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Preface

This thesis describes research I performed while at Michigan Tech University and

Lawrence Livermore National Laboratory, from January 2009 to January 2011. As an in-

cremental step in progress for this work, a conference paper was published through the

IEEE International Symposium on Power Line Communications and its Applications (IS-

PLC) annual conference in March of 2010. This paper [1] is included in Appendix B and

was co-authored by myself, Bruce Mork (Michigan Tech University), Barry Kirkendall

(Lawrence Livermore National Laboratory), and Bob Nelson (University of Wisconsin-

Stout). In creation of the conference paper, Barry and Bob provided much of the back-

ground and results for transmission line electromagnetics, Bruce provided essential con-

tributions in EMTP modeling theory, and I performed transmission line modeling, simula-

tions, and data integration. The paper represents a collaborative effort of the authors, and is

described in detail throughout this thesis. Any work herein that I cannot claim as my own

is expressly noted as such.
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Abstract

Prediction of radiated fields from transmission lines has not previously been stud-

ied from a panoptical power system perspective. The application of BPL technologies to

overhead transmission lines would benefit greatly from an ability to simulate real power

system environments, not limited to the transmission lines themselves. Presently circuit-

based transmission line models used by EMTP-type programs utilize Carson’s formula for

a waveguide parallel to an interface. This formula is not valid for calculations at high

frequencies, considering effects of earth return currents.

This thesis explains the challenges of developing such improved models, explores

an approach to combining circuit-based and electromagnetics modeling to predict radi-

ated fields from transmission lines, exposes inadequacies of simulation tools, and suggests

methods of extending the validity of transmission line models into very high frequency

ranges. Electromagnetics programs are commonly used to study radiated fields from trans-

mission lines. However, an approach is proposed here which is also able to incorporate the

components of a power system through the combined use of EMTP-type models. Carson’s

formulas address the series impedance of electrical conductors above and parallel to the

earth. These equations have been analyzed to show their inherent assumptions and what

the implications are. Additionally, the lack of validity into higher frequencies has been

demonstrated, showing the need to replace Carson’s formulas for these types of studies.

This body of work leads to several conclusions about the relatively new study of

BPL. Foremost, there is a gap in modeling capabilities which has been bridged through

integration of circuit-based and electromagnetics modeling, allowing more realistic predic-

tion of BPL performance and radiated fields. The proposed approach is limited in its scope

of validity due to the formulas used by EMTP-type software. To extend the range of va-

lidity, a new set of equations must be identified and implemented in the approach. Several

potential methods of implementation have been explored. Though an appropriate set of

equations has not yet been identified, further research in this area will benefit from a clear

depiction of the next important steps and how they can be accomplished.

xii



Chapter 1

Introduction

Overhead line (OHL) modeling of high-voltage power lines has been well-developed

for many years. Modeling for this purpose is often done using phasor domain analysis with

studies also performed in the time domain from power frequencies up to transients of 1-2

MHz. A globally used software for such studies is the Electromagnetics Transients Pro-

gram (EMTP), which has a non-commercial version, The Alternative Transients Program

(ATP)1, that is widely used in research. Which line model is selected for an application

is largely dependent on the type of study being performed, as various assumptions may

be made for computational efficiency and ease of implementation. Assumptions limit the

accuracy of mathematical formulations outside the scope for which they are derived. Exper-

imental work with ATP OHL modeling has exposed potential inaccuracies of the models.

An initial hypothesis has been that earth (grounding) assumptions of formulas used in ATP

are not valid when dealing with higher frequencies (on the order of 10’s of MHz), but that

these same formulas are valid at lower frequencies.

ATP has been used to study the performance of Power Line Carriers (PLC), which is

a communication system operating in the 30-450 kHz range [2]. Analysis of power system

interactions and behavior has been a continuously evolving field. Advanced simulation

tools allow increasingly complex studies to be performed. However, not much progress

has been made in modeling the behavior of the relatively new Broadband over Power Lines

1ATP is the royalty-free version of EMTP. ATP and EMTP are probably the most widely-used Power Sys-

tem Transients simulation programs in the world today. The EMTP users group website is hosted at

www.emtp.org.
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(BPL) systems and their interactions with the transmission grid and outside world. BPL

communication spans signal frequencies from 2-80 MHz, which are five to six orders of

magnitude higher than the power system frequency. Mathematical models for overhead

lines do not generally extend to these frequency ranges without violating assumptions used.

Accurate simulation of high-frequency OHL behavior is a highly desired ability of ATP,

and future work is dependent on such an advancement. Propagation modeling at BPL

frequencies is largely unexplored territory for ATP.

Models used in the realm of radio science and electromagnetics are much more

complete than those used in power systems studies. Full (complete) mathematical models

can be derived for power lines (above or below ground) which are valid and accurate well

beyond the frequency ranges of BPL. These models, however, are not useful in power

system software packages due to programming complexity and inefficiency of simulation.

Conversely, electromagnetics software is unsuited to include power system components

such as transformers and power electronics devices. In essence, software used for power

systems and software used for electromagnetics have separate capabilities which do not

overlap enough to make either one useful for realistic BPL studies that include the entirety

of power system behaviors and high-frequency interactions.

This thesis explores a method of combining traditional equivalent circuit-based

power systems modeling and electromagnetics modeling in order to more realistically study

BPL and to reconcile the differences in wave propagation modeling. The work is organized

into 7 chapters.

Chapter 2 provides a comprehensive background of OHL modeling, OHL waveg-

uides for communications, and research accomplishments and deficiencies. This prepares

the essential details needed for Chapter 3, which introduces a novel approach to predic-

tion of radiated fields in a power system by combining circuit-based and electromagnetics

modeling techniques. This approach was introduced through the IEEE ISPLC 2010 con-

2



ference, though there are distinct limitations and issues of validity due to assumptions built

into the mathematical models used. The remainder of the paper is organized to deal with

these issues.

In Chapter 4 the integration of circuit-based and electromagnetics models is ex-

plored in detail along with a thorough investigation of the standard transmission line for-

mulas and limitations thereof. The work exposes an apparent need for new formulas which

circumvent the assumptions built into those currently used. This is necessary in order to

extend validity of the proposed method across the BPL frequency range. Chapter 5 explains

implementation details for the resolutions of Chapter 4, and Chapter 6 reviews the results.

Finally, Chapter 7 ties together the conclusions and future recommendations.

3



Chapter 2

Summary of Existing Work

2.1 HF Communication and Transmission Lines

Use of overhead lines as communications channels has been studied by researchers

and utility firms for several decades. Though telephone lines and cable TV networks al-

ready provide high-speed multimedia services, there are limitations of service areas for

users to connect to these networks. Highly developed countries typically have these data

communication services widespread and available. However, less developed countries have

far less availability of cable TV or telephone networks despite having electric power ser-

vice. Power line communication (PLC) is a system of using existing power line infrastruc-

ture to transmit information over its lines.

In 1997 the IEEE held its first conference associated with the use of electric dis-

tribution lines as communications channels - the International Symposium on Power Line

Communications and its Applications (ISPLC). Researchers in academia, industry pro-

fessionals, and regulators attend the annual ISPLC to disseminate research in areas such

as channel characterization, electromagnetic compatibility (EMC), smart grids, broadband

applications, and business prospectives. The results become more promising each year,

and recent research has even begun to address BPL issues. Using overhead lines for BPL

purposes introduces a much greater need for very accurate predictive modeling techniques,

and a need for understanding of waveguides and antenna theory.

4



2.2 Transmission Lines as Waveguides

When operated at very high frequencies, an overhead line behaves as a large, trav-

eling wave antenna with a directional radiation pattern [3]. The electrical nature of trans-

mission lines can typically be captured with circuit-based models, however, the use of

electromagnetic models becomes necessary when the transmission line is used as a waveg-

uide. Waveguides and modes of propagation are critical to understand in order to be able

to model transmission lines as waveguiding structures.

2.2.1 Equivalent Circuit Based Modeling of Transmission Lines

As described in Chapter 1, the well known EMTP-type software ATP has extensive

features for modeling realistic power systems. ATP simulation tools have been successfully

applied by many researchers to determine PLC performance of transmission networks [1, 4,

5]. Development of presently used distributed-parameter transient transmission line models

for these cases are based on the phasor-domain “traveling wave model” or “telegrapher’s

model” presented in many textbooks [6]. The representation for a single-conductor case is

shown in Figure 2.1. Note that distance x is measured from the receiving end toward the

sending end.

For a general multiple-conductor case, the well-known equations are

− δV

δx
= [Z] I and − δ I

δx
= [Y ]V , (2.1)

where V and I are the vectors of node voltages and line currents at a distance x from the

receiving end of the multiple conductor transmission line. Z is the matrix of coupled series

impedances of the conductors for an incremental length, and Y is the matrix of coupled

shunt admittances for that same length. More details of the solution are highlighted by
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Figure 2.1: Telegrapher’s Model

Greenwood [6] and several authors of IEEE publications [7, 8, 9, 10, 11]. The equations

from 2.2.1 can be combined to form

δ 2V

δx2
= [Z] [Y ]V and

δ 2I

δx2
= [Y ] [Z] I , (2.2)

where

Zi j = Ri j +Li j
δ

δ t
and Yi j = Gi j +Ci j

δ

δ t
. (2.3)

Each diagonal element Zii represents the series self impedance per unit length of the loop

formed by conductor i and the ground return and each off-diagonal element Zi j represents

the series mutual impedance per unit length between conductors i and j. The same follows

for the admittance elements of [Y ]. Three-phase lines have significant electromagnetic cou-

pling between conductors. By means of a modal transformation, the coupled voltages and

currents may be decoupled into a new set of modal voltages and currents, each of which

can be treated independently in a similar manner to the single-phase line. It would be

quite advantageous to diagonalize [Z] and [Y ], however, continuous transposition must be

assumed in order to completely decouple via modal transformation. A general method of

modal transformation can be used to transform the phase-domain equations into a set of
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decoupled modal-domain equations which can simplify the mathematics for model imple-

mentation:

V = [Tv]Vm and I = [Ti] Im (2.4)

where Vm and Im are modal voltages and currents, and [Tv] and [Ti] are the voltage and cur-

rent transformation matrices which are also used to transform Z and Y into their decoupled

modal forms Zm and Ym.

− δVm

δx
= [Tv]

−1 [Z] [Ti] Im = [Zm] Im (2.5)

−δ Im

δx
= [Ti]

−1 [Y ] [Tv]Vm = [Ym]Vm (2.6)

ATP utilizes Karrenbauer’s Transformation, which is easily expanded to an arbitrary

number of phases:

T =

















1 · · · · · · 1

... 1−M
. . .

...

...
. . .

. . . 1

1 · · · 1 1−M

















, (2.7)

where M is the number of phases. The inverse transformation is of the form

T−1 =
1

M

















1 · · · · · · 1

... −1 0 0

... 0
. . . 0

1 0 0 −1

















. (2.8)

The physical representation of this for a 3-phase set of conductors is given by Figures 2.2,

2.3, and 2.4.

Convolution methods may then be used to convert the frequency-domain solution

to a time-domain equivalent that can be implemented in time-domain simulation programs
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Figure 2.2: Mode Zero

Figure 2.3: Mode One

Figure 2.4: Mode Two

like EMTP. Limitations and errors in this approach are due to the fact that the solution

is only valid for the frequency that the model was developed for [7, 8]. Improvements

have been made by applying frequency-dependent weighting functions to the convolution

[9, 10], by developing improved frequency fitting techniques [10], and by implementing the

model directly in the phase domain and thus avoiding modal transformations [11]. More

recent advancements include improved frequency fitting techniques [12]. In any case, it

is desirable to confirm that the line model being implemented is valid within the range of

frequencies to be simulated. The Foster equivalent shown in Figure 2.5 is the basis for

the frequency-dependent Z. Figure 2.6 shows the basic representation of each end of the

multi-phase Marti model [10]. Behaviors at one end manifest themselves at the other end

after the appropriate propagation time delay.
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Figure 2.5: Foster-Equivalent for frequency-dependent Zc.

2.2.2 Waveguides and Transmission Line Waveguide Modes

A waveguide is a physical structure designed to transmit electromagnetic energy

from one point to another. Some typical waveguide structures include coaxial cables, mi-

crostrip lines, rectangular waveguides, dielectric waveguides, optical fibers, and two-wire

lines. In general, there are many different electromagnetic waves that can exist indepen-

dently in a waveguide. More generally, for any electromagnetic boundary-value problem,

many field configurations that satisfy the wave equations, Maxwell’s equations, and the

boundary conditions usually exist [13]. These different field configurations (solutions) are

usually referred to as “modes.”

Modes in an enclosed waveguide are either propagating or evanescent. A waveguide

conductor of perfect conductivity would allow propagating modes to carry energy without

Figure 2.6: Time-domain equivalent impedance network of J. Marti
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attenuation. Evanescent modes attenuate exponentially and do not carry energy along the

waveguide. A mode can switch from evanescent to propagating as the signal frequency

increases to the cutoff frequency. The cutoff frequency depends on waveguide geometry

and electrical characteristics. For propagating modes in realistic conductors, attenuation

will exist due to the non-perfect conductivity of the waveguide.

The TEM (Transverse Electromagnetic) mode has the lowest modal cutoff fre-

quency. This mode is “one whose field intensities, both E (electric) and H (magnetic),

at every point in space are contained in a local plane, referred to as equiphase plane, that

is independent of time” [13]. Simply put, the E and H fields are perpendicular (transverse)

to the direction of propagation. The cutoff frequency for a TEM mode is effectively zero.

The TEM mode can be present for conditions where a waveguide is formed by two or more

structures that are 1) unconnected, 2) perfectly conducting, 3) parallel, and 4) in a homoge-

nous, lossless medium. Many waveguides support what is known as a “quasi-TEM” mode

(nearly a TEM mode) because the conductors and dielectrics are never perfect in reality,

nor is the medium completely homogenous. Because transmission lines are typically oper-

ated at low frequencies, the TEM or quasi-TEM modes are the only significant modes of

propagation.

2.3 Research Methods

Over the past several decades, electrical utilities have shown interest in using their

already existing transmission or distribution infrastructures as a communications system.

This could potentially enable these companies to compete with broadband communications

companies, or at least to use the infrastructure for closed communications to operate the

grid. This offers a potential solution to the “last mile” access of broadband services to

isolated zones and internal networking of buildings. Several challenges confront this im-

plementation, including noise, interference, attenuation, and transformers. In the United
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States, transformers at the distribution level typically only serve three or four customers.

Transformers cause much attenuation for communications signals propagating through,

making transformer bypass couplers a near necessity. Much work has been done across

the globe in the area of powerline communications.

2.3.1 PLC Research Thrusts in EMC

The IEEE ISPLC conference was started by communications researchers in Europe

and Asia as a forum for the discussion of the issues associated with the use of electri-

cal power distribution wires as a viable communication channel. Each year, many re-

searchers present papers regarding EMC and the use of overhead powerlines as commu-

nication channels. Works are also continuously published outside of the specific ISPLC

forum. Recent publications have addressed issues with Electromagnetic Compatibility

(EMC) [1, 14, 15, 16], channel modeling [17, 18, 19], and studies into higher frequency

ranges [20, 21, 22]. EMC has become a popular topic due to the ever increasing trend of

frequencies. Higher frequencies have a greater potential and possibility of causing electro-

magnetic interference (EMI) to existing radio communication systems. Governing agen-

cies have established regulations to control the amount and ranges of interference the power

system is allowed to emit. As such, the accuracy of EMI prediction becomes very impor-

tant, and the inclusion of power system components in the EMC modeling causes many

difficulties.

2.3.2 State of EMC Validity for Transmission Line Performance

To achieve relative accuracy in prediction of the performance of any natural phe-

nomena (such as energy propagating on overhead transmission lines) one must pay atten-

tion to the limitations of the prediction model being used. As mentioned earlier, programs

like EMTP are based on the “traveling wave model” or “telegrapher’s model.” As ob-
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served by Paul, Tesche and Olsen [23, 24, 25], one of the underlying assumptions for

this model is that the electromagnetic fields surrounding the transmission line structure are

TEM (transverse electromagnetic) fields - perpendicular to the direction of propagation.

For the model to be strictly valid, we assume a) the conductors are parallel to each other

and to the direction of propagation, b) they are perfect conductors (i.e., no resistance), and

c) the conductors have uniform cross section along the line axis. In addition, d) the region

surrounding the conductors is assumed homogeneous (although it can be lossy). It can also

be shown (at least for two-conductor lines) that under the TEM assumption, the currents

in the two conductors must be equal in magnitude and opposite in direction - i.e., that for

any cross-section of the line, the total current flowing in the conductors must be zero [23].

Awareness of this set of assumptions makes it apparent that very few real life transmission

lines satisfy all of these criteria.

Nearly all conductors have some resistive loss, lie over an imperfect ground (so

they are immersed in an inhomogeneous material) and are not perfectly uniform in cross

section. Although this is true, when examining parallel transmission lines operated at a

frequency for which the cross-sectional dimensions of the line are much less than a wave-

length, solution of the transmission line equations gives significant contribution to the fields

and the resulting terminal voltages and currents. Such solutions are commonly referred to

as “quasi-TEM” [23] or “quasi-static” [25] solutions. A vast body of research has been

conducted evaluating when such solutions are accurate [26, 27, 14]. Olsen [25] points out

that when the height of the transmission line is small compared to the wavelength in free

space that the quasi-static approximation can be made, with the resulting solutions being

identical to those derived by Carson [28]. Although these approximations may be valid at

power frequencies, the situation changes when considering BPL frequencies where cross-

sectional dimensions of the line are no longer a fraction of a wavelength. Table 2.1 and

Table 2.2 demonstrate the conditions for which this ratio becomes significant. The value

of h represents the height of the conductor above ground (meters). The value for λ is cal-

culated from λ = v/ f . For both Table 2.1 and Table 2.2, the power and PLC frequencies
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(60 Hz, 30 kHZ, and 450 kHZ) have little risk of violating the h/λ assumption for real-

istic cross-sectional dimensions. At the BPL frequencies, however, this ratio becomes a

concern.

To evaluate whether or not a given model will give accurate results one must not

only ask what assumptions might be violated, but also what the results will be used for.

For example, in the case of a transmission line if the desired result is to determine the ter-

minal voltages and currents to evaluate 60-Hz power flows, quasi-static solutions obtained

from solving the transmission line equations might be perfectly acceptable. If, however,

one wants to determine the high-frequency electromagnetic fields radiated from the trans-

mission lines, the error resulting from solutions based on the transmission line equations

might be unacceptable. The reason is that the currents obtained from solution of the trans-

mission line equations are truly the transmission mode (or differential line mode) currents

[23, 24] - i.e., currents that are flowing in opposite directions. When the TEM assumptions

are satisfied, these are the only currents that exist. When this is not the case, however,

antenna mode (or common mode) currents can also exist [23, 24]. These are currents that

are flowing in the same direction on the lines. For most power transmission line problems,

the transmission line currents are dominant, so that if one wants the terminal currents and

Table 2.1

Ratio of h/λ for wave velocity v = 3.0×108 m/s.

H
H
H

H
H
H

h (m)

f
60 Hz 30 kHz 450 kHz 2 MHz 80 MHz

10 2.00E-6 1.00E-3 1.50E-2 0.0667 2.67

20 4.00E-6 2.00E-3 3.00E-2 0.133 5.34

50 1.00E-5 5.00E-3 7.51E-2 0.334 1.33

Table 2.2

Ratio of h/λ for wave velocity v = 1
2

3.0×108 m/s.

H
H
H

H
H
H

h (m)

f
60 Hz 30 kHz 450 kHz 2 MHz 80 MHz

10 4.00E-6 2.00E-6 3.00E-2 0.133 5.34

20 8.01E-6 4.00E-6 6.00E-2 0.267 10.7

50 2.00E-5 1.00E-2 0.150 0.667 26.7
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voltages, approximate results based on transmission line theory may be perfectly adequate.

It turns out, however, that in the case of radiated fields antenna mode currents tend to be

very significant - even if they are much smaller in magnitude than transmission line mode

currents [29]. According to Paul [23] and Tesche [24] the reason is because the radiated

fields from transmission line currents tend to subtract but those from antenna mode currents

add.

To address the concern of interference potential from BPL signals propagating on

power lines, researchers have turned to a number of strategies to predict the antenna mode

currents (from which the resulting fields can be determined). One method is to use tech-

niques commonly employed by those working with antennas and with other high-frequency

applications of electromagnetics. A number of methods are available in the computational

electromagnetics area, including the moment method, the finite element method, the finite

difference method, and a host of others [24].
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Chapter 3

Modeling Issues of BPL Performance

3.1 Prediction of Radiated Electromagnetic Fields

Prediction of the radiated electromagnetic field from any antenna involves two

steps: determination of the current distribution on the antenna, followed by determina-

tion of the resulting electromagnetic fields. Carrying out these steps when the antenna is a

realistic power system is a daunting task. As part of this research project, a novel two-step

solution was outlined and presented as a 2010 ISPLC paper [1], also included in Appendix

B. This work introduced a unique method of applying EMTP-based transmission line mod-

els to determine the current distribution (current in each conductor and ground as a function

of distance x along line), which is used to determine the radiated electromagnetic fields.

3.1.1 Need for Realistic EMC Studies with System Components

One of the difficulties encountered when using high-frequency methods to examine

the radiated fields from practical power lines lies in modeling the multitude of components

in a practical power system (i.e., transmission lines, transformers, capacitor banks, etc.).

Ideally, radiated fields from BPL sources could be predicted entirely from electromagnetics

programs. High-frequency techniques tend to work well for things like the transmission

lines themselves (since they can be modeled as wires), but get cumbersome when other
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power system components are included in the model. Programs like EMTP-ATP, however,

already have lumped models for most of the power system components available. For

research to progress, it would be essential to include the multitude of passive and active

components of the power system in order to provide more accurate results.

3.1.2 HF Current Distribution Using EMTP-Based Line Models

Distributed line currents and voltages are of particular interest in simulation of line

performance for communications. These values are particularly important for determining

the radiated fields, which are also of interest. The robust and flexible nature of EMTP-

type software (e.g. ATP) makes it an ideal platform for carrying out such work. The

power system modeling features of ATP are extensive and are used across the globe for

time-domain analysis. An area that has yet to be explored, however, is in high resolution

modeling of distributed currents along transmission lines.

A powerful "Line & Cable Constants" (LCC) feature of ATP is used for building

transmission lines and for calculating impedance matrices [30]. For short-line modeling,

the pi approximation has been widely used. For the characteristic power frequencies there

is no need to obtain highly detailed current distributions along the lines. In order to study

the effects of PLC at much higher frequencies, however, the decreasing wavelengths make

these highly detailed models increasingly important. The resolution of current distribu-

tions must befit the frequency being used in order to accurately calculate the radiated fields

(see Equation 4.1 and Table 4.1). A cascaded-pi approach within ATP is capable of meet-

ing these needs, however, EMTP-ATP capabilities have not been validated for such high

frequencies.
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3.1.3 EIGER

The Electromagnetics Interactions Generalized (EIGER) code was developed by

the University of Houston, Sandia National Laboratory, and Lawrence Livermore Na-

tional Laboratories. This three-dimensional, boundary element, frequency domain code

allows the computation of electric and magnetic fields from arbitrary sources built with

wires, patches, and surfaces. EIGER is freely available from Sandia National Laboratory

(www.sandia.gov). Ideally, radiated fields from BPL sources could be predicted entirely

from EIGER. However, as previously stated, transmission lines contain passive and active

devices for power distribution control which cannot easily be built in EIGER; transformers

being one example. Therefore, a new approach [1] was developed to utilize both EIGER

and EMTP-type software. This novel approach for determination of radiated electromag-

netic fields is continued in Chapters 4 and 5.

3.2 Validity of Transmission Line Models in ATP

Carson’s formulas are used in the EMTP supporting routines for Line Constants and

Cable Constants, although an extension of the formula is also used in Cable Constants to

account for a multi-layered stratified earth. A formula by Pollaczek is described to be more

general and can be used for underground cables, but is much more difficult to program

- hence, why EMTP uses Carson’s formula with the additional extension for cables. The

effect of a real (lossy) ground is accounted for in ATP through the use of Carson’s correction

equations, which were first presented in 1926 [28]. From Carson’s original publications,

in [28] the impedance per unit length of an overhead wire or system of wires with ground

return is derived and expressed with the form

R+ iX = z+ i2ω ln
ρ

′′

a
+4ω

∫ ∞

0

(

√

µ2 + i −µ

)

e−2h
√

4πωλ µ dµ , (3.1)
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where z is the internal resistance of the conductor, ρ
′′

is the distance between a point (x,y)

and its image, a is the horizontal distance between the point (x,y) and the conductor, and λ

is the conductivity of earth. The first two terms on the right hand side of Equation 3.2 rep-

resent the series impedance of the circuit if the ground is a perfect conductor. The infinite

integral is the expression which accounts for the finite conductivity of earth. Carson then

shows that the circuit constants and electromagnetic field in the dielectric (earth) depend

on the solution of an integral with the form

J(p,q) = P+ iQ =

∫ ∞

0

(

√

µ2 + i −µ

)

e−pµ cosqµ dµ. (3.2)

Carson then shows the solution of 3.2 is

P =
π

8
(1− s4)+

1

2

(

ln
2

γ
− lnr

)

s2 +
θ

2
s′2 −

1√
2

σ1 +
1

2
σ2 +

1√
2

σ3 (3.3)

and

Q =
1

4
+

1

2

(

ln
2

γ
− lnr

)

(1− s4)−
θ

2
s′4 −

π

8
s2 +

1√
2

σ1 +
1√
2

σ3 −
1

2
σ4. (3.4)

The series expansions are:

s2 =
1

1!2!

( r

2

)2

cos2θ − 1

3!4!

( r

2

)6

cos6θ +
1

5!6!

( r

2

)10

cos10θ . . . (3.5)

s′2 =
1

1!2!

( r

2

)2

sin2θ − 1

3!4!

( r

2

)6

sin6θ +
1

5!6!

( r

2

)10

sin10θ . . . (3.6)

s4 =
1

2!3!

( r

2

)4

cos4θ − 1

4!5!

( r

2

)8

cos8θ +
1

6!7!

( r

2

)12

cos12θ . . . (3.7)

s′4 =
1

2!3!

( r

2

)4

sin4θ − 1

4!5!

( r

2

)8

sin8θ +
1

6!7!

( r

2

)12

sin12θ . . . (3.8)
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σ1 =
r cosθ

3
− r5 cos5θ

32527
+

r9 cos9θ

3252729211
. . . (3.9)

σ3 =
r3 cos3θ

325
− r7 cos7θ

3252729
+

r11 cos11θ

3252729211213
. . . (3.10)

σ2 =

(

1+
1

2
− 1

4

)

1

1!2!

( r

2

)2

cos2θ

−
(

1+
1

2
+

1

3
+

1

4
− 1

8

)

1
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2

)6

cos6θ
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1+
1

2
+

1

3
+

1

4
+

1

5
+

1

6
− 1

12

)

1
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)10
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−
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1
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+

1
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+

1

4
+

1
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+
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+
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7
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1
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( r

2

)12

cos12θ . . . (3.12)

In Figure 3.1, the magnitude of Carson’s correction terms (P and Q) is shown as a

function of increasing h/λ . The significance of the value of h/λ is explained in Section

3.2.1. In general, Carson’s correction terms become less valid as this ratio approaches and

exceeds a value of h/λ = 0.3. At the time of their derivation, Carson’s equations were

not intended to be applicable for all situations. Since the frequencies of operation used for

PLC (30 - 450 kHz) and BPL (2 - 80 MHz) extend beyond the range for which transient

analysis is commonly used, a deeper understanding of the assumptions implied in the use

of Carson’s equations becomes pertinent.
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Figure 3.1: Magnitude of Carson’s correction terms P and Q as a function of h/λ .

3.2.1 Validity for Power and PLC Frequencies

To understand whether the use of Carson’s equations are applicable for a given situ-

ation one must have a clear understanding of what assumptions and/or approximations have

been made in the derivation of the assumptions. The assumptions pertaining to Carson’s

equations that are listed in Chapter 4 of the EMTP Theory Book include the following [30]:

1. The conductors are perfectly horizontal above ground, and are long enough so that

the three-dimensional end effects can be neglected. Line sag is taken into account

indirectly by using an average height above ground.

2. The aerial space is homogenous without loss, with permeability µ0 and permittivity

ε0.
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3. The earth is homogeneous with uniform resistivity ρ , permeability µ0, and permittiv-

ity ε0, and is bounded by a flat plane with infinite extent, to which the conductors are

parallel. The earth behaves as a conductor, i.e. 1/ρ >> ωε0, and hence displacement

currents may be neglected. Above the critical frequency fcritical = 1/(2πε0ρ), other

formulas must be used.

4. The spacing between conductors is at least one order of magnitude larger than the

radius of the conductors, so that proximity effects can be ignored.

Additional authors have investigated the limitations inherent in Carson’s equations,

and provide a more complete understanding of what assumptions and/or approximations

were made in his derivations. In an invited paper written in 2000, Olsen, Young and Chang

[31] reviewed the electromagnetic properties of a current on a thin horizontal wire above a

flat, lossy earth. In this paper the authors outline the historical development of this problem,

starting with Carson’s work. The paper refers to much work of professor J.R. Wait - and

highlights the contributions made by professor Wait to the solution of this problem and

understanding of assumptions. The authors explicitly list several assumptions while others

are implicit within the text. The assumptions which were not included in the EMTP Theory

Book are summarized here:

1. The original "wire over earth" problem was of interest because of the use of systems

(power transmission and telephone communications) that were operated at frequen-

cies low enough that the wire height was a small fraction of a wavelength above

earth.

2. For this case almost all of the energy from a voltage or current source is coupled into

and propagates in a quasi-TEM mode. The transmission line mode is essentially the

quasi-TEM mode.

3. Carson assumed that the propagation constant does not differ significantly from that
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found in the dielectric (which is typically assumed to be air) - and therefore Laplace’s

equation is a valid substitution for the two-dimensional wave equation in the air. This

statement is equivalent to stating that Carson was focusing on the quasi-TEM mode.

4. The effect of earth conductivity on the parallel admittance per unit length is negligi-

ble.

Olsen, Young and Chang [31] then state what professor Wait showed [26] regarding

Carson’s assumptions. In particular, suppose a is the wire radius, jβ is the propagation con-

stant of the wave propagating on the wire, and the wave numbers in the dielectric (region 1)

and ground (region 2) are k1 = ω
√

µ1(ε1− j σ1

ω ) and k2 = ω
√

µ2(ε2 − j σ2

ω ) , respectively.

Typically region 1 is air, so ε1 = ε0, µ1 = µ0 and σ1 = 0 meaning k1 = ω
√

µ0ε0 . Using

this notation the results of Carson are derivable from the more general case if the following

conditions (described by Wait [26]) are true:

1.

∣

∣

∣
a

√

k2
1 −β 2

∣

∣

∣
<< 1 This condition specifies how thin the wire must be.

2.

∣

∣

∣
2h

√

k2
1 −β 2

∣

∣

∣
<< 1 This condition specifies how high the wire must be over ground

with respect to the wavelength and propagation constant.

3. 2h>> a This condition specifies how high the wire must be over ground with respect

to the radius of the wire.

4. |k1h| << 1 If region 1 is air, the wavelength in free space can be expressed as λ1 =

2π/k1 so this condition is equivalent to h << λ/2π - which specifies how high the

wire can be above ground with respect to the free space wavelength at the frequency

of operation.

5.
∣

∣k2
1/k2

2

∣

∣<< 1
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Olsen et al [31] also point out that earlier results of Kikuchi [32] are embedded

within Wait’s work. Kikuchi [32] shows that the transmission line quasi-TEM mode used

by Carson reverts to a TM mode as the frequency increases. This result emphasizes again

that Carson’s low-frequency quasi-TEM mode is more correctly a TM mode with a rela-

tively small longitudinal electric field (i.e., electric field in the direction of propagation). A

brief explanation is provided highlighting the fact that the quasi-TEM mode is not the only

propagation mode possible for the infinitely long wire above a lossy ground. In particular,

five types of waves or modes are possible - 1) spherical waves propagating into region 1;

2) spherical waves propagating into region 2; 3) surface waves (or Zenneck waves) propa-

gating along the air-ground interface; 4) the quasi-TEM mode that is actually a mode that

re-directs some of the spherical wave propagation into a wave guided radiation mode that

is bound to the wire, and 5) a guided Zenneck wave mode that redirects some of the en-

ergy from earth-air surface wave in the direction of the wire. The authors suggest that "the

quasi-TEM modal current dominates the continuous spectrum currents over the wire if 1)

the wire height is small relative to the free-space wavelength and 2) the earth is a reasonably

good conductor at the frequencies of interest.”

From the works of Olsen, Young and Chang [31] it is apparent that the effect of

the quasi-TEM mode is dominant for wire heights h < 0.3λ . For h
λ
> 0.3, it appears that

the spherical and surface waves begin to have a pronounced effect. From the earlier as-

sumptions and explanations, it is clear that Carson’s equations are very valid at frequencies

traditionally used for power system applications. Questions regarding their validity arise

as frequencies of operation extend to the BPL frequency range.

3.2.2 Apparent Failure of Models into BPL Frequency Range

As mentioned in the third assumption of the EMTP Theory Book [30], the accuracy

of Carson’s equations are subject to a critical frequency fcritical = 1/(2πε0ρ). A paper by
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Table 3.1

Critical frequency values in MHz - depicting regions of earth behavior.

fcritical = 10−6/(2πε0ρ) MHz, and assuming ε0 = 8.85×10−12.

ρ (Ω−m) 0.1 fcritical fcritical 2 fcritical

0.1 1.80E+04 1.80E+5 3.60E+5

1 1.80E+3 1.80E+4 3.60E+4

10 1.80E+2 1.80E+3 3.60E+3

100 18.0 1.80E+2 3.60E+2

1000 1.80 18.0 36.0

Semlyen, “Ground Return Parameters of Transmission Lines: An Asymptotic Analysis for

Very High Frequencies” [33], provides a good explanation of this critical frequency as it

applies to displacement currents, demonstrating that penetration depth approaches some

finite limit at very high frequencies. Semlyen notes that fcritical is the frequency for which

the resistive current density (Jr = E/ρ) and capacitive current density (Jc = εωE) become

equal. Figure 3.2 illustrates the variation of the critical frequency as a function of the

earth resistivity. For very high frequencies ( f > fmax = 2 fcritical) the conductive current is

negligible and the earth behaves as an insulator - Region A. For lower frequencies ( f <

fmin = 0.1 fcritical) the capacitive current is negligible and the earth behaves as a conductor

- Region C. Table 3.1 and Table 3.2 help to quantify these regions of conductivity. In Table

3.1, the critical frequencies are given as a function of the earth resistivity. In Table 3.2,

the equation is rearranged to show the cutoff points of earth resistivity for the frequencies

associated with normal operation, PLC, and BPL.

Carson’s equations do not account for capacitive currents, and are therefore only

valid for Region C. The transition region fmin > f > fmax (Region B) is one which is diffi-

Table 3.2

Critical values of earth resistivity, ρ (Ω−m), for select frequencies.

ρ = 1/(2πε0 fcritical), and assuming ε0 = 8.85×10−12.

Region 60 Hz 30 kHz 450 kHz 2 MHz 80 MHz

0.1 fcritical 3.00E+7 5.99E+4 4.00E+3 8.99E+2 22.5

fcritical 3.00E+8 5.99E+5 4.00E+4 8.99E+3 2.25E+2

2 fcritical 5.99E+8 1.20E+6 7.99E+4 1.80E+4 4.50E+2
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Figure 3.2: Regions of conductive and capacitive currents shown by critical fre-

quency against earth resistivity.

cult to analyze because the earth will contain both capacitive and conductive currents which

can’t be ignored [33]. R. G. Olsen adds a discussion comment to Semlyen’s paper, noting

the importance of the decreasing wavelength in relation to conductor height above earth.

Olsen suggests that a “high frequency solution to the wire above earth problem must ac-

count for continuous radiation modes and the modified Zenneck wave mode. It also must

reduce to the Sommerfeld-Goubau surface wave solution [34, 35] for very high frequen-

cies.” Carson’s equations for the series impedance of conductors over a lossy ground are

not sufficient for all conditions at BPL frequencies.
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In attempting to predict the current distribution on overhead lines, the ratio of h/λ

(line height above ground to free-space wavelength) becomes important in verifying solu-

tion accuracy. As noted in Chapter 2, a power line is like any other waveguiding structure.

As such, there are specific modes of propagation possible on the line. Carson’s formulas

(and all other standard transmission line formulas) are derived assuming that the dominant

propagation modes are TEM (or ’quasi’-TEM, since a pure TEM mode does not exist for

a wire over a lossy ground). This is indeed the dominant mode for low frequencies where

the ratio of h/λ is relatively small, however, additional modes become significant as h/λ

increases. For any waveguide, what actually happens with the currents and fields depends

both on the modes that are possible and also on how the waveguide is excited. As such,

even though additional modes are possible at higher frequencies, it might turn out that the

currents on the lines are still dominated by the TEM modes just because of the way power

lines are excited.
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Chapter 4

HF Modeling of Transmission Lines with

ATP

4.1 EMTP Modeling Integration with Electromagnetics-

Based Models

Transmission lines have uniformly distributed parameters while pi models are lumped

parameter approximations. The pi sections modeled in ATP can be used in a cascaded ap-

proach to incrementally define the line parameters. The use of cascaded-pi sections to

approximate a single-phase distributed-parameter line is represented in Figure 4.1.

Figure 4.1: Cascaded-Pi Representation
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Table 4.1

Minimum number of required cascaded-pi line sections for accurate 1.0-km line

representation. N = fmax ×8l/v.

v (m/s) 60 Hz 30 kHz 450 kHz 2 MHz 80 MHz

3.0E+8 1.60E-3 0.801 12.0 53.4 2.13E+3

1.5E+8 3.20E-3 1.60 24.0 1.07E+2 4.27E+3

As mentioned before, it is necessary to have highly detailed line models when

studying effects of higher frequencies and when dealing with increasingly small wave-

lengths. By shortening the line segments in the LCC modules of ATP, a finite number of

short, cascaded-pi line sections can closely approximate a distributed-parameter model. By

breaking down the pi model, the line currents can be obtained for each incremental pi sec-

tion. The minimum number of cascaded-pi sections (N) needed to accurately represent the

line is determined by

fmax =
Nv

8l
, (4.1)

where fmax is the maximum of the desired frequency range, l is line length (km), and v is

the propagation speed (km/s) [6]. The number of cascaded-pi sections needed is thus linked

to the upper limit of the desired frequency range. As the desired frequencies become very

Figure 4.2: Example 4.5-km cascaded-pi line model in ATP.
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high, an obvious limitation of the cascaded approach is that a very high number of circuit

elements are needed. Table 4.1 depicts this relationship for a 1-km line, showing the min-

imum required number of cascaded-pi sections for select frequencies and wave velocities.

Since the distribution of line currents is also in question, the number of simulation outputs

can also become very high. For these reasons, ATP requires a specially-compiled appli-

cation file designed to accommodate the higher number of circuit elements. This version,

titled ‘gigmingw’ is readily available through the European EMTP/ATP Users Group. Fig-

ure 4.2 displays a screenshot of a 4.5-km, 3-phase, lossless circuit in ATP. In this example,

596 pi-sections were used. According to Equation 4.1, the maximum frequency for such

a model would be approximately 3.75 MHz. In the screenshot, most of the pi-sections are

grouped together for aesthetics. Between each pi-section is a measuring-switch which is

how the distributed currents are obtained. Because distributed line voltages and currents

can be directly obtained by this method, calculation of the associated electromagnetic fields

can next be achieved.

4.2 Breakdown of Existing Models

As mentioned in Chapter 3, the transmission line models in ATP are based heavily

on the work of J. R. Carson [28]. Carson’s formulas for series impedance of a conductor

above ground are simplified in the EMTP-ATP reference materials [30] by Dommel. In

an attempt to verify the use of these formulae within ATP, the series approximations have

been implemented using Matlab. First, the formulas were implemented as described in the

ATP rule book and theory book. These initial attempts did not produce good results for

conditions where a (see Equation 4.6) became larger than 1.0 in Carson’s infinite series -

Equations 4.2 and 4.3. An error was found in Dommel’s documentation of the equations

used in EMTP/ATP, relating to the series coefficient b (Equation 4.7). This error was found

to cause the discrepancy. Additionally, a realization was made in the way ATP handles

self-inductance calculations. This resolved some issues of static offsets in self-impedance
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calculations. These issues are described in the following subsections.

4.2.1 Review of ATP Transmission Line Theory

The EMTP Theory Book [30], pp. 4-7 to 4-9, presents the equations used by ATP

for pi-equivalent transmission line (LCC) models. These EMTP equations are based from

Carson’s impedance formulas introduced in Chapter 3. Note that [30] uses notations that

differ from those of Carson’s paper (to compare with [30], r = a =
√

p2 +q2 and θ = φ =

tan−1(q/p)). The expressions for P and Q in [30] are

P = ∆R = 4ω ×10−4
{π

8

−b1acosφ

+b2

[

(c2 − lna)a2 cos2φ +φa2 sin2φ
]

+b3a3 cos3φ

−d4a4 cos4φ

−b5a5 cos5φ

+b6

[

(c6 − lna)a6 cos6φ +φa6 sin6φ
]

+b7a7 cos7φ

−d8a8 cos8φ

−·· ·
}

(4.2)
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repeating in groups of four, and

Q = ∆X = 4ω ×10−4

{

1

2
(0.6159315− lna)

+b1acosφ

−d2a2 cos2φ

+b3a3 cos3φ

−b4

[

(c4 − lna)a4 cos4φ +φa4 sin4φ
]

+b5a5 cosφ

−d6a6 cos6φ

+b7a7 cos7φ

−b8

[

(c8 − lna)a8 cos8φ +φa8 sin8φ
]

+ · · ·
}

(4.3)

also repeating in groups of four. The term 0.6159315 is 1/2+ log(2/γ). The correction

equations used when a ≤ 5 are Equations 4.2 and 4.3. Equations 4.4 and 4.5 are used when

a ≥ 5.

P = ∆R =

(

cosφ

a
−

√
2 cos2φ

a2
+

cos3φ

a3
+

3cos5φ

a5
− 45cos7φ

a7

)

4ω10−4

√
2

(4.4)

Q = ∆X =

(

cosφ

a
− cos3φ

a3
+

3cos5φ

a5
+

45cos7φ

a7

)

4ω10−4

√
2

(4.5)

The equation for a is shown below along with the coefficients b, c, and d (Equations

4.7, 4.8,and 4.9) which are stored as vectors. It should be noted that the subscripts (ik) of

a are a matrix notation of the physical conductor geometry, while the subscripts (i) of

coefficients b, c, and d are vector notations for indexing. Table 4.2 helps in understanding

how the value of aik changes with frequency and earth resistivity.
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aik = 4π ×10−4
√

5 ×Dik

√

f

ρ
(4.6)

bi = bi−2
sign

i(i+2)
with the starting values



















b1 =

√
2

6

b2 =
1

16

(4.7)

ci = ci−2 +
1

i
+

1

i+2
with the starting value c2 = 1.3659315 (4.8)

di =
π

4
bi (4.9)

Table 4.2

Coefficient aik = 4π ×10−4
√

5 ×Dik

√

f/ρ for Dik = 30 m, at select frequencies

and earth resistivities.

ρ (Ω−m) 60 Hz 30 kHz 450 kHz 2 MHz 80 MHz

0.1 2.06 46.2 1.79E+2 3.77E+2 2.38E+3

1 0.653 14.6 56.5 1.19E+2 7.54E+2

10 0.206 4.62 17.9 37.7 2.38E+2

100 6.53E-2 1.46 5.65 11.9 75.4

1000 2.06E-2 0.462 1.79 3.77 23.8

The EMTP Theory Book [30] presents these equations as they are implemented in

ATP. However, the expressions in the manual [30] differ from those presented by Carson

[28]. The most significant error by Dommel can be resolved by replacing Equation 4.10

with Equation 4.11 [36]. This error is simply within the documentation, and is not present

within the ATP implementation (proven later in this section).

sign= (−1)[
n−1

4 mod 2] = 1,1,−1,−1,−1,−1,1,1 . . . for n= 3,4,5,6,7,8,9,10 . . . (4.10)

sign= (−1)[
n+1

2 mod 2] = 1,1,−1,−1,1,1,−1,−1 . . . for n= 3,4,5,6,7,8,9,10 . . . (4.11)

The sign of Equation 4.7 (coefficient b) alternates between plus and minus 1 every

2 terms. The EMTP Rule Book and Theory Book erroneously report the sign change after
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every 4 terms. This error was discovered by E. T. Scharlemann1 [36] and has a large impact

on the results (described later).

Carson’s formula for the elements of the series impedance matrix Z (as translated in

[30]) is separated into self and mutual impedances (Equations 4.12 and 4.13 respectively).

Zii = (Rii +∆Rii)+ j

(

2ω10−4 ln
2hi

GMRi
+∆Xii

)

(4.12)

Zik = ∆Rik + j

(

2ω10−4 ln
Dik

dik
+∆Xik

)

(4.13)

Where Rii is the resistance of conductor i, hi is the height of conductor i, GMRi is

the geometric mean radius of conductor i, Dik is the distance between conductor i and the

image of conductor k, and dik is the distance between conductors i and k.

In order to better understand the implementation of Carson’s equations in ATP, the

formulas from the EMTP Theory Book [30] have been reconstructed in Matlab (see Ap-

pendix A.2). Equations 4.2 through 4.13 are used to formulate the series impedance matrix

[Z] for a 3-conductor transmission line with configurable geometries and physical charac-

teristics. To complete the system, the program also calculates the shunt capacitance matrix

[Y ]. The Matlab program is designed to calculate these matrices for every combination of

50 frequencies ( f ) - log spaced between 10 & 108 Hz - and 50 earth resistivities (ρ) - log

spaced between 0.001 and 1000 Ω−m. A modified version of the code (see Appendix

A.3) is also capable of obtaining the [Z] and [C] matrices from the .lis files in ATP. From

the [Z] and [C] (or [Y ]) matrices, the propagation constant α + jβ =
√

ZY can be easily

calculated. In this way, a transmission line can be built in ATP and compared with the the

equations from the ATP reference manual. For this initial comparison, the transmission

line propagation constants α and β were calculated for select combinations of f and ρ .

1E. T. Scharlemann is a research scientist from the Global Security Directorate at Lawrence Livermore Na-

tional Laboratory

33



10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Frequency (Hz)

A
t
t
e
n
u
a
t
i
o
n
 
(
N
p
/
k
m
)

 

 

Theory: 0.001 Ω m

1.15 Ω m

2.02  Ω m

3.56  Ω m

6.25  Ω m

8.29  Ω m

10.9  Ω m

59.6  Ω m

105   Ω m

1000  Ω m

ATP: 0.001  Ω m

1.15  Ω m

2.02  Ω m

3.56  Ω m

6.25  Ω m

8.29  Ω m

10.9  Ω m

59.6  Ω m

105   Ω m

1000  Ω m

Figure 4.3: Attenuation constants, ATP vs EMTP Theory Book formulas for sev-

eral earth resistivities

Plotting α (the attenuation constant) as in Figure 4.3, was a straightforward way of

comparing theoretical results with ATP. The plot is for a three-phase system, and only the

first element (Z11) was studied for the range of f and ρ previously mentioned. In Figure

4.3, the exponential spike deviation found for each value of resistivity shows where the

infinite series became erroneous after a > 1.0. Once a ≥ 5.0 the finite series results appear

fine, with the exception of the obvious static offset.

The traces in Figure 4.3 comparing the results from ATP simulation with Theory

Book documentation (implemented in Matlab) were quite similar with one very major ex-

ception - the transition period between correction equations implemented from theory did

not agree with ATP. For the values of frequency or ρ where a is between 1.0 and 5.0, the

results were suspiciously deviant from the expected outcomes. For a ≥ 5.0, Carson’s finite

series (see Equations 4.4 and 4.5) calculations were much better. The results from ATP
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Figure 4.4: Impedance magnitudes. ATP and EMTP Theory Book formulas imple-

mented in Matlab.

in this plot are quite good and appear to have a smooth transition between infinite and fi-

nite series calculations. This discrepancy between the ATP results and the results of the

EMTP Theory Book equations is attributed to the previously mentioned error discovered

by E. T. Scharlemann at Lawrence Livermore National Laboratory during the scope of this

work. The corrected version of sign (Equation 4.11) is necessary to obtain accurate results

that do not have the noticeable errors shown here. Regrettably, many publications refer to

Dommel’s EMTP Theory Book and carry the sign error in their works as well.

Figure 4.4 shows the series impedance magnitudes that resulted from the theoretical

equations and from ATP. Note where the deviations occur just below 1 MHz, and the offset

that occurs for the self impedance values. The offset is not an error of derivation nor

implementation, but rather an issue of the way ATP calculates self inductances, described

later.
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Figure 4.5: Percent error of EMTP Theory Book formulas compared to ATP

impedance magnitudes

And finally, Figure 4.5 shows the percentage error between the series impedances

obtained using the EMTP Theory Book and ATP (these percentages based on assumption

that ATP is correct). From this plot it is apparent that the mutual impedances calculated

from ATP are in very good agreement with the formulas documented in the EMTP Theory

Book, while an uncharacteristic offset exists for the self impedance.

A relevant discovery from the EMTP Theory Book [30] explains the static offset

in the previous plots of self impedance. In the LCC data card, there is an input called

IXFlag which controls the calculation of the internal self inductance. With ATPDraw, this

flag cannot be preset by the user, and the default value is 0. The impact of this is that the

reactance specified by the user in the LCC module is assumed to be correct for the user

supplied frequency at one foot spacing, meaning Equation 4.12 is not the actual equation

ATP uses for self impedance Zii. This issue is quite important to understand when trying to
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compare ATP results with Carson’s equations.

When IXFlag is set to 0 the value GMR is not used at all, nor is it related to the

wire radius specified by the user. Rather, a substitute for GMR is calculated which produces

the user-specified reactance. This reactance, however, is an effective mutual reactance that

would exist at 1-foot spacing. When ATP then calculates a self reactance, it may not be

what the user expects, especially if the specified reactance is very small or zero. In the case

where a user specifies the reactance to be zero, the self reactance calculated is actually:

2ω10−4 ln 2hi
0.3048

= 5257.56 Ω
km for a 10-m high wire and 1 MHz frequency. Changing the

wire radius will have no impact on the results.

Figures 4.6 through 4.8 are similar to Figures 4.3 through 4.5, however, they in-

clude the effect of matching the calculation ATP makes for self inductance, as well as the
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Figure 4.6: Attenuation constants, ATP vs Theory Book formulas for several earth

resistivities
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Figure 4.7: Impedance magnitudes. ATP and Theory Book formulas implemented

in Matlab.

typographical correction to the infinite series coefficient b which was mentioned earlier.

The change in the Matlab code was simply to remove ri or GMR from the self impedance

Equation 4.12 and to replace it with 1 f t = 0.3048 m. This removes the offset in the self

impedances. The change to coefficient b was simply to correct a sign change that should

occur every 2 terms instead of the suggested 4 terms as described in the manual [30]. This

removes the discontinuity in transition between the infinite and finite series correction equa-

tions. With these corrections, all results begin to match quite reasonably. In Figure 4.8, the

self impedances have a high percentage error at lower frequencies, which disappears with

increasing frequency. The calculations made for the EMTP Theory Book formulas used a

fixed number of correction terms for the entire range of frequencies. In ATP, the number of

correction terms used varies with frequency, utilizing more correction terms as frequency

increases. When fewer correction terms were used in the EMTP Theory Book calculations,

the high percentage offset at lower frequencies decreased dramatically, while higher fre-

quencies became more erroneous. This high percentage error is simply a result of using a

fixed number of correction terms for all frequencies.
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Figure 4.8: Percent error of Theory Book formulas compared to ATP impedance

magnitudes

The series impedance equations from Carson’s paper [28] have been replicated by

E. T. Scharlemann [36] using Python programming language (see Appendix A.1) for com-

parison with those of the EMTP Theory Book [30]. Figure 4.9 compares the numerical

results for 0 < r <= 10 at θ = 2π/3 for the series in [28] with the corrected series from

[30]. Note that for the EMTP equations, r = a.

Figure 4.9: Comparison of results for Carson’s series at θ = 2π/3 (left) and the

corrected EMTP Theory Book series at the same value for φ (right).
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Figure 4.10: Comparison of EMTP Theory Book, Carson, and ATP to validate

derivation of impedance corrections for θ = φ = 0

The left axis in Figure 4.9 represents Carson’s series impedance corrections due to

earth return from Equations 4.2 through 4.5. The bottom axis represents different combina-

tions of frequency, earth resistivity and line geometry as described in Equation 4.6. From

these plots it is apparent that the corrected EMTP series is commensurate with Carson’s

original equations. To establish evidence of congruency among ATP, Carson’s formulas,

and the EMTP Theory Book, the correction equation results were then compared for the

series self impedances (equivalent to the case of a single conductor above ground). Figure

4.10 shows the comparison.

The description of Figure 4.10 is similar to Figure 4.9 with the exception that P

and Q represent the self impedance corrections ∆Rii and ∆Xii. These correction values are

easy to obtain from using Carson’s equations and the EMTP counterparts, however they

are more difficult to retrieve from ATP. The series impedance matrices can be extracted
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from .lis files, however, the data must be processed to determine the values of P and Q.

As mentioned earlier, ATP has a nonintuitive way of calculating the self inductance when

the data card IX f lag is 0. The correction impedances can be separated, however, once the

process is understood. Based on this thorough investigation, ATP is in fact correctly using

Carson’s equations for its line & cable constants routines, although there is a typo in the

Theory Book.

4.2.2 Review of Limitations of ATP Transmission Line Model

In Chapters 2 & 3 concerns were expressed regarding the usefulness and validity

of Carson’s equations when applied to realistic transmission line configurations and BPL

frequencies. The skepticism arises based on the many assumptions described in Section

3.2.2 which suggest there are modes of propagation experienced which Carson’s equations

do not capture. These mode exclusions are inherent to the assumptions Carson made to

derive his series expressions. Given that ATP does in fact utilize Carson’s equations for its

Line & Cable Constants transmission line models, it would follow that ATP models cannot

account for modes of propagation other than the quasi-TEM mode.

Utilizing the EIGER program to construct a simple transmission line, the introduc-

tion of new modes of propagation should be evident at very high frequencies. A simple 1

km line with a height of 10 m was used to predict the radiated fields for a 100 m section of

the middle of the line2. Figure 4.11 shows the vertical electric field strength for a 50-MHz

line signal. Figure 4.12 shows the same information for frequencies of 100 kHz, 1 MHz,

10 MHz, and 50 MHz.

The radiated fields of Figures 4.11 and 4.12 were calculated using EIGER, which

also provides the distributed currents along the line. To compare EIGER and ATP for this

2All EIGER results for this work were obtained with the help of Barry Kirkendall - a research scientist with

Physical & Life Sciences Directorate of Lawrence Livermore National Laboratory.
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Figure 4.11: EIGER 50 MHz vertical E-field for a 100 m length underneath middle

of 1 km powerline (500 m - 600 m). Color-legend units are kV/m.

transmission line, using the distributed line currents is appropriate. To do this in ATP, the

same cascaded-pi modeling approach as described in Section 4.1 can be used (see Figure

4.1). However, because a lossless line model was used in EIGER (zero internal self induc-

tance), a non-intuitive procedure was used in ATPDraw to control the LCC model building.

When a LCC module is built, ATP generates 4 files (.dat , .lis , .pch, and .lib) which are as-

sociated with that LCC object. In the Windows ATPDraw version, these files are generated

without interruption, and without intermediate control of the user. The .dat file contains

the important information used in generating the next three files, and includes the IXFlag.

This defaults to 0 which affects the calculation for self inductance. This was described ear-

lier in Section 4.2.1. The IXFlag is not directly controlled by the user in ATPDraw, and is

automatically set dependent on whether skin effect is to be included. To get the inductance

while ignoring skin effect, the following procedure can be used:

1. Generate the LCC files using ATPDraw.

2. Directly modify the IXFlag in the .dat file (IX = 3 allows calculation of self induc-
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Figure 4.12: Comparison of EIGER vertical E-fields at several frequencies for a

100 m length underneath middle of 1 km powerline (500 m - 600 m).

tance based on tubular conductor geometry).

3. Use ATPLauncher (available from EEUG download site3) to process the modified

.dat file and generate new .lis and .pch files.

4. Finally, the new impedance in the .lis file must be retrieved and manually input to the

.lib file before the ATP simulation is ready to be used with proper impedances.

The results of using this procedure are later addressed in Section 6.2.

3Licensed users of the ATP are able to download files from the European Users Group site - www.eeug.org.

The ATP license is free for nearly everyone and requires only an agreement to the licensing terms.
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4.3 Reconciling a Closer Approximation of ATP Line Con-

stants to EIGER

Given that Carson’s derived transmission line equations are inadequate for BPL

studies, a new set of equations would be necessary to extend the capabilities of ATP trans-

mission line modeling into those frequency ranges (2 - 80 MHz). The usefulness of stud-

ies pertaining to radiated field patterns is highly dependent on having a software program

which can accurately predict the distributed currents of a transmission system while ac-

counting for power system components such as transformers and power electronic devices.

In order for the integrated approach for predicting radiated fields described in [1] to be

successful, Carson’s formulas must be replaced in ATP.

The Carson model based on the quasi-TEM approximation is used widely for low

frequency and/or low earth resistivity conditions. Much work has also been done to express

exact theory models, such as Wait’s full-wave model [26] which leaves out the approxima-

tions made by Carson. Wait’s approach derives a full solution, however it is computation-

ally challenging to implement. Other researchers have done similar work, but the difficult

and rigorous computational implementations cause programs to revert to the Carson model.

Marcello D’Amore and Maria Sabrina Sarto introduced a less challenging solution in 1996

[37, 38], based on the full-wave solution of Wait. The proposed model (for single and

multi-conductor cases) was touted as an improvement over Carson’s formulations because

it holds for a wider frequency range. However, D’Amore and Sarto do not account for

radiation in their model, making their solution inadequate for BPL studies.

Assuming it is possible, a solution must be derived for the series impedance of

multiple conductors over a lossy earth, and it must account for all possible modes of prop-

agation. The broad nature of such formulas would be very advantageous if applied to ATP
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and BPL studies. Though the derived equations would be more computationally challeng-

ing than those of Carson, computing power is much improved since Carson’s equations

were implemented in EMTP in the early 1980’s. If implemented as a substitute for Car-

son’s equations in ATP, more general formulas could enable the successful study of BPL

networks in a realistic transmission system. Without such equations which are valid into

the 2 to 80 MHz range there is little hope in achieving accurately predicted distributed line

currents and the associated radiated fields.
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Chapter 5

Implementation

A novel approach to prediction of radiated fields in a power system was developed

and proposed at the IEEE ISPLC 2010 Conference [1]. This approach involves integration

of ATP and EIGER to enable more realistic power system scenarios to be modeled. The

approach is depicted in Figure 5.1. ATP is used here, but another EMTP-type software

could potentially be used. The generalized process involves first creating a system model

in ATP. Next, the model is used to predict the current distribution along transmission lines

of interest. These current distributions are then exported for use by EIGER, which finally

predicts the radiated fields.

Figure 5.1: Approach to predicting radiated fields from a power system transmis-

sion line.
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5.1 Obtaining High-Frequency Current Distribution Us-

ing ATP

Figure 5.2: Line spacing diagram for test case scenario. Phase A and B are 1.2

and 0.3 m left of center. Phase C is 1.2 m right of center.

A test-case transmission line can be built to demonstrate the usefulness of the

method for obtaining distributed line currents and radiated fields. An isolated 5 km, 3-

conductor non-transposed line was chosen for study. The flat terrain is a homogeneous

Figure 5.3: Test case scenario with 1,000 pi-sections.

47



ground characterized by ε = 8.0+ j1.0 [13]. Conductor spacing is realistically defined for

a standard distribution tower structure. Using the center-pole as a reference (see Figure

5.2), phases A and B are left of center by 1.2192 and 0.3048 meters respectively. Phase

C is right of center by 1.2192 meters. The conductors have a height of 9.5 meters with

0.75 meter sag and 0.03576 Ω/km dc resistance. The line was terminated with a small,

wye-connected load of 10 Ω for each phase. A current source placed at the sending end

supplied a 3-phase sinusoidal current as the injected signal. A frequency scan was then

used to determine the current distributions for every 5 meters, with 1,000 pi sections in

total, see Figure 5.3.

5.2 Predicting Radiated Fields with EIGER

As described in Chapter 3, the ideal case would be for radiated fields from BPL

sources to be predicted entirely from EIGER (or other electromagnetics programs). How-

ever, transmission lines contain passive and active devices for power distribution control

which cannot easily be built in EIGER. Therefore, the EIGER source code was modified to

accept the external ATP current distribution (graphically depicted in Figure 5.4). Without

this modification, the user would be required to accept a current distribution from a volt-

age or current source and approximate transmission line devices with lumped parameters;

the result would be decreasing accuracy with increasing frequency. Given a BPL current

distribution calculated from ATP, the complex current is interpolated and substituted for

the EIGER transmission line model current file (*.mnh). Executing the modified version

of EIGER results in the ATP current distribution, EIGER model geometry, and terrain in-

formation being numerically combined into a Green’s Function [13] which is then used to

calculate the BPL radiated electric and magnetic fields. Using EIGER is beneficial for sev-

eral reasons; 1) the field predictions are valid into the GHz range, 2) one can account for the

presence of a lossy and inhomogeneous earth and 3) geological terrain information (which

might otherwise alter predicted BPL fields) can also be included in the EIGER model as
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Figure 5.4: EIGER Process

dielectric bodies.

5.3 Frequency-Dependent Transmission Line Implemen-

tation

As mentioned in Chapter 4, ATP transmission line modeling suffers from limi-

tations of Carson’s equations. Furthering the field of BPL studies is dependent first on

derivation of an improved set of equations. Assuming a set of equations satisfying the

modeling needs is achieved, implementation becomes the next hurdle for research. Imple-

mentation possibilities of such formulas are limited outside of hard-coding (ie., internal

source code modification). One possibility is to calculate transmission line parameters ex-

ternally or to implement through ATP’s MODELS language. However, there is the issue of

how to get these parameters into ATP. The very tedious method of inserting line parameters

into a cascaded-pi model (described in Section 4.2.2) is one possibility. However, this can

only be done for a single frequency per simulation model.
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It would be more useful to have a model with frequency dependence that could

accurately predict power system and BPL performance. One of the newest transmission

line models available in ATP is the NODA model [11]. The NODA line model parameters

are dumped to a file (which can be modified) which is read by ARMAFIT. Other models

do not read in files that can be modified. Another potential method of implementation

would be utilizing an external vector-fitting program, which could be used to generate a

very high-order RLC equivalent circuit to represent the frequency-dependent transmission

line.

5.3.1 NODA Line Constants with External Modifications

The NODA model was introduced by Taku Noda [11]. The NODA model differs

from the other ATP models in that the calculations are made directly in the phase do-

main, therefore eliminating approximation errors caused by the use of the transformation

matrix. The characteristic admittance and the deformation coefficients are fitted through

rational functions. Time domain convolutions are replaced by an ARMA (Auto-Regressive

Moving-Average) model that minimizes computation. The modeling of a transmission line

using the NODA model normally requires the following two steps:

1. Calculation of the frequency-dependent line parameters (frequency data) of the trans-

mission line using the LCC supporting routine in ATP. The result is written in a .AFT

file (ARMAFIT file).

2. Fitting the frequency data (stored in .AFT file) for the time-domain realization of

the frequency dependence. This procedure is performed by an independent fitting

program ARMAFIT. The result is written in .PCH file (“punch” output file).

ARMAFIT is independent of ATP, meaning ATP is not necessary for calculating

the line parameters used in the .AFT file. Frequency data prepared by a user-made line
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constants calculation program can be fitted using ARMAFIT, making it quite useful. In

order to use externally implemented formulas to model a frequency dependent transmission

line with the NODA ATP model, the following procedure can be used1:

1. Formulate the frequency dependent parameters of the transmission line using the

derived formulas for series impedance (external to ATP).

2. Build the transmission line model in the NODA LCC module.

3. Run the LCC module to create the transmission line files (.AFT, etc...). In this step,

a modification to the batch file that runs ARMAFIT is required. The .BAT file would

require a “stop” command before the ARMAFIT routine is called. Otherwise ATP-

Draw would delete the intermediate .AFT file as a housekeeping procedure.

4. While in “stop” mode, the .AFT file can be retrieved and the NODA Z and Y data

can be replaced manually with the D’Amore-Sarto frequency data.

5. Exit the “stop” mode, allowing ARMAFIT to create a time-domain realization of the

frequency dependent transmission line. The output, again, is a .PCH file.

With the above procedure, a new set of formulas can be used to represent a line

model for a transient simulation. There is, of course, the possibility that the fitting through

ARMAFIT can fail, and that the time-domain response can become unstable. The time-step

must be pre-determined and other works indicate that small time steps can produce unstable

responses. The model parameters can also require fine-tuning of the fitting parameters. In

all, however, the NODA implementation described in this section is a good first step in

extending the ability of ATP to model transmission lines at BPL frequencies.

1It should be noted that an obvious precursory step to this procedure is necessary - the formulas must be im-

plemented in a coding environment (eg. - Matlab, C++, Python) in order to produce the frequency-dependent

(3-dimensional) Z and Y matrices.
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5.3.2 External Vector Fitting & Black Box Model

A second implementation process would be similar to the NODA method, but

would not utilize the ARMAFIT feature. A Norwegian scientist named Gustavsen de-

veloped a vector fitting technique [39] which later resulted in a set of Matlab routines [40]

utilizing rational functions to approximate a frequency dependent matrix into an equivalent

electrical network. The set of routines can be used to fit matrices whose frequency depen-

dent elements have been determined from either experimental data or from calculations. A

particularly useful facet of this set of programs is that the equivalent electrical network can

be imported into ATP. These Matlab routines are also publicly available by the developer

and SINTEF Energy Research of Trondheim, Norway.

Similar to the NODA method described earlier, this approach requires a predeter-

mined set of frequency dependent series impedance parameters. This vector fitting ap-

proach brings the frequency data into the time domain, and has been demonstrated in ap-

plication to transformers [41] and overhead transmission lines [12]. The end results of the

matrix fitting include state equation matrices (A, B, C, D, E) and a file containing the equiv-

alent electrical network (a high-order RLC circuit). The matrices A, B, C, D, and E define

the state equation Y (s) which has the form

Y (s) = Yf it(s)u(s) = (C(sI−A)−1B+D+ sE)u(s) . (5.1)

The equivalent electrical network generated by the Matlab routines has the convenience

of being imported directly into ATP. The network branches include elements representing

relations between each node and ground:

yi =
n

∑
j=1

Yf it i j , (5.2)
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Figure 5.5: A black-box, multi-port, lumped-network model of a power trans-

former can be created from frequency-dependent nodal voltages and

currents.

as well as between all nodes,

yi j =−Yf it i j . (5.3)

The network branches are converted into the network elements R, L, and C.

A practical example would be useful for better understanding. Consider a set of

measured transformer terminal relationships. Transformers are extremely difficult to model

at high frequencies because of the existence of many resonance points due to inductive

and capacitive effects of the windings, tank, core, etc. Transmission lines are also diffi-

cult to model at high frequencies, but for other reasons discussed throughout this paper.

Consideration of a transformer example is easier in this case because direct experimental

measurements were easier to obtain. The methodology is similar for both cases, however.

The following example utilizes Gustavsen’s vector fitting approach as a means of

creating lumped networks representing admittance and voltage transfer ratios of a power

transformer. These lumped networks are then used in a novel way within ATP to predict the

terminal voltages on one winding of a transformer, given known voltages on the other. The
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6x6 admittance matrix Y is related to measured terminal voltages and currents according to

i(s) =Y (s)v(s) , (5.4)

where v and i are frequency-dependent node voltages and currents. In this example, each

element of the Y was obtained using an AnritsuTM network analyzer, active voltage probe,

and connection board with a wide-band current sensor. Measurements were taken using

logarithmically spaced frequency samples between 10 Hz and 10 MHz. Measurements

were only taken to complete the upper left quadrant of the 6x6 admittance matrix, as this

is the only portion necessary for predicting voltages of an unloaded low-winding, given

voltages on the high-winding. That is, in combination with the voltage ratio from low to

high windings, the proper impedances are accounted for.

The nodal admittance matrix for the high-side terminals (YHH ) is the 3x3 upper

left quadrant of the complete 6x6 version. Measurements were taken only for the high-

side and leaving the low-side open circuited. For each element of the matrix, a separate

combination of the 3 high-side terminals is used. For instance, Y11 consists of measuring

both current and voltage on the H1 terminal. The voltage transfer matrix is obtained using

similar methods to the Y matrix. Voltage is applied to a terminal of one winding, and the

corresponding voltages are measured at the other winding.

The 3x3 matrices obtained for admittance and voltage ratio were appropriately sub-

jected to the rational vector fitting procedure from [40]. Passivity was enforced (as part

of the Matlab routines) to ensure stable time domain simulation. Passivity ensures that all

eigenvalues of the real part of Y are positive. Finally, the RLC network equivalent circuits

for both Y and voltage ratio were generated. These circuit networks can be imported to

ATP as library models. The nodes are internal to the model, but can be accessed through

specifying node names. Given terminal voltages from the high-side windings as inputs to

the Y network, the resulting nodal voltages can be input to the terminals of the voltage ratio
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Figure 5.6: RLC circuits in ATP from circuit networks and setup for impulse mea-

surement.

model. Both models are internally grounded three-port networks. If the resulting voltages

from the admittance model are used as voltage inputs for the respective terminals of the

voltage ratio model, the currents flowing in the voltage ratio model terminals effectively

represent the induced voltages for the low-side of the transformer. Consider the case of a

2-winding transformer; using Equation 5.3.2 and partitioning Y into 3x3 blocks, we get:





IH

IL



=





YHH YHL

YLH YLL









VH

VL



 , (5.5)

which results in

VHL = −Y−1
HH ×YHL , and (5.6)

VLH = −Y−1
LL ×YLH . (5.7)

The ATP implementation circuit is shown in Figure 5.6.
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Chapter 6

Results

6.1 Summary of ATP-EIGER Radiation Model

Using the line description from Section 5.1, the distributed line currents were ob-

tained in ATP. Shown in Figure 6.1 is the distributed current along one conductor as a

function of line distance for a 500-kHz injected signal. Note that the figure shows magni-

tudes only, and that a large source current was used for this demonstration. Though BPL
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Figure 6.1: 500 kHz ATP current distribution along transmission line.
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systems would typically use smaller signals, the process for determining the currents and

resulting fields will be the same as in this example. Additionally, BPL frequencies would

be much higher than shown here, but the limits of Carson’s formulas prevented use of a

higher frequency. In general, the process for obtaining these results is what is important to

understand initially. Carson’s equations must be updated with enhanced equations before

ATP is able to produce reliable results at higher frequencies.

Figure 6.2: Magnitude of radiated vertical magnetic field at altitude of 50 m.

The 5-km transmission line from Section 5.1 was also built into the EIGER model.

An ASCII file of the real and imaginary transmission line currents as a function of line dis-

tance (for each phase) is created from the ATP line current data of Figure 6.1. In this case,

the far-field patterns are not calculated from EIGER, but rather a series of near field points

due to the large wavelengths at these frequencies; about 100 meters from ACSR wire with

velocity of 0.33 the speed of light at 1 MHz [13]. The fields for this test case are arbitrarily
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calculated at 50 meters above the transmission line in a constant altitude plane, although

fields can be calculated in any volume. Figure 6.2 illustrates the results for the amplitude

of the vertical magnetic field (the black line represents the transmission line). Note that

while Figure 6.1 shows that impedance mismatches at the transmission line boundary set

up a standing wave for the current distribution with the number of nodes proportional to

the frequency, the radiated fields incorporate the radiation efficiencies of the transmission

lines. In essence, the current distribution and radiation efficiency are convoluted.

6.2 Summary of Carson vs EIGER

In Section 4.2.2 a transmission line was described and characterized by its radiated

fields using EIGER. A modeling process involving ATP was then outlined for obtaining

the current distributions down an identical transmission line. Using this procedure, Figures

6.3 and 6.4 were prepared. The plots show the distributed line currents of the 1-km trans-

mission line used for the electric field plots shown earlier (100-meter line sections were

included in the E-Field plots).

For the results shown in Figure 6.3, the frequency of signal injected into the sending

end (x = 1000 m) is varied while keeping the earth resistivity constant (100 Ω−m). The

receiving end is open-circuited. Though the results are difficult to interpret, the trend is

that the ATP results are similar to the EIGER results until higher frequencies are reached.

This was expected, recalling from Section 3.2 and Figure 3.2 that the critical frequency

for ρ = 100 Ω−m would be around 180 MHz. This would place the potential range of

inaccurate ATP results around fmin = 18 MHz. For the 50-MHz traces, EIGER results

clearly shows a greater attenuation of line currents than that of ATP. The higher frequency

traces appear to have a lower initial value at the sending end. In fact, the starting values are

the same for each case, though they decrease very quickly resulting in what appears to be

a static offset. There are two important factors that contribute to the difference in results
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Figure 6.3: ATP and EIGER current distributions for fixed earth resistivity.

between ATP and EIGER:

• Carson’s formulas do not account for capacitive ground currents. This was described

in Chapter 3, where Figure 3.2 was used to depict the relationship between frequency

and resistivity in terms of earth behavior. At higher frequencies (see the MHz-range

traces) there are capacitive currents in the earth which are unaccounted for by Car-

son’s equations. The EIGER results do include the capacitive currents, thus the sharp

decline in signal amplitude.

• Carson’s formulas and the Line Constants models do not account for radiation losses

along the transmission line, also related to capacitive effects, which EIGER does

account for. Therefore, the ATP results are expected to be higher in amplitude, even

at frequencies below the MHz range.

For the results shown in Figure 6.4, the earth resistivity is varied while keeping the

frequency of injection signal constant (1 MHz). In this case, the trend is that the ATP results

are similar to the EIGER results until higher earth resistivity is reached. This was expected,

recalling from Section 3.2 and Figure 3.2 that the critical frequency boundary is inversely

proportional to resistivity ( fcritical = 1/(2πε0ρ)). For the highest shown resistivity, ρ =
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Figure 6.4: ATP and EIGER current distributions for fixed frequency.

10,000 Ω−m, the critical frequency would be around 1.8 MHz. This would place the

potential range of inaccurate ATP results around fmin = 180 kHz. For the 10,000 Ω−m

traces, EIGER results clearly shows a greater attenuation of line currents than that of ATP.

Again for this figure, there appears to be an offset, especially at the sending end. The traces

have the same initial value at the sending end, however the inability of ATP to account

for capacitive currents and radiation losses prevents the results from matching closer. The

general trend visisble in the plots is the expected result.

6.3 Summary of Vector Fitting

Several methods of implementing more valid formulas were discussed in Chapter

5. In order to show the accuracy of the lumped equivalent network produced by the vector-

fitting technique discussed in Section 5.3.2, three laboratory impulse testing scenarios were

performed and reproduced through simulation with ATP. The testing setup is shown in
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Figure 6.5. The scenario chosen utilizes a transformer, however, this method can be equally

applied to transmission lines. The use of a transformer here demonstrates the generality of

the method.

6.3.1 Validation of the Model

In the first scenario, the step impulse was applied directly to the HV3 transformer

terminal with zero input resistance (R=0). The remaining high voltage terminals were

shorted to ground while the low voltage terminals remained open. The second and third

scenarios were similar to the first, with addition of 30 Ω and 400 Ω input resistances re-

spectively. This verified the ability to connect the model to a circuit and calculate proper

low-winding voltages. The impulse test was then replicated in ATP using the high-order

RLC circuits derived from admittance and voltage transfer matrices described earlier. Sim-

ple series resistors were used to replicate the input impedances from laboratory setup. An

empirical voltage source was used, replicating the voltage input during the actual impulse

test.

R

R

R

600 KVA

Transformer

HV3

HV2

HV1

LV3

LV2

LV1

Figure 6.5: Lab impulse testing setup with 600-kVA transformer.
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The first scenario focuses on ensuring the model can accurately predict transient

voltages on the low-side terminals given known voltages on the high-side terminals. The

impulse voltage applied to high-side terminal 3 (HV3) resulted in a significant response

on LV3, and slightly smaller transients on the other terminals. The testing scenario was

replicated in ATP, replacing the transformer with the earlier described model. The data from

the applied impulse voltage was used as the voltage input to the circuit using an empirical

source. The calculated voltages for the low-winding terminals are over-plotted with the

measured lab results in Figure 6.6. Note the good agreement between each respective pair

of terminals.

The results from Figure 6.6 verify the model is correct for the ideal case without

input impedance. Identical tests were then simulated for the 30 and 400 Ω cases, with very

good matching results. The results for the 400 Ω simulation are shown in Figure 6.7. Given

the matching results for various input impedances during impulse testing, the validity of the

implementation method is verified. The combination of frequency dependant admittance
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Figure 6.6: Measured and calculated terminal voltages for ideal impulse test.
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and voltage transfer functions accounts for the nonlinear characteristics of the transformer

terminal behavior under unloaded conditions. It would now be useful to apply this model

to certain realistic scenarios.

6.3.2 Practical Example: Capacitor Bank Energization

The first example considered here is that of capacitor bank energization. The ATP

circuit is shown in Figure 6.8, with the 600-kVA transformer implemented in the same

way as the previous impulse example. This scenario considers a shunt capacitor bank

connected between line and ground, considering the capacitor bank and connecting bus-

bars and cables between the bank and a 600-kVA unloaded transformer. The connecting

cables are modeled as lossless, distributed parameter cables of 20 m length, Z=30 Ω surge

impedance, and a propagation velocity v = 177,000,000 m/s. A 5 km overhead line also

connects a 22 kV (rms L-L), 50 Hz source. The conditions under study are the sending and
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Figure 6.7: Measured and calculated terminal voltages for R = 400 Ω impulse test.
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Figure 6.8: Capacitor bank energization example circuit in ATP.

receiving voltages along the connecting cables as well as the low-voltage terminals of the

transformer. The results of simulation are shown in Figure 6.9.

The phase-1 capacitor is switched in at t=0, coinciding with voltage peak. Bus volt-
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Figure 6.9: Voltages on transformer low-winding terminals for capacitor bank en-
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Figure 6.10: Sending voltages and response at transformer.

age Vs1 collapses to 0 V, while the receiving end of the cable sees significant transients after

a propagation delay of around 0.11 µs. The transients are also apparent on the low-voltage

winding of the transformer. The low-voltage terminal 1 sees the largest overvoltages - on

the order of 7 kV.

6.3.3 Practical Example: Lightning Impulse

The second example considered is that of lightning impulse overvoltages. This is

the same circuit used in the previous example, with a few modifications. In this case, the

overhead line is modeled using a 3-phase, completely transposed, distributed parameter

Clarke line. The lightning surge is injected at the transmission line and is split between the

line and a grounded resistor of 400 Ω, matching the characteristic impedance of the line.

The line is 1000 m lossless, with Z=400 Ω and propagation velocity equal to the speed of

light.
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The injected current pulse used had a peak of 60 A, a rise time of 1 ns, and a fall

time 100 µs. The results of the actual simulation are shown in Figure 6.10. The voltage

at the sending end of the cable rises almost instantaneously, while the surge propagates

down the previously de-energized overhead line to the transformer. This propagation takes

approximately 3.3 µs, at which time there are some reflected and refracted voltages at

the interface of transformer and transmission line. As expected, the receiving end (HV

terminal) voltages rise to roughly twice that of the sending end, and the effects of the

reflected wave on the sending end are visible as well. Again, there are interesting results

for the low-voltage terminals, better seen in Figure 6.11, with transient peaks up to 1.6 kV.
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Figure 6.11: Voltages on transformer low-winding terminals for lightning impulse

test.
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Chapter 7

Conclusions and Recommendations

This final chapter presents the conclusions drawn from this work, and the author’s

recommendations for future research. Concluding statements are made for 1) the use

of Carson’s formulas in ATP, 2) the ATP-EIGER approach to predicting distributed cur-

rents and radiated fields, 3) the potential use of the high-frequency NODA implementa-

tion method, and 4) the potential use of the high-frequency Vector Fitting implementation

method.

7.1 Conclusions

• Conclusions about Carson’s formulas used in ATP:

◦ The series impedance equations derived by Carson are identical in form and

behavior to those implemented in EMTP-ATP, but they are not quite identical

to those referenced in the EMTP Theory book, which has been attributed to a

documentation error.

◦ Carson’s equations for the series impedance of a conductor over a lossy earth

have many assumptions which restrict their usefulness for high frequencies or

for low conductivity of earth.

◦ The TEM or quasi-TEM mode is typically the only mode of propagation on

transmission lines operated at or below the PLC frequency range.

◦ Additional modes have the possibility to propagate as operating frequencies ex-

tend well beyond those of normal operation. In fact, other modes of propagation

begin to appear for an increasing ratio of h/λ , h being the wire height above

earth and λ being the free-space wavelength.
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◦ ATP transmission line models are not capable of accounting for modes of prop-

agation other than the quasi-TEM mode.

◦ There are 4 additional modes of propagation possible for a long wire above a

lossy ground.

◦ Transmission line parameters must be recalculated for each value of frequency.

• Conclusions about the ATP-EIGER approach to predicting distributed currents and

radiated fields:

◦ The novel approach described for integrating ATP and EIGER to obtain dis-

tributed line currents and radiated fields is an important step toward enabling

computational studies of realistic BPL scenarios and for advancing the state of

BPL research.

◦ In this approach, EMTP-ATP is used to determine the current distribution of a

transmission line. This current distribution is then overlaid onto the electromag-

netic EIGER model of the physical transmission line to determine the radiated

fields of a BPL system.

◦ This two-fold system is beneficial because EMTP-ATP can accurately model

power electronic devices and control schemes and the components found in

power systems (e.g. power transformers, instrument transformers, communica-

tion couplers, etc.) which cannot be ignored in these studies. Given this current

distribution, EIGER can account for the inhomogeneity commonly found in the

earth as well as using dielectric bodies to approximate terrain effects.

◦ While EIGER is valid into the microwave region (GHz), EMTP-ATP capabili-

ties are limited by the use of Carson’s formulas.

◦ The ATP-EIGER approach is a valid method of incorporating power system

components into studies of radiated fields from transmission lines.

◦ A substitute for Carson’s formulas is necessary in order for ATP to be useful

for these studies into the BPL (2-80 MHz) frequency region.

• Conclusions about high-frequency NODA implementation method (Section 5.3.1)

◦ A set of appropriate formulas are able to be coded in a program external to ATP,

whereby the program could produce frequency dependent Z and Y matrices.

◦ Only one model is required for an overall frequency range.
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◦ The NODA line model in ATP can be modified to accept the externally created

Z and Y matrices.

◦ The frequency dependent Z and Y can then be fitted using an Auto-Regressive

Moving Average (ARMAFIT) technique.

◦ It is possible for the derived formulas to be used to represent a line model for a

transient simulation in ATP using the NODA setup.

• Conclusions about high-frequency Vector Fitting [40] implementation method:

◦ Similar to the NODA method, a set of appropriate formulas are able to be coded

in a program external to ATP, whereby the program could produce frequency-

dependent data for the transmission line(s).

◦ Only one model is required for an overall frequency range.

◦ Vector Fitting seems suitable for high frequency modeling of multi-port net-

works, and utilizes Matlab routines which are publicly available by the devel-

oper and SINTEF Energy Research of Trondheim, Norway.

◦ This method utilizes rational functions to approximate a frequency dependent

matrix into an equivalent electrical network.

◦ The set of routines can be used to fit matrices whose frequency dependent ele-

ments have been determined from either experimental data or from calculations.

◦ Vector Fitting brings the frequency data into the time domain, and has been

experimentally demonstrated and verified in this paper through application to

power transformers.

◦ The equivalent electrical network is a high-order approximation using lumped

RLC branches, and can be directly imported into ATP as a multi-port network.

7.2 Recommendations

The following recommendations would be made for future work in continuation of

this research topic:

• Continuation of the study of BPL using ATP will require identification of a set of

equations to replace those of Carson. The equations must account for all appropriate

modes of propagation, with accuracy into the 2 to 80 MHz range.

69



• If an appropriate set of equations is identified, the formulas should be verified against

EIGER to benchmark the correctness. This can be done by simply modeling a single-

frequency transmission line in ATP (using the cascaded-pi approach from this paper)

and comparing the current distribution to that of EIGER.

• Immediate research can begin with a valid set of formulas by testing the two imple-

mentation methods described in Chapter 5.

• A long-term solution may involve permanent code implementation into ATP, but

would require help of ATP developers.

• The usefulness of ATP in studying BPL from a power system perspective can finally

be realized if this additional work and progress is made.

7.3 Closing Comments

There is apparent usefulness of a transmission line model in ATP which is valid for

higher frequencies. The current transmission line models used in ATP perform well in the

conditions for which they were intended. In the case of those utilizing Carson’s equations,

this means they perform well (in general) for frequencies below the MHz range. Studies

of BPL and radiated fields have never been successfully performed in an environment that

includes the behaviors of a power system (such as studies performed with ATP). More

specifically, attempts at these types of studies using ATP had never before been published

or publicly documented prior to 2010. The work presented in this thesis includes the first

such published attempt [1], which was essentially an early thrust of this research project.

The work that followed was a result of the apparent deficiencies of ATP transmission line

models at BPL frequencies. As such, the study of BPL using EMTP-type transmission line

models with the intent of predicting radiated fields remains in the infant stages. A great

amount of groundbreaking and exciting research remains in this field.
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Appendix A

Programming Code

A.1 Carson and EMTP Equations in Python, C++

Carson.py

# !/ usr / local / bin / python

import sys, math

from math import sin, cos, atan2, sqrt, exp, log, pi

import cmath

Euler = 0.577215664901532860606512

gamma = exp(Euler)

ln2g = log(2.0/gamma)

lng = Euler

tpi = 2.0*pi

tworoot = sqrt(2.0)

Nmax = 150

F = [ 0.0 ]*Nmax

# Generate table of factorials , non - recursively

F[0] = 1.0

f o r n in range(1, Nmax):

F[n] = n*F[n - 1]

Ns = 6

def sum_inv(m):

sum = 1.0 - 1.0/(2.0*m)

f o r mx in range(2, m + 1):

sum += 1.0/float(mx)

re turn sum

def prod_xsq(m):

prod = float(m)

f o r mx in range(1, m/2):
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prod *= float((2*mx + 1)*(2*mx + 1))

re turn prod

def prod_xsqL(m):

prod = m

f o r mx in range(1, m/2):

prod *= (2*mx + 1)*(2*mx + 1)

re turn float(prod)

i f 0: # order of multiplication for prod_xsq (21) matters in the last bit

p r i n t >>sys.stderr, prod_xsq(21)

p r i n t >>sys.stderr, ((((((((float(21)*float(3*3))*float(5*5))*float

(7*7))*float(9*9))*float(11*11))*float(13*13))*float(15*15))*
float(17*17))*float(19*19)

p r i n t >>sys.stderr, float(3*3)*float(5*5)*float(7*7)*float(9*9)*float

(11*11)*float(13*13)*float(15*15)*float(17*17)*float(19*19)*float

(21)

x = 21.0

x *= float(3*3)

x *= float(5*5)

x *= float(7*7)

x *= float(9*9)

x *= float(11*11)

x *= float(13*13)

x *= float(15*15)

x *= float(17*17)

x *= float(19*19)

p r i n t >>sys.stderr, prod_xsq(21) - float(3*3)*float(5*5)*float(7*7)*
float(9*9)*float(11*11)*float(13*13)*float(15*15)*float(17*17)*
float(19*19)*float(21)

p r i n t >>sys.stderr, prod_xsq(21) - ((((((((float(21)*float(3*3))*
float(5*5))*float(7*7))*float(9*9))*float(11*11))*float(13*13))*
float(15*15))*float(17*17))*float(19*19)

p r i n t >>sys.stderr, prod_xsq(21) - ((((((((float(3*3)*float(21))*
float(5*5))*float(7*7))*float(9*9))*float(11*11))*float(13*13))*
float(15*15))*float(17*17))*float(19*19)

p r i n t >>sys.stderr, prod_xsq(21) - x

sys.exit(0)

i f 0:

p r i n t >>sys.stderr, sum_inv(2) - (1.0 + 1.0/2.0 - 1.0/4.0)

p r i n t >>sys.stderr, sum_inv(3) - (1.0 + 1.0/2.0 + 1.0/3.0 - 1.0/6.0)

p r i n t >>sys.stderr, sum_inv(4) - (1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 -

1.0/8.0)

p r i n t >>sys.stderr, sum_inv(5) - (1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 +

1.0/5.0 - 1.0/10.0)

p r i n t >>sys.stderr, sum_inv(6) - (1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 +

1.0/5.0 + 1.0/6.0 - 1.0/12.0)

p r i n t >>sys.stderr, sum_inv(7) - (1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 +

1.0/5.0 + 1.0/6.0 + 1.0/7.0 - 1.0/14.0)

p r i n t >>sys.stderr, sum_inv(8) - (1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 +
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1.0/5.0 + 1.0/6.0 + 1.0/7.0 + 1.0/8.0 - 1.0/16.0)

p r i n t >>sys.stderr, sum_inv(9) - (1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 +

1.0/5.0 + 1.0/6.0 + 1.0/7.0 + 1.0/8.0 + 1.0/9.0 - 1.0/18.0)

p r i n t >>sys.stderr, sum_inv(10) - (1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0

+ 1.0/5.0 + 1.0/6.0 + 1.0/7.0 + 1.0/8.0 + 1.0/9.0 + 1.0/10.0 -

1.0/20.0)

p r i n t >>sys.stderr, prod_xsq(1) - (1)

p r i n t >>sys.stderr, prod_xsq(3) - (3)

p r i n t >>sys.stderr, prod_xsq(5) - (3*3*5)

p r i n t >>sys.stderr, prod_xsq(7) - (3*3*5*5*7)

p r i n t >>sys.stderr, prod_xsq(9) - (3*3*5*5*7*7*9)

p r i n t >>sys.stderr, prod_xsq(11) - (3*3*5*5*7*7*9*9*11)

p r i n t >>sys.stderr, prod_xsq(13) - (3*3*5*5*7*7*9*9*11*11*13)

p r i n t >>sys.stderr, prod_xsq(15) - (3*3*5*5*7*7*9*9*11*11*13*13*15)

p r i n t >>sys.stderr, prod_xsq(17) -

(3*3*5*5*7*7*9*9*11*11*13*13*15*15*17)

p r i n t >>sys.stderr, prod_xsq(19) -

(3*3*5*5*7*7*9*9*11*11*13*13*15*15*17*17*19)

p r i n t >>sys.stderr, prod_xsq(21) - float(21)*float(3*3)*float(5*5)*
float(7*7)*float(9*9)*float(11*11)*float(13*13)*float(15*15)*
float(17*17)*float(19*19)

p r i n t >>sys.stderr, prod_xsqL(21) - float

(3*3*5*5*7*7*9*9*11*11*13*13*15*15*17*17*19*19*21)

p r i n t >>sys.stderr, prod_xsq(23) -

(3*3*5*5*7*7*9*9*11*11*13*13*15*15*17*17*19*19*21*21*23)

p r i n t >>sys.stderr, prod_xsq(25) -

(3*3*5*5*7*7*9*9*11*11*13*13*15*15*17*17*19*19*21*21*23*23*25)

p r i n t >>sys.stderr, prod_xsq(27) - float(3*3*5*5*7*7)*float

(9*9*11*11)*float(13*13*15*15)*float(17*17*19*19)*float

(21*21*23*23)*float(25*25*27)

sys.exit(0)

SI = [ 0.0 ]*101

PX = [ 0.0 ]*102

f o r n in range(1, 101):

SI[n] = sum_inv(n)

f o r n in range(1, 102, 2):

PX[n] = prod_xsqL(n)

# print PX

# sys . exit (0)

def J(p, q):

g l o b a l F

g l o b a l gamma

g l o b a l Ns

r = sqrt(p*p + q*q)

th = atan2(q, p)

rh = 0.5*r

lnr = log(r)

rp = [ 0.0 ]*32
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rhp = [ 0.0 ]*32

cthp = [ 0.0 ]*32

sthp = [ 0.0 ]*32

f o r n in range(32):

rp[n] = pow(r, n)

rhp[n] = pow(rh, n)

cthp[n] = cos(n*th)

sthp[n] = sin(n*th)

i f n > 32: # cuts off series a specific r^n term

rp[n] = 0.0

rhp[n] = 0.0

cthp[n] = 0.0

sthp[n] = 0.0

s2 = 0.0

s2p = 0.0

nf = 1

nsign = 1

f o r ns in range(Ns):

np = 2 + 4*ns

s2 += nsign*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*cthp[np]

s2p += nsign*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*sthp[np]

nf += 2

nsign = -nsign

s4 = 0.0

s4p = 0.0

nf = 2

nsign = 1

f o r ns in range(Ns):

np = 4 + 4*ns

s4 += nsign*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*cthp[np]

s4p += nsign*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*sthp[np]

nf += 2

nsign = -nsign

sg1 = 0.0

nsign = 1

nden = 3

f o r ns in range(Ns):

np = 1 + 4*ns

den = PX[nden]

sg1 += nsign*rp[np]*cthp[np]/den

nsign = -nsign

nden += 4

sg3 = 0.0

nsign = 1

nden = 5

f o r ns in range(Ns):

np = 3 + 4*ns
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den = PX[nden]

sg3 += nsign*rp[np]*cthp[np]/den

nsign = -nsign

nden += 4

sg2 = 0.0

nsign = 1

nfrac = 2

nf = 1

f o r ns in range(Ns):

np = 2 + 4*ns

nfr = 2

num = SI[nfrac]

sg2 += nsign*num*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*cthp[np]

nsign = -nsign

nfrac += 2

nf += 2

sg4 = 0.0

nsign = 1

nfrac = 3

nf = 2

f o r ns in range(Ns):

np = 4 + 4*ns

nfr = 2

num = SI[nfrac]

sg4 += nsign*num*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*cthp[np]

nsign = -nsign

nfrac += 2

nf += 2

P = (pi/8.0)*(1.0 - s4) + 0.5*(log(2.0/gamma) - lnr)*s2 + 0.5*th*s2p

\

- sg1/tworoot + 0.5*sg2 + sg3/tworoot

Q = 0.25 + 0.5*(log(2.0/gamma) - lnr)*(1.0 - s4) - 0.5*th*s4p \

+ sg1/tworoot - (pi/8.0)*s2 + sg3/tworoot - 0.5*sg4

re turn P + 1.0j*Q

debug_terms = False

debug_coefs = False

def Jr(r):

g l o b a l F

g l o b a l gamma

g l o b a l Ns

g l o b a l th

rh = 0.5*r

s2 = 0.0

s2p = 0.0

nf = 1
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nsign = 1

f o r ns in range(Ns):

np = 2 + 4*ns

s2 += nsign*(1.0/(F[nf]*F[nf + 1]))*pow(rh, np)*cos(np*th)

s2p += nsign*(1.0/(F[nf]*F[nf + 1]))*pow(rh, np)*sin(np*th)

i f debug_terms:

p r i n t >>sys.stderr, ’s2: ’, ns, nsign*(1.0/(F[nf]*F[nf + 1]))*
pow(rh, np)*cos(np*th), \

nsign*(1.0/(F[nf]*F[nf + 1]))*pow(rh, np)*sin(np*th)

nf += 2

nsign = -nsign

s2x = rh*rh*cos(2.0*th)/(F[1]*F[2]) - pow(rh, 6.0)*cos(6.0*th)/(F[3]*
F[4]) \

+ pow(rh, 10.0)*cos(10.0*th)/(F[5]*F[6]) \

- pow(rh, 14.0)*cos(14.0*th)/(F[7]*F[8]) + pow(rh, 18.0)*cos(18.0*
th)/(F[9]*F[10]) \

- pow(rh, 22.0)*cos(22.0*th)/(F[11]*F[12]) + pow(rh, 26.0)*cos

(26.0*th)/(F[13]*F[14])

s2px = rh*rh*sin(2.0*th)/(F[1]*F[2]) - pow(rh, 6.0)*sin(6.0*th)/(F

[3]*F[4]) \

+ pow(rh, 10.0)*sin(10.0*th)/(F[5]*F[6]) \

- pow(rh, 14.0)*sin(14.0*th)/(F[7]*F[8]) + pow(rh, 18.0)*sin(18.0*
th)/(F[9]*F[10]) \

- pow(rh, 22.0)*sin(22.0*th)/(F[11]*F[12]) + pow(rh, 26.0)*sin

(26.0*th)/(F[13]*F[14])

s4 = 0.0

s4p = 0.0

nf = 2

nsign = 1

f o r ns in range(Ns):

np = 4 + 4*ns

s4 += nsign*(1.0/(F[nf]*F[nf + 1]))*pow(rh, np)*cos(np*th)

s4p += nsign*(1.0/(F[nf]*F[nf + 1]))*pow(rh, np)*sin(np*th)

i f debug_terms:

p r i n t >>sys.stderr, ’s4: ’, ns, nsign*(1.0/(F[nf]*F[nf + 1]))*
pow(rh, np)*cos(np*th), \

nsign*(1.0/(F[nf]*F[nf + 1]))*pow(rh, np)*sin(np*th)

nf += 2

nsign = -nsign

s4x = pow(rh, 4.0)*cos(4.0*th)/(F[2]*F[3]) - pow(rh, 8.0)*cos(8.0*th)

/(F[4]*F[5]) \

+ pow(rh, 12.0)*cos(12.0*th)/(F[6]*F[7]) \

- pow(rh, 16.0)*cos(16.0*th)/(F[8]*F[9]) + pow(rh, 20.0)*cos(20.0*
th)/(F[10]*F[11]) \

- pow(rh, 24.0)*cos(24.0*th)/(F[12]*F[13]) + pow(rh, 28.0)*cos

(28.0*th)/(F[14]*F[15])

s4px = pow(rh, 4.0)*sin(4.0*th)/(F[2]*F[3]) - pow(rh, 8.0)*sin(8.0*th

)/(F[4]*F[5]) \

+ pow(rh, 12.0)*sin(12.0*th)/(F[6]*F[7]) \

- pow(rh, 16.0)*sin(16.0*th)/(F[8]*F[9]) + pow(rh, 20.0)*sin(20.0*
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th)/(F[10]*F[11]) \

- pow(rh, 24.0)*sin(24.0*th)/(F[12]*F[13]) + pow(rh, 28.0)*sin

(28.0*th)/(F[14]*F[15])

sg1 = 0.0

nsign = 1

nden = 3

f o r ns in range(Ns):

np = 1 + 4*ns

den = PX[nden]

i f debug_terms:

p r i n t >>sys.stderr, ’sg1: ’, ns, nsign*pow(r, np)*cos(np*th)/

den

sg1 += nsign*pow(r, np)*cos(np*th)/den

nsign = -nsign

nden += 4

sg1x = r*cos(th)/3.0 - pow(r, 5)*cos(5.0*th)/(3*3*5*5*7) \

+ pow(r, 9)*cos(9.0*th)/(3*3*5*5*7*7*9*9*11) \

- pow(r, 13)*cos(13.0*th)/(3*3*5*5*7*7*9*9*11*11*13*13*15) \

+ pow(r, 17)*cos(17.0*th)

/(3*3*5*5*7*7*9*9*11*11*13*13*15*15*17*17*19) \

- pow(r, 21)*cos(21.0*th)/(3*3*5*5*7*7*9*9*11*11*13*13 \

*15*15*17*17*19*19*21*21*23) \

+ pow(r, 25)*cos(25.0*th)/(3*3*5*5*7*7*9*9*11*11*13*13 \

*15*15*17*17*19*19*21*21*23*23*25*25*27)

sg3 = 0.0

nsign = 1

nden = 5

f o r ns in range(Ns):

np = 3 + 4*ns

den = PX[nden]

i f debug_terms:

p r i n t >>sys.stderr, ’sg3: ’, ns, nsign*pow(r, np)*cos(np*th)/

den

sg3 += nsign*pow(r, np)*cos(np*th)/den

nsign = -nsign

nden += 4

sg3x = pow(r, 3)*cos(3.0*th)/(3*3*5) - pow(r, 7)*cos(7.0*th)

/(3*3*5*5*7*7*9) \

+ pow(r, 11)*cos(11.0*th)/(3*3*5*5*7*7*9*9*11*11*13) \

- pow(r, 15)*cos(15.0*th)/(3*3*5*5*7*7*9*9*11*11*13*13*15*15*17) \

+ pow(r, 19)*cos(19.0*th)

/(3*3*5*5*7*7*9*9*11*11*13*13*15*15*17*17*19*19*21) \

- pow(r, 23)*cos(23.0*th)/(3*3*5*5*7*7*9*9*11*11*13*13 \

*15*15*17*17*19*19*21*21*23*23*25) \

+ pow(r, 27)*cos(27.0*th)/(3*3*5*5*7*7*9*9*11*11*13*13 \

*15*15*17*17*19*19*21*21*23 \

*23*25*25*27*27*29)

sg2 = 0.0
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nsign = 1

nfrac = 2

nf = 1

f o r ns in range(Ns):

np = 2 + 4*ns

nfr = 2

num = SI[nfrac]

i f debug_terms:

p r i n t >>sys.stderr, ’sg2: ’, ns, nsign*num*(1.0/(F[nf]*F[nf +

1]))*pow(rh, np)*cos(np*th)

sg2 += nsign*num*(1.0/(F[nf]*F[nf + 1]))*pow(rh, np)*cos(np*th)

nsign = -nsign

nfrac += 2

nf += 2

sg2x = sum_inv(2)*pow(rh, 2)*cos(2.0*th)/(F[1]*F[2]) \

- sum_inv(4)*pow(rh, 6)*cos(6.0*th)/(F[3]*F[4]) \

+ sum_inv(6)*pow(rh, 10)*cos(10.0*th)/(F[5]*F[6]) \

- sum_inv(8)*pow(rh, 14)*cos(14.0*th)/(F[7]*F[8]) \

+ sum_inv(10)*pow(rh, 18)*cos(18.0*th)/(F[9]*F[10]) \

- sum_inv(12)*pow(rh, 22)*cos(22.0*th)/(F[11]*F[12]) \

+ sum_inv(14)*pow(rh, 26)*cos(26.0*th)/(F[13]*F[14])

sg4 = 0.0

nsign = 1

nfrac = 3

nf = 2

f o r ns in range(Ns):

np = 4 + 4*ns

nfr = 2

num = SI[nfrac]

i f debug_terms:

p r i n t >>sys.stderr, ’sg4: ’, ns, nsign*num*(1.0/(F[nf]*F[nf +

1]))*pow(rh, np)*cos(np*th)

sg4 += nsign*num*(1.0/(F[nf]*F[nf + 1]))*pow(rh, np)*cos(np*th)

nsign = -nsign

nfrac += 2

nf += 2

sg4x = sum_inv(3)*pow(rh, 4)*cos(4.0*th)/(F[2]*F[3]) \

- sum_inv(5)*pow(rh, 8)*cos(8.0*th)/(F[4]*F[5]) \

+ sum_inv(7)*pow(rh, 12)*cos(12.0*th)/(F[6]*F[7]) \

- sum_inv(9)*pow(rh, 16)*cos(16.0*th)/(F[8]*F[9]) \

+ sum_inv(11)*pow(rh, 20)*cos(20.0*th)/(F[10]*F[11]) \

- sum_inv(13)*pow(rh, 24)*cos(24.0*th)/(F[12]*F[13]) \

+ sum_inv(15)*pow(rh, 28)*cos(28.0*th)/(F[14]*F[15])

i f debug_coefs:

p r i n t >>sys.stderr, ’2: ’, r, s2, s2x, s2p, s2px

p r i n t >>sys.stderr, ’4: ’, r, s4, s4x, s4p, s4px

p r i n t >>sys.stderr, ’g13: ’, r, sg1, sg1x, sg3, sg3x

p r i n t >>sys.stderr, ’g24: ’, r, sg2, sg2x, sg4, sg4x

p r i n t >>sys.stderr
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P = (pi/8.0)*(1.0 - s4) + 0.5*log(2.0/(gamma*r))*s2 + 0.5*th*s2p \

- sg1/tworoot + 0.5*sg2 + sg3/tworoot

Q = 0.25 + 0.5*log(2.0/(gamma*r))*(1.0 - s4) - 0.5*th*s4p \

+ sg1/tworoot - (pi/8.0)*s2 + sg3/tworoot - 0.5*sg4

re turn P + 1.0j*Q

def Jr_big(r): # Carson ’s asymptotic form

g l o b a l Ns

g l o b a l th

P = -cos(2.0*th)/(r*r)

P += (cos(th)/r + cos(3.0*th)/pow(r, 3.0) + 3.0*cos(5.0*th)/pow(r,

5.0) \

- 45.0*cos(7.0*th)/pow(r, 7.0))/tworoot

Q = (cos(th)/r - cos(3.0*th)/pow(r, 3.0) + 3.0*cos(5.0*th)/pow(r,

5.0) \

+ 45.0*cos(7.0*th)/pow(r, 7.0))/tworoot

i f (r > 10.0):

P = cos(th)/(tworoot*r) - cos(2.0*th)/(r*r)

Q = cos(th)/(tworoot*r)

re turn P + 1.0j*Q

p r i n t >>sys.stderr, ’gamma =’, gamma

p r i n t >>sys.stderr, ’ln2/g =’, ln2g

p r i n t >>sys.stderr, ’lng =’, lng

Nth = 1

Nr = 101

f o r nth in range(Nth):

th = 2.0*pi/3.0

f o r nr in range(1, Nr):

r = 0.1*nr

p = r*cos(th)

q = r*sin(th)

Jv = J(p, q)

Jre = Jv.real

Jim = Jv.imag

# the following " print " stuff is output to my peculiar plotting program

p r i n t ’s’, nth, r, Jre

p r i n t ’s’, nth + Nth, r, Jim

# printing to stderr goes to the screen instead of my plotting program

p r i n t >>sys.stderr, r, Jre, Jim

i f r > 2.0:

Jvb = Jr_big(r)

Jre = Jvb.real

Jim = Jvb.imag

p r i n t ’s’, nth + 10, r, Jre

p r i n t ’s’, nth + Nth + 10, r, Jim

i f r < 2.0:

P = (pi/8.0) - r*cos(th)/(3.0*tworoot) + \

(r*r/16.0)*cos(2.0*th)*(0.6728 + log(2.0/r)) + (r*r*th/16.0)*
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sin(2.0*th)

Q = -0.0386 + 0.5*log(2.0/r) + r*cos(th)/(3.0*tworoot)

p r i n t ’s’, nth + 20, r, P

p r i n t ’s’, nth + Nth + 20, r, Q

p r i n t ’exec autoxy’

EMTPTB.py

# !/ usr / local / bin / python

import sys, math

from math import sin, cos, atan2, sqrt, exp, log, pi

import cmath

Euler = 0.577215664901532860606512

gamma = exp(Euler)

ln2g = log(2.0/gamma)

lng = Euler

tpi = 2.0*pi

tworoot = sqrt(2.0)

Nmax = 150

F = [ 0.0 ]*Nmax

# Generate table of factorials , non - recursively

F[0] = 1.0

f o r n in range(1, Nmax):

F[n] = n*F[n - 1]

Ns = 50

b = [ 0.0 ]*Ns

c = [ 0.0 ]*Ns

d = [ 0.0 ]*Ns

b[1] = tworoot/6.0

b[2] = 1.0/16.0

c[2] = 1.3659315

d[2] = pi*b[2]/4.0

nsign = 1

f o r n in range(3, Ns):

nsign = pow(-1, (n + 1)/2 % 2)

# nsign = pow (-1, (n - 1) /4 % 2)

i f n < 22:

p r i n t >>sys.stderr, n, nsign

b[n] = nsign*b[n - 2]/(n*(n + 2.0))

c[n] = c[n - 2] + 1.0/n + 1.0/(n + 2)

d[n] = pi*b[n]/4.0

def J(p, q):

g l o b a l Ns
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a = sqrt(p*p + q*q)

th = atan2(q, p)

ah = 0.5*a

lna = log(a)

ap = [ 0.0 ]*32

cthp = [ 0.0 ]*32

sthp = [ 0.0 ]*32

f o r n in range(32):

ap[n] = pow(a, n)

cthp[n] = cos(n*th)

sthp[n] = sin(n*th)

i f n > 23:

ap[n] = 0.0

cthp[n] = 0.0

sthp[n] = 0.0

P = pi/8.0 \

- b[1]*ap[1]*cthp[1] \

+ b[2]*( (c[2] - lna)*ap[2]*cthp[2] + th*ap[2]*sthp[2] ) \

+ b[3]*ap[3]*cthp[3] \

- d[4]*ap[4]*cthp[4] \

- b[5]*ap[5]*cthp[5] \

+ b[6]*( (c[6] - lna)*ap[6]*cthp[6] + th*ap[6]*sthp[6] ) \

+ b[7]*ap[7]*cthp[7] \

- d[8]*ap[8]*cthp[8] \

- b[9]*ap[9]*cthp[9] \

+ b[10]*( (c[10] - lna)*ap[10]*cthp[10] + th*ap[10]*sthp[10] ) \

+ b[11]*ap[11]*cthp[11] \

- d[12]*ap[12]*cthp[12] \

- b[13]*ap[13]*cthp[13] \

+ b[14]*( (c[14] - lna)*ap[14]*cthp[14] + th*ap[14]*sthp[14] ) \

+ b[15]*ap[15]*cthp[15] \

- d[16]*ap[16]*cthp[16] \

- b[17]*ap[17]*cthp[17] \

+ b[18]*( (c[18] - lna)*ap[18]*cthp[18] + th*ap[18]*sthp[18] ) \

+ b[19]*ap[19]*cthp[19] \

- d[20]*ap[20]*cthp[20] \

- b[21]*ap[21]*cthp[21] \

+ b[22]*( (c[22] - lna)*ap[22]*cthp[22] + th*ap[22]*sthp[22] ) \

+ b[23]*ap[23]*cthp[23] \

- d[24]*ap[24]*cthp[24] \

- b[25]*ap[25]*cthp[25]

Q = (1.0/2.0)*(0.6159315 - lna) \

+ b[1]*ap[1]*cthp[1] \

- d[2]*ap[2]*cthp[2] \

+ b[3]*ap[3]*cthp[3] \

- b[4]*( (c[4] - lna)*ap[4]*cthp[4] + th*ap[4]*sthp[4] ) \

+ b[5]*ap[5]*cthp[5] \

- d[6]*ap[6]*cthp[6] \

+ b[7]*ap[7]*cthp[7] \

- b[8]*( (c[8] - lna)*ap[8]*cthp[8] + th*ap[8]*sthp[8] ) \
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+ b[9]*ap[9]*cthp[9] \

- d[10]*ap[10]*cthp[10] \

+ b[11]*ap[11]*cthp[11] \

- b[12]*( (c[12] - lna)*ap[12]*cthp[12] + th*ap[12]*sthp[12] ) \

+ b[13]*ap[13]*cthp[13] \

- d[14]*ap[14]*cthp[14] \

+ b[15]*ap[15]*cthp[15] \

- b[16]*( (c[16] - lna)*ap[16]*cthp[16] + th*ap[16]*sthp[16] ) \

+ b[17]*ap[17]*cthp[17] \

- d[18]*ap[18]*cthp[18] \

+ b[19]*ap[19]*cthp[19] \

- b[20]*( (c[20] - lna)*ap[20]*cthp[20] + th*ap[20]*sthp[20] ) \

+ b[21]*ap[21]*cthp[21] \

- d[22]*ap[22]*cthp[22] \

+ b[23]*ap[23]*cthp[23]

re turn P + 1.0j*Q

def Jr_big(r):

g l o b a l Ns

g l o b a l th

P = -cos(2.0*th)/(r*r)

P += (cos(th)/r + cos(3.0*th)/pow(r, 3.0) + 3.0*cos(5.0*th)/pow(r,

5.0) \

- 45.0*cos(7.0*th)/pow(r, 7.0))/tworoot

Q = (cos(th)/r - cos(3.0*th)/pow(r, 3.0) + 3.0*cos(5.0*th)/pow(r,

5.0) \

+ 45.0*cos(7.0*th)/pow(r, 7.0))/tworoot

i f (r > 10.0):

P = cos(th)/(tworoot*r) - cos(2.0*th)/(r*r)

Q = cos(th)/(tworoot*r)

re turn P + 1.0j*Q

Nth = 1

Nr = 101

f o r nth in range(Nth):

th = 2.0*pi/3.0

f o r nr in range(1, Nr):

r = 0.1*nr

p = r*cos(th)

q = r*sin(th)

Jv = J(p, q)

Jre = Jv.real

Jim = Jv.imag

p r i n t ’s’, nth, r, Jre

p r i n t ’s’, nth + Nth, r, Jim

p r i n t >>sys.stderr, r, Jre, Jim

i f r > 2.0:

Jvb = Jr_big(r)

Jre = Jvb.real

Jim = Jvb.imag

p r i n t ’s’, nth + 10, r, Jre
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p r i n t ’s’, nth + Nth + 10, r, Jim

i f r < 2.0:

P = (pi/8.0) - r*cos(th)/(3.0*tworoot) + \

(r*r/16.0)*cos(2.0*th)*(0.6728 + log(2.0/r)) + (r*r*th/16.0)*
sin(2.0*th)

Q = -0.0386 + 0.5*log(2.0/r) + r*cos(th)/(3.0*tworoot)

p r i n t ’s’, nth + 20, r, P

p r i n t ’s’, nth + Nth + 20, r, Q

p r i n t ’exec autoxy’

Carson_integral.cxx

# i n c l u d e <cstdlib>

# i n c l u d e <cstdio>

# i n c l u d e <cmath>

# i n c l u d e <cstring>

# i n c l u d e <iostream>

# i n c l u d e <sstream>

# i n c l u d e <string>

# i n c l u d e <complex>

//# include < constants .h >

c o n s t char sp = ’ ’;

c o n s t char nl = ’\n’;

c o n s t double tworoot = sqrt(2.0);

c o n s t double pi = 4.0*atan(1.0);

c o n s t double tpi = 2.0*pi;

us ing namespace std;

double p = 5.0;

double q = 1.0;

complex<double > ci(0.0, 1.0);

double Euler = 0.577215664901532860606512;

double gamma_e = exp(Euler);

c o n s t i n t Nf = 150;

double F[Nf];

c o n s t i n t Nsi = 101;

double SI[Nsi];

double PX[Nsi + 1];

c o n s t i n t Ne = 50;

double b[Ne];

double c[Ne];

double d[Ne];

c o n s t i n t Ns = 8;

double sum_inv( i n t m)
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{

double sum = 1.0 - 1.0/(2.0*m);

f o r( i n t mx = 2; mx < m + 1; ++mx) // mx in range (2 , m + 1):

{

sum += 1.0/double(mx);

}

re turn sum;

}

double prod_xsq( i n t m)

{

double prod = double(m);

f o r( i n t mx = 1; mx < m/2; ++mx) // mx in range (1 , m /2) :

{

prod *= double((2*mx + 1)*(2*mx + 1));

}

re turn prod;

}

void Factorials()

{

F[0] = 1.0;

f o r( i n t n = 1; n < Nf; ++n)

{

F[n] = n*F[n - 1];

}

f o r( i n t n = 2; n < Nsi; ++n)

{

SI[n] = sum_inv(n);

}

f o r( i n t n = 1; n < Nsi + 1; n += 2)

{

PX[n] = prod_xsq(n);

}

}

void Coeffs() // EMTP Theory Book coefficients

{

b[1] = tworoot/6.0;

b[2] = 1.0/16.0;

c[2] = 1.3659315;

d[2] = pi*b[2]/4.0;

double nsign = 1.0;

f o r( i n t n = 3; n < Ne; ++n)

{

nsign = pow(-1.0, (n + 1)/2 % 2); // corrected form

// nsign = pow ( -1.0 , (n - 1) /4 % 2); // published version

b[n] = nsign*b[n - 2]/(n*(n + 2.0));

c[n] = c[n - 2] + 1.0/n + 1.0/(n + 2);

d[n] = pi*b[n]/4.0;

}

}
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complex<double > J(double p, double q) // Carson ’s series

{

double r = sqrt(p*p + q*q);

double th = atan2(q, p);

double rh = 0.5*r;

double lnr = log(r);

double rp[32];

double rhp[32];

double cthp[32];

double sthp[32];

f o r( i n t n = 0; n < 32; ++n)

{

rp[n] = pow(r, n);

rhp[n] = pow(rh, n);

cthp[n] = cos(n*th);

sthp[n] = sin(n*th);

}

double s2 = 0.0;

double s2p = 0.0;

i n t nf = 1;

i n t nsign = 1;

f o r( i n t ns = 0; ns < Ns; ++ns)

{

i n t np = 2 + 4*ns;

s2 += nsign*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*cthp[np];

s2p += nsign*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*sthp[np];

nf += 2;

nsign = -nsign;

i f (isnan(s2) || isnan(s2p))

{

cerr << "2 2p : " << ns << sp << np << nl;

cerr << rhp[np] << sp << cthp[np] << sp << sthp[np] << sp

<< nsign << sp << nf << sp << F[nf] << sp << F[nf + 1] << sp

<< s2 << sp << s2p << nl;

exit(0);

}

}

double s4 = 0.0;

double s4p = 0.0;

nf = 2;

nsign = 1;

f o r( i n t ns = 0; ns < Ns; ++ns)

{

i n t np = 4 + 4*ns;

s4 += nsign*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*cthp[np];

s4p += nsign*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*sthp[np];

nf += 2;

nsign = -nsign;

i f (isnan(s4) || isnan(s4p))
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{

cerr << "4 4p : " << ns << sp << np << nl;

exit(0);

}

}

double sg1 = 0.0;

nsign = 1;

i n t nden = 3;

f o r( i n t ns = 0; ns < Ns; ++ns)

{

i n t np = 1 + 4*ns;

double den = PX[nden];

sg1 += nsign*rp[np]*cthp[np]/den;

nsign = -nsign;

nden += 4;

i f (isnan(sg1))

{

cerr << "g1 : " << ns << sp << np << nl;

exit(0);

}

}

double sg3 = 0.0;

nsign = 1;

nden = 5;

f o r( i n t ns = 0; ns < Ns; ++ns)

{

i n t np = 3 + 4*ns;

double den = PX[nden];

sg3 += nsign*rp[np]*cthp[np]/den;

nsign = -nsign;

nden += 4;

i f (isnan(sg3))

{

cerr << "g3 : " << ns << sp << np << nl;

exit(0);

}

}

double sg2 = 0.0;

nsign = 1;

i n t nfrac = 2;

nf = 1;

f o r( i n t ns = 0; ns < Ns; ++ns)

{

i n t np = 2 + 4*ns;

i n t nfr = 2;

double num = SI[nfrac];

sg2 += nsign*num*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*cthp[np];

nsign = -nsign;
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nfrac += 2;

nf += 2;

i f (isnan(sg2))

{

cerr << "g2 : " << ns << sp << np << nl;

exit(0);

}

}

double sg4 = 0.0;

nsign = 1;

nfrac = 3;

nf = 2;

f o r( i n t ns = 0; ns < Ns; ++ns)

{

i n t np = 4 + 4*ns;

i n t nfr = 2;

double num = SI[nfrac];

sg4 += nsign*num*(1.0/(F[nf]*F[nf + 1]))*rhp[np]*cthp[np];

nsign = -nsign;

nfrac += 2;

nf += 2;

i f (isnan(sg4))

{

cerr << "g4 : " << ns << sp << np << nl;

exit(0);

}

}

double P = (pi/8.0)*(1.0 - s4) + 0.5*(log(2.0/gamma_e) - lnr)*s2 +

0.5*th*s2p

- sg1/tworoot + 0.5*sg2 + sg3/tworoot;

double Q = 0.25 + 0.5*(log(2.0/gamma_e) - lnr)*(1.0 - s4) - 0.5*th*
s4p

+ sg1/tworoot - (pi/8.0)*s2 + sg3/tworoot - 0.5*sg4;

re turn complex<double > (P, Q);

}

complex<double > Je(double p, double q) // EMTP Theory book series

{

double a = sqrt(p*p + q*q);

double th = atan2(q, p);

double ah = 0.5*a;

double lna = log(a);

double ap[32];

double cthp[32];

double sthp[32];

f o r( i n t n = 0; n < 32; ++n)

{

ap[n] = pow(a, n);

cthp[n] = cos(n*th);

sthp[n] = sin(n*th);
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i f (isnan(ap[n]) || isnan(cthp[n]) || isnan(sthp[n]))

{

cerr << "Je : " << n << sp << a << sp << ap[n] << nl;

}

}

double P = pi/8.0 \

- b[1]*ap[1]*cthp[1]

+ b[2]*( (c[2] - lna)*ap[2]*cthp[2] + th*ap[2]*sthp[2] )

+ b[3]*ap[3]*cthp[3]

- d[4]*ap[4]*cthp[4]

- b[5]*ap[5]*cthp[5]

+ b[6]*( (c[6] - lna)*ap[6]*cthp[6] + th*ap[6]*sthp[6] )

+ b[7]*ap[7]*cthp[7]

- d[8]*ap[8]*cthp[8]

- b[9]*ap[9]*cthp[9]

+ b[10]*( (c[10] - lna)*ap[10]*cthp[10] + th*ap[10]*sthp[10] )

+ b[11]*ap[11]*cthp[11]

- d[12]*ap[12]*cthp[12]

- b[13]*ap[13]*cthp[13]

+ b[14]*( (c[14] - lna)*ap[14]*cthp[14] + th*ap[14]*sthp[14] )

+ b[15]*ap[15]*cthp[15]

- d[16]*ap[16]*cthp[16]

- b[17]*ap[17]*cthp[17]

+ b[18]*( (c[18] - lna)*ap[18]*cthp[18] + th*ap[18]*sthp[18] )

+ b[19]*ap[19]*cthp[19]

- d[20]*ap[20]*cthp[20]

- b[21]*ap[21]*cthp[21]

+ b[22]*( (c[22] - lna)*ap[22]*cthp[22] + th*ap[22]*sthp[22] )

+ b[23]*ap[23]*cthp[23]

- d[24]*ap[24]*cthp[24]

- b[25]*ap[25]*cthp[25];

double Q = (1.0/2.0)*(0.6159315 - lna)

+ b[1]*ap[1]*cthp[1]

- d[2]*ap[2]*cthp[2]

+ b[3]*ap[3]*cthp[3]

- b[4]*( (c[4] - lna)*ap[4]*cthp[4] + th*ap[4]*sthp[4] )

+ b[5]*ap[5]*cthp[5]

- d[6]*ap[6]*cthp[6]

+ b[7]*ap[7]*cthp[7]

- b[8]*( (c[8] - lna)*ap[8]*cthp[8] + th*ap[8]*sthp[8] )

+ b[9]*ap[9]*cthp[9]

- d[10]*ap[10]*cthp[10]

+ b[11]*ap[11]*cthp[11]

- b[12]*( (c[12] - lna)*ap[12]*cthp[12] + th*ap[12]*sthp[12] )

+ b[13]*ap[13]*cthp[13]

- d[14]*ap[14]*cthp[14]

+ b[15]*ap[15]*cthp[15]

- b[16]*( (c[16] - lna)*ap[16]*cthp[16] + th*ap[16]*sthp[16] )

+ b[17]*ap[17]*cthp[17]

- d[18]*ap[18]*cthp[18]

+ b[19]*ap[19]*cthp[19]
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- b[20]*( (c[20] - lna)*ap[20]*cthp[20] + th*ap[20]*sthp[20] )

+ b[21]*ap[21]*cthp[21]

- d[22]*ap[22]*cthp[22]

+ b[23]*ap[23]*cthp[23];

re turn complex<double > (P, Q);

}

complex<double > CI(double p, double q) // explicit Carson ’s integral J(p

, q)

{

double r = sqrt(p*p + q*q);

i n t N = 10000;

double mu_max = 10.0;

double dmu = mu_max/(N);

complex<double > mu_sum(0.0, 0.0);

f o r( i n t i = 0; i <= N; ++i)

{

double ifac;

i f (i == 0 || i == N) ifac = 1.0;

e l s e ifac = (double)(2*(i % 2) + 2);

double mu = i*dmu;

complex<double > arg = (sqrt(mu*mu + ci) - mu)*exp(-p*mu)*cos(q*mu)

;

mu_sum += ifac*arg;

// Plot the integrand to make sure both the range and resolution are

// sufficient

cout << "w 0 " << mu << sp << arg.real() << nl;

cout << "w 1 " << mu << sp << arg.imag() << nl;

// cout << "w 2 " << mu << sp << ( sqrt ( mu* mu + ci) - mu). imag () <<

nl;

}

mu_sum *= dmu/3.0;

// double P = mu_sum. real ();

// double Q = mu_sum. imag ();

re turn mu_sum;

}

i n t main( i n t argc, char **argv)

{

i f (argc > 1) p = strtod(argv[1], 0);

i f (argc > 2) q = strtod(argv[2], 0);

Factorials();

Coeffs();

double r = sqrt(p*p + q*q);

complex<double > Jc = CI(p, q);

cerr << r << sp << Jc.real() << sp << Jc.imag() << endl;

complex<double > Jv = J(p, q);

cerr << r << sp << Jv.real() << sp << Jv.imag() << endl;

complex<double > Jve = Je(p, q);

cerr << r << sp << Jve.real() << sp << Jve.imag() << endl;

cout << "n -1\nexec autoxy" << endl;
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re turn 0;

}

A.2 EMTP Equations in Matlab

A.2.1 Carson’s Formula

CarsonsFunction.m

f u n c t i o n[Z,Y_1km,a,Gamma] = CarsonsFunction(coord,r,R_internal,...

X_internal,f,rho,mu,E_0,terms)

%% Copyright 2010 Nils Markus Stenvig

%

% Nils Markus Stenvig

% nmstenvi@gmail .com

%% Implementation of Carson ’s Formulas given a physical configuration

of

% transmission lines , wire radius , internal resistance and reactance ,

% system frequency , earth resistivity , permeability , permittivity , and

% the disired number of terms for Carson ’s correction formulas.

%

%% Calculations ...

OFFSET=1;

R_internal = R_internal.*1000;

X_internal = X_internal.*1000;

mu = mu*1000;

% w is obviously angular frequency

w = 2*pi*f;

mu_0 = mu;

% h is height of each conductor

f o r i=1:3

h(i) = coord(i,2);

end

% d = distance between conductor i and k.

f o r i=1:3

f o r k=1:3

dist = s q r t((coord(i,1)-coord(k,1))^2+(coord(i,2)-coord(k,2))^2)

;

d(i,k) = dist;

c l e a r dist

end

end

% D = distance between conductor i and image of conductor k.

f o r i=1:3

f o r k=1:3

c l e a r dist
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dist = s q r t((coord(i,1)-coord(k,1))^2+(coord(i,2)+coord(k,2))^2)

;

D(i,k) = dist;

c l e a r dist

end

end

%% Find Capacitance Matrix.

f o r i=1:3

f o r k=1:3

P(i,k) = 1/(2*pi*E_0)* l o g(D(i,k)/d(i,k));

end

P(i,i) = 1/(2*pi*E_0)* l o g(D(i,i)/r(i));

end

% Now [C]

C = inv(P); % The units here are F/m

% Now Y = G + jw[C] but we neglegt G ...

Y=1i*w*C; % Ohms / meter

Y_1km = 1000*Y; % Ohms / km

%% Correction Terms

% defining a

f o r i=1:3

f o r k=1:3

a(i,k) = 4*pi* s q r t(5)*10^-4*D(i,k)* s q r t(f/rho);

end

end

% Some Cosine Terms

f o r i=1:3

f o r k=1:3

CosPhi(i,k) = (h(i)+h(k))/D(i,k);

Phi(i,k) = acos(CosPhi(i,k));

end

end

% Some Sine Terms

f o r i=1:3

f o r k=1:3

SinPhi(i,k) = abs(coord(i,1)-coord(k,1))/D(i,k);

end

end

%% Now we will be working for a - parameter less than 5. Ie , Carson ’s

% infinite series ...

% some constants

b(1) = s q r t(2)/6;

b(2) = 1/16;

b(3) = b(1)/(3*(3+2));

b(4) = b(2)/(4*(4+2));

s i g n = 1;

c(1) = 0;
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c(2) = 1.3659315;

i=5;

whi le i<=terms+4

s i g n= s i g n*-1;

b(i) = b(i-2)* s i g n/(i*(i+2));

i=i+1;

b(i) = b(i-2)* s i g n/(i*(i+2));

i=i+1;

end

i=3;

whi le i<=terms+3

c(i) = c(i-2)+1/i+1/(i+2);

i=i+1;

end

i=1;

whi le i<=terms+3

d_cons(i) = pi/4*b(i);

i=i+1;

end

% Correction Terms for earth return effects

% dRi is Resistive correction term

% dXi is the Reactive correction term

f o r i=1:3

f o r k=1:3

dRterm0(i,k) = 4*w*10^-4*(pi/8);

dXterm0(i,k) = 4*w*10^-4*(0.5*(0.6159315- l o g(a(i,k))));

m=1;

whi le m<=terms

dRtest(i,k,m) = 4*w*10^-4*(-b(m)*a(i,k)^(m)...

*co s(m*Phi(i,k)));

dXtest(i,k,m) = 4*w*10^-4*(+b(m)*a(i,k)^(m)...

*co s(m*Phi(i,k)));

m=m+1;

dRtest(i,k,m) = 4*w*10^-4*(+b(m)*((c(m)- l o g(a(i,k)))...

*a(i,k)^(m)*co s((m)*Phi(i,k))+Phi(i,k)*a(i,k)^(m)...

* s i n((m)*Phi(i,k))));

dXtest(i,k,m) = 4*w*10^-4*(-d_cons(m)*a(i,k)^(m)...

*co s((m)*Phi(i,k)));

m=m+1;

dRtest(i,k,m) = 4*w*10^-4*(+b(m)*a(i,k)^(m)...

*co s((m)*Phi(i,k)));

dXtest(i,k,m) = 4*w*10^-4*(+b(m)*a(i,k)^(m)...

*co s((m)*Phi(i,k)));

m=m+1;

dRtest(i,k,m) = 4*w*10^-4*(-d_cons(m)*a(i,k)^(m)...

*co s((m)*Phi(i,k)));

dXtest(i,k,m) = 4*w*10^-4*(-b(m)*((c(m)- l o g(a(i,k)))...

*a(i,k)^(m)*co s((m)*Phi(i,k))+Phi(i,k)*a(i,k)^(m)...

* s i n((m)*Phi(i,k))));
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m=m+1;

end

dRi(i,k)=dRterm0(i,k);

dXi(i,k)=dXterm0(i,k);

m=1;

whi le m<=terms

dRi(i,k) = dRi(i,k) + dRtest(i,k,m);

dXi(i,k) = dXi(i,k) + dXtest(i,k,m);

m=m+1;

end

end

end

% Now on to Self Impedance , Zii

f o r i=1:3

Zi(i,i) = R_internal(i)+dRi(i,i)+1i*(w*mu_0/(2*pi)*OFFSET...

* l o g(2*h(i)/(0.3048))+X_internal(i)+dXi(i,i));

end

% Now on to Mutual Impedance , Zik

f o r i=1:2

f o r k=(i+1):3

Zi(i,k) = dRi(i,k)+1i*(w*mu_0/(2*pi)* l o g(D(i,k)/d(i,k))+dXi(i,k)

);

Zi(k,i) = Zi(i,k);

end

end

%% Now we will be working for a - parameter greater than 5. Ie , Carson ’s

% finite series ... an asymptatic expansion of his formulas. If using

% higher frequencies , these correction terms should be used

% Correction terms for earth return effects

% dRf is Resistive correction term

% dXf is the Reactive correction term

f o r i=1:3

f o r k=1:3

dRf(i,k) = 4*w*10^-4/ s q r t(2)*(co s(Phi(i,k))/a(i,k)...

- s q r t(2)*co s(2*Phi(i,k))/a(i,k)^2 ...

+co s(3*Phi(i,k))/a(i,k)^3 ...

+3*co s(5*Phi(i,k))/a(i,k)^5 ...

-45*co s(7*Phi(i,k))/a(i,k)^7);

dXf(i,k) = 4*w*10^-4/ s q r t(2)*(co s(Phi(i,k))/a(i,k)...

-co s(3*Phi(i,k))/a(i,k)^3 ...

+3*co s(5*Phi(i,k))/a(i,k)^5 ...

+45*co s(7*Phi(i,k))/a(i,k)^7);

end

end

% Now on to Self Impedance , Zii

f o r i=1:3

Zf(i,i) = R_internal(i)+dRf(i,i)+1i*(w*mu_0/(2*pi)*OFFSET...
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* l o g(2*h(i)/(0.3048))+X_internal(i)+dXf(i,i));

end

% Now on to Mutual Impedance , Zik

f o r i=1:2

f o r k=(i+1):3

Zf(i,k) = dRf(i,k)+1i*(w*mu_0/(2*pi)* l o g(D(i,k)/d(i,k))+dXf(i,k)

);

Zf(k,i) = Zf(i,k);

end

end

%% Decide which Z to use ...

f o r i=1:3

f o r k=1:3

i f a(i,k)<5

Z(i,k) = Zi(i,k);

e l s e

Z(i,k) = Zf(i,k);

end

end

end

%% Propagation Constant

Gamma = s q r t(Z*Y_1km);

A.2.2 Propagation Constant Calculation

PropagationConstant.m

f u n c t i o n[A,B] = PropagationConstant(Carson)

%% Copyright 2010 Nils Markus Stenvig

%

% Nils Markus Stenvig

% nmstenvi@gmail .com

%% Simple Function for Propagation Constants

[row,col] = s i z e(Carson);

f o r m=1:row

f o r n=1:col

attn(m,n).Alpha = r e a l(Carson(m,n).Gamma);

faze(m,n).Beta = imag(Carson(m,n).Gamma);

end

end

A = attn;

B = faze;

A.2.3 3 Conductor Carson Example
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LogCarsons.m

%% Copyright 2010 Nils Markus Stenvig

%

% Nils Markus Stenvig

% nmstenvi@gmail .com

%

% This code investigates Carson ’s formulas for series impedance matrix

of

% a transmission line - calculated from line geometry . Self and mutual

% impedance are taken into account , as well as Carson ’s correction

terms

% for earth return effects. We simply consider 3 wires for now .

%

% Inputs: Basic line geometry , conductor properties , system frequency

% Functions : Calls CarsonsFunction and PropagationConstant

% Outputs: The elements of the series impedance matrix and plots

% of alpha and beta .

%

%% ////////////////////////////////

%% Inputs

c l e a r a l l

c l c

% First , conductor heights.

% Enter coordinates for each conductor , in units of meters.

coord = [-2,10;0,10;2,10]; % Coordinates of conductors 1, 2, & 3.

%

%

r = [0.0151892;0.0151892;0.0151892];% ( meters) Radius of each conductor .

R_internal = [0.000061;0.000061;0.000061];% ( ohm / meter ) AC Resistance .

X_internal = [0.0002433;0.0002433;0.0002433];% ( ohm / meter ) Reactance .

freq = l o g s p a c e(1,8,50);% ( Hz) Frequency .

perm = l o g s p a c e(-3,3,50);% ( ohm * meter ) Earth resistivity

mu = 4*pi*10^-7; % Permeability of free space .

E_0 = 8.85418782*10^-12; % Permetivity of free space .

% How many correction terms ? Multiple of 4...

terms = 128; % Only for record. You need to go change stuff for this .

thefile = ’Carsons_20100707_v03.mat’;% Name your file ...

% I like to use date format eg. 20100629 is June 29, 2010.

%%

f o r iterationF = 1: l e n g t h(freq)

f o r iterationR = 1: l e n g t h(perm)

f = freq(iterationF);

rho = perm(iterationR);

[Z,Y_1km,a,Gamma] = CarsonsFunction...

(coord,r,R_internal,X_internal,f,rho,mu,E_0,terms);

Car.Z = Z;

Car.rho = rho;

Car.a_parameter = a;

Car.Gamma = Gamma;
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Car.f = f;

Car.Y = Y_1km;

Carson(iterationF,iterationR) = Car;

end

end

%% Save

save(thefile, ’Carson’);

f p r i n t f(’Your file will be a m x n matrix saved as %s with a\n’, thefile

)

f p r i n t f(’6 element structure within each cell, including:\n’)

f p r i n t f...

(’ Z\n rho\n a_parameter\n Gamma\n f\nand Y\n\n

’)

f p r i n t f(’Contents of your %s file:\n’, thefile)

whos(’-file’, thefile)

disp(’... and we are done. That was easy. Cheers.’)

c l e a r

%% Now plot some propagation constants ...

[Alpha,Beta] = PropagationConstant(Carson);

f o r i=1:50

f(i) = Carson(i,1).f;

end

f o r conductor = 1:3

f o r j=1:50

f o r i=1:50

this(i,j,conductor) = Alpha(i,j).Alpha(conductor,conductor);

that(i,j,conductor) = Beta(i,j).Beta(conductor,conductor);

end

end

end

f i g u r e(001)

f o r j=1:5

hold on

p l o t(f,this(:,j*10,1))

end

hold off

plottools

f i g u r e(002)

f o r j=1:5

hold on

p l o t(f,that(:,j*10,1))

end

hold off

plottools
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A.3 ATP Propagation Constants in Matlab

A.3.1 Reading ATP .lis File

atpCarson.m

f u n c t i o n[Gamma,Z,Y] = atpCarson(w,whatfile)

%% Copyright 2010 Nils Markus Stenvig

%

% Nils Markus Stenvig

% nmstenvi@gmail .com

%% Function for stripping Z and C from ATP . lis file

parameters = importdata(whatfile, ’ ’, 9);

Imp = parameters.data(1,1) + 1i*parameters.data(1,2);

Cap = parameters.data(1,3);

Z = Imp;

C = Cap;

Y = C*1i*w;

Gamma = s q r t(Z*Y);

A.3.2 Calculating Propagation Constants

ATP_Propagation.m

%% Copyright 2010 Nils Markus Stenvig

%

% Nils Markus Stenvig

% nmstenvi@gmail .com

%% Calculation of ATP Propagation Constants from internal use of Carson

’s

% formulas

c l e a r

freq = [10000, 100000, 1000000, 5000000, 10000000, 50000000];

perm = [.1, 1, 10, 100, 1000, 10000];

i = 6;

k = 6;

f = freq(1,i);

Rho = perm(1,k);

w = 2*pi*f;

whatfile = ’C:\ATP\ATPDRAW\Atp\skinEffect.lib’;

newfile = ’atpSkinEffect_20100817.mat’;

load(newfile)

[Gamma,Z,Y] = atpCarson(w,whatfile);

Carson(i,k).Gamma = Gamma;
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Carson(i,k).Z = Z;

Carson(i,k).Y = Y;

Carson(i,k).Rho = Rho;

Carson(i,k).f = f;

save(newfile, ’Carson’);

c l e a r Gamma Z Y Rho f freq i k newfile perm w whatfile

A.3.3 Plotting Example Code

atpPropagationConstantPlots.m

%% Copyright 2010 Nils Markus Stenvig

%

% Nils Markus Stenvig

% nmstenvi@gmail .com

%% Plotting Example Code

[Alpha,Beta] = atpPropagationConstant(Carson);

f o r i=1:6

f(i) = Carson(i,1).f;

end

f o r j=1:6

f o r i=1:6

this(i,j) = Alpha(i,j).Alpha*1e-6;

that(i,j) = Beta(i,j).Beta*1e-6;

end

end

f i g u r e(001)

f o r j=1:6

hold on

p l o t(f,this(:,j),’--o’)

end

hold off

x l a b e l(’Frequency (Hz)’)

y l a b e l(’Attenuation Np/m’)

l eg end(’0.1 ohm-m’,’1 ohm-m’,’10 ohm-m’,’100 ohm-m’,’1000 ohm-m’...

,’10000 ohm-m’)

plottools

f i g u r e(002)

f o r j=1:6

hold on

p l o t(f,that(:,j),’--o’)

end

hold off

x l a b e l(’Frequency (Hz)’)

y l a b e l(’Phase Rad/m’)

l eg end(’0.1 ohm-m’,’1 ohm-m’,’10 ohm-m’,’100 ohm-m’,’1000 ohm-m’...
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,’10000 ohm-m’)

plottools
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Abstract— Application of BPL technologies to existing overhead 

high-voltage power lines would benefit greatly from improved 

simulation tools capable of predicting performance - such as the 

electromagnetic fields radiated from such lines.  Existing EMTP-

based frequency-dependent line models are attractive since their 

parameters are derived from physical design dimensions which 

are easily obtained. However, to calculate the radiated 

electromagnetic fields, detailed current distributions need to be 

determined.  This paper presents a method of using EMTP line 

models to determine the current distribution on the lines, as well 

as a technique for using these current distributions to determine 

the radiated electromagnetic fields. 

Keywords-Transmission line; frequency dependency; modeling 

I.  INTRODUCTION 

When overhead high-voltage transmission lines are used as 
the waveguide structure for broadband communications, 
interference caused by the radiated emissions from those lines 
becomes a matter of concern [1]. While traditional Power Line 
Carrier (PLC) in the 25-450 kHz range [2-3], has been used for 
years, present Broadband over Power Line (BPL) systems 
operate in the 2-80 MHz range [1,4]. This increase in frequency 
and corresponding decrease in wavelength corresponds to an 
increasing concern over radiated emissions. 

 Prediction of the radiated electromagnetic field from 
any antenna involves two steps: determination of the current 
distribution on the antenna, followed by determination of the 
resulting electromagnetic fields. Carrying out these steps when 
the ‘antenna’ is a realistic power system - with power lines and 
power system components such as transformers, capacitive 
banks, etc. - is a daunting task. In this paper we examine a 
novel two-step solution for the task.   

 Since this work involves two different types of 
modeling tools we first provide a fairly detailed background 

section.  We examine present EMTP modeling approaches, as 
well as concerns that arise when using such modeling 
techniques at higher frequencies. We then present a unique 
method of applying EMTP-based transmission line models to 
determine the current distribution. This is followed by a 
description of how the radiated electromagnetic fields are 
determined from the current distribution. We then describe the 
particular test scenario used in this paper, which is followed by 
results and pertinent conclusions. 

II. BACKGROUND 

A. EMTP Modeling Approaches 

Well known worldwide, EMTP-type software (e.g. ATP) 
has extensive features for modeling realistic power systems and 
has been successfully applied to determine PLC performance 
[5-6].  ATP is commonly used to determine terminal voltages 
and currents at characteristic power frequencies and for 
impulse and step response [7], although such software has not 
traditionally been used to determine detailed current 
distributions along the lines. To determine these currents using 
ATP we first consider the applicability and limitations of 
existing frequency-dependent EMTP line models which are 
based on physical design dimensions [8]. 

For higher frequencies or long lines, the two approaches 
that can be considered are a cascaded coupled-  model [3–
Ch.11] and a distributed-parameter “long line” model. 
Development of presently used distributed-parameter transient 
transmission line models for this case are based on the 
“traveling wave model” or “telegrapher’s model” presented in 
many textbooks [3-Ch.9]. The representation for a single-
conductor case is shown in Fig. 1. Note that distance (x) is 
measured from the receiving end toward the sending end. 

With support from: Lawrence Livermore National Laboratory
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Figure 1. Telegrapher’s Model 

For a gener uctor s  ions are al multi-cond ca e, the basic equat !"!# $ %&'(   and   !)!# $ %*'+ ,     (1) 

where V and I are the vectors of node voltages and line currents 
at a distance x from the receiving end of the multiple conductor 
transmission line. Z is the matrix of coupled series impedances 
of the conductors for an incremental length, and Y is the matrix 
of coupled shunt admittances for that same length. Details of 
solution are given in [3] and in references [9-13]. The 
equations fro mbined  fom (1) can be co  to rm 

!,"!#, $ %&'%*'+  and   
!,)!#, $ %*'%&'( ,       (2) 

where &-. $ /-. 0 1-. !!2  and  *-. $ 3-. 0 4-. !!2 .        (3) 

Modal transformations can be used to transform the “phase 
domain” equations into a set of decoupled “modal domain” 
equations which can simplify the mathematics for model 
implementation: + $ %56'+78 and  + $ %5-'(7            (4) 

where +7  and (7  are modal voltages and currents, and %9:' 
and %9;' are the voltage and current transformation matrices 

which are also used to transform Z and Y into their decoupled 

modal forms < n =  >  a d <.  

!"? !# $ %5 %&'%5 '(7 $ %> '(7
 !)?!#

"'@A - <                   (5) 

$ %5-'@A%*'%5"'+7 $ %=<'+7                  (6) 

ATP utilizes K sf  which is easily 
expanded to an arb h

arrenbauer’s Tran ormation,
itrary number of p ases: 

5 $ BC CC DC  EF G 8888888C8888888H II HC 88888G888888 H CC DC  EF J  ,         (7) 

where M is the number of phases. The inverse transformation is 
of the form 

5@A $ AK LC 88CC  C G 88CM8 88M8I 88MC 88M H 88MM  CN .                       (8) 

The physical representation of this for a 3-phase set of 
conductors is given by Figs. 2-4. 

 
Figure 2. Mode Zero 

 
Figure 3. Mode One 

 
Figure 4. Mode Two 

Convolution methods are used to convert the frequency-
domain solution to a time-domain equivalent that can be 
implemented in time-domain simulation programs like EMTP. 
Errors in this approach are due to the fact that the solution is 
only valid for the frequency that the model was developed for 
[9-10]. Improvements have been made by applying frequency-
dependent weighting functions to the convolution [11-12], by 
developing improved frequency fitting techniques [12], and by 
developing the model directly in the phase domain and thus 
avoiding modal transformations [13]. More recent 
advancements include improved frequency fitting techniques 
[14]. In any case, it is desirable to confirm that the line model 
being implemented is valid within the range of frequencies to 
be simulated. The Foster equivalent shown in Fig. 5 is the basis 
for the frequency-dependent Z.  

 
Figure 5. Foster Equivalent 

Fig. 6 shows the basic representation of each end of the 
multi-phase Marti model [12]. Behaviors at one end manifest 
themselves at the other end after the appropriate propagation 
time delay. 

io
io
io

3io
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Figure 6. Marti Model 

B. Electromagnetics-based Models 

To accurately predict the performance of any natural 
phenomena (such as energy propagating on overhead 
transmission lines) one must pay attention to the limitations of 
the prediction model being used. As mentioned above, 
programs like EMTP are based on the “traveling wave model” 
or “telegrapher’s model”.  As observed by Paul and others [15-
18], one of the underlying assumptions for this model is that 
the electromagnetic fields surrounding the transmission line 
structure are TEM (transverse electromagnetic) fields – i.e., 
that the electromagnetic fields are perpendicular to the 
direction of propagation (or lie in a plane transverse to 
direction of propagation).  For the model to be strictly valid, we 
assume (a) the conductors are parallel to each other and to the 
direction of propagation, (b) they are perfect conductors (i.e., 
no resistance) and (c) the conductors have uniform cross 
section along the line axis.  In addition, (d) the region 
surrounding the conductors is assumed homogeneous (although 
it can be lossy).  It can also be shown (at least for two-
conductor lines) that under the TEM assumption, the currents 
in the two conductors must be equal in magnitude and opposite 
in direction – i.e., that for any cross-section of the line, the total 
current flowing in the conductors must be zero [15,19]. It 
would appear that very few ‘real life’ transmission lines satisfy 
all of these criteria.  In fact, almost all conductors have some 
resistive loss, lie over an imperfect ground (so they are 
immersed in an inhomogeneous material) and are not perfectly 
uniform in cross section. Although this is true, when we are 
examining parallel transmission lines operated at a frequency 
for which the cross-sectional dimensions of the line are much 
less than a wavelength, solution of the transmission line 
equations gives significant contribution to the fields and the 
resulting terminal voltages and currents.  Such solutions are 
commonly referred to as ‘quasi-TEM’ [15] or ‘quasi-static’ 
[17] solutions.  A vast body of research has been conducted 
evaluating when such solutions are accurate [20-23].  Olsen 
[17] points out that when the height of the transmission line is 
small compared to the wavelength in free space that the quasi-
static approximation can be made, with the resulting solutions 
being identical to those derived by Carson [24].  Although 
these approximations may be valid at power frequencies, the 
situation changes when considering BPL frequencies when 
cross-sectional dimensions of the line are no longer a fraction 
of a wavelength. 

To evaluate whether or not a given model will give accurate 
results one must not only ask what assumptions might be 
violated, but also what the results will be used for.  For 

example, in the case of a transmission line if the desired result 
is to determine the terminal voltages and currents to evaluate 
load flows, etc., quasi-static solutions obtained from solving 
the transmission line equations might be perfectly acceptable.  
If, however, one wants to determine the electromagnetic fields 
radiated from the transmission lines, the error resulting from 
solutions based on the transmission line equations might be 
unacceptable.  The reason is that the currents obtained from 
solution of the transmission line equations are truly the 
transmission mode (or differential line mode) currents [15-16] 
– i.e., currents that are flowing in opposite directions.   

When the TEM assumptions are satisfied, these are the only 
currents that exist.  When this is not the case, however, antenna 
mode (or common mode) currents can also exist [15-16].  
These are currents that are flowing in the same direction on the 
lines. For most power transmission line problems, the 
transmission line currents are dominant, so that if one wants the 
terminal currents and voltages, approximate results based on 
transmission line theory may be perfectly adequate.  It turns 
out, however, that in the case of radiated fields antenna mode 
currents tend to be very significant – even if they are much 
smaller in magnitude than transmission line mode currents [25-
26].  According to Paul [15] and Tesche [16] the reason is 
because the radiated fields from transmission line currents tend 
to subtract but those from antenna mode currents add.  

To address the concern of interference potential from BPL 
signals propagating on power lines, researchers have turned to 
a number of strategies to predict the antenna mode currents 
(from which the resulting fields can be determined).  One 
method is to use techniques commonly employed by those 
working with antennas and with other high-frequency 
applications of electromagnetics. A number of methods are 
available in the computational electromagnetics area, including 
the moment method, the finite element method, the finite 
difference method, and a host of others [16, 27-29].  Recent 
papers examining this issue have used a variety of techniques 
to analyze this problem [30-33].   

One of the difficulties encountered using high-frequency 
methods to examine the radiated fields from practical power 
lines lies in modeling the multitude of components in a 
practical power system (i.e., transmission lines, transformers, 
capacitive banks, etc.). High-frequency techniques tend to work 
well for things like the transmission lines themselves (since 
they can be modeled as wires), but get cumbersome when other 
power system components are included in the model.  
Programs like EMTP-ATP, however already have lumped 
models for most of the power system components available.  
We now turn to examining how to use these models to 
determine the current distribution. 

III. DEVELOPMENT OF EMTP-ATP LINE MODEL 

A. Modeling Needs 

Distributed line currents and voltages are of particular 
interest in simulation of line performance for communications. 
These values are particularly important for determining the 
radiated fields, which are also of interest.  The robust and 
flexible nature of EMTP-type software (e.g. ATP) makes it an 
ideal platform for carrying out such work. The power system 
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modeling features of ATP are extensive and are used across the 
globe for time-domain analysis. An area that has yet to be 
explored, however, is in high resolution modeling of distributed 
currents along transmission lines. A powerful “Line & Cable 
Constants” (LCC) feature of ATP is used for building 
transmission lines and for calculating impedance matrices. For 
short-line modeling, the pi approximation has been widely 
used. For the characteristic power frequencies there is no need 
to obtain highly detailed current distributions along the lines. In 
order to study the effects of PLC at much higher frequencies, 
however, the decreasing wavelengths make these highly 
detailed models increasingly important. The resolution of 
current distributions must befit the frequency being used in 
order to accurately calculate the radiated fields. A cascaded-pi 
approach is capable of meeting these needs. 

B. Implementation of Cascaded Models 

Transmission lines have uniformly distributed parameters 
while pi models are lumped parameter approximations. The pi 
sections modeled in ATP can be used in a cascaded approach to 
incrementally define the line parameters. Fig. 7 demonstrates 
the use of cascaded pi line sections to approximate a distributed 
parameter line.  

 Figure 7. Cascaded Pi Representation 

As mentioned before, it is necessary to have highly detailed 
line models when studying effects of higher frequencies and 
when dealing with increasingly small wavelengths. By 
shortening the line segments in the LCC modules of ATP, a 
finite number of short, cascaded pi line sections can more 
closely approximate a distributed parameter model. By 
breaking down the pi model, the line currents can be obtained 
for each incremental pi section. The minimum number of 
cascaded pi sections needed to accurately represent the line is 
determined by 

 !"# $
%&'

(&)
* ,                 (9) 

where  !"# is the maximum of the desired frequency range,  ) 
is line length (km), and + is the propagation speed (km/s). The 
number of cascaded pi sections needed is thus linked to the 
upper limit of the desired frequency range. As the desired 
frequencies become very high, an obvious limitation of the 
cascaded approach is that a very high number of circuit 
elements are needed. Since the distribution of line currents is 
also in question, the number of simulation outputs also 
becomes very high. For these reasons, ATP requires a special 
application file designed to accommodate the higher number of 
circuit elements. This version, titled ‘gigmingw’ is readily 
available through the European EMTP/ATP Users Group. 
Because distributed line voltages and currents can be directly 
obtained by this method, calculation of the associated 
electromagnetic fields can next be achieved. 

IV. DEVELOPMENT OF RADIATION MODEL 

The Electromagnetics Interactions Generalized (EIGER) 
code was developed by the University of Houston, Sandia 
National Laboratory, and Lawrence Livermore National 
Laboratories. This three-dimensional, boundary element, 
frequency domain, code allows the computation of electric and 
magnetic fields from arbitrary sources built with wires, patches, 
and surfaces. EIGER is freely available from Sandia National 
Laboratory (www.sandia.gov). Ideally, radiated fields from 
BPL sources could be predicted entirely from EIGER. 
However, as previously stated, transmission lines contain 
passive and active devices for power distribution control which 
cannot easily be built in EIGER; transformers being one 
example. Therefore, the EIGER source code was modified to 
accept the external ATP current distribution. Without this 
modification, the user would be required to accept a current 
distribution from a voltage or current source and approximate 
transmission line devices with lumped parameters; the result 
would be decreasing accuracy with increasing frequency.  

Given a BPL current distribution calculated from ATP, the 
complex current is interpolated and substituted for the EIGER 
transmission line model current file (*.mnh). Executing the 
modified version of EIGER results in the ATP current 
distribution, EIGER model geometry, and terrain information 
being numerically combined into a Green’s Function [34] 
which is then used to calculate the BPL radiated electric and 
magnetic fields.  Using EIGER is beneficial for several 
reasons; the field predictions are valid into the GHz range, one 
can account for the presence of a lossy and inhomogeneous 
earth, and geological terrain, which might otherwise alter 
predicted BPL fields, can also be included in the EIGER model 
as dielectric bodies. 

V. TEST SCENARIO 

A test-case transmission line was identified to demonstrate 
the usefulness of the method for obtaining distributed line 
currents and radiated fields. An isolated 5 km, 3-conductor 
non-transposed line was chosen for study. The flat terrain is a 
homogeneous ground characterized by *, $ -./ 0 12./   [34]. 
Conductor spacing is realistically defined for a standard 
distribution tower structure. Using the center-pole as a 
reference, phases A and B are left of center by 1.2192 and 
0.3048 meters respectively. Phase C is right of center by 
1.2192 meters. The conductors have a height of 9.5 meters with 
0.75 meter sag and 0.03576 3456 dc resistance. The line was 
terminated with a small, wye-connected load of 10*3 for each 
phase. A current source placed at the sending end supplied a 3-
phase sinusoidal current as the injected signal. A frequency 
scan was then used to determine the current distributions for 
every 5 meters, with 1,000 pi sections in total, see Fig. 8. 

 
Figure 8: Test Case Scenario 
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VI. RESULTS 

A. Current Distribution from ATP 

Using the line description from section V, the distributed 
line currents were obtained in ATP. Shown in Fig. 9 is the 
distributed current along one conductor as a function of line 
distance for a 500 kHz injected signal. Note that the figure 
shows magnitudes only, and that a large source current was 
used for this demonstration. Though BPL systems would 
typically use smaller signals, the process for determining the 
currents and resulting fields will be the same as in this 
example. Additionally, while BPL frequencies are typically in 
the tens of MHz, the authors wish to only describe the process 
in this manuscript, using a lower frequency. 

 
Figure 9: 500 kHz ATP current distribution along line 

B. Radiated Fields from EIGER 

The 5 km transmission line from Section V is built into the 
EIGER model. An ASCII file of the real and imaginary 
transmission line current as function of line distance, and for 
each phase, is then created from ATP at a frequency of 500 
kHz. We do not calculate far-field patterns from EIGER, but 
rather a series of near field points, due to the large wavelengths 
at these frequencies; about 100 meters from ACSR wire with 
velocity of 0.33 the speed of light at 1 MHz [35]. The fields 
from this test case are arbitrarily calculated at 50 meters above 
the transmission line in a constant altitude plane, although 
fields can be calculated in any volume. Fig. 10 illustrates the 
results for the amplitude of the vertical magnetic field (the 
black line represents the transmission line). Note that while 
Fig. 9 shows that impedance mismatches at the transmission 
line boundary sets up a standing wave for the current 
distribution with the number of nodes proportional to the 
frequency, the radiated fields incorporate the radiation 
efficiencies of the transmission lines. In essence, the current 
distribution and radiation efficiency are convoluted. 

  
Figure 10. Magnitude of radiated vertical magnetic field at altitude of 50 m. 

VII. CONCLUSIONS AND RECOMMENDATIONS 

Radiation from BPL systems has the potential of causing 
interference and radiation losses from BPL systems can be 
significant.  In order to predict both of these, EMTP-ATP is 
used to determine the current distribution of a transmission 
line.  This current distribution is then overlaid onto the 
electromagnetic EIGER model of the physical transmission line 
to determine the radiated fields of a BPL system. This two-fold 
system is beneficial because EMTP-ATP can accurately model 
power electronic devices and control schemes and the 
components found in power systems (e.g. power transformers, 
instrument transformers, communication couplers, etc.) which 
cannot be ignored in these studies. Given this current 
distribution, EIGER can account for the inhomogeneity 
commonly found in the earth as well as using dielectric bodies 
to approximate terrain effects. While EIGER is valid into the 
microwave region (GHz), EMTP-ATP capabilities have not 
been validated for such high frequencies. Future work will 
examine this limitation and attempt to extend EMTP-ATP into 
higher frequency regimes. 
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Appendix D

Notes on Continuation of Research

Work

The conclusion of this thesis includes recommendations for future work in contin-

uation of what has been presented. It is the recommendation of the author that this thesis

be used as a tool for learning and understanding the necessary background for working in

the realm of high-frequency wave propagation and radiated fields. The first three chap-

ters would provide an introduction to transmission line theory and BPL, while the latter

chapters describe the modeling and implementation details of the investigation methods.

Underlying these issues, however, is a need for an understanding and familiarity with con-

cepts of electromagnetics, circuit theory, and the use of certain software programs. At a

minimum, the following items outline the necessary background to continue the research.

• Must be well versed in power system analysis concepts. Undergraduate-level power

systems and electromagnetics courses would be a minimum requirement.

• Understanding of advanced topics in power systems would be more beneficial. Par-

ticularly in transient analysis, transmission line theory, linkage between time-domain

and frequency domain modeling, and electromagnetics.

• This research would require sufficient understanding of the use of EMTP/ATP as

well as the formulas and implementation details of many features. It would be very

difficult to continue this research withouth being well versed with ATP.

• At least one person involved with further research should understand the EIGER

program and be able to use it (EIGER is introduced in Section 3.1.3).

• A significant amount of programming will be required in advancement of this re-

search. As such, programming skills would be necessary (eg. - Matlab, Python,

ATP-Models).

• This thesis can be used to understand many advanced concepts, but many things

cannot be understood without the background mentioned above.

• In addition, an understanding of the vector fitting program (Section 5.3.2) would be

beneficial. The vector fitting package includes a user’s manual to help in this regard.
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