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Department Chair
Dr. Mark Gockenbach

Date





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Graph Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Oberwolfach Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Hamilton-Waterloo Problem . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 The Mathematical Connection . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Design Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Generating URDs for fixed r, s . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 When m = 3 and n = 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Case I: v≡ 9 (mod 18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Case II: v≡ 0 (mod 18) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vi



List of Figures

1.1 H1, a graph on six vertices . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 H2, a graph on six vertices . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 A 2-factor of K9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 A 2-factorization of K9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 A (3,9)-URD(9;4,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 A (3,9)-URD(9;2,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 A (3,9)-URD(9;1,3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 A (3,9)-URD(9;0,4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 The three parallel classes of a 3-RGDD(33). From left to right, P1,P2,P3. . . 19

3.6 The copy of K(3:3) given by the block {2,3,7} . . . . . . . . . . . . . . . . 20

3.7 X , a factor of 3-cycles that can be developed modulo nine. . . . . . . . . . 23

vii





Acknowledgements

This work is dedicated first and foremost to my parents. If not for their unconditional love,

support, and advice these past 25 years, I would not have had the courage to be who or

where I am today. Thank you.

Oma - I know you would be proud of me if you could see this. I know you would be

proud of me no matter what. And that means a lot.

Samantha Ball - for your love, your cooking, your smile, and your tolerance of my

near-constant nonsense - Thank you. I could not have done this without your support.
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Abstract

The Hamilton-Waterloo problem and its spouse-avoiding variant for uniform cycle sizes

asks if Kv, where v is odd (or Kv−F , if v is even), can be decomposed into 2-factors in

which each factor is made either entirely of m-cycles or entirely of n-cycles. This thesis

examines the case in which r of the factors are made up of cycles of length 3 and s of the

factors are made up of cycles of length 9, for any r and s. We also discuss a constructive

solution to the general (m,n) case which fixes r and s.
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Chapter 1

Introduction

1.1 Graph Decomposition

A graph is a collection of points, pairs of which may or may not be connected by edges.

They are very useful modeling tools for discrete situations. If one lives in a very snowy

climate, for example, one might be concerned with the efficiency of the road commission’s

plowing efforts after a storm. Imagining each plow traveling down each road might seem

like a daunting task, but we can model the path of each plow using a graph. We will use

road intersections as points and road segments as edges. The path each plow takes must be

connected, each path must start and end at the point representing the road commission, and

the union of all the paths must cover each edge at least once.

With this model, the problem becomes a bit easier. Given a few different solutions

to this problem, one can look at how much overlap different paths have (multiple trucks

plowing the same section of road) and how long each path is to determine which solution

is more efficient than the others.
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In this problem, the path a truck takes may cross itself, and aside from efficiency rea-

sons, there is no reason multiple trucks (paths) cannot use the same streets (edges). That

makes this problem, as stated, not a proper cycle decomposition, but it is related.

A cycle is a connected graph such that each vertex is incident to exactly two edges.

Looking at what cycles are present within larger graphs can tell us a lot about those graphs.

For example, consider G1 and G2 as given in Figure 1.1 and Figure 1.2. Are they isomor-

phic?

Figure 1.1: H1, a graph on six vertices

Figure 1.2: H2, a graph on six vertices

We can see at a glance that the two graphs have the same number of vertices and edges,

so using that to quickly rule out an isomorphism will not work. The next thing to check is

whether or not they contain the same cycles. H1 contains a cycle of length 6 and five cycles

of length 4. H2, contains a cycle of length 6, two cycles of length 5, a cycle of length 4,
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and two cycles of length 3. Because these two lists are not identical, H1 and H2 cannot be

isomorphic.

Again, this is not a proper cycle decomposition. A cycle decomposition is a partition of

the edge-set of a graph into cycles. Each edge must be used exactly once. In the snowplow

problem, the paths might not have been cycles. In the isomorphism problem, each edge

was used multiple times (in fact, neither H1 or H2 have any cycle decompositions at all).

A proper cycle decomposition problem might look something like this: When does

Kv, the complete graph on v vertices, have a cycle decomposition into cycles of length v?

This problem is known as the Hamiltonian decomposition of the complete graph, and it is

actually a special case of the Oberwolfach Problem.

1.2 The Oberwolfach Problem

Before we begin to understand the Hamilton-Waterloo problem, we must first understand

the well known Oberwolfach problem.

The Oberwolfach problem was proposed by Ringel in 1967 at a conference in its name-

sake: the city of Oberwolfach, Germany. The problem involves trying to seat v conference

attendees at t round tables over v−1
2 nights such that each attendee sits next to each other

attendee exactly once.

As originally stated, it is clear that v must be odd, and the total number of seats at the

t round tables must be v (so that everyone has a neighbor for each meal), but it is not clear

how large each table is. A conference of 25 people might have one large table that seats

8, two smaller tables that seat 5 each, a table for 4 and a table for 3. When we begin to

imagine all the different possibilities, the difficulty of the problem becomes apparent.

Even more possibilities arise when we consider an extension of the Oberwolfach Prob-

lem called the spouse avoiding variant. This version of the problem allows for an even
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number of attendees and seats them over v−2
2 nights, with the stipulation that each attendee

sits next to each other attendee - except his or her spouse - exactly once. This variant is

often lumped in with the original Oberwolfach Problem to remove the “v must be odd”

restriction. This combination problem is still called the Oberwolfach Problem, and it is

assumed that spouses will be avoided if v is even. For the rest of this thesis, “The Oberwol-

fach Problem” will refer to both the original problem and the spouse avoiding variant.

The difficulty in solving the Oberwolfach Problem is handled by restricting the number

of different table sizes. The above example with 25 people uses four different table sizes

(8, 5, 4, and 3), making it fairly complicated. The simplest cases have only one table size,

or in other words, the table size is constant. To seat 25 people around tables of a constant

size, there are only two options: one table of 25 people or five tables of 5 people each.

Already we can see that the problem has been simplified considerably.

As we will see in Section 1.6, the Oberwolfach Problem has been completely solved

for constant table sizes. The Oberwolfach Problem, however, is not the focus of this thesis.

1.3 The Hamilton-Waterloo Problem

Now that we have a thorough understanding of the Oberwolfach Problem, we can talk

about its most popular variant: the Hamilton-Waterloo problem. The Hamilton-Waterloo

problem takes the same idea of seating attendees, but it splits the conference between two

dining halls, each with a different set of table sizes. There are still v attendees, and the

conference still lasts for v−1
2 nights, but each person spends the same r of those nights at

a venue in Hamilton, and the other s = v−1
2 − r nights at a venue in Waterloo. The goal is

still to devise a seating arrangement such that each attendee sits beside each other attendee

exactly once throughout the conference.
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Much of what was true about the Oberwolfach Problem in Section 1.2 is also true of

the Hamilton-Waterloo problem. For example, as stated, v must be odd, but there is again a

spouse avoiding variant that allows for an even number of attendees. Again, in this case, the

conference will last for v−2
2 nights, and each attendee must sit beside each other attendee

except his or her spouse. As with the Oberwolfach Problem, we will lump the original

Hamilton-Waterloo problem together with its spouse avoiding variant throughout the rest

of this thesis. This will allow for any number of attendees, and it will be assumed that

spouses will be avoided if v is even.

The other major similarity the Hamilton-Waterloo problem has with the Oberwolfach

Problem is that, as stated, there is no guarantee that the tables in Hamilton or in Waterloo

are of uniform size. And again, to simplify the problem, we assume that each table in

Hamilton is uniform of size m, and each table in Waterloo is uniform of size n.

At a glance, it may not be clear that the Hamilton-Waterloo problem is different from

the Oberwolfach Problem on two different table sizes, but the differences are vast. In the

Oberwolfach Problem with two different table sizes, the tables of different sizes are filled

simultaneously. A conference of 9 people could be seated between a table of size 4 and

a table of size 5 each night. In the Hamilton-Waterloo problem, all the attendees must be

seated at tables of the same size on any given night. Perhaps one night, they all sit at tables

of size 5, and the next, they all sit at tables of size 4. In this case, there must be at least 20

attendees.

To say that a particular case of m and n is solved one should prove that a successful

seating arrangement is either possible or impossible for every applicable number of atten-

dees v, nights in Hamilton r, and nights in Waterloo s. This thesis represents the author’s

attempts to do that for m = 3 and n = 9. But first, we need to examine the tools we have

and draw some connections between problems of seating arrangements and problems of

mathematics. We begin with Graph Theory.
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1.4 Graph Theory

Simply speaking, a graph is a collection of points, each pair of which may or may not be

connected by an edge. Mathematically, we say that a graph G is a pair (V,E), where V is a

set of v points, calledvertices, and E is a set of distinct pairs of distinct points, callededges.

Graphs are particularly effective modeling tools for a variety of situations. The rail-

ways of a large, complicated city like Tokyo can be modeled with graphs, using stations as

vertices and train lines as edges. This can be used to make maps and help people find their

way from point A to point B.

For most of this thesis, we will be dealing with one of two very specific graphs: Kv

and K(h:u). Thecomplete graph on v vertices, Kv, is a graph in which each of the
(v

2

)
pairs of vertices are connected by edges. If each node represents a conference attendee

and an edge between nodes represents “These two people have been neighbors at a meal,”

the complete graph can be used to model the result “each attendee has been each other

attendee’s neighbor exactly once.” An equipartite graph is a graph whose vertex set can

be partitioned into u subsets of size h such that no two vertices from the same subset are

connected by an edge. The complete equipartite graph with u subsets of size h is denoted

K(h:u), and it contains every edge between vertices of different subsets. To use these graphs,

we will need the following tools.

Asubgraph G′ of a graph G is a pair (V ′,E ′) with V ′⊆V , E ′⊆ E. An induced subgraph

G′ of a graph G is a subgraph such that E ′ contains all the edges in E between the points

of V ′. A spanning subgraph G′ of a graph G is a subgraph such that V ′ = V . For example,

K(4:5) is a spanning subgraph of K20. If you took one point from each of the 5 partitions of

K(4:5), the resulting induced subgraph would be K5.
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The degree of a vertex is the number of edges incident to it. A graph G is said to be

regular of degree k (sometimes k-regular) if and only if the degree of each vertex is k. Kv

is regular of degree v−1, K(h:u) is regular of degree h(u−1).

A graph is said to be connected if, starting from any α ∈ V , you can reach any β ∈ V

by traversing edges. A cycle is a connected 2-regular graph. A cycle on n points is called

an n-cycle, and it is often written as Cn. Cycles of length 3 are sometimes called triangles

for obvious reasons.

If two graphs, G and H, have the same vertex set V , we can talk about their direct

sum by taking the union of their edge-sets. The direct sum of two graphs G = (V,E1) and

H = (V,E2) is G⊕H = (V,E1∪E2).

A k-factor of a graph G is a k-regular spanning subgraph. A 1-factor, sometimes called

a perfect matching, is often simply denoted by F . A k-factorization of a graph G is a

collection of k-factors such that each edge of G is used exactly once. Figure 1.3 is an

example of a 2-factor of K9, and Figure 1.4 gives a full 2-factorization of K9 into 3-cycles.

Note that each 2-factor of a graph uses 2 edges incident to each vertex, so for a graph to

have a 2-factorization, it must be regular of even degree. When v is odd, Kv satisfies this

property, and when v is even, Kv−F satisfies this property.

Figure 1.3: A 2-factor of K9

Throughout this thesis, the word factor is assumed to be a 2-factor unless otherwise

stated. Similarly, a triangle factor is a factor of 3-cycles and a C9-factor is a factor of

9-cycles.
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K9 =
L L L

Figure 1.4: A 2-factorization of K9

Now it is time we examined the connection between the Hamilton-Waterloo problem

of seating arrangements and graph theory. For a more in-depth look at Graph Theory, see

[6].

1.5 The Mathematical Connection

As was hinted about earlier, “each of v attendees sits next to each other attendee exactly

once” can be modeled by the complete graph on v vertices, where each vertex represents

a person and each edge between two vertices represents the two people having sat next to

each other one night. In this model, a round table can be represented by a cycle, which is

by definition 2-regular, and a dining hall full of v people at round tables can be represented

by a 2-factor of Kv. If each of the tables has size m (like in Hamilton), then the 2-factor

would be made entirely out of m-cycles. If each of the tables has size n (like in Waterloo),

then the 2-factor would be made entirely out of n-cycles. A collection of nightly seating

arrangements that satisfy the property that each person sits next to each other person exactly

once over the course of the conference can be represented by a 2-factorization of Kv, where

each factor is again made entirely out of m-cycles or entirely out of n-cycles, depending on

which city the people dined in that night. To account for spousal avoidance, we simply have

to remove a 1-factor, F , from Kv. The edges of F represent marriage, and if two people

are married, then they do not wish to sit next to each other. Therefore, a 2-factorization of

Kv−F accounts for each edge, either through seating arrangements or marriage.
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To recap: the Hamilton-Waterloo problem of seating v conference attendees for r nights

in Hamilton, with tables that each seat m people, and s nights in Waterloo, with tables

that seat n people, where r + s = v−1
2 (or r + s = v−2

2 , if v is even) nights such that each

attendee sits beside each other attendee (except possibly his or her spouse) exactly once

throughout the conference is mathematically equivalent to decomposing Kv (or Kv− F ,

is v is even) into 2-factors, r of which are made entirely out of m-cycles and s of which

are entirely out of n-cycles. When such a factorization exists, it is called a Uniformly

Resolvable Decomposition, abbreviated (m,n)–URD(v;r,s).

Similarly, the Oberwolfach Problem can be modeled using graph theory. The Oberwol-

fach Problem of seating v = nt attendees at t round tables, each of size n, over v−1
2 (or v−2

2 ,

if v is even) nights is equivalent to finding a decomposition of Kv (or Kv−F , if v is even)

into n-cycle factors. This problem will be referred to as OP(n;t).

1.6 Previous Results

The Oberwolfach Problem for constant cycle length (constant table size) was completely

solved between Alspach and Haggkvist; Alspach, Schellenberg, Stinson, and Wagner; and

Hoffman and Schellenberg. The three papers were published in 1985 [2], 1989 [3], and

1991 [9], respectively. The results were impressive: Given any number v of guests and any

constant table size m that divides v, a solution exists, with two exceptions. These results

are summarized in Theorem 1.1.

Theorem 1.1. [2, 3, 9] OP(n; t) has a solution for all n, t except (n; t) ∈ {(3;2),(3;4)}.

Another key result, provided in 2003 by Liu [13], solved a variation of the Oberwolfach

Problem, one that seeks to decompose K(h:u) instead of Kv. This is the logical extenion of

the spouse avoiding variant - instead of everyone having just one person they want to avoid,

it assumes that each person is part of a group of h people that they want to avoid. This

9



problem was also solved completely. That is to say, with finitely many exceptions, K(h:u)

has a Cm-factorization.

Theorem 1.2. [13] For m ≥ 3 and u ≥ 2, K(h:u) has a Cm-factorization if and only if hu

is divisible by m, h(u− 1) is even, m is even if u = 2, and (h,u,m) 6= (2,3,3), (6,3,3),

(2,6,3), (6,2,6).

The first breakthrough results on the Hamilton-Waterloo problem came in 2002. Adams,

Billington, Bryant, and El-Zanati solved the Hamilton-Waterloo problem for a host of pairs

(m,n) using base cases and recursive constructions. They covered the following cases:

(m,n) ∈ {(4,6),(4,8),(4,16),(8,16),(3,5),(3,15),(5,15)}. Furthermore, they provided

examples of solutions to all Hamilton-Waterloo problems on less than 17 vertices [1].

One year later, Horak, Nedela, and Rosa mostly solved the case of Triangle factors and

Hamilton Cycle factors on an odd number of vertices [10]. A Hamilton cycle is a cycle on

v points. Some of the exceptions for this case were later resolved by Dinitz and Ling in

2009 [7, 12].

Later in 2008, Fu and Huang settled all cases where m = 4 and n is even, and also

settled all cases where n = 2m [8]. They used an inventive direct construction.

Save for a few exceptions, Danziger, Quattrocchi, and Stevens solved Hamilton-Waterloo

problem for 3-cycles and 4-cycles, marking the first solution with cycle sizes of mixed par-

ity. These results were published in 2009 [5].

The latest results of which the author is aware as of this writing also came in 2010,

when Keranen and Özkan settled the case of 4-cycles and a single factor of n-cycles [11].

The necessary conditions for the existence of a (m,n)–URD(v;r,s) were first put forth in

2002 by Adams, Billington, Bryant, and El-Zanati [1]. Clearly, r+ s = v−1
2 (or r+ s = v−2

2 ,

for even v) and both m and n must divide v. These conditions are summarized below.
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Theorem 1.3. [1] The necessary conditions for the existence of an (m,n)–URD(v;r,s) are

1. If v is odd, r + s = v−1
2 ,

2. If v is even, r + s = v−2
2 ,

3. If r > 0, m|v,

4. If s > 0, n|v.

To solve the (m,n) = (3,9) case, we need one more basic tool: designs.

1.7 Design Theory

Designs, like graphs, are powerful tools in discrete mathematics. This thesis relies heavily

on the resolvability of some designs into parallel classes, as explained below.

A group divisible design (k,λ)–GDD(hu) is a triple (V ,G ,B) where V is a finite set of

size v = hu, G is a partition of V into u groups each containing h elements, B is a collection

of k element subsets of V called blocks that satisfy:

• If B ∈ B , then |B|= k.

• If a pair of elements from V appear in the same group, then the pair cannot be in any

block.

• Two points that are not in the same group, called a transverse pair, appear in exactly

λ blocks.

• |G |> 1.

A resolvable GDD (RGDD) has the additional condition that the blocks can be par-

titioned into parallel classes such that each element of V appears exactly once in each
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parallel class. A uniform RGDD is one in which λ = 1. We denote such an RGDD as a

k–RGDD(hu). For the purposes of this thesis, we will only talk about uniform RGDDs.

The necessary conditions for the existence of an RGDD are well established and given

below.

Theorem 1.4. [4] The necessary conditions for the existence of a k–RGDD(hu) are:

1. u≥ k,

2. hu≡ 0 (mod k),

3. h(u−1)≡ 0 (mod k−1).

Sufficient conditions for the existence of (k,λ)–RGDD(hu)s have been discovered for

k = 2,3,4 and λ = 1 except in a finite number of cases.

Theorem 1.5. [14] A (3,λ)–RGDD(hu) exists if and only if u≥ 3, λh(u−1) is even, hu≡ 0

(mod 3), and (λ,h,u) 6∈ {(1,2,6),(1,6,3)}
S
{(2 j +1,2,3),(4 j +2,1,6) : j ≥ 0}.

In particular, we have that a 3–RGDD(3u) exists for all odd u ≥ 3 and a 3–RGDD(6u)

exists for all u≥ 4.

For a more in-depth look at Design Theory, see [15].
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Chapter 2

Generating URDs for fixed r, s

The first original theorem presented here is a direct result of applying Theorem 1.1 and

Theorem 1.2 together. Given m and n, it can generate individual solutions to the Hamilton-

Waterloo problem for a specific r and s.

Theorem 2.1. Let v = hu,h,u ≥ 2 be given and choose m and n such that the following

conditions hold.

1. n|h,

2. (n,h) 6= (3,6),(3,12),

3. m|v,

4. h(u−1) is even,

5. m is even if u = 2,

6. (h,u,m) 6= (2,3,3),(6,3,3),(2,6,3),(6,2,6).

Then there exists a (m,n)–URD(v;r,s), where r = h(u−1)
2 and s = h−1

2 if v is odd or s = h−2
2

is v is even.
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Proof: We begin by partitioning the vertex set of Kv into u groups of size h. Within each

group, conditions 1 and 2 allow us to use Theorem 1.1 to decompose Kh into factors of

n-cycles. The unused edges of Kv form K(h:u). Conditions 3, 4, 5, and 6 allow us to use

Theorem 1.2 to decompose K(h:u) into factors of m-cycles. �
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Chapter 3

When m = 3 and n = 9

3.1 Case I: v≡ 9 (mod 18)

On a graph with nine points, a 3- and 9-cycle URD is equivalent to a solution to the

Hamilton-Waterloo problem with triangles and Hamilton-cycles. This was studied in [10],

summarized below in the following theorem.

Theorem 3.1. [10] Let v = 3+6p and assume that p≡ 1 (mod 3), then there exists a

(3,v)–URD(v;r,s) for every 0≤ s≤ v−1
2 , r = v−1

2 − s except possibly s = 1.

There is no (3,9)–URD(9;3,1).

The constructions used in this thesis are based on the existence of (3,9)–URD(9;r,s).

The most basic construction revolves around partitioning Kv into parallel classes of K9,

then applying one of the four (3,9)–URD(9;r,s) decompositions to each copy of K9. To

obtain these parallel classes of K9, we use 3–RGDD(hu), when it exists. The following page

contains the four (3,9)–URD(9;r,s) that exist.
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Example 3.2. A (3,9)–URD(9;r,s) exists for (r,s) ∈ {(4,0),(2,2),(1,3),(0,4)}.

K9 =
L L L

Figure 3.1: A (3,9)-URD(9;4,0)

K9 =
L L L

Figure 3.2: A (3,9)-URD(9;2,2)

K9 =
L L L

Figure 3.3: A (3,9)-URD(9;1,3)

K9 =
L L L

Figure 3.4: A (3,9)-URD(9;0,4)
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Throughout these constructions, the complete equipartite graph K(3:3) will be as impor-

tant as K9. As such, the first thing we need to do is use Theorem 3.1 to solve a variant of

the Hamilton-Waterloo problem on K(3:3)

Lemma 3.3. K(3:3) can be decomposed into r C3-factors and s C9-factors, where (r,s) ∈

{(0,3),(1,2),(3,0)}.

Proof: By Theorem 3.1, K9 can be decomposed into r′ C3-factors and s C9-factors, where

(r′,s) ∈ {(1,3),(2,2),(4,0)}, as in Figures 3.1, 3.2, and 3.3. Each of these decompositions

has at least one C3-factor, say H. It is easy to see that K9−H = K(3:3), and that removing

this factor will not affect the other three factors. So r = r′−1, and K(3:3) can be decomposed

into r C3-factors and s C9-factors, where (r,s) ∈ {(0,3),(1,2),(3,0)}. �

We are now ready to detail the first of our major constructions. The complete, rigorous

construction is to follow, but first: an outline.

The goal of the construction is to decompose Kv into parallel classes of K(3:3), then de-

compose those. “Parallel classes of K(3:3)” is not mathematically rigorous or well defined,

making this description suitable for an outline but not a proof.

We will begin by dividing v points into 3 large sets, then subdividing each of those large

sets into v
9 subsets of 3 points each. Using these 3-point subsets as groups of the RGDD,

we will construct identical 3–RGDD(3( v
9 ))s on each large set of v

3 points.

With the RGDD in place, we are free to start examining parallel-classes of K9. We will

reduce each copy of K9 to K(3:3) to avoid re-using edges, then decompose each copy of

K(3:3) as per Lemma 3.3.

After this process has been completed for each parallel class, we will have used nearly

all the edges. The unused leftovers, at this stage, are the edges within and between corre-

sponding groups of the RGDD. Since each group has size three, and there are three copies

of each group, these leftover edges again form copies of K9, which we can again decompose

into some combination of triangle factors or C9-factors.
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Lemma 3.4. There exists a (3,9)–URD(v;r,s) for any v ≡ 9 (mod 18), 0 ≤ r ≤ v−1
2 and

s = v−1
2 − r, except possibly (r,s) = (v−3

2 ,1).

Proof: Let v ≡ 9 (mod 18) and consider Kv. Begin by dividing the vertex set into three

subsets of v
3 points each: G1, G2, and G3. Using results from Theorem 1.5, there exists

a 3–RGDD(3( v
9 )) on the v

3 points of G1. An identical 3–RGDD(3( v
9 )) exists on each of G2

and G3. Divide the points of G1,G2 and G3 according to the v
9 groups of the RGDD. The

groups of Gi will be called Gi,1,Gi,2, . . . ,Gi, v
9

for i = 1,2,3. Each of these groups has 3

points, there are v
9 blocks in each parallel class, and there are q = v−9

6 parallel classes.

Arbitrarily index the parallel classes P1,P2, . . . ,Pq.

Now consider any transverse pair of points {a,b} with a ∈ G1,` and b ∈ G1,k, ` 6= k.

This pair is contained in exactly one block of the RGDD on G1, and this block is contained

in exactly one parallel class Pp. Taking the union of this block and the identical blocks on

the points of G2 and G3 gives us a set of 9 points. The subgraph of Kv induced by these

9 points is clearly K9. Repeating this process for each other block of the parallel class

gives us ( v
9) copies of K9. From each copy, remove the edges of the form {a,a′} where

a ∈ Gi,` and a′ ∈ G j,`. The remaining edges form K(3:3) on each former copy of K9. By

Lemma 3.3, each copy of K(3:3) can be decomposed into rp C3-factors and sp C9-factors

for (rp,sp) ∈ {(0,3),(1,2),(3,0)}. Choosing one such decomposition and applying it to

each copy of K(3:3) will give us rp factors of triangles and sp factors of 9-cycles on the

original graph, Kv.

Repeating this process on each of the parallel classes uses each edge not of the form

{a,a′} where a ∈ Gi,` and a′ ∈ G j,`. Since we can choose different combinations of 3- and

9-cycles to decompose each parallel class, we have ∑
q
p=1 rp = rα C3-factors and ∑

q
p=1 sp =

sα C9-factors at this stage. Necessarily, we have rα + sα = v−9
2 .

The edges left are of the form {a,a′} where a ∈ Gi,`,a′ ∈ G j,`, and ` ∈ {1,2, . . . , v
9}.

Fixing ` = 1 and examining all such edges, we see they form K9. In fact, copies of K9
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are formed for each ` ∈ {1,2, . . . , v
9}, so we have v

9 copies of K9. Each copy can each be

decomposed into rβ C3-factors and sβ C9-factors for (rβ,sβ) ∈ {(4,0),(1,3),(2,2),(4,0)}

by Theorem 3.1, giving us the last four 2-factors.

�

At each stage of this construction, we can choose any number of 3- and 9-cycle factors

except single 9-cycle factors. With these results, we can decompose K27 into any combina-

tion of r = rα + rβ C3-factors and s = sα + sβ C9-factors such that r + s = v−1
2 ,s 6= 1.

We now provide an example on v = 27 points to illustrate each step of the above con-

struction.

Example 3.5. The case when v = 27.

First note that there will be a total of thirteen 2-factors. Label the vertices of K27

with elements of Z27 and divide the vertex set into three groups and nine subgroups. One

such division might look like this: G1,1 = {0,3,6},G1,2 = {1,4,7},G1,3 = {2,5,8},G2,1 =

{9,12,15}, . . . ,G3,3 = {21,23,26}. Figure 3.5 shows the three parallel classes of the

3–RGDD(33) on the group G1. Call these parallel classes P1,P2, and P3. The parallel

classes of G2 can be obtained by adding nine to the label of each vertex in G1 and the

parallel classes of G3 can be obtained by adding 18 to the label of each vertex in G1.

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

Figure 3.5: The three parallel classes of a 3-RGDD(33). From left to right, P1,P2,P3.

19



Consider the arbitrarily chosen pair {2,7} in G1. This pair uniquely determines a

block, {2,3,7}, in a uniquely determined parallel class, P2 ({{2,3,7},{1,5,6},{0,4,8}}).

The union of the block {2,3,7} and its associated blocks in G2 and G3 ({11,12,16} and

{20,21,25}, respectively) gives us nine points. The subgraph of K27 induced on these nine

points is K9. We remove from this graph all edges between points of associated subgroups.

In this case, we remove the following edges: {2,11}, {11,20}, {2,20}, {3,12}, {12,21},

{3,21}, {7,16}, {16,25}, {7,25}. After removing these edges, we are left with K(3:3), as

shown in Figure 3.6.

20

11

2

21

12

3

20

16

7

Figure 3.6: The copy of K(3:3) given by the block {2,3,7}

Repeating this process with the blocks {1,5,6} and {0,4,8}will give us two additional,

identical, and disjoint copies of K(3:3). Using Lemma 3.3, each of these three copies of

K(3:3) can be decomposed into three factors of 3-cycles and zero factors of 9-cycles (r2 =

3,s2 = 0), one factor of 3-cycles and two factors of 9-cycles (r2 = 1,s2 = 2), or zero factors

of 3-cycles and three factors of 9-cycles (r2 = 0,s2 = 3). We choose one such combination

of C3-factors and C9-factors and apply it to each of our three copies of K(3:3). This gives us

three 2-factors.

From here we repeat this process, arbitrarily choosing new pairs of vertices on G1 that

have not yet been accounted for in parallel class P2. The pair {1,2} is in the unique block

{1,2,3} in the parallel class P1 ({{1,2,3},{4,5,6},{7,8,9}}). Each of these blocks, when
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joined with its associated blocks in G2 and G3, again gives us nine points, on which we form

K(3:3) graphs and decompose them into C3-factors and C9-factors according to Lemma 3.3.

A third run through this process using the parallel class P3 ({{0,5,7},{1,3,8},{2,4,6}})

will use the last of the transverse pairs in G1. This gives us six more 2-factors in any

combination of (rα,sα) where (rα,sα) = ∑
3
p=1(rp,sp). Necessarily, rα + sα = 9, and sα

cannot be 1.

Now we form three new sets of nine points each using associated groups of the RGDDs

instead of associated blocks. The first such set of nine is {0,3,6}∪{9,12,15}∪{18,21,24}.

The subgraph of K27 induced by this set is K9. The other sets that also induce K9 subgraphs

are {1,4,7}∪{10,13,16}∪{19,22,25} and {2,5,8}∪{11,14,17}∪{20,23,26}. K9 can

be decomposed, as in Example 3.2, into four factors of 3-cycles and zero factors of 9-

cycles (rβ = 4,sβ = 0, Figure 3.1), two factors of 3-cycles and two factors of 9-cycles (rβ =

2,sβ = 2, Figure 3.2), one factor of 3-cycles and three factors of 9-cycles (rβ = 1,sβ = 3,

Figure 3.3), or zero factors of 3-cycles and four factors of 9-cycles (rβ = 0,sβ = 4, Fig-

ure 3.4). Choosing one such combination of factors and applying it to each copy of K9

gives us the last four 2-factors, for a total of thirteen 2-factors, in any combination except a

single factor of 9-cycles.

The case when s = 1 cannot be handled by Lemma 3.4 because there is no

(3,9)–URD(9;3,1). This case is considerably more difficult. This thesis handles only a

fraction of these cases using a recursive construction and a base case. The base case, a

(3,9)–URD(27;12,1), was found by computer search using difference methods in Mathe-

matica 8. The code for this program can be found in Chapter 4. The recursive construction

allows for v to be any odd multiple of 27.

Lemma 3.6. There exists a (3,9)–URD(27;12,1).
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Proof: Consider K27. Partition the points into three groups of size nine each. Label the

groups Gi, i ∈ {1,2,3}. Label the vertices in each group by the elements of Z9×{1,2,3}

such that the subscript from {1,2,3} matches the group the vertex is in.

Traditionally, we think of an edge as being defined by two vertices. However, with each

vertex numbered, each edge can also be labeled with the difference (modulo nine) between

the two vertices it connects. This way, we can think of an edge as being defined by a vertex

label and an edge label.

Applied to our representation of K27 as elements of Z9×{1,2,3}, this idea of edges as

differences can be quite powerful. Our goal is to use each edge exactly once. We will do

this by constructing several base blocks that use distinct differences. When we develop this

block modulo nine, It will not re-use any edges because each difference is distinct.

We have to be careful when we talk about differences being distinct. The edge 21,41

seems to have a difference of 2, and the edge 41,21 seems to have difference −2, but we

know these are the same edge. Within each group, there are only four differences to cover

(±1,±2,±3, and ±4). Considering edges between different groups, we find that the idea

of difference is not well defined.

Because there are only three groups, transverse edge will have the form αi,βi+1, where

the index i+1 is taken modulo 3. Define the difference associated with edge αi,βi+1 to be

(βi+1−αi) (mod 9). Here, there are nine differences to cover: (0, 1, 2, 3, 4, 5, 6, 7, and

8). We call these the mixed differences.

The first set of blocks we consider, X , is a full factor of 3-cycles:

{01,11,02},{21,41,52},{31,61,12},

{22,32,03},{42,72,33},{62,82,13},

{23,53,71},{43,83,81},{63,73,51}.
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X is given by Figure 3.7.

52

02

12

22

32

42

72

62

82

23

53

43

01

11

21

41

31

61

71

81

51

83

63

73

03

33

13

01

11

21

41

31

61

71

81

51

Figure 3.7: X , a factor of 3-cycles that can be developed modulo nine.

Because X is itself a C3-factor and no difference is repeated, developing it modulo nine

gives us nine edge-disjoint C3-factors. Now we examine what differences have been used.

Within G1, we have used edges representing differences of ±1,±2, and ±3. This leaves

only differences of ±4 in G1. Within G2, we have used edges representing differences of

±1,±3, and ±2. This leaves only differences of ±4 in G2. Within G3, we have used edges

representing differences of ±3,±4, and ±1. This leaves only differences of ±2 in G3.
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We use these differences to create our second set of blocks, Y , which consists of the

following 9-cycles:

{01,41,81,31,71,21,61,11,51},

{02,42,82,32,72,22,62,12,52},

{03,23,43,63,83,13,33,53,73}.

Y is a full factor of 9-cycles. It does not need to be developed.

Lastly, we consider the unused edges between groups. Between G1 and G2, mixed

differences 0, 8, 3, 1, 7, and 4 have been used, leaving 2, 5 and 6. Between G2 and G3,

mixed differences 7, 6, 8, 5, 4, and 2 have been used, leaving 0, 1 and 3. Between G3 and

G1, mixed differences 5, 2, 4, 0, 8, and 7 have been used, leaving 1, 3, and 6. We will make

three factors of 3-cycles out of these nine unused differences.

First we use the difference 6 between G1 and G2, the difference 0 between G2 and G3,

and the difference 3 between G3 to G1. The base block is Z1 = {01,62,63}. Next, we use

the difference 2 between G1 to G2, the difference 1 between G2 to G3, and the difference

6 between G3 to G1. The base block is Z2 = {01,22,33}. Lastly, we use the difference

5 between G1 and G2, the difference 3 between G2 and G3, and the difference 1 between

G3 and G1. The base block is Z3 = {01,52,83}. Each of these three base blocks, when

developed modulo nine, will generate a full C3-factor.

We have nine C3-factors from developing X , a single C9-factor from Y , and one more

C3-factor from each of Z1,Z2, and Z3. This uses each edge exactly once and gives us

twelve C3-factors and one C9-factor.

�

The following Lemma combines the existence of a (3,9)–URD(27;12,1) with Liu’s

result regarding the Oberwolfach Problem on equipartite graphs, Theorem 1.2.
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Lemma 3.7. There exists a (3,9)–URD(v; v−3
2 ,1) for any v≡ 27 (mod 54).

Proof: Since v≡ 27 (mod 54), we have that 27|v and that q = v
27 is odd. Partition the points

of Kv into q groups of 27 points each. Within each group of 27 points, we use Lemma 3.6

to decompose K27 into triangle factors and a single C9-factor. We are left with all edges

between groups, which form K(27:q). Using Theorem 1.2, this graph can be decomposed

into 3-cycle factors. This gives us a full 2-factorization of Kv into 3-cycles and 9-cycles

with exactly one 9-cycle factor. �

3.2 Case II: v≡ 0 (mod 18)

The construction of URDs with an even number of vertices is similar in almost every way.

Again with intentions of resolving V , the vertex set of Kv, into parallel classes of K(3:3)

graphs, we divide the vertex set into three sets and divide each of those sets into smaller

subsets. In the even case, it is most convenient to use subsets of size 6. Theorem 1.5 again

guarantees the existence of an RGDD, this time a 3–RGDD(6( v
18 )), as long as v

18 = u ≥ 4,

on each of the three sets. We use the parallel classes of these RGDDs to get parallel classes

of K9, which we again reduce to K(3:3) and decompose as per Lemma 3.3.

The biggest difference between the even and odd cases comes in the form of the leftover

vertices after each parallel class of K(3:3) has been decomposed. The remaining edges again

are those within and between corresponding groups of the RGDDs, though in this case, the

size of each group was six, which leaves copies of K18 as the leftovers. At first glance,

this seems like a problem because a (3,9)–URD(18;r′,s′) is not known to exist for every

pair of (r′,s′). To finish the construction, we must look back to the Oberwolfach Problem.

Theorem 1.1 allows us to decompose K18 into eight C3-factors or eight C9-factors. This

rigidity seems detrimental, but is easily overcome by the flexibility provided to us in the

decomposition of the parallel classes of K(3:3). Lemma 3.8, below, details the flexibility of
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the choices provided to us by these parallel classes.

The notation introduced in Lemma 3.4 for keeping track of (r,s) using subscripts will

be crucial to understanding the following Lemma. For the following result, we have

(r,s) = (rβ,sβ) + (rα,sa), where (rβ,sβ) ∈ Y = {(0,8),(8,0)} and (rα,sα) =

v−18
6

∑
p=1

(rp,sp),

(rp,sp) ∈ X = {(0,3),(1,2),(3,0)} ∀ 0 ≤ p ≤ v−18
6 . Each (rp,sp) comes from the choice

of decompositions in the parallel class p, and they sum to (rα,sα). The pair (rβ,sβ) comes

from our choice of decomposing the leftover copies of K18 into eight C3-factors or eight

C9-factors.

Lemma 3.8. Let v ≡ 0 (mod 18),v ≥ 72. Any pair (r,s) of integers with the properties

r,s ≥ 0, r + s = v−2
2 , s 6= 1 can be obtained by the sum of q = v−18

6 elements from the set

X = {(0,3),(1,2),(3,0)} and one element from the set Y = {(0,8),(8,0)}.

Proof: Let v≡ 0 (mod 18),v≥ 72, set q = v−18
6 , and let r,s ∈ Z be given such that r,s≥ 0,

r + s = v−2
2 , s 6= 1. Further let X = {(0,3),(1,2),(3,0)} and Y = {(0,8),(8,0)}.

Note that each ordered pair in X sums to 3, and each ordered pair in Y sums to 8. A

quick calculation will reveal that (3)(v−18
6 )+8 = v−2

2 . So no matter which pairs we choose,

the property that r + s = v−2
2 will always be satisfied. Therefore, it will suffice to show that

any integer 0 ≤ s ≤ v−2
2 ,s 6= 1 can be obtained by the sum of q = v−18

6 elements from the

set X ′ = {3,2,0} and one element from the set Y ′ = {8,0}. The following step-by-step

proof is constructive.

1. If s ≥ 10, choose 8 from Y ′ and set (rβ,sβ) = (0,8). If not, choose 0 from Y ′ and

set (rβ,sβ) = (8,0). Now we must choose q numbers from X ′ such that they sum to

s− sβ.

2. If s− sβ is odd, choose 3 from X ′, set (rq,sq) = (0,3), and set s′ = s− sβ−3. Other-

wise, make no choice from X ′, do not assign values to (rq,sq), and set s′ = s− sβ.
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3. Let w = b s′
6 c. Choose 3 from X ′ 2w times. For each index p between 1 and 2w

inclusive, set (rp,sp) = (0,3).

4. If s′ ≡ 4 (mod 6), choose 2 from X ′ twice.

Set (r2w+1,s2w+1) = (r2w+2,s2w+2) = (1,2)

5. If s′ ≡ 2 (mod 6), choose 2 from X ′ once. Set (r2w+1,s2w+1) = (1,2)

6. Each other choice from X ′ is zero, and each yet unassigned (rp,sp) = (3,0).

It is easy to see that this algorithm will choose integers from X ′ and Y ′ that sum to

s. It is left to show that it uses the correct number of choices from X ′. Because Step 6

fills all yet unused choices with zeros, we cannot make too few choices from X . The only

risk is taking too many choices from X . Assume towards contradiction that this algorithm

chooses v−18
6 + 1 numbers from X . First note that if s < 10, then the algorithm makes at

most 4 non-zero choices, and since v ≥ 72, we already have a contradiction. So assume

s ≥ 10, and our choice from Y must have been 8. Since zeros are only chosen to fill

unused choices, each choice made from X must be a two or a three. Assume two choices

from X were twos. The remaining v−18
6 − 1 choices must have been threes. Adding up

all these choices, we get 1(8)+2(2)+3(v−18
6 −1) = v

2 , which contradicts our assumption

that s ≤ v−2
2 . Assume one choice from X was a two. The remaining v−18

6 choices must

have been threes. Adding up all these choices, we get 1(8)+1(2)+3(v−18
6 ) = v+2

2 , which

again contradicts our assumption that s ≤ v−2
2 . Finally, assume that zero choices from X

were twos. The remaining v−18
6 + 1 choices must have been threes. Adding up all these

choices, we get 1(8) + 0(2) + 3(v−18
6 + 1) = v+4

2 , which still contradicts our assumption

that s ≤ v−2
2 . Therefore, this algorithm cannot choose more or less than v−18

6 elements of

X .

�
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We now have all the tools in place to begin a rigorous look at the construction of a

(3,9)–URD(v;r,s) where v is even.

Lemma 3.9. There exists a (3,9)–URD(v;r,s) for any v≡ 0 (mod 18), v≥ 72, 0≤ r≤ v−2
2

and s = v−2
2 − r, except possibly (r,s) = (v−4

2 ,1).

Proof:

Let v≡ 0 (mod 18),v≥ 72, and let (r,s) be given such that r+s = v−2
2 and s 6= 1. First,

we apply the algorithm described in the proof of Lemma 3.8 to determine what choices we

should make for (rp,sp) for each p ∈ {1,2, . . . , v−18
6 }.

Because v ≥ 72, we have that u = v
18 ≥ 4. Begin by dividing the vertex set of Kv into

three subsets of v
3 points each: G1, G2, and G3. Using results from Theorem 1.5, there

exists a 3–RGDD(6u) on the v
3 points of G1. An identical 3–RGDD(6u) exists on each of

G2 and G3. Divide the points of G1,G2 and G3 according to the u groups of the RGDD.

The groups of Gi will be called Gi,1,Gi,2, . . .Gi,u for i = 1,2,3. Each of these groups has 6

points with v
9 blocks in each parallel class and q = v−18

6 parallel classes. Arbitrarily index

the parallel classes by P1,P2, . . . ,Pq.

Now consider any transverse pair of points {a,b} with a ∈ G1,` and b ∈ G1,k, ` 6= k.

This pair is contained in exactly one block of the RGDD on G1, and this block is contained

in exactly one parallel class, p. Taking the union of this block and the identical blocks

on the points of G2 and G3 gives us a set of 9 points. The subgraph of Kv induced by

these 9 points is clearly K9. Repeating this process for each other block of the parallel

class gives us v
9 copies of K9. From each copy, remove the edges of the form {a,a′}

where a ∈ Gi,` and a′ ∈ G j,`. The remaining edges of the K9 subgraph form K(3:3). By

Lemma 3.3, each copy of K(3:3) can be decomposed into rp C3-factors and sp C9-factors

for (rp,sp) ∈ {(0,3),(1,2),(3,0)}. Choosing one such decomposition and applying it to

each copy of K(3:3) will give us rp factors of triangles and sp factors of 9-cycles on the

original graph, Kv.
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Repeating this process on each of the parallel classes uses each edge not of the form

{a,a′} where a ∈ Gi,` and a′ ∈ G j,`. Since we can choose different combinations of 3- and

9-cycles to decompose each parallel class, we have ∑
q
p=1 rp = rα C3-factors and ∑

q
p=1 sp =

sα C9-factors , where necessarily rα + sα = v−18
2 .

The only remaining edges are of the form {a,a′} where a ∈ Gi,`,a′ ∈ G j,`, and ` ∈

{1,2,3}. Fixing ` = 1 and examining all such edges, we see they form K18. In fact, copies

of K18 are formed for each ` = 1,2, . . . ,u, so we have u copies of K18. On each copy, we

use results from the Oberwolfach Problem given by Theorem 1.1 to decompose the edge

set of K18 into eight C3-factors and a 1-factor or eight C9-factors and a 1-factor. This gives

us (rβ,sβ) ∈ {(8,0),(0,8)}. Now, each edge in Kv has been accounted for by C3-factors,

C9-factors, or a 1-factor, and by Lemma 3.8, (rα,sα)+(rβ,sβ) = (r,s).

�

Lemma 3.9 handles all cases of v ≡ 0 (mod 18) so long as v ≥ 72. If we attempt to

apply the same construction to v = 18, 36, or 54, we will find that the required RGDD does

not exist.
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Chapter 4

Conclusions

Between Lemma 3.4, Lemma 3.7, and Lemma 3.9, we have shown that the necessary

conditions for the existence of a (3,9)–URD(v;r,s) are sufficient with few exceptions. The

remaining open cases are

1. v = 18,

2. v = 36,

3. v = 54, and

4. s = 1, when v is not equivalent to 27 (mod 54).

Theorem 4.1 summarizes these results.

Theorem 4.1. Let v ≡ 0 (mod 9), v 6= 18,36,54. Then there exists a (3,9)–URD(v;r,s)

for all pairs of positive integers (r,s) such that r + s = v−1
2 if v is odd or r + s = v−2

2 is v is

even, possibly except s = 1 when v 6≡ 27 (mod 54).

Proof: Let v ≡ 0 (mod 9), v 6= 18,36,54 be given. If v is odd, we apply Lemma 3.4 to

construct a solution. If v is even, we apply Lemma 3.9 to construct a solution. If v ≡ 27

(mod 54) and s = 1, we apply Lemma 3.7 to construct a solution. �
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Appendix

The Program

This program was written in Mathematica 8 to find solutions to the (3,9)–URD(27;12,1)

case. The solution given in Lemma 3.6 is the first this program returned. It is sparsely

commented with explainations.

This block of code creates the pairs and triples of points that we’ll be working with.

The output checks the dimensions of each.

Input:

nineCtwo = Permutations[{0,1,2,3,4,5,6,7,8},{2}];nineCtwo = Permutations[{0,1,2,3,4,5,6,7,8},{2}];nineCtwo = Permutations[{0,1,2,3,4,5,6,7,8},{2}];

nineCtwo = Union[Table[Sort[nineCtwo[[i]]],{i,1,Length[nineCtwo]}]];nineCtwo = Union[Table[Sort[nineCtwo[[i]]],{i,1,Length[nineCtwo]}]];nineCtwo = Union[Table[Sort[nineCtwo[[i]]],{i,1,Length[nineCtwo]}]];

nineCtwo//MatrixForm;nineCtwo//MatrixForm;nineCtwo//MatrixForm;

Dimensions[nineCtwo]Dimensions[nineCtwo]Dimensions[nineCtwo]

nineCthree = Permutations[{0,1,2,3,4,5,6,7,8},{3}];nineCthree = Permutations[{0,1,2,3,4,5,6,7,8},{3}];nineCthree = Permutations[{0,1,2,3,4,5,6,7,8},{3}];

Dimensions[nineCthree]Dimensions[nineCthree]Dimensions[nineCthree]

Output:

{36,2}

{504,3}

doubles is a list of triples of indices of nineCtwo. Each triple of pairs has no overlap

(that is, each triple represents six distinct points and the three differences used must include
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the difference ±3). Again, the output checks the dimensions of this structure.

Input:

doubles = Flatten[Drop[Reap[doubles = Flatten[Drop[Reap[doubles = Flatten[Drop[Reap[

For[i = 1, i≤ Length[nineCtwo], i++,For[i = 1, i≤ Length[nineCtwo], i++,For[i = 1, i≤ Length[nineCtwo], i++,

For[ j = i+1, j ≤ Length[nineCtwo], j++,For[ j = i+1, j ≤ Length[nineCtwo], j++,For[ j = i+1, j ≤ Length[nineCtwo], j++,

If[Length[Union[nineCtwo[[i]],nineCtwo[[ j]]]] == 4,If[Length[Union[nineCtwo[[i]],nineCtwo[[ j]]]] == 4,If[Length[Union[nineCtwo[[i]],nineCtwo[[ j]]]] == 4,

For[k = j +1,k ≤ Length[nineCtwo],k++,For[k = j +1,k ≤ Length[nineCtwo],k++,For[k = j +1,k ≤ Length[nineCtwo],k++,

If[Length[Union[nineCtwo[[i]],nineCtwo[[ j]],nineCtwo[[k]]]] == 6,If[Length[Union[nineCtwo[[i]],nineCtwo[[ j]],nineCtwo[[k]]]] == 6,If[Length[Union[nineCtwo[[i]],nineCtwo[[ j]],nineCtwo[[k]]]] == 6,

If[(MemberQ[{3,6},Mod[nineCtwo[[i,1]]−nineCtwo[[i,2]],9]]∨If[(MemberQ[{3,6},Mod[nineCtwo[[i,1]]−nineCtwo[[i,2]],9]]∨If[(MemberQ[{3,6},Mod[nineCtwo[[i,1]]−nineCtwo[[i,2]],9]]∨

MemberQ[{3,6},Mod[nineCtwo[[ j,1]]−nineCtwo[[ j,2]],9]]∨MemberQ[{3,6},Mod[nineCtwo[[ j,1]]−nineCtwo[[ j,2]],9]]∨MemberQ[{3,6},Mod[nineCtwo[[ j,1]]−nineCtwo[[ j,2]],9]]∨

MemberQ[{3,6},Mod[nineCtwo[[k,1]]−nineCtwo[[k,2]],9]])∧MemberQ[{3,6},Mod[nineCtwo[[k,1]]−nineCtwo[[k,2]],9]])∧MemberQ[{3,6},Mod[nineCtwo[[k,1]]−nineCtwo[[k,2]],9]])∧

(Length[Union[{Mod[nineCtwo[[i,1]]−nineCtwo[[i,2]],9],(Length[Union[{Mod[nineCtwo[[i,1]]−nineCtwo[[i,2]],9],(Length[Union[{Mod[nineCtwo[[i,1]]−nineCtwo[[i,2]],9],

Mod[nineCtwo[[ j,1]]−nineCtwo[[ j,2]],9],Mod[nineCtwo[[ j,1]]−nineCtwo[[ j,2]],9],Mod[nineCtwo[[ j,1]]−nineCtwo[[ j,2]],9],

Mod[nineCtwo[[k,1]]−nineCtwo[[k,2]],9]}]] == 3),Mod[nineCtwo[[k,1]]−nineCtwo[[k,2]],9]}]] == 3),Mod[nineCtwo[[k,1]]−nineCtwo[[k,2]],9]}]] == 3),

Sow[{i, j,k}],Null],Null]],Null]]]],1],2];Sow[{i, j,k}],Null],Null]],Null]]]],1],2];Sow[{i, j,k}],Null],Null]],Null]]]],1],2];

doubles//MatrixForm;doubles//MatrixForm;doubles//MatrixForm;

Dimensions[doubles]Dimensions[doubles]Dimensions[doubles]

Output:

{449,3}

tri1 attempts to match each pair in each triple in doubles (representing an interior edge

of G1) to a point in G2, forming three triangles. The six cross differences must be distinct.

Again, the only output is the size of tri1.

Input:

tri1 = Flatten[Drop[Reap[tri1 = Flatten[Drop[Reap[tri1 = Flatten[Drop[Reap[

For[i = 1, i≤ Length[doubles], i++,For[i = 1, i≤ Length[doubles], i++,For[i = 1, i≤ Length[doubles], i++,
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For[ j = 1, j ≤ Length[nineCthree], j++,For[ j = 1, j ≤ Length[nineCthree], j++,For[ j = 1, j ≤ Length[nineCthree], j++,

If[If[If[Length[Union[{Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[i,1]],1]],9],Length[Union[{Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[i,1]],1]],9],Length[Union[{Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[i,1]],1]],9],

Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[i,1]],2]],9],Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[i,1]],2]],9],Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[i,1]],2]],9],

Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[i,2]],1]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[i,2]],1]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[i,2]],1]],9],

Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[i,2]],2]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[i,2]],2]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[i,2]],2]],9],

Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[i,3]],1]],9],Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[i,3]],1]],9],Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[i,3]],1]],9],

Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[i,3]],2]],9]}]] == 6,Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[i,3]],2]],9]}]] == 6,Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[i,3]],2]],9]}]] == 6,

Sow[{i, j}],Null]]]],1],2];Sow[{i, j}],Null]]]],1],2];Sow[{i, j}],Null]]]],1],2];

Dimensions[tri1]Dimensions[tri1]Dimensions[tri1]

tri1[[1;;50]];tri1[[1;;50]];tri1[[1;;50]];

Output:

{26046,2}

We see now that at this stage, there are 26046 possible solutions. The following code

attempts to complete each one. First it finds a triple of edges in G2 with distinct differences,

one of which is 3, none of whose points overlap with the points of tri1. It stores these solu-

tions as a list of indices of nineCtwo, called dbl2. Then it finds three more points from G3

that, when connected with the edges from dbl2, yield six distinct cross-differences. These

working sets of 3 points in G3 are stored, again as a list of indices, in tri3. The program

then attempts to form three edges in G3, again with three distinct differences that include

3, whose cross-differences with the three unused points of G1 form the original set of three

edges given in doubles are all distinct. Lastly, a, b, and c are used to check whether all the

unused cross-differences can be made to sum to multiples of nine.

Input:

dblorig = {};dblorig = {};dblorig = {};
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nine = {0,1,2,3,4,5,6,7,8};nine = {0,1,2,3,4,5,6,7,8};nine = {0,1,2,3,4,5,6,7,8};

Monitor[Monitor[Monitor[

For[q = 1,q≤ Length[tri1],q++,For[q = 1,q≤ Length[tri1],q++,For[q = 1,q≤ Length[tri1],q++,

dbl2 = Flatten[Drop[Reap[dbl2 = Flatten[Drop[Reap[dbl2 = Flatten[Drop[Reap[

For[i = 1, i≤ Length[doubles], i++,For[i = 1, i≤ Length[doubles], i++,For[i = 1, i≤ Length[doubles], i++,

If[Length[Union[nineCtwo[[doubles[[i,1]]]],nineCtwo[[doubles[[i,2]]]],If[Length[Union[nineCtwo[[doubles[[i,1]]]],nineCtwo[[doubles[[i,2]]]],If[Length[Union[nineCtwo[[doubles[[i,1]]]],nineCtwo[[doubles[[i,2]]]],

nineCtwo[[doubles[[i,3]]]],nineCthree[[tri1[[q,2]]]]]] == 9,nineCtwo[[doubles[[i,3]]]],nineCthree[[tri1[[q,2]]]]]] == 9,nineCtwo[[doubles[[i,3]]]],nineCthree[[tri1[[q,2]]]]]] == 9,

Sow[i],Null]]],1]];Sow[i],Null]]],1]];Sow[i],Null]]],1]];

tri2 = Flatten[Drop[Reap[tri2 = Flatten[Drop[Reap[tri2 = Flatten[Drop[Reap[

For[i = 1, i≤ Length[dbl2], i++,For[i = 1, i≤ Length[dbl2], i++,For[i = 1, i≤ Length[dbl2], i++,

For[ j = 1, j ≤ Length[nineCthree], j++,For[ j = 1, j ≤ Length[nineCthree], j++,For[ j = 1, j ≤ Length[nineCthree], j++,

If[Length[Union[{If[Length[Union[{If[Length[Union[{

Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl2[[i]],1]],1]],9],Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl2[[i]],1]],1]],9],Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl2[[i]],1]],1]],9],

Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl2[[i]],1]],2]],9],Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl2[[i]],1]],2]],9],Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl2[[i]],1]],2]],9],

Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl2[[i]],2]],1]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl2[[i]],2]],1]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl2[[i]],2]],1]],9],

Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl2[[i]],2]],2]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl2[[i]],2]],2]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl2[[i]],2]],2]],9],

Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl2[[i]],3]],1]],9],Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl2[[i]],3]],1]],9],Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl2[[i]],3]],1]],9],

Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl2[[i]],3]],2]],9]Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl2[[i]],3]],2]],9]Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl2[[i]],3]],2]],9]

}]] == 6,}]] == 6,}]] == 6,

Sow[{i, j}],Null]]]],1],2];Sow[{i, j}],Null]]]],1],2];Sow[{i, j}],Null]]]],1],2];

Print[Timing[Monitor[Print[Timing[Monitor[Print[Timing[Monitor[

For[p = 1, p≤ Length[tri2], p++,For[p = 1, p≤ Length[tri2], p++,For[p = 1, p≤ Length[tri2], p++,

dbl3 = Flatten[Drop[Reap[dbl3 = Flatten[Drop[Reap[dbl3 = Flatten[Drop[Reap[

For[i = 1, i≤ Length[doubles], i++,For[i = 1, i≤ Length[doubles], i++,For[i = 1, i≤ Length[doubles], i++,

If[Length[Union[nineCtwo[[doubles[[i,1]]]],nineCtwo[[If[Length[Union[nineCtwo[[doubles[[i,1]]]],nineCtwo[[If[Length[Union[nineCtwo[[doubles[[i,1]]]],nineCtwo[[
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doubles[[i,2]]]],nineCtwo[[doubles[[i,3]]]],nineCthree[[doubles[[i,2]]]],nineCtwo[[doubles[[i,3]]]],nineCthree[[doubles[[i,2]]]],nineCtwo[[doubles[[i,3]]]],nineCthree[[

tri2[[p,2]]]]]] == 9,tri2[[p,2]]]]]] == 9,tri2[[p,2]]]]]] == 9,

Sow[i],Null]]],1]];Sow[i],Null]]],1]];Sow[i],Null]]],1]];

tri3 = Flatten[Drop[Reap[tri3 = Flatten[Drop[Reap[tri3 = Flatten[Drop[Reap[

For[i = 1, i≤ Length[dbl3], i++,For[i = 1, i≤ Length[dbl3], i++,For[i = 1, i≤ Length[dbl3], i++,

For[ j = 1, j ≤ Length[nineCthree], j++,For[ j = 1, j ≤ Length[nineCthree], j++,For[ j = 1, j ≤ Length[nineCthree], j++,

If[Length[Union[{If[Length[Union[{If[Length[Union[{

Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl3[[i]],1]],1]],9],Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl3[[i]],1]],1]],9],Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl3[[i]],1]],1]],9],

Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl3[[i]],1]],2]],9],Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl3[[i]],1]],2]],9],Mod[nineCthree[[ j,1]]−nineCtwo[[doubles[[dbl3[[i]],1]],2]],9],

Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl3[[i]],2]],1]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl3[[i]],2]],1]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl3[[i]],2]],1]],9],

Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl3[[i]],2]],2]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl3[[i]],2]],2]],9],Mod[nineCthree[[ j,2]]−nineCtwo[[doubles[[dbl3[[i]],2]],2]],9],

Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl3[[i]],3]],1]],9],Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl3[[i]],3]],1]],9],Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl3[[i]],3]],1]],9],

Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl3[[i]],3]],2]],9]Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl3[[i]],3]],2]],9]Mod[nineCthree[[ j,3]]−nineCtwo[[doubles[[dbl3[[i]],3]],2]],9]}]] == 6,}]] == 6,}]] == 6,

Sow[{i, j}],Null]]]],1],2];Sow[{i, j}],Null]]]],1],2];Sow[{i, j}],Null]]]],1],2];

For[i = 1, i≤ Length[tri3], i++,For[i = 1, i≤ Length[tri3], i++,For[i = 1, i≤ Length[tri3], i++,

a = Complement[nine,a = Complement[nine,a = Complement[nine,

Union[{Mod[nineCthree[[tri1[[q,2]],1]]−nineCtwo[[doubles[[tri1[[q,1]],1]],1]],Union[{Mod[nineCthree[[tri1[[q,2]],1]]−nineCtwo[[doubles[[tri1[[q,1]],1]],1]],Union[{Mod[nineCthree[[tri1[[q,2]],1]]−nineCtwo[[doubles[[tri1[[q,1]],1]],1]],9],9],9],

Mod[nineCthree[[tri1[[q,2]],1]]−nineCtwo[[doubles[[tri1[[q,1]],1]],2]],9],Mod[nineCthree[[tri1[[q,2]],1]]−nineCtwo[[doubles[[tri1[[q,1]],1]],2]],9],Mod[nineCthree[[tri1[[q,2]],1]]−nineCtwo[[doubles[[tri1[[q,1]],1]],2]],9],

Mod[nineCthree[[tri1[[q,2]],2]]−nineCtwo[[doubles[[tri1[[q,1]],2]],1]],9],Mod[nineCthree[[tri1[[q,2]],2]]−nineCtwo[[doubles[[tri1[[q,1]],2]],1]],9],Mod[nineCthree[[tri1[[q,2]],2]]−nineCtwo[[doubles[[tri1[[q,1]],2]],1]],9],

Mod[nineCthree[[tri1[[q,2]],2]]−nineCtwo[[doubles[[tri1[[q,1]],2]],2]],9],Mod[nineCthree[[tri1[[q,2]],2]]−nineCtwo[[doubles[[tri1[[q,1]],2]],2]],9],Mod[nineCthree[[tri1[[q,2]],2]]−nineCtwo[[doubles[[tri1[[q,1]],2]],2]],9],

Mod[nineCthree[[tri1[[q,2]],3]]−nineCtwo[[doubles[[tri1[[q,1]],3]],1]],9],Mod[nineCthree[[tri1[[q,2]],3]]−nineCtwo[[doubles[[tri1[[q,1]],3]],1]],9],Mod[nineCthree[[tri1[[q,2]],3]]−nineCtwo[[doubles[[tri1[[q,1]],3]],1]],9],

Mod[nineCthree[[tri1[[q,2]],3]]−nineCtwo[[doubles[[tri1[[q,1]],3]],2]],Mod[nineCthree[[tri1[[q,2]],3]]−nineCtwo[[doubles[[tri1[[q,1]],3]],2]],Mod[nineCthree[[tri1[[q,2]],3]]−nineCtwo[[doubles[[tri1[[q,1]],3]],2]],9]}]];9]}]];9]}]];

a1 = Sum[a[[ j]],{ j,1,3}];a1 = Sum[a[[ j]],{ j,1,3}];a1 = Sum[a[[ j]],{ j,1,3}];

b = Complement[nine,b = Complement[nine,b = Complement[nine,

Union[{Mod[nineCthree[[tri2[[p,2]],1]]−Union[{Mod[nineCthree[[tri2[[p,2]],1]]−Union[{Mod[nineCthree[[tri2[[p,2]],1]]−
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nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],1]],1]],9],nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],1]],1]],9],nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],1]],1]],9],

Mod[nineCthree[[tri2[[p,2]],1]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],1]],Mod[nineCthree[[tri2[[p,2]],1]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],1]],Mod[nineCthree[[tri2[[p,2]],1]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],1]],2]],9],2]],9],2]],9],

Mod[nineCthree[[tri2[[p,2]],2]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],2]],Mod[nineCthree[[tri2[[p,2]],2]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],2]],Mod[nineCthree[[tri2[[p,2]],2]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],2]],1]],9],1]],9],1]],9],

Mod[nineCthree[[tri2[[p,2]],2]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],2]],Mod[nineCthree[[tri2[[p,2]],2]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],2]],Mod[nineCthree[[tri2[[p,2]],2]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],2]],2]],9],2]],9],2]],9],

Mod[nineCthree[[tri2[[p,2]],3]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],3]],Mod[nineCthree[[tri2[[p,2]],3]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],3]],Mod[nineCthree[[tri2[[p,2]],3]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],3]],1]],9],1]],9],1]],9],

Mod[nineCthree[[tri2[[p,2]],3]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],3]],Mod[nineCthree[[tri2[[p,2]],3]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],3]],Mod[nineCthree[[tri2[[p,2]],3]]−nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],3]],2]],9]}]];2]],9]}]];2]],9]}]];

b1 = Sum[b[[ j]],{ j,1,3}];b1 = Sum[b[[ j]],{ j,1,3}];b1 = Sum[b[[ j]],{ j,1,3}];

c = Complement[nine,c = Complement[nine,c = Complement[nine,

Union[{Mod[nineCthree[[tri3[[i,2]],1]]−Union[{Mod[nineCthree[[tri3[[i,2]],1]]−Union[{Mod[nineCthree[[tri3[[i,2]],1]]−

nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],1]],1]],9],nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],1]],1]],9],nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],1]],1]],9],

Mod[nineCthree[[tri3[[i,2]],1]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],1]],Mod[nineCthree[[tri3[[i,2]],1]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],1]],Mod[nineCthree[[tri3[[i,2]],1]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],1]],2]],9],2]],9],2]],9],

Mod[nineCthree[[tri3[[i,2]],2]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],2]],Mod[nineCthree[[tri3[[i,2]],2]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],2]],Mod[nineCthree[[tri3[[i,2]],2]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],2]],1]],9],1]],9],1]],9],

Mod[nineCthree[[tri3[[i,2]],2]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],2]],Mod[nineCthree[[tri3[[i,2]],2]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],2]],Mod[nineCthree[[tri3[[i,2]],2]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],2]],2]],9],2]],9],2]],9],

Mod[nineCthree[[tri3[[i,2]],3]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],3]],Mod[nineCthree[[tri3[[i,2]],3]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],3]],Mod[nineCthree[[tri3[[i,2]],3]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],3]],1]],9],1]],9],1]],9],

Mod[nineCthree[[tri3[[i,2]],3]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],3]],Mod[nineCthree[[tri3[[i,2]],3]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],3]],Mod[nineCthree[[tri3[[i,2]],3]]−nineCtwo[[doubles[[dbl3[[tri3[[i,1]]]],3]],2]],9]}]];2]],9]}]];2]],9]}]];

c1 = Sum[c[[ j]],{ j,1,3}];c1 = Sum[c[[ j]],{ j,1,3}];c1 = Sum[c[[ j]],{ j,1,3}];

If[If[If[Length[Union[nineCtwo[[doubles[[tri1[[q,1]],1]]]],Length[Union[nineCtwo[[doubles[[tri1[[q,1]],1]]]],Length[Union[nineCtwo[[doubles[[tri1[[q,1]],1]]]],

nineCtwo[[doubles[[tri1[[q,1]],2]]]],nineCtwo[[doubles[[tri1[[q,1]],3]]]],nineCtwo[[doubles[[tri1[[q,1]],2]]]],nineCtwo[[doubles[[tri1[[q,1]],3]]]],nineCtwo[[doubles[[tri1[[q,1]],2]]]],nineCtwo[[doubles[[tri1[[q,1]],3]]]],

nineCthree[[tri3[[i,2]]]]]] == 9&&nineCthree[[tri3[[i,2]]]]]] == 9&&nineCthree[[tri3[[i,2]]]]]] == 9&&

Mod[a1+b1+ c1,9] == 0,Mod[a1+b1+ c1,9] == 0,Mod[a1+b1+ c1,9] == 0,

For[d = 1,d ≤ 3,d++,For[d = 1,d ≤ 3,d++,For[d = 1,d ≤ 3,d++,

For[e = 1,e≤ 3,e++,For[e = 1,e≤ 3,e++,For[e = 1,e≤ 3,e++,

For[ f = 1, f ≤ 3, f ++,For[ f = 1, f ≤ 3, f ++,For[ f = 1, f ≤ 3, f ++,

If[Mod[a[[d]]+b[[e]]+ c[[ f ]],9] == 0,If[Mod[a[[d]]+b[[e]]+ c[[ f ]],9] == 0,If[Mod[a[[d]]+b[[e]]+ c[[ f ]],9] == 0,
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For[d1 = 1,d1≤ 2,d1++,For[d1 = 1,d1≤ 2,d1++,For[d1 = 1,d1≤ 2,d1++,

For[e1 = 1,e1≤ 2,e1++,For[e1 = 1,e1≤ 2,e1++,For[e1 = 1,e1≤ 2,e1++,

For[f1 = 1, f1≤ 2, f1++,For[f1 = 1, f1≤ 2, f1++,For[f1 = 1, f1≤ 2, f1++,

If[Mod[a[[Mod[d +d1−1,3]+1]]+b[[Mod[e+ e1−1,3]+1]]+If[Mod[a[[Mod[d +d1−1,3]+1]]+b[[Mod[e+ e1−1,3]+1]]+If[Mod[a[[Mod[d +d1−1,3]+1]]+b[[Mod[e+ e1−1,3]+1]]+

c[[Mod[ f + f1−1,3]+1]],9] == 0,c[[Mod[ f + f1−1,3]+1]],9] == 0,c[[Mod[ f + f1−1,3]+1]],9] == 0,

dblorig = Join[dblorig,{{q, p, i}}];dblorig = Join[dblorig,{{q, p, i}}];dblorig = Join[dblorig,{{q, p, i}}];

i = Length[tri3];i = Length[tri3];i = Length[tri3];

d = 3;e = 3; f = 3;d = 3;e = 3; f = 3;d = 3;e = 3; f = 3;

d1 = 3;e1 = 3; f1 = 3,d1 = 3;e1 = 3; f1 = 3,d1 = 3;e1 = 3; f1 = 3,

Null](* if statement *)Null](* if statement *)Null](* if statement *)

]]],Null](* if statement *)]]],Null](* if statement *)]]],Null](* if statement *)

]]],Null]]], (*for[p = 1*)]]],Null]]], (*for[p = 1*)]]],Null]]], (*for[p = 1*)

ProgressIndicator[p,{1,Length[tri2]}]ProgressIndicator[p,{1,Length[tri2]}]ProgressIndicator[p,{1,Length[tri2]}]

](*monitor*)](*monitor*)](*monitor*)

](*timing*)](*timing*)](*timing*)

](*Print*)](*Print*)](*Print*)

],ProgressIndicator[q,{1,Length[tri1]}]]],ProgressIndicator[q,{1,Length[tri1]}]]],ProgressIndicator[q,{1,Length[tri1]}]]

The above portion of the problem should probably not be allowed to run to completion -

at the time (and on the computer) of writing, it takes approximately one minute to evaluate

possible solutions at each of the 26046 values within tri1. The first 49 solutions are printed

below.
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dblorig[[1;;49]]dblorig[[1;;49]]dblorig[[1;;49]]

{{1,1,156},{1,5,156},{1,6,156},{1,8,54},{1,12,54},{1,14,163},{1,18,163},

{1,20,36},{1,23,36},{1,25,72},{1,28,72},{1,30,179},{1,32,179},{1,35,179},

{1,37,156},{1,40,179},{1,41,156},{1,45,156},{1,46,288},{1,48,110},{1,49,233},

{1,53,233},{1,54,63},{1,57,163},{1,59,260},{1,60,378},{1,62,360},{1,64,210},

{1,65,42},{1,66,210},{1,67,42},{1,69,72},{1,71,232},{1,72,242},{1,78,102},

{1,79,125},{1,82,288},{1,83,125},{1,84,289},{1,86,288},{1,88,110},{1,89,233},

{1,92,42},{1,94,233},{1,99,118},{1,100,233},{1,106,101},{1,112,101},{1,113,234}}

The Results

The first solution given by this program is dblorig[[1]]={1,1,156}. Here we translate this

solution into triangles.

Input:

q = 1;q = 1;q = 1;

p = 1;p = 1;p = 1;

ii = 156;ii = 156;ii = 156;

nineCtwo[[doubles[[tri1[[q,1]],1]]]]nineCtwo[[doubles[[tri1[[q,1]],1]]]]nineCtwo[[doubles[[tri1[[q,1]],1]]]]

nineCtwo[[doubles[[tri1[[q,1]],2]]]]nineCtwo[[doubles[[tri1[[q,1]],2]]]]nineCtwo[[doubles[[tri1[[q,1]],2]]]]

nineCtwo[[doubles[[tri1[[q,1]],3]]]]nineCtwo[[doubles[[tri1[[q,1]],3]]]]nineCtwo[[doubles[[tri1[[q,1]],3]]]]

nineCthree[[tri1[[q,2]]]]nineCthree[[tri1[[q,2]]]]nineCthree[[tri1[[q,2]]]]

Output:

{0,1}

{2,4}

{3,6}

{0,5,1}
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This output tells us that the first set of 3 triangles is {{01,11,02} ,{21,41,52} ,{31,61,12}}.

Input:

nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],1]]]]nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],1]]]]nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],1]]]]

nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],2]]]]nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],2]]]]nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],2]]]]

nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],3]]]]nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],3]]]]nineCtwo[[doubles[[dbl2[[tri2[[p,1]]]],3]]]]

nineCthree[[tri2[[p,2]]]]nineCthree[[tri2[[p,2]]]]nineCthree[[tri2[[p,2]]]]

Output:

{2,3}

{4,7}

{6,8}

{0,3,1}

This output tells us that the second set of 3 triangles is {{22,32,03} ,{42,72,33} ,{62,82,13}}.

Input:

nineCtwo[[doubles[[dbl3[[tri3[[ii,1]]]],1]]]]nineCtwo[[doubles[[dbl3[[tri3[[ii,1]]]],1]]]]nineCtwo[[doubles[[dbl3[[tri3[[ii,1]]]],1]]]]

nineCtwo[[doubles[[dbl3[[tri3[[ii,1]]]],2]]]]nineCtwo[[doubles[[dbl3[[tri3[[ii,1]]]],2]]]]nineCtwo[[doubles[[dbl3[[tri3[[ii,1]]]],2]]]]

nineCtwo[[doubles[[dbl3[[tri3[[ii,1]]]],3]]]]nineCtwo[[doubles[[dbl3[[tri3[[ii,1]]]],3]]]]nineCtwo[[doubles[[dbl3[[tri3[[ii,1]]]],3]]]]

nineCthree[[tri3[[ii,2]]]]nineCthree[[tri3[[ii,2]]]]nineCthree[[tri3[[ii,2]]]]

Output:

{2,5}

{4,8}

{6,7}

{7,8,5}

This output tells us that the third set of 3 triangles is {{23,53,71} ,{43,83,81} ,{63,73,51}}.
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Index

C9-factor, 7

k-factor, 7

k-factorization, 7

complete graph, see graph, complete

cycle, 2, 7

cycle decomposition, 3

degree, 7

direct sum, 7

equipartite graph, see graph, equipartite

factor, 7

graph, 1, 6

complete, 6

edge, 6

equipartite, 6

vertex, 6

group divisible design, 11

Hamilton-Waterloo problem, 4, 9

spouse avoiding variant, 5

uniform table sizes, 5

HWP, see Hamilton-Waterloo problem

Oberwolfach Problem, 3, 9

Constant Table Size, 4

spouse avoiding variant, 3

OP, see Oberwolfach problem

regular graph, 7

resolvable group divisible design, 11

RGDD, 11

subgraph, 6

induced, 6

spanning, 6

triangle, 7

triangle factor, 7

uniformly resolvable decomposition, 9

URD, 9
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