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ABSTRACT 

A post classification change detection technique based on a hybrid classification 

approach (unsupervised and supervised) was applied to Landsat Thematic Mapper 

(TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 

2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National 

Park in the southern region of Haiti. Each image was classified individually into six land 

use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and 

barren land using unsupervised ISODATA and maximum likelihood supervised 

classifiers with the aid of field collected ground truth data collected in the field. Ground 

truth information, collected in the field in December 2007, and including equalized 

stratified random points which were visual interpreted were used to assess the accuracy 

of the classification results. The overall accuracy of the land classification for each image 

was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change 

detection technique was used to produce change images for 1987 to 2000, 1987 to 

2004, and 2000 to 2004. It was found that significant changes in the land use/cover 

occurred over the 17- year period. The results showed increases in built up (from 10% to 

17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of 

herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At 

the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their 

area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed 

forest (from18 to 12%) were transformed into agriculture area or barren land. This study 

illustrated the continuing deforestation, land degradation and soil erosion in the region, 

which in turn is leading to decrease in vegetative cover. The study also showed the 

importance of Remote Sensing (RS) and Geographic Information System (GIS) 

technologies to estimate timely changes in the land use/cover, and to evaluate their 

causes in order to design an ecological based management plan for the park.  
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1  INTRODUCTION 

Tropical forest resources, specifically Haitian forest resources, are strongly impacted by 

natural and anthropogenic forces. Many mountainous regions, in particular Haiti, are 

subjected to hurricanes and other severe weather events every year, which contribute to 

fallen trees and soil erosion. Furthermore, the demands of increasing human populations 

place additional pressure on these natural resources (Allen and Barnes 1985; Zurick 

1995; Gong and Xu 2003). Munasinghe (1993) revealed that 2.5 million hectares of 

forest are cleared yearly in Central America for livestock production such as cattle. 

Demands for wood fuel (the main source of energy for cooking and heating for 1.5 billion 

people living in developing countries), timber, and recreation result in overutilization and 

degradation of these forests (Stein et al. 1999).  

 

Tropical regions have experienced a rapid change in the spatial distribution and 

characteristics of their forests, especially the conversion from forest to non-forest. Large 

tracts of tropical forests have been converted to agriculture because of increasing 

population and lack of economic opportunities for this population (Laurance et al. 2006). 

Consequently, deforestation has been the focus of many global change studies 

(Riebsame et al. 1994). According to Myers et al., (2000) the Caribbean region is one of 

the “hottest hotspots” with large numbers of threatened and endangered endemic plants 

and vertebrate species. To reduce the loss of biological diversity in the region and to 

protect the environment, in 2007 with the support of the United Nations Environment 

Programme (UNEP), Cuba, Haiti, and the Dominican Republic signed an agreement to 

create the first biological corridor in the Caribbean zone (UNEP 2007). 
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However, conservation efforts are described as very challenging in the Greater Antilles 

for countries like Haiti, the Dominican Republic, and Jamaica (Paryski et al. 1988). The 

struggle to maintain biodiversity and to manage natural resources sustainably is more 

visible in Haiti than any of the Caribbean Islands. Haiti is classified as a very poor, 

overpopulated and an environmentally degraded country (Paryski et al. 1988). Strauss 

(2000) pointed out that Haiti has only 1.44% of its original forest coverage. These 

remnants are distributed on less than 200 square kilometers among three National 

Reserves (Figure 1-1): La Visite National Park, Pic Macaya National Park, and National 

History Park – Citadel, Sans Souci, Ramiers (Paryski et al. 1988; UNEP-WCMC 1997).  

 

Figure 1-1. Location of the three National Reserves in Haiti. 
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According to many researchers, deforestation in Haiti is rooted in the lack of an all 

encompassing long-term forest management, the lack of well-defined and adopted 

policies for natural resources management, and the complexity of land tenure (Pierre-

Louis 1989). Additional contributing factors include lack of economic incentives such as 

off-farm activities for peasants and farmers other than agricultural or charcoal 

production, illegal forest harvesting (Dolisca et al. 2007a), and an uncontrolled increase 

in population. In a recent census, the Haitian Institute of Statistics (IHSI) estimated the 

Haitian population at 8.4 million. The population density is close to 300 people per 

square kilometer in the capital, Port-au-Prince, which is the highest in the Caribbean 

region (IHSI 2003).  

 

This study looks at land use/cover changes occurring within and adjacent to the Pic 

Macaya National Park. The Macaya region shelters a distinctive flora with many endemic 

species and contains the headwaters of five rivers. Deforestation within fragile 

watershed areas is jeopardizing the region’s unique ecosystem (Olson et al. 1996). 

Thus, in the last two decades there have been many initiatives such as reforestation and 

soil conservation projects to protect the 5500 hectares of mesic forest of Pic Macaya 

National Park from degradation. For instance, the World Bank, the United States Agency 

for International Development (USAID), NGOs and a team of researchers from the 

University of Florida have worked and contributed in many ways to document and 

conserve the biodiversity of Pic Macaya National Park. However, political instability has 

shortened the life cycle of projects; and the severe poverty of the people living in or 

around the area has facilitated the continuing trend of deforestation.  
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Moreover, managers and governmental institutions monitoring the parks are located far 

away. Remote, rugged terrain and hazardous roads make the park access difficult.  

 

This study uses Remote Sensing (RS) and Geographic Information Systems (GIS) 

technologies to detect, delineate and quantify the rate of land cover change that has 

occurred in Pic Macaya National Park for a 17-year window from 1987 to 2004. Since 

the early 1970s with the beginning of the Landsat program, satellite remote sensing has 

provided the capability to manipulate and analyze satellite imagery at different scales by 

using computer-based image processing software. RS and GIS software, such as 

ERDAS Imagine and ESRI ArcGIS software packages, offer an array of tools that 

facilitate data processing, data analysis and classification of earth surface features such 

as forest cover, soils, and land use/cover to produce thematic maps (Van Lynden and 

Mantel 2001; Jensen 2005; Leica Geospatial Imaging 2005; Chang 2006; Lillesand et al. 

2008).  

 

RS is the process of gaining information about the Earth’s surface by using an 

instrument at a distance to measure and/or record emitted or reflected electromagnetic 

energy (Lillesand et al. 2008). RS systems are capable of detecting, measuring and 

assessing scene variables based on the sensor response to reflected or emitted 

radiation from the target features. The acquisition of remote sensing data and its 

interpretation through GIS are cost effective according to many researchers (Campbell 

2007; Hayes and Cohen 2007; Shalaby and Tateishi 2007; Lillesand et al. 2008).  
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GIS is a computer based information system that has the capacity to store, manage, 

query, and update spatial information. GIS excels in its capacity to create new 

information from existing data (Chang 2006). GIS as well as RS play an important role in 

the decision making process for land management. The use of GIS has become crucial 

to public policy due to its facility to combine and then analyze geographic data from 

diverse sources (e.g. national population and housing census statistics data, and natural 

resources data). For example, researchers, policy makers use GIS maps in public 

meeting in order to visualize problems and to increase projects transparency. Also GIS 

products help to inform donors about specific situations and to involve the public 

impacted by the decisions in public policy (Haklay 2003; Sieber 2003).  

 

RS and GIS provide an economical and viable approach to the challenges of monitoring 

land use/cover in remote, mountainous areas, as compared to field surveys or aerial 

photography (Hayes and Sader, 2001). In the case of Haiti, many parameters related to 

the bio-physical environment, lack of infrastructure, and drastic political-socio-economic 

conditions have contributed to make data gathering via field-based surveys and aerial 

photography difficult. Moreover, without spatial data and RS technology, monitoring 

dynamic changes that are happening at a global or regional scale is a challenging task. 

Remotely sensed imagery obtained from satellites, such as Landsat, has helped to 

surmount these issues.  
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Land use/cover represents a basic thematic layer utilized by GIS and RS. Anderson et 

al. (1976) considered land use to be the changes made by humans on the land and land 

cover as the natural state of the land. Current information on land use/cover is vital to 

many applications. Foody (2002) considered land use/cover classification and change 

detection as the most practical application provided by the use of remotely sensed data 

to produce thematic maps. The thematic map provides land managers with information 

on the spatial and temporal changes that have occurred across the landscape. RS and 

GIS technologies are widely used by many researchers to study changes in diverse 

tropical and arid regions. For mapping and monitoring land use/cover changes in the 

northwestern coastal zone of Egypt, Shalaby and Tateishi (2007) used RS and GIS. 

Hartter et al. (2008) used RS to detect tropical dry forest succession in a shifting 

cultivation mosaic of the Yucatan Peninsula in Mexico. In general, monitoring change 

detection of land use/cover involves the following steps: a) detecting changes that have 

occurred; b) identifying the nature of the change; c) measuring the areal extent of the 

change; d) assessing the spatial pattern of the change (Macleod and Congalton 1998). 

 

1.1 Objectives 
The objectives of this research are summarized below: 

 Determine the rate of land use/cover change and where the change is taking 

place in Pic Macaya National Park; 

 Evaluate which digital image processing classification techniques provide the 

best change detection information; 

 Provide an improved understanding of the process of changes in land use/cover 



 

7 
 

patterns within the park to develop policies that can generate sustainable land 

use/cover management practices and help develop alternative economic 

incentives to the population living in and adjacent to the park. 

 

Based on these objectives, this study seeks to answer the following questions: 

1. Can land use/cover change be detected utilizing TM, ETM+, and ASTER 

remotely sensed imagery? 

2. Which classification approach will yield the best results in detecting the change in 

land use/cover? 

3. What kinds of changes in vegetation composition and distribution have taken 

place over a 17-year window (1987-2004) within the Macaya Park?  

4. Which areas need urgent soil conservation and reforestation intervention? 

5. What is the trend of deforestation in the area over time? Are human activities or 

natural events the main cause of these changes? 
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2 LITERATURE REVIEW 

2.1 Land Use/Cover  
Land use is a common term used in the remote sensing literature. Meyer (1995) 

described land use as anthropogenic changes exerted on the natural land cover such as 

the conversion of wild land into urban or agriculture. Meyer (1995) also defined land 

cover as the physical state of the land surface with its natural feature type such as water, 

vegetation, soils, karsts, barren land or forest. One of the problems of mapping land 

use/cover with remotely sensed data is the capacity to produce a map that depicts, with 

a high degree of accuracy, the feature present on the land surface. To overcome this, 

many scientists simultaneously use remotely sensed data, field data and ancillary data in 

order to produce better and more accurate maps (Anderson and Martinez-Meyer 2004; 

Currit 2005).  

 

2.2 Satellite Characteristics 
Satellite remote sensing data with multi-temporal resolution has become a crucial tool for 

monitoring land use/cover change (Güler et al. 2006). Satellite-based land observation 

sensors offer reliable and consistent digital data with different ranges of spectral, spatial 

radiometric and temporal resolutions.  

 

Spectral resolution is defined as the number and spectral width of the bands in the 

electromagnetic spectrum of a satellite sensor (Jensen 2005). A band is composed of 

pixels, and each pixel has a digital number (DN) or brightness value (BV). DN or BV is 

the relative reflectance of the electromagnetic spectrum for the target area or “foot print. 
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Spatial resolution refers to the capability of the sensor to depict, measure, and record 

objects on the ground. The spatial resolution varies among sensors and satellites. The 

smaller the spatial resolution the greater the detail in the satellite image.  

 

Sensor sensitivity to record changes in the electromagnetic is referred as the radiometric 

resolution. Different sensors record different reflectance or emittance levels of radiation 

intensities ranging from 6 bit (Landsat MSS), 8 bit (Landsat TM, ETM+ ASTER VNIR-

SWIR) and 12 bit (ASTER-TIR). The higher the radiometric resolution, the finer the 

capacity to detect changes in reflectance or emittance.  

 

Temporal resolution refers to the time of repeat coverage for a specific geographic 

location (Jensen 2005; Lillesand et al. 2008). Temporal coverage varies also between 

sensors.  

 

2.2.1 LANDSAT 5 Thematic Mapper (TM) 

The Landsat program is the oldest digital satellite imaging system of the Earth’s surface 

(Lillesand et al. 2008). The Landsat 5 Thematic Mapper (TM) was launched in March 1, 

1984 with two sensors: the Multi Spectral Scanner (MSS) and the Thematic Mapper 

(TM). The TM sensor was designed to significantly improve the spatial and spectral 

resolutions, geometric and radiometric accuracies compared to Landsat 1-3 MSS 

sensor. Additional mid-IR bands and a thermal channel were added in order to achieve 

improved spectral resolution than the MSS sensor. The TM sensor simultaneously 

acquires data in seven spectral bands (Table 2-1). 
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Table 2-1. Characteristics of Landsat 5 TM. 

Band Spectral 
Resolution 

(μm) 

Spatial 
Resolution 

(m2) 

Radiometric 
Resolution 

(bits) 

Temporal 
Resolution 

(days) 

1 0.45 - 0.52 30     
2 0.52 - 0.60 30     
3 0.63 - 0.69 30     
4 0.76 - 0.90 30 8 16 
5 1.55 - 1.75 30     
6 10.40 - 12.50 120     
7 2.08 - 2.35 30     

 

2.2.2 LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) 

The Landsat 7 ETM+ was launched in April 15, 1999 following the failure of Landsat 6 

ETM+ to achieve orbit. The earth observing instrument on Landsat-7, the Enhanced 

Thematic Mapper Plus (ETM+), offers an enhanced version of the TM sensor and 

provides continuity of the Landsat 5 sensors. Compared to the TM, the ETM+ instrument 

provides a full aperture 5 % absolute radiometric calibration, a panchromatic band with a 

higher spatial resolution of 15 meters, and a thermal IR band with 60 m spatial resolution 

(NASA Landsat 7 2004) (Table 2-2).  
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Table 2-2. Characteristics of LANDSAT 7 ETM+ (Lillesand et al. 2008). 

Band Spectral 
Resolution 

(μm) 

Spatial 
Resolution 

(m2) 

Radiometric 
Resolution 

(bits) 

Temporal 
Resolution 

(days) 

1 0.45 - 0.52 30     
2 0.52 - 0.60 30     
3 0.63 - 0.69 30     
4 0.76 - 0.90 30 8 16 
5 1.55 - 1.75 30     
6 10.40 - 12.50 60     
7 2.08 - 2.35 30     
8 0.52-0.90 15     

 

2.2.3 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

ASTER is one of several instruments found aboard the Terra satellite, launched in 

December 1999 as part of NASA’s Earth Observing System (EOS). The Terra satellite 

has a polar, sun synchronous orbit with an altitude of approximately 704 km and a revisit 

cycle of 16 days. It is the product of a consortium between NASA, Japan’s Ministry of 

Economy, Trade and Industry (METI), and Japan's Earth Remote Sensing Data Analysis 

Center (ERSDAC). ASTER provides detailed data on land surface climatology, 

hydrology, and elevation. Moreover, ASTER is the only high spatial resolution sensor on 

Terra that can be used to study land use/cover changes, monitor natural disasters, cloud 

covers, glaciers, vegetations and ecosystems dynamics at varying spatial resolutions 

from 15 to 90 m spatial resolution (Abrams et al. 2004; Gillespie et al. 2005).  

ASTER collects high spatial resolution data in 14 spectral bands; from the visible 

through the thermal infrared wavelengths. The sensor has three subsystems to capture 

data from different regions of the electromagnetic spectrum: the Visible and Near 
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Infrared (VNIR), the Shortwave Infrared (SWIR), and the Thermal Infrared (TIR). ASTER 

imagery can be used in conjunction with Landsat TM and ETM+ data for a number of 

reasons. ASTER’s spectral resolution is similar to that of Landsat TM and ETM+ data. 

The three 15 m spatial resolution VNIR spectral bands correspond to the blue, green, 

red, and NIR bands of Landsat 7. The SWIR bands 4 through 9 (with 30 m spatial 

resolution) correspond to Landsat bands 5 and 7. The TIR bands correspond to the 

Landsat thermal band 6. Furthermore, ASTER and Landsat TM and ETM+ sensors have 

the same temporal resolution of 16 days (Feldpausch et al. 2006; Heiskanen 2006; 

Wulder et al. 2008) (Table 2-3).  

 

Table 2-3. Characteristics of ASTER data- adapted from  (National Aeronautics and Space 
Administration (NASA) 1999). 

Subsystem Band No. Spectral 
Range (μm) 

Spatial 
Resolution 

(m2) 

Radiometric 
(bits) 

Very-Near 
Infrared 
(VNIR) 

1 0.52 -0.60 

15 8 
2 0.63-0.69 

3N 0.76-0.86 
3B 0.76-0.86 

Short Wave 
Infrared 
(SWIR) 

4 1.6-1.70 

30 8 

5 2.145-2.185 
6 2.185-2.225 
7 2.235-2.285 
8 2.295-2.365 
9 2.360-2.430 

Thermal 
Infrared 

(TIR) 

10 8.125-8.475 

90 12 
11 8.475-8.825 
12 8.925-9.275 
13 10.25-10.95 
14 10.95-11.65 
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2.3 Image Processing 
Image processing is manipulating and processing of remotely sensed digital data to 

create an end product, such as a change detection map. It includes four major 

components: pre-processing, classification, accuracy assessment, and change detection 

techniques. Change detection can be quantified by using data from a single sensor as 

well as from multiple sensors at different acquisition dates. Various images obtained 

from the same sensor such as Landsat-5 TM do not require much pre-processing since 

they have the same spectral, spatial, and radiometric resolutions (Read and Lam 2002).  

 

Furthermore, Landsat’ s spatial, spectral, temporal resolutions, its extensive and 

historical archive, and its accessibility have facilitated its use for monitoring land 

use/cover activities (Franklin and Wulder 2001; Cohen and Goward 2004). Helmer et al., 

(2002) have used Landsat TM satellite imagery to map 21 forest formations and land 

cover in Puerto-Rico. However, recent sensor problems with the Landsat ETM+ along 

with limited availability of Landsat-5 TM imagery have lead researchers and land 

managers to seek other remote sensed data sources for monitoring land use/cover 

change (Cohen and Goward 2004; Wulder et al. 2008). ASTER imagery is helping to fill 

the gap caused by the Landsat discontinuity (Abrams et al. 2004). Many researchers 

have begun using ASTER imagery for forest monitoring programs along with Landsat 

(Feldpausch et al. 2006; Heiskanen 2006). 

 

In order to study change detection among multi-temporal images from different sensors, 

researchers are challenged by many factors. Systematic errors from the sensors 

(geometric errors) and variation in the radiance (L ) values (radiometric errors) can 
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create confusion between the changes associated with land use/cover and those related 

to variations in solar illumination, atmospheric conditions, seasonal phenology and/or 

error due to sensor malfunction (Chavez 1996; Bruzzone and Prieto 2000; Kaufmann 

and Seto 2001; Bruzzone et al. 2002; Read and Lam 2002; Richards and Xiuping 2006; 

Castellana et al. 2007; Nangendo et al. 2007). These issues need to be addressed to 

minimize the risk of misinformation and to guarantee the accuracy of the results (Song et 

al. 2001).  

 

2.3.1 Pre-processing 

Pre-processing is important to normalize the raw digital data for analysis. Campbell 

(2007) the pre-processing into four main functions: radiometric corrections, geometric 

corrections, enhancement and transformation.  

 

Radiometric correction is the process of converting the DN from the sensor into units of 

absolute reflectance (Lillesand et al. 2008). This correction reduces sensor noise and 

decreases the impact of atmospheric components and topographic shadows. Sensor 

noise can be caused by sensor malfunction and/or errors in data collection and 

transmission. Atmospheric errors are usually the result of haze, clouds or particles 

present in the atmosphere where the energy is back-scattered to the satellite sensor. 

Topographic shadows represent a common problem in mountainous environments. The 

recorded DN value is influenced by the slope, aspect and reflectance of the feature on 

the ground. According to the literature, in the northern hemisphere south facing slopes 

receive more annual radiation per unit area than and are drier than north facing slopes 
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because of the angle of the Earth surface relative to the sun (Chavez 1988; Civco et al. 

2002; Lillesand et al. 2008). A number of methods have been recommended and 

developed to remove or reduce radiometric effects (Vincent 1972; Moran et al. 1992; 

Chavez 1996). 

 

Geometric correction adjusts distortion effects caused by the Earth’s rotation and 

curvature, sensor motion and platform vibration. This process also allows geo-

referencing the imagery to a geographic or planar coordinate system (Lillesand et al. 

2008).  

 

2.3.2 Enhancement and Transformation 

Enhancement is a procedure applied to the original image to improve the contrast 

between features by modifying the range of DNs for easier visual interpretation. Linear 

and nonlinear contrast enhancements procedures are widely used to extend or “stretch” 

the range of DNs from 0 to 255 (the full range of values for 8-bit data). However, 

enhancement procedures have major drawbacks. They alter the statistical structure of 

the data in such way that it is not recommended to use the enhanced image for 

automated classification (Jensen 2005). 

 

As opposed to enhancement procedures, transformation procedures, such as Principal 

Component Analysis (PCA) reduces redundancy between inter-band correlations, 

increases the computational capacity, improves the visual appearance of the scene, 

while maintaining the statistical integrity of the image. 



 

16 
 

A transformation may also help to discern which combination of bands or components 

that display unique information (Jensen 2005).  

 

2.3.3 Classification  

Image classification is the process of grouping and labeling each pixel within the original 

image to a land use/cover information class (Song et al. 2001; Shrivastava and Gebelein 

2007). The resulting classified image becomes a mosaic of pixels regrouped into a 

thematic map. Two technical expressions are repeatedly found in land use/cover 

classification: information classes and spectral classes. Information classes differ from 

spectral classes in that they are defined within a classification scheme by the analyst as 

the class of interest, based on the objectives of the study and the characteristics of the 

study area (Jensen 2005).  

 

For instance, adopted the Anderson classification systems use a hierarchical land 

use/cover classification system with four different levels that characterize the information 

class for land cover locally, regionally, or globally. These information classes included 

Forest, Urban, Agriculture, Rangeland, Open Water, Rock, etc. (Anderson et al. 1976). 

The establishment of a classification scheme is a necessary step for delineating sites 

from the satellite imagery. Spectral classes comprise a group of pixels, which have 

similar DNs in one or more bands. This grouping of DN’s forms the spectral information 

class, which is used by the digital image classification algorithm to classify each pixel 

based on its spectral similarities. The spectral classes are then grouped into information 

classes by the analyst (Jensen 2005).  
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This type of classification, called spectral pattern recognition, is widely used to classify 

land use/cover. Figure 2-1 shows the process of a spectral classification. Further details 

are given in point 2.3.3 classification approach.  

 

  

Figure 2-1. Example of a spectral pattern recognition classification using spectral classes. 

 
Accurately delineating land use/cover classes for regions with complex topography, 

variation in climate, soils, and ecological zones is difficult. The spectral signatures of 

many forest species in many Caribbean countries are not distinct and well defined. Their 

distribution and ecological classification are usually mapped based on climatic zone, 

geology, elevation and rainfall distribution (Helmer et. al., 2002). Holdridge (1965) 

classifies the vegetation of Hispaniola based on bioclimatic characteristics. He 

determined the regional vegetation type and life zones based on temperature and 

rainfall. Three major types of vegetation for the Caribbean region were found in his 

Spectral Classes
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classification system: tropical lowland dry forests, highland and mesic pine forest and 

coastal mangrove swamps. Tasaico (1967.) used the Holdridge system to map potential 

vegetation for the Dominican Republic. Howard (1973) inventoried the vegetation of the 

Antilles and also used climatic data and trees species to map the land cover.  

 

Recently, a working group, named the Caribbean Vegetation Ecology Working Group, 

published a standardized classification system for Caribbean vegetation types (Areces-

Mallea et al. 1999). It was established based on the classification scheme of 

Anderson/United States Geological Survey (Anderson et al. 1976). This study utilized a 

Level I and Level II classification system dependent on the individual land cover classes. 

The study took into account the land cover class information developed by the University 

of Florida (Judd 1987), incorporated collateral ground truth data and significant a priori 

knowledge of the area. 

 

2.3.4 Classification Approaches 

As noted previously, spectral pattern classification was used in this study to classify the 

land cover. It is based on the univariate and multivariate statistics associated with each 

individual pixel for each band. Three types of classification are described: unsupervised, 

supervised, and hybrid classification schemes (Jensen 2005). 

 

The unsupervised classification approach uses the Iterative Self-Organizing Data 

Analysis (ISODATA) algorithm to group pixels in the image according to their reflectance 

values (Jensen 2005). Pixels with spectral similarities are grouped into clusters by the 
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algorithm (Duda et al. 2001) with a high degree of objectivity since the process is done 

with little analyst input initially. Once the clusters are defined, the analyst must assign 

information class labels (land cover classes) to each cluster. Unsupervised classification 

methods represent the best choice when extensive fieldwork is not possible as the 

algorithm insures all spectrally similar pixels are clustered together (Bruzzone et al. 

2004).  

 

Supervised classification relies on a priori knowledge of the study area. This knowledge 

can be obtained from fieldwork, aerial photography, maps and extensive personal 

experience (Bruzzone et al. 2004). Training sites are developed by drawing polygons 

around an area of interest (AOI) which represents a spectral class. This spectral class 

should have a low standard deviation. A seed algorithm may also be used to collect 

spectrally similar training sets. An original pixel at x, y location is selected (seeded) on 

the image. The neighboring pixels are then evaluated within all bands to locate pixels 

with similar spectral characteristics of the original seed pixel. Univariate and multivariate 

statistics are calculated for every training site (mean, standard deviation, covariance and 

correlation) (Foody 2002; Jensen 2005).  

 

Often better results are achieved by capitalizing on both unsupervised and supervised 

methods, commonly referred to as hybrid classification. An unsupervised cluster is done 

to generate spectrally homogenous classes. Then, using visual interpretation and 

ground truth data, each cluster is labeled and analyzed statistically to determine the 

spectral separability. This method is particularly vital for the region of our study where 
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there is a lack of ground information for each spectral class due to site inaccessibility. 

Hybrid classifications approaches are cost-effective and successful in producing land 

use/cover maps with high accuracy from satellite images (Lo and Choi 2004; Güler et al. 

2006). 

 

2.3.5 Accuracy Assessment 

Accuracy assessment is the process of validating the classified land use/cover thematic 

map. This helps quantify how well the resultant land used/cover map corresponds to the 

actual land cover. Accuracy assessment is useful for checking the validity of the 

classification approach for evaluating errors. Two sources of information are then 

compared: the classified map and the ground reference test information. The 

relationship between the classified map and the reference data is summarized in an 

error matrix, called also a confusion matrix or a contingency table (Jensen 2005; 

Lillesand et al. 2008).  

The accuracy report includes an error matrix, producer’s and user’s accuracy for each 

information class, an overall accuracy, and Kappa statistics. The error matrix below 

shows the comparison of each reference point to the classified pixel at the same 

geographic position (Table 2-4).  
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Table 2-4. Example of an error matrix (Congalton and Green 1999). 

Reference data 

Land cover 
classes Deciduous Coniferous Agriculture Shrub Row total 

User’s 
Accuracy 

in % 
Deciduous 65 4 22 24 115 65/115=57 
Coniferous 6 81 5 8 100 81/100=81 
Agriculture 0 11 85 19 115 85/115=74 
Shrub 4 7 3 90 104 90/104=87 
Column 
total 

75 103 115 141 434  

Producer’s 
Accuracy 
(%) 

65/75=87 81/103=79 85/115=74 90/14
1=64 

  

Overall Accuracy in % = (65+81+85+90)/434=74 
 

The pixels or polygons that were correctly assigned to each information class are 

represented in the diagonal cells of the matrix (in bold). The off-diagonal cells display the 

errors in the classification given the ground reference information. Producer’s and user’s 

accuracies measure the correctness of each information class with respect to omission 

and commission errors.  

Producer’s accuracy is obtained by dividing the number of correctly classified pixels of a 

class by the column total of reference points within the class in question (see producer’s 

accuracy row in Table 2-4). It tells how well the analyst has classified a certain area in 

the land surface. A low producer’s accuracy implies a high error of omission. Omission 

errors occur when a classified pixel is excluded from the class that it really belongs to. 

User’s accuracy is calculated by dividing the number of correctly classified pixels by the 

row total of pixels of the assessed class (far right column of the error matrix in Table 

2-4). As a user of the produced map, the user’s accuracy of a class indicates what 

percentage of a particular land cover type on the map is really that land cover type on 
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the ground. A low user’s accuracy represents a high error of commission. Commission 

error occurs when a land cover class is included in an incorrect class category. Overall 

accuracy is the number of correctly classified reference point (the diagonal points in the 

table) divided by the total number of reference points (Congalton and Green 1999).  

 

The Kappa statistic (Khat) compares two datasets to see if they differ significantly. It 

looks at the agreement or accuracy between the classified map and the reference data. 

The Kappa statistic utilizes all the data in the matrix rather than just the diagonal data in 

the error matrix. The Kappa statistic ranges from 0 to 1. A value close to 1 indicates a 

high agreement between the two datasets (Congalton and Green 1999). 

 

2.4 Change Detection Methods 
Change detection is the process of observing and comparing two multi-temporal images 

acquired of the same geographical area at different anniversary dates in order to map 

and analyze spatial patterns of change (Jensen 2000). The choice of a change detection 

algorithm dictates the type of change results. 

 

Image algebra (band differencing and ratioing) and post classification comparison (PCC) 

are among the algorithms widely used to create land cover change map. Image algebra 

techniques evaluate and compare pixel by pixel the multi-date images to reveal changes 

between acquisition dates. It is divided into two different methods: image differencing 

and image ratios. Image differencing is performed by subtracting the DN value of one 

image for a particular band from the DN value of the corresponding pixel in the same 
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band of the second image. Image ratios are executed by dividing the DN of one image 

from a particular band by the DN of the corresponding pixel of the same band of the 

second image (Singh, 1989).  

 

Post Classification Comparison (PCC) is considered the simplest approach to assess 

change detection. Land cover maps for a least two different times using the same 

spectral information classes are required (Jensen 2005). Each image is classified 

independently and then compared through cross-tabulation to produce a change “from-

to” image. When compared to the image algebra technique, PCC can produce 

information on the type of transition change. The method chosen depends on the nature 

of the study and the type of imagery available. Based on the scope of this study, the 

PCC method is preferred, and has been broadly accepted in RS to identify change 

among multi-temporal data (Hayes and Cohen 2007; Shalaby and Tateishi 2007).  
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3 DESCRIPTION AND METHODOLOGY OF THE 
STUDY SITE 

3.1 Location and Characteristics of the Study Site 
Pic Macaya National Park is located in southwest Haiti, approximately 36 km North West 

of Les Cayes and 195 km South West of Port-au-Prince. Its geographic position lies 

between 18 21’N latitude and 74 01’ W longitude. Pic Macaya National Park is situated 

within the Massif de la Hotte, which ranges from 1,270 to 2,255 meters in elevation 

(Figure 3-1).  

 
Figure 3-1. Location of Pic Macaya National Park, Haiti surrounded by two major Mountains--Pic 
Formon and Pic Macaya (ESRI data source, GLCF). 
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3.2 Biophysical Characteristics 
3.2.1  Topography and Hydrology 

The topography of the Pic Macaya National Park is extremely rugged (Figure 3-2). The 

Park’s boundary is located around two dominant mountains in the region, Pic Formon 

(2,250 meters or 7,381 ft) in the east, and Pic Macaya in the west (2,347 meters or 

7,700 ft) (Figure 3-1). The plains and the rocky hills south of Pic Formond are included in 

the park’s boundary. The park area is the headwaters of five main rivers: Grande Ravine 

du Sud, Roseaux, Port-à-Piment, l’Acul, and Guinaudée (Woods, 1987). Temperatures 

range from 200C to 00 C. The region is influenced by moist air, winds and sea breezes 

blowing from north to south. This results in frequent rainfall at higher elevations. The 

region receives an annual rainfall of more than 3,000-5,000 mm yearly.  

 
Figure 3-2. A- False color composite of ETM+ band 4-3-2 (RGB) in the Macaya Region. Major 
typical vegetation covers are pine forest (dark red) and broadleaf shrubs light red; barren land 
and agriculture are shown in shades of brown and pink; the light green represents karsts rock and 
the blue represents urban areas. (B) karsts, (C) barren land, and (D) mountain erosion.

(A)

(B) (C) (D)

Global Land 
Cover 
Facility 

Photos by 
Author 
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3.2.2 Geology and Soil 

The geology of the area is described as complex, and consists of uplifted limestone, 

basaltic volcanic rock, and siliceous sandstone and was formed around 70 to 80 million 

years ago. The geological formation influences the soils type. The soils are 

predominantly oxisols and ultisols characterized by a low pH, acidic and neutral 

composition. In the upper hills area, the soils are thin and very erodible and lose fertility 

rapidly when cultivated (Sergile et al. 1992). Gully erosion is frequent in the lower hills 

and plains. Deforestation, high hurricane winds, and heavy rainfall increase erosion 

risks. The lower hills and the plains are covered respectively with red clays and alluvial 

soils (Figure 3-3).  

 

Figure 3-3. Gully erosion on the plain and hilly mountains. Photos by author. 
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3.2.3 Flora and Fauna 

The region of the Massif de la Hotte including the park area is dominated by needle- 

leave forest, such as Pinus Occidentalis or “Bois Pin”, the only endemic conifer in the 

Island (Holdridge 1942). These pines can reach 40 meters in height and approximately 

two meters in diameter (Holdridge 1947) (Figure 3-4).  

 

Figure 3-4. Illustrations of Pinus Occidentalis © author. 

 

In general, vegetation types in the park and adjacent areas include montane cloud and 

wet forests, pine forest, and lower montane wet forests find at elevations of 850 m to 

2300 m (2,788 – 7,545 feet). One out of 10 plant species is endemic to the park.  
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There are more than 500 species of vascular plants, with 130 endemic to the island. 

Thirty four percent of flowering plants are endemic to the park (Judd 1987; Timyan 

2000). The park also provides habitat for many mammalian species, migratory birds and 

amphibians (Figure 3-5). One endangered mammalian species, the Haitian Solenodon 

(Rhizoplagiodontia lemkei), is endemic to the park. Numerous birds have been observed 

in the park. Three are vulnerable to extinction: the White-winged Warbler (Xenoligea 

montana) and the White-winged Crossbill or Hispaniolan Crossbill (Loxia megaplaga), 

and Black-capped Petrel (Pterodroma hasitata) (Judd 1987; Paryski et al. 1988; Olson et 

al. 1996; International Union for Conservation of Nature 2008).  

Figure 3-5. Haitian Solenodon (upper left) and White-winged Warbler (upper right) White-winged 
Crossbill or Hispaniolan Crossbill (Loxia megaplaga), and Black-capped Petrel (Pterodroma 
hasitata). Pictures: Courtesy of Mr. Eladio Fernandez and Mr. Patrick Coin. Printed with 
permission. 
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3.2.4 Population and economic activities 

The population living within, or adjacent to, the park has seen a dramatic increase in the 

last 20 years. Compounding the rapid population increase is the seasonal flow of 

migrant farmers who access the area during the growing season (November-March) to 

exploit tree resources for charcoal production and clearing land for seasonal crops 

production (Organization for the Rehabilitation of the Environment 2001 ). The main 

economic activity of people living adjacent to the park area is agriculture including 

cropping and livestock production (Figure 3-6).  

Figure 3-6. Economic activities of the population living in/around the park Macaya. 
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The main income source of the inhabitants of the plaine des Cayes and surrounding 

communal section is agriculture. There are hectares of rice, beans, bananas, and 

vegetable gardens whose main irrigation depends on the rivers coming from the park. 

The local cropping calendar starts with clearing in November and December. From 

January to February, men and women are actively planting their gardens with yams, 

manioc, and sweet potatoes. Crops such as black beans are intercropped with corn and 

roots. From April to June, Macaya local residents rely on the marketplace for food. 

Livestock includes cattle, goats, sheep, Haitian pigs, and poultry raised for market and 

are the emergency financial support for the family as shown in the Figure 3-6. The 

harvesting season starts in May and continues to July.  

 

Additional income is generated from illegal timber harvesting and land clearing within the 

Park. Large deciduous trees such as Bois Tremble (Didymopanax tremulum) are utilized 

for charcoal production. Pine trees are cut down for housing construction. The cleared 

areas are converted into gardens for fast growing, cash crops such as beans.  

 

Intense deforestation in the park areas threatens the stability and the hydrologic cycle of 

these rivers, as well as the rich agricultural lands below. Pic Macaya National Park 

serves the double roles of conserving and protecting numerous endemic species of 

plants and animals and also of providing irrigation for the population downstream. 
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3.3 METHODOLOGY 
3.3.1 Data Collection 

Imagery from a single satellite for the study area with the same temporal coverage over 

time with cloud coverage less than 20% was not available. Data from different sensors 

were chosen: Landsat-5 TM, Landsat-7 ETM+, and ASTER. All the images were located 

within path 010/ row 047 of the Landsat Worldwide Reference System (Figure 3-7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7. General Methodology. 

 

Land use/cover maps, at scales of 1:1,971,021, available for Haiti and the Dominican 

Republic were consulted to gain an understanding of the type and distribution of the 

vegetation. These small scale maps cover a large area on the ground and provide only 
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general information on the type of vegetation and its location. A Shuttle Radar 

Topography Mission (SRTM) Digital Elevation Model (DEM) was used. Field data were 

collected in December 2007.  

 

3.3.2 Satellite Imagery and Characteristics 

The characteristics of the remotely sensed image used for this study are given in the 

Table 3-1. They represent the best scenes available from the cited sources.  

Table 3-1. Characteristics of the satellite imagery utilized. 

SATELLITE SENSOR PIXEL 
SIZE PATH/ROW ACQUISITION 

DATE SOURCE 

Landsat 5 TM 30  

010/047 

1987/01/21  
Global Land 
Cover Facility 
www.glcf.umiacs.
umd.edu 
 

Landsat 7 ETM+ 30 2000/11/16 

Terra 
ASTER 
(VNIR+ 
SWIR) 

15 2004/01/28 

 

3.3.3 Digital Elevation Model 

A 3-arc-second Digital Elevation Model (DEM) of 90 meter was used in this study. This 

DEM is a product of the Shuttle Radar Topography Mission (SRTM), a joint project 

overseen by NASA and the National Geospatial-Intelligence Agency (NGA), which has 

provided topographic data for 80% of the Earth’s land surface. This 90 m DEM was the 

digital elevation data available for Haiti. An attempt to create an ASTER- derived DEM, 

which would have a higher resolution failed due to software unreliability.  

 



 

33 
 

3.3.4 GPS Points Survey 

A GPS receiver Garmin 76 was used to collect field data in accessible areas of the Park 

Macaya. A total of 116 GPS points were acquired on the field trip undertaken during the 

period of December 28 to 30, 2007. A good rule of thumb would be to collect a minimum 

of 30 to 50 ground points per land cover class (Congalton and Green 1999), but due to 

limited access in the field, I was able to collect only 116 points. For each class, 5 to 19 

ground control points were collected. A Relevé field form (Appendix C) was used to note 

and register information on the dominant type of land use/cover of the area. The ground 

truth data collected in the field were randomly divided and used as training and accuracy 

assessment.  

 

3.3.5 Software Packages Utilized  

ERDAS Imagine 9.1 was used for the image processing. ArcGIS 9.2 was utilized to map 

and quantify the rate of change. Derived hillshade and slope thematic layers were 

generated with ArcGIS 9.2. Microsoft Word and Excel 2007 were used to produce the 

report.  

 

3.4 Image Processing 
Preprocessing procedure was applied to the three TM and ETM+ bands 1, 2, 3, 4, 5 and 

7 as well as ASTER VNIR bands 1,2,3 and SWIR bands 4, 5, 6, 7 were imported and 

layered stack with ERDAS Imagine 9.1 (Figure 3-8). 
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Figure 3-8. Preprocessing flowchart. 

 

3.4.1 Radiometric Corrections 

Using ERDAS Imagine model make, the DNs of each image was converted to surface 

reflectance using the modified dark object subtraction, an atmospheric correction that 

utilized the cosine of the solar zenith angle correction (COST)). Inputs into the model 

include the Earth-Sun Distance, the solar elevation, and the minimum DN values for 

each band (Chavez 1996).  

 

3.4.2 Geometric Correction 

Each individual satellite image was geo-rectified using a first order affine transformation 

and resampled to the Universal Transverse Mercator (UTM) coordinate system, zone 18 

World Geodetic System (WGS 84) datum using a nearest neighbor interpolation 

algorithm (Jensen 2005). Nearest neighbor is a resampling method, which preserves the 

original reflectance value of the image data. Spatial resolutions of the two Landsat 

scenes were rectified from 28.5 to 30 m pixels.  
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ASTER VNIR and SWIR bands (1, 2 3N and 4 to 9) were rectified to 30 m pixels also. All 

the image scenes were subset (Figure 3-9) to the following coordinates points:  

Upper Left X: 590080m   Lower Right X: 620920m 

Upper Left Y: 2038488m    Lower Right Y: 2017818m 

 

Figure 3-9. Original satellite imagery (left) without radiometric correction, subset of the Landsat 
ETM+ after radiometric corrections (right). 

 

3.4.2.1 Enhancement and Transformations 

Image visualization enhancements and transformations were utilized to assist in the 

classification process. Scientific visualization is defined as: 

“Visually exploring data and information in such a way as to gain understanding 

and insight into the data” (Brodlie et al. 1992). 

 

There are different techniques to improve the visualization of digital imagery. Various 

band combinations displayed as red, green, blue (rgb), color composites were used to 

aid in visually interpreting the data. Principal component analyses reduced the 

redundancy in the data as well as improving image visualization (Jensen 2005). 
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Digital imagery can be displayed using one gray scale band, a true color composite, or a 

false color (FC) composite in the RGB color display system. The standard false color 

composite (4, 3, 2) helps to visualize land cover/use as vegetation is highly reflective in 

the near-IR (band4) and fairly reflective in the red (band 3) and green (band 2) (Lillesand 

et al. 2008).  

 

The FC of 4,3,2 (Figure 3-10) shows pine forest in shades of dark red, broadleaved 

shrub in light red, barren land as shades of brown, karsts as light green and urbanization 

as blue-gray color.  

Figure 3-10. False color composite of bands 4, 3, 2 (rgb) of Landsat ETM+ 2000 scene. 
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Band combinations 7, 4, and 2 in RGB (Figure 3-11) were used to gain more 

understanding of the geology (barren soils: karsts, and sediments), and distinguishing 

stream channels from erosion gullies. Pine forest appears as shades of olive-green. 

Grasslands appear as light green. Barren soil appears in pink shades and urbanization 

in different shades of magenta.  

Figure 3-11: False color composite of bands 7, 4, and 2 (rgb) of Landsat ETM+ 2000 scene. 

A true color composite (bands 3, 2, 1) was evaluated for each image. Resulted image 

shows ground features colors similar to what the human eye perceives. Clouds are 

white, water is blue, vegetation is green and cleared areas are light pink (Figure 3-12).  
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Figure 3-12. True color composite of bands 3, 2, 1 (rgb) of Landsat ETM+ 2000 scene. 

 

Principal components were calculated for each of the 3 images. The transformation was 

applied to reduce the redundancy of information and compress the data into 

uncorrelated independent components that can be used for classification (Singh 1989). 

Eigenvalues were computed from each image’s covariance matrix and determine the 

spectral length of each component’s axis. Eigenvectors refer to the directional 

relationship between the principal components axes and imagery axes. A factor loadings 

matrix shows the information contributed by each band to the individual components 

(see Appendix) (Singh 1989; Jensen 2005). As a result of the transformation, a new 

image for each study was created. 
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The first three PC components of the Landsat 1987 and 2000 scenes were stacked 

together to form a new image, since they accounted for 99.38% and 98.95% of the 

variance. The first PCA of the ASTER VNIR-SWIR was used since it accounted for 93% 

of the variance (APPENDIX A: Principal Components Statistics and Analysis). A subset 

of the Landsat ETM+ PC transformation is shown in Figure 3-13. The three PCA 

components combination greatly enhanced the visual interpretability and increased the 

separability between the land class covers (Jensen 2005). 

Figure 3-13. Landsat ETM+ PCs 1-2-3 displayed as red, green, blue.  



 

40 
 

Unsupervised 
classification 

Collected field 
data 

Random division of 
collected points: 
training sets and test 

Principal 
Component 
output image 

Classification 
Scheme 

Signature file 

Training data  
Separability test 
Class labeling 

Supervised  
Classification 

Maximum 
Likelihood  

Recode classes 
Mask cloud and 
shadows 

Land 
use/cover 
map 

Accuracy 
Assessment 

Error 
matrix 

55 training 
sets 

66 training tests + 
208 stratified 
random points 

3.5  Image Classification and Accuracy Assessment 
Figure 3-14 displays the steps to classify the land use/cover of each scene and asses 

the accuracy.  

 

Figure 3-14. Flowchart of image classification and accuracy assessment.  
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3.5.1 Classification scheme and information classes’ characteristics 

First, a classification scheme was developed. This scheme is based on the Anderson 

level II classification system (Table 3-2). However, an Anderson level III was also used 

to classify the open pine and mixed forests based on detailed ground truth information 

that were collected on the field. In addition, previous studies in the area were consulted 

to refine the classes. Six information classes were derived. 1) Built-up; 2) Agriculture; 3) 

Herbaceous; 4) Open pine forest; 5) Mixed forest; 6) Barren Land.  

 

Table 3-2. Classification scheme designed for the study. 

Class Number Class_Name 
1 Built-up 
2 Agriculture 
3 Herbaceous 
4 Open pine forest 
5 Mixed forest 
6 Barren Land 

 

3.5.1.1 Information Class Description 

Built-up 
 
Built-up areas are comprised of low residential areas of scattered housing, dense 

residential areas, and little road infrastructure. Dense residential areas are concentrated 

outside the park’s boundary. Rural homes in and adjacent to the park area are dispersed 

in such a way they could not be classified into this class, except where deforestation was 

intense (Figure 3-15) 
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Figure 3-15. Illustrations of built-up areas.
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Agriculture 
The agriculture class represents areas used for crop production and grazing (Figure 

3-16). Based on field observations and the cropping calendar, it was observed that most 

of the agricultural land was fallow at the image acquisition dates. This contributed to 

confusion between agricultural areas and barren land composed of bare soil, rocks and 

unpaved roads. Hence, agricultural and barren land was evaluated with the use of 

ground truthing and texture analysis in order to decrease the possibility of 

misclassification.  

Figure 3-16. Illustrations of Agricultural land--active cropping and fallow lands. 
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Herbaceous  

The herbaceous class is composed of grasslands, forbs and ferns. When forests are 

cleared for agriculture, the land becomes less fertile as the agricultural practices are 

unsustainable. It is then abandoned for pasture, and grasses, forbs and ferns revegetate 

these sites (Figure 3-17).  

Figure 3-17. Illustrations of Herbaceous land types. 
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Open Pine Forest 

Judd (1986) divided the pine land into 4 categories 1) open rocky pinelands; 2) open 

pine savannas; 3) open pinelands with scattered shrubs; and 4) moist pinelands with a 

shrub understory. Open pine forest can be defined as a closed forest, which has turned 

into an open forest as a result of natural causes or human intervention. This class 

includes continuous vegetation cover in which tree crown cover exceeds 10 percent and 

a minimum of tree height of 5 m (FAO, 2006) at elevations between 850 and 1250 m 

(Figure 3-18). 

Figure 3-18. Illustrations of open pine forest in Pic Macaya National Park. 
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Mixed Forest 

The mixed forest in Macaya National Park is diverse with many endemic species. It is 

characterized by the absence of a dominant tree species. Instead many species such as 

pine, and different broad-leave trees (Didymopanax tremulum) are mixed with shrubs. 

However, based on field observations, there is an insignificant amount of broad-leave 

species such as the Bois Tremble and shrubs species. Instead small trees dominate the 

area (Figure 3-19).  

Figure 3-19. Varying compositions of mixed degraded forest. 
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 Barren land 

Barren Land includes areas of bare soil, sand, and exposed rocks (Figure 3-20). In a 

barren area, less than one-third of the area has vegetation or other cover (Anderson et 

al, 1976).  

Figure 3-20. Illustrations of barren land class. 
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3.5.2 Hybrid classification and Accuracy Assessment processes 

The Hybrid classification approaches consisted of building spectral signature files 

derived from both unsupervised (ISODATA) techniques and supervised training sets, 

and were used together to classify every pixel within each scene. Unsupervised 

classification was performed on each of the three PC images to generate training data 

that were used to develop training sets for the supervised classifier. The clusters were 

grouped into classes with the help of visual interpretation and the available ancillary 

data. The results of unsupervised classification were verified from 55 training samples 

collected in the field to better understand the spectral signatures of the land use/cover 

classes. For each land use/cover class, 8 to 13 ground truth points, with the exception of 

built-up were used as training sites in the image classification.  

 

Separability analysis of the signatures files were used to select the clusters or training 

sets with the best signatures and separability. Those selected were input into a 

maximum likelihood classifier (MLC). Ilustrations graphs are shown in the results 

section. 

 

Recoding was done to merge the spectral classes into the six defined information 

classes. In addition, as noted, clouds and cloud shadows were not of interest. They were 

masked out using ArcMap GIS and the masking function in ERDAS/Imagine. Pixels 

classed as cloud shadow or cloud were clipped out by recoding them as 0. Masking 

cloud shadows and clouds eliminated spectral confusion with barren soil. 
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The last step of the image processing was accuracy assessment. Accuracy assessment 

was conducted independently on each classification. Two sources of information: the 

remote sensing-derived classification map and ground reference test information were 

used as inputs and compared to assess the accuracy of the classified map. A 

combination of training test information sources were used since the number of field 

collected samples was less than 20 per class. This limitation was due to site obstruction 

and inaccessibility. The only 116 ground verified points collected were divided randomly 

between training pixels and ground reference test pixels. 55 sites were used as sample 

to train the supervised classification and 61 sites were left as ground truth reference.  

The number of reference pixels is an important factor to estimate the accuracy of each 

classified image. A good guide is to use a minimum of 30 sample points for each 

information class to obtain a statistically valid sample(Congalton and Green 1999). 

According to Congalton and Green (1999), more than 250 pixels are needed to estimate 

the mean accuracy of a class within plus or minus five percent.  

Therefore, to obtain the ground reference test information, a sampling scheme using 

traditional and geostatistical techniques was designed. This sampling scheme made use 

of a higher spatial resolution remotely sensed data (the VNIR band ASTER—

panchromatic image for the ETM+) to obtain the ground reference test information, 

which were added with the 61 ground verified points collected in the field to obtain N 

number of sample size.  

The sample size was based on multinomial distribution. For more details see (Jensen 

2005, page 501). The locations of the samples (x,y) for each class were collected 
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randomly using the equalized stratified random sampling model. An equal number of 30 

samples were selected from each strata or land use/cover class by selecting 208 points 

that were added with the 61 reference points collected in the field. Strata are first created 

by extracting only pixels associated with a specific class found in the land use/cover 

map. Then, (x,y) sample locations are randomly distributed throughout the geographic 

study area.  

 

The reference image was overlaid with the 271 accuracy assessment points. In addition 

to the 61 ground verified points, several independent data were used as reference. The 

1987 TM image was used as a backdrop. The 2000 ETM+ panchromatic band 8 and 

2004 ASTER VNIR bands were also used to verify the accuracy points. Following this 

evaluation process, an accuracy report was generated. Error matrix with producer’s and 

user’s accuracies, overall accuracy and Kappa statistic was generated and analyzed.  
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4 RESULTS AND DISCUSSION 

4.1 Spectral separability among the classes land use/cover (1987, 2000, 
2004) 

Separarability analyses were done on the signatures files using ERDAS to select the 

best statistical training signatures to use for the MLC classification. The spectral 

signature curves for the six land cover classes for each date showed the average 

reflectance responses. In most cases, barren land composed of unpaved, dry soil, 

limestone and built-up registered the highest reflectance from the visible band 1 (0.45-

0.52 um) with a peak in the mid-infrared regions (1.55-1.75 um). The Figure 4-1, Figure 

4-2, and Figure 4-3 illustrated the spectral signatures used for the classification.  

 

 

Figure 4-1. Spectral separability for land use/cover classes of the Landsat TM 1987. 
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Figure 4-2. Spectral separability for land use/cover classes of the Landsat ETM+ 2000. 

 

 

Figure 4-3. Spectral separability for land use/cover classes of the ASTER 2004. 
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Agriculture registered a high reflectance in the mid-Infrared region due to low moisture 

and low organic matter in the soil. As soil moisture and organic matter decreased, the 

reflectance increased from the visible through the mid-infrared wavelengths. Open pine 

forest, mixed forest and herbaceous registered lower reflectance values, with its highest 

peak in the green and red bands. The decrease in reflectance is due to the chlorophyll 

and water absorption in the leaf. However, since bands 2 and 3 covers the green 

reflectance from the leaf, the highest reflectance peak increased in this visible region.  

 

4.2 Classification Maps and Accuracy Results of the Landsat TM, Landsat 
ETM+, and ASTER Images 

Error matrices were generated to evaluate each land use/cover class accuracies. The 

results are summarized and detailed in Table 4-1. The overall accuracies for 1987, 2000, 

and 2004 were respectively 82%, 82%, and 87% with kappa statistics of 78%, 78%, and 

84%. User’s and producers’ accuracies of each information class ranged from 75% to 

97% in most cases (Congalton and Green 1999).  

 

Table 4-1. Summary of land use/cover accuracies (%) for 1987, 2000, and 2004. 

 

Producer's User's Producer's User's Producer's User's
Built-up 91.0 87.0 90.0 71.0 87.0 84.0
Agriculture 84.0 75.0 88.0 89.0 80.0 84.0
Herbaceous 89.0 87.0 91.0 63.0 86.0 97.0
Open Pine Forest 83.0 71.0 83.0 87.0 92.0 89.0
Mixed Forest 71.0 80.0 78.0 77.0 95.0 91.0
Barren Land 77.0 90.0 71.0 94.0 85.0 79.0
Overall accuracy 82.0 82.0 87.0
Kappa statistic 78.0 78.0 84.0

1987 - TM 2000 - ETM+ 2004 - ASTERLand use/cover 
classes
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4.2.1 Accuracy Assessment and land use/cover Map of the Landsat TM (1987) 

A total of 271 pixels were selected and evaluated for accuracy and 222 were correctly 

classified, which resulted in an overall accuracy of 82% and a kappa statistic of 78%. In 

terms of producer’s accuracy, all classes were over 80% correct with the exception of 

mixed forest and barren land, which were 71% and 77% respectively (Table 4-2).  

 

Table 4-2. Results of the accuracy assessment of the 1987 land use/cover classification map 
produced from the Landsat TM data expressed as percentages. 

 

 

Mixed forest has the largest source of omission error. Pixels labeled mixed forest should 

have been labeled agriculture, herbaceous, and/or open pine forest. In terms of user’s 

accuracy, all classes were over 80% correct, except agriculture and open pine forest. 

Open pine forest pixels were often confused with barren land. This commission error 
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could be due to clearing activities within the pine forest. The majority of each land 

use/cover type has a kappa statistic exceeding 75%, except agriculture and open pine 

forest, which may be due to deforestation within the pine forest for agriculture or grazing. 

Figure 4-4 shows the final classified map of the Landsat TM image (1987).  

 

Figure 4-4. Land use/cover map of the Landsat TM (1987) image. 
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4.2.2 Landsat ETM+ 2000 scene 

Overall accuracy and kappa statistic follow a similar pattern as the Landsat TM 87 land 

use/cover classification. The overall accuracy is 82% and the kappa statistic is 78%. In 

terms of producer’s accuracy, all classes were over 80% with the exception of mixed 

forest and barren land, which were 78% and 71% respectively (Table 4-3). 

 

Table 4-3. Results of the accuracy assessment of the 2000 land use/cover classification 
map produced from the Landsat ETM+ data expressed as percentages. 

 

 

As shown in Table 4-3 barren land has the largest percentage of omission error. Some 

pixels were labeled barren land when they should have been classified as built-up or 

agriculture. This may be due to unpaved roads that are located within urban areas.  

Furthermore, since the satellite imagery was acquired during the growing seasons, the 
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majority of agricultural land was either fallow or harvested. In terms of user’s accuracy all 

classes were over 77%, except barren land and herbaceous.  

 

The land use/cover classification of the Landsat ETM+ registered the most commission 

and omission error accuracy within the classes barren land and agriculture, open pine 

forest and built-up. Mixed forest has the largest source of omission error. Pixels labeled 

mixed forest should have been labeled agriculture, herbaceous, and/or open pine forest. 

The source of these errors might be caused by mixing pixels where clear-cut activities 

were frequent. Cleared areas are usually either used as agricultural land, or left behind 

for natural pine trees regeneration with the growing of grasses, which formed understory 

with small vegetation, barren land and grass. Conversion and transition of one class to 

another class played an important role in confusion occurring in the spectral properties 

of the pixels. Open pine forest pixels were often confused with barren land. This 

commission error may be due to the clearing within the pine forest. Also, since drought 

condition is common during winter season, grass is partially dead and is barely present 

in the land cover area. Herbaceous class registers also the lowest kappa statistics 

(59%), which mean the agreement is poor. This might be caused by the conversion of 

large part of herbaceous area into fallow land.  

 

In summary, the source of errors within pine and mixed forest with herbaceous, barren 

land, agricultural land may be caused by temporal transition. The energy reflected and 

measured by the Landsat TM and ETM+ sensors is based on the interaction of the 

electromagnetic radiation with plant components and bare soil. The density and the foliar 
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coverage influence the reflectance response. Within a pine stand and mixed forest 

stand, where extensive clearing of the highest trees has occurred, some herbaceous 

and annual grasses, small plant and agriculture understory affect the electromagnetic 

response. Figure 4-5 illustrates the final land use/cover classification map for the 

Landsat ETM+ scene.  
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Figure 4-5. Land use/cover map of the Landsat ETM+ (2000) image.
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4.2.2.1 ASTER 2004 image 

The geographic coverage of the 2004 scene was different from the two Landsat scenes. 

A total of 236 pixels were correctly classified (Table 4-4) and the results indicated a 

higher overall accuracy and kappa statistic when compared to the Landsat scenes. 

 

Table 4-4. Results of the accuracy assessment of the 2004 land use/cover classification 
map produced from the ASTER SWIR+VNIR data expressed as percentages. 

 

The overall accuracy results of the 2004 land use/cover classification are excellent. Each 

land use/cover class has a producer’s accuracy higher than 85%, except for agriculture. 

Spectral confusion also occurred between agriculture and barren land classes. User’s 

accuracy exceeds 84%, except barren land. The kappa statistics for all land use/cover 

class has an excellent agreement excelling 81%.  
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The highest overall accuracy was registered in the ASTER classification results. The 3 

VNIR high spatial and broad spectral bands used as the reference data was able to pick 

up the high frequency of detail in the land use/cover. It was found that the classification 

accuracy increased by merging the VNIR and SWIR bands, which increased the level of 

details in terms of texture, shape and pattern of the classes. Figure 4-6 shows the 

classified map of the ASTER image. 

 

Figure 4-6. Land use/cover map of the ASTER (2004) image. 
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4.3 Land Use/Cover Change Detection Results 
Change detection matrices for 1987-2000, 2000-2004, and 1987-2004 were derived for 

the Landsat 5 TM 1987, Landsat ETM+ 2000, and ASTER 2004 land use/cover 

classifications. Change maps and statistics for each time frame are shown in the forms 

of a chart and a map. Due to the difference in geographic coverage for the 2004 scene, 

two different analyses based on the areal coverage were done.  

 

4.3.1 Change map between 1987 and 2000 classifications  

In 1987, open pine forest constituted the major type of land cover in the study area 

(Table 4-5). Accordingly, it accounted for about 26% of the total area followed by barren 

land (22%), agriculture (19%) and mixed forest (19%). Built-up areas (8%) and 

herbaceous (5%) occupied the smallest area. During the 13 year time frame, open pine 

forest declined by 45% while mixed forest (19%) remained the same. Agriculture and 

built-up areas increased by 29% and 53 % (Figure 4-7 and Figure 4-8).  

 

Table 4-5. Comparison of areas (ha) based on the six cover types and rates of change between 
1987 and 2000. 

 

 

 

Area (ha) % Area (ha) % Area (ha) % ha/year %
Built-up      4,508     8 6,879     13   +2,372 +53 +182 +4.05
Agriculture 10,270   19 13,259   24   +2,989 +29 +230 +2.24
Herbaceous 2,853     5 3,263     6     +410 +14 +32 +1.11
Open Pine Forest    14,272   26 7,861     14   -6,412 -45 -493 -3.46
Mixed Forest        10,532   19 10,314   19   -218 -2 -17 -0.16
Barren Land            12,003   22 12,862   24   +859 +7 +66 +0.55
Total 54,438   100 54,438   100 *** *** *** ***

Land use/cover 
classes

1987 2000
Average rate of 
change 1987-

2000

Change 
Between 

1987&2000
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Figure 4-7. Comparison of the land use/cover changes between 1987 and 2004. 
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Figure 4-8.  Land use/cover change map between 1987 and 2000.  
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4.3.1.1 Nature of change of 1987-2000 

Based on 54, 438 ha, the total size of the study for 1987-2000, open pine forest covered 

14,273 ha in 1987, but 7,861 ha in 2000. Out of the 14,272 ha that was open pine forest 

in 1987, only 4,037 (28%) remained as open pine forest in 2000. The remaining of 72% 

was either cleared or converted to other land use/cover types in 2000:  built up (8%), 

agriculture (13%), herbaceous (3%), mixed forest (29%), and barren land (17%). At the 

same time, at a greater extent, 1,931 (18%) ha of mixed forest were converted to open 

pine forest in 2000 (Table 4-6). 

 

Table 4-6. Matrix of land use/cover changes (ha) from 1987 to 2000. Diagonal cells (bold) 
represent no change in cover type. 
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The increase in pine forest represented a gain of 27% in 2000. In summary, the results 

of Table 4-6 illustrated the types of land use/cover change between 1987 and 2000. 

More land was converted to agriculture and built-up (low residential areas) at the 

expense of other land use/cover. Built-up and agriculture registered a net gain of 53% 

and 29% respectively, an average positive change of 4% and 2% per annum (Table 

4-5). The areas under open pine forest and mixed forest declined significantly/slightly by 

45% and 2 %, respectively. The results suggested that the areas covered with open pine 

forest and mixed forest were receding to the expansion of agricultural land and built-up 

areas.  

 

4.3.2 Change map between 1987 and 2004 classifications  

In 1987, barren land (26%) followed by agriculture (21%) and open pine forest (20%) 

formed the major type of land cover in the study area. Mixed Forest covered a total of 

18% of the total area. Built-up (10%) and herbaceous areas (5%) occupied the least 

cover (Table 4-7). Figure 4-10 illustrates the land use/cover change map (1987-2004) 

 

Table 4-7. Comparison of areas (ha) based on the six cover types and rates of change 
between 1987 and 2004. 

 

Area (ha) % Area (ha) % Area (ha) % ha/year %
Built-up        3,400     10 5,668     17   +2,268 +67 +133 +3.92
Agriculture 7,013     21 5,808     17   -1,205 -17 -71 -1.01
Herbaceous 1,708     5 4,677     14   +2969 +174 +175 +10.23
Open Pine Forest    6,865     20 4,735     14   -2,130 -31 -125 -1.83
Mixed Forest     6,069     18 4,039     12   -2,029 -33 -119 -1.97
Barren Land       8,612     26 8,738     26   +127 +1 +7 +0.09
Total 33,666   100 33,666   100 *** *** *** ***

Land use/cover 
classes

1987 2004
Change 
Between 

1987&2004

Average rate of 
change 1987-

2004
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In 2004, however, agriculture, mixed forest and open pine forest declined by 17%, 33% 

and 31% respectively (Figure 4-9). There are two principal causes for this drop in 

agriculture and increase in herbaceous: soil’s infertility and exodus. The exhausted land 

in the region has lost its fertility and has been abandoned. The abandoned land then 

was reverted to herbaceous. In addition, the farming population, in hopes of a higher 

standard of living has moved into urban areas. 

 

Figure 4-9. Comparison of the land use/cover changes between 1987 and 2004. 

 

Built-up      
%

Agriculture 
%

Herbaceous 
%

Open Pine 
Forest        

%

Mixed 
Forest         

%

Barren Land      
%

1987 10 21 5 20 18 26

2004 17 17 14 14 12 26 

0
5

10
15
20
25
30

la
n

d
 t

y
p

e
 i

n
 %

Percentage of land use types for 1987 and 
2004 by total area (33,666 ha)



 

68 
 

Figure 4-10. Land use/cover change map between 1987 and 2004  
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4.3.2.1 Nature of change of 1987-2004 classifications 

From 1987 to 2004 (Table 4-8), only 1734 ha 25% of the 6, 865 ha remained as open 

pine forest in 2004. The remainder was converted to barren land (21%), mixed forest 

(17%), built up (14%), agriculture (12%), and herbaceous (11%). The greatest 

transformation of open pine forest was to mixed forest (22%) and barren land (21%). 

Open pine forest, mixed forest and agriculture lost 31%, 33%, and 17% of their areas to 

other land use/cover types. 

 

Table 4-8. Matrix of land use/cover changes (ha) from 1987 to 2004. Diagonal cells (bold) 
represent no change in cover type. 
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Built-up 647     1,230  287     959      921       1,625   5,668      

Agriculture 737     1,518  280     806      734       1,734   5,808      

Herbaceous 486     1,182  288     770      785       1,167   4,677      

Open Pine Forest 233     569     222     1,734   1,238    739      4,735      

Mixed Forest 236     640     245     1,138   1,074    707      4,039      

Barren Land 1,062  1,874  387     1,458   1,317    2,640   8,738      

6,865   6,069    8,612   33,666    

Total 2004

1987

3,400  7,013  1,708  Total 1987

b. 1987 to 2004
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The greatest change in terms of areas gained occurred in herbaceous (174%) and built-

up (67%). Areas covered by herbaceous, for example, registered an average gain of 

10.23% per annum from the conversion of all the other land use/cover types with the 

greatest from agriculture (17%).  

 

4.3.3 Change map between 2000 and 2004  

Out of the 33,666 ha of land use/cover in 2000, agriculture and barren land occupied the 

largest area, 26% and 25% respectively, followed by mixed forest (17%), built-up (15%), 

open pine forest (10%) and herbaceous (6%). Meanwhile in 2004, agriculture occupied 

only 17% of the total land area, which represented in average a decline of 8.48% per 

annum. Accordingly, within 2000 to 2004, agriculture and mixed forest areas registered 

the greatest decline at a negative average rate of change of 8.48% and 6.96% 

respectively per annum. At the same time herbaceous land use/cover increased rapidly 

at an average rate of 28.76%, followed by open pine forest (9.96%), built-up (2.27%) and 

barren land (0.63%) (Table 4-9, Figure 4-11 and Figure 4-12).  

 

Table 4-9. Comparison of areas (ha) based on the six cover types and rates of change 
between 2000 and 2004. 

 

Area (ha) % Area (ha) % Area (ha) % ha/year %
Built-up      5,197     15 5,668     17   +471 +9 +118 +2.27
Agriculture 8,788     26 5,808     17   -2,980 -34 -745 -8.48
Herbaceous 2,175     6 4,677     14   2,502 +115 +626 +28.76
Open Pine Forest    3,386     10 4,735     14   +1,349 +40 337 9.96
Mixed Forest 5,597     17 4,039     12   -1,557 -28 -389 -6.96
Barren Land 8,523     25 8,738     26   +215 +3 +54 +0.63
Total 33,666   100 33,666   100 *** *** *** ***

Land use/cover 
classes

2000 2004
Change 
Between 

2000&2004

Average rate of 
change 2000-

2004
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Figure 4-11. Comparison of the land use/cover changes between 2000 and 2004 classifications. 
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Figure 4-12.  Map of land use/cover change between 2000 and 2004.   
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4.3.3.1 Nature of change of 2000-2004 classifications 

According to the matrix (Table 4-10), in 2000, 8,788 ha of land used for agriculture, only 

1,817 ha (21%) remained as agriculture. The balance of the agricultural area were either 

cleared or converted to other land use/cover types in 2004: built-up (17%), herbaceous 

(18%), mixed forest (21%), and barren land (26%). At the same time, in 2004, agriculture 

gained some land back from other land use/cover classes, with the greatest gain 

occurring from reverted built-up (22%) followed by barren land (20%).  

 

Table 4-10. Matrix of land use/cover changes (ha) from 2000 to 2004. Diagonal cells (bold) 
represent no change in cover type 
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Built-up 1,033   1,534  396     427      745       1,534   5,668       

Agriculture 1,122   1,817  374     294      524       1,676   5,808       

Herbaceous 708      1,545  375     343      602       1,103   4,677       

Open Pine Forest 327      731     216     1,010   1,511    940      4,735       

Mixed Forest 359      887     285     680      1,104    724      4,039       
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2000

5,597    8,523   33,666     

Total 2004

5,197   8,788  2,175  3,386   

b. 2000 to 2004

2004

Total 2000
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In addition, 32% of built-up area was converted to barren land. The conversion of built-

up to barren land and agriculture looks unrealistic. Commission and omission errors 

present between these classes in the 2000 land use/cover classification contributed to 

either an underestimate/overestimate of the changes. These errors are caused, in part, 

by the sensor’s inability to pick up the small variations in certain classes, thus confusing 

agriculture, barren land, and built-up. It is important to note that the farming system in 

the area is based on subsistence agriculture, where parcel of lands are shared by 

households, gardens and livestock. Spatially the simultaneous location and patterns of 

certain classes composed of harvested agricultural plot, barren land, and unpaved road 

within the low residential areas change and vary inconsistently. These changes are 

either caused by anthropogenic or climatic variables such as a) soil infertility, which force 

the farmers to abandon the land, or b) landslide and floods, which destroyed houses and 

changed the road network.  

 

In addition, the conversion of low residential area into barren land and agriculture is a 

consequence of political riots that happened in the area in 1994. Based on personal 

knowledge and discussion with the local people, the Pic Macaya National Park located in 

a very remote region, used to be a hidden refuge for paramilitary death squad members 

(FRAPH) from 1991 to 1994. In 1994, after a three year exile in the United States, the 

ex-president, Mr. Jean-Bertrand Aristide, who was overthrown by these paramilitary 

death squads (FRAPH), returned to Haiti to finish his presidential mandate. At the same 

time, riots were organized by the partisans of the ex-president and the people that were 

terrorized by the FRAPH against the paramilitary groups. Many of them hiding in the Pic 

Macaya region were caught and their houses were burnt.  
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Lastly, the migration of the working force to the cities contributed to the decline of 

agricultural land. After the return of Aristide, considered as a symbol of hope to the 

peasant and vulnerable people, many young men and women moved to the cities to look 

for jobs, a better education and a higher standard of living as promised. The abandoned 

and exhausted agricultural land, then transitioned to herbaceous (+115%), which in the 

future will revert naturally by succession into mixed forest or pine forest.  

 

4.3.4 Change map between 1987 and 2004 classifications  

Overall, from 1987 to 2004, open pine forest decreased from 20% to 14 % with the 

greatest change occurring between 1987 and 2000. However, between 2000 and 2004, 

open pine forest increased at an average rate of 9.96% per annum. This increase in pine 

forest was an outcome of reforestation initiatives taken by USAID, ORE in the Macaya 

region in the 1990’s.  

 
Table 4-11. Comparison of areas (ha) based on the six cover types and rates of change between 
1987, 2000, and 2004. 

 

 

Area (ha) % Area (ha) % Area (ha) % Area (ha) % ha/year %
Built-up        3,400      10 5,197     15    5,668     17    +1,797 +53 +2268 +67
Agriculture 7,013      21 8,788     26    5,808     17    +1,775 +25 --1,205 -+17
Herbaceous 1,708      5 2,175     6      4,677     14    -467 +27 +2,969 +174
Open Pine 
Forest     6,865      20 3,386     10    4,735     14    --3,479 -51 --2,130 -+31
Mixed 
Forest     6,069      18 5,597     17    4,039     12    --472 -+8 --2,029 -+33
Barren 
Land       8,612      26 8,523     25    8,738     26    --88 -+1 +127 +1
Total 33,666    100 33,666   100  33,666   100  

Change 
Between 1987 

to 2004
2000Land 

use/cover 
classes

1987 2004
Change 
Between 

1987-2000
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Mixed forest also decreased at about 2% per annum, with the greatest decreased 

occurred from 2000 to 2004. The rate of change in land use for agriculture varied. From 

1987 to 2000, land occupied by agriculture increased from 21 to 26%, while from 2000 to 

2004, it decreased from 26% to 17%, a loss of 1.01% in average per year. Built-up 

increased constantly year after year at a rate of 3.92%. The most important change 

occurred in herbaceous land cover classes, with the greatest change occurred during 

2000 and 2004, while at the same time agriculture decreased (Table 4-11 and Figure 

4-13). 

 

 

Figure 4-13. Comparison of the land use/cover changes between the 1987, 2000, and 2004 
classifications. 
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4.4 Implications of the Study 
4.4.1 Causes of land use/cover change in the Macaya area 

Based on the land use/cover results from 1987, it seems prior to 1987 the vegetation of 

the study area was already impacted by humans (Cohen 1984). The percentage of 

barren land (22%) was quite high. Open pine forest and mixed forest represented 45% 

of the cover area in 1987, but in 2004 the areas under forest decreased greatly with 

increases in herbaceous, barren land, agriculture and built-up areas.  

 

Many aspects based on the socio-economic conditions of the local population, the 

farming systems, the institutional settings, environmental policy and political instabilities 

influenced the type of changes that have occurred on the landscape. As many 

researchers indicated in Haiti, several factors have contributed to modify the original 

land cover in the region (Cohen 1984; Paryski et al. 1988; Sergile et al. 1992; Timyan 

2000; Organization for the Rehabilitation of the Environment 2001 ; Dolisca et al. 2007a; 

Dolisca et al. 2007b). These include human activities such as agricultural colonization, 

evolution or not of rural road networks, which led to the migration of seasonal farmers for 

logging into the region and environmental policy.  

 

The economy of the southern region of Haiti is based on agriculture, charcoal 

production, and fishing for those living near the coast. There is a lot of pressure on 

arable land, which led to the opening of natural forested area for cultivation. Forested 

areas are cleared and used for crop production, generating income and providing the 

basic food security for the local population (Organization for the Rehabilitation of the 

Environment 2001 ). In addition, high demand for charcoal, which is the main source of 
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energy for cooking, and the need to build more houses based on the growing population 

have a major impact on the forest cover in the area. Population growth has an additive 

effect on the decreasing of open pine forests. When tree resources and crop productivity 

became insufficient, men or woman left their children to their grandmother and move to 

the city in search for jobs. At the same time, built-up area increased dramatically from 

1987 to 2004. There are many new constructions and new houses in urban areas 

outside the park boundary, where roads are available. These houses are built by new 

retired Haitians that have migrated to the United States or Canada in the 70’s. As they 

retired, they tend to spend half of the year in their mother land. Therefore, in the future, I 

suggest integrating socio-economic surveys to show the relation and correlation 

between changes in the landscape and the socio-economic aspects of the region.  

 

Poor ecological policy formulation on the local scale to manage and protect the natural 

resources of the region has also influenced land use/cover changes (Pierre-Louis 1989; 

Pellek 1990). Policy is a plan of course of action intended to influence and to determine 

decisions and actions to achieve some objectives. Pierre-Louis (1989), looking at Haitian 

forest policy from 1915 to 1984, stated that the laws and decrees were strongly 

influenced by punitive measures against the peasants. Also policy formulation was 

based on top-down-decision making. International experts hired to formulate those 

policies were constrained by barriers such as languages, roads, and institutionalize 

social stratification that would not allowed them to include and involve in the decision 

making process the local communities impacted by such decisions. 
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The Pic Macaya National Park was established by Presidential Decree in 1983 to protect 

the biodiversity of the region (Paryski et al. 1988; Sergile et al. 1992; Timyan 2000). Park 

rangers were hired to protect the reserve from illegal logging and land exploitation for 

agriculture. Unfortunately, these measures have not been sufficient to protect the park 

for many reasons. The park rangers were not paid as promised and abused the 

resources in the park to obtain income to replace unpaid government wages. The 

community living in the area has always felt forgotten. Living in an abject poverty, the 

local people found it natural to use the natural resources nearby in order to survive on a 

daily basis. 

 

Based on personal communication, the local community acknowledged that the only way 

to protect the biodiversity in the region is by giving them economic alternatives. They 

praised the initiatives of job creation through reforestation projects and soil conservation 

training, the construction of an unpaved road up to Formon, a primary school and a 

health care center brought by many organizations (USAID, ORE, and The Societé 

Audubon). However, once the project expired, the lack of governmental monitoring with 

programs to enhance and reinforce these initiatives taken by international organizations 

in the region undermine the continuity of sustainable land use practices and natural 

resources management in the region. Chronic socioeconomic hardships and political 

instability have hindered efforts to implement an effective, sustainable conservation plan 

in Pic Macaya National Park. 

 

In addition to the above human and socio-economic factors, climate change has 

significant impact on land use/cover changes observed in the study area. The south 
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region is the scene of yearly flood, landslide, and falling trees mainly caused by frequent 

tropical depressions, bigger storms and hurricanes. Since the mountainous region is 

undergoing strong deforestation, the soil is becomes less able to slowly absorb the rain 

water. Thus, the mountainous rain water accompanied with sediment and rocks flow 

downslope to the plains region, taking in its path the arable land to the sea, destroying 

crop plantations, and livestock production making the local people more vulnerable to 

economic loss.  

 

4.4.2 Consequences of land use/cover change in the Macaya area 

The vegetation of the Pic Macaya National Park is composed mainly of pine forest and 

many endemic plants, which protect the environment in many ways. The forest regulates 

the soil water of the region that receives more than 3,000 mm of annual precipitation. It 

also protects habitat for wildlife such as neo-tropical migratory birds and mammals. 

Many researchers have mentioned the importance of the region’s rich biodiversity 

(Cohen 1984; Judd 1987; Paryski et al. 1988; Sergile et al. 1992; Organization for the 

Rehabilitation of the Environment 2001 ).  

The continuous degradation of the forest has major effects on the environment and other 

segments of the population. Land degradation, soil erosion, avian habitat destruction, 

leading to the loss of biodiversity, plant species and birds endangerments, stream 

degradation of the five rivers are among the negative impacts of deforestation in the 

region (Judd 1987). Soil degradation in the study area is a combination of deforestation 

and unsustainable agricultural system. Where the density of the population is also high 

such as in Formond and Cavalier,  the forest land cleared is over cultivated and not 

allowed to regenerate into mature secondary forest (Sergile et al. 1992). 
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In addition, according to a report publish by ORE and based on personal observations, 

deforestation in the park has contributed to the sedimentation of the irrigation canals in 

the plains areas. This represents a major problem for farmers located in Camp-Perrin. 

Camp-Perrin, and many cities in the plains are constantly in danger of flooding as a 

result of deforestation in the Macaya National Park (Organization for the Rehabilitation of 

the Environment 2001 ). Generally, land degradation in Haiti is both a part and 

consequence of environmental changes caused by the socio-economic conditions of the 

people and unpractical environmental policies, which fail to sustainably manage its 

natural resources. There is a need, therefore, to minimize the negative ecological 

consequences of land use/cover change in the study area for the protection of the 

biodiversity, the well being of the people and the environment.  

 

4.4.3 Limitations of the Study 

The lack of an earliest map of the region with detailed information, the lack of socio-

economic data and the difficulty to access the whole study area presented some 

drawbacks to the study. We also had to limit the range of the study based on the quality 

and extent of the satellite imagery. The satellite data available for the study area were all 

acquired in consecutive months (November, December, and January). Although, the 

temporal differences were not large, some spatial variability in the land use changes sun 

angle and altitude and cloud cover and their shadows contributed to additional 

processing. We would recommend using radar imagery to overcome the cloud problem, 

since radar can penetrate cloud and shadow.  
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5 CONCLUSIONS  

This research was carried out in the National Macaya Park region from 1987 to 2004. 

The objectives were to demonstrate the usefulness of using satellite digital image 

processing coupled with GIS technology to map land use/cover and detect changes in 

land use/cover. The potential of using multi-sensor remotely sensed data, particularly, 

ASTER in conjunction with Landsat-5 TM, and Landsat ETM+ was also evaluated.  

A hybrid classification approach was used to classify the image, given that this approach 

takes advantages of both supervised and unsupervised classification to improve the 

accuracy of the derived maps. The general trends observed were a decrease in open 

pine forest and mixed forest land cover types and a corresponding increase in built-up 

areas and herbaceous land. The study showed that: 

1. Between 1987 and 2000, land areas covered with open pine forest and mixed 

compounded forest receded by 45% and 2 % respectively. This represents a 

negative rate of change of 3.5% and 0.2% per annum. Agriculture and built-up 

area expanded at rates of 2% and 4% respectively; representing a net gain of 

53% and 29%. The conversion of forest to agriculture and development illustrate 

the impact of human activities on the dynamics of landscape change.  

2. Between 2000 and 2004, agriculture areas registered the greatest decline (an 

average 34% per annum); while at the same time herbaceous land cover had a 

net gain of 115%. This gain came mainly from agriculture (18%). The results 

suggest that the soil was exhausted, so land used for agriculture was abandoned 

and herbaceous land cover type was expanding at the expense of agriculture. 

Open pine forest increased at an average rate of 9.96% due to intensive 

reforestation projects promoted by USAID, ORE in the 1990’s. 
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3. Between 1987 and 2004, built up areas (94%) and herbaceous (89%) increased 

significantly in 17 years. The increase of herbaceous was mostly caused by the 

conversion of agriculture. At the same time, open pine forest and mixed forest 

areas lost (75%) and (83%) of their areas to other land use/cover types. Open 

pine forest and mixed forest were transformed into barren land at a greater 

extent. This shows there was a trend of widespread illegal logging and clearing.  

 

The results show the Macaya region is facing continuing land degradation, particularly 

deforestation and soil erosion. The whole park including areas outside the park 

boundary needs substantial reforestation and soil conservation intervention. There is a 

strong association between the estimation of change by land use/cover classes and the 

local population living nearby. The majority of the people earn a living from farming or 

from illegal logging. They form a class of deprived farmers, illiterate, forgotten in a 

remote area with no basic infrastructure.  

 

A successful approach of promoting effective land use regulation, reforestation and 

biodiversity protection must also address the socio-economic situation of the farmers. 

Environmental and ecological programs and policies, which contribute to the 

empowerment of the local population and raise small farmer productivity, would have 

high success expectancy. Raising farmers self sufficiency, giving them an education and 

technical assistance on how to enhance and sustain the land and its natural resources 

will not only be beneficial to the environment and the farmer’s welfare, but the whole 

economy, with a direct impact on achieving a high quality and quantity of agricultural 

productions to maintain a beneficial balance between the import and export rate.   
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In addition, Haiti needs to implement strong and focused policies and laws following a 

participatory approach to reverse the trend of its chaotic environmental degradation. It is 

possible if state institutions, stakeholders, donors, Haitian people are willing to commit in 

a long-term sustainable reforestation and land use management process.  For instance, 

the Dominican Republic and Costa Rica represent a model of successful forest 

management during the last three decades (Diamond 2005; Rodríguez 2005). There is 

also a need for strong and transparent institutions that are able to be open to the public 

and fulfill their mission as expected. Conflict resolutions regarding land use, forest 

exploitation, conflict of interest should be defined within the policies and laws and 

coordination among the various institutions involved in the process. In addition it is 

important to develop human capacities, trainers and training programs that take into 

account the people with their cultural beliefs and values (Babbie 1994; Kusel and Adler 

2003; Creighton 2005).  I also recommend the institutionalization of RS and GIS 

technologies to manage and monitor efficiently land use/cover resources. Maps of land 

use/cover, soil, species location, watersheds, and population statistics for each 

Department must be publicized, stored in a geospatial database and updated regularly 

for adopted planning and policy decision.   
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APPENDIX A: Principal Components Statistics and 
Analysis 

 

 

Component 1 2 3 4 5 7
Eigen values 2132.808 244.207 105.0387 12.80839 2.426055 0.260781
Differences 1888.601 139.1683 92.23031 10.38233 2.165274 0
Total Variance 2497.549
Percentage 85.39605 9.777864 4.205671 0.512838 0.097137 0.010441
Cumulative 85.39605 95.17391 99.37958 99.89242 99.98956 100

Band K 1 2 3 4 5 7
1 0.205613 0.268054 -0.16125 -0.21792 -0.07821 0.89792
2 0.205015 0.313445 -0.34835 -0.30699 0.774586 -0.21011
3 0.288801 0.533556 -0.34657 -0.12639 -0.5988 -0.37048
4 0.496625 -0.63728 -0.55948 0.17724 -0.05096 0.014629
5 0.688646 -0.11023 0.632033 -0.32534 -0.00701 -0.09086
7 0.333792 0.356294 0.141609 0.839661 0.180802 0.062165

Band K 1 2 3 4 5 7
1 111.2797 116.9853 167.8255 185.0644 284.9617 164.9401
2 116.9853 129.0581 179.1952 188.0511 270.8236 165.0792
3 167.8255 179.1952 261.137 243.0161 387.3507 245.2425
4 185.0644 188.0511 243.0161 658.4929 708.6912 291.6669
5 284.9617 270.8236 387.3507 708.6912 1057.733 486.5631
7 164.9401 165.0792 245.2425 291.6669 486.5631 279.8487

Band K 1 2 3 4 5 7
1 0.900158 0.397094 -0.15666 -0.07393 -0.01155 0.009954
2 0.833432 0.431169 -0.31427 -0.09671 0.106201 -0.00944
3 0.825353 0.515971 -0.2198 -0.02799 -0.05772 -0.01171
4 0.893776 -0.38809 -0.22345 0.024719 -0.00309 0.000291
5 0.977876 -0.05296 0.199171 -0.0358 -0.00034 -0.00143
7 0.921488 0.332832 0.086757 0.179634 0.016834 0.001898
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Multivariate Statistics derived from the PCA transformation for the Landsat TM 
image (1987)
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1 2 3 4 5 7
Eigen values 3280.129 610.1729 173.4309 28.54379 10.1184 4.054727
Differences 2669.956 436.742 144.8871 18.42539 6.063671
Total Variance 4106.45
Percentage 79.87749 14.85889 4.223379 0.695097 0.246403 0.09874
Cumulative 79.87749 94.73638 98.95976 99.65486 99.90126 100

Band k 1 2 3 4 5 7
1 0.070586 -0.52898 -0.33453 0.616052 -0.06808 -0.468119
2 0.175095 -0.4286 -0.30543 0.079886 0.186134 0.807051
3 0.286888 -0.45997 -0.16198 -0.7474 0.128802 -0.323543
4 0.601562 0.530727 -0.58086 0.025756 -0.12919 -0.041244
5 0.619941 0.002767 0.002767 0.233938 0.507534 -0.066317
7 0.368579 -0.20792 0.363621 -0.00969 -0.81844 0.136948

Band K 1 2 3 4 5 7
1 218.2579 196.3423 211.6686 0.297891 114.8106 131.4856
2 196.3423 232.0008 291.1199 237.1517 327.6387 245.686
3 211.6686 291.1199 420.1548 432.7852 563.0046 393.9461
4 2.297891 237.1517 432.7852 1417.58 1168.604 624.3576
5 114.8106 327.6387 563.0046 1168.604 1316.682 779.3268
7 131.4856 245.686 393.9461 624.3576 779.3268 501.7748

Band K 1 2 3 4 5 7
1 0.273639 -0.88446 -0.2982 0.222786 -0.01466 -0.063805
2 0.658375 -0.69507 -0.26408 0.028021 0.038872 0.106693
3 0.801591 -0.55431 -0.10407 -0.19481 0.019988 -0.031784
4 0.915065 0.348196 -0.20317 0.003655 -0.01091 -0.002206
5 0.978489 0.001884 0.001004 0.034444 0.044492 -0.00368
7 0.942372 -0.22928 0.213775 -0.00231 -0.11622 0.012311

Multivariate Statistics derived from the PCA transformation for the Landsat ETM+ 
image (2000)
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1 2 3 4 5 6 7 8 9
Eigen values 7994.89 478.06 73.31 28.97 11.86 3.11 1.94 1.20 0.67
Differences 7516.83 404.75 44.34 17.11 8.75 1.17 0.74 0.53
Total Variance 8594.01
Percentage 93.03 5.56 0.85 0.34 0.14 0.04 0.02 0.01 0.01
Cumulative 93.03 98.59 99.44 99.78 99.92 99.96 99.98 99.99 100.00

Band K 1 2 3 4 5 6 7 8 9
1 0.438 -0.519 0.247 0.689 0.020 0.025 -0.043 0.013 -0.002
2 0.440 -0.488 0.155 -0.685 -0.231 -0.092 0.113 -0.020 0.005
3 0.439 0.595 0.639 -0.069 0.176 -0.009 -0.087 -0.030 0.013
4 0.328 0.329 -0.266 0.170 -0.638 0.210 0.434 0.148 -0.148
5 0.248 0.128 -0.323 0.082 0.033 -0.744 -0.071 -0.401 -0.301
6 0.283 0.100 -0.331 -0.021 -0.073 -0.156 -0.553 0.532 0.426
7 0.254 0.056 -0.301 -0.016 0.117 0.371 -0.023 -0.649 0.519
8 0.253 -0.012 -0.281 -0.118 0.305 0.471 -0.325 0.049 -0.648
9 0.208 0.005 -0.230 -0.029 0.628 -0.095 0.610 0.331 0.131

Band K 1 2 3 4 5 6 7 8 9
1 1679 1652 1400 1066 832 961 870 880 723
2 1652 1681 1416 1075 838 972 878 891 728
3 1400 1416 1742 1233 892 1008 895 871 723
4 1066 1075 1233 926 677 767 681 664 547
5 832 838 892 677 509 576 514 505 418
6 961 972 1008 767 224 657 585 579 477
7 870 878 895 681 514 585 526 520 429
8 880 891 871 664 505 579 520 519 427
9 723 728 723 547 418 477 429 427 356

BandK 1 2 3 4 5 6 7 8 9
1 0.955 -0.277 0.052 0.091 0.002 0.001 -0.001 0.000 0.000
2 0.961 -0.260 0.032 -0.090 -0.019 -0.004 0.004 -0.001 0.000
3 0.941 0.312 0.131 -0.009 0.015 0.000 -0.003 -0.001 0.000
4 0.965 0.237 -0.075 0.030 -0.072 0.012 0.020 0.005 -0.004
5 0.982 0.124 -0.123 0.020 0.005 -0.058 -0.004 -0.019 -0.011
6 0.989 0.085 -0.111 -0.004 -0.010 -0.011 -0.030 0.023 0.014
7 0.991 0.054 -0.124 -0.004 0.018 0.029 -0.001 -0.031 0.018
8 0.992 -0.012 -0.106 -0.028 0.046 0.037 -0.020 0.002 -0.023
9 0.987 0.006 -0.104 -0.008 0.115 -0.009 0.045 0.019 0.006
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APPENDIX B: Copyrights 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Jessie, 
 
By all means use these two images for your thesis!!!  
 
Keep in mind that amphibians would also be high on your list––as I recall 93% of 
Haiti's amphibians are in some category of threat (IUCN red List). Also keep in 
mind that reptiles are in the process of being evaluated for Red Listing as well and 
La Hotte has a few that will surely make it in. In addition, orchids––especially from 
the genera Lepanthes, Lepanthopsis, Pleurethalis, Tomzanonia, etc. are not 
classified under the Red List either. The forest around Formond is a place of high 
endemism of these orchids, whch are rapidly disappearing. 
 
If you need more pics, let me know. 
 
 
Eladio Fernandez 
Caribbean Nature Photography 
www.eladiofernandez.com 
tel 809-224-3665 
Dominican Republic 
 
---------------------------------------- 
> Date: Thu, 16 Oct 2008 11:50:31 -0400 
> From: javital@mtu.edu 
> To: eladio_809@hotmail.com; eladiof@mac.com 
> Subject: Copyright permission pictures 
> Dear Mr. Fernandez, 
My name is Jessie Vital. I am a Haitian Master's Graduate student at Michigan 
Technological University. I am currently writing my thesis on land use/cover 
change within and adjacent the Pic Macaya National Park, Haiti. To describe the 
area of study in term of its fauna, I was looking for some pictures of the 
endangered species within the Macaya region in the web. Fortunately, I found 
these two interesting pictures taken by you:  1. Hispaniolan Solenodon  2. White 
winged Warbler. I would appreciate that you grant me permission to use these 
picture in my thesis. The Graduate School (Forest and Ecology Management) 
would need a message, either a form or e-mail from the author of the pictures, 
which said I was allowed to use the pictures in my document.  
 I am hopeful that you will say yes and I am available for any information you 
required. 
  
 Mesi ampil, muchas gracias! 
 Jessie Vital 
Master's Candidate Forest Ecology and Management 
Michigan Technological University 
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Image:Pterodroma hasitataPCCA20070623-3608B.jpg 

From Wikispecies 

 

No higher resolution available. 
Pterodroma_hasitataPCCA20070623-3608B.jpg (499 × 512 pixel, file size: 46 KB, 
MIME type: image/jpeg) 

 

This is a file from the Wikimedia Commons. The description on its description 
page there is shown below.  

The description on its file description page on the shared repository is shown below. 

Description Black-capped Petrel, Pterodroma hasitata, Location: Gulf Stream off of 
Hatteras, North Carolina, United States 

Source Photograph taken by Patrick Coin 

Date created 2007-06-23 

Author Patrick Coin (Patrick Coin) 

Permission 
(Reusing 
this 
image) 

cc-by-sa-2.5 

Other 
versions 

none 

[edit] 
Licensing

 

 

This file is licensed under the Creative Commons 
Attribution ShareAlike 2.5 License. In short: you are free to share 
and make derivative works of the file under the conditions that 
you appropriately attribute it, and that you distribute it only 
under a license identical to this one. Official license 
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APPENDIX C: Relevé Field Form 

 

Surveyer_______ Date_______ Location_____ Plot Size_______ STOP#:______
Waypoint:_______ Accuracy:________

       N
Mapping unit_____________ Datum______________
Coordinates X_____________ Coordinate Y______________
Altitude________________ Slope (%)_________________
Aspect (N, S, E, W)_______________ Land form________________
Latitude___ ___.__ __ __ __ __ Longitude-__ __ __ . __ __ __ __ __Photo number:

Layer Code Local Name 
used Scientific Name Species Specific 

Characteristics Site Condition

Dominant Vegetation Structure and Classification
Layer code Height range Diameter % cover

Comments/Observation/Site stressors or disturbances/Human influence

Layer LCode
BF Brodleaves forest>=75% trees species Ref: National 
CF Coniferous tree forest 75%>= trees species Forest Inventory
OF Other forest >= Bamboo/palm Field Manual
MF Mixed Forest, # from the previous >=75%
FP Forest  Plantations

Other woodland: trees>=5m but cover 5-10%
Shrubs, bushes, trees above 10%
Grasslands, ferns

Agriculture AG Cultivated land: AC= annual crop; PC=perennial crops;Pa:=pastures
Inland Water IW River, stream, reservoirs: riverbed> more than 15 m

Build-up areas BUA rural development: houses, road wider than 15  meters
Barren Land BL bare soil/exposed rock/

Logistics

Housing:  local people based on guide 
advices. Courtesy ruled, but negotiate from 
the beginning might save some frustration. I 
plan to give the host family a minimum of   
$10 US/day before leaving !

Water proof Jacket
Walking shoes
A little radio
Cell phone
Other

Food: Bring some
Drinking water/water treatment product

One  GPS Garmin (MTU)

Paper survey forms
Digital watch

First care kit
Flash-light/knife
Water proof boots

Extra batteries
Compass (MTU)
Maps with points
Camera photo

Woodland OWL

Herbaceous HB

Classification info
Definition

Tree with 
dbh>20cm 
height>5 m 
overstory

Equipment

Pencil waterproof

Releve and  Assessment of "Parc National Pic Macaya", Haiti

Location and mapping information/GPS

Species composition, Overstory coverage/understory and site condition

% cover Overs/Understo

0
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