ite materials demands in-depth understanding of the macroscopic mechanical response

stemming from the complex microstructure through an integrated and efficient com-

putational framework.
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1.2.1 Literature review

1.2.1.1 Dynamic response of cellular materials

Several dynamic testing procedures such as drop-weight and air gun ballistic ex-

periments have been utilized to determine dynamic response of different materi-

als (Viot et al., 2008; Juntikka and Hallstron, 2004; Avalle et al., 2001). However,

these techniques mainly provide energy absorbing characteristics of the material but

not a complete stress-strain response. Split Hopkinson pressure bar (SHPB) tech-

nique, originally developed by Kolsky (1949), has been widely used to determine dy-

namic properties of various engineering materials. This particular technique has an

advantage over above mentioned methods in determining the point wise dynamic con-

stitutive response of materials averaged over its volume. Recently, SHPB test setup

has been suitably modified to obtain accurate dynamic properties of different class

of materials including metals (Gray, 2000), shape memory alloys (Chen et al., 2001),

concrete (Ross et al., 1996), ceramics (Subhash and Ravichandran, 2000a), compos-

ites (Song et al., 2003), rubbers (Song and Chen, 2003; Shim and Mohr, 2008) and

biological materials (Shergold et al., 2006).

SHPB technique is based on one dimensional wave propagation theory with the as-

sumption that a uniformly deforming specimen is subjected to a dynamically equi-

librated uniaxial stress state. This assumption ensures that the dynamic strain and

stress of the specimen can be computed from measuring only reflected and transmit-

ted signals. The dynamic equilibrium stress state is assumed to be achieved when

the difference of forces at both ends of specimen is insignificant. However, for a

soft cellular specimen, wave velocity is typically very low, and its amplitude atten-

uates significantly when traveling through a thick specimen thus restraining it from

achieving dynamic equilibration quickly (Song et al., 2003). Moreover, the specimen
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can exhibit significant localized deformations (Chen et al., 2002a) during the early

stage of wave propagation event further limiting it from achieving a uniform state of

stress. Furthermore, impedance mismatch between the bars (incident and transmis-

sion) and the specimen is a key parameter to be determined for the effective dynamic

testing of soft cellular specimens. A perfect impedance match between the speci-

men and bars will allow the entire incident wave to propagate into the transmission

bar without any reflection thus requiring longer time to equilibrate the stress in the

specimen. On the other hand, a high impedance mismatch expedites the equilibrium

process (Yang and Shim, 2005) due to reflection of wave with larger amplitude but

the transmitted signal becomes too weak leading severe problem in measurement of

stress in transmission bar (Chen et al., 1999). As a consequence of these difficulties in

establishing a one dimensional stress state in the specimen, standard data reduction

routines for split Hopkinson pressure bar that rely on stress equilibration cannot be

used directly for the case of polymeric foams. Mousavi et al. (2005) developed SHPB

procedures for viscoelastic material which do not require stress equilibrium with in

specimen. These procedures are valid only when the specimen is short and specimen

to bar impedance is low.

To deal with such challenges, numerous modifications have been proposed to the tra-

ditional SHPB technique (Subhash et al., 2006a; Liu and Subhash, 2006; Chen et al.,

2002c; Tagarielli et al., 2008) to obtain the dynamic response of different low impedance

cellular solids such as polymeric foams. Chen et al. (1999) used hollow aluminum bars

to reduce the impedance mismatch at the interfaces, whereas, Subhash et al. (2006a)

used polymeric bars along with a novel data reduction procedure to derive the dy-

namic response of polymeric foams. To alleviate the problem of achieving stress

equilibration in a thick specimen, Song and Chen (2004) suggested a reduction in

specimen length for low impedance materials. Along with thickness reduction, they

also suggested a pulse shaping technique (Chen et al., 2002a) to achieve equilibra-
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tion for a soft material. A pulse shaper in the SHPB set up essentially increases the

rise time of the loading pulse and thus facilitates to achieve homogeneous deforma-

tion of the specimen as well as dynamic stress equilibration. The above techniques

have been also employed in several other class of materials (Vecchio and Jiang, 2007;

Frew et al., 2006, 2005). The above modifications in the SHPB setup have also been

incorporated in dynamic testing of several soft materials (Nie et al., 2009) as well as

extra-soft specimen such as ballistic gelatin and biological tissues (Song et al., 2007).

Furthermore, Song et al. (2008) also developed a long split Hopkinson pressure bar

to characterize the soft materials at intermediate strain rates.

Energy absorption characteristics of cellular materials and their relationship to the

microscopic deformation behavior of individual cells have been extensively studied

in the past decade. Wu and Jiang (1997) experimentally studied the effect of cell di-

mension, material strength and sandwich core thickness on the crushing phenomenon

of aluminum foams. They suggested that a honeycomb structure with a smaller cell

size and stronger material offers better energy absorption capability. Daxner et al.

(1999) investigated the effect of mesoscale inhomogeneities of cellular material den-

sity on the energy absorption behavior of aluminum foam. It was found that strong

meso-inhomogeneities lead to strain localization which reduces the initial plateau

stress. Yi et al. (2001) experimentally showed that yield strength as well as energy

absorption of open cell aluminum foams increase with strain rate. Using the split

Hopkinson pressure bar (SHPB), Chakravarty et al. (2003) found that peak stress

and absorbed energy of poly-vinyl chloride (PVC) foams are dependent on foam den-

sity and strain rate. They also developed a model based on a unit cell geometry of the

closed-cell foams to predict the energy absorption at high strain rates. Subhash et al.

(2006b) also found similar increase in collapse stress of epoxy foam at higher strain

rate. Vural and Ravichandran (2003) experimentally investigated the compressive

strength, plateau stress, densification strain and energy dissipation capacity of balsa

wood with different densities at high strain rates. They found that initial failure

8



strength of balsa wood is very sensitive to the rate of loading while plateau stress

remains unaffected by the strain rate. Subhash and Liu (2004) studied crushability

characteristics of epoxy foams and developed ‘crushability maps’ for cellular materials.

A crushability map depicts the evolution of porosity, density and energy absorption

capability of foams as functions of strain, stress and porosity. Saha et al. (2005)

experimentally found that energy absorption of closed cell poly-vinyl chloride (PVC)

and polyurethane foam depends on their density, microstructure and applied strain

rate. Hönig and Stronge (2002a,b) studied dynamics of crush band initiation and

wave trapping behavior of honeycombs under in-plane impact loading. Their simu-

lations revealed the existence of a critical impact velocity beyond which a crushing

band is initiated at the impact end and a corresponding increase in total dissipation

energy. They mentioned that this fact could be attributed to the cells collapsing in

a symmetric crushing mode. To understand the effect of cell irregularity along with

impact velocity on deformation behavior of cellular materials, Zheng et al. (2005b)

developed a deformation mechanism map. They also mentioned that relative energy

absorption capacity of cellular materials can be improved by increasing their cell

irregularity.

A number of mechanisms such as strain rate sensitivity of the constitutive material,

effect of microinertia, microbuckling and associated bending of cell walls, and shock

enhancement at high strain rate has been suggested in the literature to explain the

rate effect in cellular materials as observed in dynamic experiments. Lateral inertia

of a strut, known as the microinertia effect, can significantly enhance its dynamic

buckling stress (Calladine and English, 1984) thus showing an overall increase in the

stress response of the cellular material. On the contrary, Deshpande and Fleck (2000)

suggested that microinertia effects may be negligible for foams as they exhibit a well

defined plateau in their stress-strain response typical of a Type I structure. How-

ever, a single cell, when subjected to a dynamic loading, exhibits a strong softening

behavior immediately after achieving the peak stress. This behavior is reminiscent
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of a Type II structure that is known to exhibit strong strain rate sensitivity. Thus,

the local behavior of the cellular material at the cell level may exhibit considerable

rate effect due to microinertia that may not manifest itself at the specimen level due

to the complex interplay between cell wall bending, microbuckling and microinertia

phenomena. The observed rate sensitivity can also be attributed to the presence

of a shock front in the deforming domain at high velocity impact (Tan et al., 2002;

Harrigan et al., 1999; Elnasri et al., 2007; Pattofatto et al., 2007). These researchers

have also suggested that early peak load occurs in the constitutive response due to

the lateral inertia of the cell walls that in turn depends on the material properties of

the wall. Nemat-Nasser et al. (2007) have observed the dependence of the location of

localized deformation on the impact velocity during high-rate inertial loading.

1.2.1.2 Mechanical behavior of mussel byssus thread

Byssus threads are produced by mussels to provide secure anchorage with rocks, reefs

or other shelled organisms in a wave swept environment. These threads are one

of the exquisitely engineered materials by nature that provide specific mechanical

requirements of stiffness, strength, toughness and extensibility (Alper, 2002) in or-

der to ensure their survival in a harsh environment. Toughness value of an intact

byssus thread (12.5MJ/m3) is higher in comparison to tendon (2-5MJ/m3) is lower

than silk (50-180MJ/m3) (Denny, 1988) and is comparable to kevlar (Gosline et al.,

2002), a widely used polymer in protective engineering components. Typically, 20-

60 threads (Bell and Gosline, 1997) are engaged in tethering the mussel to a hard

surface through their adhesive plaques. The adhesive plaque produces strong and

flexible glue rapidly and allows the mussel to adhere with any surface under ambient

conditions of sea water (Waite et al., 2005; Silverman and Roberto, 2007). Unique

combination of strength and toughness of these threads as well as underwater adhe-

sive properties of plaque has recently generated considerable attention in the field of
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biomimetic applications (Hearle, 2007; van Hest and Tirrel, 2001; Scheibel, 2005).

A typical byssus thread comprises of three regions: (1) proximal region consisting

of corrugated surface, (2) distal region which is smoother, and (3) adhesive plaque

which is a small region attached to the hard surface under water. The macroscopic

structure of proximal thread is similar to a fiber reinforced composite with collagen

containing fibrils and soft proteinious matrix, while the distal portion comprises of

densely packed fibrous bundles. The distal region of the thread is highly stiff and less

extensible, whereas the proximal region shows an elastomeric response undergoing a

large extension prior to failure.

The origin of the high attachment strength of mussel byssus thread can be attributed

to plaque adhesive proteins. To date, five protein families designated as Mytilus

edulis foot proteins (Mefp-N, where N indicates the chronological order of discovery)

are known to be present within the adhesive plaque (Wiegemann, 2005). Mefp-1

forms a protective coating (Rzepecki et al., 1992) to the threads as well as plaque

while Mefp-2 and Mefp-4 (Rzepecki et al., 1992; Vreeland et al., 1998) are attributed

to a solid foam like interior of the plaque. The remaining protein such as Mefp-3 and

Mefp-5 (Papov et al., 1995; Warner and Waite, 1999; Waite and Qin, 2001) function

as a primer that adheres the plaque to the surface. However, Lin et al. (2007) found

that a typical shape of plaques contributes to a high adhesive strength rather than

due to the higher surface energy of mussel foot proteins. Consequently, the other

source of the strength is thought to be from the thread itself. To explain the origin

of high attachment strength of the mussel byssus thread, numerous studies examined

the morphology of the thread (Coyne et al., 1997; Qin et al., 1997; Waite et al., 2002;

Harrington and Waite, 2007, 2009). They found that collageneous protein; preCol-

P and preCol-D are mainly present in proximal and distal portions of the thread

and are distributed in a graded fashion, whereas preCol-NG is uniformly distributed

along the thread. Each preCol is a natural block copolymer sequence with three ma-
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jor domains: a central collagen domain consisting of triple helix motif Gly-Xaa-Yaa

(Xaa preferably Pro or Gly residues), flanking elastic domain (soft segment), and

histidine-rich terminal domain. The lateral and longitudinal assembly of triple he-

lices either through metal-chelation or chemical bonding by virtue of disulfide bridges

and diDOPA formation (Hagenau et al., 2008; Zhao et al., 2006) results in the typ-

ical macroscopic responses of proximal and distal regions as found experimentally.

On the other hand, slippage or dislocation within this cross-linking or crystalline

sites (Vaccaro and Waite, 2001; Harrington and Waite, 2007) results in the yielding

and self-healing of distal thread. Vaccaro and Waite (2001) found that application of

urea, dithiothreitol (DTT), and metal chelating agents greatly affects the modulus,

yield point and the energy dissipation. Hence, understanding the manifestation of

chemical composition to the mechanical properties is of utmost importance in study-

ing byssus threads.

There have been several parallel efforts in both experimental determination of tensile

properties (Bell and Gosline, 1996; Lucas et al., 2002; Braze and Carrington, 2006)

of the thread with mechanistic modeling (Bertoldi and Boyce, 2007; Troncoso et al.,

2008) of its deformation behavior. Experimental observations show that during tensile

tests, most of byssus threads from different mussel species offer a characteristic tri-

phasic response: an initial stiff phase, followed by a more extensible yield phase, which

is further followed by a second stiff phase. According to Bell and Gosline (1996), the

yielding and extensibility of mussel thread enhance its ultimate attachment strength

allowing other threads to share the tensile load and thus, it secures dislodgement from

the rock surface. The yielding behavior of byssus thread critically depends on its inter-

action with water (Aldred et al., 2007; Troncoso et al., 2008). Carrington and Gosline

(2004) experimentally observed an increase in the stiffness as well as the yield stress

of the thread when it was stretched under higher loading rates. The constitutive

model as developed by Bertoldi and Boyce (2007) addressed the similar observation

where the origin of its loading rate dependency is attributed from the entropic con-
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tribution in the ultrastructure of distal fibers. Moeser and Carrington (2006) showed

that wave action is not only the contributing factors for the attachment strength. In

another study, Moeser and Carrington (2006) observed that the tensile mechanical

properties of the individual byssus thread and deterioration of thread quality greatly

affect the attachment strength. However, the origin of strength and toughness and

its dependence on the heterogeneous microstructure have not been investigated yet.

1.2.1.3 Computational complexity for the simulation of heterogeneous

materials response

Understanding the contribution of heterogeneities at different scales of a heteroge-

neous medium is key to design advanced materials such as composites in high per-

formance applications. The goal of material science is to develop a comprehensive

understanding of microstructure-properties-function relationship in order to system-

atically design the material with specific desired properties. Although a multitude

of homogenization techniques are available for material design, those are limited

to heterogeneous materials with linear constituents, and statistically homogeneous

materials (Kanoute et al., 2009). These techniques are often lacking in a complex

loading scenario as well as in finite deformation regimes. A comprehensive foun-

dation of the homogenization of heterogeneous materials are illustrated by Wills

(1981), Muller (1987), Nemat-Nasser and Hori (1993), Castaneda and Suquet (1998)

and Miche et al. (1999). Although these methods offer estimation or the bound

of effective properties or exact results, they are not sufficient to analyze statisti-

cally heterogeneous microstructure subjected to arbitrary macroscopic loading. In

case of hyperelastic media, Hasin (1985) provided some estimates for special type of

loading. Ogden (1978) and Castaneda (1989) determined the bounds on the overall

strain energy function of geometrically nonlinear structures. In case of finite defor-

mation, Castaneda and Tiberio (2000) found variational estimates for the effective or
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homogenized stored energy function of hyperelastic composites through the general-

ization of second-order procedure as developed by Castaneda (1996). Furthermore,

Lopez-Pamies and Castaneda (2004) found the bounds of hyperelastic porous mate-

rial with random microstructure subjected to finite strain.

Computational or incremental homogenization techniques developed by several au-

thors (Guedes and Kikuchi (1990), Ghosh et al. (2001), Smit et al. (1998), Feyel

(2003), Michel et al. (1999), Feyel and Chaboche (2000), Terada and Kikuchi (2001),

Andrade and Tu (2009), Kouznetsova et al. (2004), Miche (2003)) provide suitable

approaches to analyze the macroscale model with complex microstructure. These

methods depend on solving two nested boundary value problems (BVP), one in

macroscale and the other in microscale concurrently. Macroscopic deformation gra-

dient/strain tensor at macroscopic material point is used as the kinematic boundary

condition of the associated representative volume element (RVE). The microstructural

BVP is solved and the stress-strain relationship at every macroscopic point is deter-

mined by averaging the microscopic stress tensor. The above methods provide the

following benefits: (1) detailed microstructural information, including the evolution

of microstructure can be incorporated in macroscopic analysis, (2) large deformation

and rotation can be analyzed both at micro and macrolevel, (3) arbitrary behavior,

including physically nonlinear and time dependent behavior can be incorporated to

model the microlevel. Most of the above techniques assumed that the microstructural

length scale is sifficiently small compared to the characteristic macro-structural length

scale. Hence, these methods are called as first-order computational homogenization

techniques. Kouznetsova et al. (2004) developed a second-order approach to simulate

the boundary value problem where both length scales are comparable.

Although the above techniques are robust enough to analyze complex microstructure,

the associated computational cost is tremendous. To indicate the computational com-

plexity, consider a macro-scale domain with nel finite elements, ng Gauss points per
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element, nl load increments in the macro-scale, and NIC and NIm average iterations

in the macro- and micro scale, respectively. Consequently, the total number of linear

solver calls for a micro-problem is nelngnlNICNIm, a large number of computation

when the degrees-of-freedom of the RVE is substantial. Moreover, the data necessary

for incremental resolutions to be stored for each problem demand a large amount

hard drive space.

Two approaches have been proposed to overcome the above computational difficulties.

First, the microlevel RVE simulations can be distributed on massively parallel com-

puter nodes (Feyel and Chaboche, 2000). As the RVE simulations at given iteration

can be performed independently, significant cost reduction is possible through this

approach. Another approach is the reduction of microscopic model order by replacing

the original RVE with a lower order approximation. A significant progress in lower or-

der approximation has been made through voronoi cell method (Ghosh and Moorthy,

1995), Fourier transform (Moulinec and Suquet, 1998, 1994), spectral method (Aboudi,

1982), transformation field analysis based methods (Dvorak, 1992; Bahei-El-Din et al.,

2004), network approximation method (Beryland and Kolpakov, 2001) and math-

ematical homogenization with eigenstrain (Fish et al., 1997, 1999; Fish and Shek,

1999). Recently developed eigendeformation based reduction methodologies proposed

by Oskay and Fish (2007) and Oskay (2009) provide effective means to analyze the

nonlinear heterogeneous systems through the model reduction. Also, McVeigh et al.

(2006) developed an alternative approach based on multiresolution continuum theory

to take into account nonhomogeneous deformation at different scales.

A novel approach proposed by several authors to solve a large nonlinear model is

based on the proper orthogonal decomposition (POD) technique. This method is

showing great promise in computing very large models resonably accurately without

a great demand on computing resources. POD is a powerful and elegant method

for data analysis, aimed at obtaining low dimensional approximate description of a
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higher dimensional process. Using this idea, Yvonnet and He (2007) proposed a re-

duced model multiscale method (R3M) for homogenization of nonlinear hyperelastic

heterogeneous material at finite strain. Ryckelynck (2009) offered an improved saving

of computational cost through the hyper-reduction of elastic-plastic model of a simple

structure. Similarly, Niroomandi et al. (2010) developed a model reduction technique

for hyperelastic materials with large strain where tangent stiffness matrices do not

need to be updated. Proper orthogonal decomposition based reduced order modeling

frameworks are widely used to analyze dynamics of nonlinear solids (Krysl et al., 2001;

Lall et al., 2003) as well as robust design optimization (Weickum et al., 2009), where

a repetitive evaluation of full model is required at each time step. Although the above

methods are considered as moderately efficient approach, a significant computational

cost reduction is still required to analyze the macroscopically heterogeneous media

efficiently. Towards this end, Yvonnet et al. (2009) proposed a completely different

approach where a look-up table of effective RVE response is generated over a grid

of possible macroscopic loading space. The effective response of nonlinear heteroge-

neous material evaluated any point is constructed by interpolating the nodal effective

responses via appropriate interpolation functions and their derivatives. Similarly, re-

sponse surface methodology based on constructing global approximation of system

behavior evaluated at various points in the design space is often used for structural

optimization (Roux et al., 1998).

1.2.2 Technological challenges

1.2.2.1 Computational frameworks for cellular and biological materials

As discussed earlier, extraction of an accurate dynamic behavior in SHPB depends

on the state of stress in the specimen. Thus, the condition at which either stress
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equilibrium or non-equilibrium prevails needs to be understood thoroughly. Prior

knowledge of such a stress state will assist to determine whether a standard data

reduction routine for a SHPB test or special methodologies, e.g., evaluation of SHPB

response under the condition of non-equilibrium (Mousavi et al., 2005) stress state is

applicable. The stress state may be highly dependent on the microstructural, mate-

rial, and loading parameters. However, to date, no analysis is available to correlate

microstructural parameters of the cellular solid to be tested (intrinsic to the material)

such as cell size, cell wall thickness, and number of cells in the specimen length direc-

tion to the stress state of the specimen. In addition, other experimental parameters

extrinsic to the test specimen such as initial loading rate, pulse shape, and bound-

ary impedance mismatch between the specimen and the bars are known to influence

SHPB test results significantly. Understanding the stress state with respect to these

parameters either requires extensive experimental enumeration, or is impossible with

the current state of art. Therefore, the present study aims to evaluate the effect of

these parameters on the stress state of a cellular specimen in a SHPB setup from a

computational viewpoint.

Furthermore, it can be found that strain rate sensitivity and the resulting effect on

the energy absorption capability of cellular materials subjected to a dynamic load-

ing depends on a number of intertwined mechanisms. Experimental evaluation of

the effect of these mechanisms is extremely difficult due to variabilities in processing

conditions during manufacture, variation in material and microstructural properties

and the strong specimen size effect exhibited by these cellular materials. Moreover,

observation of the effect of these phenomena separately is extremely difficult due to

their strong interdependence. Simplified theoretical analyses may shed light on some

of these mechanisms in an idealized setting. However, complexity of the microstruc-

ture and deformation behavior of these materials calls for sophisticated computational

models. Our goal is to study the effect of different micromechanisms and microscopic

geometric features on observed deformation behavior and constitutive response from
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a computational perspective.

As discussed earlier, mussel byssus thread provides superior combination of strength,

toughness and extensibility owing to its structural heterogeneity, i.e., the combination

of stiff distal thread and soft proximal thread. However, what percentage of distal or

proximal thread length contributes such superior properties has never been investi-

gated. Biomimetic development of tough thread requires a thorough understanding of

such distribution of distal and proximal regions along the thread. Therefore, tough-

ness characteristics of mussel byssus thread needs to be evaluated for a wide range

of heterogeneity distribution. Moreover, the optimal distribution to achieve specific

properties must be identified. Hence, a computational framework comprising of op-

timization methodology and mechanistic representation of mussel byssus thread is

essential.

1.2.2.2 Efficient predictive tools for complex materials

Computational material models are typically extremely complex involving high com-

putational cost. Advanced material design involves optimization of microstructures

to the specific performance requirements, sensitivity analysis of constituents on its

macroscopic behavior, feasibility analysis of the specific design under certain con-

straints, and multiscale approaches. All of these situations require multiple model

simulations with a reasonable computational cost. However, associated computa-

tional complexity is still intractable. For all these situations, a surrogate model that

will map the input and output space of the actual model accurately but at a fraction

of original computational cost is highly desired. As found in literature, a class of

methods involving model dimension reduction contributed towards this end. How-

ever, these methods invariably result in loss of information due to their representation

in a reduced dimension. Therefore, a significant improvement in existing methodology
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is required to reduce the computational efforts arise in predicting the behavior of het-

erogeneous material design. The High Dimensional Model Representation (HDMR)

technique, introduced by (Rabitz et al., 1998; Rabitz and Alis, 1999) is a promising

alternate strategy designed to alleviate complex models of their computational burden

by systemic sampling procedures to map out relationships between sets of input and

output model variables. The HDMR technique is principally based on an alternate

method of model representation, which preserves the dimensionality of the original

problem, yet achieves drastic reduction in computational burden. However, the appli-

cation of HDMR methodology in construction of surrogate mechanical model is quite

new in the area of computational mechanics. The potential of such methodology

needs to be examined in analyzing complex material systems towards an alternative

avenue to develop highly accurate yet computationally tractable models.

1.3 Research objectives

In the present study, we envisage heterogeneity is the key at different length scales

to achieve superior mechanical properties of complex materials. Correspondingly,

there are three primary goals of the present study. First, we aim to understand the

structure-property relationship of cellular materials through a computational frame-

work. The model will be robust enough to accurately capture deformation kinetics

and constitutive response of a representative cellular microstructure under impact

loading. Mechanisms responsible for the origin of macroscopic behavior will be under-

stood from its microstructural parameters. Next, we focus on the underlying design

principle (structure-property relationship) governing the origin of the high toughness

of mussel byssus thread. The primary interest is to identify the key material and ge-

ometric parameters through a computational approach. The proposed methodology

comprises an optimization technique and a mechanistic representation of the thread.
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Last, we attempt to develop a novel methodology to efficiently predict the structure-

property relationship of highly complex heterogeneous materials in a computationally

cheap manner. The main concern is to introduce surrogate model based approach

that demands less amount of response evaluation but accurately predicts the behavior

of a complex system. Towards these goals, several research tasks have been identified,

as described below.

Task I: Deformation mechanisms of soft cellular material for energy ab-

sorption:

• Development of finite element framework to simulate transient response of cel-

lular microstructures.

• Computer generation of cellular microstructures and quantification of their ran-

domness.

• Extension of numerical framework to simulate the testing of cellular specimen

under split Hopkinson pressure bar (SHPB) setup.

• Identification of key micromechanism and their contribution towards energy

absorption property.

• Investigation of mechanical behavior of cellular structural element for their mi-

crostructural parameters.

Task II: Deformation mechanisms of tough biological thread:

• Development and validation of computational model to characterize quasi-static

deformation behavior of tough biological threads.
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• Incorporation of novel optimization technique along with mechanistic framework

• Determination of key thread parameters contributing towards toughness.

• Comparison of model predicted key parameters of the thread with its experi-

mental counterpart.

Task III: Surrogate model based predictive tool for effective quantification

of structure-property relationship in heterogeneous materials:

• Development of surrogate model based framework for efficient prediction of

mechanical behavior of a complex material system.

• Development of computationally efficient feasibility analysis of heterogeneous

materials.

• Development of efficient multiscale framework for heterogeneous material with

hyperelastic constituents subjected to large deformation.

1.4 Scope of the present study & thesis organiza-

tion

The goal of the present study is to understand the micromechanics of two types of het-

erogeneous materials, namely cellular materials and mussel byssus thread, though a

computational approach. Therefore, in Chapter 2, we present a numerical framework

to study the dynamic response of the cellular materials and quasi-static response of

heterogeneous filaments. A corotational beam formulation is adopted to accurately
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capture the large deformation kinetics. An explicit finite element scheme is developed

to analyze the transient response of the cellular materials. The explicit dynamic coro-

tational formulation has been validated against a known analytical solution. Next, we

illustrated the detail steps to generate cellular microstructure based on voronoi tessel-

lation. The randomness of cellular microstructure has been quantified. In Chapter 3,

we mention the challenges involved in extracting the experimental response of a soft

cellular material during impact loading. Using the corotational beam based explicit

dynamic formulation, we delineate the effect of intrinsic and extrinsic parameters on

the stress state of a cellular specimen during SHPB test. Furthermore, the corota-

tional beam based formulation has been used in Chapter 4 to study the contribution of

different micromechanisms on the overall behavior of cellular material under dynamic

impact. The effect of cellular microstructural parameters on these micromechanisms

is thoroughly investigated. In Chapter 5, a methodology is proposed to investigate the

principle behind the origin of high toughness of mussel byssus thread. This method-

ology is based on an optimization framework along with mechanistic representation of

mussel byssus thread. An implicit corotational beam framework has been used to find

the response of the byssus thread. The Genetic Algorithm (GA) based optimization

framework provides us the key parameters responsible for maximum toughness. In

Chapter 6, we proposed Higher Dimensional Model Representation (HDMR) based

surrogate model to reduce computational burden arising in analysis of heterogeneous

materials. The applicability of such model has been demonstrated for construction

of failure envelop of a heterogeneous material performing a few finite element sim-

ulations. Furthermore, the HDMR based surrogate model has been applied in two

scale finite element framework for heterogeneous material with nonlinear hyperelastic

constituents undergoing large deformation. Finally, in Chapter 7, we concluded our

findings and demonstrated the future directions of the present research work.
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Chapter 2

Development of computational

framework

Main objective of the present analysis is to study the deformation characteristics of

open cell cellular solids and biological filaments. Both can be computationally rep-

resented by a nonlinear beam at the microlevel. For open cell cellular solids, we

are specifically interested on the effect of microstructural parameters on its dynamic

response. Furthermore, we intend to investigate the contribution of material hetero-

geneity on strength, toughness and extensibility criteria of tough biological filament.

Towards that end, a computational scheme that accounts for microstructural, inertial

and finite kinematic effects during dynamic deformation of cellular solids has been

developed. Next, this computational scheme is further modified to study the mechan-

ical behavior of mussel byssus filament subjected to quasi-static loading. Therefore,

the key ingredients of the proposed scheme are (1) highly accurate finite deformation

beam formulation that captures correct deformation of cellular structural compo-

nents, (2) finite element framework to simulate dynamic deformation characteristics

of cellular solids, (3) finite element framework to simulate quasi-static response of
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biological filament, and (4) computer generation of open cell cellular microstructure.

2.1 Corotational beam formulation

Open cell soft cellular solids can exhibit complex deformation behavior as the struts

undergo large displacements as well as rotations resulting in a geometrically nonlinear

stress-strain response. Therefore, finite element modeling of this class of materials

calls for a geometrically nonlinear formulation. During elastomeric deformation of a

polymeric foam, although displacements and rotations of the struts can be quite large,

constituent material response itself can still be in the small strain regime. Thus, these

struts behave as highly flexible beams with a low bending rigidity. A corotational

formulation (Belytschko and Hsieh, 1973; Crisfield, 1991; Belytschko et al., 2000) is

particularly suited for this situation. The main idea behind this formulation is to

decompose the motion of a body into a rigid body rotation and a pure deformation,

akin to polar decomposition of deformation gradient, by introducing a local coordinate

system that continuously rotates and translates with the body. In the present study,

we model the cellular microstructure as a network of flexible 2D corotational beams

thus incorporating finite kinematic effect. Basic features of the corotational beam

formulation are described below.

2.1.1 Beam kinematics

Rigid rotation must be evaluated accurately in order to find the actual angular de-

formation at the corotated frames. Earlier methods (Belytschko and Hsieh, 1973;

Crisfield, 1991; Belytschko et al., 2000) restrict the evaluation of such quantity when

rigid rotation is extremely high. Hence, a modified approach has been proposed and
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discussed in subsequent section.

2.1.1.1 Earlier scheme and its limitation

The kinematic quantities are evaluated on a local frame attached to the deformed

beam. In Figure 2.1, x-y denotes the global coordinate system, whereas xl-yl denotes

the local coordinate system at t=tn associated with a two noded beam element. Global
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Figure 2.1: Schematic diagram of a 2D corotational beam element. x-y
is the global coordinate system while xl-yl is the rotated local coordinate
system in which local deformations are defined.

displacement vector dg for this element is defined by,

dg =
{

u1 v1 θ1 u2 v2 θ2

}T

, (2.1)

where ui and vi, i=1, 2, are global nodal displacements in x and y directions, respec-

tively, and θi, i=1, 2, are global nodal rotations. Initial and current lengths of the

beam element, denoted by l0 and ln respectively. Local coordinate axes are so chosen
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that local displacement vector dl has only three components (Figure 2.1);

dl =
{

ul β1 β2

}T

, (2.2)

with ul as the axial deformation of the beam and β1 and β2 as nodal angular de-

formations in the corotated coordinate system. Components of the vector dl can be

computed as

ul = ln − l0,

β1 = θ1 − αn,

β2 = θ2 − αn, (2.3)

where αn is the rigid body rotation given by

αn = βn − β0. (2.4)

In the above equation, βn is the current inclination of the local frame with respect

to the global coordinate description, and β0 is the initial inclination of the element

(Figure 2.1). The current inclination (βn) of the frame (t = tn) can be computed as

following. The cosine and sine components of the current inclination (βn) are given

as

cn = cos βn =
1

ln
(x2 + u2 − x1 − u1),

sn = sin βn =
1

ln
(y2 + v2 − y1 − v1). (2.5)

So the current inclination βn can be found by applying quadrant rule as
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βn = sin−1(sn) if sin(βn) ≥ 0 and cos(βn) ≥ 0,

βn = cos−1(cn) if sin(βn) ≥ 0 and cos(βn) < 0,

βn = sin−1(sn) if sin(βn) < 0 and cos(βn) ≥ 0,

βn = − cos−1(cn) if sin(βn) < 0 and cos(βn) < 0. (2.6)

The rotation can be calculated by finding out which quadrant the beam lies. The

above relationships hold for only when |βn| < π.

2.1.1.2 Proposed scheme for kinematic quantities
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In case of soft cellular material, the strut may undergo large rotation (> π). The de-

formed strut at t=tn+k in Figure 2.2 represents such a situation. The earlier approach
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fails to evaluate such a large rotation of the strut. Hence, an alternative approach

has been suggested in this dissertation to evaluate the current inclination of the coro-

tated frame. In this novel approach, the inclination at the current configuration (tn)

is evaluated with respect to the previouly known deformed configuration (tn−1). The

change of the inclination at the current state ∆βn from previously deformed state

(tn−1) can be computed as following:

cos(∆βn) = cncn−1 + snsn−1,

sin(∆βn) = sncn−1 − cnsn−1. (2.7)

In the above equation cn and sn are cosine and sine components of the current incli-

nation while cn−1 and sn−1 denote the same for the previous step. These components

are evaluated according to Equation 2.5. It can be assumed that change of inclination

for any given step is such that |∆βn| < π. Therefore, the quadrant rule can be applied

to evaluate ∆βn. Hence, the current inclination can be updated as

βn = βn−1 + ∆βn. (2.8)

Thus, the inclination of the frame can be found precisely without facing any numerical

difficulties as mentioned earlier. Therefore, the kinematic quantities can be evaluated

accurately by extracting the rigid rotation of the corotated frame.

2.1.2 Calculation of virtual internal work

The virtual work of the corotational beam in the local and global system can be found

as

δWint = Nδul +M1δβ1 +M2δβ2 = δdT
l Fint

l = δdT
g Fint

g , (2.9)
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Local internal force vector, Fint
l has only three components corresponding to the three

components of local displacement vector dl (Equation (2.3)) and can be expressed as

Fint
l =

[

N M1 M2

]T

, (2.10)

where N is the axial load while M1 and M2 are moments at node 1 and 2 of the

element. Fint
g denotes global force vector. Variation of local kinematic quantities δdl

can be obtained through the differentiation of Equation (2.3)

δul = cn(δu2 − δu1) + sn(δv2 − δv1),

=
{

−cn −sn 0 cn sn 0
}T

δdl

δβ1 = δθ1 − δαn = δθ1 − δβn,

δβ2 = δθ2 − δαn = δθ2 − δβn. (2.11)

After mathematical manipulation, variation of current inclination δβn can be related

to global virtual kinematic quantities δdg as

δβn =
{

−sn/ln cn/ln 0 sn/ln −cn/ln 0
}T

δdg. (2.12)

The local virtual kinematic quantity δdl can be related to global quantity as δdl =

BT δdg, where the transformation matrix B, can be obtained as

B =







−cn −sn 0 cn sn 0

−sn/ln cn/ln 1 sn/ln −cn/ln 0

−sn/ln cn/ln 0 sn/ln −cn/ln 1







. (2.13)

From the Equation (2.9), the global internal load vector can be written as

Fint
g = BTFint

l . (2.14)
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Depending on the beam definition and material constitutive relationship, the local

internal force vector Fint
l is calculated and hence the global internal force vector Fint

g .

2.1.3 Euler Bernoulli beam element

Based on classical linear beam theory, the Euler Bernoulli element is considered here.

A linear interpolation for the axial displacement u and a cubic one for vertical dis-

placement v results

u =
x

L
ul,

v = x

(

1− x

L

)2

β1 +
x2

L

(
x

L
− 1

)

β2. (2.15)

Considering the assumption of Euler-Bernoulli beam definition the curvature κ and

strain ε can be found as

κ =
∂2v

∂x2
=

(

− 4

L
+ 6

x

L2

)

β1 +

(

− 2

L
+ 6

x

L2

)

β2,

ε =
∂u

∂x
− κz =

ū

L
+ z

[(
4

L
− 6

x

L2

)

β1 +

(
2

L
− 6

x

L2

)

β2

]

. (2.16)

The virtual internal work can be expressed as

δWint =

∫

Ω

σδεdΩ = Nδul +M1δβ1 +M2δβ2, (2.17)

where components of Fint
l , such as N , M1 and M2 can be found as

N =

∫

Ω

σ

L
dV,

M1 =

∫

Ω

σz

(
4

L
− 6

x

L2

)

dV,

M1 =

∫

Ω

σz

(
2

L
− 6

x

L2

)

dV. (2.18)
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2.1.4 Timoshenko beam element

Timoshenko beam definition (Crisfield, 1991) which will account possible shear de-

formations of the short cell wall is considered in the local coordinate system. For

the two noded element, shape function is given as N={ 1− x/L x/L } for the

displacement and angular deformation

u =
x

L
ul,

w = 0,

θ = N1β1 +N2β2, (2.19)

The curvature κ, shear deformation γ and axial strain ε can be obtained as

κ =
∂θ

∂x
=
β2 − β1

ln
,

γ =
∂w

∂x
− θ = −N1β1 −N2β2,

ε =
∂u

∂x
− κz =

ul

ln
− β2 − β1

ln
z. (2.20)

The virtual internal work can be expressed as

δWint =

∫

Ω

(
σδε+ τδγ)dΩ = Nδul +M1δβ1 +M2δβ2, (2.21)

where N , M1 and M2 can be obtained as

N =

∫

Ω

σ

L
dV,

M1 =

∫

Ω

[
σ

L
z − τ

(

1− x

L

)]

dV,

M2 =

∫

Ω

[

− σ

L
z − τ x

L

]

dV. (2.22)
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In the above equation σ and τ are axial and shear stresses in the beam, respectively,

while x ∈ [0 L], and z ∈ [−hs/2 hs/2] with hs as the beam thickness.

2.1.5 Calculation of axial force and moments

Typically a Gauss-Quadrature rule is used to evaluate the axial force as well as

moments as given in Equation (2.18) and (2.22). In case of inelastic materials, a

discontinuous stress distribution arises across the depth as shown in the Figure 2.3.

Gauss-Quadrature is not suitable for inelastic material since the quadrature schemes

are based on higher order polynomial which by default assume the smoothness in the

data under consideration. The trapezoidal rule is more suitable as it is more effective

for less smooth function. Assuming a rectangular cross-section beam with thickness

ξ = −1

ξ = 1 Integration point

Reference line

z

σx

Figure 2.3: Stress distribution across the depth of the beam when consti-
tutive material is inelastic.

hs and width b, axial force can be evaluated as

N =

∫ hs/2

−hs/2

σ(z)dA =

∫ 1

−1

σ(ξ)Jbdξ, (2.23)

where ξ = 2z/hs, and J = dz/dξ. The moment M1 in Equation (2.22) can be

evaluated as

M1 =

∫ hs/2

−hs/2

σ(z)zdA− l0
2

∫ hs/2

−hs/2

τ(z)dA =

∫ 1

−1

f(ξ)Jbdξ − l0
2

∫ 1

−1

τ(ξ)Jbdξ, (2.24)
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where f(ξ) = σ(ξ)hsξ/2. The moment M2 can be evaluated in similar manner. The

detail steps to evaluate the stress for a rate independent plastic material is described

in Appendix C.

2.2 Explicit transient finite elements for the beam

element

A transient finite element method with an explicit time stepping scheme is used to

simulate the dynamic response of the soft cellular solids. Condition for equilibration

at the element level can be derived from the principle of virtual work, and can be

stated as

δWkin + δWint − δWext = 0, (2.25)

where the variation of kinetic energy, internal energy and external work done can be

written as

δWkin =

∫

Ω

δu · ρüdV +

∫

Ω

δθ · Iθ̈dV = δdT
g Md̈g,

δWint = δdT
g Fin

g ,

δWext = δdT
g Fext

g . (2.26)

Substituting individual virtual quantities in Equation (2.25), a discretized equation

of motion can be obtained as

Md̈g = Fext
g − Fint

g . (2.27)

Mass matrix M in the above equation depends on the element description and mass

density ρ. We have used a lumped mass matrix using HRZ lumping scheme (Cook et al.,
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2002). Fext
g denotes the external load vector while internal load vector Fint

g can be

evaluated from Equation (2.14). Equations of motion (2.27) are now integrated ex-

plicitly in time domain using a central difference scheme (Belytschko et al., 1976) to

compute global velocity ḋg and displacement dg as

ḋg
n+1

= ḋg
n

+
1

2
∆t
[
d̈g

n
+ d̈g

n+1]
,

dg
n+1 = dg

n +
1

2
∆tḋg

n
+

1

2
∆t2d̈g

n
, (2.28)

where (·)n+1 represents the quantities at time step t = tn+1 while (·)n denotes same

quantities at time step t = tn.

input : Applied velocity ḋg(x = x̄, t)
output: Nodal displacements dg(x, t)

1 Initial condition: set ḋg(x, t = 0);
2 Calculate Mass matrix M;
3 Evaluate time step ∆t from CFL condition;
4 Set loop variables: nmax or tmax;
5 while t > tmax or n > nmax do
6 Calculate internal force Fint

g ;

7 Evaluate external force Fext
g ;

8 Calculate acceleration d̈g
n+1

= M−1(Fint
g − Fext

g );

9 Update nodal velocity ḋg
n+1

;

10 Impose essential boundary conditions ḋg
n+1

(x = x̄, t) ;
11 Update nodal displacements dn+1

g ;

12 Update loop variables: n← n+ 1, t← t+ ∆t ;

13 end

Algorithm 1: Explicit dynamic corotational beam formulation.

Explicit time stepping algorithms are conditionally stable such that time step size

must be less than a critical time step size. For example, if a wave is travelling in an

element, then the critical time step is equal to the time for wave to travel from one

end to another end of the element. The time step size for the explicit time-marching
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schemes is determined by Courant-Friedrichs-Lewy (CFL) condition as

∆t = ψ
∆x

cd
, (2.29)

where ψ is the Courant number, ∆x is the minimum element length and cd is the di-

latational wave speed in the element. For the simulations presented in this paper, we

have chosen ψ=0.1 so that the solutions remain well within the stable regime. Numer-

ical implementation of explicit dynamic corotational formulation can be performed

through Algorithm 1.

2.3 Implicit quasi-static finite element corotational

beam formulation

To find the quasi-static response of the flexible beam an implicit corotational beam

formulation has been developed.

R(δdg) := δWint − δWext = 0 (2.30)

where, R defined as residual vector. The above equation can be linearized for a given

increment of global displacement vector ∆dg as

R(dg + ∆dg) = R(dg) +
∂R

∂dg

∆dg ≈ 0 (2.31)

Using Equation (2.30) in above equation, the linearized equations can be restated as

Ki
g∆dg

i+1 = Fexti

g − Finti

g , (2.32)
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where tangent stiffness matrix Kg = ∂R/∂dg = ∂δWint/∂dg. In the above equation

Fint
g is the internal load vector can be evaluated from corotational beam definition as

given in Equation (2.14) along with correct beam definition. An iterative procedure

is applied to solve Equation (2.32) where i denotes the index of iteration. For a given

load step (n), the displacement vector is updated as

di+1
g = di

g + ∆di+1
g , (2.33)

and the iteration continues until increment of displacement reaches a convergence

criteria specified as ||∆di+1
g ||L2

< ǫ||di
g||L2

, where ǫ is the tolerance. Numerical im-

plementation of implicit corotational formulation for quasi-static analysis can be per-

formed through Algorithm 2.

input : Applied displacement at boundary dg(x = x̄)
output: Nodal displacements

1 dg(x)

2 Set load loop variable: nmax;
3 Set iteration loop variables: imax, ǫ;
4 while n < nmax do
5 Initialize dgn+1

= dgn
;

6 while ||∆di+1
gn+1
||L2

< ǫ||di
gn+1
||L2

and i < imax do

7 Calculate internal force Fint
g ;

8 Evaluate external force Fext
g ;

9 Solve Ki
g∆dg

i+1
n+1 = Fexti

g − Finti

g ;

10 Update di+1
gn+1

= di
gn+1

+ ∆di+1
gn+1

;

11 Update iteration loop variables: i← i+ 1 ;

12 end
13 Update load step: n← n+ 1 ;

14 end

Algorithm 2: Implicit quasi-static corotational beam formulation.
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2.4 Simulation for the verification of developed co-

mputational scheme.

2.4.1 Deflection of elastic cantilever beam under impact load:

Theory and numerical experiment

A cantilever beam of uniform cross-section as shown in Figure 2.4 subjected to a

transient force Pf(t) at the tip is considered for the verification purpose. The force

Pf(t) is a half-sine pulse as shown in Figure 2.5(a)

f(t) =







sin πt/T 0 ≤ t ≤ T,

0 t > T,

where T is the period of the fundamental mode of vibration of the cantilever. Ac-

cording to (Warburton, 1976) the tip deflection can be given as

v(l, t) =







Pl3

EI
[0.441 sin πt/T − 0.216 sin 2πt/T ], 0 ≤ t ≤ T

Pl3

EI
[−0.432 sin(ω1(t− T ))], t > T,

(2.34)

To simulate the above problem, the beam is discretized with two noded Euler-

Bernoulli corotational beam element. Using the explicit dynamic formulation, the

tip deflection is obtained and plotted against the analytical solution in Figure 2.5(b)

for different number of discretization (N). It can be observed that simulated re-

sponse is similar to the analytical results. Furthermore, as the number of element

increases, the simulated responses converges to the analytical solution as given in

Equation (2.34). Thus, the above explicit dynamic corotational formulation is vali-
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dated and can be used as predictive tool to simulate dynamic behavior of complex

structures containing networks of beams such as open cell cellular solids.

Pf(t)

E,A, L

Figure 2.4: Cantilever beam subjected to transient force at the tip.
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Figure 2.5: (a) Variation of impact force at the tip with time, and (b)
Variation of tip deflection with time.

2.4.2 Deformation of a crossed bar under impact load: demon-

stration of dynamic buckling

In this example, a crossed bar as shown in Figure 2.6 is subjected to axial impact

at free end with velocity v. Constituent material of the crossed bar taken as lin-
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early elastic. The beam is discretized with Timoshenko beam elements. Using the

explicit dynamic corotational formulation, the deformation snaps at different times

are obtained and illustrate and plotted in Figure. 2.7. At the initial stage t = 4.5µs,

L

L

v

Figure 2.6: Schematic of crossed bar undergoing axial impact at the free
end.

the horizontal beam undergoes axial compression while the inclined beam under-

goes bending deformation. As time proceeds, t = 7.0µs the horizontal beam further

undergoes axial deformation with little bending while the inclined beam undergoes

significant bending deformation. The large deformation of inclined beam and the

axial deformation of the right horizontal segment offer significant resistance at the

strut junction. Hence, no further movement of the junction point is possible due to

the application of impact velocity. Consequently, at t = 9.5µs, the horizontal beam

undergoes significant amount of buckling to accommodate the applied displacement.

Such crossed bar can roughly be thought the building blocks of open cell cellular ma-

terial and this deformation characteristics is important for the macroscopic behavior

of cellular materials.
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t = 2.0µs

t = 4.5µs

t = 7.0µs

t = 9.5µs

Figure 2.7: Deformed snapshots of the crossed bar when subjected to axial
impact at the free end.

2.5 Cellular microstructure generation & random-

ness quantification

An accurate representation of the cellular microstructure is necessary to investigate

the effect of cellular topological features as well as material properties on deformation

characteristics. We employ Voronoi tessellation, a widely used cellular microstructure

generation technique having space filling properties similar to the actual foam, for the

purpose of our simulations. In the following we will describe the properties of voronoi

tessellation, and its implementation to cellular microstructure generation.
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2.5.1 Voronoi tessellation

Voronoi tessellation is the decomposition of a space with n points to convex polygons.

Let P = {p1, p2, ..., pn} be a set of points in the two dimensional Euclidean plane

referred to as sites. The voronoi region V (pi) of site pi is defined as

V (pi) = {x :| pi − x |≤| pj − x |,∀j 6= i}. (2.35)

The Voronoi region V (pi) thus consists all points that are nearer to site pi than any

other site pj. The set of all points having more than one nearest neighbor constitutes

the Voronoi diagram V(P ) of set P (Figure 2.8). It can also be shown that for n sites,

the number of Voronoi vertices and edges is O(n). Let us assume the perpendicular

bisector of the line segment pipj by Bij. Also, let H(pi, pj) be a closed half-plane with

boundary Bij and containing the site pi. It can be shown that

V(pi) =
⋂

i6=j

H(pi, pj) (2.36)

Note that the voronoi regions are always convex and contain more than three edges.

2.5.2 Numerical implementation of cellular microstructure

generation

Voronoi tessellation technique has been implemented to generate cellular microstruc-

tures. Voronoi seeds, when distributed on a regular triangular lattice, result in a

honeycomb cellular structure. Disorder in this regular structure can be simulated by

introducing a random perturbation to the seed positions. The detail steps to generate

cellular microstructure is described in Appendix B. Microstructures thus generated
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Voronoi region

Voronoi diagram

Voronoi site

Figure 2.8: Voronoi tessellation showing Voronoi sites, Voronoi regions and
a Voronoi diagram.

are characterized by the mean cell size dav and standard deviation Sd of the cell size

distribution (Figure 2.9(b)). In the present analysis, we will consider the randomness

only in the microstructure. With a uniform strut thickness of hs for all the cells,

relative density of a cellular structure can be defined as

ρ̄ =
ρ

ρs

=

ns∑

i=1

liκh
2
s

LDhs

, (2.37)

where ρ is the apparent density of cellular structure, ρs is the bulk material density

of constituent material of the cellular specimen, ns is the number of struts, li are the

length of struts, and κ is a dimensionless parameter depending upon the shape of the

strut cross-section. Each strut (cell wall) is further subdivided into a number of two

noded beam elements to perform the finite element analysis described next.
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Figure 2.9: (a) Numerically generated random open cellular structure with
an average cell size dav=28.4 µm and standard deviation Sd=0.02dav, and (b)
resulting cell size distribution normalized with dav. Frequency of occurrence
of a particular cell size is denoted by Nf , while dc stands for the size of an
individual cell.

2.6 Experimental validation of foam dynamic re-

sponse

For the validation purpose, a cellular microstructure with length L=2 mm, thickness

D=2 mm, average cell size dav=151 µm and struct thickness hs=14 µm is generated.

The bulk material is considered as polyvinyl chloride (PVC) whose Young’s modulus

E= 3.0 GPa, and density ρ=1400 Kg/m3. Using transient explicit corotational for-

mulation, the dynamic response of the cellular specimen is obtained and compared

with experimental response (Thomas et al., 2002). It should be noted that, due to ex-

treme variabilities in microstructure and microscopic properties, an exact match with

the experiment is impossible to simulate. Our objective is to examine whether the

numerical framework developed can capture the experimental outcome in an average

sense, and salient features of experimental results are well predicted.

It can be observed from Figure 2.10 that simulated response offers almost similar

deformation behavior. Initial slope, peak stress as well as plateau region are predicted

well. For example, experimentally observed average plateau stress is 3.4 MPa, while
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Figure 2.10: Comparison of simulated and experimental responses of a
cellular specimen.

numerical simulation offers an average pleatue stress 3.6 MPa. Relative error in such

prediction is 5.8%. The discrepancies between responses can be attributed from the

microstructure variabilities that has not been taken into account.

2.7 Concluding remarks

In this chapter, detail steps of corotational beam formulation have been outlined. A

new approach has been proposed to avoid the numerical difficulties arising from the

large rotation. An explicit dynamic finite element has been implemented to simulate

the dynamic behavior of a flexible beam. The nodal internal load is evaluated based

on corotational beam formulation. Hence, an accurate nodal force can be calculated

though the strut undergoes large rotation. An implicit formulation has also been

illustrated to obtain the quasi-static behavior of the flexible elements. The numerical

framework is validated against available analytical results. Furthermore, deforma-
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tion of crossed beam is obtained for dynamic impact load. It is found that numerical

framework is capable to simulate complex strut subjected to axial load. Therefore, the

explicit corotational beam formulation will enable us to study complex deformation

characteristic of cellular specimen. Furthermore, using the implicit corotational beam

formulation, the deformation behavior of tough biological filament will be obtained.

Next, the detail procedures to generate cellular microstructure have been illustrated.

The randomness of cellular microstructure have also been characterized through the

distribution of cell sizes. Moreover, dynamic response of numerically generated cellu-

lar structure has been simulated and compared with experimental observation.
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Chapter 3

Analysis of stress state in soft

cellular materials during split

Hopkinson pressure bar (SHPB)

test

3.1 Introduction

The developed computational framework has been utilized to study the stress state

in a soft cellular sample during SHPB test. Moderately randomized cellular mi-

crostructures with different average cell size have been generated computationally to

represent the specimen. In order to simulate dynamic test conditions under SHPB

setup, a parametric study encompassing intrinsic variables (e.g., specimen aspect ra-

tio and cellular microstructural features) and extrinsic variables (e.g., loading rate

and boundary impedance mismatch) has been undertaken. The focus of the present
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work is to study the effect of specimen thickness and impedance mismatch on the

dynamic response of soft polymeric cellular materials using the split Hopkinson pres-

sure bar technique. State of stress (equilibrium or non-equilibrium) will be studied

thoroughly for a set of geometric and material parameters.

This chapter is organized as follows: In Section 3.2, the computational domain along

with boundary conditions is described. Parameters used to characterize the cellular

microstructure and describe the dynamic equilibration process are also detailed in

this section. In Section 3.3, we present a thorough discussion of a parametric study

obtained through the computational framework outlined in Chapter 2. Of special

interest is the effect of microstructural features and thickness of the specimen, loading

rate, and end impedance mismatch on the dynamic equilibration process. Finally, we

close the discussion by drawing conclusions from the current study in Section 3.4.

3.2 Problem description

3.2.1 Setup of the computational model

In the current study, we mimic SHPB test setup as closely as possible by using a

computational domain representing the specimen with proper boundary conditions.

Figure 3.1 shows a cellular specimen of length L and depth D with an aspect ratio

φ=L/D held between an incident bar to the left and a transmission bar to the right.

Stress wave enters the specimen through the incident bar interface (left) and propa-

gates towards the transmission bar interface (right). Incident and transmitted signals

are collected at respective interfaces, and the axial strain in the specimen is measured

from the relative displacement of these interfaces. Note that a certain portion of the

incident wave gets reflected from the incident bar-specimen interface while the same
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L

D

Incident Bar Transmission Bar

Figure 3.1: A cellular specimen of length L (=13.2dav) and depth D is
held between incident and transmission bars of a SHPB set up. Impedance
(viscous) boundary conditions are used at left and right ends of the specimen
while top and bottom boundaries are kept free.

happens also at the transmission bar-specimen interface due to an impedance mis-

match between the specimen and the bars. For a realistic computational simulation

of the SHPB technique, this impedance mismatch has to be taken into account.

The incident and transmission bars are replaced by equivalent boundary condition

in our computational framework. For this purpose, we have incorporated viscous

boundary conditions on the left as well as on the right ends. Viscous dampers have

been attached to all the struts at the incident and transmission interfaces with the

specimen. Force exerted by such viscous dampers for an interface velocity v can

be related as Fv=ρmcmAmv, with ρm, cm and Am are the bulk material density, the

dialatational wave speed and cross-sectional area of the external medium, respectively.

Impedance mismatch ratio of each strut at the incident bar-specimen interface Z̄I and

the transmission bar-specimen interface Z̄T are defined as

Z̄I =
ρIcIAI

ρscdA
, Z̄T =

ρT cTAT

ρscdA
, (3.1)

with ρs as the mass density of bulk cellular material and cd as the dialatational wave
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speed. Also, ρI , cI are the mass density and dilatational wave speed of the incident

bar, whereas, ρT , cT represent the same quantities at the transmission end. Addition-

ally, A denotes the area of the specimen while AI and AT are cross-sectional area of

the incident and transmission bars, respectively. While describing a cellular material,

it should be noted that relative density ρ̄ of the material is a better parameter to

quantify the impedance of the specimen. But ρ̄ is microstructure dependent and may

vary as the deformation progresses in a cellular solid. So, we have chosen the quan-

tity ρs, actual bulk density of the specimen, instead of ρ̄ to avoid this microstructure

dependence in the description of the impedance mismatch.

3.2.2 Extraction of dynamic stress-strain response

In this computational setup, time dependent stress at the incident end σI(t) and trans-

mission end σT (t) can be found by computing reactions at corresponding ends. Ho-

mogenized state of deformation at which dynamic properties of the specimen should

be evaluated can be characterized by a measure of dynamic stress equilibration. Using

the method of characteristics, Ravichandran and Subhash (1994) have analyzed stress

equilibration in a ceramic specimen while being loaded in SHPB. They established a

dynamic stress equilibration measure as

R(t) =
|∆σ(t)|
|σm(t)| × 100%, (3.2)

where ∆σ(t)=σT (t) − σI(t) is the difference in stresses between transmission and

incident interfaces and σm(t)=(σT (t) + σI(t))/2 is the mean of these values. Stress

equilibrium of the specimen is assumed to have been achieved when R(t) ≤ 5% for

ceramic specimens. After ensuring the stress equilibration, the dynamic stress and
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strain can be evaluated in a SHPB setup as

ε̇ = −2cd
L
εr(t), and σ(t) =

A0

As

Eεt(t). (3.3)

In the above equations, L and As are the original sample length and cross-sectional

area; cd, E and A0 are the dilatational wave speed, Young’s modulus and cross-

sectional area of the bars, respectively; εr(t) and εt(t) are measured reflected and

transmitted strain signals. To evaluate the dynamic stress-strain response analogous

to SHPB setup, the strain rate of the specimen in the present framework is computed

as

ε̇(t) =
vT − vI

L
, (3.4)

where vT and vI are the velocities of the interfaces at the transmission and the incident

ends, respectively. It can be shown that SHPB relationship 3.3(a) can be deduced

from Equation (3.4). Now, axial strain ε can be obtained as

ε(t) =

∫ t

0

ε̇(t)dt. (3.5)

Our numerical model can provide the transmitted stress σT (t) directly, measured at

the specimen and transmission bar interface.

3.2.3 Theoretical verification

In order to verify the proposed computational scheme, our simulation results for a

one-dimensional specimen are compared to the results for the stress equilibration in

a typical ceramic specimen. Impedance mismatch at both the incident bar-specimen

and the transmission bar-specimen interfaces has been kept same, i.e. Z̄=Z̄I=Z̄T .

Using our scheme, the stress equilibration curves of an AlN specimen (E=315 GPa

and ρs=3226 Kg-m−3) with a length of 9.52 mm subjected to different Z̄ are ob-
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Figure 3.2: Comparison of simulated stress equilibration curves for a ce-
ramic specimen being tested in a SHPB setup with analytical results.

tained against number of wave reflection t̄=t/t0. In the present study, all the time

quantities are normalized with t0=L/cd which represents the time required by the

dilatational wave (cd) to travel the bulk specimen length (L). Figure 3.2 com-

pares the simulated stress equilibration curves with analytical results obtained by

Ravichandran and Subhash (1994). It can be found that our results are in good

agreement with the one-dimensional stress wave propagation through a long slender

bar studied by these authors.

One of the prime issues associated with the testing of soft cellular structures in SHPB

is that it is difficult to ensure stress equilibration in the specimen due to low impedance

with respect to the bars and the attendant attenuation of stress wave as it travels

through the specimen. Note that R(t) defined in Equation (3.2) is a pointwise measure

of stress equilibration at a particular time instant. It is a workable measure for

ceramic specimens as the stress equilibration history for these materials in a SHPB

set up shows a monotonic decrease after initial transients for all the cases of impedance

mismatch (Figure 3.2). But for soft materials, due to possible deformation localization

∗ Ravichandran and Subhash (1994)
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(cell collapse), R(t) can fluctuate even after a large number of wave reflections in the

specimen.

3.2.4 A typical stress equilibration study

As an example, we present the stress equilibration history for a cellular specimen

with L=750 µm, D=1.5L, and Z̄=Z̄I=Z̄T =6 in Figure 3.3. The specimen is made
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)%

tc tf

Figure 3.3: Typical stress equilibration curve R(t) against normalized time
(t̄ = t/t0) as obtained for a cellular material. The stress equilibration mea-
sure, as characterized by RMS value of the signal, is defined over the time
period between tc and tf . Inset shows the blow up of signal R(t) over a time
range of tc=20t0 and tf=40t0.

of polyethylene with E=0.15 GPa, ρs=910 kgm−3 and ν=0.3, and is subjected to an

impact velocity v=0.75 m/s. Notice that, it takes about 20 reflections for R(t) to

come down within 5% while only 8 reflections were sufficient for ceramic specimen

(Figure 3.2). Moreover, even after 20 reflections, R(t) shows significant oscillations

(shown in inset of Figure 3.3) although overall trend is monotonically decreasing. To

capture this general trend, a time averaged measure for stress equilibration is proposed

in this paper. We introduce Rrms, the root mean square value of R(t) calculated over
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some prescribed time span tc to tf as

Rrms =

√

1

tf − tc

∫ tf

tc

R(t)2dt. (3.6)

Calculation of Rrms is started at the time instant tc when R(t) is within a certain

bound chosen by the user (Figure 3.3), while tf is chosen in a way such that enough

number of stress wave reflections have occurred to achieve the stress equilibration.

When the RMS value of the stress difference becomes Rrms ≤ 5%, it is assumed that

the specimen has reached stress equilibration. In order to find suitable values of tc

and tf , several simulations are performed for different cellular materials with a wide

range of relative densities and loading range but with a fixed impedance mismatch

Z̄I=Z̄T =6. It was found that a minimum of 20 wave reflections are required for the

soft cellular structures under considerations to reach an acceptable state of dynamic

equilibration. Furthermore, all simulations are stopped at 40 reflections which is

sufficient to evaluate the RMS value of R(t). Henceforth, in the present analysis we

have adopted tc=20t0 and tf=40t0. Finally, it should be noted here that for highly

localized deformations, R(t) may show significant oscillations, its overall trend may

not be decreasing, and stress equilibration can never be achieved.

3.2.5 Intrinsic parameters of the model

In the literature, it can be found that the mechanical properties of cellular materials

are represented in terms of their relative density (Gibson and Ashby, 1997). Relative

density combines all the microstructural features (such as cell size, cell wall thickness

etc.) with bulk material properties (material density). For a fixed value of material

density ρs, a low relative density signifies a cellular structure containing large pores

and/or thin struts, whereas higher relative density cellular materials contain smaller
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cells and/or higher strut thickness.

With a uniform strut thickness of hs for all the cells, relative density of a cellular

structure can be defined as

ρ̄ =
ρ

ρs

=

ns∑

i=1

liξh
2
s

LDhs

, (3.7)

where ρ is the apparent density of cellular structure, ρs is the bulk material density

of the cellular specimen, ns is the number of struts, li are the length of struts and

the parameter ξ is a dimensionless parameter depending upon the shape of the strut

cross-section. Introducing aspect ratio φ=L/D and another dimensionless parameter

κ̄=L/dav that represents average number of cells in the specimen length direction and

substituting in Equation (3.7), ρ̄ can be recast as

ρ̄ =

ns∑

i=1

liξ

dav

hs

dav

φ

κ̄2
. (3.8)

From this equation, relative density ρ̄ can be expressed as a function of normalized

parameters η̄, d̄av, φ and κ̄ as

ρ̄ = f
(
η̄, d̄av, φ, κ̄). (3.9)

In the above equation, η̄ is defined as η̄=
∑
li/Ncdav, with Nc representing total

number of cells in the specimen while d̄av=dav/hs is the average cell size normalized

with strut thickness hs. It should be noted that η̄ represents the ratio of one half

perimeter to mean diameter of each cell (in a perfectly regular array) in the domain

and hence depends on the shape of the cells. The value of η̄ remains constant even in

the presence of moderate randomization in cell shape and size, as long as the average

cell shape is maintained. For example, for a perfect honeycomb microstructure, η̄ is

1.66. We have generated a number of cellular microstructures with different dav but
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a constant standard deviation of 0.02dav for a domain with different values of φ while

keeping strut thickness hs constant. Resulting variation of η̄ with ρ̄ has been plotted
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0.5
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η̄

κ̄ = 26.4

Figure 3.4: Variation of η̄ with respect to relative density of the specimen
with κ̄=26.4. Error bars represent the variation of η̄ with respect to aspect
ratio φ for each instance of the relative density ρ̄.

in Figure 3.4. It can be observed that, for different relative densities (corresponding

to different d̄av and a fixed κ̄), η̄ remains almost constant. Also, the effect of aspect

ratio φ on η̄, shown as error bars in Figure 3.4, is negligible. So, it can be inferred

that, even in the presence of a small randomization in cell size, parameter η̄ does

not affect the relative density of the cellular specimen appreciably. But a change

in shape of cells or a large variation in cell size in the microstructure will affect η̄

and will be reflected in the relative density and subsequent dynamic behavior of the

material. For the current study, we have used only nearly hexagonal cell shapes with

η̄ close to 1.66 for all the cases. So we will not consider the effect of η̄ in subsequent

simulations. In the following, the effect of two major parameters, the number of cells

in specimen length κ̄ and the normalized cell size d̄av, which exhibit a strong effect on

the relative density and hence on the overall dynamic behavior of cellular materials,

will be characterized in detail for different extrinsic parameters such as loading rate

and impedance mismatch. We will also examine the effect of specimen aspect ratio

φ on the stress equilibration process in this class of materials.

56



3.3 Result and discussions

Using the numerical scheme described in Chapter 2, dynamic stress equilibration pro-

cess in a split Hopkinson pressure bar setup is studied for a wide range of cellular

structures. A slightly disordered honeycomb microstructure (Figure 2.9(a)), which is

essentially two dimensional, has been used for all the simulations outlined in this pa-

per. Cell size distribution of these microstructures can be described by the mean cell

diameter dav and a standard deviation Sd, as discussed in Chapter 2. It is assumed

that the distribution of the cell size arises from minor processing induced irregulari-

ties in the microstructure, and accordingly, a small Sd=0.02dav is used to characterize

all the specimens in the current study. Specimen cell walls (struts) are assumed to

be square in cross-section leading to ξ=1 in Equation (3.7). Polyethylene, a polymer

whose material properties are given by E=0.15 GPa, ρs=910 kgm−3 and ν=0.3, is

chosen as the constituent phase of the cellular specimen (Gibson and Ashby, 1997)

used in this study. It is assumed that the material remains elastic throughout the sim-

ulation process though it can exhibit considerable geometrically nonlinear response.

As the incident stress signal is proportional to striker velocity in a SHPB setup, a

t

v

tR tf

Figure 3.5: Trapezoidal loading pulse with a velocity v and rise time tR. Fi-
nal time tf corresponds to a time instant up to which the stress equilibration
measure Rrms is computed.

velocity pulse is considered here instead of stress input. A typical velocity pulse in

SHPB is described in Figure 3.5 where v is the magnitude of the applied velocity
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and tR is the rise time of the pulse, both of which are systematically varied in our

simulations. Applied velocity is normalized with dilatational wave speed cd of the

cellular bulk material (polyethylene) as v̄=v/cd. Normalized rise time is expressed

as t̄R=tR/t0 while final time t̄f=tf/t0 corresponds to the time instant at which the

calculation of Rrms is terminated, t0 being the travel time of the dilatational wave

through the bulk specimen length. Incident and transmission bars are made of the

same material in a typical SHPB set up (Subhash et al., 2006a). Accordingly, in the

present analysis, impedance mismatch ratios of the incident bar as well as the trans-

mission bar with the specimen are kept the same, and are denoted as Z̄I and Z̄T ,

respectively. In the ensuing discussion, we detail the effects of various intrinsic pa-

rameters such as average cell size, specimen dimension (in terms of number of cells in

specimen length) and extrinsic parameters such as, loading rate and impedance mis-

match systematically. These effects are quantified through various nondimensional

parameters, d̄av, φ, and κ̄, as introduced in Section 3.3.

3.3.1 Effect of cell size dav and number of cells κ̄ in the spec-

imen length

In this section, we examine the effect of number of cells in the specimen length κ̄ for

a range cell size dav varied systematically. In order to do that, specimens containing

different number of cells in the specimen length (κ̄=3.3 to 26.4) for a range of cell

sizes varying from dav=28.4 to 75.4 µm are generated keeping the strut thickness

hs=2.5 µm and specimen aspect ratio φ=1/1.5 for all the cases. Resulting relative

density variation is given in Figure 3.6 for different normalized average cell size d̄av.

It can be observed that relative density ρ̄ decreases nonlinearly as the normalized cell

size d̄av increases for a fixed strut thickness and aspect ratio. Overlapping curves for

different κ̄ signify that the relative density does not depend on number of cells in the
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Figure 3.6: Variation of relative density ρ̄ with normalized average cell size
d̄av and number of cells in the specimen length κ̄ for a fixed strut thickness
hs=2.5 µm and aspect ratio φ=1/1.5.

length directions for a given cell size d̄av with fixed aspect ratio φ and strut thickness

hs. For all the specimens as mentioned above, a trapezoidal loading pulse with an

applied maximum loading velocity v̄=0.01 (resulting in a strain rate ε̇=5×103s−1)

and a normalized rise time t̄R=25 is employed. Such a rise time offers enough wave

reflection within the specimen thus ensuring the stress equilibrium of specimen. The

effect of rise time on stress equilibration will be demonstrated in the subsequent

discussions. Simulations are run up to 40 wave reflections in the specimen resulting

in a normalized final time t̄f=40. Specimens are subjected to equal impedance ratios

on both the ends with Z̄=Z̄I=Z̄T =6.

Figure 3.7 depicts the variation of stress equilibration measure Rrms with normalized

cell size d̄av and number of cells in the specimen length κ̄. Observe from this figure that

Rrms decreases rapidly with decreasing d̄av for a fixed value of κ̄, and consequently,

stress equilibration is better achieved at a final given time t̄f . This trend can be

observed for all values of κ̄. As it will be seen later, localized deformations that

cause oscillations in the stress equilibration process (Figure 3.10(b)) are delayed or
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Figure 3.7: Variation of Rrms with number of cells along the specimen
length κ̄ for a range of normalized cell size d̄av. Strut thickness hs is held
constant of 2.5 µm while aspect ratio φ=1/1.5 for all the simulations.

altogether eliminated at low d̄av (high relative density) resulting in a low value of

Rrms. Note from Figure 3.7 that achieving a low value of Rrms is difficult at higher

d̄av even if there are a large number of cells in the length direction. On the other

hand, stress equilibration can be achieved with just a few cells (κ̄=3.3) in the length

direction (marked by square D in Figure 3.7) if normalized cell size is sufficiently low

(higher relative density). But too few cells may not give a representative (converged)

stress-strain response, as will be shown later in this section, and should be avoided.

The observations described above are based on normalized average cell size d̄av and

number of cells in specimen length κ̄ with an aspect ratio of 1/1.5. In order to exam-

ine the effect of specimen geometry on the stress equilibration process, two sections

(parallel to d̄av and κ̄ axes respectively) corresponding to d̄av=15.1 and κ̄=26.4 are

taken from Figure 3.7 and the aspect ratio φ is varied from 1/0.5 to 1/1.75. Error

bars in Figure 3.8(a) show the deviation of Rrms for the above range of aspect ratios

for selected values of κ̄ with a constant normalized average cell size (d̄av=15.1). Sim-

ilarly in Figure 3.8(b), the effect of aspect ratio, again represented by error bars, is

presented for different d̄av but for a fixed number of cells along the specimen length
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(κ̄=26.4). Observe from these figures that Rrms remains largely unaffected by the
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Figure 3.8: Effect of aspect ratio φ, represented by error bars, on Rrms

(a) for a constant normalized average cell size (d̄av=15.1) but varying κ̄, and
(b) for a fixed number of cells (κ̄=26.4) but different d̄av.

variation of specimen aspect ratio φ except for the very low value of κ̄, where the

variations are the maximum. So it can be concluded that, at least for the range of
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φ chosen in this study, stress equilibration process is not influenced by the specimen

length to width ratio when sufficient number of cells are present in the length direc-

tion. As expected, stress equilibration is strongly affected by the average cell size

in the specimen (Figure 3.8(b)). For a fixed number of cells in the length direction

(κ̄=26.4), larger the cell size, more difficult it is for stress equilibration to occur (i.e.

higher Rrms value).

Average number of cells present in the specimen length, represented by κ̄, does not

affect the stress equilibration process significantly as found in Figures 3.7 and 3.8(a).

But the stress-strain response of the cellular structure, as extracted from the SHPB

test, may depend on the average number of cells in the specimen length. Even though

a specimen with a low value of κ̄ provides an equilibrium stress state for a given loading

scenario, (Figures 3.7 and 3.8(a)), number of cells in the specimen length may not

be statistically significant to provide actual cellular structure constitutive response.

To elucidate this point, κ̄ is varied from 3.3 to 26.4 for a specimen with a fixed cell

size d̄av=15.1 (ρ̄=0.139). From Figure 3.9, it can be found that for only three layers

of cells in the length direction (κ̄=3.3), the constitutive response is reminiscent of

the single cell stress-strain response (?) rather than the average cellular material

response sought. As κ̄ increases, the stress-strain response converges towards the

actual constitutive response of a soft cellular specimen. Thus, it can be concluded

that although the number of cells (in specimen length) required for stress equilibration

could be small for higher relative density cellular materials, for effective stress-strain

response, at least 15 layers of cells (κ̄=13.2) are required. It should be mentioned

that the least value of κ̄ for other choices of material properties, cell geometries and

loading conditions can be different from this value. But, just a few cells in length

direction will never sufficiently capture the dynamic response of the material.

As discussed in Section 3, to characterize the stress equilibration, we have introduced

an average value of the stress equilibration measure, Rrms, over a finite interval of
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Figure 3.9: Stress-strain response of cellular specimens with a constant
cell size (d̄av=15.1) but different number of normalized cells in the specimen
length (κ̄). Numbers in parentheses indicate actual number of layers of cells
in the specimen length direction.

time. Motivation behind this averaging process was to extract equilibration informa-

tion in the presence of oscillations in the stress equilibration history (Figure 3.3). Re-

call that it requires a large number of wave reflections at the interfaces to reach stress

equilibration in the entire cellular specimen. Ravichandran and Subhash (1994) used

an R(t) value of 5% as an acceptable measure for stress equilibration. This resulted

in eight wave reflections within the ceramic specimen after which the stress-strain

response was considered valid. For cellular structures, this value may be unrealistic

to achieve due to reasons stated earlier. In the ensuing discussion, we study the ac-

tual evolution of R(t) for various cellular structures and its relation to the extracted

constitutive response. To accomplish this task, three points (A, B and C) from d̄av-κ̄

space in Figure 3.7 are selected such that two points (A and C) represent the extreme

situations (high d̄av and low κ̄, and vice versa) and the third point (B) lies in between

them. These three cases correspond to d̄av=11.3, 22.7 and 30.3 with κ̄=26.4, 6.6 and

3.3, respectively, and Rrms values at these points are given in the Table 3.1.

Stress-strain responses corresponding to these three points are shown in Figure 3.10(a)
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Points d̄av κ̄ ρ̄ Rrms(%)
Case I A 11.3 26.4 0.189 4.1
Case II B 22.7 6.6 0.09 12.5
Case III C 30.3 3.3 0.07 18.2

Table 3.1: Rrms values for chosen combinations of d̄av and κ̄.

and corresponding stress equilibrium curves are given in Figure 3.10(b) as a function of

number of wave reflections t̄=t/t0 in the specimen, where t is the elapsed time. Points

t̄i for i=1 to 4 represent t̄=10, 20, 30 and 40, respectively, in these figures. It can be

found from the stress equilibration curves that the specimen with cell size d̄av=11.3

(ρ̄=0.189) maintains a lower stress difference (R(t) < 5%), and hence better stress

equilibration between two ends when t̄ >20. Number of cells in the length direction

also being high (κ̄=26.4), the stress-strain response presented in Figure 3.10(a) for

this case can be taken as the representative dynamic response of the material. Note

that, reasonable stress equilibration has been achieved within 25 reflections for this

case. For Case II (point B) with an intermediate d̄av of 22.7 and κ̄=6.6 (shown by

dash-dot line in Figure 3.10(b)), there are severe oscillations throughout R(t) history,

but they are limited to less than R(t)=10% for t̄ >25. This fact is reflected by an

Rrms value of 12.5% for this case (Table 3.1). With the acceptable limit of Rrms fixed

at, say 5%, the stress equilibration could not be achieved and maintained throughout

the test process for this case. However, if this condition is relaxed to, say 10%, the

equilibration condition can be satisfied for t̄ >25 in an average sense. However for

Case III (point C), the low relative density coupled with very few number of cells in

the specimen length direction fails to establish stress equilibration at all except for

small intervals. This fact is clearly reflected in Figure 3.10(b). Corresponding stress-

strain curve (Figure 3.10(a), dotted line) is therefore not a valid constitutive response

for this case. The above discussion clearly highlights the dependence of stress-strain

response on the number of cells in the specimen length direction. With increased

number of cells, it is easier to establish stress equilibration during the test and obtain

a valid stress-strain response that is representative of the cellular structures.
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Figure 3.10: (a) Stress-strain curves for cellular specimen for the three
cases designated in Table 3.1, and (b) corresponding stress equilibrium his-
tory.

To identify the deformation features of the above mentioned cellular structures, snap-

shots of deformed structure at selected intervals t̄i, i=1, 4, are shown in Figure 3.11.

For clarity, the degree of deformation in each cell is defined by An
c /A

o
c, where Ao

c

and An
c are the cell areas at t=0 and t=tn, respectively, and is represented by a grey
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Figure 3.11: Snapshots of deformed specimens at selected time intervals for
the three cases (A, B and C) designated in Table 3.1. Degree of deformation
in each cell is represented by a grey scale varying from 0 (no deformation)
to 1 (full collapse).

scale with An
c /A

o
c=1 representing the undeformed cell (colored white) and An

c /A
o
c=0

indicating a fully collapsed cell (colored dark). However, we did not assign a grey

scale for incomplete cells at the boundaries, and consequently, they show in white
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in the figure. It can be seen from the Figure 3.11(a) that for the specimen with

the smallest cell size (Case I), deformation gradients are not very localized; they are

rather spread throughout the domain. For Case II (Figure 3.11(b)), a deformation

gradient over the domain can be observed which could be the result of lower bending

stiffness due to larger cell size (lower relative density). In Figure 3.11(c), specimen

with largest cell size (Case III) shows a higher deformation gradient in the domain

compared to the other cases. Such localized deformation features cause oscillations

in the stress equilibration curves (Figure 3.10(b)) and result in unequal stress values

at the two ends of the specimen. Stress-strain response extracted in these situations

are not representative for the actual cellular materials; they rather contain the effects

of these localized regions.

3.3.2 Effect of loading rate

So far in the discussion, the effect of cell size and number of cells along the specimen

length are analyzed. It is well known that applied loading rate also plays a significant

role in dynamic response of cellular materials. As mentioned earlier, understanding of

stress equilibration in the specimen is a necessary prerequisite for correct evaluation

of material response by SHPB using proper data reduction method. Towards this end,

we will first focus on the effect of loading rate on stress equilibration. As discussed in

Section 3.4, loading rate is characterized by two parameters: rise time of the pulse tR

and maximum applied velocity v (Figure 3.5) at the incident bar-specimen interface.

Initially, maximum normalized applied loading velocity v̄ is varied while keeping the

normalized pulse rise time t̄R and average number of cells in the specimen length κ̄

constant. Accordingly, we adopted κ̄=13.2 while cell size dav is varied from 28.2 to

75.7 µm with a strut thickness hs=2.5 µm and an aspect ratio φ=1/1.5. This set of

parameters resulted in specimens with varying relative density ρ̄ from 0.19 to 0.07,

67



0

0.01

0.02

0.03

0.04

0.05
0.1

0.15
0.2

0.25

10

20

30

40

50

60

ρ̄
v̄

R
rm

s%
P

Q

R

S

Figure 3.12: RMS values of the stress equilibration measure (Rrms) as
a function of relative density ρ̄ and maximum applied velocity v̄ with a
constant rise time (t̄R=25).

respectively (Figure 3.6). All the specimens are subjected to an equal impedance

mismatch ratio Z̄=Z̄I=Z̄T =6 at the ends. The variation of Rrms is calculated as a

function of the above range of relative density ρ̄ and the maximum applied velocity v̄

for a trapezoidal loading pulse with a rise time of t̄R=25. Figure 3.12 shows that higher

relative density and lower amplitude of applied velocity leads to a quick establishment

of the stress equilibration (i.e., lower Rrms). On the other hand, stress equilibration

is most difficult to achieve when relative density is low and magnitude of the applied

velocity is simultaneously high.

In order to characterize the influence of loading rate on the stress-strain response and

stress equilibration in cellular specimens, four points (P , Q, R and S) from the v̄-ρ̄

space in Figure 3.12 are chosen.

Points ρ̄ v̄ Rrms(%)
P 0.19 0.02 5.5
Q 0.19 0.03 9.2
S 0.09 0.02 15.5
R 0.09 0.03 24.9

Table 3.2: Rrms values for different v̄ and ρ̄ as chosen from Figure 3.12.
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These cases correspond to a low density specimen (ρ̄=0.09) as well as a higher density

one (ρ̄=0.19), subjected to two different applied velocities, v̄=0.02 and 0.03, respec-

tively and their Rrms values are given in Table 3.2. Figure 3.13 shows the stress-strain

responses as well as the state of dynamic stress equilibration histories for these four

cases. It can be seen that, even for a small increase in loading velocity, the specimen
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Figure 3.13: (a) Stress-strain response, and (b) stress equilibration curves
for the four cases chosen from Figure 3.12.
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with a higher relative density (ρ̄=0.19, point Q) starts to deviate from the equili-

bration (e.g. point P ) and gives rise to an oscillatory stress-strain response (dashed

line in Figure 3.13(a)). An equal increase in loading velocity for a lower relative den-

sity specimen (ρ̄=0.09, point R) affects the stress equilibration more severely (dotted

line in Figure 3.13(b)) with an Rrms of 24.9%, and leads to an invalid stress-strain

response for the specimen.

Loading rate can also be controlled by changing the rise time of the pulse. Influence

of pulse shapes with different pulse rise times tR and constant magnitude of applied

velocity is also investigated. Similar to previous analysis, specimens with κ̄=13.2 and

varying cell size dav (from 28.2 to 75.7 µm) with strut thickness hs=2.5 µm and aspect

ratio φ=1/1.5 are subjected to an applied loading velocity of v̄=0.01 with different

normalized pulse rise times t̄R. Figure 3.14 shows the contour plots of RMS values of

stress equilibration measure Rrms for a range of relative densities (from 0.19 to 0.07)

and pulse rise times as mentioned earlier. It can be seen that for selected range, the
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Figure 3.14: Contour plot of Rrms for different relative density materials
with κ̄=13.2, fixed applied velocity v̄=0.01, and Z̄=Z̄I=Z̄T =6 subjected to
loading pulses with different rise times t̄R. All values of Rrms shown are in
(%).

pulse rise time t̄R has a less pronounced effect on the stress equilibration as Rrms
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varies only within a small range of 2 to 12%. As expected, for higher relative density

cellular specimens (ρ̄=0.19), the Rrms value is low in the selected range of t̄R indi-

cating that stress equilibration is easily reached for the parameters considered. For

low relative density (ρ̄=0.07) specimen, Rrms is marginally higher (7-12%) indicating

slightly increased difficulty to achieve the stress equilibration.

3.3.3 Effect of end-impedance mismatch ratio

Impedance mismatch ratio at both the interfaces of specimen and bars also plays a

crucial role in stress equilibration and consequently the extraction of dynamic behav-

ior of the specimen material. We have selected a wide range of impedance mismatch

ratios in our simulations to study this effect. As mentioned earlier, these ratios at

the incident face (Z̄I) as well as the transmission face (Z̄T ) are kept at same value

for all the simulations described, i.e. Z̄=Z̄I=Z̄T . Similar to the previous discussion,

specimens with κ̄=13.2 and a range of cell size dav from 28.2 to 75.7 µm with strut

thickness hs=2.5 µm and aspect ratio φ=1/1.5 are considered in this study. The spec-

imens are subjected to a fixed loading pulse with a maximum applied velocity v̄=0.01

and a pulse rise time t̄R=25. The contours in Figure 3.15 represent Rrms values of the

stress equilibration measure for a range of relative densities from 0.19 to 0.07, and

impedance mismatch ratios Z̄ from 1 to 8. It can be seen that for a specimen with a

fixed relative density, Rrms value decreases with increasing impedance mismatch ra-

tios. For higher relative density specimens, even lower values of impedance mismatch

ratios are sufficient to achieve satisfactory stress equilibration (≈ 5% in our case),

whereas, a low relative density specimen requires a higher impedance mismatch at

the interfaces. A higher value of impedance mismatch causes a substantial portion

of the stress pulse to be reflected from the interfaces, thus assisting to achieve stress
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Figure 3.15: Contour plot of Rrms for different relative density materi-
als subjected to different end impedance mismatch ratios Z̄=Z̄I=Z̄T with
κ̄=13.2, fixed applied loading (v̄=0.01 and t̄R=25). All values of Rrms shown
are in (%).

equilibration faster. Although the higher value of impedance expedites the stress equi-

libration process, it may cause the transmitted signal to become weak resulting in

difficulty in measurement. A higher v̄ cannot always be used to alleviate this problem

as this may cause localized deformations and associated lack of stress equilibration in

the specimen. Thus, one has to strike a balance between the stress equilibration time

and the amplitude of the transmitted signal in the SHPB experiment for a given set

of bar material impedance mismatch.

3.4 Concluding remarks

In this chapter, we have addressed the challenges involved in extracting the response

of soft cellular materials in split Hopkinson pressure bar testing set up. Using explicit

dynamic corotational beam formulation along with suitable boundary conditions, the

state of stress of the cellular specimen has been examined. The effect of intrinsic and

extrinsic parameters of cellular specimen are illustrated, and following conclusion can

be drawn from the present analysis:
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1. A cellular structure with lower cell size (higher relative density) attains equi-

librium stress state quickly and also offers a uniform deformation throughout

the specimen. A larger cell size (lower relative density) specimen not only takes

longer time for stress equilibration but also fails to maintain equilibrium stress

state during the test process.

2. The average number of cells in the specimen length does not dominate the

stress equilibration process but, affects the convergence of the stress-strain re-

sponse. Higher the number of cells in specimen length for a particular rela-

tive density, more representative is the dynamic response of a cellular struc-

ture. It has been found that a minimum ratio of specimen length to cell size

equal to 13.2 offers a representative dynamic stress-strain response. Previ-

ously, Gibson and Ashby (1997) suggested a minimum ratio of specimen length

to cell size equal to 20 to evaluate the quasi-static elastic behavior of the speci-

men. Several authors (Chung and Waas, 2002a,b; Zheng et al., 2005a; Li et al.,

2007) also adopted the presently found requirement of minimum ratio of speci-

men length to cell size in their numerical and experimental observations on the

dynamical behavior of cellular materials.

3. Higher loading rate severely affects the stress equilibration of the lower relative

density cellular structures.

4. Lower impedance mismatch ratio enables higher relative density specimen to

achieve the stress equilibration faster whereas, higher impedance mismatch is

required for lower relative density specimen.
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Chapter 4

Microscopic deformation

mechanisms associated with the

transient response of soft cellular

materials∗

4.1 Introduction

The explicit dynamic finite element framework as described in Chapter 2 has been

used to simulate the high strain rate response of cellular materials. We have excluded

from our model any rate sensitivity the constituent material might possess. Also, we

have considered only large deflection and rotation of cell walls as possible deformation

mechanisms (characteristic of elastomeric materials) such that the rate effects result-

∗Reprinted from Effect of microscopic deformation mechanisms on the dynamic response of soft
cellular materials, Vol 42, Issue 2, Siladitya Pal, Spandan Maiti, Ghatu Subhash, Mechanics of
Materials, Pages No 118-133, Copyright 2010, with permission from Elsevier (see Appendix G)
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ing from strut bending and buckling can be studied independent of other strain rate

sensitive mechanisms. We perform a detailed parametric study to elaborate the effect

of loading pattern, cell wall material properties, average cell size and randomness in

microstructure, and cell orientation with respect impact directions on the overall dy-

namic response of this class of materials. A voronoi tessellation technique is employed

to generate a variety of cellular structures with a specified randomness in cell size.

Average cell size of these microstructures is varied to investigate the effect of cell size

on the dynamic response of cellular materials. One end of the specimen is subjected

to an axial impact velocity whereas the other end is held against a rigid boundary.

Our numerical framework can produce time snapshots of different quantities of inter-

est, such as strain or velocity, for the entire domain thus enabling the investigation of

the connection between local deformation response and global constitutive behavior.

The chapter is organized as follows: in Section 4.2, the computational domain along

with boundary conditions are described. A thorough discussion of the parametric

study is presented in Section 4.3. Of special interest is the effect of pulse rise time,

average cell size, cell irregularity, cell orientation and material properties on the de-

formation evolution in this class of materials. Finally, we close the discussion by

drawing conclusions from the current study in Section 4.4.

4.2 Problem description

In the current study, we model the axial impact of the cellular material by considering

a two dimensional computational domain representing the specimen. Figure 4.1(a)

shows a cellular specimen of length L and depth D with an aspect ratio φ=L/D.

This domain is subjected to velocity boundary condition at the impact end, while the

velocity at the other end (support end in Figure 4.1(a)) is kept at zero throughout
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the simulations. Traction free boundary condition has been applied on both the top

and bottom edges. Impact velocity va is applied to all the struts at impact end of

L

D

Support boundary Impact end

va

(a)

t

va

tR

v

(b)

Figure 4.1: (a) A cellular specimen of length L and depth D is held against
a rigid boundary. The specimen is subjected to an impact velocity va denoted
by arrows at the right end. (b) Applied velocity pulse with a magnitude va

and rise time tR.

the specimen as shown in the Figure 4.1(a). A typical loading pulse is described in

Figure 4.1(b) where va is the magnitude of the applied velocity and tR is the rise time

of the pulse. Strain rate in the specimen can be defined as

ε̇(t) =
vb − va

L
, (4.1)

and nominal strain ε can be obtained as

ε(t) =

∫ t

0

ε̇(t)dt, (4.2)

where vb is the velocity of the interface at the support boundary and the specimen.

The nominal stress σ is calculated from the nodal reactions at the support boundary

at the back wall (left end in Figure 4.1(a)). In the following discussion, the terms

“stress” and “strain” refer to the nominal stress and nominal strain, respectively.
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Using the numerical scheme described in Chapter 2, deformation behavior of cellular

solids is studied for a wide range of microstructures, material properties and loading

conditions. A slightly disordered honeycomb microstructure (Figure 2.9(a)), which

is essentially two dimensional, has been used for all the simulations presented in this

work. Cell size distribution of these microstructures can be described by the mean

cell diameter dav and a standard deviation Sd, as discussed in Section 2.5. It is

assumed that the distribution of the cell size arises from minor processing induced

irregularities in the microstructure, and accordingly, a small Sd=0.02dav is used to

characterize all the specimens in the current study (Figure 2.9(b)) except where noted.

A specimen of length L=500 µm with an aspect ratio φ=1 is chosen for all the

subsequent simulations. The simulation domain is so chosen that the ratio of specimen

length to cell size varies from 13 to 33. Although, Gibson and Ashby (1997) suggested

a minimum ratio of specimen length to cell size equal to 20 to describe the quasi-static

elastic behavior of the specimen, the above range of number of cells along the specimen

length has been adopted in several numerical and experimental observations on the

dynamical behavior of cellular materials (Chung and Waas, 2002a,b; Zheng et al.,

2005b; Li et al., 2007). In the present study, it has been found through extensive

simulations that specimens with a ratio of specimen length to cell size higher than 13

show similar deformation signatures and associated stress-strain responses. However,

for most of the simulations we have kept the cell size fixed at 25.2 µm, and with a

conservative estimate of 20 cells in the length direction, a specimen size (L) of 500 µm

(and correspondingly, D=500 µm) is considered as a representative domain for the

current study. Specimen cell walls (struts) are assumed to be square in cross-section.

The strut thickness is given as hs=2.5 µm and mean cell size dav=25.2 µm resulting in

a relative density (Equation 2.37) of ρ̄=0.2. Polyethylene, a polymer whose material

properties are given by E=0.6 GPa, ρs=910 kgm−3 and ν=0.3 (Gibson and Ashby,

1997), is chosen as the constituent phase of the cellular specimen. It is assumed that

the material remains elastic throughout the simulation process though it can exhibit
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considerable geometric nonlinearity in its deformation response. No strain rate effect

in the material properties has been assumed in this paper so that we can study the

rate effects arising from microinertia and microbuckling only on the dynamic behavior

of these materials. Average cell size dav is varied from 15.1 to 37.5 µm, while bulk

material properties such as Young’s modulus and density of constituent material of

cellular specimen are also varied systematically.

4.3 Result and discussions

Primary goal of the current article is to correlate macroscopic stress-strain response

of soft cellular materials with deformation patterns arising from the variation in mi-

crostructural as well as material parameters. Investigation of the relative role of

microbuckling and microinertia on the evolving deformation pattern is also of special

interest. Main results of this study are summarized together in Figure 4.2 and Fig-

ure 4.3. In the simulated dynamic stress-strain responses for two different situations

shown in Figure 4.2, solid curve is associated with the uniform collapse of cells whereas

the dotted curve corresponds to the nonuniform collapse (or progressive collapse) of

the cellular specimen, as shown in Figure 4.3. While geometric properties are kept

constant for both the specimens, bulk density (ρs) for the first case is chosen as 910

kgm−3 and that for the second case is 6825 kgm−3 to simulate these two effects in

the deformation response. Young’s modulus (E) has been fixed at 0.6 GPa for both

the simulations.

Observe from Figure 4.2 that for progressive collapse (shown by dashed line in

the figure), stress-strain response exhibits an initial high peak followed by a sharp

fall in nominal stress. Several experimental observations have shown a similar re-

sponse (Lee et al., 2006; Vural and Ravichandran, 2003). The initial strength en-
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hancement upto point P in Figure 4.2 occurs due to the effect of microinertia of the

struts in the first few layers at the impact end as shown in Figure 4.3(a). This figure

clearly shows that deformation is localized in only first one or two layer of cells, and

thus, the applied load is borne by the specimen chiefly through its lateral inertia

showing an apparent increase in strength that is typical for a dynamic loading sce-

nario. However, due to discrete nature of the microstructure, microbuckling occurs

in the struts aligned in the loading direction and starts to rotate the cells at the

impact layer (Figure 4.3(a)). This realignment of load bearing elements washes out

the inertial stress enhancement leading to a sharp drop in stress (indicated by point

Q). Correspondingly, sudden collapse of first few layers of cells due to microbuck-

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

0

2

4

6

8

10

12

14

 

 

Nominal Strain

N
om

in
a
l
S
tr
es
s

(M
P
a)

Uniform Collapse
Progressive Collapse

P

P ′

Q

Q′
R

R′

S

S ′

Figure 4.2: Stress-strain response for two different collapse modes: uniform
collapse indicated by solid line, and progressive collapse denoted by dashed
line. Bulk density of the material is taken as 910 kgm−3 for the first case,
while that for the second case is 6825 kgm−3. Young’s modulus for both the
materials are fixed at 0.6 GPa, while dimension of the specimen for both
the cases are also held constant.

ling can be observed. Further increase in external loading progressively recruits more

cells from next layers in the deformation zone to resist the loading (points R and

S). Stiffening behavior of already collapsed cells, which start to behave like a solid

material, along with the softening response associated with the collapse of new rows

of cells further from the impact end are responsible for the continued increase in stress
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during the rest of the deformation. No actual plateau region can be observed in the

“constitutive behavior” for this case as more and more cell layers are drawn into the

severely localized deformation zone as shown in Figure 4.3(a).
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Figure 4.3: Snapshots of deformed specimens for (a) progressive collapse
and (b) uniform collapse. Degree of deformation in each cell is represented
by a gray scale varying from 1 (no deformation) to 0 (full collapse).

On the other hand, in case of uniform deformation (shown by solid line in Figure 4.2),

no collapse of cells can be observed in the immediate vicinity of the impact end

(Figure 4.3(b)) for most of the deformation history. In contrast to the first case, all

the cells in the specimen deforms simultaneously giving rise to the gradually increasing

stress response as indicated by points Q′ and R′ in Figure 4.2. However, at point S ′,

all the cell layers in the specimen starts collapsing together due to the combined effect

of microbending and microbuckling of cell walls so that no further increase in stress

carrying capacity is possible. This situation gives rise to the plateau region (point
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S ′) in the nominal stress-strain response. Although the above features are seen for

two different foam bulk densities, deformation signatures and associated stress-strain

responses are also dependent on microstructural features, other material properties

and loading parameters as will be discussed in subsequent sections.

4.3.1 Effect of pulse rise time

In this section, the influence of rise time tR (see Figure 4.1(b)) of the applied velocity

on the deformation behavior of a cellular specimen is discussed. The specimen is held

against a rigid boundary and the other end is subjected to a wide range of impact

velocities varying from va=2.5 to 125 ms−1 resulting in strain rates ranging from

ε̇=5.0×103 to 2.5×105 s−1. For each loading case, the rise time tR is varied from 0.3

to 9.3 µs.
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Figure 4.4: Stress-strain responses of a cellular material with different pulse
rise times at (a) ε̇=1.0×105 s−1 and (b) ε̇=2.0×104 s−1.
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The nominal stress-strain responses of the cellular specimens under study at a strain

rate ε̇=1.0×105 s−1 and different pulse rise times are depicted in Figure 4.4(a). This

figure reveals that when the pulse rise time is short (as example, tR=0.3 µs), an early

spike is observed in the stress-strain response. Such a stress overshoot is associated

with the microinertial effect as explained earlier (Figure 4.2) that arises due to a sud-

den application of the impact velocity va. Sharp fall in stress following this overshoot

is accompanied by the local collapse of front layer of cells at the impact end due

to microbuckling of struts. However, gradual increase in pulse rise time results in a

gradual reduction of the magnitude of the initial stress spike as seen Figure 4.4(a).

This observation can be attributed to the decrease in the inertial force due to lower

acceleration associated with increased tR. It can also be noticed that stress overshoot

occurs at decreasing nominal strain levels as the rise time increases. This behavior

is due to the fact that the cells at the impact end of the specimen undergoes highly

localized deformation thus delaying the arrival of stress wave at the back (support)

wall where the stress is measured. Also note that the specimen with the shortest rise

time shows a highly oscillatory stress-strain response. However, these fluctuations

reduce as the rise time increases, a phenomenon also observed by Hönig and Stronge

(2002a), and can be explained to be arising from local cell collapse.

The cellular material subjected to a lower strain rate (ε̇=2.0×104 s−1) shows a dif-

ferent stress-strain response, see Figure 4.4(b). The response at the shortest rise

time, i.e., tR=0.3 µs, shows early oscillations but of significantly lower amplitude

than those associated with the same rise time in Figure 4.4(a). This observation can

be attributed to the fact that, initial acceleration associated with the previous case

is appreciably higher than that for the current case due to a higher final velocity

applied in the former case. This increased acceleration of the applied velocity solicits

a higher inertial response resulting in much increased oscillations in the stress-strain

curve. This argument can be further reinforced from the fact that all other responses

shown in Figure 4.4(b) overlay on each other indicating that the stress-strain curves
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are not significantly altered by the pulse rise time at the lower strain rate regime

due to low initial acceleration. Such superposed stress-strain responses for different

pulse rise times also indicate that the cellular specimen experiences similar modes of

deformation for all these cases. Observe that there is no delay associated with stress

signal (measured on the backwall of the specimen) as was found previously for the

shortest rise time at a higher strain rate (i.e., for tR=9.3 µs in Figure 4.4(a)). This

fact implies that the stress wave reaches the backwall before any appreciable local

deformation has occurred at the impact end.

Figure 4.5 illustrates the variation of plateau stress σpl for different strain rates and

rise times discussed above. The plateau stress σpl is calculated as the stress at a

strain ε=0.4. It can be found that for the strain rates below 2.5×105 s−1, the plateau

stress remains essentially constant for different rise times while increasing with strain

rate for a given rise time. However, at ε̇=2.5×105 s−1, the plateau stress exhibits a

gradual increase with rise time while mostly staying below other cases.
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Figure 4.5: Plateau stress σpl for different pulse rise times and strain rates.

To understand the origin of such behavior, as well as the oscillations in stress-strain
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Figure 4.6: Snapshots of deformed specimens at selected strain intervals for
(a) tR=0.3 µs and (b) tR=9.3 µs at a strain rate ε̇=1.0×105 s−1. The cellular
material is made of polyethylene with dav=25.2 µm. Degree of deformation
in each cell is represented by a gray scale varying from 1 (no deformation)
to 0 (full collapse).

curves shown in Figure 4.4(a), we focus our attention towards the “snapshots” of the

deformed specimen at different times. Figure 4.6 shows snapshots of the deforma-

tion evolution at selected strain intervals in a cellular specimen for a strain rate of

ε̇=1.0×105 s−1 and for pulse rise times tR=0.3 µs and tR=9.3 µs, respectively. For

clarity, the degree of deformation in each cell is represented by a linear gray scale

with ‘1’ representing the undeformed cell (colored white) and ‘0’ indicating a fully

collapsed cell (colored dark). However, we did not assign a gray scale for incomplete

cells at the boundaries, and consequently, they show in white in all the figures. For
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tR=0.3 µs, it can be seen from Figure 4.6(a) that a collapse band is initiated at

an early stage of ε=0.1 at the impact end whereas the rest of the domain remains

undeformed. With such a short pulse rise time, the cell walls along first few layers

at the impact end almost immediately reach the critical buckling load of the struts

(preceded by microinertial stress enhancement and associated peaks in stress-strain

curves as seen in Figure 4.4). This local deformation occurs well before the stress

wave can propagate to the support boundary where it is measured. Therefore, no

significant stress can be detected at the back end although the specimen has under-

gone appreciable amount of deformation at the impact end. After the initiation of

the narrow collapsed zone, the localized deformation zone progressively extends to-

wards the support boundary. Such a nonuniform mode of deformation along with the

progressive collapse of layers of cells in the cellular specimen leads to an oscillatory

stress-strain response as was observed in Figure 4.4(a). On the other hand, with a

longer rise time of tR=9.3 µs, different deformation characteristics emerge for the

same specimen as seen in Figure 4.6(b) where no localized bands originates at the

early stage of impact (ε=0.1). This fact can be attributed to a lower initial velocity

due to long rise time and corresponding low stress rise in the struts. The deforma-

tion of the specimen is chiefly governed by microbending of cell walls rather than

microbuckling. At ε=0.3, unlike the highly deformed bands at the impact end in case

(a) of Figure 4.6, the deformed bands with lesser intensity are seen throughout the

specimen, i.e., the deformation is more uniform. Such a uniform deformation mode

produces a smoother stress-strain response compared to the localized collapse seen

for the previous case. However, for still larger deformation, i.e., at ε=0.47, both the

deformation snapshots for tR=0.3 µs and tR=9.3 µs are similar. Thus, although the

deformation histories are different, the final deformation patterns are almost similar

and accordingly the average plateau stresses σpl are equal above a nominal strain of

0.4 for both the cases as shown in Figure 4.4(a). This fact is also reflected in Fig-

ure 4.5 where the plateau stress remains essentially constant with rise time for strain
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rates lower than 1.0×105 s−1. However, at still higher strain rates, more number

of layers collapse immediately after the impact as the rise time decreases resulting

in a lower overall plateau stress. It should be noted here that the rise time of the

loading pulse affects the stress equilibration of soft materials such as polymeric foams

in split Hopkinson pressure bar test. Similar to the above observation, a short rise

time of loading pulse leads to a nonhomogeneous deformation whereas a longer rise

time leads to a more uniform deformation during SHPB testing of polymeric materi-

als (Chen et al., 2002b). A nonhomogeneous deformation restricts the specimen from

attaining the stress equilibration and leads to an inaccurate “stress-strain” response

in a classical SHPB set up. In order to circumvent the above difficulties, a pulse

shaping techniques are generally used which essentially increase the rise time of the

incident pulse (Frew et al., 2002; Subhash and Ravichandran, 2000b).

4.3.2 Effect of cell size

To study the effect of cell size on the deformation behavior of cellular materials,

average cell size dav of the specimen is varied from 15.1 to 37.5 µm while cell wall

(strut) thickness hs is kept constant at 2.5 µm. Such a variation results in a range

of relative density ρ̄ varying from 0.35 to 0.14. As the bulk material density of con-

stituent material remains constant, i.e., ρs=910 kgm−3, the apparent density of the

cellular specimen ρ (defined by Equation 2.37) varies from 317.0 to 126.1 kgm−3.

The specimen is supported against a rigid boundary and is subjected to different

axial impact velocities ranging from va=2.5 to 125 ms−1 (with attendant strain rates

of 5.0×103 to 2.5×105 s−1) with a fixed pulse rise time tR=9.3 µs. Stress-strain

responses of cellular specimens with different average cell sizes at a strain rate of

ε̇=1.0×105 s−1 are illustrated in Figure 4.7. Corresponding apparent densities are

also noted in the figure legend. It can be noticed that with decreasing cell size, the
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Figure 4.7: Stress-strain behavior of a cellular material with different cell
sizes dav and, equivalently, apparent densities ρ at a strain rate ε̇=1.0×105

s−1 and pulse rise time tR=9.3 µs.

specimen exhibits a stiffer stress-strain response and a higher plateau stress. As the

cell size increases, the bending as well as buckling strength of the struts decreases

rapidly due to an increase in effective length of these structural elements. This de-

crease in strength results in early collapse of cells and manifests as an increasingly

compliant stress-strain response with reduced plateau stress. A similar dependency of

plateau stress on the density of cellular specimen has also been observed experimen-

tally by Vural and Ravichandran (2003) and Saha et al. (2005).Variation of plateau

stress with respect to cell size dav and square of cell size d2
av (which is measure of cell

area) are illustrated in the Figure 4.8. It can be seen that as the cell size increases, the

plateau stress decreases rapidly. Brezny and Green (1990) also experimentally found

that the crushing strength of a brittle reticulated vitreous carbon foam varied inversely

with cell size dav. Our analysis indicates that the plateau stress obeys the inverse re-

lationship more accurately with the cell area (Figure 4.8(b)) rather than the cell size

as found by these authors. Also observe from Figure 4.8 that the scatter between the

points at a particular cell size is high at low cell size, while there is almost no scatter

at higher cell sizes. This observation leads to the fact that, the effect of strain rate
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Figure 4.8: Plateau stress for cellular specimens with (a) cell sizes and (b)
square of cell sizes when subjected to different strain rates. The pulse rise
time is fixed at tR=9.3 µs.

is more pronounced at low cell sizes. Our study suggest that as the density increases

(cell size decreases), plateau stress increases linearly with the strain rate on a loga-

rithmic scale. An experimental investigation conducted by Tedesco et al. (1993) on

polyurethane foams also confirms a similar trend for different strain rates. Saha et al.

(2005), Vural and Ravichandran (2003) and Subhash et al. (2006b) also found low

strain rate sensitivity of σpl at low density and high rate sensitivity of σpl at high

density of foams, consistent with our simulation results. It can be inferred that, at

least a part of this rate sensitivity stems from the microstructural properties of the

cellular materials that manifests itself through the inertial effects as well as buckling

and bending of the cell wall at the microstructure level.

It can be concluded from the previous discussion that plateau stress depends greatly

on the cell size (or density) of the specimen. In order to correlate the deformation ini-

tiation and propagation with the plateau behavior, local strains are calculated over

time. In the present study, the deformation patterns remain almost similar along

specimen depth D (see Figure 4.1(a)). Hence, local strain is calculated on a narrow
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window extended along the length L in the middle of the cellular specimen. Figure 4.9

shows the evolution of local strain along the specimen length with time for two differ-

ent cellular materials with dav=37.5 µm and dav=18.9 µm. The parameter ξ denotes

the distance along the specimen, with support and impact ends represented by ξ=0

and ξ=L, respectively. Local strain in the specimen is defined as εl=1-Ac/A0, where

Ac and A0 are the current and initial areas of a cell, respectively. A similar technique

was also introduced by Voit et al. (2007) to experimentally measure the local strain

of polymeric foam under impact loading. Both the specimens depicted in Figure 4.9
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Figure 4.9: Evolution of local strain εl with time along specimen length for
(a) dav=37.5 µm and (b) dav=18.9 µm at a strain rate ε̇=1.0×105 s−1 and
tR=9.3 µs. The distance of any point along specimen length from the rigid
boundary is denoted by ξ, where ξ=0 and ξ=L specify support and impact
ends, respectively.

show that the deformation localization occurs quite late in the loading history (after

7 µs for both the cases). While an almost uniform deformation localization can be

observed for case (a), case (b) exhibits a narrow localized zone at the impact end.

The above modes of deformation evolution for two different cell sizes can be further

illustrated with the help of deformation snapshots. Figure 4.10 illustrates the snap-

shots of two specimens with cell size dav=37.5 µm and dav=18.9 µm. At t=6.7 µs

(ε=0.25), although deformed cells can be found throughout the domain, a few layers
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Figure 4.10: Snapshots of deformed specimens at selected time intervals
for (a) dav=37.5 µm and (b) dav=18.9 µm at a strain rate ε̇=1.0×105 s−1

with tR=9.3 µs. Degree of deformation in each cell is represented by a gray
scale varying from 1 (no deformation) to 0 (full collapse).

of cells have almost collapsed at the impact end for the specimen with dav=37.5 µm

(Figure 4.10(a)) whereas the smaller cell size specimen shows a more uniformly dis-

tributed deformed zone throughout the specimen (Figure 4.10(b)). A larger cell size is

more susceptible to buckling compared to smaller cell size owing to its lower buckling

strength. Note that specimen with smaller cell size exhibits predominant bending but

negligible buckling of cell walls upto a strain of 0.25. Moreover, microinertia effect

for all the cases (see Figure 4.7) is almost similar as the lateral inertia (mass of the

struts) does not vary significantly with average cell size. This observation explains

the localized failure behavior as seen from Figure 4.10, low plateau stress (Figure 4.7)

for low density specimens, as well as the presence of inertial stress enhancement of

almost similar magnitude for all the cases studied. In conclusion, the current study

clearly reveals that localized deformation band initiation and propagation under high

strain rate loading greatly depends on the average cell size of cellular solids, and the
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underlying mechanisms may be microbuckling and microbending of cell walls.

4.3.3 Effect of material properties

The effect of material properties are studied in this section through a systematic

variation of Young’s modulus and bulk density of the constituent material. The

specimen is subjected to impact velocities ranging from va=2.5 to 125 ms−1 with a

pulse rise time tR=9.3 µs resulting in strain rate variation between ε̇=5.0×103 to

2.5×105 s−1.

4.3.3.1 Effect of Young’s modulus

For all the simulations in this section, density of the bulk material ρs is kept constant

at 910 kgm−3 whereas the Young’s modulus E is varied from 0.15 to 1.5 GPa. Fig-

ure 4.11 shows the corresponding stress-strain responses at a strain rate ε̇=1.0×105

s−1 and pulse rise time tR=9.3 µs. Observe that, as the Young’s modulus of the cel-

lular material increases, the specimen offers increasingly stiffer stress-strain response.

For all the cases except E=1.5 GPa, a well defined plateau region is achieved after

the initial oscillations due to the inertial effect. Nominal strain corresponding to the

initiation of the plateau region also increases with the Young’s modulus. However,

stress-strain response for the case of E=1.5 GPa exhibits a continuously stiffening

behavior without a well defined plateau region.

Figure 4.12 shows the variation of plateau stress for different Young’s moduli at

various strain rates. It can be seen that plateau stress increases linearly with Young’s

modulus for all strain rates. Plateau stress is almost the same at all strain rates for

lower modulus specimens considered in this study. However, the strain rate effect
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Figure 4.11: Stress-strain response of a cellular material for different
Young’s moduli at a strain rate ε̇=1.0×105 s−1 and for pulse rise time tR=9.3
µs. The cell size of the specimen is dav=25.2 µm.

becomes apparent at higher Young’s modulus, and a clear increase in plateau stress

corresponding to an increase in strain rate can be observed from this figure.
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Figure 4.12: Plateau stress for cellular specimens with various Young’s
moduli when subjected to different strain rates. The pulse rise time is fixed
at tR=9.3 µs.

Figure 4.13 compares deformed snapshots of the two specimens with different Young’s
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Figure 4.13: Snapshots of deformed specimens at selected time intervals
for (a) E=0.15 GPa and (b) E=1.5 GPa at a strain rate ε̇=1.0×105 s−1

with tR=9.3 µs. Degree of deformation in each cell is represented by a gray
scale varying from 1 (no deformation) to 0 (full collapse). The average cell
size of the specimen dav=25.2 µm.

moduli. At t=4.3 µs (ε=0.1), the figure shows the presence of collapsed cells only at

the impact end for the specimen with E=0.15 GPa (Figure 4.13(a)) whereas no sig-

nificant deformed bands can be found in the domain for E=1.5 GPa (Figure 4.13(b)).

For a fixed strut geometry, the critical buckling load is proportional to E. Conse-

quently, a cellular material with lower modulus possesses a lower critical load causing

early collapse at the impact end. Due to the higher buckling load, no collapse can

be found for cellular material with E=1.5 GPa. At t=6.7 µs (ε=0.25), when sev-

eral wave reflections have occurred in the specimen, the cellular material with higher

modulus shows deformation distributed throughout the entire domain. The deforma-

tion occurs mainly due to the microbending of the struts. It can be concluded here
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that Young’s modulus plays an important role in determining microbuckling and mi-

crobending events in the cellular specimen thus affecting overall deformation behavior

and corresponding nominal stress-strain response.

4.3.3.2 Effect of bulk material density

In this section, effect of the bulk material density ρs on deformation response is

characterized. Bulk material density ρs is varied from 910 to 9100 kgm−3 for a fixed

cell size specimen (dav=25.2 µm) while Young’s modulus E of the material is kept

constant at 0.6 GPa. Figure 4.14 shows the stress-strain response at a strain rate

ε̇=1.0×105 s−1 and for tR=9.3 µs. It is interesting to note that a cellular specimen

with lower material density experiences stress throughout the specimen quickly with

a small initial bump and then stabilizes with strain. As the density of the material

increases, there is a larger delay before the stress is sensed at the support end of the

specimen. The amplitude of the initial peak also increases dramatically with density

but the stress level after these peaks decreases rapidly with increasing density. Also

note that the lower density specimen shows a smooth rise in stress whereas a higher

density specimen shows an oscillatory response. The reasons behind such responses

will be presented with the help of deformation evolution snapshots in the subsequent

discussion.

Figure 4.15 presents the evolution of local strain along the specimen length for ρs=910

kgm−3 and ρs=6825 kgm−3. It can be seen from Figure 4.15(a) that uniform local

strain initiates for lower density cellular material and continues till the end of the

simulation (nominal strain = 0.6). On the other hand, for the higher density cellular

material, localized crushing (strongest among all the cases studied earlier in this sec-

tion) occurs at the impact end (Figure 4.15(b)). It is also evident that local strain

commences much earlier in time for a higher density specimen. Also, the impact
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Figure 4.14: Stress strain response of a cellular material with different bulk
material densities at a strain rate ε̇=1.0×105 s−1 and tR=9.3 µs. The cell
size of the specimen given as dav=25.2 µm.

end deforms substantially before stress wave reaches the other boundary causing the

delay in the stress-strain response in Figure 4.14. The presence of highly localized

 

 

0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t
(µ
s)

ξ/L

εl

Support
end

Impact
end

(a)

 

 

0.2 0.4 0.6 0.8

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t
(µ
s)

ξ/L

εl

Support
end

Impact
end

(b)

Figure 4.15: Evolution of local strain with time along specimen length for
(a) ρs=910 kgm−3 and (b) ρs=6825 kgm−3 at a strain rate ε̇=1.0×105 s−1

and tR=9.3 µs. The distance of any point along specimen length from the
support boundary is denoted by ξ, where ξ=0 and ξ=L specify support and
impact end respectively.

deformation for higher density cellular material leads to an oscillatory stress-strain
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response as found in Figure 4.14. In contrast, for a lower density specimen, a homoge-

neously distributed strain prevails along the specimen length giving rise to a smooth

stress-strain response. It is also evident from the stress-strain response that delay in

stress signal at the backwall is much lower for lower density specimens.

Figure 4.16 compares deformed snapshots of the above two cellular materials. Fig-

ure 4.16(b) clearly shows the early presence of a row of collapsed cells at the impact

end for the higher density cellular material. The cellular material with higher den-

sity offers higher microinertial resistance to the deformation causing a high stress

enhancement (an initial peak in the stress-strain response) as explained before in

Figure 4.2. After the initial stress enhancement, the microbuckling of the struts at

the impact end takes place reducing the stress value immediately to zero followed

by an increasing stress response with continued loading. However, the lower density

cellular material does not exhibit such localized deformation at this stage (t=4.3 µs

or ε=0.1). At t=6.7 µs (ε=0.25), the narrow collapse band continues to grow at

the impact end for the higher density specimen while the cells at the support end

remain undeformed. On the contrary, for the lower density specimen, it appears that

the deformation is distributed uniformly throughout the specimen. Even at t=9.2 µs

(ε=0.47), the deformation is still highly localized at the impact end for the higher

density specimen, but scattered localized bands are found throughout the domain in

the lower density specimen. Because buckling and bending strengths remain unal-

tered in both specimens, (as Young’s modulus, cross section of struts and average

cell size remain constant throughout), it can be inferred that the deformation local-

ization in high density cellular material is primarily due to microinertial effect. Also,

these simulations conclusively reveal that microinertial effect alone accounts for the

strong initial stress enhancement in the dynamic “constitutive response” of cellular

materials.
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Figure 4.16: Snapshots of deformed specimens at selected time intervals
for (a) ρs=910 kgm−3 and (b) ρs=6825 kgm−3 at a strain rate ε̇=1.0×105

s−1 with tR=9.3 µs. Degree of deformation in each cell is represented by a
gray scale varying from 1 (no deformation) to 0 (full collapse). The cell size
of the specimen given as dav=25.2 µm.

4.3.4 Effect of cell shape irregularities

In this section the effect of cell shape irregularities over stress-strain response has

been studied. In order to conduct a parametric study, different random cellular

structures have been generated keeping the average cell size dav=25.2 µm constant.

The randomness is characterized by the standard deviation Sd of the cell size as

described in Figure 2.9(b). In order to characterize the effect of randomness on the

stress-strain response and associated deformation, a wide variety of cellular specimens

from perfect honeycomb to highly irregular cellular specimens has been generated.

The standard deviation (Sd) in cell size dav is varied over a wide range from 0 µm
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to 3.0 µm. All the specimens are fastened against a rigid support and are subjected

to an impact velocity va=50 ms−1 with a pulse rise time tR=9.3 µs resulting in a

strain rate of ε̇=1.0×105 s−1. Figure 4.17 illustrates the stress-strain responses of
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Figure 4.17: Stress-strain response of a cellular material for different ran-
domness at strain rate ε̇=1.0×105 s−1 and for pulse rise time tR=9.3 µs.
The cell size of the specimen is dav=25.2 µm.

the cellular specimens with different randomness in the cell shape. It can be clearly

seen that as the irregularities in the cell shape increases (i.e. Sd=0.85 to 3.0 µm),

the plateau stress gets reduced appreciably. The effect of randomness on plateau

stress has been studied numerically by Li et al. (2007) who also observed a similar

trend. Interestingly, perfect honeycomb structure (Sd=0) shows a different stress-

strain response with a highly stiffening behavior upto a strain ε=0.25 followed by

a softening behavior. The stress value after the softening period becomes almost

comparable to the highly irregular cell Sd=3.0 µm. The above responses of different

irregular specimens will be presented with the help of deformed snapshots in the

subsequent discussion.

Figure 4.18 shows the deformation pattern of cellular specimens with different cell

irregularities. Three different specimens such as a perfect honeycomb (Sd=0), a mod-
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Figure 4.18: Snapshots of deformed specimens at selected time intervals
for (a) Sd=0, (b) Sd=0.85 µm and (b) Sd=3.0 µm at a strain rate ε̇=1.0×105

s−1 with tR=9.3 µs.

erate irregular cellular specimen (Sd=0.85 µm) and a highly randomized specimen

(Sd=3.0 µm) have been considered here. All the specimens show almost uniform

deformation at t=4.3 µs (ε=0.1) and no presence of a collapsed zone at the impact

end. Effect of microinertia could be expected to be almost similar for all the cases
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considered above and is also manifested by similar stress-strain responses at very

early stage of deformation (ε=0.05) in Figure 4.17. At t=6.7 µs, a larger number

of collapsed cells throughout the domain can be found for the highly irregular cell

shape specimen (Sd=3.0 µm). For other two cases, deformed cells are arranged in

well defined bands. Due to the presence of weak sites throughout the domain for

the most irregular case (Sd=3.0 µm), localization zones initiate early and randomly.

Such early initiation of localization allows the irregular cell size specimen to crush at

a lower stress level as found in stress-strain response. These weak sites in a sample

with increasing randomness can be attributed to the initial misalignment of struts

with respect to the loading direction. With increased randomness, the struts tend to

possess increased initial inclination with respect to the loading direction thus making

bending mode of deformation preferable. While buckling strength varies with the in-

verse of the square of the strut length, bending stiffness can be equated to the inverse

of the third power of length. Thus rotation of struts commences at a lower load when

bending mode of deformation is also present. Accordingly, cells collapse earlier in

this scenario reducing the plateau stress of the cellular specimen. Perfect honeycomb

as well as cellular specimens with moderate randomness show almost similar defor-

mation pattern at t=6.7 µs and hence the stress-stress responses are quite similar

upto a strain ε=0.25. For a perfect honeycomb and a moderate irregular specimen,

most of the struts are almost aligned with the impact direction and hence exhibit a

microbuckling dominated deformation mode resulting in a delayed collapse. At t=9.2

µs, the specimen with higher randomness continues to collapse at almost constant

level of stress. At this stage, two different interesting deformation signatures can be

found for perfect honeycomb and the cellular specimen with moderate randomness.

The specimen with lower randomness shows a microbuckling as well as microbending

dominated deformation zones distributed throughout the domain. In case of perfect

honeycomb structure, layers of localized ‘I’ bands develop which reduces its strength

appreciably. Thus it shows a lower plateau stress compared to irregular cellular spec-
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imen in Figure 4.18.

4.3.5 Effect of cell orientation

In this section we investigate the effect of cell orientation with respect to loading di-

rection on the macroscopic behavior of cellular materials. Similar to previous analysis,

two cellular specimens; a perfect honeycomb and highly irregular foam are subjected

to impact velocity va=50 ms−1 with a pulse rise time tR=9.3 µs from the left and

from the top. It can be observed from Figure 4.19 that perfect honeycomb offers much

stiffer response when loaded from left direction than top. It is also observed that per-
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Figure 4.19: Stress strain response of cellular specimens with different cell
irregularity subjected to loading in different directions.

fect honeycomb exhibits higher collapse strength when loaded from left. The irregular

cellular structure shows almost similar stress-strain signatures when impacted from

left as well as top.

To correlate the origin of such macroscopic response with the deformation behavior
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of cellular specimen, deformed snapshots of cellular specimens being impacted from

top is depicted in Figure 4.20(a). It can be seen that perfect honeycomb when loaded

from top, offers no deformation localization up to strain ε = 25%. Hence, the stress-

strain response exhibits no collapse. The applied deformation is accommodated by the

cellular structure only due to microbending of the struts. No microbuckling occurs at

this stage. Therefore, ‘X’ type of deformation band emerges throughout the cellular

domain. Therefore, the cellular structure offers a smooth response. On the other

hand, for a perfect honeycomb the struts are aligned to the impact direction. It offers

stiffer response as the axial stiffness dominates than the bending stiffness when loaded

from top. However, it shows early collapse due to microbuckling of struts (presence

of ‘I’ bands). At higher strain (> 25%), perfect honeycomb exhibits an oscillatory

ε=0 ε=0.1 ε=0.25 ε=0.47

(a)

ε=0 ε=0.1 ε=0.25 ε=0.47

(b)

Figure 4.20: Snapshots of deformed specimens when impacted from the
top for (a) perfect honeycomb Sd=0.0 and (b) highly random microstructure
Sd=0.3µm at a strain rate ε̇=1.0×105 s−1 with tR=9.3 µs.

plateau response as it evolves multiple collapse band in the domain. The random

cellular structure shows almost similar deformation signatures when loaded from left

as well as top (Figure 4.20(b)). The difference in the magnitude of plateau stress as
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observed in Figure 4.19 can be originated from the emergence of distributed collapse

zones due presence of microstructural variations.

4.4 Concluding remarks

In this study, we delineate the regimes of influences of microinertia and microbuckling

on the high strain rate deformation behavior of cellular specimen. We computation-

ally generated the initial stress enhancement and subsequent plateau region in the

constitutive response, and studied the micromechanisms involved in it. Also, through

a parametric study, we altered the stress enhancement, and subsequent plateau stress

thus predicting the role of each micromechanism. We precisely observed different

modes of cell collapse namely progressive and uniform, and discussed geometric, ma-

terial and loading parameters that are responsible for the macro-observation. Our

numerical simulations can predict experimental observation in several situations, and

provides further insight into the problem. As we can map the deformation and stress

state of the entire sample, we can relate these mechanical states with the overall de-

formation behavior and stress-strain curve. Thus, our computational framework gives

a way to study the dynamic phenomena occurring within the specimen, and corre-

sponding evolution of deformation and stress-strain response. Some of the salient

findings are listed below.

1. Microinertia of the struts and the associated increase in the dynamic buckling

strength is responsible for early stress enhancement, and is typically followed by

the microbuckling and associated collapse of a few layers of cells at a time. This

microbuckling event manifests itself by a rapid drop in the macroscopic stress

strain response. In the absence of inertial enhancement, microscopic deforma-

tion is chiefly dominated by bending of cell walls at an angle to the loading
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axis, and is distributed uniformly throughout the domain. This phenomenon

can be followed by microbuckling if the critical buckling stress for the struts is

also achieved later in the loading history.

2. At higher strain rates, short pulse rise time leads to higher microinertial en-

hancement resulting in higher dynamic microbuckling strength. Consequently,

the cells collapse at the impact end with varying degree of intensity depending

on the rise time. However, the deformation patterns for all rise times considered

here become similar after the initial transients and hence exhibit almost equal

magnitude of plateau stress.

3. The effect of microinertia is less and almost similar for different cell sizes, and

consequently deformation response is similar at the early stage. In the later

stage of deformation, a larger cell size cellular specimen shows more localized

deformation at the impact end compared to a smaller cell size specimen. This

result is due to the lower buckling strength of the struts in the larger cell size

specimen. Our observations reveal that plateau stress varies inversely with cell

area (square of the cell size), in contrast to the earlier observations of inverse

cell size dependence. The strain rate affects the plateau stress considerably at

higher foam density (or lower cell size).

4. Variation in Young’s modulus does not produce any significant microinertial en-

hancement as to be expected. However, a low value of Young’s modulus results

in a lower critical microbuckling load, and consecutively a progressive collapse

mode is favored for lower Young’s modulus specimens. A higher Young’s mod-

ulus cellular material undergoes a rather homogeneous deformation throughout

the specimen. The plateau stress varies linearly with Young’s modulus of the

specimen. The effect of strain rate is apparent only at very high values of it.

Plateau stress does not show any sensitivity to it at low strain rate regimes.
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5. Bulk density of constituent material significantly alters the microinertial effect

and resulting initial stress enhancement. Also, increased microbuckling phe-

nomenon is apparent with higher density resulting in highly collapsed zone at

the impact end.

6. Cell irregularity offers lower microinertial effect and hence no stress enhance-

ment at early stages of deformation. Specimen with higher cell irregularities

exhibits lower plateau stress due to early evolution of random collapsed zones

in the entire specimen. A perfect honeycomb structure gives higher stress at

the early stage of deformation; later it shows a lower plateau stress due to the

initiation and immediate collapse of ‘I’ bands.

7. Cell alignment to the direction of impact significantly alters the stress-strain re-

sponses. The perfect honeycomb shows ‘X’ type deformation band when loaded

from top and offers higher collapse strength. The deformation pattern for ran-

dom cellular specimen is almost independent of loading directions. The random

structure exhibits similar macroscopic stress-strain response when loaded from

left and top.
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Chapter 5

Role of heterogeneity on the

mechanical performance of byssus

thread

5.1 Introduction

In this chapter we have undertaken a rigorous analysis of the composition-property

relationship of the mussel byssus thread. The present study focuses on computa-

tionally obtaining maximum toughness of byssus thread and compares those against

the experimentally reported values for different species. Using a Genetic Algorithm

(GA) based combinatorial optimization technique; we evaluate the optimal percent-

age of proximal thread length for maximum toughness. To evaluate the toughness of

a single thread, a mechanistic representation of byssus thread is developed that can

capture the characteristic deformation features of a mussel byssus thread accurately.

Moreover, using this optimization formulation, we categorize the contributing nondi-
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mensional parameters towards the optimal percentage of proximal thread length.

Furthermore, by extracting those significant nondimensional parameters for different

species, the optimal percentage of proximal thread length and associated maximum

toughness are evaluated, and are compared with experimentally observed values. Our

results substantiate that mussel threads arrange their chemical constitution to opti-

mize a specific goal: achieve maximum toughness under tensile displacement. Such

an extensive analysis of byssus thread may prove to be an ideal model for biomimetic

design of tough threads.

This chapter is organized as follows: the detail of mathematical framework is pre-

sented in Section 5.2. In Section 5.3, a thorough discussion of effect of structural

heterogeneity on the toughness characteristics is carried out. Of special interest is

the effect of length percentage of proximal regions on the maximum toughness char-

acteristics of different species. Finally, we end our discussion by drawing conclusions

from the present study in Section 5.4.

5.2 Numerical framework

5.2.1 Mathematical model

A modeling framework is developed in this section to characterize the optimal func-

tionality of byssus thread in terms of its energy absorption capability (toughness)

along with specific requirements of strength and extensibility. Based on the exper-

imental observation, a mechanical model is developed which will be robust enough

to mimic the characteristic deformation features of byssus thread. To estimate the

maximum toughness, an optimization formulation is incorporated which can explic-

itly account for all the material and geometrical properties through the mechanistic
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Figure 5.1: Schematic representation of byssus thread showing different re-
gions (proximal thread, distal thread and adhesive plaque). The geometric
and material properties of these regions are shown in the figure. The consti-
tutive laws of distal and proximal threads have been illustrated in the top
figure. Dashed line in the constitutive law represents the idealized response
of the distal portion.

representation of byssus thread. A detail description of mechanical model of the

byssus is presented here. Figure 5.1 depicts a fully mechanistic representation of a

typical byssus showing proximal and distal regions along with the adhesive plaque.

Lengths of the distal and proximal portions of the thread are denoted by ld and lp,

respectively, whereas L=lp+ld, denotes the total length of the thread. We assume

that the thread is of uniform cross-section. In the present study, we specifically inter-

ested to the species whose distal region shows a tri-phasic stress-strain response while

proximal region offers approximately an elastomeric response. Correspondingly, an

idealized constitutive material law represented by dashed line in Figure 5.1 has been

assumed for the distal region. In the constitutive response, initially, the stress varies

linearly with strain followed by a yielding at a constant stress, and finally it regains

its initial stiffness by the virtue of its self-healing capability. Ed, ε0 and σy represent

the Young’s modulus, amount of plastic strain and yield stress, respectively. On the

other hand, a purely linear elastic constitutive response is assumed for proximal re-

gion. The Young’s modulus of the proximal region is represented by Ep. As most of
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the experimental observations show that the plaque is the critical zone of the overall

thread failure consequently, in the present study we assume failure to be restricted

in the adhesive plaque. Henceforth, we model plaque as a rigid-plastic point element

with a failure strength σpla. Note that, a complete tri-phasic response is possible if

plaque stress is higher than the yield stress of the distal thread (σpla>σy) and the

distal thread must undergo the self-healing phase (εd>εy+ε0). The overall mechan-

ical response of the composite thread when subjected to an applied displacement

can be found by solving the following boundary value problem (BVP). The govering

equations are given as

∇σ = 0,

ε =
1

2

(
∇u+∇uT

)
,

σ = C : ε, (5.1)

subjected to boundary condition

u = u0. (5.2)

The constitutive relations for proximal and distal regions are given as

σp = Epεp, (5.3)

σd =







Edεd, if εd ≤ εy,

σy, if εy ≤ εd < εy + ε0,

σy + Ed(εd − ε0 − εy), if εd ≥ εy + ε0.

(5.4)

where, εp and εd are strains in proximal and distal region, respectively. The plastic

deformation of the distal region is described by the yield function as

f := |σ| − σy = 0. (5.5)
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The above BVP is solved using the finite element scheme as developed earlier in Chap-

ter 2. The force extension response is evaluate for byssus thread for different mussel

species. Later, the finite element framework will be incorporated in the optimization

formulation to evaluate the maximum energy absorption characteristic of the byssus

thread under tensile displacement.

5.2.2 Experimental validation

To validate the present modeling framework, the deformation of a whole thread is

evaluated for a mussel species M. californianus and is compared with experimen-

tally observed response reported in literature. The geometric and material properties

of this thread have been taken from Bell and Gosline (1996) and are represented in

the form of mean±s.e.m. The length of thread is taken as L=22 mm where length

of the distal region ld=17 mm, and length of the proximal region lp=5 mm. The

characteristic area of the thread is given as at=5.89×10−8± 0.68×10−8 m2. Young’s

modulus Ed=868.6±181.2 MPa, yield stress σy=15±1.0 MPa, and amount of plastic

strain of distal thread before its self-healing ε0=0.4. Young’s modulus of proximal

thread is given as Ep=15.6±1.3 MPa. The failure stress of the plaque is given as

σfpla=32.25±3.9 MPa. It can be noticed that the experimentally observed material

properties involve wide statistical variation about its mean value. Such a large vari-

ation of properties among threads appears due to condition of mussel health, thread

age, equipment limitations and precise separation of threads into distal and proximal

portions. Considering these material and geometric properties along with their varia-

tions, the force-displacement relationship is simulated and is presented as the shaded

region in Figure 5.2(a). The experimentally observed response during tensile displace-

ment is also illustrated for comparison purpose. A wide shaded region representing

the extent of model response arises due to presence of large variations in material and
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geometric properties of byssus thread. It can be seen that the experimental obser-

vation lies within the range as predicted by the model. The model response clearly

depicts the three significant phases of deformation of the byssus thread under tensile

displacement. To explain deformation characteristic in different phases, we also find
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Figure 5.2: (a) Force vs total thread length (L + ∆) of a mussel byssus
thread of species M. californianus. Shaded region represents the extent of
tri-phasic response predicted by the model. (b) Individual extension of the
proximal (∆p) and distal (∆d) regions due to applied tensile displacement
∆.

the individual extension of distal (∆d) and proximal (∆p) regions due to applied ten-

sile displacement ∆. Initially, the force-extension response shows a stiffening behavior

where proximal region is extended more (Figure 5.2(b)) compared to the distal region

due less resistance offered by it. It the next phase, the distal region is extended due

to yielding which is reflected through no increase in force in the force-extension be-

havior. Finally, combined deformation of distal and proximal regions contributes the

last phase of the force-extension behavior. Similar to the initial phase, the proximal

region undergoes a large deformation than the distal region.
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5.2.3 Optimization formulation

The objective of the current study is to identify the governing principle behind the het-

erogeneous distribution of the proximal and distal components of the byssus thread.

Since the purpose of the byssus thread is to provide anchorage to the mussel, we

hypothesize that primary design principle is in maximizing toughness of the thread.

To test this hypothesis we have formulated an optimization formulation with the ob-

jective of determining the optimal proximal and distal length required in maximizing

toughness. The optimization formulation can be written as

Maximize U =

∫

ε

σdε,

Subjected to: 0 ≤ ξ ≤ 1. (5.6)

The objective in the above formulation is to maximize toughness, represented as
∫
σdε and interpreted as the area under the stress-strain plot. The design variable

which needs to be optimized is the distribution of the proximal and the distal portion

of the byssal thread of total length L, represented in dimensionless form as ξ=lp/L.

The intricate nature of constitutive response of the whole thread offers a complex

variation objective function
∫
σdε with respect to the optimization variable ξ. Thus,

evaluation of derivative of objective function is not amenable. Hence we adopted a

combinatorial optimization technique, the Genetic Algorithm (GA), in solving the

optimization formulation. Primary advantage of this technique is it relies on function

evaluation only and does not need derivative evaluation.

GA (see Appendix E.2) represents a class of search and optimization procedures that

are patterned after the biological process of natural selection and are extensively used
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in the solution of wide range of optimization problems. While solving an optimization

problem using GA, each optimization variable is typically encoded as string of bits,

and all strings are appended together to form a chromosome. Each individual in a

population has a particular chromosome value that can be decoded to evaluate the

parameter values and objective function, also called the fitness function. Populations

are evolved through several generations until the objective function cannot be im-

proved any further. The current formulation has a single optimization variable, ξ,

which is represented by 10 bits, which constitutes the chromosome.

Unlike classical search and optimization methods, GA begins its search with a ran-

dom set of solutions instead of just one solution. The detail steps of implementation

of optimization problem are illustrated in Figure 5.3. The first step of GA procedure

Finite Element

Model (FEM)

parameter
Design 
variable

Genetic

Algorithm

Optimized

ξ

φ U =
∫
σdε

ξ∗

Figure 5.3: Steps of optimization formulation. Objective function of GA
is evaluated through the finite element simulation.

(see Appendix E.2) thus involves the random generation of a population of binary

strings, where each member of the population represents a value of ξ ( 0≤ξ≤1). For

each value of ξ the fitness function is evaluated by performing the FEM simulation.

The FEM simulation calculates the toughness for a given set of system parameters

φ = {ξ, Ed, Ep, σy, ε0, εmax, σpla}, which contains the design variable and other fixed

variables. The generated population of solutions is modified by the GA operators
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(reproduction, crossover, mutation) to create new and better populations. This pro-

cedure is repeated until a pre-determined termination criterion is satisfied. While the

primary advantage of using GA in this problem is to avoid gradient evaluation, it

also poses better chance of determining the global optima. The above formulation of

the non-linear programming problem is complex in nature and hence is likely to be

non-convex with multiple local minima. Application of classical gradient-based solu-

tion techniques for such a problem will be strongly dependent on the initial guess of

the starting solution, which has to be modified to move towards the global solution.

However, even in classical techniques there will be no guarantee of global solution

for the non-convex problem. Although guarantee of global solution cannot be pro-

vided in GA as well, it has the advantage of working with multiple starting points or

populations, which are simultaneously converged, thereby eliminating possible local

minimas in the process. On the other hand, however, the optimal solution obtained

by GA depends heavily on the termination criteria predetermined by the user, which

can be a limitation. In the present study, the simulation was allowed to run sufficient

number of times until no significant change in the objective function is observed.

Details of the parameters used for current simulation is elaborated in Table 5.1.

Parameter Description Value
Nmax Maximum number of generations 50
Npop Number of population 10
nbits Number of bits 10
pc Crossover probability 0.5
pm Mutation probability 0.02

Table 5.1: List of different GA parameters.

5.3 Result and discussions

Detailed analyses are performed in this section to test our hypothesis that there exists

a particular percentage of proximal length in byssus thread which enables it to offer
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the maximum energy absorption capability under applied tensile displacement. As

found in literature, the plaque strength (σpla) plays a crucial role for the survivability

of mussel under the wave swept environment. Moreover, it is apparent that higher

plaque strength is always preferable to ensure its attachment. On the other hand,

extensibility offered by the byssus thread under a tensile stretching is also a major

parameter towards the overall mechanical performance of mussel in a wave swept

environment. As the different amount of slackness can be assumed to be involved

with each byssus thread to a particular load direction arising from breaking water

waves, higher extensibility allows other byssus threads (Bell and Gosline, 1996) to

align in the loading direction for redistributing the load among them. Hence, through

this mechanism thread reduces the probability of the attainment of failure strength

σf (=σpla) and thus ensures its attachment. So, it can be inferred that both failure

strength σf and maximum extensibility, which is defined as maximum failure strain

exhibited by the whole thread, εmax are the main constraints of the present scheme

for optimal performance.

Considering above constraints, the toughness (U=
∫
σdε) of the byssus thread of M.

californianus is obtained for different proximal lengths. Using similar material and

geometric parameters as described in the previous section, percentage of the proximal

length ξ is varied from 0 to 1. The thread becomes a completely distal thread when

ξ=0, whereas a fully proximal thread is described by ξ=1. Consequently, 0<ξ<1

indicates a thread composed of both proximal and distal regions. The maximum

extensibility of the whole thread is considered as εmax=0.9. Figure 5.4(a) shows

that initially toughness increases as the proximal length increases and reaches its

maximum at ξ∗=l∗p/L. A further increase of ξ rapidly reduces the toughness. To

describe this fact in more detail, a map is constructed in Figure 5.4(b) that shows

how the constraints are satisfied under tensile displacement for different values of

ξ. The figure illustrates the normalized stress, normalized strain of the thread, and

modes of deformation such as phase I (initial stiffening), phase II (yielding of distal
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Figure 5.4: (a) Variation of toughness (U) of the whole thread for different
percentage of proximal thread length ξ. (b) A map presents the condition
at which maximum stress (σf ) and maximum extensibility (εmax) criteria
are achieved for different percentage of proximal thread length ξ. Types
of overall deformation behavior such as tri-phasic (A), bi-phasic (B) and
mono-phasic (C) responses of the whole thread for different values of ξ are
also indicated.

thread) and phase III (self-healing of distal thread), it has undergone. For ξ<ξ∗,

the stress reaches to the plaque strength (maximum stress) and the thread separates

from the surface. Hence, it allows byssus thread to absorb less amount of energy prior
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to detachment. It can also be noticed from Figure 5.4(b) that the composite thread

undergoes a complete tri-phasic deformation (phase I, phase II, and phase III). In case

of ξ>ξ∗, thread offers maximum extensibility without reaching the plaque strength.

Thus, it engages other threads to sustain the load and hence confirms its survivability.

As proximal length increases the energy absorption at phase II and phase III reduces

which decreases the overall toughness. As the contribution of distal portion reduces

with higher ξ, according to Figure 5.4(b) at higher values of ξ≈0.725, thread response

switches from a tri-phasic response to a bi-phasic response (phase I and phase II).

As the distal thread is not stretched enough to undergo its self-healing phase, a bi-

phasic response of whole thread emerges. However, this bi-phasic response exists for a

small interval of 0.725≤ξ< 0.8 and transforms to a completely mono-phasic response

(phase I) for ξ≥0.8. A mono-phasic response appears as the distal thread offers

no yielding. Thus, the deformation of distal thread controls the overall of mode of

deformation. It can be noticed that, at ξ=ξ∗, the thread provides optimized strength

as well as extensibility, and consequently offers the maximum toughness. Note that,

the predicted ξ∗=0.28 for M. californianus is comparable to experimentally observed

percentage of proximal length (ξ=0.21±0.03). The above results clearly show the

significance of ξ in determining the material properties of the byssus thread including

strength, extensibility and toughness. In order to investigate the contribution of ξ in

a structured way, we have formulated an optimization problem (Equation 5.6 ) which

determines the optimal value of ξ required to achieve maximum toughness. Hence,

the percentage of proximal thread length ξ=lp/L is considered as the free variable

in the optimization formulation as given in Equation (5.6). Using the optimization

formulation as described in Section 5.2, the optimal proximal length fraction ξ∗ will be

determined for different species. However, different mussel species possess significant

differences in material parameters (see Table 5.2). Thus before embarking upon

determining the optimal design principle, we will first attempt to identify the critical

inter-species parameters.

118



5.3.1 Identification of critical parameters

As evident from the mathematical model, evaluation of stress-strain relationship re-

quires numerous material parameters such as Ed, σy, ε0, Ep and σf . While these pa-

rameters are unique for species, they have significant inter-species variations. Hence,

our first task will be to determine the effect of variations of these material properties

on the optimal value of ξ as determined from the solution of the optimization problem.

The purpose of this analysis is to determine the sensitivity of the optimal solution to

the individual material property, with the final aim of determining the most critical

one. Note that, we have already assigned the percentage of proximal thread length

ξ as the most critical parameter to be evaluated and kept it as a free variable. Ini-

tially, we will construct a set of nondimensional parameters and will systematically

examine the effect of those parameters on the optimal percentage of proximal thread

length using the GA based optimization formulation. Therefore, a set of contributing

nondimensional parameters will be identified which will enable designer to select the

constituent materials easily for efficient biomimetic design of byssus thread.

First we will analyze the effect of the ratio of the Young’s modulus of distal thread

to proximal thread, defined as χ=Ed/Ep, along with yield stress of distal thread σy

on the optimal solution ξ. To evaluate that, the optimization problem is solved to

determine the evolution of ξ∗ over the entire range of range of χ from 5 to 75 as well as

σy/Ep from 0.5 to 1.5. During these simulations the parameters which are kept fixed

are: the plastic strain of the distal part ε0=0.4, the maximum extensibility exhibited

by the whole thread is assumed εmax=0.9, the ratio of maximum strength (plaque

strength) to proximal modulus is taken as σf/Ep=2.0 since many of the reported

species it is observed to be the range of 1.8-2.5. Figure 5.5 plots the variation of

ξ∗ with χ at different values of σy/Ep. It is observed that σy/Ep has no effect on

the optimal solution of ξ∗. Moreover, Figure 5.5 shows that ξ∗ rapidly increases for
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Figure 5.5: Variation of optimal percentage of proximal thread length ξ∗

for different ratios of Young’s modulus of distal thread to proximal thread
(χ) with a wide range of σy/Ep.

higher values of χ and does not show any considerable change when it reaches to a

limiting value, defined as χ∗. In order to estimate χ∗, we plot dξ∗/dχ for different

values of ξ in inset of Figure 5.5. It can be seen that at χ>40, dξ∗/dχ reduces to

zero hence we assign χ∗ ≈ 40. As toughness does not increase for χ∗>40, it can

be thought as design criterion for proximal and distal threads to fabricate tough

composite thread with optimal material consumption. Interestingly, several species

(Table 5.2) except M. californianus follow the similar requirement i.e., χ<χ∗. We

think, a higher value of χ for M. californianus species is assumed to occur due to

the presence of more rigid distal thread compared to the other species. Higher

Sepecies Ed(MPa) Ep(MPa) σf (MPa) χ = Ed/Ep

M. californianus∗ 868.6 ± 181.2 15.6 ± 1.3 32.25 ± 3.9 55.6 ± 14
M. edulis† 532 ± 39 77.5 ± 11.6 142.8 ±11 6.9 ± 1.1
M. galloprovincialis† 565 ± 55 50.5 ± 3.8 123.4 ± 14 11.2 ± 1.3

Table 5.2: Material parameters for different mussel species. χ is evaluated
considering the mean value of Ed and Ep.

Young’s modulus Ed of M. californianus can be thought as a result of close packing

∗ Bell and Gosline (1996)
† Lucas et al. (2002)
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of its large number of load bearing segments (collagen fibers) in its ultrastructure.

It essentially signifies further material (collagen molecule preCol-D) consumption in

distal thread and correspondingly, associated fabrication cost is increased. However,

no significant change in the optimal performance can be achieved with higher value of

χ. Thus, a higher χ can be thought as a consequence of over-designed thread without

any appreciable gain in the target mechanical performance in terms of maximum

toughness.

Interestingly, it can also be found from Figure 5.5 that the ratio of ξ∗=l∗p/L is inde-

pendent of σy/Ep which indicates that the yield stress of distal part does not affect

the optimum proximal length criterion. For an optimal percentage of proximal thread

length ξ∗, it can be seen that the thread can absorb significant amount of energy in

the phase II with higher yield stress (σy) of distal thread. Thus, a higher yield stress

of the distal thread greatly influences the overall toughness of the byssus thread.

The yield stress of distal thread mainly depends on the slippage or dislocation within

the cross-linking or crystalline sites (Vaccaro and Waite, 2001; Harrington and Waite,

2007). Manipulating the resistance in slippage mechanisms of load bearing units in

the ultrastructure of distal thread will lead to the development of thread with en-

hanced toughness. However, fabrication of this thread does not require any change

to the optimal percentage of the proximal thread length.

Similarly, to find the effect of maximum failure strength (plaque strength) on the

optimum performance of the byssus thread, the percentage of proximal length is

determined for σf/Ep along with χ. Figure 5.6 represents the entire surface of the

variation of ξ with respect to σf/Ep and χ. Again, plastic strain of the distal thread

(ε0) and maximum strain of the thread (εmax) remain constant similar to previous

analysis. The ratio of yield stress to Young’s modulus of the proximal region is

taken as σy/Ep=0.75. It can be observed that the percentage of proximal length

ξ∗ greatly reduces with σf/Ep for a fixed value of χ. Analogous to the previous
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analysis, the surface of ξ∗ shows a significant dependence on χ until, χ≈ χ∗. Thus,

failure stress plays a crucial role to alter the percentage of proximal thread length

to achieve maximum toughness. Therefore, the plaque strength can be considered

as a contributing parameters which controls the optimal design of thread to achieve

maximum toughness. Consequently, for biomimetic design of this thread, one needs

to consider the maximum stress (plaque strength) as a critical design parameter. Note

that the map of ξ∗ in Figure 5.6 may provide a design chart for development of a novel

composite thread with maximum toughness characteristics combined with enhanced

strength and extensibility. Henceforth, in the subsequent section, we will evaluate

the effect of this parameters on the percentage of proximal thread length for different

species.

In the present study, we assume that the optimum percentage of proximal thread

length depends on the other nondimensional parameters through a complex functional

form as

ξ∗ =
l∗p
L

= f

(

σf

Ep

, χ,
σy

Ep

, ε0, εmax

)

. (5.7)

As the previous analyses suggest that σy/Ep ratio does not contribute towards the
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optimal percentage of proximal thread length, for a fixed plastic strain of distal thread

(ε0) and maximum extensibility (εmax) offered by thread, the above functional form

can be further reduced to

ξ∗ = f

(

σf

Ep

, χ

)

. (5.8)

Finally, it can be concluded that the optimal percentage of proximal length ratio ξ∗

mainly depends on the two nondimensional parameters found as σf/Ep and χ. So, the

a map of ξ∗ as found in Figure 5.6 for different σf/Ep and χ will enable us to find ξ∗

for different species. In the following, we will determine the ξ∗ for different species and

will compare with the experimentally reported values. As the experimentally reported

byssus thread parameters involve large statistical variations, one should account the

effect of this deviation on the estimation of optimal percentage of proximal length ξ∗

for achieving optimal performance.

5.3.2 Evaluation of optimal percentage of proximal thread

length

To establish the hypothesis as stated earlier, we finally estimate the optimal percent-

age of proximal thread length ξ∗ for different species by extracting their nondimen-

sional parameters. We have already investigated that the nondimensional parameter

σy/Ep does not contribute to the optimal percentage of proximal length ξ∗ however

it alters the magnitude of the maximum toughness. Considering the variation of χ

which arises due to presence of large scatter of Ed and Ep along with plastic strain

of distal ε0=0.4 ±0.02 as well as maximum extensibility εmax=0.9±0.02, the opti-

mal percentage of proximal thread lengths ξ∗ are predicted in Figure 5.7 for a wide

range σf/Ep corresponding to mussel species M. galloprovincialis. The shaded re-

gion indicates the extent of ξ∗ attributed due to presence of statistical variation of

ε0, εmax and χ. Figure 5.7 shows ξ∗ reduces rapidly along with σf/Ep. The ex-
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Figure 5.7: Variation of optimal percentage of proximal thread length ξ∗

with σf/Ep for M. galloprovincialis. Shaded region represents the extent of
optimal percentage of proximal thread length as predicted by the model. Ex-
perimentally observed percentage of proximal thread length is also indicated
on the plot.

perimentally observed percentage of proximal thread length is also marked on the

same figure. The horizontal error bar associated with the experimental data signifies

the associated variation of σf as well as Ep. It can be noticed that for the species

M. galloprovincialis, the model prediction is close to experimentally observed value.

We have already found that predicted percentage of proximal thread length for M.

californianus is comparable to its experimental findings. Next, we will compare the

percentage of proximal thread length and the maximum toughness of different species

along with their experimental findings.

Figure 5.8(a) compares predicted optimal percentage of proximal thread length ξ∗

and toughness with experimentally observed values for different species. It can be

noticed that the predicted optimal percentage of proximal thread lengths ξ∗ are within

the limit of experimentally observed values. Such an agreement is supported by the

overlapping error bars in predicted values and experimental findings. Similarly, we

also compare the maximum toughness predicted by the present model with experi-
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mentally obtained toughness for different species in Figure 5.8(b). Interestingly, it
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Figure 5.8: Comparison of (a) percentage of proximal thread length and
(b) maximum toughness as predicted by the model with experimentally ob-
served values for different mussel species. Simulations are performed taking
into account experimental variations of model parameters resulting in vari-
ation in the simulation results denoted by error bars.

can be found that maximum toughness values are almost equal to the experimen-

tally reported values. Hence, it can easily be inferred that toughness offered by a

byssus thread during tensile stretching experiment is the maximum toughness for
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that thread. Furthermore, we have already investigated that the maximum tough-

ness associated with different species originates due to the presence of a particular

percentage of proximal thread lengths (ξ∗) which are also comparable to experimen-

tally observed values. Although, different material properties exist in the distal and

proximal threads for different species, still they meet a common specific require-

ment, i.e., to achieve maximum toughness. Therefore, it can be inferred that collagen

molecules mainly preCol-P and preCol-D are optimally arranged in the ultrastruc-

ture of the thread of different species to meet the above requirement. Moreover, this

optimal arrangement is manifested at macroscale in terms of two different regions of

thread such as proximal and distal threads. Therefore, the extraordinary toughness

along with higher strength and extensibility of mussel byssus thread as seen in nature

emerges from the presence of macroscale structural heterogeneity of byssus thread in

terms of percentage of proximal thread length. Thus, the present findings confirm

the hypothesis as stated earlier.

5.4 Concluding remarks

In this chapter, the origin of the high strength, toughness and extensibility of mussel

byssus thread is investigated through an optimization framework along with mecha-

nistic representation of thread. It is hypothesized that composite nature of the thread

of all species aims to achieve maximum toughness which is an important criterion for

their survivability in harsh environment. Using the proposed methodologies, the con-

tributing nondimensional parameters are identified. Next, the percentage of proximal

length and maximum toughness are predicted and compared with the experimental

counterpart. The following conclusions can be drawn from the present analysis.

• Optimal percentage of proximal thread length highly depends on the ratio of
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failure strength to the Young’s modulus of proximal thread and ratio of Young’s

modulus of distal thread to proximal thread. The higher value the ratio of

Young’s modulus of distal thread to proximal thread does not alter the optimal

percentage of proximal thread length.

• Yield strength of the distal region has no impact on the optimal percentage

proximal region. However, it makes the thread tougher.

• Different types of collagen (preCol-P and proCol-D) are optimally distributed

along the thread which is manifested as stiff distal thread and soft proximal

thread targeting to achieve high toughness along with high extensibility.
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Chapter 6

Surrogate modeling techniques

applied to heterogeneous materials

6.1 Introduction

Quite often in engineering computations we encounter the issue of computational cost.

While advanced numerical techniques along with increased model resolution has en-

abled accurate mechanistic simulations, such advancement has introduced the burden

of increased computational demand. This problem is commonly encountered across

the borders of science and engineering: In the areas of design optimization, multi-scale

modeling, turbulent combustion and fracture mechanics, to name a few. While details

of the problem definition is specific to the system under study, the approach to allevi-

ate the problem follows a similar principle across the discipline: replacing the detailed

expensive model by a reduced order surrogate model. Two desired properties of these

surrogate modeling techniques are that (1) they must be computationally efficient,

and (2) they should represent the original model sufficiently well. Typical methods
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employed are proper orthogonal decomposition (POD), response surface method and

look-up tables as discussed in Section 1.2.1.3. In the present study, we propose the

Higher Dimensional Model Representation (HDMR) based surrogate model to reduce

computational burden in several areas of computational material design such as con-

struction of failure envelope of highly heterogeneous microstructure and multiscale

analysis of nonlinear heterogeneous materials.

This chapter is organized as follows: the mathematical foundation of HDMR tech-

nique in given in Section 6.2. In Section 6.3, its potential application in the areas

of failure envelope construction for heterogeneous materials is outlined. We propose

surrogate model based multiscale framework for nonlinear heterogeneous materials in

Section 6.4. Finally, we summarize our findings in Section 6.5.

6.2 Mathematical foundation of HDMR

Higher Dimensional Model Representation (HDMR) is an efficient approach to cap-

ture the high dimensional input-output (IO) behavior of a complex system. The

fundamental principle behind HDMR representation is that the impact of multiple

input variables on the output can be independent and cooperative. Let f(Z) be

a real valued function, which depends on the a N -dimensional random vector as

Z=(Z1, Z2, ..., ZN ) ∈ ℜN . The HDMR of f(Z) can be represented as a hierarchical

correlated function expansion as

f(Z) = f0 +
n∑

i=1

fi(Zi) +
N∑

i1<i2

fi1i2(Zi1 , Zi2) +
N∑

i1<i2<i3

fi1i2i3(Zi1 , Zi2 , Zi3)

+ ...+ f12...N (Z1, Z2, ..., ZN ). (6.1)

In this expansion,
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• f0 is the zeroth-order effect which is constant,

• fi(Zi) represents the component function describing the independent action of

variable Zi on the output,

• fi1i2(Zi1 , Zi2) offers the co-operative effects of the variables Zi1 and Zi2 on the

output,

• f12...N (Z1, Z2, ..., ZN ) gives any residual dependence on all variables in a co-

operative way to influence the output.

While this expansion is an exact representation of the model output, HDMR is based

on the fundamental principle that correlations between the independent variables

affecting the system’s output diminishes rapidly. Traditional statistical analysis of

model behavior has revealed that only low order correlations can describe the pro-

cess dynamics with sufficient accuracy. Based on this observation, second order

HDMR expression should be sufficient in accurately representing high dimensional

systems (Rabitz and Alis, 1999). The expression for second order HDMR takes the

form:

f(Z) ≈ f0 +
n∑

i=1

fi(Zi) +
N∑

i1<i2

fi1i2(Zi1 , Zi2). (6.2)

The HDMR component functions, f0, fi(Zi), fi1i2(Zi1 , Zi2),... are found by minimizing

the error functional as

∫ [

f(Z)− f0 −
N∑

i=1

fi(Zi)−
∑

i1<...<is

f(Zi1 , Zi2 , ..., ZiM )

]2

dρ(Z), (6.3)

under suitable specified orthogonality conditions which guarantee that all the com-

ponent functions are determined step by step. Let us define D := {1, 2, ..., N} and

let u := {i1, i2, ..., iM} denote the set of the coordinate indices, where u ⊆ D. The

dimension of u is given as M=dim(u). The projection operator P : ℜN → ℜM
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constructed as

Pu ≡ P i1i2...iM :=

∫

ℜN−M

f(Z)dρD/u(Z), (6.4)

where the measure dρD/u(Z) given as,

dρD/u(Z) :=
∏

i/∈u

dρ(Zi). (6.5)

The component functions of HDMR are evaluated through the application of suitably

defined set linear operators L0, Li, Li1i2 , ... such that

f0 ≡ L0f(Z) = Pf(Z)

fi(Zi) ≡ Lif(Z) = P if(Z)− L0f(Z)

fi1i2(Zi1 , Zi2) ≡ Li1i2f(Z) = P i1i2f(Z)− Li1f(Z)− Li2f(Z)− L0f(Z)

fi1...iM (Zi1 , Zi2 , ....ZiM ) ≡ Luf(Z) = Puf(Z)−
∑

v⊂u

Lvf(Z) (6.6)

where, v := {i1, i2, ..., iM −1}. Therefore, the variational problem (Equation 6.3) can

be restated as ∫ [

f(Z)− fR(Z)

]2

dρ(Z), (6.7)

is minimized with

fR(Z) =

(

L0 +
∑

i

Li +
∑

i1<i2

Li1i2 + ...+
∑

i1<...<iM

Li1...iM

)

f(Z). (6.8)

The linear projection operators (L) must have following properties

1. Idempotency:

L2
u

= Lu, (6.9)
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2. Orthogonality:

LuLv = 0,v 6= u, (6.10)

3. Resolution of the identity:

L0 +
∑

i

Li +
∑

i1<i2

Li1i2 + ...+
∑

i1<...<iM

Li1...iM = 1, (6.11)

ANOVA-HDMR and Cut-HDMR can be used to find the component functions. Both

the ANOVA-HDMR and Cut-HDMR satisfies the properties of linear operator as

stated in Equations (6.9)-(6.11). Typically in ANOVA-HDMR, measure ρ is taken as

the ordinary Lebesgue measure as

dρ(Z) = d(Z) =
N∏

i=1

dZi. (6.12)

Correspondingly, the projection operator (Pu) is given as

Pu :=

∫

ℜN−M

f(Z)dZD/u, (6.13)

which requires (N -M) dimensional integration. The component functions can be

evaluated as

f0 =

∫

ℜN

f(Z)dZ,

fi(Zi) =

∫

ℜN−1

f(Z)
∏

j 6=i

dZj − f0,

fi1i2(Zi1 , Zi2) =

∫

ℜN−2

f(Z)
∏

k/∈(i1,i2)

dZk − fi1(Zi1)− fi2(Zi2)− f0,

... (6.14)
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Finding each component functions are computationally intensive as one needs to per-

form high dimensional integration, e.g., Monte-Carlo integration which requires large

number of function evaluations. Such a computational complexity can be reduced us-

ing the Cut-HDMR. In Cut-HDMR, the measure ρ is taken as Dirac measure located

at reference point Z̄ := {Z̄1, Z̄2, ..., Z̄N} given as

dρ(Z) =
N∏

i=1

δ(Zi − Z̄i)dZi. (6.15)

Correspondingly, the projection operator is described as

Pu := f(Z)|Z=(Zu,Z̄), (6.16)

which is M dimensional function. The component functions are evaluated at reference

(cut) point, cut-lines, cut-planes and hyperplanes and are given as

f0 = f(Z)|Z=Z̄,

fi(Zi) = f(Z)|Z=(Zi,Z̄),

fi1i2(Zi1 , Zi2) = f(Z)|Z=(Zi1
,Zi2

,Z̄) − fi1(Zi1)− fi2(Zi2)− f0. (6.17)

In the above equation,

Z̄ = {Z̄1, Z̄2, ..., Z̄N}, (Cut-point)

(Zi, Z̄) = {Z̄1, ..., Z̄i−1, Zi, Z̄i+1, ..., Z̄N}, (Cut-lines)

(Zi1 , Zi2 , Z̄) = {Z̄1, ..., Z̄i1−1, Zi1 , Z̄i1+1, ..., Z̄i2−1, Zi2 , Z̄i2+1, ..., Z̄N}, (Cut-plane)

(6.18)

Hence, for a Cut-HDMR, the input sampling domain can be defined as

Ωs ≡ {Z̄, (Zi, Z̄), (Zi1 , Zi2 , Z̄)} (6.19)
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For s number of input sampling points of each input variable, the required number

of function evaluations (model run)

Nf = 1 +N(s− 1) +
N(N − 1)(s− 1)2

2
, (6.20)

which increases polynomically with N and s. In the present study, the Cut-HDMR

formulation is adopted for the construction of surrogate model to reduce the compu-

tational complexity in the situations where repetitive finite element simulations are

required. Therefore, the HDMR based surrogate model has been applied in construc-

tion of failure envelop of heterogeneous microstructure and two scale finite element

analysis of nonlinear hyperelastic composites.

6.3 Application 1: Determination of failure enve-

lope for heterogeneous materials∗

The construction of the failure envelop of a heterogeneous material is taken as an

illustrative example. Failure envelop of a microstructure offers feasibility of that ma-

terial model against catastrophic failure while in operation. To construct the envelop

for heterogeneous materials, feasibility function must be tested over the entire input

parameter space. For complex heterogeneous materials, this boils down to multi-

ple costly finite element simulations. We pose this problem as a feasibility analysis

problem (Banerjee et al., 2010). Surrogate modeling will alleviate the necessity for

multiple full field finite element simulations. We first describe the surrogate mod-

eling methodology for generic feasibility analysis. Then we present the application

of HDMR technique in the construction of feasible strain space for a heterogeneous

∗Reprinted from Computationally efficient black-box modeling for feasibility analysis, article in press,
Ipsita Banerjee, Siladitya Pal, Spandan Maiti, Computers & Chemical Engineering, Copyright 2010,
with permission from Elsevier (see Appendix G)
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materials systems.

6.3.1 HDMR formalism for general feasibility problem

The problem definition of feasibility analysis, whether in process systems or in ma-

terial design, is to determine for a given design whether the system is feasible to

operate over the expected range of variation of the uncertain parameters. Given a

nominal value of the uncertain parameter θN , and the expected deviation ∆θ+, ∆θ−,

the flexibility test problem (Halemane and Grossmann, 1983) for a given design d

consists of determining whether the inequalities fj(d, z, θ) ≤ 0, j ∈ J , holds for all

θ ∈ T = [θ|θL ≤ θ ≤ θU ]. This problem is posed as a standard optimization problem

by defining a scalar variable u, such that

ψ(d, θ) = min
z,u

u

subject to fj(d, z, θ) ≤ u j ∈ J (6.21)

If ψ(d, θ) ≤ 0 for all θ ∈ T, the process is deemed feasible in the parameter range of

interest: T = [θ|θL ≤ θ ≤ θU ]. To determine design feasibility without relying on pro-

cess model, HDMR is applied considering Problem (6.21) as a black box model. The

evaluation of HDMR component function is performed according to Equation (6.2)

resulting in the following expansion for a fixed value of d:

f0 = ψ(θ)

fi(θi) = ψ(θ
i
, θi)− f0

fij(θi, θj) = ψ(θ
ij
, θi, θj)− fi(θi)− fj(θj)− f0 (6.22)
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The second order HDMR expression is then given by:

ψ̂(d, θ) = f0 +
n∑

i=1

fi(θi) +
∑

1≤i<j≤n

fij(θi, θj) (6.23)

In summary, while applying HDMR methodology in addressing feasibility problems,

the following steps are employed:

1. The uncertain parameters are identified and model formulation is written in

terms of the uncertain parameters

2. HDMR table is created by solving the actual model at discrete parameter values

and evaluating the functions given by Equation (6.22) as described below:

• The f0 term is determined with a single model run of Problem (6.21) with

all the uncertain parameters (θ) at their nominal values (θN).

• The first order function, fi(θi), is calculated from ψ(θ
i
, θi) by setting all

the input variables except θi to their nominal values (θN) and performing

a series of model runs with the input value of θi varying over its uncertain

range (θL ≤ θ ≤ θU). The f0 term is then subtracted from each model

output to produce the function fi(θi) as shown in Equation (6.22).

• The second order function, fi,j(θi, θj) is calculated by setting all the in-

put variables, except θi and θj, at their nominal values and obtaining the

response of the model for different values of θi and θj covering the input

surface space.

3. Once the table is created, the entire parameter space can be reconstructed by

interpolation. The output response at any desired point x is obtained by first
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interpolating each of the HDMR expansion terms in the look-up tables with

respect to the input query point; then summing up the interpolated function

values from zeroth to the highest required order. For second order expansion

the estimated output will be given by:

ζpredicted = f0 +
n∑

i=1

fi(θi) +
∑

1≤i<j≤n

fij(θi, θj) (6.24)

To evaluate the performance of this technique, the interpolation results are compared

with the actual model runs at the corresponding parameter value, and an error value

is computed as follows:

ξ =
1

N

√
√
√
√

N∑

i=1

(
ζ i

predicted
− ζ i

actual

ζ i

actual

)2

(6.25)

where, N is the number of interpolation points, ζ i

predicted is the value obtained using

HDMR prediction and ζ i

actual is the actual solution of the feasibility analysis problem.

6.3.2 HDMR applied to failure envelop determination for a

particulate composite system

In the example, we demonstrate the application of HDMR technique for the feasibility

analysis of a complex material model. The model is based on the design of a two-

phase heterogeneous material with circular particles of different shape and size (phase

2) inserted in a matrix (phase 1), as illustrated in Figure 6.1. The objective here is

to determine the range of externally applied strain over which a particular materials

design retains feasibility without failing. The model will be represented by a complex

set of partial differential equations as elaborated below. The design parameter vector
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d contains material properties of the two phases as well as the geometric features, such

as size and arrangement of particles. Given specific values of the design parameters d

for this model, we want to investigate the range of the input parameters (externally

applied strain in this case) over which the design does not fail. The uncertain input

parameters are thus the three components of the strain tensor:

θ1 := ε0
11; θ2 := ε0

22; θ3 := ε0
12. (6.26)

The criterion for feasibility of the described model will be to satisfy the following

failure condition (Fung (1965)):

f(d, θ) =
√

σ2
1 + σ2

2 − σ1σ2 − σf ≤ 0, (6.27)

where

σ1 =
σ11 + σ22

2
+

√
(
σ11 − σ22

2

)2

+ σ2
12,

σ2 =
σ11 + σ22

2
−

√
(
σ11 − σ22

2

)2

+ σ2
12, (6.28)

with σij, i, j = 1, 2 as the stress tensor components, and σf as the failure strength of

the designed material.

Output quantities are related to the input quantities through the following equations

everywhere within the domain (Sadd, (2005)):

σij = λuk,kδij + µ(ui,j + uj,i),

µui,kk + (λ+ µ)uk,ki + Fi = 0, i, j = 1, 2 (6.29)

and the input strain

ε0
ij = (u0

i,j + u0
j,i)/2. i, j = 1, 2 (6.30)
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In the above equations, λ and µ are constants, ui are the displacement components,

while quantities with a superscript 0 denote boundary quantities. These equations

need to be solved using advanced numerical techniques such as finite element method

(FEM). Determining the feasible region will require multiple solutions of the problem

mapping the entire range of the uncertain input parameter, which will be compu-

tationally extremely expensive. Instead, we present the use of HDMR methodology

to extract similar information but with largely reduced model runs. The elements

of the proposed methodology is represented by flow chart in Figure 6.2. The design

examined here consists of a square domain of dimension 100µm × 100µm. The par-

ticle diameters are given as 30 µm, 35 µm and 25 µm. Phase 1 has the properties

of epoxy with λ(1)=2.85 GPa and µ(1)=1.22 GPa, while phase 2 is considered to be

A-glass with λ(2)=17.31 GPa and µ(2)=20.33 GPa. The failure strength of the design

is taken as σf=100 MPa.

1

2

Figure 6.1: A representative design for a two phase material showing phase
1 material (epoxy matrix) in light gray and phase 2 material (A-glass par-
ticle) in dark gray. FEM mesh used for the simulations and the coordinate
directions are also shown

To obtain the feasible domain for the input strain space, the parameter range for

normal strains is taken as ε0
11=ε

0
22 ∈ [−0.025 0.025] and for shear strain as ε0

12 ∈
[−0.01875 0.01875]. Nominal point for the parameter space is given as εN

11=ε
N
22=ε

N
12=0.
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Figure 6.2: Flow chart showing basic elements of surrogate model based
feasibility analysis of the heterogeneous materials.

The surrogate model (component functions) is constructed using the cut-HDMR ap-

proach. As mentioned earlier, for cut-HDMR the component functions are evaluated

at the cut point, cut lines and cut surfaces. Correspondingly, the input parameter

space Ωθ can be given as

Cut Point := (ε0N

11 , ε
0N

22 , ε
0N

12 ),

Cut Lines := (ε0i

11, ε
0N

22 , ε
0N

12 ), (ε0N

11 , ε
0i

22, ε
0N

12 ), (ε0N

11 , ε
0N

22 , ε
0i

12)

Cut Planes := (ε0i

11, ε
0j

22, ε
0N

12 ), (ε0N

11 , ε
0i

22, ε
0j

12), (ε
0i

11, ε
0N

22 , ε
0j

12) (6.31)

An example of cut plane is described in Figure 6.3 which contains the cut point as

well as two cut lines. The finite element simulations are performed over the above

input parameter space. Each input parameter is discretized over 11 equal intervals.

Thus, a total 331 finite element simulations were performed to construct second order

HDMR component functions. We have only performed 2nd order HDMR calculations

as it was shown to be very accurate in the previous example. Each finite element run

takes 1146 cpu s and the construction of the look up table by HDMR methodology

thus requires 105.368 cpu hrs.
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Figure 6.3: Grid of input sample points over which HDMR component
functions are evaluated by performing FEM simulations.

Upon completion of the table generation computations, the model response over the

entire 3-dimensional input parameter space is reconstructed by interpolation of the

component functions at the query points on a 25 × 25 × 25 grid that requires further

0.1525 cpu s. However, construction of the feasible space by actual finite element

simulations on that grid requires 4974 cpu hrs. Thus HDMR methodology can obtain

the feasible region 47.2 times faster than the conventional model evaluation technique.

This example shows the enormous computational savings to be accrued from the

proposed methodology, particularly when the model complexity is high.

Figure (6.4) shows the predicted feasible region for ε0
11=ε

0
22 ∈ [−0.025 0.025] for

a given shear strain ε0
12=0.00675. The boundary of the feasible region (solid line)

for this particular plane was calculated by solving the full FEM model on a 25×25

grid requiring 198.97 cpu hrs. As illustrated in the figure, the HDMR method demon-

strates excellent accuracy in capturing the actual feasible region of the given materials

design. The error in prediction by Equation (6.25) is only 2.028×10−4, denoting the
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high accuracy of our prediction. Thus, this particular example shows the computa-

tional efficiency and prediction accuracy of the proposed technique even with complex

model formulations.
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Figure 6.4: Comparison of FEM computed feasible region with the HDMR
predictions

Two more projections from the 3-D feasible space are shown in Figure (6.5). Fig-

ure 6.5(a) corresponds to the feasible region for ε0
12 and ε0

11 keeping ε0
22=-0.018, while

Figure 6.5(b) is for ε0
12 and ε0

22 keeping ε0
11=-0.016. It can be noted from this figure

that our prediction is highly accurate for all these planes.
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Figure 6.5: Comparison of HDMR predicted feasible region with FEM
computed result (a) when ε0

22 is fixed, and (b) when ε0
11 is fixed.
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6.4 Application 2: Efficient multiscale analysis of

nonlinear hyperelastic materials undergoing la-

rge deformation

The two scale finite element method is widely used to find macroscopic behavior of

a heterogeneous material. At the upper scale, the constitutive response at macro-

scopic Gauss point is evaluated concurrently performing finite element simulation

(lower scale) of representative volume element attached to that point. Therefore, two

scale finite element methods are computationally intensive especially when the mate-

rial contains nonlinear hyperelastic constituents and undergoing large deformations.

Furthermore, the multiple RVEs need to be solved for highly complex statistically

heterogeneous microstructures. The main focus of the present analysis is to apply

the HDMR based surrogate model to extract the constitutive behavior of the hetero-

geneous materials for a given deformation gradient at a macroscopic Gauss point by

replacing the lower scale simulation. This surrogate model is constructed considering

the representative volume element as a black box where the components of the macro-

scopic deformation gradient are viewed as input variables while average microscopic

stress tensor as output. Applying homogeneous deformation boundary condition to

the RVE and performing nonlinear large deformation finite element simulation over

the input parameter space, we evaluate the HDMR component functions. Next, the

average microscopic stress tensor for the arbitrary macroscopic deformation gradient

is predicted from look-up table with minimal computation. To test the accuracy

of such prediction, a full field finite element simulation is performed for the similar

evolution of the macroscopic deformation gradient tensor.
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6.4.1 Surrogate model based multiscale framework

The purpose of the present multiscale model is to determine the locally averaged

global constitutive behavior of nonlinear, possibly statistically heterogeneous material

subjected to finite strain. In contrast to the concurrent multiscale framework, the

present framework is based on two steps approach as shown in Figure. 6.6. Step-1

is the construction of a surrogate model. This can be achieved through extracting

the average microscopic behavior over a sampled input variable space as dictated

by Cut-HDMR expansion. Step-2 predicts the behavior from surrogate model for

any arbitrary macroscopic deformation gradient at any macroscopic point resulting

due to applied macroscale loading. Consequently, the primary components of this

novel multiscale framework are given as (1) formulation of macroscale boundary value

problem, (2) construction of surrogate model, and (3) formulation of microscopic

boundary value problem. Large deformation kinematics are considered at both the

scales. A periodic heterogeneous microstructure is considered. No energy dissipation

mechanisms such as debonding between the material interfaces are allowed at both

the scales.

6.4.1.1 Macroscale formulation

Let Ω0⊂ℜn be a n dimensional macroscopic domain in its reference configuration,

and ∂Ω0 denote the boundary of Ω0. The current configuration and its boundary are

denoted as Ω and ∂Ω, respectively. We assume that ∂Ω0 = ∂Ω0u ∪ ∂Ω0σ, and ∂Ω0u ∩
∂Ω0σ=ø with subset Ω0u and Ω0σ indicate the portion where macroscopic displacement

(u) and macroscopic traction (t) are prescribed, respectively. The material points

at any instant is indicated as X∈ ℜn. For a given macroscopic displacement field

ū(X) ∈ H1(Ω0), the current position vector x̄ is given as x̄(X) = X + ū(X). The
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Figure 6.6: Schematics of Macro-and micro-scale boundary value problems
and their coupling.

macroscopic deformation gradient tensor F̄ can be evaluated as F̄ = ∇X x̄. The

first Piola-Kirchhoff stress tensor (PK-I) at macro-scale P̄ is related to F̄ as P̄ =

∂F̄Ψ̄, where, Ψ̄ represents the strain energy function of the homogenized material.

Considering quasi-static deformation of the domain, the equilibrium conditions are

expressed as

∇ · P̄ + B̄ = 0, and P̄F̄T = (P̄F̄T )T , (6.32)

where, B̄ represent the body force in reference configuration. The boundary con-

ditions are prescribed as u(X) = ū(X) on ∂Ω0u and P̄N = t̄ on ∂Ω0σ where,

N is outward normal at X∈ ∂Ω0σ. The first Piola-Kirchhoff stress tensor P̄ can

be related to Cauchy stress tensor σ by P̄=JσF̄−1, where, J=det(F̄), and the sec-

ond Piola-Kirchhoff stress tensor S̄ as P̄=F̄S̄. For any admissible displacement field

δu ∈ H1
0 (Ω0), the principle of virtual work states that

δWint(u, δu)− δWext(u, δu) = 0, (6.33)

146



where internal virtual work δWint and external virtual work δWext can be found in

material description as

δWint(u, δu) =

∫

Ω0

S̄ : δĒ∂Ω =

∫

Ω0

P̄ : ∇X(δu)∂Ω

δWext(u, δu) =

∫

Ω0

B̄ · δu∂Ω +

∫

∂Ω0

t̄ · δu∂Γ. (6.34)

In the above equation, S̄, B̄ and t̄ denote the second-Piola Kirchoff stress tensor,

body force and traction applied at the boundary, respectively. The macroscopic

Green-Lagrange strain tensor is given as Ē = 1
2
(C̄ − I) = (F̄T F̄ − I)/2. An incre-

mental/iterative solution technique is adopted to solve the above nonlinear equation.

Linearization of the above equation offers

δWint(u, δu)− δWext(u, δu) +D∆uδWint(u, δu)−D∆uδWext(u, δu) = 0 (6.35)

where, D(·) represents the Directional derivative (Gateaux operator). Using the vari-

ation of Ē as

δĒ =
1

2
[F̄T∇X(δu) +∇X(δu)T F̄]. (6.36)

in Equation (6.34), the directional derivative of the internal virtual work can be

obtained as

D∆uδWint(u, δu) =

∫

Ω0

∇X(δu) : ∇X(∆u)S̄∂Ω + F̄T∇X(δu) : C̄ : F̄T∇X(∆u)∂Ω,

(6.37)

where C̄ is the fourth order homogenized material elasticity tensor. In case of a

macroscopic heterogeneous material, Ψ̄ is unknown in general. The tangent moduli

(elasticity tensor) C̄ can not be expressed in closed form. Hence, we need to extract

the homogenized macroscopic stress-deformation gradient (P̄ vs F̄) relationship. In

a concurrent multiscale approach as indicated in Figure 6.6, we simulate the repre-

sentative volume element for macroscopic deformation gradient at microlevel during
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each macroscopic Newton-Raphson iteration. As mentioned earlier, the macroscopic

stress deformation gradient relationship at each Gauss point for each iteration will

be extracted from a fully equivalent operational model (see Figure. 6.6). This sur-

rogate model is generated through precomputation of the average response of the

microstructure over a sampling space of F̄ indicated by Ωs in Figure. 6.6. The detail

formulation of surrogate model will be described in the next section.

6.4.1.2 Surrogate model of RVE using HDMR formulation

In this multiscale finite element framework, the HDMR based surrogate model is con-

structed to correlate the input-output relationship of a RVE, where the components

of macroscopic deformation gradient tensor F̄ are considered as the input variables

and components of first Piola-Kirchhoff stress tensor P̄ are considered as the out-

put of the system. A HDMR based approach as described in Section 6.2 is applied

to correlate the input-output (IO) relationship considering the RVE as a black-box.

As mentioned earlier, HDMR expresses P̄ as a finite hierarchical correlated function

expansion in terms of macroscopic deformation gradient F̄:

P̄(F̄) ≈ P̄0 +
n∑

i=1

P̄i(F̄i) +
∑

1≤i<j≤n

P̄ij(F̄i, F̄j), (6.38)

where, the zeroth order component function P̄0 is a constant representing the re-

sponse of P̄(F̄) at the reference point denoted as F̄R. The first order component

function P̄i(F̄i) gives the independent contribution to P̄(F̄) when ith input variable

or each component of deformation gradient acting alone. P̄ij gives the pair corre-

lated contribution of the component of deformation gradient to the output P̄(F̄).

Furthermore, it is assumed any residual higher order (>2) correlated contribution

of the components of deformation gradient to the output vanishes. There are two

commonly used HDMR expansions namely Cut- and RS-HDMR corresponding to
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ordered and random sampling, respectively. Cut-HDMR expresses P̄(F̄) in reference

to the specified cut point F̄R in desired domain of input variable represented by Ωs.

Moreover, RS-HDMR depends on the average value of P̄(F̄) over the whole domain

Ωs. Applying the Cut-HDMR, the component functions with respect to the reference

point F̄R given as

P̄0 = 1P̄(F̄R),

P̄i(F̄i) = 1P̄(Fi, F̄
R
i )− P̄0,

P̄ij(F̄i, F̄ j) = 1P̄(Fi, Fj, F̄
R
ij)− P̄i(F̄i)− P̄j(F̄j)− P̄0, (6.39)

where, 1P̄ is the first Piola-Kirchhoff stress tensor need to be evaluated by performing

RVE simulations over the sampling space Ωs. For a cut-HDMR the sampling space,

Ωs consists of the cut-point, cut-lines and cut planes as defined following

F̄R = (F̄R
1 , ..., F̄

R
i−1, F̄

R
i , F̄

R
i+1, ..., F̄

R
n ),

(Fi, F̄
R
i ) = (F̄R

1 , ..., F̄
R
i−1, F̄i, F̄

R
i+1, ..., F̄

R
n ),

(Fi, Fj, F̄
R
ij) = (F̄R

1 , ..., F̄
R
i−1, F̄i, F̄

R
i+1, ..., F̄

R
j−1, F̄j, F̄

R
j+1, ..., F̄

R
n ). (6.40)

In the above equations, n representing the number of input variables. Numerical

data tables are constructed for the component functions and the value of P̄(F̄) for

any arbitrary point F̄ are determined through the low dimensional interpolation over

P̄i(F̄i) and P̄ij(F̄i, F̄j). For a two dimensional finite strain analysis, there are four

independent components of deformation gradient i.e., n=dim(F̄)=4. Consequently,

it requires 3−8s+6s2 number of function evaluations (Nf ) for s number of sampling

point for each input variable. In contrast, traditional s4 function evaluations required

to construct a look-up table for performing multidimensional interpolation. Moreover,

for a three dimensional analysis, n=9, which offers Nf=28−63s+36s2 compared to s9

model evaluation. Finally, to construct the look-up table for given input space Ωs, the
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average microscopic behavior of the RVE must be computed. Hence, a microscopic

boundary problem is formulated in the next section.

6.4.1.3 Microscale formulation

Let Θ0⊂ℜn (n=1,2 or 3) be a RVE of the microstructure around a macroscopic point

X (Figure. 6.6). Let Y be the microscale coordinate vector where, Y=X/ǫ, with the

parameter ǫ is very small compared to the macro-scale domain denoted by Ω0. In the

microscale, we assume the existence of a strain energy function Ψ(k) of each phase

(k) in the microstructure. Correspondingly, the first Piola-Kirchhoff stress at each

phases can be related to the microscopic deformation gradient as 1P(k) = ∂1FΨ(k),

where, 1F = ∇X
1u + 1, with 1u is the microscopic displacement. The weak form at

microscale can be formulated as; Find 1u ∈ H1(Θ0) satisfying 1u=1u on ∂Θ0u such

that

∫

Θ0

1P : ∇X(δu)∂Θ =

∫

Θ0

1B · δu∂Θ +

∫

∂Θ0

1t · δu∂Γ, ∀δu ∈ H1
0 (Θ0), (6.41)

where 1B are the local body forces and 1t are the applied tractions. To solve this BVP,

we need to specify appropriate boundary conditions. At microscopic length scale, we

assume the current position of the material points is the superposition of an average

field and a fluctuating field 1ũ(Y) aroused due to the presence of heterogeneity as

1x = F̄Y + 1ũ(Y). Correspondingly, the deformation gradient at microscale given

as 1F = F̄ + ∇X
1ũ(Y). A finite element method as described in Appendix D is

used to solve the microscopic boundary value problem subjected to specific boundary

conditions. After solving the microscopic boundary value problem, a homogenization

procedure is performed to evaluated the average microscopic stress tensor for the given

macroscopic deformation gradient. The average first Piola-Kirchhoff microstress 1P̄
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and average macro-deformation 1F̄ of the microstructure are defined as

1P̄ :=
1

Θ0

∫

∂Θ0

1t⊗ Y dΓ, and 1F̄ =
1

Θ0

∫

∂Θ0

1x⊗NdΓ, (6.42)

in terms of boundary data of tractions 1t and deformation 1x on the surface of the

RVE. An averaging theorem as formulated by Hill (1972) requires the average of

the microscopic stress power to be equal to the macroscopic stress power i.e., 1P̄ :

1 ˙̄F =
∫

dΘ0

1P : 1ḞdΓ. Using the equilibrium condition and the identity, 1P : 1F =

Div[1ẋ · 1P] − Div[P] · 1ẋ along with Gauss theorem, the above equation can be

reformulated as

1P̄ : 1 ˙̄F =
1

|Θ0|

∫

∂Θ0

1t · 1ẋdΓ, (6.43)

in terms of the power of the tractions on the surface ∂Θ0. Moreover, one expects the

property

(1P̄1F̄
T
)T = 1P̄1F̄

T
, (6.44)

for overall macroscopic stress in order to satisfy the Kirchhoff’s macro-stress. The

boundary conditions to be considered such that the averaging theorem and symmetric

condition are satisfied. After mathematical manipulation, 1F̄ can be written as

1F̄ = F̄ +
1

Θ0

∫

∂Θ0

1ũ(Y)⊗NdΓ, (6.45)

where F̄ is the macroscopic deformation gradient such that F̄ = 1F̄, which leads to

1

Θ0

∫

∂Θ0

1ũ(Y)⊗NdΓ = 0, (6.46)

where, N is the unit outward normal on Θ0. The above equation can be satisfied for

following boundary conditions at microscale

1ũ(Y) = 0 on ∂Θ0, and 1ũ
+
(Y) = 1ũ

−
(Y) on ∂Θ0. (6.47)
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The first condition offers the boundary constraint in terms of macroscopic deformation

F̄ as

1x = F̄Y on ∂Θ0, (6.48)

which defines a linear deformation on the boundary ∂Θ0 of the representative volume.

Substituting Equation (6.48) in Equation (6.43) confirms that the averaging theorem

is a priori satisfied. Furthermore, Equation (6.42) and (6.48) along with equilibrium

of couples
∫

∂Θ0

1x⊗ 1t=0, offers the expression which confirms the symmetry of the

macroscopic Kirchhoff stresses (Miche, 2003; Yvonnet and He, 2007)

6.4.2 Numerical examples

Numerical examples are presented in this section to illustrate the performance of the

proposed scheme. Particulate composite as well as short fiber composite made of

nonlinear constituent materials are considered for the macroscopic domain. A perfect

bonding between the different constitutive phases is assumed. The representative

volume elements are discretized with four-noded quadrilateral elements.

6.4.2.1 Particulate composites

An example of heterogeneous material, a model particulate composite with a particle

volume fraction of 24.5%, is considered here. The particulate composite consists of a

softer matrix and harder particles (indicated by darker regions) with different radii

and stiffness. Figure. 6.7 represents a representative volume element (RVE) of this

material that we will consider for our study. The constitutive response for the matrix

as well as the particles is considered to be of compressible Neo-Hookean type, whose
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Figure 6.7: Representative volume element consisting softer matrix and
harder particles of different radii as well as different stiffness. Particles are
denoted by darker regions, darker shade denoting higher stiffness.

strain energy function can be represented as

Ψ(k) =
µ(k)

2

(
Ic − 3

)
− µ(k)lnJ +

λ(k)

2

(
lnJ
)2
, (6.49)

where, µ(k) and λ(k) are the material constant for the kth constituents, Ic=tr(C), is

first invariant of C and J2=IIc. The material properties of the matrix and particles

are listed in Table 6.1.

Table 6.1: Material properties

Constituents Phase λ(k)(MPa) µ(k)(MPa)

Matrix 1 12.1666 8
Particle 1 2 1216.66 800
Particle 2 3 6083.33 4000
Particle 3 4 12166.66 8000

The objective of the present study is to predict the macroscopic first-Piola Kirchhoff

stress tensor at a Gauss point, that is represented by the above mentioned RVE at

the microscale, for a given macroscopic deformation gradient resulting from an arbi-

trary loading on the structure. For the present example, the maximum macroscopic

deformation gradient tensor is considered as F̄={F̄11 F̄22 F̄12 F̄21}={1.3 1.3 0.1 0.1}
resulting in a finite strain given as E={E11 E22 E12}={0.35 0.35 0.13} Resulting com-
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plex stress (first Piola-Kirchhoff stress) pattern at the microscale due to the presence

of heterogeneity are illustrated in Figure. 6.8.

: 8 9 10 11 12 13 14 15 16 17
1P11

(a)

: 8 9 10 11 12 13 14 15
1P22

(b)
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(d)

Figure 6.8: Stress contour of (a) 1P11, (b) 1P22, (c) 1P12, and (d) 1P21 for
the RVE when subjected to macroscopic deformation gradient F̄11=F̄22=1.3,
and F̄12=F̄21=0.1

In order to predict the macroscopic stress for any arbitrary deformation history, first

the HDMR component functions are generated for the entire range of the considered

deformation gradients. In this analysis, the undeformed state of the RVE is considered

as the reference condition which is denoted as F̄R=
{

1.0 1.0 0.0 0.0
}

(see

Equation (6.40)). Correspondingly, the zeroth order stress tensor is given as 1P̄(F̄R) =
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{ 0.0 0.0 0.0 0.0 }. Next, each component of the macroscopic deformation

gradient is sampled over 11 equally spaced points, i.e., s=11. RVE simulations are

performed over input parameter space as specified by Equation (6.40) resulting in

641 finite element runs to obtain zeroth, first and second order components of the

microscopic stress tensor 1P̄. Simulated first order and second order components of

1P̄11 are illustrated in Figure. 6.9 and Figure. 6.10, respectively.
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Figure 6.9: Simulated first order components of average microstress (1P̄11)
with respect to the input variables.

The average macroscopic stress tensor resulting from an arbitrary macroscopic defor-

mation gradient evolution can be obtained from Equation (6.38). The response from a

full field finite element simulation performed for the similar evolution of macroscopic

deformation gradient is taken as the reference case for the comparison purpose. Note,

the loading paths that will be presented here do not belong to the sampling space

(cut-lines and cut-surfaces) considered for the construction of surrogate model. In the
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Figure 6.10: Simulated second order components of average microstress
(1P̄11) with respect to the components of macroscopic deformation gradient
tensor.

present study, three different deformation patterns that may arise at the macroscopic

Gauss point are considered for the illustration purpose.
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First, a proportional type loading is considered where the components of F̄ as shown

in Figure 6.11(a) increases in a proportionate manner as time proceeds. Figure 6.11(b)

compares the components of average microscopic stress tensor with the full field finite

element simulation.
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Figure 6.11: (a) Evolution of proportionally loaded macroscopic defor-
mation gradient. (b) Comparison of predicted first Piola-Kirchhoff (PK-I)
stresses with full field finite element simulation.

It can be found that the proposed scheme accurately predicted all the components

of the average macroscopic stress tensor. Next, a nonproportional type loading is

considered as as shown in Figure 6.12(a) where F̄22 and F̄21 increase linearly up

to 500 load steps while F̄11 and F̄12 remain at the reference state (unloaded). At

the next phase of loading (load steps >500), F̄22 and F̄21 remain constant at 1.2

and 0.08, respectively, while F̄11 and F̄12 are varied linearly with load steps. For

this loading scenario, it can be observed from Figure. 6.12(b) that the predicted

components of the stress tensor follow their simulated counterparts almost exactly.

Furthermore, a more complex loading situation consisting of loading-unloading of

components of deformation gradient is considered (Figure. 6.13(a)). It can also be

found from Figure. 6.13(b) that the predicted behaviors are similar to simulated

responses.
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Figure 6.12: (a) Evolution of non-proportionally loaded macroscopic defor-
mation gradient. (b) Comparison of predicted first Piola-Kirchhoff (PK-I)
stresses with full field finite element simulation.

6.4.2.2 Short fiber composite

As a second example, a short fiber composite material similar is considered. The

representative microstructure is given in the Figure. 6.14. The idea behind choos-

ing such a RVE is to illustrate the effect of incorporation of material anisotropy on

the prediction behavior by the proposed model. Similar to the particle composite,

a compressible Neo-Hookean material is considered whose strain energy function is

given in Equation (6.49). The material properties of the matrix is given as λ(1)=12.67
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Figure 6.13: (a) Evolution of macroscopic deformation gradient with series
of loading and unloading events. (b) Comparison of predicted first Piola-
Kirchhoff (PK-I) stresses with full field finite element simulation.

MPa and µ(1)=8.0MPa whereas the fiber is considered highly stiffer and the material

properties are given as λ(2)=500 λ(1) and µ(2)=500 µ(1). The similar magnitude of the

maximum macroscopic deformation gradient tensor is also considered for this exam-

ple. After constructing the surrogate model in a similar manner to the particulate

composite, the average macroscopic stress is predicted. Three loading scenarios as

given in Figure. 6.11(a), 6.12(a) and 6.13(a) are also considered for this RVE.

Predicted average microscopic stress for proportional type loading is compared with
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Figure 6.14: Representative volume element consisting softer matrix and
short fiber. Fiber is denoted by darker regions, darker shade denoting higher
stiffness.

full field finite element simulation in Figure 6.15(a). It can be found that, P̄11 and

P̄22 are significantly different. Thus, insertion of short fiber imparts considerable

anisotropy in the material response. However, predicted components of average mi-

croscopic tensors are in good agreement with the direct finite element simulation.

Furthermore, the predicted behavior for the nonproportional type as well as the com-

plex loading follow their simulated counterpart almost exactly.

6.4.2.3 Three dimensional particulate composite

To illustrate the efficiency of the proposed scheme in more complex material system,

a three dimensional particulate composite is considered. Figure 6.16 shows a platelet

embedded in a matrix of the composite. This particular geometry is considered to

introduce anisotropy in the RVE. The compressible Neo-Hookean materials are con-

sidered for both matrix and platelet. The material properties of the matrix is given

as λ(1)=12.67 MPa and µ(1)=8.0MPa, whereas the platelet is considered stiffer and

the material properties are given as λ(2)=200 λ(1) and µ(2)=200 µ(1). As mentioned

earlier, the macroscopic deformation gradient tensor consists 9 independent compo-

nents in three dimensions. Constructing the surrogate model with 9 input variable
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Figure 6.15: Comparison of predicted first Piola-Kirchhoff (PK-I) stresses
with full field finite element simulation for (a) proportional loading, (b)
nonproportional loading, and (c) complex loading-unloading.

is difficult. Hence, for the illustration purpose, we consider only 4 components of

the macroscopic deformation gradient (F11, F22, F33, and F12) offering a three dimen-

sional loading situation. Similar to the previous examples, the surrogate component

functions are generated assuming undeformed state as the reference state, and max-

imum deformation gradient as F̄={F̄11 F̄22 F̄33 F̄12}={1.3 1.3 1.3 0.1}. The RVE

is discretized with 10 noded tetrahedron, and homogeneous deformation gradient is

applied as the boundary condition.
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Figure 6.16: Three dimensional representative volume element consisting
softer matrix and a platelet. Platelet is denoted by darker regions, darker
shade denoting higher stiffness.

Initially, a proportional type load profile (Figure 6.17(a)) is considered for surrogate

based prediction of the average macroscopic stress. Full field finite simulation is

also performed along the load profile for the comparison purpose. It can be found

from Figure 6.17(b) that the HDMR predicted response is similar to the actual fi-

nite element simulation. Similar to the previous example, the nonlinear hyperelastic

composite is also subjected to a complex loading profile (Figure 6.18(a)). Predicted

behavior of the composite and its simulated counterpart (Figure 6.18(b)) show a good

agreement. Yvonnet et al. (2009) constructed a look-up table for the effective behav-

ior of similar RVE made of compressible strain hardening material undergoing small

deformation. Furthermore, they compared the predicted behavior obtained by direct

interpolation with the full field finite element simulation. Construction of such look-

up table requires s3 sampling effort, i.e., 1331 finite element runs with 11 sampling

points. The similar approach for large deformation analysis will require s4, i.e., 14641

finite element simulations which is computationally expensive. Moreover, predicting

the behavior for any arbitrary deformation gradient require higher dimensional inter-

polation which is also a difficult task. In contrast, the proposed method require only
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Figure 6.17: (a) Evolution of proportional type macroscopic deformation
gradient. (b) Comparison of predicted first Piola-Kirchhoff (PK-I) stresses
with full field finite element simulation.

641 finite element simulations for similar input sampling. Thus, the present scheme

incur a significant amount of computational savings.

6.4.3 Computational efficiency

It should be noted here that the our predictions need not obey the temporal coher-

ence. Once the surrogate model has been constructed, response prediction can be
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Figure 6.18: (a) Evolution of macroscopic deformation gradient with series
of loading and unloading events. (b) Comparison of predicted first Piola-
Kirchhoff (PK-I) stresses with full field finite element simulation.

performed disregarding the evolution of the input deformation gradient. To indicate

the computational efficiency of the proposed scheme, consider a macro-scale domain

with nel elements, ng Gauss points per element, nl load increments and NIC average

number of macroscopic iterations. Let tRV E is the average time required to solve a

RVE for each load step. Correspondingly, the total time to simulate the macroscopic

BVP, tMacro ∼ nelngNICtRV Enl. In the present study, tRV E for particulate composite,

short fiber composite and 3D composite are given in Table 6.2. The construction of
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surrogate model requires solving of Nf microscopic BVP problem with ns load steps

which offers tsurr ∼ NfnstRV E. This is the most costly step e.g., particulate composite

offers tsurr=534.16 cpu hrs. However, finite element simulations required for surro-

gate model are independent from each other and can be performed over massively

parallel computers. As the HDMR prediction is based on low-dimensional interpola-

tion, it takes negligible amount of time which is order of µs (see tHDMR in Table 6.2).

Therefore, the computational efficiency of the proposed scheme can be defined as

η =

(

1− tsurr

tMacro

)

∼ 1− Nfns

nelngNICnl

. (6.50)

It can be seen from the above equation that the proposed method is particularly

advantageous when, in a large structure, a large number of similar RVEs are experi-

encing dissimilar deformation history. In the proposed scheme, stress predictions can

be performed taking into account only the current combination of the components of

the deformation gradient tensor. Thus, material response at any point on macroscale

is readily available. Moreover, it requires only simulated zeroth, first and second or-

der components of stress tensor. Thus, costly storage and retrieval of previous states

is completely eliminated in our method.

Table 6.2: Comparison of computational cost for each load step

Type of composites HDMR Prediction (tHDMR) FEM simulation (tRV E)

Particulate 52 µs 5.96 s
Short fiber 52 µs 6.34 s

3D composite 90 µs 48.00 s
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6.5 Concluding remarks

In this chapter, we have demonstrate the applicability of Higher Dimensional Model

Representation (HDMR) based surrogate model to reduce computational burden.

Construction of failure envelop of heterogeneous material and two scale finite ele-

ment method have been considered as illustrative examples. First, a surrogate model

based feasibility formulation has been developed and applied to construct the fail-

ure envelop of heterogeneous microstructure. Component functions of the surrogate

model are generated using the Cut-HDMR technique which requires significantly re-

duced number of finite element simulations. To test the accuracy, direct finite element

simulations have also been performed to determine the failure envelop. As the second

example, a two scale finite element framework for heterogeneous material with nonlin-

ear hyperelastic constituents undergoing finite strain has been choosen. The surrogate

model has been applied to replace the lower scale simulations. After constructing the

surrogate models for different RVEs, the average response is predicted for arbitrary

deformation history and is compared with full field finite element simulations. The

following conclusions can be drawn from two applications:

• The HDMR based surrogate model can accurately capture the range of applied

input strain parameters over which the design retains feasibility. Thus, the

proposed methodology can have promising application in predicting the failure

envelop of complex materials systems.

• Accuracy of the proposed 2nd order HDMR approach is very high as shown by

various examples. Complex nonproportional loading scenarios for a 3D highly

nonlinear RVE yielded excellent match to the full field finite element simulation

results at a fraction of the original computational cost. Thus, for two scale

finite element, lower scale simulation can be substituted with the HDMR based
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surrogate model. Hence, concurrent multiscale simulation can be expedited

significantly.

• The surrogate model requires only the component functions (zeroth, first and

second order) to be stored which needs less amount of data storage.
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Chapter 7

Conclusions and future work

7.1 Salient findings of the present work

Heterogeneous materials possess significant challenges in characterizing their mechan-

ical behavior. In the present study, we mainly focused on two types of heterogeneous

materials: cellular materials and mussel byssus threads. Understanding mechanical

behavior of cellular materials is extremely difficult during impact loading. However,

an impact loading scenario is one of the most common operative environments for

this class of materials. Although the split Hopkinson pressure bar (SHPB) experi-

ment provides the dynamic response of a wide range of materials, it is difficult to

extract the dynamic response for soft cellular materials. SHPB testing of cellular

materials can be performed only through suitable modifications which require prior

knowledge of the stress-state within the specimen. However, such detailed knowledge

of stress-state with respect to cellular microstructural and experimental parameters

is still lacking. Moreover, high strain rate energy absorption characteristics of cellular

materials depend on a number of intertwined microscopic mechanisms (microinertia,
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microbuckling and microbending). Present literature lacks a complete description of

the complex interactions of these mechanisms arising at the microstructural level.

We have also studied a second type of heterogeneous material: Mussel byssus thread.

The design of these thread is the demonstration of intelligent use of heterogeneities

at the microstructural level to achieve superior mechanical performance. Experimen-

tal observations offer the mechanical properties of mussel byssus threads and their

microscopic origin. However, contribution of macroscopic heterogeneity in-terms of

proximal and distal thread lengths towards its strength, toughness and extensibility

has never been addressed. Such knowledge is required to exploit its potential towards

development of biomimetic tough thread.

Furthermore, analysis of complex materials in several situations involves computa-

tional burden. For example, construction of failure envelope of a heterogeneous ma-

terial requires failure criteria to be tested over entire input loading parameter space.

Thus, it involves large number of finite element simulations. Similarly, in two scale

finite element method, a representative volume element of heterogeneous materials

needs to be solved for average mechanical response at the macroscopic point. Such

concurrent simulations are expensive. Thus, computationally efficient predictive mod-

els are highly desirable in these situations.

To investigate the deformation characteristics of soft cellular solids and mussel byssus

threads, a robust numerical framework has been developed in this thesis. An inter-

connected network structure has been considered for cellular solids, while a filament

type model has been assumed for mussel byssus thread. To simulate the mechanical

behavior for both the situations, a corotational beam formulation that can capture

the finite deformation kinematics has been adopted. A modified corotational beam

formulation has been proposed to evaluate the rotation quantities precisely. Based

on the modified beam approach and a central difference scheme, an explicit dynamic
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finite element framework has been developed to simulate dynamic response of cellu-

lar materials. Furthermore, an implicit quasi-static corotational beam finite element

formulation has been developed to simulate the mechanical behavior of mussel byssus

thread. Based on the principle of Voronoi tessellation, a wide variety of cellular

microstructures have been generated. To simulate the cellular microstructures, the

struts have been discretized with two noded Timoshenko beam elements. The ex-

plicit dynamic finite element framework has been used to enumerate the microscopic

mechanisms responsible for the macroscopic response of cellular materials. Further-

more, with the application of suitable boundary conditions, the stress-state of cellular

specimens has been investigated during SHPB tests.

To reveal the intricacies involved in the smart design of mussel byssus thread, a Ge-

netic Algorithm (GA) based optimization framework has been developed. The pri-

mary interest is to find the optimal distribution of mussel byssus thread components

to achieve maximum toughness. The implicit quasi-static finite element formulation

that can be used to find the toughness of byssus thread for a given set of geometric

and material properties has been integrated within GA framework.

Finally, to reduce the computational complexity arising in analysis of heterogeneous

materials, the surrogate modeling concept has been proposed. Such surrogate models

are constructed based on Higher Dimensional Model Representation (HDMR) which

requires a fewer number of numerical simulations. This methodology has been applied

in construction of the failure envelope of a highly heterogeneous material. Further-

more, HDMR based surrogate methodology has also been implemented in multiscale

framework to simulate nonlinear heterogeneous materials undergoing finite strain and

nonproportional loading. From the present work, the following accomplishments have

been achieved;

• Stress-state in cellular specimen during SHPB testing greatly depends on its

171



intrinsic and extrinsic parameters. Larger cell size cellular specimens mostly

offer nonequilibrium stress-states. The average number of cells in the specimen

length does not affect the stress state but does affect the converged response.

This analysis suggests that cellular specimen must contain large number of cells

(> 16) along the length direction to exhibit the representative dynamic re-

sponse. Equilibrated stress state can not be achieved with higher loading rates.

Higher impedance mismatch has been suggested for lower relative density cel-

lular specimen. Therefore, such in-depth understanding of the stress-state will

facilitate the experimentalist to incorporate suitable modifications to accurately

obtain the constitutive response of soft cellular specimens.

• Present investigation also provides a thorough understanding of micromecha-

nisms responsible behind the origin of macroscopic behavior of open cell soft cel-

lular material under dynamic loading environments. It is observed that microin-

ertia followed by microbuckling are responsible for early stress enhancement,

and rapid drop in macroscopic stress strain response. These two micromech-

anisms also offer progressive collapse of cellular materials. In the absence of

microinertial enhancement, microbending of the struts dominate resulting in

uniform collapse of the cellular microstructures. These three micromechanisms

behind the origin of macroscopic stress strain response and collapse patterns

greatly depend on cell size, bulk material properties, cell irregularities, cell

orientation and loading rates. Therefore, the knowledge of deformation char-

acteristic of cellular materials will assist in designing cellular microstructure

precisely to meet specific performance requirements.

• Similar to other tough biological materials, material heterogeneity also plays

a significant role in achieving the toughness of mussel byssus thread. Present

investigation on mussel byssus thread exhibits that different types of collagens

are optimally distributed along the thread to accomplish maximum toughness

172



along with high extensibility. Such optimal distribution highly depends on the

ratio of failure strength to the Young’s modulus of the proximal thread and

ratio of Young’s modulus of distal thread to proximal thread. However, optimal

distribution remains unaffected by the higher value of the ratio of Young’s mod-

ulus of distal thread to proximal thread. Therefore, this analysis will provide a

suitable pathway to develop biomimetic tough threads.

• HDMR methodology based surrogate models are highly efficient in predicting

the behavior of complex material systems. The failure envelope for a particu-

late composite can be achieved with significantly lesser computational burden.

It is also found that the surrogate model can predict the mechanical response

of representative volume elements with nonlinear hyperelastic constituents un-

dergoing finite strain. Thus, in the two scale finite element technique, lower

scale can be replaced by surrogate model. Therefore, a significant amount of

the computational burden can be reduced. Hence, HDMR methodology can be

pursued as alternative strategy for constructing surrogate involving significantly

lesser computational efforts.

7.2 Future directions

The explicit dynamic corotational framework along with cellular microstructure gen-

eration methodology provided an in-depth understanding of the micromechanisms as-

sociated with macroscopic response of soft cellular materials. The structure-property

relationships under dynamic loading as found in the present analysis are of utmost

importance for designing cellular microstructures. However, the effect of microstruc-

tural complexities need to be further investigated towards effective design of cellular

solids. The present framework will assist to understand the mechanical response of
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a wide variety cellular specimens made of metals as well as ceramics. Such exten-

sions can easily be incorporated by using different constitutive material models in the

corotational beam formulation. Furthermore, the numerical framework can be used

to fabricate defect tolerant cellular microstructures through analyzing the collapse

behavior of foams with microstrcutural defects (fractured cell wall, waviness of strut

and large holes). The effect of cellular microstructural anisotropy (elongated cell)

can also be predicted. The present framework will also facilitate in designing graded

and layered cellular microstructures towards ballistic applications. Moreover, several

biological materials exhibit cellular type architecture containing biological fluids. In-

corporation of viscous effect within the present framework will allow us to investigate

the mechanical response of biological materials more precisely.

The Genetic Algorithm based optimization framework integrated with mechanical

model of byssus thread established that material heterogeneities in the threads are

optimally distributed to achieve maximum toughness. Though demonstrated on a

relatively simple system, such methodology can be used to design complex material

systems with specific performance requirements. By suitably defining the performance

criterion (objective functions) and replacing the mechanical model of byssus thread

with a complex numerical model (nonlinear finite element framework), the GA based

optimization framework will serve as complex microstructure design tool.

The HDMR based surrogate models illustrated that mechanical response of complex

nonlinear heterogeneous material can be predicted accurately over an arbitrary input

loading profile at the fraction of the computational cost full set of simulations. Thus,

the HDMR based surrogate model can offer broader impact in the areas of computa-

tional material design. Although several particulate composites with nonlinear hyper-

elastic constituents have been taken as representative volume elements in the present

study, replacement of such material systems with cellular type materials can be per-

formed. As found earlier, cellular materials offer localized deformation. Therefore,
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applicability of surrogate model in predicting the dynamic response of cellular mate-

rials needs to be investigated. Besides, predictions of macroscopic response history

for any arbitrary set of input parameters requires surrogate model to be generated at

each time steps. The HDMR based surrogate model can be extended to find the sen-

sitivity of the macroscopic behavior of the material system on its input parameters.

Thus, these surrogate models along with sensitivity information of microstructural

components will provide cost effective design of heterogeneous materials. Moreover,

it can be conjectured that the optimization framework for complex materials such

as GA is computationally intensive because objective function evaluation will typi-

cally involve multiple finite element simulations. HDMR based surrogate models can

substitute for the costly numerical simulations. Therefore, complex microstructure

design can be possible with reduced computational burden. Furthermore, surrogate

model can play significant role in the area of inverse parameter estimation. During

inverse parameter estimation, the response of mechanical system must be evaluated.

For a complex material system, numerical models must be simulated for arbitrary

set of system parameters. Such numerical simulations can be substituted with the

HDMR based surrogate model. Thus, HDMR based surrogate model will play signif-

icant role in reduction of computational complexity and will open a new paradigm in

designing heterogeneous materials.
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Appendix A

Cell level analysis of microinertia

and microbuckling in soft cellular

materials

A.1 Introduction

Enhancement in peak stress with an increase of the rate of applied loading is espe-

cially severe for low strength and impedance materials (Song et al., 2007). Such peak

stress must be lower than the failure stress of the supporting structure for fail safe

design. Thus, understanding of stress enhancement mechanisms is a key for designing

components during impact loading scenario. The rate sensitivity of a material can

arise from two sources: the material properties itself can be rate dependent, or it can

arise from the structural response of the dynamically loaded volume (Gary and Bailly,

1998). For bulk materials, the second source of rate sensitivity is variously explained

to be arising from lateral inertia of the body (Forrestal et al., 2007; Song et al.,
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2007; Gary and Bailly, 1998), Poisson effect (Chen and Ravichandran, 2000), con-

fining pressure (Li and Meng, 2003; Nittur et al., 2008), or the nucleation and prop-

agation of microcracks in the material (Klepaczko, 1988). However, for a cellular

architecture, collective structural dynamic behavior of struts and/or cell walls de-

termines the macroscopic materials response. A complex interplay among microin-

ertia, microbending and microbuckling at the cell level has been envisaged as the

contributing factor towards the overall dynamic behavior in this class of materials.

These intertwined phenomena greatly depend on foam topology, material properties

of the bulk material and imperfections in the microstructure, and it is often difficult

to study the contribution of individual mechanisms on the overall material behav-

ior. Zhao et al. (2006) reviewed the possible reasons for the macroscopic strength

enhancement of cellular material which comprise of strain rate sensitivity of the bulk

material. Effect of pressure of the gaseous medium entrapped in the cell in case

of closed cell foam (Bouix et al., 2009), the microinertia of the cell wall (Zhao et al.,

2005) and shock enhancement (Tan et al., 2005; Reid and Peng, 1997; Harrigan et al.,

1999) are put forward as possible peak stress enhancement mechanisms.

While the bending and buckling phenomena at the cell level have enjoyed consid-

erable attention in the study of quasi-static as well as dynamic behavior of cellu-

lar solids (Gibson and Ashby, 1997; Rosakis et al., 1993; Vural and Ravichandran,

2003; Zhao et al., 2005; Ruan et al., 2003), the effect of microinertia on the peak

stress enhancement has not been discussed in great detail. However, recent ex-

perimental and numerical studies show that inertia can exhibit a substantial effect

especially for low strength and impedance materials (Song et al., 2007; Pal et al.,

2010). Analytical models as well as experimental observations are available in lit-

erature to analyze two types of plastically deforming structures under impact load-

ing. Type I structure (transverse compression of circular tubes) having quite flat

topped force displacement after yield point presents limited rate sensitivity. On
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the other hand Type II structure (buckling of straight beam) shows a sharp drop

of crushing force after a critical loading point and significant rate sensitivity is ob-

served (Calladine and English, 1984). The rate sensitivity characteristics of Type

II structure drew considerable attention from the researchers to study the inherent

mechanism theoretically or numerically (Su et al., 1995; Langseth and Hopperstad,

1996; Langseth et al., 1999; Karagiozova and Jones, 1996; Gao et al., 2005) and their

result showed that lateral inertia contribute significant role in dynamic response for

type II structure. Vural and Ravichandran (2003) presented a simplified model (sim-

ilar to Type II) to understand and quantify the importance of microinertia on ex-

perimentally observed dynamic strength enhancement. In their analysis the effect

of inertia was analyzed by modeling the buckling instability similar to the model

developed by Tam and Calladine (1991) where two axially deformable rods freely

hinged each other at connecting node subjected to a dynamic loading from one end.

In order to address the microinertia induced strength enhancement of cellular ma-

terial, Zhao and Abdennadher (2004) studied the crushing test of square tube of

rate insensitive material under dynamic loading conditions. Similarly, Romero et al.

(2008) developed a micromechanical model to understand the inertial and viscous

strain rate effect on the behavior of dynamically loaded cellular material. All above

modeling studies show that the microinertial enhancement originates from the mo-

tion of cell wall during dynamic loading which depends on cell wall properties and

cell topologies. Although these studies provide a physical understanding of the ori-

gin of such enhancement, it has not been rigorously analyzed for different cellular

material and microstructural properties. Furthermore, softening behavior of stress

strain response after the inertial enhancement as well as the subsequent oscillations

as found in several experimental observations (Zhao et al., 2005; Lee et al., 2006;

Thomas et al., 2004) has never been addressed in great detail. Such an analysis is

important in order to understand the contribution of cellular design parameters on

the macroscopic rate sensitivity which stems from lateral inertial effect and associated
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mechanisms at cell level. The present study aims towards an in-depth understanding

of the micromechanisms to address the dynamic response and associated deformation

evolution of cellular material for different microstructural and material parameters at

a wide range of loading scenario.

In the current study, we develop a mechanical model that will simulate collapse of a

single cell in a dynamic loading environment. The model is based on the cell level

deformation information of cellular solids obtained from a detailed micromechanical

numerical analysis described elsewhere (Pal et al., 2010). We have considered an open

cell configuration for the microstructure of the material. Bending of individual struts

has not been taken into account, and the base material of the cellular specimen is

considered to be rate insensitive. However, the model can simulate inertial as well

as buckling response of the struts, and the transition of deformation regime governed

by microinertia to that by microbuckling. Of special interest is the effect of various

geometric and material properties on the inertial enhancement of stress along with

softening response for these materials.

This chapter is organized as follows: the details of analytical formulations are pre-

sented in Section A.2. In Section A.3, a thorough discussion of the parametric study

is illustrated. Of special interest is the effect of impact velocity, cell size (or strut

length), bulk material properties, randomness in cell size and material properties on

the deformation response at cell level. Finally, we end our discussion by drawing

conclusions from the present study in Section A.4.
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A.2 Analytical model

An analytical model that represents collapse of a single cell has been developed to

explain the effect of microinertia on the mechanical response of soft cellular specimens

subjected to different microstructural, material and loading parameters. The model

is inspired from the dynamic deformation behavior of a single cell. Fig. A.1(a) shows

deformation of a foam specimen from the finite element simulation of polyethylene

foam when subjected to an impact load (Pal et al., 2010). The magnified view of a

particular cell is shown for both undeformed as well as deformed configuration. We

are particularly interested in capturing the micromechanisms involved in the strut

deformation, and consequently the displacement history of one half of a strut (segment

‘a’) is analyzed here. In this figure, the segment ‘a’ is connected to two other segments

designated by ‘b’ and ‘c’. The individual normalized lateral displacements (d1/l) of

points P and Q as well as their normalized relative displacement are illustrated in

the first figure in Fig. A.1(b). It can be observed that, the lateral displacements

of P and Q undergo two distinct phases (as indicated by dotted line). In the first

phase, both P and Q show negligible lateral displacement signifying a resistance on

lateral motion. However, in the second phase, Q moves substantially in the lateral

direction while the point P shows almost a negligible movement. Thus, P remains

almost in the vertical plane during collapse of the cell. The normalized relative

displacement of points P and Q in the vertical direction is also depicted in second

figure in Fig. A.1(b). The vertical displacement history also offers two different phases

of deformation as indicated by the dashed line. Furthermore, it can be noticed that

at very beginning of first phase (indicated by dotted line), the normalized relative

displacement of point P with respect to Q i.e., (d2P -d2Q)/l is almost zero which

suggests a rigid body translation of the segment ‘a’ in vertical direction. Next, the

point P starts to move slightly with respect to Q which can be assumed that the

segment ‘a’ undergoes axial compression (d2P -d2Q=0.01l) in the first phase. In the
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second phase, d2P -d2Q increases rapidly and becomes O(l). This indicates that P

reaches almost to the same level of Q. The above observation clearly suggests that

segment ‘a’ undergoes a transition from a vertical to a horizontal configuration during

the collapse evolution. Thus, it can be concluded that beside an initial rigid body

movement in vertical direction, the strut exhibits axial deformation and finally a

rotation to accommodate the applied displacement. Moreover, microbending of the

strut may be other mechanisms responsible for observed deformation characteristics.

We envisage that high strain rate experiment on such an isolated cell wall will reveal

the microscopic origin of the macroscopic stress enhancement mechanisms. Hence, to

understand the micromechanisms involved in the cell level we develop the following

model.

In the present analysis, we disregard the initial rigid body motion as well as mi-

crobending of the strut. These assumptions are reasonable as we are primarily in-

terested in the effect of microinertia on the overall stress-strain response. Thus, we

restrict our analysis to the interaction of microinertia (represented by axial shorten-

ing) and microbuckling (represented by rotation). The deformation of the strut is

assumed to consist of Phase I associated with mainly axial deformation of the strut,

whereas in phase II, rotation of the strut occurs. Therefore, the applied displacement

is considered to be accommodated by axial shortening as well as the rotation of the

strut. The dynamic deformation of strut ‘a’ is considered, whereas struts ‘b’ and ‘c’

are replaced by an equivalent spring that restricts the lateral motion (Fig. A.2 left).

The half length of the strut ‘a’ is l and θ0 is the initial misalignment angle while in

Fig. A.2 (left) the current angle is θ and the overall length is l-u (Fig. A.2 right). The

axial shortening of the strut u occurs due to applied vertical velocity at point P. As

we are modeling the deformation of elastomeric cellular specimen; hence, no plastic

deformation arises. Mass of the strut m (=ρsAl) is lumped at the hinge ‘Q’ and k

represents the stiffness of the spring. Microbending of the strut ‘a’ is neglected here
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Figure A.1: (a) Magnified view of undeformed and deformed cell of a
cellular specimen made of polyethylene when subject to an impact load from
top (Pal et al., 2010). (b) Left figure shows normalized lateral displacement
history of end points of segment ‘a’. Right figure depicts the normalized
relative vertical displacement history of point P with respect to Q of the
strut segment.
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for mathematical simplicity. The axial shortening of the bar gives rise to microinertial

effect, whereas rigid body rotation of the bar ‘a’ is considered as microbuckling.

The reduced vertical length can be computed geometrically from Fig. A.2 as

∆ = l cos θ0 − (l − u) cos θ. (A.1)

The transverse displacement w and current angle θ can be related as

cos θ =

√
l2 − w2

l
. (A.2)

Substituting the above relation in Equation (A.1), the axial displacement of the strut

u can be found as

u =
l√

l2 − w2
(∆− l cos θ0) + l. (A.3)

From the above equation, the transverse displacement can be expressed as function

of axial shortening u and reduced vertical length ∆ as

w = f(u,∆) =

[

l2 − l2

(l − u)2
(l cos θ0 −∆)2

]1/2

. (A.4)
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In the above equation ∆ depends on the type of applied displacement. For a constant

vertical shortening rate ∆̇=v gives ∆=vt for ∆=0 at t=0, whereas a linear velocity

∆̇=Ct which results ∆=Ct2/2. The axial force F of the strut arising from the axial

shortening u offers a lateral force on the mass. Correspondingly, governing equation

for lateral motion of the strut can be expressed in terms of the axial force and the

resistance offered by the spring as

mẅ = F sin θ − k(w − w0). (A.5)

As we are interested in elastomeric cellular materials, a linear elastic constitutive

material law has been assumed as σ=Eε and consequently, the axial force of the

strut can be found as F=σA=EAu/l. The spring stiffness k is considered as the

equivalent stiffness of the bars ‘b’ and ‘c’ in Fig. A.2 for horizontal displacement of

point ‘Q’ and can be expressed as

k = ξ1
EA

2l
f1(φ) + ξ2

12EI

(2l)3
f2(φ), (A.6)

where f1(φ)=2sin2(φ/2), f2(φ)=2cos2(φ/2) with φ denotes the angle between the

strut ‘b’ and ‘c’ (For a perfect honeycomb φ=120o). In the above equation ξ1 as

well as ξ2 are two constants controlling the overall stiffness of the spring arising from

axial and bending stiffness of the bars ‘b’ and ‘c’. By substituting sin θ=w/(l− u) in

Equation (A.5) the lateral inertia can be rewritten as

mẅ =

(
EAu

l(l − u) − k
)

w + kw0. (A.7)

Combining Equation (A.3) in the above equation of motion in phase I can be written

as

mẅ =

[
EA

l2

(
l√

l2 − w2
(vt− l cos θ0) + l

)

− k
]

︸ ︷︷ ︸

Ks

w + kw0. (A.8)
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In the above equation Ks can be thought as an equivalent stiffness of the system

which is a function of all geometric and material properties as well as the transverse

displacement. The nature of transverse displacement can be predicted by investi-

gating the roots of characteristic equation of above differential equation. A positive

value of Ks leads to distinct positive roots which give an unstable solution. Therefore,

w will increase rapidly with time. On the other hand, a negative Ks offers distinct

imaginary roots which denotes that w will vary according to a sine or cosine func-

tion. Furthermore, the amplitude and frequency of the oscillation solely rely on the

magnitude of Ks which depends on all material, geometric and loading parameters.

There are two phases of the solutions that can be obtained from the above equa-

tion. The phase I is associated with inertial enhancement which is characterized

by u̇ ≥ 0 (deformation occurring due to axial compression). This phase is also ac-

companied by transverse displacement i.e., lateral inertia comes into play. After the

inertial enhancement the further vertical shortening can be accommodated only by

rotation of the strut which is denoted as phase II. The above equation clearly states

that the lateral inertia is dependent on the density, modulus of the strut material as

well as the resistance offered by the horizontal spring and the initial misalignment

of the strut. Vural and Ravichandran (2003) also found the expression of lateral in-

ertia in terms of the strut material and geometric parameters. The present study is

significantly different from their model by introducing the resistance offered by the

horizontal strut during the collapse evolution. Their model considered the plastic

deformation of the strut which is neglected here as we are interested for deformation

of elastomeric foam. The present study not only addresses the inertial enhancement

but also explains the post inertial enhancement phenomenon i.e., phase II which has

never been addressed in the previous literature.

The above equation is a second order nonlinear ordinary differential equation and can
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be solved numerically to evaluate w and ẇ with the following initial conditions,

w = w0, ẇ = 0 at t = 0. (A.9)

The vertical force Fv experienced by the strut at point P (Fig. A.2) can be evaluated

as

Fv = F cos θ =
EAu

l
cos θ. (A.10)

The inertial enhancement is restricted when axial shortening reaches to its maximum

i.e.,

u̇ = 0, (A.11)

and the associated time is called critical time and is denoted by tc. After the inertial

enhancement, the strut is subjected to partial unloading due to microbuckling. A

competition between microinertia and microbuckling may lead to sudden drop of

the force (or plateau stress) which will be discussed in detail. A complete collapse

condition of the strut is achieved when the strut becomes completely horizontal (w=l).

At this stage the vertical force experienced by the strut Fv vanishes (Equation A.10) as

θ≈ 900. Note that the present model explicitly accounts all the characteristic features

of a cellular specimen. The half length l signifies the cell size while irregularity of

cell size can be quantified with the misalignment of the strut i.e., θ0, where θ0=0

refers a perfect honeycomb. Notice that the density of the strut is embedded in

mass of the strut as m=ρsAl. The stiffness of the spring k is also a function of

geometric and material properties of strut. With an increase in cross-sectional area

or decrease in strut length will offer higher stiffness resulting in lesser deformation

of the spring. Thus, the model will enable us to explain the macroscopic dynamic

response of cellular specimen arising from different micromechanisms involved at cell

level for different cell size, Young’s modulus, density and cell size irregularity for a

wide range of loading.
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A.3 Result and discussions

The strut model described in last section has been subjected to an impact velocity

at the top end and its dynamic response has been studied in detail. The strut is sub-

jected to a dynamic loading using applied velocity. For the simulation, the material

for the strut is chosen as polyethylene, a soft polymer with Young’s modulus E=0.15

GPa and density ρs=910 kg/m3, unless otherwise noted. The strut is square in cross-

section with the thickness h=2.5 µm and half length l=10 µm. Note that, length of

the strut can be related to the cell size of cellular specimen. Initial misalignment is

given by θ0 ≈ 3o that essentially denotes a moderate randomness in cell size of the cel-

lular material. Mass of the strut m for this configuration is 5.7×10−14 Kg. The strut

is subjected to an impact velocity v=1.0 m/s resulting a strain rate of 105/s. Fig. A.3

shows the simultaneous evolution of normalized axial compression (u/l), normalized

transverse displacement (w/l) and the vertical force (Fv) experienced by the strut as

shown in Fig. A.2. As explained in previous section, the deformation of strut can be

divided in to two phases, where phase I is corresponding to microinertial enhancement

and phase II signifies the microbuckling (rotation) of the strut. The transition be-

tween the two phases is marked by a dashed line in Fig. A.3. The phase I can further

be divided into two subregimes which are also indicated in Fig. A.3. In the regime I

(R-I), there is no lateral movement of the strut due to lateral inertia imposed on the

system by mass m. In this regime, the bar is compressed and the stress level of the

strut rises rapidly. Once the lateral inertia is overcome, the strut starts to rotate and

a significant amount of transverse displacement w can be observed. This regime is

denoted as regime II (R-II) of phase I in Fig. A.3. The axial compression of the strut

u further increases, albeit at a decreasing rate, and reaches to a maximum limit which

is already defined as the end of phase I or microinertial strength enhancement phase.

After this phase, the strut undergoes partial unloading which is denoted as phase II. It

can be clearly seen that in this phase, further rotation of the strut takes place and the
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Figure A.3: History of normalized axial compression (u/l), normalized
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strut. Phase I corresponds to the microinertial enhancement, whereas Phase
II indicates the microbuckling of the strut.

axial force reduces rapidly. A competition between two opposing effects of microin-

ertial enhancement and partial unloading is responsible for overall softening response

of the strut. In a macroscopic sense, phase II corresponds to the post-peak response

region in a typical stress strain curve of cellular specimen where microbuckling (and

microbending) of cell wall is the only contributing micromechanism. Significant load

drop at the cell level is responsible for the macroscale stress softening after the iner-

tial strength enhancement as found in several experimental observations (Zhao et al.,

2005; Lee et al., 2006). Note that in the later stage of microbuckling phase (phase

II), the strut is subjected to a rotation along with an oscillatory compression. This

oscillatory response at the cell level, when averaged over entire domain, gives rise

to the macroscopic plateau behavior of the overall stress-strain response. Moreover,

the macroscopic oscillation in the plateau region is a superposed behavior of all re-

sponses with different frequencies, amplitude and phase differences originating from

individual struts. Presence of damping in the system reduces the oscillatory behavior

drastically as will be explained in Section A.3.6. Experimentally observed oscillatory

macroscopic plateau stress (Zhao et al., 2005; Lee et al., 2006; Thomas et al., 2004)
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during impact loading of cellular specimen can be considered as a result of multiple

occurrence of such micromechanisms. As mentioned earlier, Ks in Equation (A.8)

which is a function l as well θ0, controls oscillations with different frequencies and

amplitudes in force-displacement response. Due to presence of heterogeneity in the

cellular microstructure, each strut offers oscillatory response with different frequencies

and amplitudes. This disparity in the cellular microstructure also alters the transi-

tion period between microinertial enhancement (phase I) to microbuckling (phase

II); hence, phase difference prevails among the responses. In the current simulation,

transverse displacement relates to the collapse of the cell, with w≈l referring to the

complete collapse.

In order to understand the influence of various material, loading and geometric pa-

rameters on macroscopic deformation behavior of the cellular specimen, a wide range

of design variables (microstructural, material properties and loading parameters) are

selected. Next, a parametric study of these variables has been carried out to un-

derstand the contribution of various micromechanisms (microinertial enhancement,

microbuckling) at the cell level. In the present study, we are specifically interested

in studying the axial shortening (u), transverse displacement (w) and vertical force

(Fv) experienced by the strut at the cell level for a variety of impact velocities, strut

lengths, material properties (Young’s modulus and density) and initial misalignment.

A.3.1 Effect of impact velocity

To explain the dependency of macroscopic stress strain behavior on strain rates, the

strut is subjected to a wide range of impact velocities. Remember that the impact

velocity v considered here is a local velocity of point P as shown in Fig. A.2, whereas

the macroscopic applied velocity (Vm in Fig. A.1(a)) at the boundary may be much

different from it due to dissipative nature of cellular materials. A large number of cells
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at different layers can deform at a given point of time giving rise to local gradients in

the velocity field. A wide range of local impact velocity v is considered here which will

exploit a full spectrum of quasi-static to a dynamically deforming regime of the strut.

We consider an impact velocity v= 0.01 m/s to 1.0 m/s keeping other material and

geometrical parameters fixed as mentioned previously. Similar to the previous figure,

the history of normalized axial shortening (u/l), normalized transverse displacement

(w/l) as well as force-displacement (Fv-∆) responses are evaluated for different impact

velocities in Fig. A.4. Different phases of deformation as mentioned in Fig. A.3 are

indicated in following way in all the plots. The solid circle represents the end of

microinertial enhancement phase i.e., phase I. The square mark at all the figure

shows the transition between subregimes of phase I as discussed earlier.

Normalized axial shortening (u/l), normalized transverse displacement (w/l) and

force-displacement (Fv-∆) responses in Fig. A.4 simultaneously offer several inter-

esting features of cellular deformation for a wide regime of loading scenario. At high

strain rate, the strut results in a highly oscillatory axial compression with higher

rate of compression. Such a rapid compression of strut results in higher peak load

(Fig. A.4(c)) due to microinertial enhancement. An increase of peak load contributes

to significant microinertial strength enhancement as found in several experimental

and numerical observation (Vural and Ravichandran, 2003). Furthermore, exper-

imentally and numerically observed oscillations (Ma et al., 2009; Pal et al., 2010;

Hönig and Stronge, 2002a) in plateau stress can be originated from highly oscilla-

tory force-displacement behavior at strut level. It can also be found that higher

impact velocity not only contributes to the strength enhancement of the strut but

also offers higher stiffness. Several experimental observations (Tagarielli et al., 2008;

Lee et al., 2006; Thomas et al., 2004) shows such enhancement of stiffness at high

strain rates. Higher lateral inertia of the strut associated with higher impact veloc-

ity contributes to this enhancement. Moreover, at high strain rate the strut rotates

faster. Hence, a quick collapse at cell level occurs. Thus, a progressive collapse of
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Figure A.4: (a) History of normalized axial shortening (u/l) (b) normalized
transverse displacement (w/l), and (c) vertical force-displacement responses
for different impact velocities. The transition from phase I (microinertial
enhancement) to phase II (microbuckling) is indicated by solid circle. The
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cellular material manifests at high strain rate. In contrast, at lower strain rates, the

strut provides a relatively smoother axial compression. Therefore, it gives smooth

plateau response. As the microinertial enhancement reduces significantly, it gives

lower peak load. Furthermore, strut rotates at a slower rate which enables structure

to adjust the applied deformation hence a low force transmission occurs which results

in an uniform collapse of the cellular specimen. It can be found that the model is

also capable of accurately capture the quasi-static response when the impact veloc-
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ity is reduced considerably (v= 0.01 m/s). The normalized axial shortening (u/l),

normalized transverse displacement (w/l) and force-displacement response (Fv-∆)

corresponding to the quasi-static case is represented by the solid line. It can be seen

that, in quasi-static limit the axial compression as well as transverse displacement are

significantly lower. It can be noticed that strut offers a smooth flat response with no

inertial enhancement. Note that, the quasi-static collapse force will be used to quan-

tify microinertial strength enhancement of the strut in the subsequent discussions.

Finally, it can be concluded that as the impact velocity increases from quasi-static

to dynamic regime, a significant rate effect (enhancement of strength and stiffness)

emerges at cell level due to lateral inertia offered by individual strut. In addition

to the strength enhancement, higher strain rate develops a progressive collapse of

the cellular material. In the subsequent analysis, microinertial enhancement and mi-

crobuckling will be characterized for different material and microstructural properties

for a fully quasi-static to a dynamic regime. Furthermore, the type of macroscopic

deformation (progressive or uniform collapse) will be envisaged.

A.3.2 Effect of strut length

To investigate the effect of cellular microstructural properties on the micromecha-

nisms, the half strut length l is varied. As mentioned earlier, strut length provides

a relative measure of the cell size. A wide range of half length l=5.0 to 30 µm is

subjected to impact velocity from v=0.01 to v=1.0 m/s to examine the deforma-

tion characteristics from a fully quasi-static to dynamic loading regime. As found

from the previous analysis, v=0.01 m/s exhibits a fully quasi-static deformation of

the strut (no significant effect of lateral inertia can be observed), consequently, we

obtain the quasi-static collapse force Fqs of the strut for different half strut length l

in Fig. A.5(a). To find the exact dependence of the quasi-static collapse force (Fqs)
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Figure A.5: (a) Quasi-static collapse force Fqs for different half strut length
l. (b) Microinertial enhancement of collapse force ∆F/Fqs for different im-
pact velocities with different strut length.

with the strut length, we plot Fqs with respect to l−2. It can be found that Fqs is

proportional to l−2. Therefore, quasi-static collapse force reduces rapidly with strut

length l. With reduction of strut length, the stiffness of the strut as well as the

spring (equivalent stiffness of the connecting strut) increases which provides higher

resistance to the deformation. Consequently, the collapse force of the strut increases

with strut length. As the cell size dav ∝ l, consequently, Fqs ∝ d−2
av ; therefore, it can

be inferred that cellular material with higher cell size offers a lower collapse stress.

Such an observation is consistent with several numerical and experimental observa-

tions (Pal et al., 2010; Brezny and Green, 1990). Furthermore, for a honeycomb type

cellular specimen, the density of cellular material ρ can be assumed to be inversely

proportional to dav. So, it can be conjectured that peak stress of cellular material

depends directly with the square of its density i.e., Fqs ∝ ρ2. Such an observation

was also confirmed by Chen et al. (2002d) for polymeric cellular materials.

In order to analyze the contribution of lateral inertia on the force displacement re-

sponse, the impact velocity is varied from v=0.01 to v=1.0m/s. Fig. A.5(b) illustrates
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the microinertial enhancement of different struts for the previous range of impact ve-

locity. In the present study, enhancement of the strength is quantified as ∆F/Fqs

where, ∆F=Fpeak-Fqs, measures the increase of peak force Fpeak over its quasi-static

collapse force Fqs. It can be found that for all strut lengths considered in the present

study, no rate sensitivity can be observed below v=0.1 m/s. Lateral inertia of the

strut starts to play a significant role at a velocity v >0.1 m/s. It can be found that

for a larger strut length, the microinertial enhancement (∆F/Fqs) increases rapidly

with impact velocity ( 150% increase with v=1.0 m/s). As the strut length increase

the mass of strut increases which essentially offers a higher lateral inertia and sub-

sequently an enhancement of the strength takes place. Moreover, as microbuckling

increases with larger strut, it promotes collapse of strut at cell level. Therefore, a

progressive collapse may arise at macroscale with larger strut. On the otherhand, a

smaller strut length offers a lower enhancement of the strength over its quasi-static

value ( 50 % increment with l=6 µm). Consequently, an uniform collapse of cellular

material will take place with smaller cell size. It can also be inferred that a higher

softening as well as the oscillation may arise in the macroscopic plateaus stress for

higher strut length. Finally, it can be concluded that a larger cell size offers a higher

lateral inertia and thus results in higher strength enhancement while offering a lower

quasi-static plateau stress.

A.3.3 Effect of cell size irregularity

Due to fabrication limitations, cellular microstructure contains several degree of vari-

ability in its cell sizes. Designing of an efficient energy absorbing component require

a thorough understanding of the effect of such variability in cell sizes on dynamic

behavior of cellular specimen. As mentioned earlier, the model can explicitly account

the cell size irregularity through the initial misalignment angle θ0 as indicated in
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Fig. A.2. A misalignment angle θ0≈0o corresponds to a perfect honeycomb structure,

whereas a random structure offers a higher misalignment angle. To understand the

deformation at cell level for cellular specimen with different cell size irregularities,

the misalignment angle θ0 is varied from 0.04o to 6o while keeping other material and

microstructural parameters constant. An impact velocity from v=0.01 to 1.0 m/s is

considered to investigate the contribution of micromechanisms in cell level for a fully

quasi-static to a dynamically deforming regime. Fig. A.6(a) depicts the variation
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Figure A.6: (a) Quasi-static collapse force Fqs for different misalignment
angles θ0. (b) Microinertial enhancement of collapse force ∆F/Fqs for dif-
ferent impact velocities v with different misalignment angles θ0.

of quasi-static collapse force for different initial misalignment angle of the strut. It

can be found that collapse force Fqs reduces linearly with misalignment angle θ0. In

a macroscopic sense, a perfect honeycomb will show higher collapse stress and the

stress will reduce with the cell irregularity. In order to analyze the contribution of

lateral inertia at cell level associated with randomness in cell size, the microinertial

force enhancement is obtained for different initial misalignment angles for a wide

range of impact velocity. It can be noted that strut with a very less misalignment

angle i.e., θ0=0.04o is much more sensitive to the impact velocity even if at a lower
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velocity v=0.1 m/s. A further increase of velocity, the strut offers a significantly

higher microinertial strength enhancement. Thus, it can be inferred that a perfect

honeycomb structure is mostly sensitive to inertia induced strength enhancement

due to higher applied strain rate. As the microbuckling of the strut increases with

higher inertial enhancement, deformation localization takes place at cell level due to

faster rotation of the strut. Therefore, a perfect honeycomb cellular structure offers

early deformation localization and degree of deformation localization is higher com-

pared to random cellular specimens. Hence, the perfect honeycomb structure will

exhibit a progressive deformation at macroscopic level. Furthermore, the enhance-

ment of the strength reduces rapidly with the misalignment angle. The strut with

a higher misalignment angle θ0=6o corresponding to a highly irregular cell remains

almost insensitive to the impact velocity v=0.3 m/s. Thus, the extent of deformation

localization rapidly reduces with randomness and cellular specimen offers uniform

deformation. In a previous study, Su et al. (1995) showed that Type II structure

with lower misalignment angle offers rapid enhancement of the strength. Finally, the

current model qualitatively predicts that perfect honeycomb cellular material shows

higher microinertial strength enhancement along with an oscillatory plateau response

and provides progressive deformation localization.

A.3.4 Effect of bulk material density

In the previous investigations, we have elucidated the effect of geometric parameters

on the dynamic response of cellular material. Apart from that, in the following anal-

yses, we attempt to examine the effect of base material properties at the cell level

deformation characteristic and its impact on the macroscopic deformation behavior.

Therefore, we focus our attention on the density and Young’s modulus of the base

material. Initially, we vary the density of the bulk material of the strut from ρs=600
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Figure A.7: Vertical force-displacement response for different bulk material
densities.

to 6000 kg/m3 keeping other material and microstructural parameters constant as

mentioned earlier. Fig. A.7 shows the force-extension response of the strut with an

impact velocity v=0.5 m/s. It can found that as the density of the strut increases the

inertial enhancement increases. As the density of the strut increases, it offers more

inertial resistance to the movement in lateral direction results in such enhancement.

A higher microinertial enhancement results in higher microbuckling of the strut at

current level and thus it promotes the deformation localization. Moreover, it restricts

the energy to flow to next level of strut and consequently, a progressive deformation

can be conjectured at macroscopic level of cellular specimen. In order to capture

the effect of bulk material density on the microinertial enhancement from a fully

quasi-static to a dynamically deforming regime, a wide range of impact velocity is

considered here. Fig. A.8(a) illustrates the variation of collapse force (Fv) for different

base material densities during quasi-static compression. As expected the bulk mate-

rial density of strut does not play any role in the quasi-static regime, the peak force

remains almost unchanged with density variation. Fig. A.8(b) characterizes the con-

tribution of lateral inertia to the force enhancement associated with density variation
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for a fully quasi-static to a dynamically deforming regime. It can be seen that, upto

velocity v=0.1 m/s no struts exhibit microinertial enhancement. Therefore, the cel-

lular specimen will offer a homogeneous macroscopic deformation. At higher velocity

(v>0.1 m/s) the inertial enhancement becomes significant for higher density speci-

men. The strut with ρs=5400 kg/m3 with v=1.0 m/s results in a 300% increase of

its collapse force from its quasi-static value while the enhancement is around 50% for

a strut with lower material density ρs=600 kg/m3. As explained in Fig. A.3, a large

amount of softening after the inertial enhancement can also be expected with higher

density. ? experimentally observed a significant strength enhancement followed by

a large amount of softening (load drop) in stress-strain response for a high density

polyurethane foam. Similarly, Vural and Ravichandran (2003) experimentally found

that the amount of softening in stress-stress response of balsa wood depends on its

density. A higher density balsa wood offers a higher amount of softening after the

enhancement of peak stress, whereas it is almost negligible for a lower density. As

explained earlier higher microinertial enhancement is also followed by several oscil-

lation in the force-displacement response. Consequently, a higher density cellular

specimen also results in an oscillatory macroscopic plateau stress with higher ampli-

tude. Thomas et al. (2004) experimentally found that as the density of the cellular

core of a sandwich specimen increases during impact loading, the load drop after the

inertial enhancement and oscillation becomes more severe and pronounced. Along

with a significant amount of softening, an oscillatory stress-stress response for higher

bulk material density cellular specimen is also evident in the numerical simulation

performed by Pal et al. (2010). In conclusion, the model qualitatively predicts that

higher bulk material density cellular specimen provides a significant microinertial

strength enhancement as well as it promotes the progressive collapse.
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Figure A.8: (a) Quasi-static collapse force Fqs for different bulk mate-
rial density ρs. (b) Microinertial enhancement of collapse force ∆F/Fqs for
different impact velocities v with different bulk material density.

A.3.5 Effect of Young’s modulus

Similar to the previous analysis, we also investigate the effect Young’s modulus in mi-

croscopic deformation mechanisms of cellular specimen. In order to do that Young’s

modulus of the strut is varied from E=0.05 to 1.5 GPa keeping other parameters as

constant. Fig. A.9(a) presents the variation of collapse force of the strut for different

Young’s modulus in a fully quasi-static regime (v=0.01 m/s). It can be seen that as

the Young’s modulus increases the collapse force increases. With a lower modulus the

axial deformation of the strut reaches to its maximum quickly which leads to a lower

quasi-static collapse force. Numerical simulation performed by Pal et al. (2010) shows

that macroscopic collapse stress varies linearly with the Young’s modulus of the bulk

materials. To characterize the contribution of Young’s modulus of the strut on the

lateral inertia, we vary the impact velocity v=0.01 to 1.0 m/s. Fig. A.9(b) indicates

that no enhancement can be noticed upto to a velocity v=0.3 m/s. Therefore, no cell

level collapse takes place and the energy will be transmitted to the next level of cell.
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Figure A.9: (a) Quasi-static collapse force Fqs for different Young’s modu-
lus of the strut E. (b) Microinertial enhancement of collapse force ∆F/Fqs

for different impact velocities with different Young’s modulus.

Thus, the cellular specimen will offer an uniform macroscopic deformation. Although,

at a higher velocity v>0.3 m/s, that strut with lower modulus (E=0.1 GPa) shows

an inertial enhancement which is lesser compared to the material density. Moreover,

with an increase of Young’s modulus, the microinertial enhancement rapidly reduces.

With E > 0.7 GPa the strut shows an insignificant amount of microinertial enhance-

ment (<20%) as indicated by scattered data. Therefore, the present study signifies

that lateral inertia plays a role only for a softer strut and promotes deformation local-

ization, but in lesser extent. Consequently, it can be inferred that for a softer cellular

solids, macroscopic response is more sensitive to the strain rates. It is also evident

from the present study that a softer cellular material will offer a higher softening and

an oscillatory stress-strain response.
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A.3.6 Effect of viscosity

Viscous dissipative nature of the cellular base material as well as viscous effect caused

by the fluid environment in case of fluid filled porous material may play a significant

role in the microinertial strength enhancement through offering a smooth plateau re-

sponse. In order to investigate the effect of such external (due to fluid environment)

and internal (inherent dissipation) viscous effects of cellular material during dynamic

loading, we introduce the viscous dissipation term Fd=η ẇ in Equation (A.5), where

η is the viscosity of the either base material or surrounding fluid. In this analy-

sis, we vary the viscosity parameter η=0.0 to 0.3e-6 Pa-s while keeping the other

material and microstructural parameters constant. We consider an impact velocity

v=1.0 m/s. Fig. A.10(a) shows the force displacement response for different viscos-

ity parameter. In the figure the solid curve is corresponding no internal dissipation.
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Figure A.10: (a) Effect of material viscosity η on force-displacement re-
sponse at higher impact velocity v=1.0 m/s. (b) Microinertial enhancement
of collapse force ∆F/Fqs for different viscosity η.

It can be seen that when the viscosity is limited to 0.3e-7 Pa-s oscillations in the

microbuckling phase reduce gradually while keeping the enhancement force almost
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unchanged. When a higher of viscosity is considered η=0.3e-6 Pa-s, the oscillation

dampens out quickly. On the other hand, higher viscosity increases the enhancement

strength significantly. In order to investigate the effect of viscosity from a fully quasi-

static to dynamically deforming regime, we extract the microinertial enhancement in

Fig. A.10(b). It can be found that viscosity does not play any significant role upto

an impact velocity v=0.1 m/s. A further increase of impact velocity results in sig-

nificant force enhancement. As the impact velocity increases, the viscous resistance

becomes significant which leads further microinertial enhancement. Romero et al.

(2008) also showed that higher collapse stress can be achieved for higher viscosity of

the cellular base material at high strain rates. Similarly, several biological materi-

als such as bone and muscle are often considered as a cellular structure with a fluid

environment (McElhaney, 1966) are sensitive to high strain rate. Carter and Hayes

(1976) showed human bone with marrow offers higher compressive strength than a

bone without marrow. Sparks and Dupaix (2008) experimentally observed the stress

enhancement in dynamic response of human liver under high strain rate impact. Such

stress enhancement at high strain rate can be attributed from the viscous resistance

offered by the fluid. From this analysis, it can be concluded that the viscosity may

offer strength enhancement in the macroscopic response as well as a smooth plateau

behavior during dynamic testing of cellular materials.

A.4 Concluding remarks

In this chapter, a simplified analytical model has been developed to analyze the de-

formation response of cellular structure at the strut level during dynamic loading

conditions. The model is robust enough to capture the different regimes of response

due to microinertia and microbuckling. Contribution of microinertia and microbuck-

ling on the overall response of strut is explained. It is found that the model can
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predict dependence of macroscopic deformation response on cellular material design

parameters as found in previous literature. Material and geometrical properties are

systematically varied to understand the deformation mechanisms at cell level and

to predict the overall response at specimen level. The following conclusions can be

inferred from the present analysis:

1. Macroscopic dynamic stress-strain curve of cellular specimen can be consid-

ered as a superposed behavior of all responses arising from combined effect of

microinertia and microbuckling at strut level.

2. A significant amount of dynamic strength enhancement as well as softening of

cellular specimen takes place with higher impact velocity. A highly oscillatory

plateau response can also be expected with higher impact velocity.

3. Cellular specimen with higher cell size ( larger strut length) offers higher inertial

enhancement as well as stress softening. A perfect honeycomb cellular specimen

is more sensitive to high strain rate than a randomized one. It is observed that

quasi-static collapse stress is inverse proportional to the square of cell size.

4. Higher bulk material density of the cellular specimen offers a higher inertial

enhancement as stress softening. Strut with lower Young’s modulus are most

sensitive to the inertial enhancement.

5. Perfect honeycomb structure shows higher inertial enhancement and highly os-

cillator response. The inertial enhancement reduces as the cellular structure is

randomized.

6. Viscous resistance in cellular specimen offers higher microinertial enhancement

as well as a smooth plateau response at high strain rate. Such viscous resistance
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may be responsible for strength enhancement in dynamic response of several

biological materials under impact loading scenario.
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Appendix B

Voronoi cell generation for cellular

microstructure

The cellular microstructure is constructed based on voronoi tessellation. The de-

tail steps of voronoi microstructure generation with controlled randomness are given

below:

• Step 1: A regular hexagonal lattice (xi, yi) is generated on a plane as shown

in Figure B.1(a) with a specified size d0.

• Step 2: Hexagonal lattice is perturbed from their original position as

x
′

i = xi + ζd0 cos θiφi,

y
′

i = yi + ζd0 sin θiφi, (B.1)

where, θi ∈ [0 π] and φi ∈ [−1 1] are two random parameters distributed

uniformly. The amplitude of perturbation is controlled by the parameter ζ.
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Figure B.1: (a) Hexagonal lattice (unperturbed) on x-y plane. (b) Con-
structed voronoi diagram on perturbed seeds. Window represents the actual
cellular domain taken the diagram.

• Step 3: Using voronoi tessellation algorithm (convex hull), voronoi diagram

is constructed on the perturbed seeds as shown Figure B.1(b). A honeycomb

cellular structure can be generated by assigning ζ=0. A higher value of ζ

(=0.25) will produce a highly irregular cellular microstructure.

• Step 4: Cellular microstructure with required size as shown in the Figure B.1(b)

is obtained from the diagram. The randomness of cellular structure is evaluated

through the distribution of individual cell area.
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Appendix C

Plasticity algorithm

C.1 Governing equations

By considering associated flow rule and the von Mises type yield criterion, rate-

independent plastic response is characterized as follows:

f(σ,κ) ≤ 0 (yield condition), (C.1a)

κ̇ = λ̇h (plastic hardening law), (C.1b)

ε̇p = λ̇
∂f

∂σ
(Prandtl-Reuss flow rule), (C.1c)

where λ̇ is the plastic consistency parameter and h is the vectorial hardening function.

Furthermore, the loading/unloading conditions can be expressed in a compact form

by requiring that

λ̇ ≥ 0, f(σ,κ) ≤ 0, and λ̇f(σ,κ) = 0. (C.2)
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The yield criteria can be stated as
σ

ε

σY

εY

E

E

Et

Figure C.1: Bilinear elastic-plastic constitutive law.

f(σ, σy) ≡ F (σ)− σ0(εps), (C.3)

where σ0=σy +Hεps, the current yield stress, is a function of material parameter σy

and equivalent plastic strain:

εps =

∫

ε̇psdt, (C.4)

The hardening parameter H can be calculated from the uniaxial stress-strain law

from Figure C.1 as

H =
∂σ0

∂εps

=
Et

1− Et/E
. (C.5)

The Prandtl-Reuss flow rules associated with the yield function (Equation C.3) is

ε̇ = λ̇
∂f

∂σ
= λ̇a. (C.6)

The rate of stress can be related to rate of strain as

σ̇ = C(ε̇− ε̇p) = C(ε̇− λ̇a). (C.7)
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C.2 Numerical implementation

A wide range of algorithm is available to integrated the above equation. The forward-

Euler scheme which avoids the iteration is the simplest one. However, it leads spurious

loading unloading as the stress does not lie on the yield surface. A back-ward Euler

scheme which is an iterative procedure avoids the above difficulties. The detail for-

mulation of back-ward Euler scheme are illustrated as following. The Backward-Euler

σ1

σ2

A

B

C

ac

Figure C.2: Backward-Euler scheme. AB corresponds to elastic forward
steps, and BC corresponds to the return map on the yield surface.

algorithm shown in the Figure C.2 consists of applying an elastic forward step (AB)

followed by a return mapping (BC) on the updated yield surface. The first estimation

of σC is calculated with

σC = σB −∆λCaB = σA + C∆ε−∆λCaB, (C.8)

where aB is calculated from Equation (C.6) and ∆λ is derived as following. A first

order Taylor expansion of the yield function around point B is given as

f = fB +
∂fT

∂σ
∆σB +

∂f

∂σ0

∂σ0

∂εps

∆εps = fB + aT
B∆σB −H∆λ. (C.9)
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Equation (C.6) is then used to find ∆σB with ∆ε=0 because the total strain has

already been applied in the elastic step (AB). Therefore, ∆σB can be found as

∆σB = C(∆ε−∆λaB) = −∆λCaB. (C.10)

If the new yield function value f , is to be zero, Equation (C.9) alongwith Equa-

tion (C.10) gives

∆λ =
fB

aT
BCaB +H

. (C.11)

However, this initial estimate will not satisfy the yield function. Hence, further

iteration will be required because the normal at the trial position B will not generally

equal to the final normal. In order to perform an iterative procedure to evaluate the

final stress, a residual vector R is defined which represents the difference between the

current stress and backward-Euler stress i.e.,

R = σc − (σB −∆λCaC), (C.12)

and iteration are performed to reduce R to zero while the final stresses must satisfy

the yield criteria, f = 0. Keeping the elastic trial stress σB as constant, a truncated

Taylor series expansion can be applied to the above equation so as to produce a new

residual, Rn where

Rn = R0 + σ̇C + λ̇CaC + ∆λC
∂aC

∂σC

σ̇C , (C.13)

In the above equation σ̇C represents the change in σC and λ̇ denotes the change in

∆λ. Setting Rn = 0 in Equation (C.13) offers

σ̇C = −
(

I + ∆λC
∂aC

∂σC

)−1

(R0 + λ̇CaC) = −Q−1(R0 + λ̇CaC). (C.14)
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A truncated Taylor series expansion of the yield surface around point C gives

fc = fc0 +
∂f

∂σc

σ̇c +
∂f

∂σ0

∂σ0

∂εps

ε̇ps = fc0 + aT
c σ̇c +Hλ̇. (C.15)

Furthermore, by introducing fc = 0 in the above equation and using Equation (C.14)

λ̇ can be found as

λ̇ =
fc0 − aTQ−1R0

aT
CQ−1CaC +H

. (C.16)

The numerical implementation of Backward-Euler scheme for rate independent plas-

ticity can be performed through Algorithm 3.

input : σA, εpsA, ∆ε
output: σ, εps, σ0

1 Find σB = σA + C∆ε ;
2 Find σ0 = σY +HεpsA ;
3 Evaluate fB from Equation C.3;
4 if fB > 0 then
5 Find aB and ∆λ ;
6 Evaluate σ = σB −∆λCaB ;
7 Calculate εps = εpsA + ∆λ ;
8 Find σ0 = σY +Hεps ;
9 Evaluate f from Equation C.3;

10 end
11 while f > tol do
12 Find a (Equation C.6) and R (Equation C.12) ;
13 Calculate ∂a/∂σ and Q (Equation C.14) ;

14 Evaluate λ̇ (Equation C.16) and σ (Equation C.14) ;

15 Update ∆λ = ∆λ+ λ̇ ;
16 Calculate εps = εpsA + ∆λ ;
17 Find σ0 = σY +Hεps ;
18 Evaluate f from Equation C.3 ;

19 end

Algorithm 3: Backward-Euler plasticity algorithm.

212



Appendix D

Finite element formulation of large

strain hyperelasticity

D.1 Linearization of equilibrium condition (Lagra-

ngian formulation)

For any admissible displacement field δu ∈ H1
0 (Ω0, t), the principle of virtual work

states that

R := δWint(u, δu)− δWext(u, δu) = 0, (D.1)

where internal virtual work δWint and external virtual work δWext can be found in

material description as

δWint(u, δu) =

∫

Ω0

S : δE∂Ω,

δWext(u, δu) =

∫

Ω0

B · δu∂Ω +

∫

∂Ω0

t · δu∂Γ. (D.2)
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In the above equation, S, B and t denote second-Piola Kirchoff stress tensor, body

force and traction applied at boundary, respectively. The macroscopic Green-Lagrange

strain tensor given as E = 1
2
(C − I) = (FTF − I)/2. An incremental/iterative so-

lution technique is adopted to solve the above nonlinear equation. Linearization of

Equation (D.1), i.e., R +D∆uR=0, offers

δWint(u, δu)− δWext(u, δu) +D∆uδWint(u, δu)−D∆uδWext(u, δu) = 0, (D.3)

where, D(·) represents the Directional derivative (Gateaux operator). Using the vari-

ation of E can be found as

δE =
1

2
[FT∇X(δu) +∇X(δu)TF]. (D.4)

in Equation (D.2), the directional derivative of the internal virtual work can be ob-

tained as

D∆uδWint(u, δu) =

∫

Ω0

∇X(δu) : ∇X(∆u)S∂Ω + FT∇X(δu) : C : FT∇X(∆u)∂Ω.

(D.5)

For a hyperelastic material, the second Piola-Kirchoff stress tensor and tangent moduli

can be extracted from the stress energy potential Ψ as

S = 2
∂Ψ

∂C
, and C = 4

∂2Ψ

∂C∂C
. (D.6)

As an example, for a compressible Neo-Hookean material the strain energy is given

as

Ψ =
µ

2

(
Ic − 3

)
− µlnJ +

λ

2

(
lnJ
)2
, (D.7)

where, µ and λ are the material constant, Ic=tr(C), is the first invariant of C and

J2=IIc. Correspondingly, second-Piola Kirchhoff stress tensor Sij and tangent moduli
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Cijkl can be derived as

Sij = λln(J)C−1
ij + µ(δij − C−1

ij ),

Cijkl = λC−1
ij C

−1
kl + µ(C−1

ik C
−1
jl + C−1

il C
−1
jk ). (D.8)

D.2 Finite element implementation

Finite element discretization is performed in the initial configuration using isopara-

metric element to interpolate the reference geometry in terms of nodal position vector

XI defining the initial position of the element nodes as

X = NI(ξ)XI , (D.9)

where, NI(ξ) is the shape function of I th node and ξ = (ξ1, ξ2, ξ3) are the volume

(barycentric) coordinates. The position vector x can be described in terms of current

nodal position xI as x = NIxI . Correspondingly, the displacement field u can be

written as u = NIuI . The derivative of shape function with respect to material

co-ordinates are given as

N,X ≡ B0 = N,ξX,ξ
−1. (D.10)

The jacobian matrix X,ξ = XIN,ξ. The deformation gradient tensor F can be ob-

tained as

F = xIB
0
I
T
, (D.11)

Substituting Equation (D.10) and (D.11) in Equation (D.3), it can be rewritten as

KT∆u = f ext − f int. (D.12)
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The stiffness matrix can be written as

KT =

∫

Ω0

B0T
SB0∂Ω +

∫

Ω0

FTB0
CB0

TF∂Ω, (D.13)

The external and internal force vector can be written as

f int =

∫

Ω0

B0T
S∂Ω,

f ext =

∫

Ω0

NTB∂Ω +

∫

Γ0

NT t∂Γ, (D.14)

D.3 Newton-Raphson solution algorithm and line

search method

The system of linearized equation (Equation D.12) is solved for series of load exter-

nal load increment or prescribed displacements. For each external load or applied

displacement step, the increment nodal displacement is obtained in Newton iterative

procedure by solving equation as

KT ∆uk+1 = fk
ext − fk

int, (D.15)

where, k represents the iteration index. After obtaining the increments in the nodal

displacements, the current displacement is updated as uk+1 = uk + ∆uk+1. This

iteration procedures continues until it satisfies a convergence criteria. Three types of

convergence criteria are used to terminate the iterations: (1) based on the magnitude

of the residual R, (2) based on the magnitude of the displacement increments ∆uk+1,

and (3) based on the energy error criteria. For the present finite element formulation
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displacement increment error criteria is adopted given as

||∆uk+1||L2
=
(

n∑

i=1

(∆uk
i )

2
) 1

2 ≤ ǫ||uk||L2
, (D.16)

where, ǫ=0.001-0.005.

D.4 Line search algorithm

During complex deformation, the straight application of Newton-Raphson method

becomes insufficient lead to nonconvergence of the solution. Line search method

offers an effective way to improve the convergence. This approach assumes although

the direction of ∆uk+1 found by Newton method is an optimal direction, but the step

size ||∆uk+1|| is not optimal. Therefore, the solution is updated by a parameter η as

uk+1 = uk + η∆uk+1 (D.17)

The value of η is found such that the total potential energy is minimized with respect

to η, dW (η)/dη=0. Alternatively, it can be stated that residual R is orthogonal to

the direction of advance ∆uk+1 which leads

R(η) = ∆uk+1T
R(uk + η∆uk+1) = 0. (D.18)

This is a nonlinear equation in terms of η. Therefore, the method of bisection or

searches based on interpolation are used to find η. The most commonly used technique

is based on quadratic interpolation (Bonet and Wood, 2008). In this approach, the

residual at two point is evaluated, and then the residual measure is interpolated by a

quadratic function of η. The quadratic approximation procedure is repeated until it

has been minimized to a desired precision.
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Appendix E

Genetic algorithm based

optimization

E.1 Optimization formulation

An optimization formulation can be stated as

Maximize f(X),

Subjected to: gi(X) ≤ bi.

Xmin
i < Xi < Xmax

i (E.1)

where, f , gi and X represent the objective function or cost function, constraints

and system parameters, respectively. The above optimization problem can be solved

using direct and gradient based methods. In case of gradient based approach first
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and/or second-order derivatives of the objective function and/or constraints are used

to perform the search of solution space. In contrast, only the objective function and

constraints are used for direct search method (e.g., Particle Swarm Optimization,

Simulated Annealing, Differential Evolution, Genetic Algorithm). As no gradient in-

formation is used in case of direct search method, it requires large number of function

evaluations. Moreover, gradient based techniques are highly inefficient for nonconvex

problem.

E.2 Genetic algorithm

Genetic algorithm is a robust search and optimization procedures that are based on

the underlying principles of natural genetics and natural selection. The terminology

used in GA and their mathematical equivalence as well as construction are shown in

Table E.1. In brief genetic algorithm starts with randomly chosen parent chromo-

somes from a pool of population (search space) to generate a new population. Next,

genetic operator and genetic processes: selection, recombination and mutation are

applied to evolve a better population.

Table E.1: Genetic algorithm terminology

Genetic representation Mathematical terminology Representation

Generation Iteration Ngen

Gene Coded particular variable Xi := {1010101}nbits

Chromosome Coded vectors of variables Λi:={X1X2..Xk..XN}
Population Set of coded vectors ψ := {Λ1 Λ2 · · ·Λnpop}

Objective function Model characteristic f(Λi)
Fitness function Normalized objective function f̄(Λi)

Offspring New population ψ′ :=
{
Λ

′

1 Λ
′

2 · · ·Λ
′

npop

}

220



E.3 Numerical implementation

Basic features of GA procedures as given in flowcharts are implemented as following

• Initialization: The solution parameters X is encoded in a chromosome. First,

each variable is represented a string of binary bits asXi := {1010101...}nbits with

a chosen size of nbits. Next, the chromosome is formed by concatenating all the

string to a single string as Λi:={X1X2..Xk..XN}. Furthermore, a population of

candidate solutions ψ := {Λ1 Λ2 · · ·ΛNpop} are generated for a given number

of chromosome Npop.

• Evaluation: The fitness, the value of objective function f̄(Λi), is obtained for

each candidate solution from initial population or the off-springs in subsequent

generation.

• Selection: This the first genetic operator that determines the sampling that

will produce offspring. This operator provides more copies to the imposing sur-

vival of the fittest mechanisms on candidate solutions. A multitude of selection

procedure has been proposed to prefer the better solutions such as roulette-

wheel selection, tournament selection and rank based selection.

• Recombination: Crossover or recombination is the second genetic operator

that combines bits and pieces of two or more parental solution to produces new,

possible better offspring. The fraction of parents undergoing the crossover is

determined by the user defined crossover probability pc and, consequently, with

1-pc the chromosome are directly copied to in the offspring. GA includes sev-

eral recombination schemes: N-point crossover, uniform cross over, arithmetic

crossover and blend crossover.
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• Mutation: This is the third evolutionary operator for GA aiming to create

new individual from a given chromosome by exchanging one or more genes

in it. Mutation performs a random walk in the neighborhood of a candidate

solution, thus allows not to trap in local minima. This process is controlled by

mutation probability pm, an user defined parameter, determines the mutation

frequency. A small number is recommended for mutation probability.

• Termination: Number of generations Ngen is considered as the termination

criteria of genetic algorithm. The number of generations is so chosen such that

there is no change in the parents and offspring.

A flowchart showing the detail steps of GA procedure is given below.
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Appendix F

Measurement of cellular

deformation

Cellular deformation of the entire specimen is characterized by a parameter εl indi-

cating the degree of collapse of individual cell. The degree of collapse is calculated

by finding the change of cell area with respected to its original area and given as

εl = 1− An/A0. (F.1)

To map the collapse of whole cellular domain, a grey scale is assigned where ‘1’

represents the undeformed state while ‘0’ represents fully collapsed cell.
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Figure F.1: Zoomed undeformed and deformed shape of a cell.
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