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Abstract 

Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and 

concerns over greenhouse gas emissions and energy security. The overall cost of biomass 

energy generation is primarily related to biomass harvesting activity, transportation, and 

storage. With a commercial-scale cellulosic ethanol processing facility in Kinross 

Township of Chippewa County, Michigan about to be built, models including a 

simulation model and an optimization model have been developed to provide decision 

support for the facility. Both models track cost, emissions and energy consumption. 

While the optimization model provides guidance for a long-term strategic plan, the 

simulation model aims to present detailed output for specified operational scenarios over 

an annual period. Most importantly, the simulation model considers the uncertainty of 

spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is 

important because it will impact the feasibility of harvesting activity and the time 

duration of transportation restrictions, which significantly changes the availability of 

feedstock for the processing facility.  

This thesis focuses on the statistical model of spring break-up used in the simulation 

model. Spring break-up timing depends on various factors, including temperature, road 

conditions and soil type, as well as individual decision making processes at the county 

level. The spring break-up model, based on the historical spring break-up data from 27 

counties over the period of 2002-2010,  starts by specifying the probability distribution of 

a particular county’s spring break-up start day and end day, and then relates the spring 

break-up timing of the other counties in the harvesting zone to the first county. In order to 

estimate the dependence relationship between counties, regression analyses, including 

standard linear regression and reduced major axis regression, are conducted.  

Using realizations (scenarios) of spring break-up generated by the statistical spring break-

up model, the simulation model is able to probabilistically evaluate different harvesting 

and transportation plans to help the bio-fuel facility select the most effective strategy. For 
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early spring break-up, which usually indicates a longer than average break-up period, 

more log storage is required, total cost increases, and the probability of plant closure 

increases. The risk of plant closure may be partially offset through increased use of rail 

transportation, which is not subject to spring break-up restrictions. However, rail 

availability and rail yard storage may then become limiting factors in the supply chain. 

Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the 

reliability of providing feedstock to the bio-fuel processing facility.
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Chapter 1. Introduction 

1.1. Background 

Biomass is one of the renewable energy sources (including solar, wind, tides and 

geothermal heat). Biomass is popular and important, because it is easily stored compared 

to solar or wind energy, it can be generated in many locations compared to tides and 

geothermal heat, and it can be transported using currently available vehicles and 

infrastructure. Bio-fuel is a type of fuel, usually liquid, which is derived from biomass 

that is grown, harvested and replaced on a regular basis. The demand for bio-fuel is 

increasing mainly because of the shortage and high price of fossil fuels and the concerns 

brought on by greenhouse gas emissions in recent years. Meanwhile, the academic 

community has been increasingly interested in the bio-fuel industry as well. Some recent 

studies have focused on the influences of the raw material supply chain on the overall 

system economics (1) and energy performance (2), the management and value of waste 

biomass (3), the importance of bio-fuel for its positive effects on energy security issues, 

environmental concerns, foreign exchange savings, and socioeconomic issues related to 

the rural area (4), and the technology of conversion from biomass to designed bio-fuels (5, 

6), among others. 

A bio-fuel feedstock supply chain is comprised of several processes. These processes 

include harvesting, loading, storage, processing and transporting, as shown in Figure 1.1.  

The feedstock supply chain aims to achieve low-cost, time-effective, and reliable delivery 

of input to bio-fuel processing facilities. More specifically, the supply chain includes the 

collection activities of biomass in harvesting areas, loading and unloading of trucks 

and/or rail cars, possibly storage at multiple storage yards, and finally transportation to a 

facility for production. Typically, trucks are used for transporting biomass for short 

distances, and rail is used for long distances.   



 

2 
 

 

Figure 1.1. Components of the Feedstock Supply Chain (Adapted from "Feedstock 

Supply Chain Models for the Frontier Renewable Resources Bio-fuel Facility in Kinross, 

Michigan", 2012 (7)) 

 

The total cost of all the processes above can be identified as the total cost of the supply 

chain system. This cost component is considered in this thesis, neglecting the cost of 

operating the bio-fuel processing facility itself. The total supply chain system cost 

includes harvesting cost, loading and unloading costs, storage costs of both the facility 

yard and other log yards, and transport costs of both truck and rail. Similarly, carbon 

emissions are considered during the log harvesting, transportation, and storage activities. 

The unit for carbon emissions is CO2-equivalent greenhouse gas emissions per unit of 

biomass (e.g., kg/ton). Energy consumption associated with log harvesting, transportation, 

and storage yard activities is also considered. The unit for energy consumption is the 

energy consumed per unit of biomass (e.g., MJ/ton). 

One of the nation's first commercial scale cellulosic ethanol processing facilities is 

planned to be built by Frontier Renewable Resources (Frontier) in the Township of 

Kinross in Chippewa County, Michigan. Frontier is owned by Mascoma Corporation, a 

renewable fuels company, and J.M. Longyear (8), a Michigan-based national leader in 

natural resources management. The planned ethanol plant will produce cellulosic fuels 

from non-food biomass feed stocks, e.g., hardwood pulpwood. As of September 2012, the 

Kinross facility is scheduled to open in 2014 at a Phase I capacity of 20 million gallons 

per year, with potential to expand in subsequent years (9).  
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1.2. Objectives and Significance 

As is common with other bio-fuel supply chain analysis efforts (10, 11), this thesis will 

present a number of economic and environmental performance measurements relevant to 

strategic and operational planning. Unlike previous efforts, this study does the analysis 

considering uncertainty of the supply chain system resulting from environmental 

conditions.  Specifically, a statistical model of spring break-up is developed for use in a 

feedstock supply chain simulation model. The spring break-up model is based on 

historical data at the county level, and an approach is developed to represent the spatial 

correlation of spring break-up timing across the region. Using scenarios generated by this 

model, supply chain simulation results are compared to results without randomness. 

It is shown that simulation results with uncertainty better represent expected supply chain 

performance and allow users to better understand the possible results of contract and 

resource allocation decisions.  
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Chapter 2. Background: Project Introduction 

2.1. CoEE Project Overview 

The Feedstock Supply Chain Center of Energy Excellence (Feedstock CoEE) project 

aims to support the technical needs of Frontier. Efforts have focused on collecting data on 

biomass availability in the northern Michigan harvest region (as shown in Figure 2.1), 

estimating life-cycle impacts of the use phase of various harvesting and transportation 

technologies, and developing simulation and optimization models to support harvest and 

logistics decision making (7).  A summary of the optimization and simulation models is 

presented herein. 

 

 

Figure 2.1: Harvesting region for Feedstock CoEE project (data from MDOT) 
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2.2. CoEE Optimization Model 

The optimization model is developed to identify the most efficient combination of 

harvesting and transportation options to supply the facility. It is created to evaluate a 20-

year planning horizon, with the decision variables of how much to harvest from each 

harvest area and ownership type (e.g., industrial, private non-industrial, state, and federal) 

in each year of the planning horizon (7). The model is formulated as a large-scale linear 

(network) programming model, solved using the FICO® Xpress Optimization Suite.  

Results of the optimization model support long-term strategic planning decisions, such as 

harvesting contracts and storage yard locations.  A method has also been developed to 

translate the annual decisions prescribed by the optimization model into seasonal, 

monthly, or weekly harvest and transportation decisions for input to the simulation 

model. 

2.3. CoEE Simulation Model 

While the optimization model provides guidance for an overall strategic plan, the 

simulation model gives annual detailed output for specified operational scenarios using a 

daily time step. Its main refinements include modeling spring break-up timing and the 

transportation and inventory decisions prior to and during spring break-up. Both the 

simulation and optimization modeling have made the same supply area assumptions -- the 

supply area is split into 43 harvest areas based on the intersection of 29 counties and 30-

mile radius haul zones of the Kinross facility, and 3 harvest areas are assumed to be 

farther than 150 miles from facility (7).   

The purpose of the CoEE simulation model is to evaluate the annual feedstock delivery 

cost, energy consumption, and greenhouse gas emissions of the Kinross supply chain for 

specified operational scenarios. The CoEE simulation model was developed using 

commercial software called Arena (12). The model consists of five sub-modules: 

initialization, decision making, harvesting areas, log yards and the processing plant. The 

simulation is driven by the daily demand of the processing facility, located in the Kinross 

Township of Chippewa County, and a specified harvest plan for each of the 46 harvest 
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areas. Thus, the supply chain system is simulated as a combination of “pull” from the 

facility and “push” from the harvest areas. Figure 2.2 illustrates the overall model logic, 

and briefly explains the logic of each sub-module, described separately below. 

 

 

Figure 2.2: Schematic of the CoEE simulation model logic (Adapted from "Feedstock 

Supply Chain Models for the Frontier Renewable Resources Bio-fuel Facility in Kinross, 

Michigan", 2012 (7)) 

 

Initialization is the module that reads in data, including lifecycle cost, storage yard 

inventory, each harvesting site’s harvest plan, the transportation plan and spring break-up 

data.  

The decision making module controls the simulation model in several ways, such as 

sending a signal to control production at the facility after checking the inventory of the 

facility yard, signaling harvesting sites to deliver harvested logs after activating the 
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corresponding harvest and transportation plans, and writing out the simulation results to 

the Excel output file.  

"Decisions" are made after the initialization is completed and before activities in 

harvesting areas, log yards and the facility happen. The harvesting areas module creates 

entities, representing logs, in each of the 46 different harvesting areas. "Entity" is a 

concept defined by the software Arena. According to W. David Kelton, "entities are the 

dynamic objects in the simulation; they usually are created, move around for a while, and 

then are disposed of as they leave (12)". Most entities represent “real” things in a 

simulation (12). For our model, entities are the logs. After receiving the signal to send 

harvested logs out, the harvesting module will decide the destination, either log yards or 

facility yards.  Log yards are placed into two categories: rail yards with rail access in the 

Upper Peninsula and truck yards without rail access in the Lower Peninsula, due to the 

Mackinac Bridge. For rail yards, logs are transported from harvesting sites by truck first, 

and then transported to the facility by rail. For truck yards, trucks are the only available 

transportation tool. For both rail and truck transportation activities includes loading, 

transporting and unloading.  Finally, the facility module receives logs from the harvesting 

areas and storage yards. After the inventory information of the facility yard is checked by 

the decision making module, the facility either begins production, if it receives enough 

timber, or closes due to lack of timber. When the logs are utilized to produce bio-fuel, the 

logs' age is tracked as well. 
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Chapter 3. Spring Break-up Data 

3.1. Introduction  

Spring break-up load weight restrictions are required by Michigan state law in order to 

minimize traffic-induced road damage and extend the useful life of the road. As Truck 

Weight Laws issued by Michigan Department of Transportation (MDOT) indicate, 

pavement damage is directly related to axle loadings, and road agencies in each county 

can enact weight restrictions on roads that are not designed as all-season routes during the 

spring cycle of freezing and thawing. Weight restrictions involve lowering the axle-

loading limits and reducing the maximum travel speed for certain vehicles, including the 

trucks that transport logs (13-15). Thus, spring break-up is expected to have a significant 

impact on the cost and reliability of biomass feedstock delivered to the Frontier facility.  

Spring break-up usually begins in early March and may last over 3 months, during which 

period heavy loads cannot be shipped on most public roads and full loads of logs can only 

be hauled on major roads designated as Class A highways. For the purposes of the 

simulation model, it is assumed that storage yard inventory would build up before spring 

break-up and draw down during spring break-up, as the primary source of logs during 

road restriction would be those stored at rail yards in the Upper Peninsula of Michigan, 

truck yards in the Lower Peninsula of Michigan, and the yard at the Kinross facility. 

Truck yards are expected to be located on Class A highways, and rail yards built with 

railroad access. 

A list of seasonal road restrictions for state roads was obtained from MDOT (13), and 

lists of local and county road restrictions were obtained from MDOT and the County 

Road Association of Michigan (CRAM) (16). A sample map of Alcona County with state 

roads and non-state roads is shown in Figure 3.1.  
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Figure 3.1. Map of Alcona County showing roads of different types (data from MDOT 

and CRAM) 

 

As seen on the map above, the seasonal load restrictions are applied on most of the roads 

within Alcona County, indicating spring break-up will significantly affect log 

transportation.  As each county road commission is able to implement load restrictions 

depending on its own conditions, the start day and duration of the seasonal load 

restrictions vary from county to county.  In Alcona County, spring break-up usually starts 

in early March and ends in April.  Further north, it starts in March or early April and 

usually ends in April or early May.   

Legend

non-state road with load restrictions

non-state road with no load restrictions

state road with load restrictions

state road with no load restrictions

Alcona County

lake/pond
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3.2. Data Sources 

Historical spring break-up data for the years 2002 to 2010 (including partial data for 

years 2006 to 2010) was obtained from the MDOT and several county road commissions 

by Michigan State University (MSU) and Michigan Technological University (MTU), as 

shown in Appendix A. The data includes the start day and duration of weight restrictions 

in each county. According to MDOT, various factors such as the soil type, moisture 

conditions, and the weather are involved in determining the starting and ending dates of 

the spring break-up.   Thus, it is extremely challenging to predict the spring break-up 

timing, even a short time in advance. However, some relationships are found based on the 

limited historical data; such as spring break-up start dates and durations in neighboring 

counties are highly correlated, and start dates and end dates vary geographically among 

counties in a consistent way. Counties located in the south usually start spring break-up 

earlier than ones in the north; while counties located in the east usually start earlier than 

ones in the west, as indicated in Figure 3.2.  

 

Figure 3.2. Typical trend of spring break-up in the harvesting region 
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3.3. Factors Affecting Spring Break-up 

According to MDOT, weather conditions are important in determining the spring break-

up timing (7). In order to analyze the relationship between weather and spring break-up 

timing, air temperature data is obtained from the Weather Data Depot (17). According to 

science reports from the USDA Forest Service (18, 19), spring load restrictions should be 

put into effect when the ground begins to thaw. Pavement loses bearing capacity during 

this time period because as ice melts it makes the soil unconsolidated. Methods to 

identify the beginning of the thaw include field measurements (e.g., using a Light Weight 

Deflectometer (20, 21)) and model prediction. The modeling methods include Mn/DOT 

method, using air temperatures and reference temperatures to calculate daily freezing 

index and thawing index (22), and GEO-SLOPE numerical modeling method, simulating 

freezing and thawing front migration within a pavement structure (23), and so on.  

Analysis of the correlation coefficients between the timing of spring break-up and 

temperature was part of the preliminary analysis, and indicates some potential for the use 

of seasonal climate forecasts. Analysis results are shown in Table 3.1. The historical 

monthly average temperature data was obtained from Weather Data Depot (13, 17). The 

average temperature in March is used to calculate the correlation with the start day, while 

the average temperature in April is used to calculate the correlation with the end day, and 

duration uses the average temperature in both March and April. The temperature in April 

is used for all counties; although some of them end spring break-up in early May, this late 

spring break-up could be caused by a cold or wet April.   

As shown in Table 3.1, for the 27 counties which have historical spring break-up start 

day data, 26 have negative correlation coefficients for the start day, and one (Crawford 

County) has zero correlation. Since the one anomaly may be attributed to low statistical 

power because of the small sample sizes, it may be concluded the start day tends to be 

earlier when the weather is warmer.  

Similarly, for the 27 counties which have historical spring break-up end day data, three 

(Antrim County, Delta County, and Otsego County) have positive correlation coefficients 
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for the end day, and 24 have negative coefficients. Since the three anomalies may be 

attributed to the small sample sizes, it may be concluded the end day tends to be earlier 

when the weather is warmer.  

Finally, for the 27 counties which have historical spring break-up duration data, 26 have 

negative correlation coefficients for the spring break-up duration and temperature, and 

one (Delta County) has positive correlation. Since the one anomaly may be attributed to 

the small sample sizes, it may be concluded the spring break-up tends to be shorter when 

the weather is warmer.  

As mentioned, analysis of correlations with climate data indicates some potential for the 

use of seasonal climate forecasts, but the decision was made to base the statistical spring 

break-up model on the historical start and end days because correlations with climate data 

were not very high.   
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Table 3.1 

Correlation Coefficients of spring break-up timing and temperature are presented. 

Correlation values with * are significant at p=0.05, and others are at p=0.1. 

H.A. # County corr. coef. for 
start day 

corr. coef. for 
end day 

corr. coef. for 
duration 

1 Alcona -0.24 -0.57 -0.43 

2/3/4 Alger  -0.95* -0.63 -1.00* 

5/6 Alpena -0.68 -0.61 -0.23 

7 Antrim -0.31 0.09 -0.24 

8 Benzie -0.76* -0.20 -0.57 

9 Charlevoix -0.83* -0.66 -0.73 

10 Cheboygan -0.81 -0.50 -0.87* 

11/12 Chippewa -0.85 -0.68 -0.78 

13/14 Crawford 0.00 -0.71 -0.88* 

15/16 Delta -0.89* 0.18 0.22 

17 Emmet -0.51 -0.79 -0.59 

18 Grand Traverse -0.69 -0.34 -0.79 

19 Iosco -0.76 -0.71 -0.90* 

20/21 Kalkaska -0.49 -0.71 -0.86 

22 Leelanau no spring breakup data 

23/24  Luce -0.80 -0.81 -0.35 

25/26/27 Mackinac -0.92* -0.18 -0.45 

28 Manistee no spring breakup data 

29 Marquette -0.87* -0.62 -0.87* 

30 Menominee -0.88* -0.74 -0.66 

31 Missaukee -0.58 -0.23 -0.79 

32 Montmorency -0.91* -0.11 -0.30 

33 Ogemaw -0.05 -0.56 -0.58 

34/35 Oscoda -0.85 -0.56 -0.87* 

36/37 Otsego -0.22 0.03 -0.37 

38/39 Presque Isle -0.83* -0.44 -0.23 

40 Roscommon -0.92* -0.67 -0.79 

41/42 Schoolcraft -0.92* -0.26 -0.30 

43 Wexford -0.62 -0.36 -0.72 
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As precipitation may affect spring break-up timing as well, another analysis is conducted 

to show the correlation between the spring break-up timing with rainfall and snowfall. 

The historical monthly precipitation is obtained from the Michigan State Climatologist’s 

Office (24). Since there might be multiple stations that are collecting precipitation data 

and snowfall data in one county, a Thiessen polygon method (25) was used to weight the 

station data as shown in Figure 3.3. The example shows the map of Charlevoix County, 

which possesses three weather stations, in Charlevoix, East Jordan and Boyne Falls. 

  

 

Figure 3.3. Map of Charlevoix County and illustration of the procedure for developing 

area weights of stations 

 

Analysis results of the correlation coefficients between spring break-up timing and 

rainfall are shown in Table 3.2. Considering all 29 counties, six of them lack either spring 

break-up data or rainfall data. For rainfall analysis, 13 out of the remaining 23 counties 

have positive correlation coefficients for the start day, and 10 have negative correlations, 

while all 23 counties have positive correlations for the end day.  For snowfall analysis, 15 

out of the remaining 23 counties have positive correlation coefficients for the start day 
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and 8 have negative correlations, while 13 out of 23 counties have positive coefficients 

for end day.  No definitive statement can be made regarding the relationships between 

rainfall and start day or snowfall and spring break-up timing; however, rainfall and spring 

break-up end day are positively correlated. In other words, spring break-up is expected to 

end later if more rainfall occurs in that month, which may be due partly to cloud cover. 

 

Table 3.2 

Correlation coefficients of spring break-up timing and precipitation are presented. 

H.A. # County 

Rain Snow 
Corr. Coef. 

for start 
day

Corr. 
Coef. for 
end day

Corr. Coef. 
for start day 

Corr. Coef. 
for end day 

1 Alcona -0.29 0.55 -0.26 0.38 

2/3/4 Alger 0.34 0.77 -0.27 -0.9 

5/6 Alpena 0.42 0.39 0.53 0.43 

7 Antrim 0.51 0.65 -0.31 -0.24 

8 Benzie no rainfall/snowfall data  

9 Charlevoix 0.32 0.09 0.28 0.12 

10 Cheboygan 0.2 0.68 0.85 0.25 

11/12 Chippewa 0.46 0.9 0.78 -0.22 

13/14 Crawford 0.36 0.22 0.71 0.28 

15/16 Delta no rainfall/snowfall data   

17 Emmet 0.33 0.32 -0.74 0.66 

18 Grand 
Traverse -0.73 0.8 0.29 -0.53 

19 Iosco -0.18 0.79 0.53 0.3 

20/21 Kalkaska -0.15 0.59 0.22 0.38 

22 Leelanau no spring break-up data  

23/24 Luce no rainfall/snowfall data   

25/26/27 Mackinac 0.33 0.34 0.76 -0.86 

28 Manistee  no spring break-up data  

29 Marquette -0.12 0.02 0.16 -0.83 

30 Menominee no rainfall/snowfall data   
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Table3.2 (Continued) 

H.A. # County 

Rain Snow 
Corr. Coef. 

for start 
day

Corr. 
Coef. for 
end day

Corr. Coef. 
for start day 

Corr. Coef. 
for end day 

31 Missaukee 0.34 0.52 0.63 -0.1 

32 Montmorency -0.14 0.8 -0.38 -0.4 

33 Ogemaw -0.55 0.55 -0.32 0.11 

34/35 Oscoda -0.01 0.3 0.34 0.21 

36/37 Otsego -0.49 0.57 -0.37 0.21 

38/39 Presque Isle 0.14 0.48 -0.27 0.39 

40 Roscommon -0.15 0.82 0.22 0.35 

41/42 Schoolcraft 0.39 0.21 0.54 -0.54 

43 Wexford 0.73 0.77 0.45 -0.18 

 

 

In addition to weather conditions, one of the primary factors impacting the load carrying 

capacity of a road, and thus spring break-up timing, is the pavement and sub-grade 

materials. There are various categories of materials for road design (26). For example, 

pavements are mainly characterized as asphalt or concrete materials (27), and sub-grades 

are mainly characterized as soil, clay and other mixed materials (e.g. lime and cement) 

(28, 29). Variation in the properties of the different materials of pavement and sub-grade 

occurs due to environmental/climate changes, accordingly. Consequently, roads with 

materials of lower support capacity in spring require load restrictions earlier and/or for a 

longer duration. For instance, a typical low volume asphalt road's life will be increased 

by about 10 percent due to proper spring load restrictions (30), and thus road 

commissioners may choose to impose road restrictions in a conservative manner (i.e., 

start early and end late).  

Finally, some counties may just post spring break-up timing subjectively, such as making 

the decision depending on neighboring counties. For instance, from the data for 2006 to 

2010, it appears that Presque Isle County always ends its load restrictions approximately 

4 days after Cheboygan County removes its load restrictions.  
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Chapter 4. Spring Break-up Model 

4.1. Introduction 

In the simulation model, there are three ways to input spring break-up data.  The first way 

is to input the spring break up start day and end day for all 29 counties (spanning the 46 

harvest areas) in the spreadsheet input file.  The second way is to specify only the start 

day and end day of Alcona County’s load restrictions, and the spring break-up model 

(which is coded in Arena) will randomly sample a single realization of the other counties’ 

spring break up start dates and durations according to a statistical model of spatial 

correlations developed from the historical data. Alternatively, the probability 

distributions of Alcona County’s start day and end day may be defined, and Arena will 

perform a Monte Carlo simulation, generating a specified number of spring break-up 

scenarios for the entire harvest region. All calculated spring break-up data are written 

back to the spreadsheet output file so that the user can check the results.  

More details of the procedure for developing the statistical model of spring-break are 

given in section 4.3. 

4.2. Preliminary Data Analysis  

To better understand the historical spring break-up data, a preliminary data analysis is 

completed here. Figure 4.1(a) shows that all counties in the Lower Peninsula of Michigan 

start spring breakup between the middle of February and the end of March, and most of 

them start it in March, while Figure 4.1(b) shows all counties in the Upper Peninsula of 

Michigan start spring break-up in March as well, and most of them start it in the middle 

or late March. Figure 4.2(a) shows that the load restrictions in all counties in the Lower 

Peninsula of Michigan last from 20 days to 70 days, and most of them last for around one 

and a half months, while Figure 4.2(b) shows that the load restrictions in all counties in 

the Upper Peninsula of Michigan last from one month to three months, and most of them 
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last for around two months. Another finding from the raw data is that load restriction 

duration is inversely related to the start day because load restrictions tend to end at about 

the same time every year. In other words, a county with early spring breakup is likely to 

have a long duration break-up, while a county starting spring break-up late is more likely 

to have a short duration break-up. The histogram of end day of load restrictions for 

counties in the Lower Peninsula of Michigan is shown in Figure 4.3(a), indicating that 

most of the counties end their spring break-up in April. The histogram of end day of load 

restrictions for counties in the Upper Peninsula of Michigan is shown in Figure 4.3(b), 

indicating that a large portion of the counties end their spring break-up in May. 

Furthermore, comparison of histograms indicates that counties in the Lower Peninsula are 

likely to start and end spring break-up earlier than counties in the Upper Peninsula. Also, 

counties from the Lower Peninsula have a much shorter spring break-up than counties in 

the Upper Peninsula. The average duration is 36.6 days in the Lower Peninsula compared 

to 57.6 days in the Upper Peninsula, and the longest duration is 63 days in the Lower 

Peninsula compared 104 days in the Upper Peninsula, based on the historical data.   

 

 

Figure 4.1. Histogram of spring break-up start day for (a) L.P. counties and (b) U.P. 
counties. 
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Figure 4.2. Histogram of spring break-up duration for (a) L.P. counties and (b) U.P. 
counties 

 

 
Figure 4.3. Histogram of spring break-up end day for (a) L.P. counties and (b) U.P. 

counties 

 

4.3. Methodology  

Because developing the statistical model of spring break-up requires analysis of 

correlations, the methodology for the spring break-up model consists of three steps of 

related analysis:  

(1) Fitting probability distributions to historical data: transformation of the historical start 

and end day using the Box-Cox transformation, which improves skewed distributed 

data, in order to fit normal distributions to the transformed data, because regression 

analysis in step (2) assumes normality of the data sets; 
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(2) Developing regression relationships to represent spatial correlations: selection of 

Alcona County as the first county of the spring break-up model, development of 

regression relationships of other counties to Alcona County using the transformed data 

from step (1), as well as estimation of the distribution of the error terms, which are 

also normally distributed according to step (1); 

(3) Transforming the generated spring break-up scenarios corresponding to the Box-Cox 

transformed data back to real space, in format of an ordinal date, for use in the 

simulation model.  

Figure 4.4 outlines the steps and tools employed in each step. 

  



 

21 
 

 

 
Figure 4.4. Overview of study methodology 
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4.4. Model for Alcona County 

The statistical model of spring break-up timing begins with a model of Alcona County’s 

start day and end day.  Start day and end day were found to be statistically independent, 

whereas start day and duration are significantly correlated, for the reason described 

previously. Alcona County is selected as the basis for other counties in the model because 

it tends to be one of the earliest counties that experiences spring break-up due to its 

geographic location, located in the southeast corner of the defined harvest area and 

adjacent to Lake Huron.  Alcona County also has an inland lake, Hubbard Lake, which is 

among the 10 largest inland lakes in Michigan (31). Due to water’s large heat capacity, 

winter temperature of counties near water bodies tend to be milder than counties without 

large water bodies (32).  

A map, showing average start days of historical data and how many years the historical 

data has for each county, is presented in Figure 4.5. It shows that Alcona County starts 

road restrictions relatively early. Charlevoix County may seem to be another good choice 

for the baseline county, as its average start day is 64 (March 4 or 5), but there are only 5 

years of record for Charlevoix County. The limited observations will impact the accuracy 

of the model. Thus, Alcona County is selected due to its early spring break-up start and 

its historical data length.     
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Figure 4.5. Map of average historical start days of spring break-up and years of record 

 
As stated in section 4.3, the start and end days of Alcona County’s spring break-up have 

to be transformed so that they are approximately normally distributed. The Box-Cox 

transformation is a particularly useful approach to do that. Referring to Box and Cox 

(1964), the Box-Cox transformation is defined as: 

                                          Λ

Λ

Λ
      0 ,

        0 .
                                                 [ 4-1 ] 

 

It transforms the response variable Y to an approximately normally distributed variable 

Y(λ), with parameter λ (33). 

Statistical software Minitab is employed in order to find the transformation parameter λ 

and transform the data. Although Y(λ) is defined a little differently from equation 4-1, 
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Minitab provides an effective way to find the best value for λ and an optimal power 

transformation, as presented in equation 4-2 (34): 

                                                           λ             0 ,
       0 .

                                      [ 4-2 ] 

Since an analysis of variance is the same by a linear transformation, equation 4-1 is 

equivalent to equation 4-2.  

To find the optimal λ, Minitab plots the standard deviation resulting from each 

transformation vs. possible values for λ, as shown in Figure 4.6, the Box-Cox 

transformation plot of Alcona’s spring break-up start day. The optimal λ is selected as the 

value with minimum residual standard deviation, subject to the constraint that the 

transformation parameter λ is limited to values between -5 and 5. 
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Figure 4.6. The Box-Cox transformation plot of Alcona County’s Start Day 

 

Taking the start day of Alcona County, for instance, the best estimate of λ is 3.12, and it 

can be rounded to 3.0. In this example, both 3.12 and 3.0 are reasonable choices because 

they both fall within the 95% confidence interval (marked by vertical lines, Lower CL 
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and Upper CL, although Upper CL does not appear because it is greater than 5). In our 

study, the original value of λ, 3.12, is used for the transformation. 

After estimation of λ, a normal distribution is fit to the transformed data, again using 

Minitab, as shown in Figure 4.7. The plot shows less skew in the transformed data set 

than in the original observations, shown in the upper left corner of Figure 4.7. The sample 

mean and standard deviation of the Normal distribution fit to the transformed data are 

listed in the figure as well.     

 

 

Figure 4.7. The Normal distribution estimated for the transformed start day of Alcona 

County 

 

Similarly, estimating λ and fitting a Normal distribution to the transformed end day data 

are also conducted using Minitab. However, the historical data are so skewed (as shown 

in Figure 4.8(a)) that the simulation results from the Box-Cox transformation using 

Minitab are not ideal (as shown is Figure 4.8(b)).  
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Figure 4.8. Simulated end day (without pre-transformation) vs. Historical end day for 

Alcona County. Bars in blue represent simulated data, bars in white represent historical 

data, and bars in light blue represent overlay from simulated and historical data. 

 
To adjust for this skew, pre-transformation of the historical end day, Y, is conducted 

before the Box-Cox transformation using the following equation: 

 

                                                        .                                                                              4‐3  

Natural log transformation is one of the most widely used transformations in statistical 

tests (35). The exponent 21.65 is obtained from iterations of the Box-Cox transformation 

with LnY via Minitab. The sample mean and standard deviation of the Normal 

distribution fit to the transformed data are obtained via Minitab as well. Results are listed 

in Table 4.1.  
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Table 4.1 

To present estimation results of Alcona County’s spring break-up timing. 

Alcona 
County 

Pre-
transformation 

Transformation 
Parameter, λ 

Mean of 
Normal 

Distribution, µ 

Standard Deviation 
of Normal 

Distribution, σ 
Start 
Day N/A 3.12 5.226 x 105 1.6189 x 105 

End 
Day T(Y)=(Ln(Y))21.65 1 3.944 x 1014 9.473 x 1013 

 
 

In order to check the consistency with historical data for Alcona County, 1000 samples 

are generated from the estimated Normal distribution and plotted as a histogram, as 

shown in Figure 4.9. (Code used to generate the figure and random data used in 

Mathematica 8 are provided in Appendix B.) The distributions of generated samples, 

shown in blue, are reasonably close to the Alcona County's historical data, shown in a 

lighter color. Generated sample mean and standard deviation are compared to historical 

data in Table 4.2. From Table 4.2, the means and standard deviations of simulated data 

are reasonably close to the historical data.  
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Figure 4.9. Simulated data vs. Historical start day (a) and end day (with pre-

transformation) (b) for Alcona County. Bars in blue represent simulated data, bars in 

white represent historical data, and bars in light blue represent overlay from both. 
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Table 4.2 

To present sample means and standard deviation for Alcona County spring break-up 

timing. 

Start Day End Day 

 
Mean

Standard 
Deviation

Mean 
Standard 
Deviation 

Historical data for 
Alcona County 

67.30 7.36 111.90 6.56 

Generated data 
from Normal 
distribution 

67.22 7.46 111.91 6.21 

     

4.5. Spatial Correlation 

Spatial correlations are considered because start dates and end dates vary geographically 

among counties in a consistent way. In other words, the timing of load restrictions for 

each county is not independent of neighboring counties, based on correlation analyses of 

start day and end day. Furthermore, counties located in the south usually start spring 

break-up earlier than those farther north, while eastern counties usually start earlier than 

western counties. Although more sophisticated multivariate statistical models could be 

developed, due to the short record lengths, linear regression analysis is deemed adequate 

to develop relationships between Alcona County and the other 28 counties within the 

harvesting region. 

4.5.1. Simple Linear Regression 

Simple linear regression is a common approach to modeling the functional dependence of 

one variable on another, or in other words, the relationship between a scalar variable Y 

and one or more explanatory variables, Xi. In particular, a simple linear regression 

relationship is of the form: 

       1, 2, …                                                                  [ 4-4 ] 
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where Yi is a random dependent variable and Xi is an observable independent variable. 

The parameters β and α are the intercept and slope of the regression, and εi is a random 

variable called the error term, or residual, which captures all other factors influencing the 

linear relationship between the dependent variable Yi and observation Xi (36). 

A linear regression model may be fitted using an approach called Least Squares, which 

aims to minimize the sum of squares of the error terms. Consider the example of the 

transformed spring break-up start day of Alcona County, Xi (transformed using the Box-

Cox transformation parameter λ=3.12), and of Antrim County, Yi (transformed using 

λ=0.9), as shown in Figure 4.10.  For any line y = αx + β, the residual sum of squares 

(RSS) is defined to be the sum of squares of error term ε; that is 

                                                 [ 4-5 ] 

The RSS measures the vertical distance from each data point to the fitted line y = β + α x 

and then sums the squares of these distances. The selected values α and β are defined to 

be those values such that the line y = β + αx minimizes the RSS.  From this approach, it is 

found that the Y-intercept value equals 30.706 and the slope of the line is 2E-5, while the 

RSS reaches a minimum value of 55.21.  
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Figure 4.10. Linear regression model of Antrim County transformed start day vs. Alcona 

County transformed start day.  Vertical distances are measured by RSS. 

 

In this study, how well the line fits the data, or what percent of the variance can be 

defined by the line, is measured by Pearson’s correlation coefficient, defined as: 

                                         R
∑ ∑ ∑

∑ ∑ ∑ ∑
                                         [4-6] 

in which n refers to the number of pairs of data used in the regression (37). The 

correlation coefficient, R, ranges from -1 to 1. The portion of the variance explained by 

the line is given by R2, where 0 ≤ R2 ≤ 1. Thus, if all variation in Y is explained by X, 

then R2 = 1, but if the dependent variable Y and observation X have no linear 

relationship, then R2 = 0 (38).   

From equation 4-6 above, the correlation coefficient R equals 0.934, and the coefficient 

of determination R2 is 0.872. Therefore, the transformed spring break-up start days of 

Alcona County and Antrim County are highly correlated, and it is concluded that the start 

day of spring break-up in Alcona County is a good predictor of the start day of spring 
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break-up in Antrim County, using the equation Y = 2.53E-5X + 30.706 (for the 

transformed data). 

Regression was done in Excel to relate the spring break-up start days of Alcona County 

to the other 27 counties. For most of the counties, this was done in three stages by first 

estimating the Box-Cox transformation parameters using Minitab, then developing 

regression models for counties with the highest correlation coefficients, and finally 

relating these “key counties” to the rest of the counties. The groupings and correlation 

coefficients are shown in the Figure 4.11. The reason, negative correlation coefficients 

are shown for some counties, is that regression relationships are inverted, because 

transformation parameter λ values have opposite signs. Therefore, these counties still 

show a strong correlation only signs have changed. All regression equations and 

transformation results are listed in Appendix C. 

Although all counties could have been related to Alcona County in a single step, some 

counties’ start and end days were found to have statistically insignificant correlations 

with Alcona County’s spring break-up timing, perhaps due to their short record lengths. 

For instance, correlation of end day of Antrim and Alcona County is 0.55 at p=0.125 

level, but correlation of end day of Antrim and Cheboygan County is 0.884 at p=0.047 

level. The grouping of counties into “regions”, although done subjectively, was 

considered to be a more intuitive approach, with precedence in the hydrologic sciences 

(39). In Figure4.11, correlation values in red indicate significance at the p < 0.05 level, 

while values in blue indicate marginal significance at the p < 0.1 level. The regional 

approach was also envisioned to provide a means for sampling from the regression 

residuals, as discussed in the next section.  
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Figure 4.11. Regional groupings and correlation coefficients of transformed spring 

break-up start day. 

 

Similarly, estimation of the Box-Cox transformation together with regression and 

correlation analysis was conducted on the historical end day data. The regional groupings 

and correlation coefficients are shown in Figure 4.12. Correlation values in red indicate 

significance at the p < 0.05 level, while values in blue indicate marginal significance at 

the p < 0.1 level. All regression equations are listed in Appendix C. 
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Figure 4.12. Regional groupings and correlation coefficients of transformed end days of 

spring break-up 

4.5.2. Reduced Major Axis Regression (RMA) 

Simple least-squares linear regression assumes that the X values are determined without 

error (40). In the case of spring break-up timing, since we are relating observations of one 

county to another, both the X and Y variables are subject to uncertainty.  Thus, the 

standard linear regression may not be the optimal fit. Generally, the reduced major axis 

regression, or RMA regression, is less biased when the independent variable is measured 
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with error (41). The purpose of this section is to evaluate whether or not the simple linear 

regression used in the former section is an optimal (or at least acceptable) choice.  

The underlying assumption for simple linear regression is that deviations between sample 

points and the fitted line happen only in the direction of vertical axis, as pictured in 

Figure 4.9. In contrast, RMA regression assumes that deviations between observations 

and fitted data values occur in both vertical and horizontal directions. While simple linear 

regression tries to minimize the sum of Y-direction error terms, the RMA regression 

minimizes the product of the X and Y deviations from the fitted line, or the triangular 

areas shown in red in Figure 4.13.  

 

 

Figure 4.13. RMA regression schematic, using the example of transformed spring break-

up start days in Antrim County and Alcona County. 

 

Letting σi be the measure of deviation for sample point (Xi, Yi), then for any line y = αx + 

β, the aim of RMA regression is to minimize the sum of the σi, or the sum of the product 

of (Xi-X) and (Yi-Y), as follows: 

  : Xi
Yi β

α
Yi   α Xi             [4-7] 



 

36 
 

Thus, the linear fit is achieved by minimizing the product of deviations between 

observations and fitted values in both X- and Y-directions.  

A comparison of simple linear regression and RMA regression is shown in Figure 4.14, 

presenting the transformed historical start day of spring break-up for Alcona County and 

Antrim County. Simple linear regression, which is termed "Y on X" as it minimizes the 

deviations in the Y-direction, is shown in red. The inverse regression result, "X on Y", 

with the deviations in the X-direction minimized, is shown in blue.  The RMA regression 

is shown as the dashed green line. All three lines intersect at the bi-variant mean X, Y . 

These three regression lines are very close to each other because the two variables are 

highly correlated. More extreme examples are found in the data set, however.  

 

Figure 4.14. Comparison of simple linear regression and RMA regression 
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For example, in Figure 4.15, Mackinac County's transformed end day is plotted against 

that of Chippewa County. In this case, the regression lines of X on Y, Y on X, and the 

RMA line are much more distinct than the previous example because the correlation 

coefficient is only 0.703.  This illustrates that RMA regression is more suitable for the 

statistical model of spring break-up, because the X variable (e.g., Alcona County's spring 

break-up start day in the first example) is chosen arbitrarily.  

 

 

 

Figure 4.15. Regression lines RMA regression schematic 

 

The calculation procedure for RMA regression and code in Mathematica 8 used to 

determine the RMA regression equation are shown in Appendix D. All results, as slopes 

and intercepts, of the RMA regression analysis are listed in Appendix E.  
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Attempting to re-create historical variability in the simulated scenarios, an error term  is 

added to the RMA regression relationship as follows: 

       1, 2, … ,                                                                        [ 4-8 ] 

where α0 and β0 are the RMA regression slope and intercept, respectively, and the error 

term εi is independent with distributions Yi. In the utilization of RMA regression, two 

assumptions are made to consider the error term: 

 For a given X, the Y’s value is predictable with a random error εi, where Xi ~ 

Normal (µx, σx), Yi ~ Normal (µy, σy), εi is Normal (0, σy). The error term εi is 

independent with distributions of both Xi and Yi. 

 The value of εi will be truncated within the 68% probability range. In other words, 

εi is always greater than -σy and less than σy.  This constraint is based on 

experiments which showed allowing a larger range tended to overinflate the 

variance and could lead to implausible results, such as the end day coming before 

the start day. 

Based on these two assumptions, the spring break-up algorithm can generate potential 

spring break-up scenarios. An example is given in Figure 4.16, illustrating the procedure 

for estimating a selected county's spring break-up timing from Alcona County and 

another baseline county.  
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Figure 4.16. Example of simulating the spring break-up start day of Chippewa County
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Chapter 5. Simulation Results 

5.1. Verification of Spring Break-up Model 

For verification purposes, a comparison of historical data and simulation results for 100 

replications is presented in the form of histograms and summary statistics. Several 

examples are presented below, such as the start day of Charlevoix County, the end day of 

Benzie County and the duration of Chippewa County.  

 

Figure 5.1. Simulated start day of Charlevoix County from Arena vs. Historical dates 

 

Table 5.1 

To present means and standard deviations for the start day of Charlevoix County. 

 
Mean Standard Deviation 

Simulated start 
day 

60.90 8.21 

Historical start 
day 

64.40 5.13 
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Figure 5.2. Simulated end day of Benzie County from Arena vs. Historical dates 

 

Table 5.2 

To present means and standard deviations for the end day of Benzie County. 

Mean Standard Deviation 

Simulated end 
day 94.79 9.87 

Historical end 
day 92.56 8.53 

 

 

Figure 5.3. Simulated duration of Chippewa County from Arena vs. Historical dates 
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Table 5.3 

To present means and standard deviations for the duration of Chippewa County. 

Mean Standard Deviation 

Simulated duration 48.03 10.89 

Historical duration 47.6 11.06

 

For these three randomly selected examples, simulated mean start day, end day and 

duration are similar to historical means, but the standard deviations show some 

discrepancies. This may be because the historical observations are too limited for 

accurate fitting of distributions, especially for the tails of each distribution, or because the 

historical data tend to come from truncated distributions.  

5.2. Uncertainty Effects on Supply Chain Simulations 

After developing and verifying the spring break-up statistical model, the Arena supply 

chain simulation model is able to consider the uncertainty arising from the timing of load 

restrictions. For comparison, results of the random (stochastic) simulation are compared 

to a deterministic scenario, with no uncertainty in spring break-up timing. The 

deterministic scenario assumes that all counties in the Upper Peninsula of Michigan start 

spring break-up on the same day and end it on the same day, as do counties in the Lower 

Peninsula. All the specified start days and durations are taken from average historical 

statistics, as listed in Table 5.4. 
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Table 5.4 

To present historical spring break-up statistics. 

 Average start day Average duration 

Counties in the L.P. 68 37 

Counties in the U.P. 71 58 

 

Results from simulations of 100 random spring break-up scenarios and the deterministic 

scenario are summarized in the following table and figures. 

Table 5.5 gives the reliability for the supply chain supporting the processing facility in 

both days and years.  The supply chain is considered reliable for a given year if there is 

no plant closure in that year.  As the reliability results show, for the fixed spring break-up, 

the supply chain supports the processing facility perfectly. If is known exactly when the 

spring break-up begins and ends, proper harvest plans and transportation plans can be 

made in advance to make sure log inventories are sufficient to support production 

throughout the time of load restrictions. However, in reality, spring break-up occurs 

randomly. When spring break-up happens earlier than the expected start day, the supply 

chain may not have prepared enough inventory, and thus the facility production may need 

to be reduced during spring break-up. As shown in Table 5.5, the reliability is somewhat 

lower when spring break-up happens randomly, and in fact at fixed production levels, 

plant closures (for 1 or more days) may be expected in 41% of the years.   In practice, 

production may be scaled back rather than the plant closing, but this decision is not 

supported by the simulation model. 
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Table 5.5 

To present summary of simulation results. 

 Reliability, % days Reliability, years 

Random spring break-up 99.57% 59/100 

Deterministic spring break-up 100% 1/1 

 
 

In addition to reliability information, the total cost, energy and emissions results for the 

random spring break-up scenarios and deterministic scenarios are shown in Figure 5.4 to 

5.6.  (As shown, there is actually a little randomness in the deterministic spring break-up 

scenario, due to randomness in the transportation loading and unloading activities.) Based 

on the histograms of total cost shown in Figure 5.4, some scenarios have higher total cost 

than the deterministic scenario, which might be due to the increased storage cost caused 

by late spring break-up; however, some total cost results are smaller than the 

deterministic scenario, which might be due to the decreased storage cost caused by early 

spring break-up.  However, no cost for facility closure is specified, which could 

significantly increase the real cost when a long spring break-up occurs.  

Similar to total cost, the histograms of total energy consumption and greenhouse gas 

emissions, as shown in Figure 5.5 and 5.6, indicate significant variability for the random 

spring break-up scenarios. Total energy consumption and greenhouse gas emissions are 

lower when spring break-up is longer, during which time more rail transportation is used. 

Rail consumes only 0.397 MJ fuel per ton-mile, while trucks consume 2.1 MJ fuel per 

ton-mile; and rail discharges only 0.035 kg greenhouse gas per ton-mile, while trucks 

discharge 0.183 kg per ton-mile. Also, when spring break-up is longer than expected, 

fewer logs are harvested due to load restrictions, and thus the fuel consumption and 

greenhouse gas emissions due to harvesting activities are reduced as well. 

Based on these comparisons, it is clear that the random spring break-up model provides 

more comprehensive insight into the risks associated with various supply chain decisions.  
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Figure 5.4. Comparison of Total Cost for deterministic and random spring break-up 

scenarios 

 

Figure 5.5. Comparison of Total Energy Consumption for deterministic and random 
spring break-up scenarios 
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Figure 5.6. Comparison of Total Emission for deterministic and random spring break-up 
scenarios 

 
The real benefit of the simulations with random spring break-up comes from the ability to 

adjust decisions that lead to an increase in reliability, and to evaluate associated tradeoffs.  

For example, the reliability can be improved by adjusting harvesting plans, transportation 

plans, or both. Compared with the baseline harvesting plan in the previous example, if 

just 13% more logs are harvested during February, the daily and annual reliability will 

increase to 99.66% and 65.57%, respectively.  However, this increase in reliability comes 

at the expense of a 0.45% increase in total cost, a 0.38% increase in total emissions, and a 

0.36% increase in fuel consumption.  The effects of changing the transportation plan are 

illustrated in the next section.   

5.3. Impact of Rail Use and Rail Yard Storage 

During the spring break-up, truck loads are limited in order to minimize the damage to 

seasonal roads, and the only access to logs for the facility will be either from its own storage 

yard, logs stored in a truck yard along a Class A highway, logs stored with railway access, or 

logging jobs that are taking place on a Class A highway. Increased rail use is needed to 

carry logs to the facility during this time period. Available rail yards, and their storage 

capacities, will impact the overall performance of the supply chain as well. The aim of 
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this analysis is to show the impacts on the overall supply chain due to rail use and rail 

yard storage.  

As a sensitivity analysis, rail yard capacity is reduced by 15%, 30% and 60% for 

comparison with the baseline scenario, in which it is assumed that the rail yards are able 

to hold logs from 150 rail cars, and each rail car carries 80 tons of logs. In other words, 

the rail yards’ capacity is 12,000 tons for a baseline scenario, 10,200 tons for the 15% 

reduction scenario, 8,400 tons for the 30% reduction scenario, and 4,800 tons for 60% 

reduction scenario. 

Results in Table 5.6 show that reducing the rail yard capacity reduces the reliability of 

providing feedstock to the processing facility. The reliability does not decrease rapidly, 

however, because even with reduced rail yard capacity, logs may also be kept in the 

facility yard in advance of spring break-up. The averages of total cost, total energy 

consumption and total greenhouse gas emission increase as the rail yard capacity 

decreases. This is mainly because rail use is also decreasing, which means more trucks 

have to be employed, and rail is a more efficient transporter than truck. Total cost does 

not decrease rapidly, however, because transportation cost of rail and trucks from the 

Upper Peninsula make up a relatively small proportion of the overall cost, according to 

the total cost composition of the baseline scenario, as shown in Figure 5.7 (a). Total 

energy consumption and total greenhouse gas emissions do not decrease rapidly either, 

due to the similar reasons, as shown in composition plotting in Figure 5.7 (b) and (c).  
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Table 5.6 

To present summary of simulation results for rail yard capacity reduction scenarios. 

    Baseline 
scenario 

15% reduced 
rail yard 
capacity 

30% reduced 
rail yard 
capacity 

60% reduced 
rail yard 
capacity 

  Reliability, 
days 96.63% 96.37% 96.12% 95.61% 

  Reliability, 
years 0.00% 0% 0% 0% 

Total Cost, 
K$ 

Average 32547 32559 32564 32572 

Standard 
Deviation 498.26 497.41 497.18 497.48 

Total Energy 
Consumption, 

MJ 

Average 4.695x108 4.707x108 4.716x108 4.736x108 

Standard 
Deviation 6.571x106 6.566x106 6.669x106 6.591x106 

Total 
Emission, kg 

GHG 

Average 4.053x107 4.064x107 4.072x107 4.089x107 

Standard 
Deviation 5.664x105 5.659x105 5.654x105 5.680x105 
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Figure 5.7. Components of total cost, total fuel consumption and total greenhouse gas 
emissions for the baseline scenario 
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Similarly, another sensitivity analysis is conducted in which rail use is reduced by 10%, 

25%, 50% and 100% reduction (no rail scenario) for comparison with the baseline 

scenario, in which it is assumed that there are 882 available rail trips annually. In other 

words, the number of available rail trips is 882 for a baseline scenario, 794 for the 10% 

reduction scenario, 662 for the 25% reduction scenario, 441 for the 50% reduction 

scenario and none for the “no rail” scenario. 

Results in Table 5.7 show that reducing the rail use reduces the reliability of providing 

feedstock to the processing facility. The reliability does not decrease rapidly, however, 

because even with reduced rail availability, the trucks which in the baseline scenario 

transport logs from harvesting areas to rail yards, are able to transport logs to the facility 

yard directly, and thus logs may be kept in the facility yard instead or rail yards prior to 

spring break-up. As before, the averages of total cost, total energy consumption and total 

greenhouse gas emissions increase as the rail use decreases 

 

Table 5.7 

To present summary of simulation results for rail use reduction. 

    Baseline 
scenario 

10% 
reduced 
rail use 

25% 
reduced 
rail use 

50% 
reduced 
rail use 

no rail 
use 

  Reliability, 
days 95.41% 95.30% 95.25% 94.17% 92.38% 

  Reliability, 
years 0% 0% 0% 0% 0% 

Total Cost, 
K$ 

Average 31908.23 31964.38 32057.06 32146.77 32416.2 

Standard 
Deviation 455.92 469.89 451.81 459.23 462.62 

Total Energy 
Consumption, 

MJ 

Average 4.646x108 4.661x108 4.689x108 4.774x108 5.024x108 

Standard 
Deviation 6.272x106 6.518x106 6.256x106 6.638x106 6.727x106 
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Table 5.7 (Continued) 

  
Baseline 
scenario 

10% 
reduced 
rail use 

25% 
reduced 
rail use 

50% 
reduced 
rail use 

no rail 
use 

Total  
Emission, kg 

GHG 

Average 4.012x107 4.024x107 4.049x107 4.123x107 4.341x107 

Standard 
Deviation 5.413x105 5.625x105 5.400x105 5.733x105 5.810x105 

 

 

 

5.4. Variability in Simulation Results 

To use Arena, the computer system must meet these hardware requirements: hard drives 

with at least 250MB free disk space, at least 1GB RAM, and processor 2GHz or faster 

(12). However, regardless of the performance of system conditions, only one simulation 

can be run at a time in Arena. Computer speed and memory impact the model 

computational time significantly; as an example, the performance of two systems is 

compared in Table 5.8.   

 

Table 5.8 

Comparison of model computational time is presented. 

  RAM 
memory Processor type Processor 

speed 
Simulation time for 

100 replication 
Computer 1 4.00 GB Intel® Core™ i5-2500 CPU 3.30GHz 2 hours 
Computer 2 2.00 GB Intel® Core™ 2 CPU 6600 2.40GHz 6 hours 

 

To check model accuracy, a simulation of 300 replications is run, and distributional 

results are compared, as shown in part in Table 5.9. The table shows very little variability 

in the mean values, and some variability in the standard deviations, between sets of 100 



 

52 
 

replications. Thus, considering both the computational time and simulation accuracy, a 

replication number of 100 is recommended.  

 
Table 5.9  

Results of simulation of 300 replications are compared. 

County replications
Start Day End Day 

Mean Stdv Mean Stdv 
Alcona 1-100 66.33 7.15 108.54 5.06 

101-200 66.84 6.53 109.02 5.21 
201-300 66.98 6.42 108.28 4.70 

Chippewa 1-100 69.68 4.79 117.71 10.16 
101-200 70.86 6.25 117.98 9.70 
201-300 70.35 5.55 117.88 7.88 

Benzie 1-100 66.25 5.54 88.67 6.96 
101-200 66.67 6.09 88.86 6.12 
201-300 65.82 6.73 88.13 6.17 
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Chapter 6. Conclusion and Future Work 

6.1. Conclusion 

A supply chain simulation model coupled with an optimization model has been 

developed to better understand the supply chain system for the CoEE project. A spring 

break-up statistical sub-model is employed to simulate the spring break-up timing in a 

practical way. The model considers the load restriction timing distributions of Alcona 

County, and then relates other counties to Alcona County. Variable timing of spring 

break-up and its effects on the biomass supply chain are presented comprehensively by 

the simulation model.  

Sensitivity analyses demonstrate the potential utility of the spring break-up model in 

supporting decisions under uncertainty. If the simulation is run with fixed spring break-

up timing, the results are impractical as the results are based on perfect knowledge. In 

practice, uncertainty in spring break-up reduces the reliability of providing feedstock to 

the processing facility.  

Also, so as to better understand the expected supply chain system performance, results of 

the total cost, energy consumption, greenhouse gas emissions and reliability are 

compared for a number of scenarios of rail use and rail yard storage capacity. The results 

show that less rail use or smaller rail yard capacity leads to higher total cost, more energy 

consumption and emissions, and lower reliability.  

6.2. Recommendations for Future Work 

One factor that is currently considered in the optimization model, but not the simulation 

model, is different land ownership categories that are expected to affect the timing and 

spatial distribution of feedstock availability. The optimization model includes four 

distinct ownership categories: federal, state, private industrial and private non-industrial. 

Different types of land owners are expected to have different levels of willingness to 
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harvest their timber at offered prices, so it is very likely that timber will be acquired at 

different costs from different land owners. Therefore, one recommendation for the 

simulation model is to include the types of land ownership in order to adjust harvest plans 

with more accurate consideration of harvest costs. 

The statistical spring break-up model developed in this study has the potential to be 

extended as a seasonal forecast model for  Frontier and county road commissions, as 

spring break-up timing has been shown to be associated with weather conditions, and 

seasonal climate forecasts are improving in many parts of the world (22, 42). It may take 

many years, however, for Frontier and road commissions to determine how and to what 

extent they will rely on the forecasts for their decisions.  In the meantime, the 

compilation of spring break-up data should continue, and the model should be routinely 

updated, as the model is currently based on a very small sample of historical data (5-9 

years, depending on the county).  In addition, having recent spring break-up data will be 

even more important if a climate change trend becomes apparent in the region.  

Another direction of future work is to use the simulation model as an educational and 

communication tool, e.g., helping loggers better plan timber harvests, helping storage 

yard managers maintain proper inventory levels, and helping processing facility 

managers make decisions regarding production.   In turn, future work may focus on 

representing aspects of communication across the supply chain, as effective 

communication among supply chain agents is expected to improve responsiveness and 

reduce total supply chain costs.  

There are two additional limitations on the simulation model. First, the model does not 

consider wood from Canada. Chippewa County, where the bio-fuel processing facility is 

to be located, is adjacent to the Canadian province of Ontario. Therefore, forests in 

Canada might be a potential biomass source. Another limitation is that competition with 

other mills in the area has not been considered. There will be a reduced quantity of 

available biomass for conversion to ethanol if pulp and paper mills or energy producers 

are demanding biomass within the region as well. Future work may focus on how to 

include these considerations in the simulation model.  
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Appendix 

Appendix A: Historical Spring Break-up Data 

Table A.1 

Historical spring break-up data includes start day and duration. 

H.A. # and County   
 Year: 20- 

10 09 08 07 06 05 04 03 02 01 

1 Start Day 62 68 77 71 68 73 61 74 52 67 

Alcona Duration 36 50 43 45 40 37 50 45 63 47 

2/3/4 Start Day 67 76 78 71 69               

Alger Duration 43 55 56 53 49               

5/6 Start Day 65 68 77 71 67 74 75 80 77   

Alpena Duration 31 46 38 41 41 35 31 35 36   

7 Start Day 62 68 71 67 65 73 61 73 50   

Antrim Duration 24 40 42 27 38 29 43 21 56   

8 Start Day 67 68 72 68 67 73 61 73 72   

Benzie Duration 11 29 34 22 20 25 31 18 31   

9 Start Day 62 68 70 57 65               

Charlevoix Duration 30 51 40 52 43               

10 Start Day 67 72 77 71 67               

Cheboygan Duration 25 43 37 36 37               

11/12 Start Day 67 76 78 72 68               

Chippewa Duration 19 41 38 30 35               

13/14 Start Day 67 65 72 81 65               

Crawford Duration 29 56 49 48 56               

15/16 Start Day 60 72 72 68 67               

Delta Duration 51 50 56 54 70               

17 Start Day 61 68 70 60 60 60            

Emmet Duration 28 40 43 61 36 49            

18 Start Day 69 68 74 64 67 73 61         

Grand Traverse Duration 15 40 32 29 27 25 50         
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Table A.1 (Continued) 

H.A. # and County 
 

Year: 20- 

10 09 08 07 06 05 04 03 02 01 

19 Start Day 67 68 77 71 69 
Iosco Duration 25 43 38 40 27 
20/21 Start Day 68 65 77 71 65             

Kalkaska Duration 24 46 37 43 38               

22 Start Day 
No Spring Break-up Data 

Leelanau Duration 
23/24 Start Day 68 77 78 74 68             

Luce Duration 46 59 57 90 76               

25/26/27 Start Day 67 76 77 72 69             

Mackinac Duration 33 60 86 74 104               

28 Start Day 
No Spring Break-up Data 

Manistee Duration 
29 Start Day 67 76 78 71 68             

Marquette Duration 47 63 66 57 61               

30 Start Day 60 70 71 68 66             

Menominee Duration 43 48 50 53 49               

31 Start Day 64 65 72 71 65             

Missaukee Duration 15 35 38 22 30               

32 Start Day 57 65 77 60 60             

Montmorency Duration 32 54 33 30 36               

33 Start Day 67 64 77 66 67 68 61 76 49  

Ogemaw Duration 29 51 40 41 34 41 50 39 59   

34/35 Start Day 67 70 77 71 72             

Oscoda Duration 32 48 43 45 32               

36/37 Start Day 62 68 72 68 68 73 61 76 53  

Otsego Duration 27 44 48 26 35 31 45 22 60   

38/39 Start Day 64 68 77 69 66 73 59 73 75  

Presque Isle Duration 32 47 40 41 42 36 45 40 39   

40 Start Day 64 68 77 68 67             

Roscommon Duration 25 38 32 39 29               

41/42 Start Day 57 77 77 72 67             

Schoolcraft Duration 62 62 78 49 57               

43 Start Day 64 68 73 72 72             

Wexford Duration 25 38 36 25 22               
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Appendix B:  Mathematica Code for Simulation Results vs. Historical 

Data  

(1) For creating the comparison graph of start day: 

data=RandomReal[NormalDistribution[522626,161887],1000]; 

data1=data^(1/3.12); 

(*historical data*) 

data2={62,68,77,71,68,73,61,74,52,67}; 

Histogram[{data1,data2},{45,85,5},"Probability",AxesLabel ->{Data,Density}, 
ChartStyle->{Blue,White}, ChartLegends->{"simulated data","County Alcona"}, 
PlotLabel->"Start Day"] 

Mean[data1] //N 

StandardDeviation[data1]  //N 

Mean[data2]   //N 

StandardDeviation[data2]  //N 

 

(2) For creating the comparison graph of end day:  

data=RandomReal[NormalDistribution[394385000000000, 94726000000000],1000]; 

data1=Exp[data^(1/21.65)]; 

data2={97,117,119,115,107,109,110,118,114,113}; 

Histogram[{data1,data2},{85,130,5},"Probability",AxesLabel->{Data,Density}, 
ChartStyle->{Blue,White}, ChartLegends->{"simulated data","County Alcona"}, 
PlotLabel->"End Day"] 

Mean[data1] //N 

StandardDeviation[data1]  //N 

Mean[data2]   //N 

StandardDeviation[data2]  //N (*historical data*) 
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Appendix C: Transformations and simple linear regression 

relationships  

Table C.1 

Results of the Box-Cox transformation for spring break-up timing include transformation 

parameter and distribution after transformation. 

Are
a # 

County 
Name, (Y) 

Start Day End Day 

λ Distribution after 
transformation

λ Distribution after 
transformation

1 Alcona  3.12 Norm(522626, 161887) 1 
Ln(Y)21.65 ~ 

Norm(3.94385E14, 
9.4726E13)

2/3/
4 Alger -5.00 Norm(5.35011E-10, 

1.52333E-10)
0.00 Norm(4.80472, 

0.0725125)

5/6 Alpena 0.47 Norm(7.49173, 
0.204328)

5.00 Norm(1.56251E10, 
3.04358E9)

7 Antrim  0.90 Norm(43.1245, 
4.33934)

2.41 Norm(66935.2, 12984.1) 

8 Benzie  5.00 Norm(1.60763E9, 
4.1976E8)

-0.71 Norm(0.0403566, 
0.00262747)

9 Charlevoix 5.00 Norm(1.16255E9, 
4.26811E8)

0.47 Norm(8.96747, 
0.333643)

10 Cheboygan  -5.00 Norm(5.84371E-10, 
1.58528E-10)

3.09 Norm(1.8157E6, 387581)

11/1
2 Chippewa -3.71 Norm(1.31282E-7, 

3.01057E-8)
3.44 Norm(1.43249E7, 

4.41341E6)
13/1

4 Crawford -5.00 Norm(6.53599E-10, 
2.48784E-10)

4.70 Norm(2.88462E9, 
9.52551E8)

15/1
6 Delta 1.00 Norm(67.8, 3.76773) -0.37 Norm(0.168758, 

0.00427354)

17 Emmet -5.00 Norm(1.05413E-9, 
2.26955E-10)

0.96 Norm(87.1476, 9.27338) 

18 Grand 
Traverse -3.10 Norm(2.13975E-6, 

4.62184E-7)
0.68 Norm(22.5978, 1.32135) 

19 Iosco  -5.00 Norm(5.98306E-10, 
1.42101E-10)

2.00 Norm(9724.54, 1697.01) 

20/2
1 Kalkaska -5.00 Norm(6.67038E-10, 

2.10725E-10)
5.00 Norm(1.4047E10, 

4.33679E9)

22 Leelanau assume same as Antrim County's(2) 
23/2

4  Luce 0.39 Norm(5.32741, 
0.126309)

-2.02 Norm(4.99521E-5, 
1.08714E-5)

25/2
6/27 Mackinac -1.95 Norm(0.000239581

, 2.55535E-5)
1.11 Norm(246.572, 

45.3304)
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Table C.1 (Continued) 

Are
a # 

County 
Name, (Y) 

Start Day End Day 

λ Distribution after 
transformation

λ Distribution after 
transformation

28 Manistee  assume  same as Wexford County's(2) 

29 Marquette -5.00 Norm(5.44694E-10, 
1.63064E-10)

-0.38 Norm(0.157652, 
0.00480212)

30 Menominee 4.70 Norm(3.93222E8, 
9.31917E7)

5.00 Norm(2.03972E10, 
4.31548E9)

31 Missaukee -5.00 Norm(7.4522E-10, 
1.68338E-10)

-1.12 Norm(0.00622604, 
0.000802048)

32 Montmoren
cy 1.00 Norm(63.8, 7.91833) -2.79 Norm(2.83177E-6, 

9.37396E-7)
33 Ogemaw 0.00 Norm(4.18385, 0.131) 3.24 Norm(3.8991E6, 736502) 

34/3
5 Oscoda  -5.00 Norm(5.55235E-10, 

1.31533E-10)
3.23 Norm(4050350, 940177) 

36/3
7 Otsego 0.31 Norm(3.67408, 

0.124475)
0.23 Norm(2.9038, 0.0635796) 

38/3
9 

Presque 
Isle 3.30 Norm(1.21618E6, 

318317)
5.00 Norm(1.55268E10, 

3.41793E9)

40 Roscommo
n -5.00 Norm(6.83403E-10, 

2.02085E-10)
4.03 Norm(1.207E8, 

3.35034E7)
41/4

2 Schoolcraft  3.59 Norm(4.42099E6, 
1.38272E6)

-5.00 Norm(3.01889E-11, 
1.38117E-11)

43 Wexford 5.00 Norm(1.69412E9, 
2.52101E8)

-3.08 Norm(7.6328E-7, 
1.77104E-7)

44 area 1>150 
miles assume same as Marquette County (2) 

45 area 2>150 
miles assume same as Marquette County (2) 

46 area 3>150 
miles assume same as Marquette County (2) 
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Table C.2 

Relationships for transformed start day of spring break-up are developed by simple linear 
regression. 

 Harvesting 
Area # 

County Name 
(Y) 

Based on 
(X) 

Omitted 
Year/Yea

rs 

Corr
. 

Coef
. 

Equation 

1 Alcona  from Alcona County's Spring Break-up Model 
2/3/4 Alger Chippewa   0.99 y = 0.0051x - 1E-10 

5/6 Alpena Alcona 2002(1) 0.61 y = 1E-06x + 
6.8322

7 Antrim  Alcona   0.93 y = 2E-05x + 
34.138

8 Benzie  Alcona 2002(1) 0.88 y = 2712.2x + 
4E+07

9 Charlevoix Montmorenc
y

  0.82 y = 4E+07x - 
2E+09 

10 Cheboygan  Presque Isle   -0.91 y = -5E-16x + 1E-
09 

11/12 Chippewa Presque Isle   -0.81 y = -9E-14x + 2E-
07 

13/14 Crawford Alcona   -0.53 y = -1E-15x + 1E-
09 

15/16 Delta Chippewa   -0.90 y = -1E+08x + 
86.107 

17 Emmet Montmorenc
y

  -0.85 y = -4E-11x + 3E-
09 

18 Grand Traverse Alcona   -0.67 y = -2E-12x + 3E-
06

19 Iosco  Alcona   -0.98 y = -1E-15x + 1E-
09 

20/21 Kalkaska Alcona   -0.73 
y = -1E-15x + 1E-

09 

22 Leelanau assume the same start day as Antrim County's(2) 

23/24  Luce Chippewa   -0.99 y = -4E+06x + 
5.8861 

25/26/27 Mackinac Chippewa   0.99 y = 874.31x + 
0.0001 

28 Manistee  assume  the same start day as Wexford County's(2) 

29 Marquette Chippewa   1.00 y = 0.0054x - 2E-10 

30 Menominee Chippewa   -0.94 y = -3E+15x + 
8E+08 

31 Missaukee Alcona   -0.89 y = -1E-15x + 1E-
09 

32 Montmorency Alcona   0.88 y = 5E-05x + 
35.489 

33 Ogemaw Alcona   0.90 y = 7E-07x + 
3.8213 
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Table C.2 (Continued) 
Harvesting Area 

# 
County Name 

(Y)
Based on 

(X)
Omitted 

Year/Years
Corr. 
Coef. Equation 

34/35 Oscoda  Alcona   -0.95 y = -9E-16x + 1E-
09 

36/37 Otsego Alcona   0.95 y = 7E-07x + 
3.3132 

38/39 Presque Isle Alcona 2002(1) 0.97 y = 2.2132x - 69902 

40 Roscommon Alcona   -0.98 y = -1E-15x + 1E-
09 

41/42 Schoolcraft  Chippewa   -0.96 y = -5E+13x + 
1E+07 

43 Wexford Alcona   0.83 y = 2521.9x + 
3E+08 

44 area 1>150 miles assume the same start day as Marquette County(2) 

45 area 2>150 miles assume the same start day as Marquette County(2) 

46 area 3>150 miles assume the same start day as Marquette County(2) 
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Table C.3 

Relationships for transformed end day of spring break-up are developed by simple linear 
regression. 

Harvestin
g Area # 

County Name 
(Y) 

Based on 
(X) Corr. Coef. Equation 

1 Alcona  from Alcona County's Spring Break-up Model 
2/3/4 Alger Chippewa 0.87 y = 1E-08x + 4.5982 

5/6 Alpena Alcona 0.97 y = 4E-05x + 1E+09 
7 Antrim  Cheboygan 0.88 y = 0.0324x + 7983.9 
8 Benzie  Alcona -0.75 y = -2E-17x + 0.0484 
9 Charlevoix Alcona 0.85 y = 3E-15x + 7.9606 

10 Cheboygan  Alcona 0.96 y = 3E-09x + 483639 

11/12 Chippewa Cheboygan 0.94 y = 9.9172x - 4E+06 

13/14 Crawford Alcona 0.94 y = 8E-06x - 3E+08 

15/16 Delta Chippewa -0.68 y = -7E-10x + 0.1784 

17 Emmet Alcona 0.83 y = 7E-14x + 62.193 

18 Grand Traverse Alcona 0.69 y = 1E-14x + 18.906 

19 Iosco  Alcona 0.98 y = 2E-11x + 4743.6 

20/21 Kalkaska Alcona 0.96 y = 4E-05x - 1E+09 

22 Leelanau assume  the same end day as Antrim County's(2) 

23/24  Luce Chippewa -0.63 y = -2E-12x + 8E-05 

25/26/27 Mackinac Chippewa 0.70 y = 8E-06x + 135.4 

28 Manistee  assume the same end day as Wexford County's(2) 

29 Marquette Chippewa -0.93 y = -1E-09x + 0.1726 

30 Menominee Chippewa 0.80 y = 941.74x + 7E+09 

31 Missaukee Alcona -0.91 y = -6E-18x + 0.0086 

32 Montmorency Alcona -0.71 y = -5E-21x + 5E-06 

33 Ogemaw Alcona 0.90 y = 7E-09x + 1E+06 

34/35 Oscoda  Alcona 0.99 y = 8E-09x + 949364 

36/37 Otsego Alcona 0.59 y = 4E-16x + 2.7559 

38/39 Presque Isle Alcona 0.92 y = 4E-05x + 7E+08 

40 Roscommon Alcona 0.98 y = 3E-07x + 9E+06 

41/42 Schoolcraft  Chippewa -0.75 y = -2E-18x + 6E-11 

43 Wexford Alcona -0.96 y = -1E-21x + 1E-06 

44 area 1>150 miles assume  the same end day as Marquette County's (2) 

45 area 2>150 miles assume  the same end day as Marquette County's (2) 

46 area 3>150 miles assume the same end day as Marquette County's (2) 
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(1). Year 2002 is omitted for Alpena County, because the outlying observation from year 

2002 (523.12, 370.47) appears to deviate from other points markedly, R2 increases from 

0.053 to 0.372 without the outlier. 

 

 

Figure C.1. Relationship between transformed start days of Alpena County and Alcona 

County 

 

Similarly, year 2002 is omitted for Presque Isle County as well, because the outlying 

observation from year 2002 (523.12, 753.3) appears to deviate from other points markedly. 

Without the outlier, R2 increases from 0.1854 to 0.9506, which indicates highly 

correlated relationship. 
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Figure C.2. Relationship between transformed start days of Presque Isle County and 
Alcona County 

 
Again, year 2002 is omitted for Benzie County because the outlying observation from 

year 2002 (523.12, 725) appears to deviate from other points markedly. Without the outlier, 

R2 increases from 0.1947 to 0.7665. 

 

 

Figure C.3. Relationship between transformed start days of Benzie County and Alcona 
County 
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(2). The start day and end day of spring break-up of Leelanau County is assumed to be  

the same as the Antrim County's, due to a lack of historical data for Leelanau County. As 

stated in Chapter 3, the timing of spring break-up is partly determined by the weather 

conditions, and Leelanau County has very similar weather to Antrim County because of 

their close geographic location, as shown in Figure C.3. Leelanau County is adjacent to 

Antrim County to the west. 

Similarly, the spring break-up of Manistee County is assumed to be started on the same 

day and ended on the same day with Wexford County due to a lack of historical data for 

Manistee County. Manistee County is adjacent to Wexford County to the west as shown 

in Figure C.3. 

 

Figure C.4. Map of Leelanau County, Antrim County, Manistee County and Wexford 
County 
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Harvesting areas 44 to 46 are assumed to have the same spring breakup timing as 

Marquette County because we do not know the exact locations of these three harvesting 

areas. These three areas may be specified by the user for harvests beyond the 150-mile 

radius haul zone in the Michigan’s Upper Peninsula in the Arena simulation model. 
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Appendix D: Mathematica Code used to obtain RMA regression 

equation 

(1) The RMA regression calculation procedure is as follows,  using the transformed start 

days of Alcona County and Antrim County as an example: 

Table D.1 

Sums of squares and other quantities for transformed start days of Alcona 
County and Antrim County are listed. 

  
Alcona County, X
   

Antrim County, Y 
 

Sum ∑X= 4728120 ∑Y = 388  

Mean = 525346.71 = 43.12 
Variance of the 
sample mean  = 29400019704  = 18.83 

Standard error 
of the mean 

SX= 171464.34 SY= 4.34 

Sum of squares SSX = 235200157635 SSY = 150.64 

Covariance  COVXY= 694979.59   

Sum of products  SPXY= 5559836.70 

Correlation coefficient

 
γ= 0.9340598   

   
 

*   Sum: ∑X=X1+...+Xi+...+Xn, for i=1, 2, ..., n. 

     Mean: ∑X/n, where n is the sample size. 

Variance of the sample mean: 
∑

, which can be regarded as the average squared 

deviation of all possible observations from the sample mean. 

Standard error of the mean: , which provides a statistic that describes dispersion or 
spread of data around the sample mean. 

Sum of squares: ∑ ∑
, which is a generated intermediate quantity, for 

example the variance can be found by division by (n-1) :  . 

Sum of products: ∑ ∑ ∑
, which is generated in order to calculate 

covariance. 
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Covariance: , which is a joint variation of two variables about their common 

mean. 

Correlation coefficient: 
 

    , which is a dimensionless measure 

method of two variables to estimate the degree of interrelation between these two variables. 
(43) 

 

For Y on X regression (simple linear regression) line, Y=α2X+β2  is obtained by α2=SPxY/ 

SSX = 5559836.70/235200157635=2.364E-5, and β2=   = 30.706, which are the 

same parameters from section 4.4.1. 

For X on Y regression (inverse linear regression) line, X=α1Y+β1  is obtained by 

α1=SPxY/ SSY = 5559836.70/150.64=36908.378, and β1=   = -1066309.186. 

For RMA regression line, α0=SY/ SX =4.34/171464.34=2.53075E-5, and β0=  

=29.8293 , then Y=0.0000253075*X+29.8293.   

 

(2) To get the RMA regression parameters using Mathematica 8 (α and β are the slope 

and intercept, respectively.): 

x:= Data required here; for example, 
x:={912838.427458795,1115011.66764939,1680426.00244157,1170043.47613226,1010
403.83818223};  for the transformed spring break-up start day of the Alcona County's; 

y:= Data required here;  
n:=5; (*size of the sample*)  
xsum:=Total[x/.{x_,_}->x] 
ysum:=Total[y/.{y_,_}->y] 
xmean:=Mean[x] 
ymean:=Mean[y] 
xvar:=Variance[x] 
yvar:=Variance[y] 
xs:=StandardDeviation[x] 
ys:=StandardDeviation[y] 
spxy:=Total[x*y/.{x_,_}->x]-xsum*ysum/n 
gamma:=Correlation[x, y]  
α0:=(ys/xs)*If[gamma>0,1,-1] 
β0:=ymean- α0*xmean 
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xmean //N 
ymean//N 
ys //N 
xs //N 
β0//N      (*intercept*) 
α0//N      (*slope *) 
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Appendix E: Transformations and RMA regression relationships 

Table E.1 

Relationships for transformed start days of spring breakup are developed by RMA. 

Harvesting 
Area # 

County Name 
(Y) Lambda Based on (X)

Omitted 
Year/Years

Corr. 
Coef. Slope Intercept

1 Alcona  3.12 from Alcona County's Spring Break-up Model 
2/3/4 Alger -5.00 Chippewa   0.99 5.17E-03 ‐1.44E‐10

5/6 Alpena 0.47 Alcona 2002 0.61 1.84E-06 6.4274

7 Antrim  0.90 Alcona   0.93 2.53E-05 2.98E+01

8 Benzie  5.00 Alcona 2002 0.88 3097.8255‐1.77E+08

9 Charlevoix 5.00 Montmorency   0.82 5.39E+07 ‐2.28E+09

10 Cheboygan  -5.00 Presque Isle   -0.91 -5.32E-16 1.21E‐09

11/12 Chippewa -3.71 Presque Isle   -0.81 -1.07E-13 2.57E‐07

13/14 Crawford -5.00 Alcona   -0.53 -1.80E-15 1.66E‐09

15/16 Delta 1.00 Chippewa   -0.90 -1.54E+08 88.0324

17 Emmet -5.00 Montmorency   -0.85 -4.28E-11 3.74E‐09

18 Grand Traverse -3.10 Alcona   -0.67 -3.28E-12 3.93E‐06

19 Iosco  -5.00 Alcona   -0.98 -1.05E-15 1.19E‐09

20/21 Kalkaska -5.00 Alcona   -0.73 -1.52E-15 1.52E‐09

22 Leelanau assume  the same start day as Antrim County's 

23/24  Luce 0.39 Chippewa   -0.99 -4.29E+06 5.89E+00

25/26/27 Mackinac -1.95 Chippewa   0.99 879.3394  1.24E-04

28 Manistee  assume  the same start day as Wexford County's 

29 Marquette -5.00 Chippewa   1.00 5.45E-03 -1.70E-10

30 Menominee 4.70 Chippewa   -0.94 -3.39E+15 8.38E+08

31 Missaukee -5.00 Alcona   -0.89 -1.40E-15 1.53E-09

32 Montmorency 1.00 Alcona   0.88 5.73E-05 31.7234

33 Ogemaw 0.00 Alcona   0.90 7.73E-07 3.7777

34/35 Oscoda  -5.00 Alcona   -0.95 -9.70E-16 1.10E-09

36/37 Otsego 0.31 Alcona   0.95 7.26E-07 3.2927

38/39 Presque Isle 3.30 Alcona 2002 0.97 2.2700  -1.02E+05

40 Roscommon -5.00 Alcona   -0.98 -1.46E-15 1.50E-09

41/42 Schoolcraft  3.59 Chippewa   -0.96 -5.21E+13 1.13E+07

43 Wexford 5.00 Alcona   0.83 3.03E+03 -3.09E+06

44 area 1>150 miles assume  the same start day as Marquette County's 

45 area 2>150 miles assume  the same start day as Marquette County's 

46 area 3>150 miles assume  the same start day as Marquette County's 
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Table E.2 

Relationships for transformed end day of spring breakup are developed by RMA. 

Harvesting 
Area # 

County Name 
(Y) Lambda

Based on 
(X) 

Corr. 
Coef. Slope Intercept 

1 Alcona  4.45 from Alcona County's Spring Break-up Model 
2/3/4 Alger 0.00 Chippewa 0.86 1.65E-08 4.5677 

5/6 Alpena 5.00 Alcona 0.97 3.75E-05 8.69E+08 

7 Antrim  2.41 Cheboygan 0.88 3.67E-02 2.55E+02 

8 Benzie  -0.71 Alcona -0.75 -2.72E-17 5.11E-02 

9 Charlevoix 0.47 Alcona 0.85 3.06E-15 7.79E+00 

10 Cheboygan  3.09 Alcona 0.96 3.59E-09 4.28E+05 

11/12 Chippewa 3.44 Cheboygan 0.94 1.06E+01 -4.83E+06 

13/14 Crawford 4.70 Alcona 0.94 8.81E-06 -5.17E+08 

15/16 Delta -0.37 Chippewa -0.68 -9.96E-10 1.83E-01 

17 Emmet 0.96 Alcona 0.83 7.97E-14 5.70E+01 

18 Grand Traverse 0.68 Alcona 0.69 1.43E-14 1.72E+01 

19 Iosco  2.00 Alcona 0.98 1.63E-11 4.59E+03 

20/21 Kalkaska 5.00 Alcona 0.96 4.13E-05 -1.89E+09 

22 Leelanau assume  the same end day as Antrim County's 

23/24  Luce -2.02 Chippewa -0.63 -2.79E-12 9.00E-05 

25/26/27 Mackinac 1.11 Chippewa 0.70 1.10E-05 88.3276 

28 Manistee  assume the same end day as Wexford County's 

29 Marquette -0.38 Chippewa -0.93 -1.12E-09 0.1738 

30 Menominee 5.00 Chippewa 0.80 1176.4351 3.54E+09 

31 Missaukee -1.12 Alcona -0.91 -6.81E-18 8.86E-03 

32 Montmorency -2.79 Alcona -0.71 -7.29E-21 5.65E-06 

33 Ogemaw 3.24 Alcona 0.90 7.64E-09 8.95E+05 

34/35 Oscoda  3.23 Alcona 0.99 8.14E-09 9.06E+05 

36/37 Otsego 0.23 Alcona 0.59 6.33E-16 2.65E+00 

38/39 Presque Isle 5.00 Alcona 0.92 4.10E-05 -6.14E+08 

40 Roscommon 4.03 Alcona 0.98 2.94E-07 7.14E+06 

41/42 Schoolcraft  -5.00 Chippewa -0.75 -2.83E-18 7.08E-11 

43 Wexford -3.08 Alcona -0.96 -1.53E-21 1.36E-06 

44 area 1>150 miles assume  the same end day as Marquette County's 

45 area 2>150 miles assume the same end day as Marquette County's 

46 area 3>150 miles assume  the same end day as Marquette County's 
 


	Analysis of spring break-up and its effects on a biomass feedstock supply chain in northern Michigan
	Recommended Citation

	TABLE OF CONTENTS
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter 1. Introduction
	1.1. Background
	1.2. Objectives and Significance

	Chapter 2. Background: Project Introduction
	2.1. CoEE Project Overview
	2.2. CoEE Optimization Model
	2.3. CoEE Simulation Model

	Chapter 3. Spring Break-up Data
	3.1. Introduction
	3.2. Data Sources
	3.3. Factors Affecting Spring Break-up

	Chapter 4. Spring Break-up Model
	4.1. Introduction
	4.2. Preliminary Data Analysis
	4.3. Methodology
	4.4. Model for Alcona County
	4.5. Spatial Correlation
	4.5.1. Simple Linear Regression
	4.5.2. Reduced Major Axis Regression (RMA)


	Chapter 5. Simulation Results
	5.1. Verification of Spring Break-up Model
	5.2. Uncertainty Effects on Supply Chain Simulations
	5.3. Impact of Rail Use and Rail Yard Storage
	5.4. Variability in Simulation Results

	Chapter 6. Conclusion and Future Work
	6.1. Conclusion
	6.2. Recommendations for Future Work

	References
	Appendix
	Appendix A: Historical Spring Break-up Data
	Appendix B: Mathematica Code for Simulation Results vs. HistoricalData
	Appendix C: Transformations and simple linear regressionrelationships
	Appendix D: Mathematica Code used to obtain RMA regressionequation
	Appendix E: Transformations and RMA regression relationships


