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ABSTRACT

A post classification change detection technique based on a hybrid classification
approach (unsupervised and supervised) was applied to Landsat Thematic Mapper
(TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987,
2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National
Park in the southern region of Haiti. Each image was classified individually into six land
use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and
barren land using unsupervised ISODATA and maximum likelihood supervised
classifiers with the aid of field collected ground truth data collected in the field. Ground
truth information, collected in the field in December 2007, and including equalized
stratified random points which were visual interpreted were used to assess the accuracy
of the classification results. The overall accuracy of the land classification for each image
was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change
detection technique was used to produce change images for 1987 to 2000, 1987 to
2004, and 2000 to 2004. It was found that significant changes in the land use/cover
occurred over the 17- year period. The results showed increases in built up (from 10% to
17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of
herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At
the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their
area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed
forest (from18 to 12%) were transformed into agriculture area or barren land. This study
illustrated the continuing deforestation, land degradation and soil erosion in the region,
which in turn is leading to decrease in vegetative cover. The study also showed the
importance of Remote Sensing (RS) and Geographic Information System (GIS)
technologies to estimate timely changes in the land use/cover, and to evaluate their

causes in order to design an ecological based management plan for the park.
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1 INTRODUCTION

Tropical forest resources, specifically Haitian forest resources, are strongly impacted by
natural and anthropogenic forces. Many mountainous regions, in particular Haiti, are
subjected to hurricanes and other severe weather events every year, which contribute to
fallen trees and soil erosion. Furthermore, the demands of increasing human populations
place additional pressure on these natural resources (Allen and Barnes 1985; Zurick
1995; Gong and Xu 2003). Munasinghe (1993) revealed that 2.5 million hectares of
forest are cleared yearly in Central America for livestock production such as cattle.
Demands for wood fuel (the main source of energy for cooking and heating for 1.5 billion
people living in developing countries), timber, and recreation result in overutilization and

degradation of these forests (Stein et al. 1999).

Tropical regions have experienced a rapid change in the spatial distribution and
characteristics of their forests, especially the conversion from forest to non-forest. Large
tracts of tropical forests have been converted to agriculture because of increasing
population and lack of economic opportunities for this population (Laurance et al. 2006).
Consequently, deforestation has been the focus of many global change studies
(Riebsame et al. 1994). According to Myers et al., (2000) the Caribbean region is one of
the “hottest hotspots” with large numbers of threatened and endangered endemic plants
and vertebrate species. To reduce the loss of biological diversity in the region and to
protect the environment, in 2007 with the support of the United Nations Environment
Programme (UNEP), Cuba, Haiti, and the Dominican Republic signed an agreement to

create the first biological corridor in the Caribbean zone (UNEP 2007).




However, conservation efforts are described as very challenging in the Greater Antilles
for countries like Haiti, the Dominican Republic, and Jamaica (Paryski et al. 1988). The
struggle to maintain biodiversity and to manage natural resources sustainably is more
visible in Haiti than any of the Caribbean Islands. Haiti is classified as a very poor,
overpopulated and an environmentally degraded country (Paryski et al. 1988). Strauss
(2000) pointed out that Haiti has only 1.44% of its original forest coverage. These
remnants are distributed on less than 200 square kilometers among three National
Reserves (Figure 1-1): La Visite National Park, Pic Macaya National Park, and National

History Park — Citadel, Sans Souci, Ramiers (Paryski et al. 1988; UNEP-WCMC 1997).

Elevation (meters)
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Figure 1-1. Location of the three National Reserves in Haiti.




According to many researchers, deforestation in Haiti is rooted in the lack of an all
encompassing long-term forest management, the lack of well-defined and adopted
policies for natural resources management, and the complexity of land tenure (Pierre-
Louis 1989). Additional contributing factors include lack of economic incentives such as
off-farm activities for peasants and farmers other than agricultural or charcoal
production, illegal forest harvesting (Dolisca et al. 2007a), and an uncontrolled increase
in population. In a recent census, the Haitian Institute of Statistics (IHSI) estimated the
Haitian population at 8.4 million. The population density is close to 300 people per
square kilometer in the capital, Port-au-Prince, which is the highest in the Caribbean

region (IHSI 2003).

This study looks at land use/cover changes occurring within and adjacent to the Pic
Macaya National Park. The Macaya region shelters a distinctive flora with many endemic
species and contains the headwaters of five rivers. Deforestation within fragile
watershed areas is jeopardizing the region’s unique ecosystem (Olson et al. 1996).
Thus, in the last two decades there have been many initiatives such as reforestation and
soil conservation projects to protect the 5500 hectares of mesic forest of Pic Macaya
National Park from degradation. For instance, the World Bank, the United States Agency
for International Development (USAID), NGOs and a team of researchers from the
University of Florida have worked and contributed in many ways to document and
conserve the biodiversity of Pic Macaya National Park. However, political instability has
shortened the life cycle of projects; and the severe poverty of the people living in or

around the area has facilitated the continuing trend of deforestation.




Moreover, managers and governmental institutions monitoring the parks are located far

away. Remote, rugged terrain and hazardous roads make the park access difficult.

This study uses Remote Sensing (RS) and Geographic Information Systems (GIS)
technologies to detect, delineate and quantify the rate of land cover change that has
occurred in Pic Macaya National Park for a 17-year window from 1987 to 2004. Since
the early 1970s with the beginning of the Landsat program, satellite remote sensing has
provided the capability to manipulate and analyze satellite imagery at different scales by
using computer-based image processing software. RS and GIS software, such as
ERDAS Imagine and ESRI ArcGIS software packages, offer an array of tools that
facilitate data processing, data analysis and classification of earth surface features such
as forest cover, soils, and land use/cover to produce thematic maps (Van Lynden and
Mantel 2001; Jensen 2005; Leica Geospatial Imaging 2005; Chang 2006; Lillesand et al.

2008).

RS is the process of gaining information about the Earth’'s surface by using an
instrument at a distance to measure and/or record emitted or reflected electromagnetic
energy (Lillesand et al. 2008). RS systems are capable of detecting, measuring and
assessing scene variables based on the sensor response to reflected or emitted
radiation from the target features. The acquisition of remote sensing data and its
interpretation through GIS are cost effective according to many researchers (Campbell

2007; Hayes and Cohen 2007; Shalaby and Tateishi 2007; Lillesand et al. 2008).




GIS is a computer based information system that has the capacity to store, manage,
query, and update spatial information. GIS excels in its capacity to create new
information from existing data (Chang 2006). GIS as well as RS play an important role in
the decision making process for land management. The use of GIS has become crucial
to public policy due to its facility to combine and then analyze geographic data from
diverse sources (e.g. national population and housing census statistics data, and natural
resources data). For example, researchers, policy makers use GIS maps in public
meeting in order to visualize problems and to increase projects transparency. Also GIS
products help to inform donors about specific situations and to involve the public

impacted by the decisions in public policy (Haklay 2003; Sieber 2003).

RS and GIS provide an economical and viable approach to the challenges of monitoring
land use/cover in remote, mountainous areas, as compared to field surveys or aerial
photography (Hayes and Sader, 2001). In the case of Haiti, many parameters related to
the bio-physical environment, lack of infrastructure, and drastic political-socio-economic
conditions have contributed to make data gathering via field-based surveys and aerial
photography difficult. Moreover, without spatial data and RS technology, monitoring
dynamic changes that are happening at a global or regional scale is a challenging task.
Remotely sensed imagery obtained from satellites, such as Landsat, has helped to

surmount these issues.




Land use/cover represents a basic thematic layer utilized by GIS and RS. Anderson et
al. (1976) considered land use to be the changes made by humans on the land and land
cover as the natural state of the land. Current information on land use/cover is vital to
many applications. Foody (2002) considered land use/cover classification and change
detection as the most practical application provided by the use of remotely sensed data
to produce thematic maps. The thematic map provides land managers with information
on the spatial and temporal changes that have occurred across the landscape. RS and
GIS technologies are widely used by many researchers to study changes in diverse
tropical and arid regions. For mapping and monitoring land use/cover changes in the
northwestern coastal zone of Egypt, Shalaby and Tateishi (2007) used RS and GIS.
Hartter et al. (2008) used RS to detect tropical dry forest succession in a shifting
cultivation mosaic of the Yucatan Peninsula in Mexico. In general, monitoring change
detection of land use/cover involves the following steps: a) detecting changes that have
occurred; b) identifying the nature of the change; c) measuring the areal extent of the

change; d) assessing the spatial pattern of the change (Macleod and Congalton 1998).

1.1 Objectives

The objectives of this research are summarized below:
e Determine the rate of land use/cover change and where the change is taking
place in Pic Macaya National Park;
o Evaluate which digital image processing classification techniques provide the
best change detection information;

e Provide an improved understanding of the process of changes in land use/cover




patterns within the park to develop policies that can generate sustainable land
use/cover management practices and help develop alternative economic

incentives to the population living in and adjacent to the park.

Based on these objectives, this study seeks to answer the following questions:

1.

Can land usel/cover change be detected utilizing TM, ETM+, and ASTER
remotely sensed imagery?

Which classification approach will yield the best results in detecting the change in
land use/cover?

What kinds of changes in vegetation composition and distribution have taken
place over a 17-year window (1987-2004) within the Macaya Park?

Which areas need urgent soil conservation and reforestation intervention?

What is the trend of deforestation in the area over time? Are human activities or

natural events the main cause of these changes?




2 LITERATURE REVIEW

2.1 Land Use/Cover

Land use is a common term used in the remote sensing literature. Meyer (1995)
described land use as anthropogenic changes exerted on the natural land cover such as
the conversion of wild land into urban or agriculture. Meyer (1995) also defined land
cover as the physical state of the land surface with its natural feature type such as water,
vegetation, soils, karsts, barren land or forest. One of the problems of mapping land
use/cover with remotely sensed data is the capacity to produce a map that depicts, with
a high degree of accuracy, the feature present on the land surface. To overcome this,
many scientists simultaneously use remotely sensed data, field data and ancillary data in
order to produce better and more accurate maps (Anderson and Martinez-Meyer 2004;

Currit 2005).

2.2 Satellite Characteristics

Satellite remote sensing data with multi-temporal resolution has become a crucial tool for
monitoring land use/cover change (Gller et al. 2006). Satellite-based land observation
sensors offer reliable and consistent digital data with different ranges of spectral, spatial

radiometric and temporal resolutions.

Spectral resolution is defined as the number and spectral width of the bands in the
electromagnetic spectrum of a satellite sensor (Jensen 2005). A band is composed of
pixels, and each pixel has a digital number (DN) or brightness value (BV). DN or BV is

the relative reflectance of the electromagnetic spectrum for the target area or “foot print.

8



Spatial resolution refers to the capability of the sensor to depict, measure, and record
objects on the ground. The spatial resolution varies among sensors and satellites. The

smaller the spatial resolution the greater the detail in the satellite image.

Sensor sensitivity to record changes in the electromagnetic is referred as the radiometric
resolution. Different sensors record different reflectance or emittance levels of radiation
intensities ranging from 6 bit (Landsat MSS), 8 bit (Landsat TM, ETM+ ASTER VNIR-
SWIR) and 12 bit (ASTER-TIR). The higher the radiometric resolution, the finer the

capacity to detect changes in reflectance or emittance.

Temporal resolution refers to the time of repeat coverage for a specific geographic

location (Jensen 2005; Lillesand et al. 2008). Temporal coverage varies also between

Sensors.

2.2.1 LANDSAT 5 Thematic Mapper (TM)

The Landsat program is the oldest digital satellite imaging system of the Earth’s surface
(Lillesand et al. 2008). The Landsat 5 Thematic Mapper (TM) was launched in March 1,
1984 with two sensors: the Multi Spectral Scanner (MSS) and the Thematic Mapper
(TM). The TM sensor was designed to significantly improve the spatial and spectral
resolutions, geometric and radiometric accuracies compared to Landsat 1-3 MSS
sensor. Additional mid-IR bands and a thermal channel were added in order to achieve
improved spectral resolution than the MSS sensor. The TM sensor simultaneously

acquires data in seven spectral bands (Table 2-1).




Table 2-1. Characteristics of Landsat 5 TM.

Band Spectral Spatial Radiometric Temporal
Resolution Resolution Resolution Resolution
(hm) (m?) (bits) (days)
1 0.45-0.52 30
2 0.52 - 0.60 30
3 0.63 - 0.69 30
4 0.76 - 0.90 30 8 16
5 1.55-1.75 30
6 10.40 - 12.50 120
7 2.08-2.35 30

2.2.2 LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+)

The Landsat 7 ETM+ was launched in April 15, 1999 following the failure of Landsat 6
ETM+ to achieve orbit. The earth observing instrument on Landsat-7, the Enhanced
Thematic Mapper Plus (ETM+), offers an enhanced version of the TM sensor and
provides continuity of the Landsat 5 sensors. Compared to the TM, the ETM+ instrument
provides a full aperture 5 % absolute radiometric calibration, a panchromatic band with a
higher spatial resolution of 15 meters, and a thermal IR band with 60 m spatial resolution

(NASA Landsat 7 2004) (Table 2-2).

10



Table 2-2. Characteristics of LANDSAT 7 ETM+ (Lillesand et al. 2008).

Band Spectral Spatial Radiometric Temporal
Resolution Resolution Resolution Resolution
(um) (m?) (bits) (days)
1 0.45-0.52 30
2 0.52 - 0.60 30
3 0.63-0.69 30
4 0.76 - 0.90 30 8 16
5 1.55-1.75 30
6 10.40 - 12.50 60
7 2.08 - 2.35 30
8 0.52-0.90 15

2.2.3 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

ASTER is one of several instruments found aboard the Terra satellite, launched in
December 1999 as part of NASA’s Earth Observing System (EOS). The Terra satellite
has a polar, sun synchronous orbit with an altitude of approximately 704 km and a revisit
cycle of 16 days. It is the product of a consortium between NASA, Japan’s Ministry of
Economy, Trade and Industry (METI), and Japan's Earth Remote Sensing Data Analysis
Center (ERSDAC). ASTER provides detailed data on land surface climatology,
hydrology, and elevation. Moreover, ASTER is the only high spatial resolution sensor on
Terra that can be used to study land use/cover changes, monitor natural disasters, cloud
covers, glaciers, vegetations and ecosystems dynamics at varying spatial resolutions
from 15 to 90 m spatial resolution (Abrams et al. 2004; Gillespie et al. 2005).

ASTER collects high spatial resolution data in 14 spectral bands; from the visible
through the thermal infrared wavelengths. The sensor has three subsystems to capture

data from different regions of the electromagnetic spectrum: the Visible and Near
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Infrared (VNIR), the Shortwave Infrared (SWIR), and the Thermal Infrared (TIR). ASTER
imagery can be used in conjunction with Landsat TM and ETM+ data for a number of
reasons. ASTER’s spectral resolution is similar to that of Landsat TM and ETM+ data.
The three 15 m spatial resolution VNIR spectral bands correspond to the blue, green,
red, and NIR bands of Landsat 7. The SWIR bands 4 through 9 (with 30 m spatial
resolution) correspond to Landsat bands 5 and 7. The TIR bands correspond to the
Landsat thermal band 6. Furthermore, ASTER and Landsat TM and ETM+ sensors have
the same temporal resolution of 16 days (Feldpausch et al. 2006; Heiskanen 2006;

Wulder et al. 2008) (Table 2-3).

Table 2-3. Characteristics of ASTER data- adapted from (National Aeronautics and Space
Administration (NASA) 1999).

Subsystem Band No. Spectral Spatial Radiometric
Range (pm) Resolution (bits)
(m?)
1 0.52 -0.60
Very-Near 2 0.63-0.69
'(r‘\mrs;j 3N 0.76-0.86 15 8
3B 0.76-0.86
4 1.6-1.70
5 2.145-2.185
Short Wave 6 2.185-2.225
'{g{;{g‘; 7 2.235-2.285 30 8
8 2.295-2.365
9 2.360-2.430
10 8.125-8.475
Thermal 11 8.475-8.825
Infrared 12 8.925-9.275 90 12
(TIR) 13 10.25-10.95
14 10.95-11.65
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2.3 Image Processing

Image processing is manipulating and processing of remotely sensed digital data to
create an end product, such as a change detection map. It includes four major
components: pre-processing, classification, accuracy assessment, and change detection
techniques. Change detection can be quantified by using data from a single sensor as
well as from multiple sensors at different acquisition dates. Various images obtained
from the same sensor such as Landsat-5 TM do not require much pre-processing since

they have the same spectral, spatial, and radiometric resolutions (Read and Lam 2002).

Furthermore, Landsat’ s spatial, spectral, temporal resolutions, its extensive and
historical archive, and its accessibility have facilitated its use for monitoring land
use/cover activities (Franklin and Wulder 2001; Cohen and Goward 2004). Helmer et al.,
(2002) have used Landsat TM satellite imagery to map 21 forest formations and land
cover in Puerto-Rico. However, recent sensor problems with the Landsat ETM+ along
with limited availability of Landsat-5 TM imagery have lead researchers and land
managers to seek other remote sensed data sources for monitoring land use/cover
change (Cohen and Goward 2004; Wulder et al. 2008). ASTER imagery is helping to fill
the gap caused by the Landsat discontinuity (Abrams et al. 2004). Many researchers
have begun using ASTER imagery for forest monitoring programs along with Landsat

(Feldpausch et al. 2006; Heiskanen 2006).

In order to study change detection among multi-temporal images from different sensors,
researchers are challenged by many factors. Systematic errors from the sensors

(geometric errors) and variation in the radiance (L,) values (radiometric errors) can
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create confusion between the changes associated with land use/cover and those related
to variations in solar illumination, atmospheric conditions, seasonal phenology and/or
error due to sensor malfunction (Chavez 1996; Bruzzone and Prieto 2000; Kaufmann
and Seto 2001; Bruzzone et al. 2002; Read and Lam 2002; Richards and Xiuping 2006;
Castellana et al. 2007; Nangendo et al. 2007). These issues need to be addressed to
minimize the risk of misinformation and to guarantee the accuracy of the results (Song et

al. 2001).

2.3.1 Pre-processing

Pre-processing is important to normalize the raw digital data for analysis. Campbell
(2007) the pre-processing into four main functions: radiometric corrections, geometric

corrections, enhancement and transformation.

Radiometric correction is the process of converting the DN from the sensor into units of
absolute reflectance (Lillesand et al. 2008). This correction reduces sensor noise and
decreases the impact of atmospheric components and topographic shadows. Sensor
noise can be caused by sensor malfunction and/or errors in data collection and
transmission. Atmospheric errors are usually the result of haze, clouds or particles
present in the atmosphere where the energy is back-scattered to the satellite sensor.
Topographic shadows represent a common problem in mountainous environments. The
recorded DN value is influenced by the slope, aspect and reflectance of the feature on
the ground. According to the literature, in the northern hemisphere south facing slopes

receive more annual radiation per unit area than and are drier than north facing slopes
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because of the angle of the Earth surface relative to the sun (Chavez 1988; Civco et al.
2002; Lillesand et al. 2008). A number of methods have been recommended and
developed to remove or reduce radiometric effects (Vincent 1972; Moran et al. 1992;

Chavez 1996).

Geometric correction adjusts distortion effects caused by the Earth’s rotation and
curvature, sensor motion and platform vibration. This process also allows geo-
referencing the imagery to a geographic or planar coordinate system (Lillesand et al.

2008).

2.3.2 Enhancement and Transformation

Enhancement is a procedure applied to the original image to improve the contrast
between features by modifying the range of DNs for easier visual interpretation. Linear
and nonlinear contrast enhancements procedures are widely used to extend or “stretch”
the range of DNs from O to 255 (the full range of values for 8-bit data). However,
enhancement procedures have major drawbacks. They alter the statistical structure of
the data in such way that it is not recommended to use the enhanced image for

automated classification (Jensen 2005).

As opposed to enhancement procedures, transformation procedures, such as Principal
Component Analysis (PCA) reduces redundancy between inter-band correlations,
increases the computational capacity, improves the visual appearance of the scene,

while maintaining the statistical integrity of the image.
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A transformation may also help to discern which combination of bands or components

that display unique information (Jensen 2005).

2.3.3 Classification

Image classification is the process of grouping and labeling each pixel within the original
image to a land use/cover information class (Song et al. 2001; Shrivastava and Gebelein
2007). The resulting classified image becomes a mosaic of pixels regrouped into a
thematic map. Two technical expressions are repeatedly found in land use/cover
classification: information classes and spectral classes. Information classes differ from
spectral classes in that they are defined within a classification scheme by the analyst as
the class of interest, based on the objectives of the study and the characteristics of the

study area (Jensen 2005).

For instance, adopted the Anderson classification systems use a hierarchical land
use/cover classification system with four different levels that characterize the information
class for land cover locally, regionally, or globally. These information classes included
Forest, Urban, Agriculture, Rangeland, Open Water, Rock, etc. (Anderson et al. 1976).
The establishment of a classification scheme is a necessary step for delineating sites
from the satellite imagery. Spectral classes comprise a group of pixels, which have
similar DNs in one or more bands. This grouping of DN’s forms the spectral information
class, which is used by the digital image classification algorithm to classify each pixel
based on its spectral similarities. The spectral classes are then grouped into information

classes by the analyst (Jensen 2005).
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This type of classification, called spectral pattern recognition, is widely used to classify
land use/cover. Figure 2-1 shows the process of a spectral classification. Further details

are given in point 2.3.3 classification approach.

DN values per pixel

Spectral Classes
96 176 183 180 DN=0-50 >= A
98 85 176 189 DN=51-100 >=B
10 96 99 89 DN=101-200 >= C ,5
12 14 88 97 o
Information Classes <.

Classification Algorithm

C= Karst Barren

Thematic map
~

7

Wm0
TOIO|O
W(W[O|O

>|>|m|m

Spectral classes

Figure 2-1. Example of a spectral pattern recognition classification using spectral classes.

Accurately delineating land use/cover classes for regions with complex topography,
variation in climate, soils, and ecological zones is difficult. The spectral signatures of
many forest species in many Caribbean countries are not distinct and well defined. Their
distribution and ecological classification are usually mapped based on climatic zone,
geology, elevation and rainfall distribution (Helmer et. al., 2002). Holdridge (1965)
classifies the vegetation of Hispaniola based on bioclimatic characteristics. He
determined the regional vegetation type and life zones based on temperature and

rainfall. Three major types of vegetation for the Caribbean region were found in his
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classification system: tropical lowland dry forests, highland and mesic pine forest and
coastal mangrove swamps. Tasaico (1967.) used the Holdridge system to map potential
vegetation for the Dominican Republic. Howard (1973) inventoried the vegetation of the

Antilles and also used climatic data and trees species to map the land cover.

Recently, a working group, named the Caribbean Vegetation Ecology Working Group,
published a standardized classification system for Caribbean vegetation types (Areces-
Mallea et al. 1999). It was established based on the classification scheme of
Anderson/United States Geological Survey (Anderson et al. 1976). This study utilized a
Level | and Level Il classification system dependent on the individual land cover classes.
The study took into account the land cover class information developed by the University
of Florida (Judd 1987), incorporated collateral ground truth data and significant a priori

knowledge of the area.

2.3.4 Classification Approaches

As noted previously, spectral pattern classification was used in this study to classify the
land cover. It is based on the univariate and multivariate statistics associated with each
individual pixel for each band. Three types of classification are described: unsupervised,

supervised, and hybrid classification schemes (Jensen 2005).

The unsupervised classification approach uses the lterative Self-Organizing Data
Analysis (ISODATA) algorithm to group pixels in the image according to their reflectance

values (Jensen 2005). Pixels with spectral similarities are grouped into clusters by the
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algorithm (Duda et al. 2001) with a high degree of objectivity since the process is done
with little analyst input initially. Once the clusters are defined, the analyst must assign
information class labels (land cover classes) to each cluster. Unsupervised classification
methods represent the best choice when extensive fieldwork is not possible as the
algorithm insures all spectrally similar pixels are clustered together (Bruzzone et al.

2004).

Supervised classification relies on a priori knowledge of the study area. This knowledge
can be obtained from fieldwork, aerial photography, maps and extensive personal
experience (Bruzzone et al. 2004). Training sites are developed by drawing polygons
around an area of interest (AOI) which represents a spectral class. This spectral class
should have a low standard deviation. A seed algorithm may also be used to collect
spectrally similar training sets. An original pixel at x, y location is selected (seeded) on
the image. The neighboring pixels are then evaluated within all bands to locate pixels
with similar spectral characteristics of the original seed pixel. Univariate and multivariate
statistics are calculated for every training site (mean, standard deviation, covariance and

correlation) (Foody 2002; Jensen 2005).

Often better results are achieved by capitalizing on both unsupervised and supervised
methods, commonly referred to as hybrid classification. An unsupervised cluster is done
to generate spectrally homogenous classes. Then, using visual interpretation and
ground truth data, each cluster is labeled and analyzed statistically to determine the

spectral separability. This method is particularly vital for the region of our study where
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there is a lack of ground information for each spectral class due to site inaccessibility.
Hybrid classifications approaches are cost-effective and successful in producing land
use/cover maps with high accuracy from satellite images (Lo and Choi 2004; Giiler et al.

2006).

2.3.5 Accuracy Assessment

Accuracy assessment is the process of validating the classified land use/cover thematic
map. This helps quantify how well the resultant land used/cover map corresponds to the
actual land cover. Accuracy assessment is useful for checking the validity of the
classification approach for evaluating errors. Two sources of information are then
compared: the classified map and the ground reference test information. The
relationship between the classified map and the reference data is summarized in an
error matrix, called also a confusion matrix or a contingency table (Jensen 2005;

Lillesand et al. 2008).

The accuracy report includes an error matrix, producer’'s and user’s accuracy for each
information class, an overall accuracy, and Kappa statistics. The error matrix below
shows the comparison of each reference point to the classified pixel at the same

geographic position (Table 2-4).
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Table 2-4. Example of an error matrix (Congalton and Green 1999).

Reference data

Land cover User’s

Deciduous | Coniferous | Agriculture | Shrub | Row total | Accuracy

classes in %

Deciduous | 65 4 22 24 115 65/115=57
Coniferous | 6 81 5 8 100 81/100=81
Agriculture | 0O 11 85 19 115 85/115=74
Shrub 4 7 3 90 104 90/104=87
Column 75 103 115 141 434
total
Producer’s | 65/75=87 81/103=79 85/115=74 90/14
Accuracy 1=64
(%)
Overall Accuracy in % = (65+81+85+90)/434=74

The pixels or polygons that were correctly assigned to each information class are
represented in the diagonal cells of the matrix (in bold). The off-diagonal cells display the
errors in the classification given the ground reference information. Producer’s and user’s
accuracies measure the correctness of each information class with respect to omission
and commission errors.

Producer’s accuracy is obtained by dividing the number of correctly classified pixels of a
class by the column total of reference points within the class in question (see producer’s
accuracy row in Table 2-4). It tells how well the analyst has classified a certain area in
the land surface. A low producer’s accuracy implies a high error of omission. Omission
errors occur when a classified pixel is excluded from the class that it really belongs to.
User’s accuracy is calculated by dividing the number of correctly classified pixels by the
row total of pixels of the assessed class (far right column of the error matrix in Table
2-4). As a user of the produced map, the user's accuracy of a class indicates what

percentage of a particular land cover type on the map is really that land cover type on
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the ground. A low user’s accuracy represents a high error of commission. Commission
error occurs when a land cover class is included in an incorrect class category. Overall
accuracy is the number of correctly classified reference point (the diagonal points in the

table) divided by the total number of reference points (Congalton and Green 1999).

The Kappa statistic (Khat) compares two datasets to see if they differ significantly. It
looks at the agreement or accuracy between the classified map and the reference data.
The Kappa statistic utilizes all the data in the matrix rather than just the diagonal data in
the error matrix. The Kappa statistic ranges from 0 to 1. A value close to 1 indicates a

high agreement between the two datasets (Congalton and Green 1999).

2.4 Change Detection Methods

Change detection is the process of observing and comparing two multi-temporal images
acquired of the same geographical area at different anniversary dates in order to map
and analyze spatial patterns of change (Jensen 2000). The choice of a change detection

algorithm dictates the type of change results.

Image algebra (band differencing and ratioing) and post classification comparison (PCC)
are among the algorithms widely used to create land cover change map. Image algebra
techniques evaluate and compare pixel by pixel the multi-date images to reveal changes
between acquisition dates. It is divided into two different methods: image differencing
and image ratios. Image differencing is performed by subtracting the DN value of one

image for a particular band from the DN value of the corresponding pixel in the same
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band of the second image. Image ratios are executed by dividing the DN of one image
from a particular band by the DN of the corresponding pixel of the same band of the

second image (Singh, 1989).

Post Classification Comparison (PCC) is considered the simplest approach to assess
change detection. Land cover maps for a least two different times using the same
spectral information classes are required (Jensen 2005). Each image is classified
independently and then compared through cross-tabulation to produce a change “from-
to” image. When compared to the image algebra technique, PCC can produce
information on the type of transition change. The method chosen depends on the nature
of the study and the type of imagery available. Based on the scope of this study, the
PCC method is preferred, and has been broadly accepted in RS to identify change

among multi-temporal data (Hayes and Cohen 2007; Shalaby and Tateishi 2007).
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3 DESCRIPTION AND METHODOLOGY OF THE
STUDY SITE

3.1 Location and Characteristics of the Study Site
Pic Macaya National Park is located in southwest Haiti, approximately 36 km North West

of Les Cayes and 195 km South West of Port-au-Prince. Its geographic position lies
between 18 21'N latitude and 74 01’ W longitude. Pic Macaya National Park is situated
within the Massif de la Hotte, which ranges from 1,270 to 2,255 meters in elevation

(Figure 3-1).

acaya National Park
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Figure 3-1. Location of Pic Macaya National Park, Haiti surrounded by two major Mountains--Pic
Formon and Pic Macaya (ESRI data source, GLCF).
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3.2 Biophysical Characteristics
3.2.1 Topography and Hydrology

The topography of the Pic Macaya National Park is extremely rugged (Figure 3-2). The
Park’s boundary is located around two dominant mountains in the region, Pic Formon
(2,250 meters or 7,381 ft) in the east, and Pic Macaya in the west (2,347 meters or
7,700 ft) (Figure 3-1). The plains and the rocky hills south of Pic Formond are included in
the park’s boundary. The park area is the headwaters of five main rivers: Grande Ravine
du Sud, Roseaux, Port-a-Piment, I'Acul, and Guinaudée (Woods, 1987). Temperatures
range from 20°C to 0° C. The region is influenced by moist air, winds and sea breezes
blowing from north to south. This results in frequent rainfall at higher elevations. The

region receives an annual rainfall of more than 3,000-5,000 mm yearly.

A

Global Land
Cover
Facility

Photos by
Author

(®)

X

Figure 3-2. A- False color composite of ETM+ band 4-3-2 (RGB) in the Macaya Region. Major
typical vegetation covers are pine forest (dark red) and broadleaf shrubs light red; barren land
and agriculture are shown in shades of brown and pink; the light green represents karsts rock and
the blue represents urban areas. (B) karsts, (C) barren land, and (D) mountain erosion.
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3.2.2 Geology and Soil

The geology of the area is described as complex, and consists of uplifted limestone,
basaltic volcanic rock, and siliceous sandstone and was formed around 70 to 80 million
years ago. The geological formation influences the soils type. The soils are
predominantly oxisols and ultisols characterized by a low pH, acidic and neutral
composition. In the upper hills area, the soils are thin and very erodible and lose fertility
rapidly when cultivated (Sergile et al. 1992). Gully erosion is frequent in the lower hills
and plains. Deforestation, high hurricane winds, and heavy rainfall increase erosion
risks. The lower hills and the plains are covered respectively with red clays and alluvial

soils (Figure 3-3).

Figure 3-3. Gully erosion on the plain and hilly mountains. Photos by author.
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3.2.3 Flora and Fauna

The region of the Massif de la Hotte including the park area is dominated by needle-
leave forest, such as Pinus Occidentalis or “Bois Pin”, the only endemic conifer in the
Island (Holdridge 1942). These pines can reach 40 meters in height and approximately

two meters in diameter (Holdridge 1947) (Figure 3-4).

Figure 3-4. lllustrations of Pinus Occidentalis © author.

In general, vegetation types in the park and adjacent areas include montane cloud and
wet forests, pine forest, and lower montane wet forests find at elevations of 850 m to

2300 m (2,788 — 7,545 feet). One out of 10 plant species is endemic to the park.
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There are more than 500 species of vascular plants, with 130 endemic to the island.
Thirty four percent of flowering plants are endemic to the park (Judd 1987; Timyan
2000). The park also provides habitat for many mammalian species, migratory birds and
amphibians (Figure 3-5). One endangered mammalian species, the Haitian Solenodon
(Rhizoplagiodontia lemkei), is endemic to the park. Numerous birds have been observed
in the park. Three are vulnerable to extinction: the White-winged Warbler (Xenoligea
montana) and the White-winged Crossbill or Hispaniolan Crossbill (Loxia megaplaga),
and Black-capped Petrel (Pterodroma hasitata) (Judd 1987; Paryski et al. 1988; Olson et

al. 1996; International Union for Conservation of Nature 2008).

Figure 3-5. Haitian Solenodon (upper left) and White-winged Warbler (upper right) White-winged
Crossbill or Hispaniolan Crossbill (Loxia megaplaga), and Black-capped Petrel (Pterodroma
hasitata). Pictures: Courtesy of Mr. Eladio Fernandez and Mr. Patrick Coin. Printed with
permission.

28



3.2.4 Population and economic activities

The population living within, or adjacent to, the park has seen a dramatic increase in the
last 20 years. Compounding the rapid population increase is the seasonal flow of
migrant farmers who access the area during the growing season (November-March) to
exploit tree resources for charcoal production and clearing land for seasonal crops
production (Organization for the Rehabilitation of the Environment 2001 ). The main
economic activity of people living adjacent to the park area is agriculture including

cropping and livestock production (Figure 3-6).

Figure 3-6. Economic activities of the population living in/around the park Macaya.
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The main income source of the inhabitants of the plaine des Cayes and surrounding
communal section is agriculture. There are hectares of rice, beans, bananas, and
vegetable gardens whose main irrigation depends on the rivers coming from the park.
The local cropping calendar starts with clearing in November and December. From
January to February, men and women are actively planting their gardens with yams,
manioc, and sweet potatoes. Crops such as black beans are intercropped with corn and
roots. From April to June, Macaya local residents rely on the marketplace for food.
Livestock includes cattle, goats, sheep, Haitian pigs, and poultry raised for market and
are the emergency financial support for the family as shown in the Figure 3-6. The

harvesting season starts in May and continues to July.

Additional income is generated from illegal timber harvesting and land clearing within the
Park. Large deciduous trees such as Bois Tremble (Didymopanax tremulum) are utilized
for charcoal production. Pine trees are cut down for housing construction. The cleared

areas are converted into gardens for fast growing, cash crops such as beans.

Intense deforestation in the park areas threatens the stability and the hydrologic cycle of
these rivers, as well as the rich agricultural lands below. Pic Macaya National Park
serves the double roles of conserving and protecting numerous endemic species of

plants and animals and also of providing irrigation for the population downstream.
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3.3 METHODOLOGY
3.3.1 Data Collection

Imagery from a single satellite for the study area with the same temporal coverage over
time with cloud coverage less than 20% was not available. Data from different sensors
were chosen: Landsat-5 TM, Landsat-7 ETM+, and ASTER. All the images were located

within path 010/ row 047 of the Landsat Worldwide Reference System (Figure 3-7).

Available Satellite Imagery

Landsat-5 TM Landsat-7 ETM+ ASTER (Terra)
01/21/1987 11/16/2000 01/28/2004

A 4

Image Processing

Image pre-processing Image Processing Hybrid
Registration/resampling/ L) &Visualization »| Classifications
subset/ radiometric and Principal Component

geometric corrections Transformations (PCT) &

Classifications

A 4

Final Output
Post Classification
Accuracy Assessment . Results &
L > Comparison & Land L 3 discussion

Use/Cover Change Maps

Figure 3-7. General Methodology.

Land use/cover maps, at scales of 1:1,971,021, available for Haiti and the Dominican
Republic were consulted to gain an understanding of the type and distribution of the

vegetation. These small scale maps cover a large area on the ground and provide only
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general information on the type of vegetation and its location. A Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model (DEM) was used. Field data were

collected in December 2007.

3.3.2 Satellite Imagery and Characteristics

The characteristics of the remotely sensed image used for this study are given in the

Table 3-1. They represent the best scenes available from the cited sources.

Table 3-1. Characteristics of the satellite imagery utilized.
PIXEL ACQUISITION

SATELLITE | SENSOR | ‘o= | PATHIROW DATE SOURCE
Landsat 5 ™ 30 1987/01/21
Landsat 7 ETM+ 30 2000/11/16 Global Land
Cover Facility
ASTER 010/047 www.glcf.umiacs.
Terra (VNIR+ 15 2004/01/28 umd.edu
SWIR)

3.3.3 Digital Elevation Model

A 3-arc-second Digital Elevation Model (DEM) of 90 meter was used in this study. This
DEM is a product of the Shuttle Radar Topography Mission (SRTM), a joint project
overseen by NASA and the National Geospatial-Intelligence Agency (NGA), which has
provided topographic data for 80% of the Earth’s land surface. This 90 m DEM was the
digital elevation data available for Haiti. An attempt to create an ASTER- derived DEM,

which would have a higher resolution failed due to software unreliability.
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3.3.4 GPS Points Survey

A GPS receiver Garmin 76 was used to collect field data in accessible areas of the Park
Macaya. A total of 116 GPS points were acquired on the field trip undertaken during the
period of December 28 to 30, 2007. A good rule of thumb would be to collect a minimum
of 30 to 50 ground points per land cover class (Congalton and Green 1999), but due to
limited access in the field, | was able to collect only 116 points. For each class, 5 to 19
ground control points were collected. A Relevé field form (Appendix C) was used to note
and register information on the dominant type of land use/cover of the area. The ground
truth data collected in the field were randomly divided and used as training and accuracy

assessment.

3.3.5 Software Packages Utilized

ERDAS Imagine 9.1 was used for the image processing. ArcGIS 9.2 was utilized to map
and quantify the rate of change. Derived hillshade and slope thematic layers were
generated with ArcGIS 9.2. Microsoft Word and Excel 2007 were used to produce the

report.

3.4 Image Processing
Preprocessing procedure was applied to the three TM and ETM+ bands 1, 2, 3, 4, 5 and

7 as well as ASTER VNIR bands 1,2,3 and SWIR bands 4, 5, 6, 7 were imported and

layered stack with ERDAS Imagine 9.1 (Figure 3-8).
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Figure 3-8. Preprocessing flowchart.

3.4.1 Radiometric Corrections

Using ERDAS Imagine model make, the DNs of each image was converted to surface
reflectance using the modified dark object subtraction, an atmospheric correction that
utilized the cosine of the solar zenith angle correction (COST)). Inputs into the model
include the Earth-Sun Distance, the solar elevation, and the minimum DN values for

each band (Chavez 1996).

3.4.2 Geometric Correction

Each individual satellite image was geo-rectified using a first order affine transformation
and resampled to the Universal Transverse Mercator (UTM) coordinate system, zone 18
World Geodetic System (WGS 84) datum using a nearest neighbor interpolation
algorithm (Jensen 2005). Nearest neighbor is a resampling method, which preserves the
original reflectance value of the image data. Spatial resolutions of the two Landsat

scenes were rectified from 28.5 to 30 m pixels.
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ASTER VNIR and SWIR bands (1, 2 3N and 4 to 9) were rectified to 30 m pixels also. All
the image scenes were subset (Figure 3-9) to the following coordinates points:

Upper Left X: 590080m Lower Right X: 620920m

Upper Left Y: 2038488m Lower Right Y: 2017818m

Figure 3-9. Original satellite imagery (left) without radiometric correction, subset of the Landsat
ETM+ after radiometric corrections (right).

3.4.2.1 Enhancement and Transformations

Image visualization enhancements and transformations were utilized to assist in the
classification process. Scientific visualization is defined as:
“Visually exploring data and information in such a way as to gain understanding

and insight into the data” (Brodlie et al. 1992).

There are different techniques to improve the visualization of digital imagery. Various
band combinations displayed as red, green, blue (rgb), color composites were used to
aid in visually interpreting the data. Principal component analyses reduced the

redundancy in the data as well as improving image visualization (Jensen 2005).
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Digital imagery can be displayed using one gray scale band, a true color composite, or a
false color (FC) composite in the RGB color display system. The standard false color
composite (4, 3, 2) helps to visualize land cover/use as vegetation is highly reflective in
the near-IR (band4) and fairly reflective in the red (band 3) and green (band 2) (Lillesand

et al. 2008).

The FC of 4,3,2 (Figure 3-10) shows pine forest in shades of dark red, broadleaved
shrub in light red, barren land as shades of brown, karsts as light green and urbanization

as blue-gray color.

Figure 3-10. False color composite of bands 4, 3, 2 (rgb) of Landsat ETM+ 2000 scene.
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Band combinations 7, 4, and 2 in RGB (Figure 3-11) were used to gain more
understanding of the geology (barren soils: karsts, and sediments), and distinguishing
stream channels from erosion gullies. Pine forest appears as shades of olive-green.
Grasslands appear as light green. Barren soil appears in pink shades and urbanization

in different shades of magenta.

“ i ::- -[ 3 . e . "l._l

posite of bands 7, 4, and 2 (rgb) of Landsat ETM+ 2000 scene.

Figure 3-11: False color com

A true color composite (bands 3, 2, 1) was evaluated for each image. Resulted image
shows ground features colors similar to what the human eye perceives. Clouds are

white, water is blue, vegetation is green and cleared areas are light pink (Figure 3-12).
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Figure 3-12. True color composite of bands 3, 2, 1 (rgb) of Landsat ETM+ 2000 scene.

Principal components were calculated for each of the 3 images. The transformation was
applied to reduce the redundancy of information and compress the data into
uncorrelated independent components that can be used for classification (Singh 1989).
Eigenvalues were computed from each image’s covariance matrix and determine the
spectral length of each component’s axis. Eigenvectors refer to the directional
relationship between the principal components axes and imagery axes. A factor loadings
matrix shows the information contributed by each band to the individual components
(see Appendix) (Singh 1989; Jensen 2005). As a result of the transformation, a new

image for each study was created.
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The first three PC components of the Landsat 1987 and 2000 scenes were stacked
together to form a new image, since they accounted for 99.38% and 98.95% of the
variance. The first PCA of the ASTER VNIR-SWIR was used since it accounted for 93%
of the variance (APPENDIX A: Principal Components Statistics and Analysis). A subset
of the Landsat ETM+ PC transformation is shown in Figure 3-13. The three PCA
components combination greatly enhanced the visual interpretability and increased the

separability between the land class covers (Jensen 2005).

Figure 3-13. Landsat ETM+ PCs 1-2-3 displayed as red, green, blue.
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3.5 Image Classification and Accuracy Assessment
Figure 3-14 displays the steps to classify the land use/cover of each scene and asses

the accuracy.
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Component Collected field
output image data

}

A 4

v
Classification Random divisi ¢
Scheme < andom |v!5|ono
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A 2 training sets and test
Unsupervised
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l
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random points

<
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Training data
Separability test %
Class labeling
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]
]
]
]
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Land Accuracy
use/cover Assessment
map

Maximum
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Figure 3-14. Flowchart of image classification and accuracy assessment.
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3.5.1 Classification scheme and information classes’ characteristics

First, a classification scheme was developed. This scheme is based on the Anderson
level Il classification system (Table 3-2). However, an Anderson level Il was also used
to classify the open pine and mixed forests based on detailed ground truth information
that were collected on the field. In addition, previous studies in the area were consulted
to refine the classes. Six information classes were derived. 1) Built-up; 2) Agriculture; 3)

Herbaceous; 4) Open pine forest; 5) Mixed forest; 6) Barren Land.

Table 3-2. Classification scheme designed for the study.

Class Number Class_Name
1 Built-up

Agriculture

Herbaceous

Open pine forest
Mixed forest

OO W (N

Barren Land

3.5.1.1 Information Class Description

Built-up
Built-up areas are comprised of low residential areas of scattered housing, dense
residential areas, and little road infrastructure. Dense residential areas are concentrated
outside the park’s boundary. Rural homes in and adjacent to the park area are dispersed
in such a way they could not be classified into this class, except where deforestation was

intense (Figure 3-15)
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Figure 3-15. lllustrations of built-up areas.
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Agriculture
The agriculture class represents areas used for crop production and grazing (Figure

3-16). Based on field observations and the cropping calendar, it was observed that most
of the agricultural land was fallow at the image acquisition dates. This contributed to
confusion between agricultural areas and barren land composed of bare soil, rocks and
unpaved roads. Hence, agricultural and barren land was evaluated with the use of
ground truthing and texture analysis in order to decrease the possibility of

misclassification.

Figure 3-16. lllustrations of Agricultural land--active cropping and fallow lands.

43



Herbaceous
The herbaceous class is composed of grasslands, forbs and ferns. When forests are
cleared for agriculture, the land becomes less fertile as the agricultural practices are

unsustainable. It is then abandoned for pasture, and grasses, forbs and ferns revegetate

these sites (Figure 3-17).

-

Figure 3-17. lllustrations of Herbaceous land types.
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Open Pine Forest
Judd (1986) divided the pine land into 4 categories 1) open rocky pinelands; 2) open
pine savannas; 3) open pinelands with scattered shrubs; and 4) moist pinelands with a
shrub understory. Open pine forest can be defined as a closed forest, which has turned
into an open forest as a result of natural causes or human intervention. This class
includes continuous vegetation cover in which tree crown cover exceeds 10 percent and
a minimum of tree height of 5 m (FAO, 2006) at elevations between 850 and 1250 m

(Figure 3-18).

L S

Figure 3-18. lllustrations of open pine forest in Pic Macaya National Park.
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Mixed Forest
The mixed forest in Macaya National Park is diverse with many endemic species. It is
characterized by the absence of a dominant tree species. Instead many species such as
pine, and different broad-leave trees (Didymopanax tremulum) are mixed with shrubs.
However, based on field observations, there is an insignificant amount of broad-leave
species such as the Bois Tremble and shrubs species. Instead small trees dominate the

area (Figure 3-19).

Figure 3-19. Varying compositions of mixed degraded forest.
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Barren land
Barren Land includes areas of bare soil, sand, and exposed rocks (Figure 3-20). In a
barren area, less than one-third of the area has vegetation or other cover (Anderson et

al, 1976).

Figure 3-20. Illustrations of barren land class.
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3.5.2 Hybrid classification and Accuracy Assessment processes

The Hybrid classification approaches consisted of building spectral signature files
derived from both unsupervised (ISODATA) techniques and supervised training sets,
and were used together to classify every pixel within each scene. Unsupervised
classification was performed on each of the three PC images to generate training data
that were used to develop training sets for the supervised classifier. The clusters were
grouped into classes with the help of visual interpretation and the available ancillary
data. The results of unsupervised classification were verified from 55 training samples
collected in the field to better understand the spectral signatures of the land use/cover
classes. For each land use/cover class, 8 to 13 ground truth points, with the exception of

built-up were used as training sites in the image classification.

Separability analysis of the signatures files were used to select the clusters or training
sets with the best signatures and separability. Those selected were input into a
maximum likelihood classifier (MLC). llustrations graphs are shown in the results

section.

Recoding was done to merge the spectral classes into the six defined information
classes. In addition, as noted, clouds and cloud shadows were not of interest. They were
masked out using ArcMap GIS and the masking function in ERDAS/Imagine. Pixels
classed as cloud shadow or cloud were clipped out by recoding them as 0. Masking

cloud shadows and clouds eliminated spectral confusion with barren soil.
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The last step of the image processing was accuracy assessment. Accuracy assessment
was conducted independently on each classification. Two sources of information: the
remote sensing-derived classification map and ground reference test information were
used as inputs and compared to assess the accuracy of the classified map. A
combination of training test information sources were used since the number of field
collected samples was less than 20 per class. This limitation was due to site obstruction
and inaccessibility. The only 116 ground verified points collected were divided randomly
between training pixels and ground reference test pixels. 55 sites were used as sample

to train the supervised classification and 61 sites were left as ground truth reference.

The number of reference pixels is an important factor to estimate the accuracy of each
classified image. A good guide is to use a minimum of 30 sample points for each
information class to obtain a statistically valid sample(Congalton and Green 1999).
According to Congalton and Green (1999), more than 250 pixels are needed to estimate

the mean accuracy of a class within plus or minus five percent.

Therefore, to obtain the ground reference test information, a sampling scheme using
traditional and geostatistical techniques was designed. This sampling scheme made use
of a higher spatial resolution remotely sensed data (the VNIR band ASTER—
panchromatic image for the ETM+) to obtain the ground reference test information,
which were added with the 61 ground verified points collected in the field to obtain N

number of sample size.

The sample size was based on multinomial distribution. For more details see (Jensen

2005, page 501). The locations of the samples (x,y) for each class were collected
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randomly using the equalized stratified random sampling model. An equal number of 30
samples were selected from each strata or land use/cover class by selecting 208 points
that were added with the 61 reference points collected in the field. Strata are first created
by extracting only pixels associated with a specific class found in the land use/cover
map. Then, (x,y) sample locations are randomly distributed throughout the geographic

study area.

The reference image was overlaid with the 271 accuracy assessment points. In addition
to the 61 ground verified points, several independent data were used as reference. The
1987 TM image was used as a backdrop. The 2000 ETM+ panchromatic band 8 and
2004 ASTER VNIR bands were also used to verify the accuracy points. Following this
evaluation process, an accuracy report was generated. Error matrix with producer’s and

user’s accuracies, overall accuracy and Kappa statistic was generated and analyzed.
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4 RESULTS AND DISCUSSION

4.1 Spectral separability among the classes land use/cover (1987, 2000,
2004)

Separarability analyses were done on the signatures files using ERDAS to select the
best statistical training signatures to use for the MLC classification. The spectral
signature curves for the six land cover classes for each date showed the average
reflectance responses. In most cases, barren land composed of unpaved, dry soil,
limestone and built-up registered the highest reflectance from the visible band 1 (0.45-
0.52 um) with a peak in the mid-infrared regions (1.55-1.75 um). The Figure 4-1, Figure

4-2, and Figure 4-3 illustrated the spectral signatures used for the classification.

Spectral Profile for Land use/cover 1987
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Figure 4-1. Spectral separability for land use/cover classes of the Landsat TM 1987.
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Spectral Profile for Land use/cover 2000
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Figure 4-2. Spectral separability for land use/cover classes of the Landsat ETM+ 2000.
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Figure 4-3. Spectral separability for land use/cover classes of the ASTER 2004.
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Agriculture registered a high reflectance in the mid-Infrared region due to low moisture
and low organic matter in the soil. As soil moisture and organic matter decreased, the
reflectance increased from the visible through the mid-infrared wavelengths. Open pine
forest, mixed forest and herbaceous registered lower reflectance values, with its highest
peak in the green and red bands. The decrease in reflectance is due to the chlorophyll
and water absorption in the leaf. However, since bands 2 and 3 covers the green

reflectance from the leaf, the highest reflectance peak increased in this visible region.

4.2 Classification Maps and Accuracy Results of the Landsat TM, Landsat
ETM+, and ASTER Images

Error matrices were generated to evaluate each land use/cover class accuracies. The
results are summarized and detailed in Table 4-1. The overall accuracies for 1987, 2000,
and 2004 were respectively 82%, 82%, and 87% with kappa statistics of 78%, 78%, and
84%. User's and producers’ accuracies of each information class ranged from 75% to

97% in most cases (Congalton and Green 1999).

Table 4-1. Summary of land use/cover accuracies (%) for 1987, 2000, and 2004.

Land use/cover 1987 - TM 2000 - ETM+ 2004 - ASTER
classes Producer's | User's |Producer's| User's |Producer's| User's

Built-up 91.0 87.0 90.0 71.0 87.0 84.0
Agriculture 84.0 75.0 88.0 89.0 80.0 84.0
Herbaceous 89.0 87.0 91.0 63.0 86.0 97.0
Open Pine Forest 83.0 71.0 83.0 87.0 92.0 89.0
Mixed Forest 71.0 80.0 78.0 77.0 95.0 91.0
Barren Land 77.0 90.0 71.0 94.0 85.0 79.0
Overall accuracy 82.0 82.0 87.0

Kappa statistic 78.0 78.0 84.0
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4.2.1 Accuracy Assessment and land use/cover Map of the Landsat TM (1987)

A total of 271 pixels were selected and evaluated for accuracy and 222 were correctly
classified, which resulted in an overall accuracy of 82% and a kappa statistic of 78%. In
terms of producer’s accuracy, all classes were over 80% correct with the exception of

mixed forest and barren land, which were 71% and 77% respectively (Table 4-2).

Table 4-2. Results of the accuracy assessment of the 1987 land use/cover classification map
produced from the Landsat TM data expressed as percentages.

Reference Data
7 > o
(] +— —
- o 9 s 3 2 |w| 8|38
2 s 2 g 5 & S |s|3|=
S [Land use/cover I = S o L c | - S | &
s [classes 5 2 o o 2 o = < o
= o0 > o} c X T A o o)
- < T @ S 0 b ]
@®© o S N
2 O
§ Built-up 40 1 2 0 3 | 46 | 87% | 84%
>|Agriculture 1 36 4 0 5 2 48 | 75% | 70%
& |Herbaceous 0 1 34 0 4 0 39 | 87% | 85%
E Open Pine Forest 1 0 0 30 4 7 42 | 71% | 67%
o [Mixed Forest 0 3 0 4 35 2 44 | 80% | 75%
3 [Barren Land 2 2 0 0 1 47 52 | 90% | 88%
$1Column Total 44 43 38 36 49 61 | 271
Producer Accuracy 91% 84% 89% 83% 71% 77%
Number of plxgl_s 292 Overall Classification 82% Ove_ralll Kappa 28%
correctly classified Accuracy Statistic

Mixed forest has the largest source of omission error. Pixels labeled mixed forest should
have been labeled agriculture, herbaceous, and/or open pine forest. In terms of user's
accuracy, all classes were over 80% correct, except agriculture and open pine forest.

Open pine forest pixels were often confused with barren land. This commission error
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could be due to clearing activities within the pine forest. The majority of each land
use/cover type has a kappa statistic exceeding 75%, except agriculture and open pine
forest, which may be due to deforestation within the pine forest for agriculture or grazing.

Figure 4-4 shows the final classified map of the Landsat TM image (1987).

Land usefcover classification map of the Landsat TM image (1987)
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Figure 4-4. Land use/cover map of the Landsat TM (1987) image.
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4.2.2 Landsat ETM+ 2000 scene

Overall accuracy and kappa statistic follow a similar pattern as the Landsat TM 87 land
use/cover classification. The overall accuracy is 82% and the kappa statistic is 78%. In
terms of producer’s accuracy, all classes were over 80% with the exception of mixed

forest and barren land, which were 78% and 71% respectively (Table 4-3).

Table 4-3. Results of the accuracy assessment of the 2000 land use/cover classification
map produced from the Landsat ETM+ data expressed as percentages.

Reference Data
D
(] 4+ >
o 2 5 2 2 |_1 8|3
3 S 2 3 p s 3| E| 3| %
o T = ) () L o ) ©
o |Land use/cover = = g = c = o e
Y s 0 8 a3 ] o) < 2
+ |Classes @ > . p e = = N <
= < = =
= T g = o @ @ &
Ll (@) ) A4
g
S |Built-up 27 0 0 0 9 38 | 71% | 67%
S |Agriculture 0 58 1 1 1 4 65 | 89% | 86%
>|Herbaceous 0 20 3 5 3 32 | 63% [ 59%
% Open Pine Forest 0 0 1 34 4 0 39 | 87% | 85%
£ [Mixed Forest 2 3 0 3 36 3 47 | 77% | 72%
g |Barrren Land 1 2 0 0 0 47 | 50 | 94% | 92%
T [Column Total 30 66 22 41 46 66 | 271
8 Producers Accuracy 90% 88% 91% 83% 78% 71%
Number of plxgl_s 993 Overall Classification 82% Ove_raI.I Kappa 28%
correctly classified Accuracy Statistic

As shown in Table 4-3 barren land has the largest percentage of omission error. Some
pixels were labeled barren land when they should have been classified as built-up or
agriculture. This may be due to unpaved roads that are located within urban areas.

Furthermore, since the satellite imagery was acquired during the growing seasons, the
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majority of agricultural land was either fallow or harvested. In terms of user’s accuracy all

classes were over 77%, except barren land and herbaceous.

The land use/cover classification of the Landsat ETM+ registered the most commission
and omission error accuracy within the classes barren land and agriculture, open pine
forest and built-up. Mixed forest has the largest source of omission error. Pixels labeled
mixed forest should have been labeled agriculture, herbaceous, and/or open pine forest.
The source of these errors might be caused by mixing pixels where clear-cut activities
were frequent. Cleared areas are usually either used as agricultural land, or left behind
for natural pine trees regeneration with the growing of grasses, which formed understory
with small vegetation, barren land and grass. Conversion and transition of one class to
another class played an important role in confusion occurring in the spectral properties
of the pixels. Open pine forest pixels were often confused with barren land. This
commission error may be due to the clearing within the pine forest. Also, since drought
condition is common during winter season, grass is partially dead and is barely present
in the land cover area. Herbaceous class registers also the lowest kappa statistics
(59%), which mean the agreement is poor. This might be caused by the conversion of

large part of herbaceous area into fallow land.

In summary, the source of errors within pine and mixed forest with herbaceous, barren
land, agricultural land may be caused by temporal transition. The energy reflected and
measured by the Landsat TM and ETM+ sensors is based on the interaction of the

electromagnetic radiation with plant components and bare soil. The density and the foliar
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coverage influence the reflectance response. Within a pine stand and mixed forest
stand, where extensive clearing of the highest trees has occurred, some herbaceous
and annual grasses, small plant and agriculture understory affect the electromagnetic
response. Figure 4-5 illustrates the final land use/cover classification map for the

Landsat ETM+ scene.
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Figure 4-5. Land use/cover map of the Landsat ETM+ (2000) image.
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4.2.2.1 ASTER 2004 image

The geographic coverage of the 2004 scene was different from the two Landsat scenes.
A total of 236 pixels were correctly classified (Table 4-4) and the results indicated a

higher overall accuracy and kappa statistic when compared to the Landsat scenes.

Table 4-4. Results of the accuracy assessment of the 2004 land use/cover classification
map produced from the ASTER SWIR+VNIR data expressed as percentages.

Reference Data
“g)_‘.) — > 0
o %) o D 2 _ 3 =
S > 3 3 o) £ = IS 3 T
S |Land use/cover L = S £ 5 c = o &z
+ |classes 2 € £ & 9 % s | 5 p
= & g s a|c|g| &8
L O D N7
§
© [Built-up 26 1 0 0 0 4 31 | 84% | 82%
% |Agriculture 3 43 2 0 0 3 51 | 84% | 87%
,G_>; Herbaceous 0 1 36 0 0 0 37 [ 97% | 97%
= Open Pine Forest 0 0 0 33 3 1 37 | 89% | 88%
E |Mixed Forest 0 1 4 0 52 0 57 | 91% | 89%
2 |Barren Land 1 8 0 3 0 46 | 58 [ 79% | 81%
T |Column Total 30 54 42 36 55 54 | 271
& |Producers Accuracy 87% 80% 86% 92% 95% 85%
. Overall
Number of pixels 236 |Classification 8795 |Qverall Kappa 84%
correctly classified Statistics
Accuracy

The overall accuracy results of the 2004 land use/cover classification are excellent. Each
land use/cover class has a producer’s accuracy higher than 85%, except for agriculture.
Spectral confusion also occurred between agriculture and barren land classes. User's
accuracy exceeds 84%, except barren land. The kappa statistics for all land use/cover

class has an excellent agreement excelling 81%.
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The highest overall accuracy was registered in the ASTER classification results. The 3
VNIR high spatial and broad spectral bands used as the reference data was able to pick
up the high frequency of detail in the land use/cover. It was found that the classification
accuracy increased by merging the VNIR and SWIR bands, which increased the level of
details in terms of texture, shape and pattern of the classes. Figure 4-6 shows the

classified map of the ASTER image.

Land use/cover classification map of the ASTER image (2004)
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Figure 4-6. Land use/cover map of the ASTER (2004) image.
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4.3 Land Use/Cover Change Detection Results
Change detection matrices for 1987-2000, 2000-2004, and 1987-2004 were derived for

the Landsat 5 TM 1987, Landsat ETM+ 2000, and ASTER 2004 land use/cover
classifications. Change maps and statistics for each time frame are shown in the forms
of a chart and a map. Due to the difference in geographic coverage for the 2004 scene,

two different analyses based on the areal coverage were done.

4.3.1 Change map between 1987 and 2000 classifications

In 1987, open pine forest constituted the major type of land cover in the study area
(Table 4-5). Accordingly, it accounted for about 26% of the total area followed by barren
land (22%), agriculture (19%) and mixed forest (19%). Built-up areas (8%) and
herbaceous (5%) occupied the smallest area. During the 13 year time frame, open pine
forest declined by 45% while mixed forest (19%) remained the same. Agriculture and

built-up areas increased by 29% and 53 % (Figure 4-7 and Figure 4-8).

Table 4-5. Comparison of areas (ha) based on the six cover types and rates of change between
1987 and 2000.

Change Average rate of
Land use/cover 1987 2000 Between change 1987-
classes 1987&2000 2000
Area (ha) % |[Area(ha) % |Area(ha) % | halyear %
Built-up 4508 8 6,879 13| 42,372 +53 +182 +4.05
Agriculture 10,270 19 13,259 24| +2,989 +29 +230 +2.24
Herbaceous 2853 5 3,263 6 +410 +14 +32 +1.11
Open Pine Forest 14,272 26 7,861 14| -6,412 -45 -493 -3.46
Mixed Forest 10,532 19 10,314 19 -218 -2 -17 -0.16
Barren Land 12,003 22 12,862 24 +859 +7 +66 +0.55
Total 54,438 100| 54,438 100 e ek e e
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Percentage of land cover types for 1987

and 2000 by total area (54,438 ha)
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Figure 4-7. Comparison of the land use/cover changes between 1987 and 2004.
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Land use/cover changes map between 1987 to 2000
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Figure 4-8. Land use/cover change map between 1987 and 2000.
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4.3.1.1 Nature of change of 1987-2000
Based on 54, 438 ha, the total size of the study for 1987-2000, open pine forest covered

14,273 ha in 1987, but 7,861 ha in 2000. Out of the 14,272 ha that was open pine forest
in 1987, only 4,037 (28%) remained as open pine forest in 2000. The remaining of 72%
was either cleared or converted to other land use/cover types in 2000: built up (8%),
agriculture (13%), herbaceous (3%), mixed forest (29%), and barren land (17%). At the
same time, at a greater extent, 1,931 (18%) ha of mixed forest were converted to open

pine forest in 2000 (Table 4-6).

Table 4-6. Matrix of land use/cover changes (ha) from 1987 to 2000. Diagonal cells (bold)
represent no change in cover type.

a. 1987 to 2000
1987
7
o - =
2000 %) ° 8
o) g 3 L S & [Total 2000
& = o £ L c
= 3 © o © )
m = 2 c e =
< o 2 = &
o
+ S
Built-up 1,435 | 1,116 109 | 1,189 618 | 2,412 6,879
Agriculture 1,039 | 3,735| 1,320 | 1,793| 2,333 | 3,038| 13,259
Herbaceous 263 868 | 202 476 868 586 3,263
Open Pine Forest 206 688| 227 | 4,037| 1,931 772 7,861
Mixed Forest 312 | 1,150| 560| 4,097| 3,027 | 1,169 | 10,314
Barren Land 1253 | 2,713| 436| 2,680| 1,755| 4,026 | 12,862
Total 1987 4508 | 10,270 | 2,853 | 14,272 | 10,532 | 12,003 | 54,438
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The increase in pine forest represented a gain of 27% in 2000. In summary, the results
of Table 4-6 illustrated the types of land use/cover change between 1987 and 2000.
More land was converted to agriculture and built-up (low residential areas) at the
expense of other land use/cover. Built-up and agriculture registered a net gain of 53%
and 29% respectively, an average positive change of 4% and 2% per annum (Table
4-5). The areas under open pine forest and mixed forest declined significantly/slightly by
45% and 2 %, respectively. The results suggested that the areas covered with open pine
forest and mixed forest were receding to the expansion of agricultural land and built-up

areas.

4.3.2 Change map between 1987 and 2004 classifications

In 1987, barren land (26%) followed by agriculture (21%) and open pine forest (20%)
formed the major type of land cover in the study area. Mixed Forest covered a total of
18% of the total area. Built-up (10%) and herbaceous areas (5%) occupied the least

cover (Table 4-7). Figure 4-10 illustrates the land use/cover change map (1987-2004)

Table 4-7. Comparison of areas (ha) based on the six cover types and rates of change
between 1987 and 2004.

Change Average rate of
Land use/cover 1987 2004 Between change 1987-
classes 1987&2004 2004
Area (ha) % |[Area(ha) % |Area(ha) % | halyear %
Built-up 3,400 10 5,668 17 | +2,268 +67 +133 +3.92
Agriculture 7,013 21 5,808 17| -1,205 -17 -71 -1.01
Herbaceous 1,708 5 4,677 14| +2969 +174| +175  +10.23
Open Pine Forest 6,865 20 4,735 14 | -2,130 -31 -125 -1.83
Mixed Forest 6,069 18 4,039 12| -2,029 -33 -119 -1.97
Barren Land 8,612 26 8,738 26 +127 +1 +7 +0.09
Total 33,666 100 33,666 100 b b e bl
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In 2004, however, agriculture, mixed forest and open pine forest declined by 17%, 33%
and 31% respectively (Figure 4-9). There are two principal causes for this drop in
agriculture and increase in herbaceous: soil’s infertility and exodus. The exhausted land
in the region has lost its fertility and has been abandoned. The abandoned land then
was reverted to herbaceous. In addition, the farming population, in hopes of a higher

standard of living has moved into urban areas.

Percentage of land use types for 1987 and
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Figure 4-9. Comparison of the land use/cover changes between 1987 and 2004.
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Land usefcover changes map between 1987 to 2004

Data obtained from the
Global Land cover Facility
www.glcf.umiacs.umd.edu

Jessie A. Vital
November 2008

km

1987 to 2004

Agriculture

Vo

Agriculture to Barren Land

(e

Agriculture to Built-up

s

Agriculture to Herbaceous

7

Agriculture to Mixed Forest

s

Agriculture to Open Pine Forest

Barren Land

i

m

arren Land to Agriculture

N

m

arrel

S

Land to Buit-up

N

Barren Land to Herbaceous

Barren Land to Mixed Forest

N

fau]
bl
@
=

Land to Open Pine Forest

i

fuu)

uift-

c

p to Agriculture

N

fus)

uitt-up to Barren Land

2
el £

uitt-up to Herbaceous

=
=

N

o

uilt-up to Mixed F orest

c
=1

N

fuu]

uift-

c
5

to C'pen Pine Forest

Herbaceous to Agriculture

Herbaceous to Barren Land

Herbaceous to Built-up

Herbaceous to Miced Forest

Herbaceous to Open Pine Forest

Mixed F orest

=
=
o
I
-

orestto Agriculture

=
=
o
o
2

orestto Barren Land

Mixed F orest to Built-up

N

ixe

=
o

Forestto Hetbaceous

\

=
o

ixed Forestto Cpen Pine Forest

=
o

o Data

o

pen Pine Forest

i

o

pen Pine Forest to Agriculture

§

ine Forest to Baren Land

o
k=1
il
>
o

pen Pine Forest to Buit-up

§

pen Pine Forest to Herbaceous

O§O

pen Pine Forest to Mixed Forest

Figure 4-10. Land use/cover change map between 1987 and 2004
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4.3.2.1 Nature of change of 1987-2004 classifications
From 1987 to 2004 (Table 4-8), only 1734 ha 25% of the 6, 865 ha remained as open

pine forest in 2004. The remainder was converted to barren land (21%), mixed forest
(17%), built up (14%), agriculture (12%), and herbaceous (11%). The greatest
transformation of open pine forest was to mixed forest (22%) and barren land (21%).
Open pine forest, mixed forest and agriculture lost 31%, 33%, and 17% of their areas to

other land use/cover types.

Table 4-8. Matrix of land use/cover changes (ha) from 1987 to 2004. Diagonal cells (bold)
represent no change in cover type.

b. 1987 to 2004

1987
17
g 2 =
(%)) (@]
2004 o o 2 i S S [Total 2004
> E o) (O] LL -
= S Q £ c
S s} © a 3 o
) = = c X =
< £ L = m
@)
Built-up 647 | 1,230 287 959 921 1,625 5,668
Agriculture 7371 1,518 280 806 734 1,734 5,808
Herbaceous 486 | 1,182 288 770 785 1,167 4,677
Open Pine Forest 233 569 222 1,734 1,238 739 4,735
Mixed Forest 236 640 245 1,138 1,074 707 4,039
Barren Land 1,062 | 1,874 387 1,458 1,317 2,640 8,738
Total 1987 3,400 | 7,013| 1,708 | 6,865 6,069 8,612 33,666
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The greatest change in terms of areas gained occurred in herbaceous (174%) and built-
up (67%). Areas covered by herbaceous, for example, registered an average gain of
10.23% per annum from the conversion of all the other land use/cover types with the

greatest from agriculture (17%).

4.3.3 Change map between 2000 and 2004

Out of the 33,666 ha of land use/cover in 2000, agriculture and barren land occupied the
largest area, 26% and 25% respectively, followed by mixed forest (17%), built-up (15%),
open pine forest (10%) and herbaceous (6%). Meanwhile in 2004, agriculture occupied
only 17% of the total land area, which represented in average a decline of 8.48% per
annum. Accordingly, within 2000 to 2004, agriculture and mixed forest areas registered
the greatest decline at a negative average rate of change of 8.48% and 6.96%
respectively per annum. At the same time herbaceous land use/cover increased rapidly
at an average rate of 28.76%, followed by open pine forest (9.96%), built-up (2.27%) and

barren land (0.63%) (Table 4-9, Figure 4-11 and Figure 4-12).

Table 4-9. Comparison of areas (ha) based on the six cover types and rates of change
between 2000 and 2004.

Change Average rate of
Land use/cover 2000 2004 Between change 2000-
classes 2000&2004 2004

Area (ha) % |[Area(ha) % |Area(ha) % [ halyear %

Built-up 5197 15 5,668 17 +471 +9 +118 +2.27
Agriculture 8,788 26 5,808 17| -2,980 -34 -745 -8.48
Herbaceous 2,175 6 4,677 14| 2,502 +115| +626  +28.76
Open Pine Forest 3,386 10 4,735 14| +1,349 +40 337 9.96
Mixed Forest 5597 17 4,039 12| -1557 -28 -389 -6.96
Barren Land 8,523 25 8,738 26 +215 +3 +54 +0.63
Total 33,666 100 33,666 100 b o bl bl
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Percentage of land use types for 2000 and
2004 by total area (33,666 ha)

land type in %

OpenPi Mixed B
Built-up | Agriculture | Herbaceous Pentine Xe arren
% % y Forest Forest Land
% % %
12000 15 26 6 10 17 25
02004 17 17 14 14 12 26

Figure 4-11. Comparison of the land use/cover changes between 2000 and 2004 classifications.
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Land usefcover changes map between 2000 to 2004
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Jessie A. Vital
November 2008
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Figure 4-12. Map of land use/cover change between 2000 and 2004.
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4.3.3.1 Nature of change of 2000-2004 classifications

According to the matrix (Table 4-10), in 2000, 8,788 ha of land used for agriculture, only

1,817 ha (21%) remained as agriculture. The balance of the agricultural area were either

cleared or converted to other land use/cover types in 2004: built-up (17%), herbaceous

(18%), mixed forest (21%), and barren land (26%). At the same time, in 2004, agriculture

gained some land back from other land use/cover classes, with the greatest gain

occurring from reverted built-up (22%) followed by barren land (20%).

Table 4-10. Matrix of land use/cover changes (ha) from 2000 to 2004. Diagonal cells (bold)

represent no change in cover type

b. 2000 to 2004

2000
17
o —
2004 % o 8 2
= g § ';]'-J E’ i Total 2004
E 2 b = I3 2
Slel g g | 5|8
T S
Built-up 1,033 | 1,534 396 427 745 1,534 5,668
Agriculture 1,122 | 1,817 374 294 524 1,676 5,808
Herbaceous 708 | 1,545 375 343 602 1,103 4,677
Open Pine Forest 327 731 216 1,010 1511 940 4,735
Mixed Forest 359 887 285 680 1,104 724 4,039
Barren Land 1,648 | 2,274 529 632 1,110 2,546 8,738
Total 2000 5,197 8,788 | 2,175