
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2011

Implementation of the conjugate heat transfer code in KIVA-4 Implementation of the conjugate heat transfer code in KIVA-4

Edward Ng
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Mechanical Engineering Commons

Copyright 2011 Edward Ng

Recommended Citation Recommended Citation
Ng, Edward, "Implementation of the conjugate heat transfer code in KIVA-4", Master's report, Michigan
Technological University, 2011.
https://digitalcommons.mtu.edu/etds/557

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Mechanical Engineering Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151507743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetds%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetds%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages

i

Implementation of the Conjugate Heat Transfer Code in KIVA-4

By

Edward Ng

A Report

Submitted in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

Department of Mechanical Engineering-Engineering Mechanics

Michigan Technological University

2011

ii

This report, “Implementation of the Conjugate Heat Transfer Code in

KIVA-4", is hereby approved in partial fulfillment of the requirements for

the Degree of

Master of Science in Mechanical Engineering

Department of Mechanical Engineering – Engineering Mechanics, MTU

 Report Advisor:

 Dr. Song-Lin Yang

 Department Chair:

 Dr. William W. Predebon

 Date:

iii

ACKNOWLEDGEMENTS

 First of all I would like to thank my academic advisor, Dr. Song-Lin Yang, who

encouraged me to pursue this research in graduate studies and guided me throughout my

Master’s degree. I cherish all the invaluable knowledge that I gained from him.

 I would also like to thank Dr. Seong-Young Lee and Dr. Franz X. Tanner for serving in

my defense committee who provided all their support in completing my report with their

valuable suggestions.

 I would like to offer very special thanks to Dr. F.C. Ting and Dr. James Yi of Ford Motor

Company who provided me the opportunity to work on this project and for supporting me

financially through the University Research Programs (URP).

 My project would not be complete without the work of Dr. Egel Urip who developed the

original CHT code and I feel very grateful to him.

 Last but not least, I would thank my parents and family who gave me immense support

which helped me to overcome every hurdle and to succeed; also I extend my thanks to all my

friends at MTU who added colors to my graduate student life.

iv

ABSTRACT

KIVA is an open Computational Fluid Dynamics (CFD) source code that is capable to

compute the transient two and three-dimensional chemically reactive fluid flows with spray. The

latest version in the family of KIVA codes is the KIVA-4 which is capable of handling the

unstructured mesh. This project focuses on the implementation of the Conjugate Heat Transfer

code (CHT) in KIVA-4. The previous version of KIVA code with conjugate heat transfer code

has been developed at Michigan Technological University by Egel Urip and is be used in this

project. During the first phase of the project, the difference in the code structure between the

previous version of KIVA and the KIVA-4 has been studied, which is the most challenging part

of the project. The second phase involves the reverse engineering where the CHT code in

previous version is extracted and implemented in KIVA-4 according to the new code structure.

The validation of the implemented code is performed using a 4-valve Pentroof engine case. A

solid cylinder wall has been developed using GRIDGEN which surrounds 3/4
th
 of the engine

cylinder and heat transfer to the solid wall during one engine cycle (0-720 Crank Angle Degree)

is compared with that of the reference result. The reference results are nothing but the same

engine case run in the previous version with the original code developed by Egel. The results of

current code are very much comparable to that of the reference results which verifies that

successful implementation of the CHT code in KIVA-4.

v

TABLE OF CONTENTS

List of Tables vi

List of Figures vi

1. Scope of the Project 7

2. Introduction 8

3. CHT code in KIVA-3V 10

4. The Changes in KIVA-4 11

 4.1 Indexing 12

 4.2 Element Types 13

5. Conjugate Heat Transfer Model 17

6. Procedure for CHT Simulation 20

 6.1 Pre-Processing 20

 6.1.1 Step 1 - k3prepfluid 20

 6.1.2 Step 2 - k3prepsolid 22

 6.1.3 Step 3 – Converter 25

 6.2 CHT code Options 27

 6.3 Running the CHT code 30

7. Validation of the CHT Code 33

 7.1 Compiling Wall Heat Transfer Boundary: 34

 7.2 Post Processing 35

 7.3 Results and Discussion of the Validation: 36

8. Conclusion and Future work 39

vi

 LIST OF TABLES

Table 1 - Node Types 14

Table 2 - Face Boundary types 15

Table 3 - Solid Domain Arrays 18

Table 4 –Element and Node connectivity 24

Table 5 – New Variables in itape5 28

Table 6 - Definitions of files used in CHT code 41

LIST OF FIGURES

Figure 1 - Cell Indexing of Solid Mesh 18

Figure 2 - Node Index of Solid Mesh 18

Figure 3 - Preparation Processes Flow chart 26

Figure 4 - Flow Chart for the CHT Code 27

Figure 5 Comparison of the first cycle results (CAD 375) 37

Figure 6 Comparison of the second cycle results (CAD 1095) 38

7

Chapter 1

Scope of the Project

The main objective of this project is to implement the existing Conjugate Heat Transfer

(CHT) code from the KIVA-3VR2 into the latest version of the KIVA family, KIVA-4. The

reason for implementing in KIVA-4 is that it can handle the unstructured mesh and because of

which the CHT model can be used for the most complex geometries. The other important

objective or significance of this project is to completely understand the structure of the KIVA-4

code and all its features so to transform any existing code or model from the previous structured

mesh code KIVA-3VR2 to the latest code. This first half of the report deals with the structure

and features of the KIVA-4 and the important things to be taken care while implementing any

scheme or model in KIVA-4. The later part explains the detailed procedure on how the CHT

model can be simulated using the KIVA-4 and also explains various options available in the

CHT code for different applications. The CHT code is customizable for various applications

which are also explained in this report. Finally the CHT model is applied to the cylinder wall and

the simulation results are compared with the results of the CHT code in KIVA-3VR2.

8

Chapter 2

Introduction

 The family of ‘KIVA codes’ was first released in 1985 by Los Alamos National

Laboratory. It was developed based on arbitrary Lagrangian – Eulerian (ALE) methodology and

is written in FORTRAN. The first release, called KIVA, was capable of computing the

compressible flows in simple geometries [Amsden, 1985]. A few years later, KIVA-II [Amsden,

1989] was released with further improvements in 1989 with improved capability of computing

the transient two and three-dimensional chemically reactive fluid flows with spray. These codes

integrated the essential underlying physics models (spray, combustion, turbulence, etc.) and

moving boundaries in a computational fluid dynamics code to simulate internal combustion

engines and thereafter, all its development was directed towards improving features to simulate

the engine flows.

Later in KIVA-3, development was made to compute complex geometries through multi-

block structured mesh. To make the generation of computational model easier, the complex

geometries were split into several blocks with regular simple geometry for generating the mesh,

which are then combined together to obtain the mesh for the whole geometry.

KIVA-3 had its application focusing on the piston, combustion chamber, etc. Due to the

need of simulating complex movements of valves for which the KIVA-3 was not so efficient in,

the capability of the KIVA-3 code was enhanced by addition of an effective model of valves

using the same technique as that used for piston movements, called ‘snapper.’ The earlier

9

snappers ‘SNAPB’ and ‘SNAPT’ are used as snappers for the piston whereas two new snappers

‘SNAPVTOP’ and ‘SNAPVFCE’ were used as snappers for the valves. All the other features of

the KIVA-3 have been retained as in KIVA-3V other than the naming conventions of files being

changed to give more clarity on file usage.

The latest version in the family of KIVA codes is the KIVA-4, which has enhanced

features as compared to KIVA-3V. The major change in KIVA-4 is the capability to handle

unstructured mesh. Other physical changes encountered in the KIVA-4 will be discussed in a

later section.

10

Chapter 3

CHT code in KIVA-3V

At MTU, a conjugate heat transfer mode (CHT) was implemented in KIVA-3V to

monitor the temperature variation and in the engine metal components. Before this, there were

publications regarding how the engine metal components were monitored, see Liu and Reitzs’

[Liu, 1998]. They developed a heat conduction solver for the KIVA-II code by using both finite

element and finite difference method. The information from fluid domain was spatially

interpolated into a separate finite element code for the solid domain. However, the MTU’s CHT

code applied the finite volume approach to model temperature distribution inside the engine

metal components. The CHT solver is capable of solving structured and unstructured solid

domain. Moreover, the solid phase calculation is coupled with fluid phase thus the solution is

more realistic. The CHT code was also successfully validated by using a FORD engine [Urip,

2006]. The code has the capability to solve the solid phase systematically with the fluid phase

(a.k.a. Hydro Code), using the information such as wall heat flux history at the fluid-solid

interface to proceed for the heat conduction calculation. Since KIVA-3V can only handle

structured mesh, the grid points at gas-solid interface require much care. It should be noted that

the grid points at the gas-solid interface need to be matched within the given tolerance precisely,

in order to transfer the information from fluid domain to solid domain. Therefore, when the solid

domain has degenerated elements, necessary interpolation has to be done with care at the fluid-

solid interfaces.

11

Chapter 4

The Changes in KIVA-4

 The major change in KIVA-4 is that the numeric for grid/ mesh generation has been

generalized to unstructured mesh grids. In a structured mesh used in KIVA-3V, a regular

connectivity is maintained using a 2D/3D array with only quadrilateral elements for 2D

structures and hexahedral elements for a 3D structure. Unlike this, the unstructured meshes don’t

have a regular connectivity but any type of elements can be used to define the grid that includes

prisms, pyramids, tetrahedral, etc. Though the neighborhood connectivity has to be explicitly

stored consuming more storage, handling complex geometry will be a lot simpler. But the

unstructured mesh has added some limitations on the snapping procedure and also requires

changes in the Lagrangian phase of computation in the ALE methodology. These modifications

lead to a few changes in the calculation of pressure solutions and the momentum fluxing. The

detailed discussions can be obtained from the paper by Torres and Trujillo [Torres, 2006].

 In this section, we are going to discuss about the changes in code structure and the

representation of different variables. The code structure of KIVA-4 is different from the previous

versions in order to facilitate the handling of unstructured mesh. The major changes in variables,

is that the indexing of different components of the mesh becoming more specific in terms of

addressing. In the previous versions, there was only node indexing used for defining all the

12

components of the mesh like the cells, faces, etc., but in KIVA-4, every components have their

unique address like cell indices, node indices, edge indices, face indices, etc. This component

specific indexing helps keeping the code in a more structured and organized way. Also, it is

easier to access the properties of vertex or cell or face without much hassle. This also makes the

code debugging easier, but the downside is that it requires more number of arrays/-variables than

the previous versions [Torres, 2006].

 In spite of having increased number of arrays and variables, taking the advantage of the

latest FORTRAN programming language capability, almost all the arrays in the KIVA-4 code

are dynamic, resulting in a very efficient memory allocation and management. Previously, the

variables and the size of arrays were declared in those files with extension “i”, whereas in KIVA-

4, the variables are declared in subroutines and allocated later in another subroutines using “use”

command. The primitive challenge in implementing the existing CHT code on to the

unstructured KIVA-4 is the code structure and changes in handling the variables. The primary

focus of this project was to modify the existing CHT code to adapt for the new variables and

code structure so as to handle the unstructured mesh and the degeneration of nodes. The key

differences in the KIVA-4 are discussed in the following sections.

4.1 Indexing

 As mentioned above, the previous versions of KIVA has only node indexing as the

unique address, such as i4, and all other components of the control volume are defined relative to

the node address, such as relative to i4. Also there are three arrays used to define the front, left

and bottom faces of a computational cell (bcl, bcf, bcb) [Amsden et al., 1989]. Any active cells

13

and nodes are defined by a flag associated with the bookkeeping arrays f(i4) & fv(i4). In KIVA-

4 only the active cells, nodes, and faces are listed and stored in the respective array. So every

calculation is done only for the active cells/ nodes. Every cell, node and face is addressed with a

unique index and all of them are inter-related/ associated when read from the input file [Torres,

2006].

For a given cell, all the associated information is stored in different arrays with more

generic representation. For example the face addresses of a given cell can be obtained by the

following array, numfaces(iface,i4c,) where iface is face index (1-left,2-front,3-bottom,4-right,5-

derrire,6-top) and the i4c is the cell address. Similarly, nodes(inode,i4c) is for the node address

i4c cell [Torres, 2006].

4.2 Element Types

One of the important changes is that the element types are classified in a more detailed

way than the previous version. The only element type in the previous version of the KIVA is the

node type and additionally there were classifications for the boundary face. In KIVA-4, element

types are available for every element of the mesh like for cells, nodes, faces, edges. For example

in KIVA-3V, if we need the length of all the 12 edges of a cell, first need to identify all the nodes

and then distance nodes on various combination has to determined using the x, y, z co-ordinates

and this procedure has to be repeated every time length of the edge is required. But in KIVA-4,

the edges associated with each cell are stored in an array and the length of those edges can also

be retrieved from the array directly.

14

Table 1 - Node Types

KIVA-3VR2 KIVA-4

flfluid = 1.0 squishnodes = 2

flface = 2.0 domenodes = 3

flbowl = 3.0 bowlnodes = 5

flsqsh = 4.0 topbowlnodes = 7

fldome = 5.0 portnodes = 11

flhead = 6.0 axisnodes = 37

 inoutflownodes = 41

 presnodes = 43

 movingnodes = 47

 movingnodesvalve = 53

 solidnodes = 59

 solidhnodes = 61

 solidbnodes = 67

15

Table 2 - Face Boundary types

KIVA-3VR2 KIVA-4

moving = 1.0 moving = 10

solid = 2.0 The bottom surface of the first valve = 11

axis = 3.0 The top surface of the first valve = 12

fluid = 4.0 The bottom surface of the second valve = 13

periodf = 5.0 The top surface of the second valve = 14

periodd = 6.0 The bottom surface of the third valve = 15

inflow = 7.0 The top surface of the third valve = 16

outflow = 8.0 The bottom surface of the fourth valve = 17

presin = 9.0 The top surface of the fourth valve = 18

persout = 10.0 solid = 20

 solidh = 21 (for the cylinder head)

 axis = 30

 fluid = 40

 periodf = 50 (for a front periodic boundary)

 periodd = 60 (for a derriere periodic boundary)

 inflow = 70 (for a velocity inflow boundary)

 outflow = 80 (for a continuative outflow boundary)

 presin = 90 (for a pressure inflow boundary)

 presout = 100 (for a pressure outflow boundary)

16

The following sample code illustrates the difference in code logic between the KIVA-3VR2 and

KIVA-4

 KIVA-4 KIVA-3VR2

 do i4c = 1, ncellsa do i4 = ifirst, ncells

 i1= nodes (1, i4c) i1 = i1tab (i4)

 i3 = nodes (3, i4c) i3 = i3tab (i4)

 enddo enddo

Although KIVA-4 still includes the i1tab, i3tab and i8tab bookkeeping arrays, the algorithm

above clearly shows that KIVA-4 has a new approach to locate a node of the fluid(gird) cell. It is

important to know that, for each computational cell, KIVA-4 no longer uses left, bottom, and

front faces for surface area and outward normal vector identification.

17

Chapter 5

Conjugate Heat Transfer Model

The main objective of this project is to implement the conjugate heat transfer (CHT)

model into the KIVA-4 code. Finite volume method is used to model the temperature distribution

in the engine metal components. The code can solve a combination of four different types of

elements such as tetrahedron, pyramid, prism, and hexahedron. These meshes are used to

transmit information from the fluid domain (KIVA code) to the solid domain. The nodes at the

gas-solid interface should match perfectly in order for the code to obtain any information from

the fluid domain [Urip, 2006].

 To better illustrate the variables (Table 3) of the CHT code, two figures are shown below

for this purpose. Figure 1 represents a four cell (ncellsld = 4) mesh with proper cell labeling

whilst figure 2 shows the node addressing (nvertsld = 18) for this mesh.

 In addition to that, it can also be observed that the computational mesh has four interior

faces (niface = 4), 16 boundary faces (nbface = 16). It should be noted that thermal boundary

must be defined in itape5. For instance, a constant temperature is boundary type 1 and

convection is boundary type 2. If any unassigned boundaries occur, the program will treat those

as adiabatic faces. Moreover, when running the KIVA-4 with the CHT model, a file known as

kiva4solid must be used, simply because it contains all the element and node connectivity at the

gas-solid interface and is described in Table 3 [Urip, 2006].

18

Figure 1 - Cell Indexing of Solid Mesh Figure 2 - Node Index of Solid Mesh

Table 3 - Solid Domain Arrays

ielement(nc,10) • nc: cell index

• nc: spans from one to ncellsld (total number of cells),

ncellsldnc1 ≤≤

• 1-10:

1: type of element (1-tetrahedron), (2-hexahedron), (3-prism),

(4-pyramid)

2: region identifier used to assign thermodynamic property

3-6: node index of tetrahedron element, ielement(nc,1) = 1

3-7: node index of pyramid element, ielement(nc,1) = 4

3-8: node index of prism element, ielement(nc,1) = 3

3-10: node index of hexahedron element, ielement(nc,1) = 2

kface(ni,7) • Table of interior face (an interior face is shared by two

elements with index: kface(ni,6) and kface(ni,7))

• ni: interior face index

• ni spans from one to niface (total number of interior

faces), nifaceni1 ≤≤

1-3: node index of triangle interior face

X
Y

Z

4

1

2

3

X
Y

Z

19

1-4: node index of quadrilateral interior face

5: type of interior face (3-triangle), (4-quadrilateral)

6: cell index of the first element

7: cell index of the second element

ibndry(nb,7) • Table of boundary face

• nb: boundary face index

• nb: spans from one to nbface (total number of boundary faces),

nbfacenb1 ≤≤

1: thermal boundary type

2: type of boundary face (3-triangle), (4-quadrilateral)

3-5: node index of triangle boundary face

3-6: node index of quadrilateral boundary face

7: cell index of the boundary face in question

20

Chapter 6

Procedure for CHT Simulation

Conjugate Heat Transfer (CHT simulation) is similar to the engine simulation including

various pre-processing and then running the hydro code with post processing as the final process.

The CHT code requires independent pre-processing similar to that of the fluid domain and apart

from that there is additional pre-processing required, connecting the solid and fluid domain

together. The detailed procedure to run the complete CHT model is explained below starting

with the pre-processing.

6.1 Pre-Processing

As mentioned earlier, pre-processing involves a series of processes for generating all the

input files required for running the hydro code. There are four different stages of the pre-

processing in which the input data for the solid mesh and its connectivity with the fluid mesh is

generated and finally converted to the input format of KIVA-4.

21

6.1.1 Step 1 - k3prepfluid

The first step is the conventional pre-processing for the fluid mesh which is usually used

for any regular engine simulation. This process produces the actual mesh with all the nodes and

all required information about the mesh based on the input. Usually the input consists of a

manually prepared data set of different blocks of the given geometry with all the boundary

conditions and the connectivity information. Then, during this process the data of small

individual blocks are combined together to generate the overall mesh. In addition to that, the

k3prepfluid has been modified [Urip, 2006] and therefore, while preparing iprep additional input

parameters must be included. Those parameters are explained below in the input parameters

section.

Primary Code used: k3prepfluid.f

Supporting codes required: plotghost.f, utility.f

Input files needed: iprep, comprep.i, ggf#.grd (if GRIDGEN is used)

Output files produced: otape17, cornerlogfluid

Input Parameters:

“iprep” is the input file which contains the data of different blocks of geometry. This is manually

written in a formatted file. If any other software is used to build the geometry, then the input file

should be in a specific format and some of the input parameters have to be changed. For

example, if the GRIDGEN is used to generate the mesh, then the fluid mesh file should be

named as “ggf#.grd” where # is the file number. Then the following input parameters has to be

entered as shown on the console screen shot,

22

Unitcnv is simply a scaling factor for unit conversion. Iskip allows skipping the grid relaxation

after the reshaping process [Urip, 2006].

6.1.2 Step 2 - k3prepsolid

This step is similar to the previous one but deals with various files for the solid domain/

mesh. The solid domain for an engine might include the cylinder wall, cooling water jacket,

cylinder head, and piston. The CHT code is capable of dealing with all the above mentioned

components. The moving and stationary parts are grouped and processed separately. This process

itself has several sub stages which are explained in detail below.

23

a) Stage 1:

The first stage is exactly the same as the k3prepfluid, except the files contain different

names and deals with all the solid parts, except the moving solid parts.

Primary Code used: k3prepsolid.f

Supporting codes required: none

Input files needed: iprepsolid, comsol.i

Output files produced: solid17

Input Parameters: choose option = ‘1’, unitconv = 0.1, id# = 999(large #)

The iprepsolid can also be replaced by the input files generated from the GRIDGEN . For the

GRIDGEN, the input file name has to be “ggb#.grd”

b) Stage 2:

 Stage 2 is exactly the same as stage 1, but this process is for the moving solid domain

such as piston. All the file requirements are same as before with little difference

which is explained below,

Primary Code used: k3prepsolid.f

Supporting codes required: none

Input files needed: iprepsolid, comsol.i

Output files produced: piston17

Input Parameters: choose option = ‘2’, unitconv = 0.1, id# = 999(large #)

24

The input file produced by GRIDGEN should be named as “ggp#.grd”. If there is piston

included in the solid domain, then after the ‘piston17’ is produced, the same code is run again

with the option ‘3’ and the input files required are ‘piston17’ and ‘solid17’. This process will

produce a combined output file “solid17”

c) Stage 3:

In stage 3, the most important fluid-solid connectivity is established. This process

generates the connectivity at the conjugate faces, i.e., the fluid-solid interface.

Primary Code used: k3prepsolid.f

Supporting codes required: none

Input files needed: solid17, itape17 (output from Step I renamed),

 cornerlogfluid, iprepsolid

Output files produced: cornerlogsolid, conjugateface.dat

Input Parameters: choose option = ‘4’, unitconv = 0.1, id# = 9999(large #)

d) Stage 4:

This stage is meant for the additional format conversion as explained in k3prepsolid.f

The additional variables in the cornerlogsolid are explained in the below table, [Urip,

2006],

Table 4 –Element and Node connectivity

i4slr(n), i4flr(n),

i4kmlr(n)

• n: conjugate face/fluid-solid interface index associated with

left/right face

• n: spans from one to ncjgtlr (total number of left and right

conjugate faces), ncjgtlrn1 ≤≤

25

• i4slr(n): boundary face index of solid domain, see Table 4.1.1.

• i4flr(n): face index of fluid domain

• i4kmlr(n): boundary face index of solid domain directly below

i4slr(n)

i4sfd(n), i4ffd(n),

i4kmfd(n)
• associated with front/derriere face

i4sbt(n), i4fbt(n) • associate with bottom/top face

6.1.3 Step 3 – Converter

The converter is the program used to convert the output files produced from the

preprocessor to KIVA-4 input file format so as to use it for running the flow solver code. The

converter basically changes the input format and in some cases changes the input variables to a

different form.

Primary Code used: converter.f

Supporting codes required: none

Input files needed: itape17, cornerlogsolid

Output files produced: kiva4grid, kiva4solid

Input Parameters: none

With the converter, all the pre-processing required to run the flow solver is completed. At the

end of the pre-processing, there will be three files generated to be used as input files for the

hydro code/ flow solver and they are,

1) kiva4grid

26

2) solid17

3) kiva4solid

The following flow chart explains the pre-processing in a more convenient way,

1)

2)

3)

4)

5)

6)

 Figure 3 - Preparation Processes Flow chart

iprep

ggb.grd

k3prepsolid.f, comsol.i

 (option 1) solid17

ggp.grd piston17

k3prep.f

plotghost.f

utility.f

comperep.i

otape17,

otape11,

cornerlogfluid

solid17

solid17

ggf1.grd
ggf1.grd

otape17 itape17 Renaming

k3prepsolid.f, comsol.i

 (option 2)

piston17

k3prepsolid.f, comsol.i

 (option 3)

solid17,

itape17,

cornerlogsolid

solid17

itape17

cornerlogfluid

iprepsolid

k3prepsolid.f, comsol.i

 (option 4)

kiva4grid,

kiva4solid

itape17

cornerlogsolid

converter.f

27

6.2 CHT code Options

An input parameter known as icjgtht, is used to define the mode needed for the run. If it

is just solving the fluid phase alone, icjgtht = 0; for solving heat conduction equation alone

icjgtht = 1; for solving both gas and solid phase, the so called conjugate heat transfer, icjgtht = 2

and with icjgtht = 3, the code will not only solve the gas and solid phase but also record all the

wall heat transfer history so that it can be later used for solving heat conduction equation alone.

Let’s consider case 1 for icjgtht = 0, case 2 for icjgtht = 1, and case 3 for icjgtht = 2&3.

The following figure illustrates the various processes to be run for the CHT code, the files

required and the files produced.

1)

2)

3)

Figure 4 - Flow Chart for the CHT Code

itape5,

itape18,

kiva4grid

kiva4.f, comfuel.i,

cht.for, comsolid.i

 compost.i

 (icjgtht = 0)

dat.heatransfer, dat.turb,

dat.dynamic, dat.thermo,

dat.inject, otape12,

otape9, otape8

dat.metaltemperature,

psoresidual, otape12,

otape9solid, otape8

itape5,

itape18,

solid17,

rcdthbndry,

fluentbndry,

tape9solid

kiva4.f, comfuel.i,

cht.for, comsolid.i
 compost.i

 (icjgtht = 1)

itape5,

itape18,

kiva4grid,

solid17,

kiva4solid,

fluentbndry,

tape9solid

kiva4.f, comfuel.i,

cht.for, comsolid.i

 compost.i

 (icjgtht ≥ 2)

dat.metaltemperature,

dat.heatransfer, dat.turb,

dat.dynamic, dat.thermo,

dat.inject, otape12,

solid17updatedxyz,

rcdthbndry (icjgtht=3),

otape9, otape9solid,

otape8

28

There are several new variables introduced in the itape5 which are tabulated below, [Urip, 2006],

Table 5 – New Variables in itape5

icjgtht • 0 – solving the gas phase alone

• 1 – solving the solid phase alone

• 2 – solving both the gas and the solid phases together, so called

conjugate heat transfer

• 3 – similar to 2 in addition the code will record the wall heat

transfer history at the gas-solid interface to be used later on for

solving the heat conduction equation alone

dtrcd • Time step interval, unit is in crank angle, to record the heat

transfer history. It is used in conjunction with icjgtht = 3.

atdcrcd • Starting point of crank angle to record the heat transfer history. It

is used in conjunction with icjgtht = 3.

epstsld • Allowed relative error in implicit solution of heat diffusion in the

solid domain, typically 1.0e-5

ksteady • Used in conjunction with icjgtht = 1.

• 0 – Solving transient heat conduction equation.

• 1 – Solving steady state heat conduction equation. Transient

thermal boundary, heat transfer history at conjugate interface,

will be time averaged.

kbcjgt • Used in conjunction with icjgtht = 1.

• Thermal boundary condition, obtained by running the KIVA

code with conjugate heat transfer mode, to be applied to the

combustion chamber surface

• 0 – Using heat flux history, ()t,xq"

w

v
, subscript w for wall in the

combustion chamber

• 1 – Using convection history, () ()
wff T)t,x(Tt,xh −

vv
, subscript f

29

for fluid/gas

kbclnt • Used in conjunction with icjgtht = 1.

• Thermal boundary condition, obtained from FLUENT solver, to

be applied to the cooling jacket surface

• 0 – Using heat flux cooling boundary, ()xq"

wc

v
, subscript wc for

wall in the cooling jacket

• 1 – Using convection cooling boundary, () ()
wccwc

T)x(Txh −
vv

,

subscript c for coolant liquid

nregs • Number of regions of solid domain for which tempsldi and

material are to be read in.

relax • Used in conjunction with icjgtht = 1 and ksteady = 1.

• Relaxation parameter used to speed up convergence rate. Its

value ranging from unity to two. When relax = 1, point Gauss-

Seidel iteration scheme is restored.

dtcastr, dtcaend,

distrib

• Used in conjunction with icjgtht = 1, ksteady = 0, and transient

thermal boundary, rcdthbndry, is provided.

• Use time step size =
distrib

dtcastrdtcaend −
 when the current crank

angle is between dtcastr and dtcaend. These flags are designed

so that the code will use the above time step size when

significant heat transfer to the wall occurs [Heywood, 1989],

e.g., dtcastr = 350, dtcaend = 720, and distrib = 370 will use 1

degree crank angle time step size if the current crank angle

falls between 350 and 720. Note that this condition applies to

all engine cycles.

dtfast • Used in conjunction with icjgtht = 1 and ksteady = 0.

• 1 – Using the most optimum time step size in addition to the time

step size based on dtcastr, dtcaend, and distrib.

tempsldi(n) • Initial cell temperature of solid domain for region n

material(n) • Cell material type of solid domain for region n

30

• Currently there are eight material types namely, Pure Aluminum

(Al), Aluminum 2024-T6 Al2024), Copper (Cu), Pure Iron

(Fe), Iron 99.75% Pure (Fe99), Artificial1 (Arti1), Artificial2

(Arti2), and Artificial3 (Arti3)

nsldbdry • Total number of thermal boundary to be assigned for solid

domain for which aidxbdry and bdry are to be read in.

aidxbdry(n) • Boundary type specified in Gridgen, see Table 4.1.4.

bdry(n) • Thermal boundary condition for solid domain:

14.0 – Convection ()
∞

−TT*h , h
∞

T (2f8.3)

h : convective heat transfer coefficient (ergs/s-K-cm
2
)

∞
T : free stream temperature (K)

15.0 – Constant temperature, ct (f8.3)

ct: constant temperature (K)

16.0 – Sine wave temperature ()tomegasin*atct ∗+ ,

ct, at, omega, ion_off (3f8.3, i4)

ct: constant wall temperature (K)

at: amplitude wall temperature (K)

omega: frequency of fluctuation (radians/s)

ion_off: 1 – zero out negative temperature

 0 – allow negative temperature

17.0 – Constant heat flux cfluxq"
= , cflux (f8.3)

cflux: wall heat flux (ergs/s-cm
2
)

18.0 – Sine wave heat flux ()t*omegasin*afluxcfluxq"
+= ,

cflux, aflux, omega, ion_off (3f8.3, i4)

19.0 – Periodic-In Boundary

20.0 – Periodic-Out Boundary

31

6.3 Running the CHT code

The input parameter known as itype is added into itape5 in KIVA-4 to identify the mesh

type whether structured (itype = 1) or unstructured (itype = 2). Additionally itype = 2 can also be

used for the structured mesh where improved accuracy on the momentum fluxing is required.

 There are also several other input parameters added in itape5, namely numdiv, scf,

diameterinjector, nsp and nspl. More information about these variables can be obtained from the

KIVA-4 user manual and has to thoroughly be understood before proceeding with the flow

solver code. There are three cases explained below with different options of running the CHT

code using the KIVA-4.

(a) Case 1- icjgtht = 0

 It only solves the fluid phase; input files such as itape5, itape18 and itape17 are required.

Since there are modifications in KIVA-4, an additional output file dat.heatransfer is generated

when running case 1. This file basically contains the heat transfer rate of surface averaged of

cylinder wall, cylinder head, and piston heat transfer rate.

(b) Case 2- icjgtht = 1

 Running case 2 requires four additional input files compared to case 1. They are

rcdthbndry, fluentbndry, solid17 and tape9solid. Solid17 is the only mandatory file for this run. It

contains all the solid mesh data such as the element connectivity, thermal boundary face, etc.,

The other files are optional depending upon the availability of data and requirements.

Rcdthbndry contains the wall heat flux history at the gas-solid interface and it is mainly used as

one of the boundary conditions for the solid domain. The user has the option to choose whether

32

the history is time averaged (ksteady = 1) or to be treated as a transient boundary (ksteady = 0).

Fluentbndry is obtained from FLUENT data and contains heat loss information due to the

coolant flow. Tape9solid is very similar like otape9, it contains the temperature distribution of

the solid phase. This file is used as an initial condition for the heat conduction calculation. An

output file, dat.metaltemperature will be generated after running case 2. It contains the

temperature distribution in engine metal components. If the parameter ksteady and icjgtht are set

to unity, an output file called psoresidual will be produced. This file is actually used to monitor

the convergence rate or to search an optimum relaxation parameter.

(c) Case 3- icjgtht = 2 or 3

 In this case the KIVA-4 hydro code is run along with the heat conduction and solving for

the temperature distribution through the solid domain. It consumes more computational time than

previous cases.

 After obtaining all the output files, the next step is post-processing to convert the results

in the otape9 and otape9solid files to the Tecplot format.

33

Chapter 7

Validation of the CHT Code

 The CHT code implemented in KIVA-4 is validated using a "Four Valve case", one of

the examples provided in the KIVA package. The reason for choosing this case is that, this is the

only 3D case with a complex geometry available on both KIVA-3VR2 and KIVA-4. The solid

part for this case is the cylinder wall of thickness 1.5mm and height of 76.625mm which covers

the cylinder wall of the fluid mesh from the bottom to the edge of cylinder head. The solid mesh

does not cover the cylinder head due to the complexity of the shape beyond this height. The solid

cylinder wall is bounded by the conjugate face on the inner side at the fluid interface and the

outer side of the solid wall is the coolant boundary with constant temperature as the initial

condition. This case has been run on the KIVA-3V version first without fuel injection and then

run with the KIVA-4 CHT code. The validation is performed with the major focus on the

temperature distribution in the solid wall for two full cycles. First, the results of the fluid mesh is

compared for various properties to the normal run without the CHT code to ensure that the

implementation of the CHT code doesn't interfere with the calculations on fluid mesh. Later, the

temperature distribution on the solid wall is compared between the results from KIVA-3V and

KIVA-4.

 The pre-processing is done based on the procedure explained in the pre-processing

section of this report. The detailed procedure of running the CHT hydro code is provided below,

34

1. cht.f, kiva4.f, comfuel.i, compost.i, comsolid.i, combdk3prep.i, itape5, itape18,

kiva4grid, solid17, and kiva4solid are needed for the hydro code run.

2. Run the hydro code by setting icjgtht = 3 in itape5. This will allow you to record the

wall heat transfer history at the gas-solid interface.

3. Several files are produced after running this HydroCode such as rcthbndry and

dat.metaltemperature. Rcthbndry contains wall heat transfer history at the gas-solid

interface. It will be used as a heat addition boundary condition for a steady and

transient state calculation. If the HydroCode is split into for example 2 cycles (0 –

1440 degrees), the user has to rename the wall heat flux history for the first 720

degrees to rcthbndry.1 so that when the code is running for the second cycle, the

recorded wall heat flux history won’t overlap. Dat.temperature contains the

temperature distribution of the engine metal components.

4. And by now, the user should have dat.temperature, rcthbndry.1 and rcthbndry.2.

7.1 Compiling Wall Heat Transfer Boundary

 The code is purposely designed to combine all the separated files of wall heat transfer

history into useful boundary information. Below is a step- by- step guide on how to run the code

and consider the wall heat transfer history for the first engine cycle, which is saved in

rcthbndry.1 while the second engine cycle is recorded in rcthbndry.2 [Egel, 2006].

1. Make sure that files such as coolant.f, coolant.i and all the rcthbndry.# are inside the

folder.

2. Rename all the rcthbndry.# to rcdthbndry#, for instance rcthbndry.1 to rcdthbndry1

and rcthbndry.2 to rcdthbndry2.

35

3. Run the thermal boundary compiler code and select option 10.

4. The code will pop up a message and enter 2 for No simply because you want the

crank angle at the end of file rcdthbndry2 to be 15.

5. A new message will pop up asking similar question and this time crank angle at the

end of rcdthbndry2 is 15 so enter 1 for Yes.

6. The code will produce a file known as Summary.dat. It contains crank angles at which

wall heat transfer history was stored in rcdthbndryn.

7. Once you have the rcdthbndryn file, re-run the code and select option number 11 for

compiling a transient boundary condition between 720 and 1440 crank angles for

Hydro Code run.

8. Enter 721 for the starting zone and 1441 for the ending zone. The code will read in

rcdthbndry and produce two files rcdthbndry and summary.dat where rcdthbndry

contains transient thermal boundary condition for the heat conduction calculation.

7.2 Post Processing

 The post processing code is specially written for converting the data obtained from the

flow solver code into Tecplot format. The code has the capability to convert both the fluid and

solid phase results.

1. 3dkivaconjugate.f and otape9solid or otape9 are needed for this step.

2. Rename otape9solid to tape9solid.

3. Run the post processing code and select option 3 which is plotting the solid phase

only.

36

4. After that, user is asked to enter number zones to be written, user can either enter a

large number e.g. 100 (to obtain full cycle of result) or at user specified zones

numbers.

5. Then, user will be asked to enter whether the results are based on crank angle or time

(seconds). Kindly select option 1 which is crank angle.

6. An output which is known as k3postsolid.dat will be generated and user may open it

in Tecplot which is shown in the result section.

7.3 Results and Discussion of the Validation

 Figure 5 shows the fluid and solid results of the temperature distribution being compared

between KIVA-3V and KIVA-4. The temperature distribution is compared for the Crank Angle

Degrees (CAD) 375 in KIVA3v and at the CAD 375 in KIVA-4. The peak temperature of the

cycle is attained around this crank angle as there is no fuel injection involved and hence no

combustion. Therefore, the CAD 360 at the end of compression should typically have the peak

temperature for the cycle. We can see from the figures that the temperature distribution in the

KIVA-4 results is slightly less than that of the KIVA-3V. Also, this temperature difference also

contributed to the minor temperature difference in the solid domain. Apart from this difference

there is no other significant difference found between the KIVA-4 and KIVA3V results, which

validates the correctness of the CHT code implemented in the KIVA-4 code. Thus the validation

of the implemented code is considered to be successful.

37

F
ig

u
re

 5
 C

o
m

p
a
ri

so
n

 o
f

fi
rs

t
cy

cl
e

R
es

u
lt

s
-

b
ef

o
re

 i
g
n

it
io

n
 (

C
A

D
 3

4
5

)

38

F
ig

u
re

 6
 C

o
m

p
a

ri
so

n
 o

f
fi

rs
t

cy
cl

e
R

es
u

lt
s

-
a
te

r
ig

n
it

io
n

 (
C

A
D

 3
7

5
)

39

Chapter 8

Conclusion and Future work

 The Conjugate Heat Transfer code has been successfully implemented in the KIVA-4

with the capability to handle the unstructured mesh. The code has also been validated with a four

valve case and found to be correct. But it completes only up to the code validation stage. For

thorough verification of the implemented code, there are still more cases required to be run to

verify the accuracy of the results which demand experimental data to compare with the results.

Also the validation case has a structured mesh, so it is also required to evaluate this code with at

least a simple case of unstructured mesh so as to ensure that the code can handle the unstructured

mesh. But since the calculations and logic for the code is still based on unstructured mesh, which

can account for the degeneration of nodes in the cell, it can be relied upon for handling the

unstructured mesh based on the validation results. In addition to that, the ‘wallfilm’ subroutine is

not validated simply because the example case does not include particles injection therefore, to

achieve the code’s optimum result, user would have to evaluate this code with an example case

that includes particles injection.

A few drawbacks in the existing code have been found during various validation runs

which will be included towards the improvement required for the future work. The hydro run for

a full cycle of four stroke engine can be split into several runs instead of running it from CAD 0

to CAD 720. Usually depending upon the user requirement the cycle can be break at any

40

required crank angle. But it’s been observed that if the cycle has been broke at CAD less than

180(end of suction), then it leads to the non-convergence of the solution for temperature. Further

research is required to find out the source of the problem. One possible source could be the data

output at the breaking point is not accurately transferred to the further cycle/ runs. The memory

storage issue arises if the variables are properly allocated the array size which is another

drawback.

41

Table 6 - Definitions of files used in CHT code

cornerlogfluid - Contains node index of corners of each fluid block before

the patching and dimensions/number of grid points in I-,

J-, and K-direction of each fluid block.

solid17 - Contains node information, interior face table, boundary

face table and element connectivity table.

gg#.grd - Mesh file that produced from GRIDGEN. The file

contains all the x, y, and z coordinates for the geometry.

- ggb stands for “gridgenboundary”

- ggp stands for “gridgenpiston”

- ggf stands for “gridgenfluid”

iprepsolid - The K3prepUntructured program reads in input file

iprepsolid to generate fluid-solid element connectivity.

cornerlogsolid - Contains connectivity tables for all conjugate faces.

k3prepunstructured.f - This code is used for generate several tables required by

the KIVA-Solid program (KIVA4 with CHT code)

com.i - Global variable declaration

itape5 - Input parameters for KIVA code

itape18 - Valve lift history

itape17 - Contains all the x,y, and z coordinates, connectivity

tables, boundary condition, etc. It is an input file for the

flow solver code (KIVA).

rcdthbndry - Contains the wall heat flux history at the gas-solid

interface. This information will be used as one of the

boundary conditions for the solid domain.

Fluentbndry - Contains heat loss information due to the coolant flow. It

can be obtained from FLUENT data.

tape9solid - Renamed otape9solid, is very similar to otape9, except it

only contains temperature solution of the solid phase.

42

eurip.f - Contains the CHT code.

dat.heatransfer - Contains surface averaged of cylinder wall, cylinder head,

and piston heat transfer rate.

dat.thermo - Is has been improved to include fuel vapor mass.

dat.metaltemperature - Contains the wall temperature changes. The wall

temperature in this case is defined as an ensemble average

of temperature of all solid elements, which one of the

faces is a conjugate interface.

psoresidual - Contains residual value from the point successive over-

relaxation iteration scheme and the total number of

iteration when the steady state heat conduction solver is

invoked (icjgtht = 1 and kstead = 1).

43

REFERENCES

Amsden, A. A., O’Rourke, P. J., and Butler, T. D., “KIVA-II: A Computer Program for

Chemically Reactive Flows with Sprays,” Los Alamos National Laboratory Report LA-

11560-MS, Los Alamos, New Mexico, 1989.

Amsden, A. A., “KIVA-3: A KIVA Program with Block-Structured Mesh for Complex

Geometries,” Los Alamos National Laboratory Report LA-12503-MS, Los Alamos, New

Mexico, 1993.

Amsden, A. A., “KIVA-3V: A Block Structured KIVA Programs for Engines with Vertical or

Canted Valves, Los Alamos National Laboratory Report LA-13313-MS, Los Alamos,

New Mexico, 1997.

Amsden, A. A., “KIVA-3V, Release 2, Improvements to KIVA-3V,” Los Alamos National

Laboratory Report LA-13608-MS, Los Alamos, New Mexico, 1999.

Liu, Y. and Reitz, R. D., “Modeling of Heat Conduction within Chamber Walls for

Multidimensional Internal Combustion Engine Simulation,” International Journal of

Heat and Mass Transfer, Vol. 41, pp. 859-869, 1998.

Torres, D. J., Mario F. Trujillo, “KIVA-4: An unstructured ALE code for compressible gas

flow with sprays”, Elsevier, 2006.

Torres,D. J., “KIVA-4 Manual,”,Los Alamos, New Mexico, 2006.

Urip, Egel, “THE KIVA CODE WITH CONJUGATE HEAT TRANSFER MODEL FOR IC

 ENGINE SIMULATION”, Michigan Technological University, 2006.

	Implementation of the conjugate heat transfer code in KIVA-4
	Recommended Citation

	Microsoft Word - Project Report

