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Preface 

This dissertation computes the environmental loadings that in-service pavement slabs 

are subjects to. It develops a heat transfer model to predict the slab temperatures and then 

proposes a heat-transfer and moisture transport model to simulate the slab-moisture 

distribution. The environmental loadings are computed by uses of predicted temperatures 

and predicted moisture to evaluate the curling and warping of the slab. For the sake of 

simplicity, the computation considers only the stresses developed in joint plain concrete 

pavement slab and treats the slab as a beam that has visco-elastic, drying-creep behaviors. 

Other than the environmental loadings, the sensitivity of the local weather conditions 

to the slab-moisture and -temperature distributions are also of the dissertation‘s concern. 

The dissertation investigates the role of air temperature, wind speed, and solar radiation 

on the slab temperature; it assesses the influence of the wind speed, local annual rainfall 

distribution, and air relative humidity on the slab-moisture distribution. 

The dissertation contains 9 chapters. Chapter 1 presents the research significance 

regarding the models to predicted slab moisture and slab temperature and also reviews 

the literatures relative to this modeling. Chapter 2 develops a model to simulate the slab 

temperature distribution. Chapter 3 investigates the impact of air temperature on the 

temperature profile of in-service pavement slabs. This chapter has been published in 

Construction and Building Materials, with my advisor Jacob E. Hiller as the co-author. 

The author keeps only his contribution and removes the contribution of the co-author. 

The copyright permission is attached in Appendix A.  Chapter 4 focuses on roles of wind 

speed on the slab-temperature development and on formulation of the slab-surface heat 

convention coefficient. Chapter 5 examines the impacts of the solar radiation and the 

pavement albedo on the slab-temperature distribution. This chapter has been approved by 

KSCE Journal of Civil Engineering, with my advisor Jacob E. Hiller as the co-author. It 

only presents the contribution of the author. The copyright permission is attached in 

Appendix B. Chapter 6 proposes a model to simulate the moisture distribution through 

in-service slab. Chapter 7 characterizes the sensitivity of slab moisture to roles of rainfall 

pattern, wind speed, seasonal air RH, daily variation of RH, water-to-cement ratio, 

treatment of the upper boundary, etc. Chapter 9 draws the conclusions from the 

dissertation and proposes the future works to build upon works from this dissertation. 

 

 

Yinghong Qin 

June 16, 2011  
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Abstract: 

In-service hardened concrete pavement suffers from environmental loadings caused 

by curling and warping of the slab. Traditionally, these loadings are computed on the 

basis of treating the slab as an elastic material, and of evaluating separately the curling 

and warping components. This dissertation simulates temperature distribution and 

moisture distribution through the slabs by use of a developed numerical model that 

couples the heat transfer and moisture transport. The computation of environmental 

loadings treats the slab as an elastic-viscous material, which considers the relaxation 

behavior and Pickett effect of the concrete.  

The heat transfer model considers the impacts of solar radiation, wind speed, air 

temperature, pavement slab albedo, etc. on the pavement temperature distribution. This 

dissertation assesses the difference between documented models that aim to predict 

pavement temperature, highlighting their pros and cons. The moisture transport model is 

unique for the documented models; it mimics the wetting and drying events occurring at 

the slab surface. These events are estimated by a proposed statistical algorithm, which is 

verified by field rainfall data. Analysis of the predicted results examines on the roles of 

the local air RH (relative humidity), wind speed, rainy pattern in the moisture distribution 

through the slab. The findings reveal that seasonal air RH plays a decisive role on the 

slab‘s moisture distribution; but wind speed and its daily variation, daily RH variation, 

and seasonal rainfall pattern plays only a secondary role. 

This dissertation sheds light on the computation of environmental loadings that in-

service pavement slabs suffer from. Analysis of the computed stresses centers on the 

stress relaxation near the surface, stress evolution after the curing ends, and the impact of 

construction season on the stress‘s magnitude. An unexpected finding is that the total 

environmental loadings at the cyclically-stable state divert from the thermal stresses. At 

such a state, the total stress at the daytime is roughly equal to the thermal stress; whereas 

the total stress during the nighttime is far greater than the thermal stress. An explanation 

for this phenomenon is that during the night hours, the decline of the slab‘s near-surface 

temperature leads to a drop of the near-surface RH. This RH drop results in contraction 

therein and develops additional tensile stresses. The dissertation thus argues that 

estimating the environmental loadings by solely computing the thermally-induced 

stresses may reach delusive results. It recommends that the total environmental loadings 

of in-service slabs should be estimated by a sophisticated model coupling both moisture 

component and temperature component.  
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Chapter 1 Introduction 

1.1 Motivation 

 Environmental loadings develop through in-service concrete pavement slabs, even if 

the slab is not open to traffic. These stresses are due to differential profiles of temperature 

and moisture through the slab (Yang H. Huang 2004; MEPDG 2004). Non-uniform 

temperature profiles through a slab lead to the curling of pavement slab. They produce 

curling stress because the curling is restrained by the pavement shoulder or adjacent lanes, 

slab‘s self weight, base, etc. Moisture gradients across the slab result in differential 

shrinkage between the top and bottom of the pavement. The mechanism of stress caused 

by this slab deformation is similar to curling, but are termed warping stresses. The 

combination of the curling and warping stresses, in some cases, can be high enough such 

that the concrete slab cracks before the pavement slab is exposed to any traffic loading 

(Heath et al. 2003). 

Curling stresses experience both diurnal and seasonal cycles. Diurnally, temperature 

distributions in a pavement slab depend primarily on the heat flux at the top of a 

pavement slab because the slab surface area experiences higher heat flux than its depth. 

During daytime, the solar radiation heats up the pavement surface whereas the remaining 

portions of the slab remain relatively colder. This different thermal condition leads to 

differential deformation across the slab. It generates compressive stress at the top and 

tensile stress at the bottom. At nighttime, both heat convection and thermal irradiation 

dissipate the absorbed solar radiation and make the near surface colder but the deeper 

slab relatively warmer. This temperature difference creates tensile stress at the top and 

compressive stress at the bottom. Seasonally, the daily peak solar radiation arriving at the 

earth surface follows a pattern ranging from nadir in December to a peak value in July. 

The pattern means that a relatively sharper temperature gradient develops through the 

slab during the summertime and a relatively gentler temperature gradient, during the 

wintertime. Curling stresses during the summertime are thereby higher than that during 

the wintertime. The seasonal solar radiation pattern also results in heat storage under the 

slab during warmer seasons and in heat dissipation during colder seasons. This 

seasonally-cyclic heat storage and heat dissipation influences the temperature at the 

bottom of a slab and affects the non-linearity of the slab-temperature profile through its 

depth. The curling stress developed in a pavement slab thus undergoes both daily and 

seasonal cycles 

The warping stress varies irregularly, strongly depending on the local weather 

conditions. Moisture profiles cause warping (shrinkage) stresses due to their non-

uniformity through the depth of the slab. Unlike the variation pattern of slab‘s 

temperatures, the slab-moisture profile is seldom affected by the daily variation of the 

ambient air RH. This is because the moisture diffusivity of a slab is several orders of 

magnitude lower than the thermal diffusivity. The slab moisture profile depends on the 

ambient air RH, wind speed, local rainfall, slab‘s diffusivity, etc. Such dependencies 

determine that the slab‘s internal RH varies primarily near the top whereas the lower 
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portions of a slab‘s volume remains close to a saturation level, generally greater than 80% 

RH (Chunqiu Li et al. 2008a). This differential slab-temperature distribution results in a 

differential shrinkage within a slab. The shrinkage is also restrained by the self weight of 

the slab, friction of the base, the compatibility of the slab‘s element, etc, leading to 

bending stresses. Development of these stresses is relatively complicate because the 

shrinkage depends not only on the pore RH and its gradient through the slab but also on 

the age of the concrete. This time-dependent nature of concrete deformation has to be 

considered during the computation of the warping stresses since the rate of RH variation 

through a slab is slower than that of the temperature variation. 

These curling and warping stresses introduce damage in rigid pavements. Since 

shrinkage causes significant stresses in the early age of the pavement, hairline cracking 

can possibly occur at the top and make the slab prone to continuous cracking after the 

slab is open to traffic. As time lapses, stress relaxation reduces the warping stresses; but 

the diurnal cyclic curling (thermal) stresses possibly remain significant enough to 

accelerate the fatigue damage of the slab (J.E. Hiller and Roesler 2010). The curling 

stresses do not considerably relax because they depend only on the shape of temperature 

profile, which relies on the thermal state of the slab and is not degraded as time elapse. 

These stresses greatly increase of the amount of bending stress through the slab. In the 

case of high bending stresses, the slab may lose the support of the underlying layers, 

directly leading to slab‘s cracking when a heavy traffics passes on the surface. A 

thorough study on the combined effect of curling and warping stresses necessitates.  

 

1.2 Literature review 

1.2.1 Temperature effects on rigid pavement slabs 

1.2.1.1 In-situ and numerical investigations of temperature profiles  

Experimental testing and numerical methods have been extensively used to study the 

temperature distribution within concrete slabs. In-situ measurements have been 

conducted to record the temperature profiles of rigid pavement slab. The recorded data is 

typically logged by thermocouples that are inserted at different depths to monitor the 

temperature distribution through the slab (Richardson and Armaghani 1987; Yu et al. 

1998; Jeong and Zollinger 2005). This data is accurate for short-term readings, but may 

lead to significant errors due to the zero drift of the thermocouples for long-period 

measurements. Also, extrapolating this data to other sites can be delusive because in-situ 

observations cannot cover all the site-specific conditions influencing heat transfer 

between the slab and the surrounding environment (Richardson and Armaghani 1987; 

Ashraf Mohamed and Hansen 1997; Yu et al. 1998). Numerical models are thus popular 

to simulate the temperature through the pavement slabs (Liang and Niu 1998; Yavuzturk 

et al. 2005). These models usually treat the heat exchange between the pavement and the 

surrounding air as one-dimensional problem (Kapila et al. 1997; Bentz 2000; Minhoto et 

al. 2005). This treatment is reasonable because the width and length of the slab is orders 

of magnitude greater than the thickness of the slab. Temperature distribution through the 
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slab depends primarily on the adoptions of upper- and lower-boundary conditions. The 

upper boundary is treated as a heat-flux boundary. The flux comes from the solar 

radiation, thermal irradiation, and convection. It depends on wind velocity, solar 

absorption, air temperature, roughness of pavement surface, etc. The lower boundary is 

set as either an adiabatic boundary condition (Figure 1.1b) or a Dirichlet boundary 

condition (Figure 1.1a)  (Minhoto et al. 2005; Yavuzturk et al. 2005), where the 

temperature is assumed as a constant (Liang and Niu 1998; Bentz 2000).  

Documented one-dimensional heat models need improvement because the denoted 

boundary conditions are inadequately addressed. At least two limitations exist at the 

specified upper boundary condition. First, methods used to compute the heat convection 

coefficient needs refinement. This coefficient is mainly determined by the local wind 

speed. For instance, the heat convection coefficient is assumed to increase with the wind 

velocity following a 0.7 power-law in Enhanced Integrated Climatic Model (EICM), a 

sub-model embedded in the Mechanistic-Empirical Pavement Design Guide (MEPDG). 

This increasing rate goes against the accepted heat transfer theory (Jiji 2009). According 

to this theory, this coefficient should be a function of the Reynolds and Prandtl numbers 

of the ambient air (Kapila et al. 1997; Jiji 2009). Second, input of the incoming solar-

radiation peak value to the heat transfer model needs a process for refined estimation. 

Currently, the EICM model allows repeated uses of one-year observed solar radiation 

when a long-term temperature prediction is conducted (MEPDG 2004). This repeated use 

overlooks the heat history development of the slab.  

Limitations also exist at the specified lower boundary condition of the documented 

models. The lower boundary condition is usually assumed to either be a constant 

temperature (Bentz 2000) or be null heat flux (Yavuzturk et al. 2005).  On one hand, the 

longer period waves of the seasonal temperature cycle are neglected if the bottom of a 

pavement is regarded as a fixed temperature boundary. On the other hand, the shorter 

period of diurnal temperature cycle goes unaccounted if the bottom of the pavement is 

seen as a null heat flux bottom. For instance, a sunny day predated by a cloudy day could 

result in a positive heat budget to the ground; a null heat flux at the bottom of the 

pavement fails to mimic this positive budget. Actually, the deep ground under the 

pavement structure is a boundary with neither a fixed temperature nor a null heat flux. 

Temperature variation beneath the pavement slab decreases as depth increases, according 

to the extenuating characteristic of the ground temperature profile. Thus there exist a 

depth below which soil temperature maintains a constant value (Andersland and Ladanyi 

1994). This depth is a site-specific condition and is also affected by the net heat flux at 

the pavement surface. An artificial denotation for this depth potentially results in an 

improper prediction of the pavement slab‘s temperature. 
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Figure 1.1 One-dimensional heat transfer models for concrete pavement; a) After Bentz 

(2000), b) After Yavuzturk (2005).  

 

1.2.1.2 Temperature induced stresses 

Thermally-induced stresses developed through concrete slabs were first addressed by 

Westergaard (Westergaard 1927). His assumption of a linear gradient through the depth 

of the slab had been extensively used to estimate the curling stresses of curled concrete 

pavements (Tianxi Tang et al. 1993; Papagiannakis and Masad 2007). His solution to the 

thermal stress across a concrete slab with finite dimensions was popularized by Bradbury 

(1938). Bradbury presumed the linear distribution of temperature through a slab. In his 

solution the thermal stresses developed in a slab can be definitively calculated once the 

temperatures at the top and bottom of slab are obtained. However, later researchers noted 

that the temperature distribution through a pavement slab can be highly non-linear 

(Armaghani et al. 1987; Thompson et al. 1987; Ashraf Mohamed and Hansen 1997). The 

non-linearity is because the near-surface temperature is easily affected by the heat flux at 

the top whereas the internal portions of slabs exhibit relatively less fluctuation. 

The stresses induced by the non-linear temperature profiles were first addressed by 

Thomlinson (Ioannides and Khazanovich 1998). Thomlinson‘s work subdivides the total 

thermal stress into three parts: stress induced by the uniform temperature; stress due to a 

linear temperature gradient; stress caused by the ―internal force‖ as shown in Figure 1.2. 

The stress induced by the uniform temperature causes an expansion or a contraction of 

the slab because of the restraints from the underlying layer‘s friction and from the 

neighboring slabs‘ constraint. The stress due to a linear temperature gradient through the 

slab thickness is restrained by the slab‘s self weight, the underlying layer‘s friction, and 

external loads. The stress caused by the ―internal force‖ is because the non-linearity of 

temperature distribution exerts an internal force to neighboring elements to satisfy 

compatibility requirements. This ―internal force‖ contributes either a tensile or a 

compressive stress to the slab. The specific internal force is a function of the location 

through the depth of the slab. The stress caused by this force is self-equilibrating stress. It 

is significant enough that it should not go unaccounted. 
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Figure 1.2 The components of the total temperature-induced deformation. 

 

Methods used to compute the self-equilibrating stress have been well documented. 

Main difference between these methods lies on the use of either a quadratic or cubic 

polynomial to approximate the temperature profile (Richardson and Armaghani 1987; 

Solaimanian and Kennedy 1993).  By assuming the temperature profile followed a 

quadratic relationship, Hiller and Roesler (J.E. Hiller and Roesler 2008) developed a 

simplified method to capture the self-equilibrating stress on the performance of rigid 

pavement by using a single parameter named NOLA (NOn-Linear Area). This method is 

simple and can link the NOLA to the self-equilibrating stress. Fatigue induced by the 

thermal stresses also can be estimated based on the NOLA. Mohamed and Hansen (1997) 

computed self-equilibrating stress by using an proposed theoretical algorithm that the 

temperature profile is fitted by polynomial of the third degree.  Although the third-order 

polynomial generally provides a better fit than a quadratic function, the non-linearity 

cannot be captured within one single term such as NOLA.  

Whatever the methods to compute the thermally-induced stress, the computation has 

always been based on the elastic theory in rigid pavement structures. It has not 

considered relaxation behavior of the thermally-induced stress developed through the 

depth of in-service concrete slabs. Although this stress depends primarily on the 

temperature profile and less on the stress history, the stress relaxation potentially reduces 

the development of the compressive stress near the top whereas increasing the tensile 

stress at the bottom. This is because during daytime a relatively sharper positive gradient 

is developed within the slab, resulting in the daily maximum-compressive stress 

appearing at the top. Conversely, the stresses developed during nighttime are relatively 

gentler. Cycles of this stress pattern can lead to a compressive creep at the top and tensile 

creep at the bottom. Relaxation behavior of concrete thus may need to be considered 

when the thermal stresses developed through a slab are estimated. 

 

1.2.2 Moisture and moisture distribution 

Moisture distribution within concrete slabs and the resulting warping stresses have 

been extensively investigated. In-situ investigations have shown that the moisture 

gradient varies significantly to a depth of approximately 2 inches, whereas the deeper 

portions of pavement slab remain at approximately 80% percent of saturation or higher 
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(Philip and Vries 1957). Numerical studies concerning both drying shrinkage and creep 

behavior of concrete have gained a great deal of attention, driven by the need to quantify 

the long-term deformation and stability of nuclear reactor containments (Bazant and 

Najjar 1971; Bazant 1983; Bazant and Prasannan 1988; Bazant 1998; Shah and Hookham 

1998; Witasse et al. 2002). Nevertheless, limited numerical studies center on the moisture 

profile through pavement slabs and on the subsequent stresses caused by the moisture 

profile. Typically, moisture gradients in concrete pavement generate differential 

shrinkage between the top and bottom of pavement. They lead to warping stresses in 

which the top of pavement is in tension but the bottom is in compression for a vast 

majority of  time (Janssen 1987).   

 

1.2.2.1 Laboratory and field tests for moisture distribution within concrete slab 

Moisture distribution through a concrete specimen in a laboratory environment is 

typically measured by RH probes that are inserted into concrete to record the internal 

moisture (Andrade et al. 1999; Jin-Keun Kim and Lee 1999). The air RH of the lab 

environment is the decisive factor determining the moisture distribution through the slab 

(Z. Bažant and Najjar 1972). Moisture content across the field concrete slabs is typically 

recorded by the psychrometers that are installed in pavement sections to read the RH of 

pavement slabs (Janssen 1987; Kohler 2005).  The intake and outtake of moisture of 

pavement is primarily controlled by the wetting (absorption dominant) and drying cycles 

at the surface of the pavement (Hanzic and Ilic 2003; Chunqiu Li et al. 2008b).  Unlike 

many other concrete structures, the unique geometry of a pavement slab defines that the 

moisture intake and evaporation is almost always through the slab surface.   

To better estimate the moisture distribution with concrete, laboratory studies have 

been extensively conducted to investigate the diffusivity of the concrete. The factors 

influencing the diffusivity can be categorized into both internal and external factors. For 

the internal factor, the diffusivity is mainly controlled by the concrete porosity, which is 

linked to the water/cement ratio and permeability of concrete. For the external factor, the 

diffusivity strongly depends on internal pore RH. An interpretation to this dependency is 

that moisture migrates under capillary force at high pore moisture content but transports 

under gas pressure at lower pore moisture content (Bazant 1998).  Temperature also has 

been found as an external factor impacting the diffusivity of concrete (Wong et al. 2001; 

Jooss and Reinhardt 2002). Wong (2001) investigated the diffusivity of concrete at the 

saturation state,     , and found that temperature strongly influenced concrete‘s 

diffusivity. For instance,      increases approximately 6-8 times when temperature 

increases from 20 to 40
 o

C, thereby affecting moisture transport more effectively during 

warmer months for many climates.  

 

1.2.2.2 Numerical study of the moisture transport within concrete slab 

Numerical simulations have been extensively conducted to study the moisture 

transport within concrete (Z. Bažant and Najjar 1972; Xi et al. 1994; Bazant 2001). The 

crux of the simulation is to properly estimate the diffusivity, which depends on the 
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moisture content of concrete, porosity of concrete, internal temperature distribution, etc. 

(Z. Bažant and Najjar 1972). For in-service concrete slabs, another crux lies on 

wetting/drying cycles. Moisture gain of an in-service slab is controlled by the wetting 

cycle at which the absorption is dominant. Moisture loss is determined by the drying 

cycle. This process depends highly on the RH of the ambient air (Šelih et al. 1996; 

Grasley et al. 2006) and the wind velocity at the ground surface.  

 Models used to predict the moisture profile through slabs need improvement for two 

reasons. First, currently most models are based on isothermal conditions. This is the case 

because other structures, unlike pavement slabs that are directly exposed to sunlight, 

experience lower temperature cycles. It is also because the temperature regimes of these 

structures become relatively steady soon after (1 or 2 days) the structure is built. For in-

service slabs, their diurnal temperature variation, however, may significantly affect 

moisture migration within the slab because the concrete‘s diffusivity varies with 

temperature (Jooss and Reinhardt 2002).  Secondly, the denotation of the upper boundary 

condition needs a refined specification. Bazant and Raftshol (1982) experimentally 

investigated the drying shrinkage of specimens and suggested that the upper boundary 

could be set as the RH of the ambient air. This setting is the case for the laboratory 

specimens that do not experience wind effects. However, this assumption overlooks the 

surface moisture emissivity of concrete. The emissivity depends on several factors 

including air velocity, porosity, surface roughness, etc. (Torrenti et al. 1999; Yuan and 

Wan 2002). The impact of these factors on the moisture distribution within an in-service 

slab should be wisely considered because pavements experience varying wind speeds in 

all climatic regions.  

 

1.2.3 Coupled heat transfer and moisture transport 

Models coupling heat transfer and moisture transport have been proposed to predict 

the moisture distribution within concrete structures (Bazant 1970; Kapila et al. 1997; 

Burkan Isgor and Razaqpur 2004). The phenomena relevant to moisture, pressure, and 

temperature distributions are coupled by the assumption that moisture distribution 

affecting the temperature regime is neglected. The driving force for the moisture 

transport within concrete consists of moisture gradient, pressure gradient, and 

temperature gradient (C. L. D. Huang et al. 1979; Hall 1989). Numerical results show 

that the porosity of concrete dominates the moisture transport within concrete (Wong et 

al. 2001). Nevertheless, none of these models were designed to predict the moisture 

distribution of pavement slabs. Burkan‘s model (2004) commissions to compute the 

carbonation process of concrete structures. Kapila‘s work (1997) aims at predicting the 

moisture distribution within early-age hydrating concrete. Very few studies have been 

conducted to investigate the coupled heat transfer and moisture transport through in-

service concrete pavements and then to compute the environmental loading-induced 

stresses through the slab.  With the thermal and moisture-induced stresses in concrete 

pavements constituting a large percentage of stress development due to its geometry, this 
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is a critical task to undertake to better predict the service life of these pavements 

ultimately. 

These environmental loading-induced stresses are seldom investigated because of 

three reasons. First, it is difficult to separate the curling stresses and warping stresses 

from the total stress measured in field. This difficulty suggests that even though a model 

may be sophisticated enough to predict the thermal- and moisture-induced stresses in 

other structures, its reliability to predict the environmental loadings in a pavement is 

almost unverifiable. Secondly, the occurrence of micro-cracking and creep in the 

concrete significantly relaxes the stresses (Yang H. Huang 2004). The stress relaxation 

encumbers a prediction attempting to capture the coupled impact of moisture and thermal 

gradients on the stresses development. Finally, occurrence of wetting and drying cycles at 

the pavement surface remains uncertain to experts in pavement science. Modeling of the 

impact of these cycles on the pavement moisture budget is still conducted by use of 

artificial fixed wetting period, such as 15 or 30 days (Chunqiu Li et al. 2008a; Kefei Li et 

al. 2009). 

 

1.3 Critical appraisal  

Four main limitations, at least, exist in the current documented numerical models that 

aim to predict the heat transfer and moisture transport within concrete pavements.  

 The thermal history of both the pavement slab and the underlying layers is not 

considered. Currently the prediction for the pavement temperature profile usually 

considers only the thermal interaction between the pavement and the subbase (Bentz 

2000; Yavuzturk et al. 2005). In fact, the temperature profile of the subgrade, usually 

10m or even deeper beneath the pavement surface, varies seasonally (Ladanyi 1994) 

because the seasonal temperature wave propagates deeper than the diurnal temperature 

cycle (Pollack and Huang 2000). Without considering the thermal history of the 

underlying layers potentially leads to an unreliable prediction of the pavement 

temperature. 

 The boundary condition at the bottom of the computational domain is improperly 

specified. Documented models assume that the temperature at the bottom of the subbase 

or base is either a constant (Bentz 2000) or an adiabatic boundary (Yavuzturk et al. 

2005).  This assumption results in considerable error because a geothermal gradient exists 

at the deep ground (usually 10-20m) beneath the pavement surface (Ladanyi 1994; Liang 

and Niu 1998).   

 Currently, the moisture transport model used to predict the moisture distribution 

within pavement slab is based on isothermal conditions (Jin-Keun Kim and Lee 1999; 

Leivo and Rantala 2005; Chunqiu Li et al. 2008a). The effect of the temperature on the 

diffusivity of the concrete goes unaccounted.  

 The moisture gain and loss at the pavement surface needs more refined 

specification. Documented models usually overlook the impact of wind velocity on the 

moisture loss at the slab and neglect the influence of wetting/drying cycles on the 
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moisture gain at the surface. For a specific region, such cycles should be determined by 

the local seasonal rainfall distribution and should have a probabilistic distribution. 

 

1.4 Objectives  

This dissertation numerically investigates the coupling heat transfer and moisture 

transport within a concrete slab and evaluates the warping and curling of concrete 

pavement slab. Its goals consist of three parts: 

 The first part develops a proposed heat transfer model to characterize the impacts 

of air temperature amplitude, solar radiation, slab-surface solar absorptivity, and wind 

velocity on the temperature distribution within pavement slabs. It verifies the feasibility 

of the proposed model by use of field slab temperatures. The subsequent analysis 

highlights the difference between the proposed model and the documented models, and 

compares the predicted reliability of these models. 

 The second part develops a moisture transport model to predict the moisture 

distribution through in-service slabs. It proposes a straightforward algorithm to simulate 

the wetting and drying events and validates the algorithm by use of field observations 

concerning the local rainfall distribution. It utilizes both laboratory observed data to 

verify the prediction of the proposed moisture transport model. The associated discussion 

centers on the effects of the wetting/drying cycle and ambient conditions, e.g. wind 

speeds and air relative humidity, on the slab moisture distribution. 

 The third part characterizes the curling stress, warping stress, and the combination 

of them by using a model that considers creep, autogenous shrinkage, and drying 

shrinkage of JPCP slab. It also estimates the evolution of the warping stresses during the 

expected service period of the pavement, especially at early ages of the concrete slabs. It 

computes the total environmental loadings that in-service slabs suffer from. The 

computation considers both the stress relaxation and Pickett effect of concrete slabs. The 

analysis to the developed total stress focuses on the impact of wind speed, air RH, stress 

evolution, construction season, and pavement location on the magnitude of the stress.  

 

1.5 Organization 

The dissertation has 9 Chapters as described below. 

Chapter 2 develops a model to simulate the temperature distribution through in-

service slabs. The model accommodates the roles of air temperature, solar radiation, wind 

speed, dew point, etc on the heat exchange between the slab and the surrounding 

environment. Both short- and long-term field temperature observations are used to verify 

the model. Numerical code for this simulation can be referred to Appendix C. 

Chapter 3 investigates the impact of air temperature on the temperature profile of in-

service pavement slabs. It centers on the impacts of daily temperature swing on the 

temperature variation of the slab. It studies whether the replacement of the observed air 
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temperature with the sinusoidal-approximated air temperature compromises the predicted 

temperature. 

Chapter 4 focuses on roles of wind speed on the temperature development of a slab 

and on formulation of the heat convention coefficient at the pavement surface. It 

investigates the degrees that wind speed reduces the pavement temperature gradient. 

Considering that this formulation determines the heat convention coefficient, this chapter 

highlights the difference between the documented models used to compute the coefficient. 

It emphasizes that the use of the EICM model potentially results in the predicted 

temperature being insensitive to wind speed because this model greatly underestimates 

the heat convection coefficient. 

Chapter 5 examines the impact of the solar radiation and the pavement albedo on the 

temperature distribution through in-service pavement slabs. It considers both the 

probabilistic and deterministic portions of the solar radiation. It examines the impact of 

different site-specific sunrise/sunset time models on the temperature prediction. It centers 

on whether the heat history affects the temperature distribution and thermal-stress 

development of the slab. 

Chapter 6 proposes a model to simulate the moisture distribution through in-service 

slab. It develops an algorithm to evaluate the wetting and drying events occurring at the 

pavement surface. It uses both field data and lab data to verify the model and proposes a 

formulation that characterizes the moisture evaporation rate during the drying events. 

Numerical code for this simulation can be referred to Appendix D. 

Chapter 7 characterizes roles of rainfall pattern, wind speed, seasonal air RH, daily 

variation of RH, water-to-cement ratio, treatment of the upper boundary, etc on the 

moisture prediction through in-service slabs. The associated analysis focuses on the 

different roles between these factors. It also examines the mechanisms that some 

environmental factors play as decisive role on the slab moisture distribution whereas 

others act only in a secondary role. 

Chapter 8 computes the total environmental loadings that in-service slabs suffer from. 

Numerical code for this simulation can be referred to Appendix E. The computation 

method considers both Pickett effect and stress-relaxation behavior of the concrete slab. 

The analysis to the computed stress concentrates on the evolution of the stress after the 

curing ends, on the long-term stress development, and on the impact of construction 

season upon the stress developed. The subsequent discussion primarily concerns whether 

the total stress at the stable state (moisture loss balances the moisture gain) converges to 

the thermally-induced stress. 

Chapter 9 draws the conclusions from the dissertation and proposes the future works 

to build upon work from this dissertation. It discusses the implications of the conclusions 

to the elongation of the rigid pavement performance and summarizes the limitations of 

the dissertation. Future work is expected to study the built-in curling; the stress-softening 

at the post-failure state; fatigue damage of rigid pavements; and the moisture soaking at 

the pavement surface during wetting events. 
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Chapter 2 Model development and verifications 

Prediction of the pavement temperature ties to both the estimate of the maximum 

pavement surface temperature and the computation of the thermally-induced stress 

developed through a slab. Numerical models have been extensively conducted to predict 

the temperature distribution through in-service concrete pavement slabs. These models 

require improvements in the treatment of the lower boundary condition and in the 

computation of the heat convection coefficient. 

This chapter proposes a new heat transfer model to simulate the pavement 

temperature through the depth of the pavement structure. The model specifies a 

geothermal gradient to the deeper soil (20m in depth). It uses the accepted heat transfer 

theory to estimate the heat convection coefficient at the pavement surface. Both short- 

and long-term field temperature observations are used to verify the reliability of the 

model.  

2.1 Numerical simulation of the temperature regime of pavement slab 

 Pavement temperatures are mainly controlled by the heat flux at the top because the 

width and length of a pavement slab is far greater than the thickness. A one-dimensional 

heat transfer model is thus adequate to predict the temperature distribution of a slab and 

its underlying layers. To simplify the model, the following assumptions are made: 

1) Heat conduction dominates heat transfer process in the pavement structure and the 

underlying layers. The heat convection within the ground and the pavement slab 

is neglected; 

2) Occurrence of moisture transport beneath the slab does not significantly affect the 

thermal properties of the underlying layer. Temperature variation does not lead to 

the variations of the thermal conductivities, heat capacities, and densities of the 

pavement and the underlying layers. 

Heat flux at the upper boundary consists of the solar radiation, convection, irradiation, 

and emissivity occurring at the pavement surface (Figure 2.1). The temperature at deep 

ground is mainly affected by the heat flux from the interior of the earth. It exhibits less 

variation. The depth of zero annual temperature amplitude ranges approximately from 10 

to 20m below the ground surface (Andersland and Ladanyi 1994), depending on the site-

specific condition. This study selects 20m beneath the bottom of the pavement‘s base 

layer as the lower boundary, in order to avoid that this depth is lower than the bottom of 

the computational domain. 

 

2.1.1 One-dimensional heat transfer model 

The temperature T of the media (the pavement slab and the underlying layers) can be 

described by the Fourier Equation: 

 

                  
  

  
                                                               (2.1) 
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where   (W/m
o
C

-1
) is the thermal conductivity of mediums;   (kg/m

3
) and   (J/kg/ºC) are 

the density and the heat capacity of mediums, respectively;        (W/m
-2

) is the internal 

heat generation rate, for hardened concrete,       0. The thermal capacity, density, and 

thermal conductivity of concrete have been well documented by previous researchers 

(Khan 2002; Kook-Han Kim et al. 2003; Chung and Shin 2008). These properties depend 

on concrete mixture characteristics, e.g., water-to-cement ratio, aggregate type, aggregate 

volume, and porosity of the concrete. Detailed values are site-specific and reasonably 

controllable parameters. Table 2.1 tabulates the assumed parameter values and typical 

ranges of these parameters. 

 

 

Figure 2.1 A schematic show for the heat transfer model. 

 

Table 2.1Thermal parameters of the pavement and underlying layers 

Stratum   (W·K
−1

·m
−1

)   (KJ·kg
−1

·K
−1

)  (kg/m
3
) 

Slab
a 

2.5 (1.5-3.5) 1.0 (0.84-1.17) 2350 (2200-2400) 

Asphalt base
b 

1.8 (1.5-2.0) 0.9 (0.9-1.3) 2210 (2297-2425) 

Gravel subbase
c 

1.8 (1.5-1.8) 0.9 (0.7-0.9) 2210 (1792-2405) 

Subgrade
d
 1.5 (0.5-2.0) 0.86 (0.8-0.9) 1560 (1380-1600) 

Note: Values within the bracket are a rough range of the medium‘s thermal properties; 

the exact value is site-specific. 
a
(Morabito 2001); 

b
(Luca and Mrawira 2005); 

c
(Jean and 

Jean-Marie 2005); 
d
(Lu et al. 2006); Density for subgrade is dry density. 

 

2.1.2 Heat flow at the pavement surface 

Heat flux at the pavement surface is affected by factors including the surrounding air 

temperature, dew point, wind velocity, etc. These factors are available at the National 

Oceanic and Atmospheric Administration (NOAA) database. 
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2.1.2.1 Thermal irradiation 

Thermal irradiation is a long-wave heat fluxes between the natural ground surfaces 

and the sky. The total irradiation emitted,     (W/m
2
), follows the Stefan-Boltzmann law 

and usually is expressed as: 

               
    

   (2.2) 

where    is slab-surface temperature, (
o
K).  (

2 4Wm K 
) is the Stefan-Boltzmann constant; 

            ;     (
o
K) is the effective sky temperature (effective sky temperature is 

the temperature of blackbody radiation having the same flux as the downward 

atmospheric radiation and is not equal to air temperature); and   is the ground surface 

emissivity.        is used in this study and others (Kapila et al. 1997; Rohsenow et al. 

1998) when evaluating pavement temperatures.      can be evaluated by Eq.(2.3): 

          
        (2.3) 

where    (
o
K) is air temperature;     , the sky emissivity, is given by Tang et 

al(Runsheng Tang et al. 2004): 

                                                               (2.4) 

where     is the dew point. 

The local dew point can be approximated using the following formula: 

                                                                (2.5) 

where       ,        o
C, and                               . 

 

2.1.2.2 Convection 

Heat convection at the pavement surface is given by: 

 

                                                                   (2.6) 

 

where       is the convection coefficient, W/m
o
C

-1
.       is a function of the local 

Reynolds number   , the thermal conductivity of the air      (W·K
−1

·m
−1

), the air‘s 

Prandtl number   , and the characteristic length of the medium where wind blows upon. 

According to traditional heat transfer theory (Rohsenow et al. 1998; Jiji 2009),       

consists of two parts: free and forced convections. The heat convection coefficient of 

free air convection on a flat plane is approximately 5.6 W/m
o
C

-1
 (Jiji 2009). According 

to the Blasius solution (Jiji 2009), the coefficient of a forced convection on a flat plane 

is                       if the airflow is at low speed (e.g.<=6m/s). In this study, the 

Blasius solution is modified by combining the heat convection coefficients at free and 

forced convections. Therefore, the heat convection relationship developed in this study 

is expressed as: 

                                 (2.7) 
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where for the air,           ,      . For the airflow upon an infinite flat plate, 

      m. The Reynolds number    is: 

 

         (2.8) 

 

where   is the local wind velocity,   (m
2
s

-1
) is the air‘s kinematic viscosity and usually 

is 16.01*10
-6

 (m/s)
 
. 

 

2.1.2.3 Radiation  

Solar radiation propagates energy as a short wave arriving at the ground surface. 

McCullough and Rasmussen (1999) proposed the following formula for the short-wave 

absorption of solar radiation      (W/m
2
): 

 

                     (2.9) 

 

where      is the surface absorptivity (SA)--or 1- the albedo of the surface;    is the 

intensity factor counting for the sun‘s angle during a 24-hour day; and        is the peak 

value of the solar radiation during a-day period.  

Solar absorptivity      relies on slab‘s surface color, concrete components, abrasion 

of the slab, etc. (Levinson and Akbari 2002). For concrete pavements,      ranges from 

0.5 to 0.9 for new and older concrete, respectively. Considering a rigid pavement slab 

becomes darkened after opening to traffic, this paper uses           unless otherwise 

noted.  

Solar radiation intensity factor    strongly depends on the atmospheric conditions, 

time of day, and incident angle of the sun‘s ray on the ground surface. During nighttime 

conditions, the solar radiation is negligible. During the daytime,    is assumed to follow a 

sinusoidal function (Bentz 2000; Ge 2005). It varies with the time of day and ranges from 

zero at both sunrise and sunset times to a peak value at midday. The sunrise time    (hr) 

and sunset time     (hr) can be computed by: 

 

                                                            (2.10) 

                                                            (2.11) 

 

where   is the hour angle. Eqs (2.10) and (2.11) are used during standard time (autumn 

and winter seasons), but during daylight savings times, the number ―13‖ in both 

equations would be ―12‖. To avoid confusion, this study uses standard time only.    is 

calculated by: 

 

                                                              (2.12) 
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where  ( ) is the latitude of the pavement site (positive in the northern hemisphere, 

negative in southern hemisphere), and   ( ) is the sun declination defined by: 

 

            
           

   
                                             (2.13) 

 

in which     is the day of a year (January 1 is the first day, or      ). 

The peak value        of solar radiation depends on the sky conditions (e.g., cloud 

cover) and on the latitude of the pavement. Rather than providing daily detailed solar 

radiations, weather stations usually provide monthly maximum     , mean      , and 

minimum      solar radiations (units: kWh/m
2
/day). All of them are usually recorded by 

a flat-plate collector. Typically the observed data contains     uncertainty. In this case, 

inputting the mean vallue to the heat transfer model overlooks the impacts of the 

maximum temperature and heat history on the pavement slab. Inputting solar radiations 

to a slab-temperature predicted model thus have to include the combination of the 

deterministic and probabilistic radiations. The deterministic portion reflects on the       . 

The probabilistic portion fluctuates between the      and     , following a random 

normal distribution whose standard deviation depends on the uncertainty of the 

observation. Therefore, the         to the heat transfer model is: 

 

                  
                                     

       
  (2.14) 

 

where the random(0,1) produces a number according to the standard normal distribution; 

the denotation of the number 1.38 represents the level of uncertainty (9%) of the 

measurements (Patel and Read 1996); and the number 41.67 is the conversion factor from 

units kWh/m
2
/day to W/m

2
.  

Therefore, the total heat flux        (W/m
2
) at the pavement surface can be calculated 

as: 

 

                      .                                                    (2.15) 

 

2.1.3 Heat flow at the deep ground 

Temperature at the slab‘s bottom is not a constant but a variable. It depends on the 

boundary conditions at the pavement surface and on the physical properties of the 

underlying layers. At a certain point in deep ground, there exists a depth where the annual 

temperature amplitude is zero. This depth and its temperature are site-specific and thus 

are difficult to determine. However, for a specific site, the geothermal gradient at deep 

ground remains a constant (Andersland and Ladanyi 1994). Therefore, a geothermal 

gradient, usually 0.03
o
C/m (Goering and Kumar 1996), is denoted for the lower boundary 

condition of the computational domain shown in Figure 2.1. This geothermal gradient 
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adds another heat component to the underlying layers and keeps the deep ground thermal 

gradient, not the temperature magnitude, a constant.  

 

2.2 Simulation information 

The computational domain is discretized by 23 three-node elements, with 10 elements 

for the slab, 3 elements for base, and 10 elements for the subgrade. The slab has a 

thickness of 25.4cm (10inch). The base is assumed to be 10cm thick asphalt concrete. 

Time step size is 6 minutes to ensure the convergence of the simulation in realistic time. 

The cubic spline interpolation is used when an interpolation is needed. The initial 

temperature for the pavement structure and underlying layer is obtained by using the 

ground temperature profile from the preceding date. This date‘s temperature profile is 

gained by utilizing the local annual variation of ambient air temperature to simulate the 

ground temperature to a degree such that the temperature profile difference between this 

date and the same date in the previous year is less than 0.01°C. The Crank-Nicolson 

method is adopted to implicitly solve the differential Fourier equation in Eq. (2.1). 

Convergent tests are conducted to verify the accuracy of the results (Ainsworth and Oden 

1997). 

 

2.3 Model verification 

Reliability of the proposed heat transfer model is verified by the documented data that 

was observed in the field. Whether the predicted temperature coincides with the 

monitored temperature of a slab is of primarily concern. However, usually the monitored 

temperature is a relatively short term data, e.g. 1 to 10 days. Agreement between the 

predicted and monitored temperatures does not necessarily mean a long-term predicted 

temperature would coincide with the field temperature of a slab. In this regard, this study 

also verifies the model using the field observations pertaining to both slab temperatures 

and the ground temperatures. Numerical code for this simulation can be referred to 

Appendix C. 

 

2.3.1 Verification of the slab temperature. 

Documented data presented in (Yu et al. 1998) are used to verify the propose heat 

transfer model. The data was measured from an in-situ pavement slab on I-70 on July 12, 

1994. Climatic conditions are obtained from the NOAA database as input parameters for 

the model. The thermal properties, tabulated in Table 2.1 (the value outside the bracket), 

of the pavement slab and underlying layers are obtained from the United States 

Department of Agriculture (USDA) (USDA 2009).  

The numerical results computed from the proposed heat transfer model coincide with 

the in-situ observed data (Figure 2.2). The maximum temperature difference between 

numerical result and in-situ observation is 2.5
o
C, far lower than the error predicted in 
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documented literatures (Bentz 2000; Yavuzturk et al. 2005). The mean error and standard 

error are -0.17
 o
C and 1.24

 o
C, respectively. 

The comparison in Figure 2.2 raises a question that if the variations of the thermal 

parameters of the slab or underlying layers leads to a different validation. To this 

question, I arrange the heat transfer equation such that the slab‘s thermal parameters ( , 

 , and  ) are compacted to the thermal diffusivity,  (m
2
/s). The arrangement turns Eq. 

(2.1) to Eq. (2.16): 

 
  

  
                                                          (2.16) 

 

where       .  

The dependence of the slab temperatures on thermal diffusivity thus can be used to 

investigate the sensitivity of the slab-temperature prediction to the thermal parameters in 

Table 2.1. This is because heat transfer model is a boundary-value problem in which most 

heat flux comes from the slab surface. The dependency can be estimated by using the 

maximum-, mean-, minimum-thermal diffusivities to simulate the slab temperature, 

respectively. These three diffusivities are tabulated in Table 2.2, which is computed by 

use of the thermal parameters in Table 2.1. 

 

 

Figure 2.2 Predicted versus in-situ observed temperature (dotted data reproduced from 

Yu et al. (1998). Note: air temperature is 19.8oC; daily peak value of the solar radiation 

is 630 W/m2; daily air temperature amplitude is 9.0oC; daily wind speed is 3m/s; the 

slab‘ thickness is 12inch therein. 

 

The prediction confirms that the variation of the thermal diffusivity affects on the slab 

temperature prediction indiscernibly. The predictions are respectively compared to the 

observed temperature illustrated in Figure 2.2. The comparison demonstrates that the 

validation is notably improved or worsened when different slab‘s diffusivities are used 

(Figure 2.3). This consistence is further confirmed in the statistical comparisons, which 

yield standard deviation less than 0.0043
o
C. Therefore, selection of the mean value of the 

thermal parameter tabulated in Table 2.1 is suitable to predict the temperature distribution 

of a slab; also, the slab temperatures possibly are more sensitive to the weather conditions 

such as wind speed, air temperature, solar radiation, etc. 
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Table 2.2 Variation range of the thermal diffusivity of the slabs 

Thermal diffusivity maximum mean minimum 

            1.89 1.06 0.53 

 

 

Figure 2.3 Validation of observed temperature by use of maximum, mean, minimum 

slab‘s diffusivity. 

 

Considering that a-day temperature prediction is a short-term temperature 

observation, this study verifies the model using a 12-day field observed temperature with 

a slab. The monitored temperature was recorded at a slab in Rantoul IL (Kohler 2005). 

The inputted weather conditions to the model, according to the weather station at 

Rantoul, are plotted in Figure 2.4. Some days are rainy day such that the solar radiation is 

less than 200W/m. Other information needed to simulate the slab‘s temperature is relative 

humidity and wind speed, which are takes as 0.68 and 3m/s, respectively. The albedo of 

the slab is 0.5 because the slab was not open to the traffic (Kohler 2005). 

The predicted temperatures statistically and visually coincide with the observed 

temperature (Figure 2.5). A relatively lower of the regression coefficient is possibly due 

to that the temperature variations were relatively smaller so that the predicted error was 
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magnified. Also, a relatively higher of the standard deviation comes from the predicted 

temperature at depth of 1.27cm because of the uncertainties of the inputted weather 

conditions at the pavement surface. For instance, the wind speed during a specific may 

vary irregularly. 

 

 

Figure 2.4 The inputted weather conditions at Rantoul, Illinois from Aug 17 to Aug 29, 

2003. Note: some days are rainy data such that the solar radiation is less than 200W/m. 

 

 

Figure 2.5 Verification of the temperatures observed from a slab in Rantoul, IL. 

 

2.3.2 Verification of the deep ground temperature 

Temperature at the bottom of a slab varies not only during a day period but also a 

seasonal cycle. It exhibits a seasonal cycle. Therefore the agreement of the short term 

temperature prediction does not necessarily mean that the long-term temperature 

prediction is reliable. This study also provides a long-term temperature verification of the 

model by use of the long-term ground temperature observation. Normally, such long-term 
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the overlain traffic. In this study, the temperature monitoring under the nature ground in a 

test section on the Qinghai-Tibet plateau, China is use to verified the long-term prediction 

of the model. The ground surface‘s albedo is assumed 0.22 (           ); the 

relative humidity is 0.6 during the whole year. It merits noting that modeling the ground 

temperature in the cold region like the Qinghai-Tibet plateau needs a formulation of the 

phase change issue of the ground soil. Details in this issue can be found at (Qin and Hiller 

2011a). This inputted weather conditions are plotted in Figure 2.6. 

 

 

Figure 2.6 The seasonal weather condition at the Qinghai-Tibet plateau. 

 

The predicted temperature statically and visually coincides with and observed data. 

The predicted temperature series at depth of the 0.5m show excellent agreement with the 

observed data, with a standard derivation of 0.76
o
C and an R-squared of 0.97. The 

proposed model can well predict the zero-curtain of the near ground temperature, as 

shown in the magnified plot in Figure 2.7b. Considering the temperature at depth may be 

deviated from the prediction, the temperature profiles on the February 10, 2002 (the 

coldest day at depth of 0.5m) and August 19, 2009 (the warmest day at depth of 0.5m) are 

also compared with the predicted profiles. Almost overlaps between the profiles (R
2
>0.96) 

signify that the proposed model is capable of credibly predicting the shallow ground 

temperature. 

2.4 Summary 

This chapter develops a heat transfer model to simulate the pavement slab 

temperature distribution. It verifies the reliability of the model by using the field 

observation. The model distinguishes itself from the documented model in the following 

aspects: 

 The model adopts a geothermal gradient to the deeper soil of the subgrade. The 

adoption makes the predicted results contained the information of the thermal history. It 

also makes the predicted results unaffected by specification of the lower boundary 

condition. 
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 The model computes the heat convection coefficient at the pavement by using of 

the accepted heat transfer theory. The estimated coefficient is impacted by the air thermal 

conductivity, air Prandtl number, and the characteristic length airflow, etc. 

 The model considers both the probabilistic and deterministic portions of the local 

solar radiation at the pavement surface. It is capable of characterizing the impact of heat 

history (solar radiation at the previous day or days) on the pavement temperature 

distribution. 

 

 

 

Figure 2.7 The verification of the predicted model by the use of 5-year observed ground 

temperature in the Qinghai-Tibet Plateau. 
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Chapter 3 Impact of air temperature
1
 

 Concrete pavements in the field are subject to temperature gradients and 

subsequently thermal stresses (Dempsey et al. 1985; Jensen and Hansen 1999). The 

surrounding air temperature controls the heat convection at the ground surface and plays 

a crucial role on slab temperature distributions. This role is hardly recognized from field 

investigations because slab temperature is concomitantly affected by other weather 

conditions like wind speed, solar radiation, etc. A numerical model capable of reasonably 

characterizing this role is thus necessary. 

Temperature distribution within a slab has been widely modeled (Solaimanian and 

Kennedy 1993; Ramadhan and Al-Abdul Wahhab 1997). However, the documented 

models still need improvement, especially in the way to characterizing the impact of 

ambient air temperature on the heat convection and thermal irradiation at the pavement 

surface. For example, in the Enhanced Integrated Climatic Model (EICM),  the free heat 

convection coefficient used in this model is minimal (MEPDG 2004). This negligible 

coefficient goes against the accepted heat transfer theory, in which a coefficient ranging 

from 5-7 W/m
2
 is adopted depending on the ground‘s surface condition. In the EICM 

model, the thermal irradiation is evaluated by a series of complex formulas containing 

several uncertain, empirical parameters (MEPDG 2004). Other models are relatively 

simpler and consist of less uncertain coefficients (Bentz 2000; Yavuzturk et al. 2005; Gui 

et al. 2007). However, these models usually adopt a Dirichlet lower boundary, potentially 

leading to delusive predicted results. These brief reviews necessitate a new model to 

properly characterizing the role of air temperature on temperature development within a 

slab.  

This study investigates the impact of air temperature on the temperature distribution 

in concrete pavement slabs. It uses the proposed model in Chapter 2 to simulate the 

temperature of the pavement slab servicing in different regions. The predicted results 

center on the impact of the daily air temperature swing on the slab temperature 

distribution, on the feasibility of using the sinusoidal-approximated air temperature, and 

on impact of air temperature on pavement-surface thermal irradiation. The associated 

discussion highlights the difference between the proposed model and documented models, 

especially the EICM model. 

3.1 Study area 

This study evaluates thermal regimes of rigid pavements in Los Angeles, California 

(coastal region) and Reno, Nevada, USA (mountainous desert region), respectively. To 

assess the extreme case, the pavement‘s temperature regime on July 22, 2010 is simulated. 

The thermal parameters of the pavements in these two regions are assumed with the same 

values to eliminate the effect of the controllable factors (e.g., media thermal 

conductivities, slab thickness, etc.) on the predicted temperature distributions and to find 

                                                 
1 The material contained in this chapter was previously published in the journal of Construction Building 

Material. The copyright permission is attached in the Appendix A. 
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the differences due to the regions alone. The thermal parameters of the media are 

tabulated in Table 2.1 (outside the bracket). The slab thickness is 25cm. The 

uncontrollable environmental factors such as wind velocity and dew point are set to the 

same values as well. These assumptions are practical because (1) on this date, the mean 

wind velocity in Reno is about 3m/s and that in Los Angeles is 2.8m/s, and (2) the 

variation of dew point only slightly affects the irradiation at the slab‘s surface as its effect 

on the sky emissivity of Eq.(2.4)  is minimal.  

The ambient daily air temperatures (DAT) of these two regions are considerably 

different, as shown in Figure 3.1. The DTA (obtained by using least square fitting) in Los 

Angeles and Reno are 4.8 and 17.2
o
C, and the mean air temperatures are 21.2

o
C and 

26.4
o
C, respectively. This difference in temperature wiggle may result in appreciably 

different temperature profiles across the slabs.  

3.2 Simulation results 

3.2.1 Temperature distribution through slabs 

3.2.1.1 Slab-surface Temperatures and air temperature 

Slab surface temperatures (Ts) are always higher than the ambient air temperatures 

(Ta), but the magnitude of       varies with time. During the daytime, the pavement 

slab in Los Angeles experiences higher      . This slab is thus able to dissipate more 

absorbed heat to the air and experiences a lower surface temperature, as shown in Figure 

3.2a. Conversely, during the nighttime, the pavement slab in Reno undergoes higher 

      (Figure 3.2b). In Reno, a hotter slab during the daytime is partially heat-stored 

and thus keeps the slab warmer during the nighttime. This heat storage makes the slab in 

Reno hotter than that in Los Angeles. This different pavement surface temperature 

necessitates an understanding of through-depth temperature profiles, because these 

profiles determine the thermal stress development within a slab.  

 

 

Figure 3.1 Air temperatures on July 22, 2010 in Los Angeles and Reno. 
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Figure 3.2 Air temperature and slab-surface temperature. 

 

3.2.1.2 Temperature across the slab 

Pavements in Reno experiences greater nonlinear temperature gradients, especially 

during the nighttime. During the daytime, the temperature contours of pavement in Los 

Angeles are spaced further apart than in Reno, indicating a higher temperature changes 

through the depth of the slab (Figure 3.3). The maximum temperature differences 

between the top and bottom are approximately +9
o
C for the pavement slab in Reno and 

+7
o
C for the slab in Los Angeles. This difference occurs owning to that in Reno, the 

relatively greater air temperature at daytime declines the heat loss from the pavement slab 

(Figure 3.2 a).  

Also, during the nighttime, higher negative temperature gradients develop at the 

pavement in Reno. As shown in Figure 3.3, the temperature differences between the top 

and bottom during night hours are approximately -8
o
C for the pavement slab in Reno and 

-4
o
C for the slab in Los Angeles. This difference happens due to that heat convections 

cools the slab surface rapidly but the remaining parts of the slab remain hotter (the 

bottom of the slab in Reno is about 5
o
C higher than that in Los Angeles). 

 

 

Figure 3.3 Temperature contours of JPCP slabs in Reno and Los Angeles (contours at 

1oC spacing). 
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3.2.1.3 Heat flow at the pavement surface 

The pavement surface in Reno experiences higher heat-loss and -gain cycles 

compared with that in Los Angeles. During the daytime, the total heat flux into the 

pavement in Reno is higher than that in Los Angeles (Figure 3.4a). During the nighttime, 

the pavement in Reno also experiences higher heat loss. Total heat flux was declined 

after 13:00, the peak-value appeared time of the solar radition. But the peak value of the 

pavement surface temperature appeared around 16:00. This difference occurs because 

after the midday, the total heat flux at the ground surface still is positive (Figure 3.2) and 

this positive budget may be higher than the downward-propagated heat budget. This 

positive daily thermal budget results in that surface temperature still increases after the 

midday. The budget suggests that whether the peak surface temperature occurs after or 

before the peak air temperature depends on the solar radiation, heat convection, and 

thermal irradiation. 

Different total heat fluxes of these two slabs are due primarily to the different heat 

convection and thermal irradiation at the slab surfaces. For heat convection, the pavement 

in Reno undergoes less convection during the daytime (Figure 3.4b) because the high 

surrounding air temperature hinders the heat dissipation from the surface. Conversely, 

during the nighttime, the pavement in Reno experiences more heat convection as the 

higher       in Reno (Figure 3.2b) facilitates heat outflow from the slab surface.  

Thermal irradiation primarily depends primarily on the slab surface temperature (Eq. 

(2.2)). Because the slab surface temperature in Reno is always higher than that in Los 

Angeles, the thermal irradiation of the pavement in the former region is always higher 

than that in latter (Figure 3.4c). During the nighttime, the pavement in Los Angeles 

experiences approximately 30 W/m
2
 heat loss than that in Reno because the       of 

the slab in Los Angeles is close to zero at this time (Figure 3.2b).  

 

 

Figure 3.4 Heat flux at the top of the slabs. 
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3.2.2 Use of sinusoidal-approximated air temperature (SAAT) 

3.2.2.1 The significance of using SAAT  

The impacts of the local air temperature on the slab‘s temperature distribution 

demonstrate at the numerical results shown in the above sections. However, a detailed 

air-temperature series of a given day may be missing from a database, especially when 

the long-term temperatures through a slab are estimated. Even though such series are 

available in NOAA database in one hour intervals, the temperatures between intervals 

have to be interpolated since the step time of the numerical model is far less than 1 hour 

to achieve convergence. According to a formula presented by (Gui et al. 2007), the 

minimum time step would be approximately 6 minutes if quadratic elements are used and 

the element length is 1cm, in order to make the simulation reasonably converged.  

Therefore, a question may arise. Can the daily air temperature input to our models be 

approximated as a sinusoidal function? If the error resulting from this approximation is 

minimal, the inputted DTA into a computational model can be parameterized by the mean 

daily air temperature and its amplitude. 

 

3.2.2.2 The feasibility of using SAAT 

Replacing the field air temperature (FAT) with the SAAT does not affect the 

numerical results significantly. Figure 3.5 shows the heat fluxes at the surface and plots 

the temperatures of the slab when the model replaces the FAT with the SAAT. 

Regression coefficients for this replacement are consistently higher than 0.98. The errors 

resulting from this replacement are tabulated in Table 3.1. Errors of the simulation for the 

slab in Los Angeles are almost the same magnitude as those in Reno, although the 

regression coefficient for the air temperature in Los Angeles is significantly lower 

(Figure 3.1). Therefore, replacing FAT with SAAT is feasible when predicting 

temperature distribution through a slab, even if the air temperature does not necessarily 

follow a sinusoidal pattern rigorously.  

This approximation is feasible because the net thermal budgets resulting from this 

replacement are minimal. As shown in Figure 3.5a, this replacement influences the heat 

flux at the pavement surface more than it does temperatures distribution (Figure 3.5b and 

c). Using the SAAT as a substitute of the FAT makes the input air temperature different 

from the field air temperature. It thus results in the heat convection and thermal 

irradiation deviating from the field conditions. However, the deviation is compensated 

during a day period, and therefore the average of these deviations is close to zero (-1.1 

W/m and 0.43 W/m, for Reno and Los Angeles, respectively).  

 

3.2.3 Impact of air temperature on the thermal irradiation 

Air temperature influences the heat convection explicitly (Eq. (2.6)) and also affects 

the thermal irradiation implicitly. The implicitness presents in Eq. (2.3), in which the air 

temperature directly correlates with sky temperature. In the Stefan-Boltzmann law, the 
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thermal irradiation linearly decreases with     
 . This quadruple power-law linking    to 

   merits a thorough examination and review.  

 

 

Figure 3.5 The feasibility of using sinusoidal approximated air temperature input 

(SAAT). 

 

Table 3.1 The errors of using SAAT in the numerical model 

Error 
Heat flux(W/m

2
) 

 
Temperature(

o
C) 

Los Angeles Reno 
 

Los Angeles Reno 

Standard error 12.07 11.72 
 

0.12 0.17 

Maximum error 27.02 20.52 
 

0.58 0.67 

Mean error -1.10 0.43 
 

0.10 -0.12 

 

 

3.2.3.1 The correlation between air and sky temperature in the literature 

The sky temperature is determined primarily by the surrounding air temperature and 

also to a certain extent, by other factors including the dew point, water vapor pressure, 

sky cloud cover, etc. The simplest formulations to evaluating the sky temperature are Eq. 

(3.1) (Dreyfus and Hilleary 1962) and Eq.(3.2) (Swinbank 1963): 

 

                                                                       (3.1) 

             
                                                          (3.2) 

These straightforward, easily-obtained formulas fail to consider the impacts of the 

factors like dew point. One model that considers the impact of the water vapor tension    

(mmHg) is Eq. (3.3) (Centeno V 1982): 

 

                    
                                                (3.3) 
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Because    is a function of air temperature (Ahren 2007), Eq. (3.3) does not count the 

effect of the dew point on the sky temperature. Another model that considers this effect is 

Eq. (3.4) (Berdahl and Fromberg 1982) 

 

                                                                (3.4) 

 

The sky emissivity can be also a function of the combined effect of cloud cover, 

water vapor pressure, and dew point. Formulations for this function are overly 

complicated. One of these formulations, proposed by Walton (Walton 1985), uses the 

combination of Eq.(3.5) and (3.6). 

 

                     
       

   
              (3.5) 

 

where        is a cloud cover factor calculated as follows:  

 

                                       (3.6) 

 

where N is cloud cover, taking value between 0 to 1.0.  

 

3.2.3.2 Impact of air- and sky-temperature correlation on numerical results 

The predicted slab temperature depends, to a certain extent, on the correlation utilized 

between the sky and air temperatures. Numerical results from the different models 

presented in Eqs.(3.1) to (3.6) are compared to the temperatures recorded by Yu et al 

(1998), which has been verified in Figure 2.2. Comparisons between the predictions from 

different model are demonstrated in Figure 3.6. The models (Dreyfus et al., and 

Swinbank) that directly link the sky temperature to air temperature tend to overestimate 

the temperature of a slab, whereas the Swinbank‘s formula appears to better predict the 

pavement slab‘s temperature (Figure 3.6a). The models that consider the dew point 

and/or the cloud cover show a higher level of reliability to predict the slab surface 

temperature (Figure 3.6b). These models predict temperatures results in a regression 

coefficient greater than 0.91.  

However, this does not necessarily indicate that some models are capable to correctly 

predict the pavement temperature whereas others are not (Qin and Hiller 2011b). As 

shown in Figure 3.6a, the temperatures predicted using the formulas of Dreyfus et al., and 

Swinbank shows approximately 3-4
o
C higher than the measured temperatures. An 

adjustment of the input parameters, e.g., wind velocity and/or daily solar-radiation peak 

value, can generate predicted temperatures from this model to better match the observed 

temperature. In this regard, better predictions of the temperature distribution in a 

pavement slab require proper characterization of the correlation between sky and air 

temperatures. Further investigation is expected to refine this determination between sky 

temperature and air temperatures.  
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Figure 3.6 Predicted slab temperatures computed from different sky-temperature 

formulas; Note: In Walton model, N=0.1 is used as the sky condition is unusually clear 

during the summer near the Kansas-Colorado border. 

 

3.3 Discussion 

3.3.1 Applications to other regions 

All the presented data and associated analysis are based on an extreme summer 

weather condition in either Reno or Los Angeles. Extents of them to other regions or to 

other seasons provoke, at least, four questions.  

 

3.3.1.1 Does the augment that       still hold true? 

The inequality of       fails to hold true in other seasons, especially in the high 

altitude regions. To illustrate this issue, we consider the weather conditions in the polar 

region during the winter time. In this case, the solar radiation is negligible. The thermal 

irradiation and the heat convection dominate the heat convection at the pavement surface. 

The pavement (ground) surface temperatures should satisfy the following inequality: 

 

                                                                     (3.7) 

 

This inequality holds because:  

1) If      , both the thermal irradiation in Eq.(2.6) and heat convection in Eq. 

(2.2) consists of the heat loss from the surface.    thus must rapidly decline until 
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These three reasons indicate that the inequality of Eq. (3.7) must hold in polar regions 

during the wintertime. In other regions, this inequality may hold depending on the 

altitude of the location. In seasons other than winter time, the inequality may also hold 

depending on the available solar radiation. Therefore, one cannot conclude that       
consistently or vice versa.  

 

3.3.1.2 Does the daily air temperature still appreciably influence the thermal gradient 

across a slab? 

The influence of the daily air temperature on the temperature gradient of a slab is still 

notable in other regions or seasons. In other regions during the summertime, the 

incoming solar radiation heats up the pavement surface temperature rapidly during the 

daily time. A higher swing of the surrounding air temperature thus decreases the heat 

convection, resulting in a greater temperature positive temperature profile developing 

within a slab.  

During other seasons such as winter time, the incoming solar radiation becomes less 

dominant on the heat exchange at the ground surface. The air temperature still controls 

the heat convection at the top. A greater daily air temperature variation leads to a greater 

temperature variation at the pavement surface. In this regard, a greater daily air 

temperature variation still results in a steeper gradient of the temperature profile within a 

pavement slab. 

 

3.3.1.3 Is replacing field air temperatures with SAAT still feasible? 

Replacing the field air temperatures within SAAT does not compromise accuracy of 

the predicted temperature, regardless of the regions or season. In this study, the 

simulation uses the weather conditions in extreme cases. Such cases make the predicted 

results being magnified. This means that the replacement will be certainly feasible in 

other regions and in other common daily air-temperature swing cases.  

Here now considers uncommon cases that the air temperature either increases or 

drops suddenly. Supposed that a sudden drop of the air temperature of 10
o
C occurs in a 

summer day, the ground surface temperature has to decline. However, this decline is 

greatly less than the 10
o
C owning to three reasons.  

(1) In this case, the regression air temperature yields lower daily temperature 

amplitude than the difference between maximum and minimum air 

temperatures, as shown in Figure 3.1b. 

(2) The existence of both the temperature boundary layer and speed boundary 

layer (wind effect) make the surface temperature dampened to the sudden 

variation of the ambient air temperature. 

(3) The heat development within the slab is inherited (Figure 3.3). The heat 

inheritance from the previous time frame supplies heat to the pavement 

surface, preventing an extreme sudden temperature drop at the top. 

These three arguments strengthen the feasibility of the replacement of field air 

temperatures with SAAT, even as a sudden air temperature drop occurs. An example of 
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this feasibility is shown in Figure 3.1b. A sudden air temperature variation about 4
o
C 

occurred from 09:00 to 10:00 and from 16:00 to 18:00. However, the prediction using the 

SAAT agrees well with the prediction using the field air temperatures, with little notable 

deviation (Figure 3.5a). These same arguments can be made in terms of an abrupt air 

temperature increase as well. 

 

3.3.1.4 Do the methods of estimating the sky temperature still notably influence the 

predicted temperature?   

The methods to computing the sky temperature still appreciably affect the pavement 

temperature regardless of the regions and the seasons. Normally, the dew point can be 5-

10
o
C lower than the air temperature, depending on the local air relative humidity 

(Centeno V 1982). The hold of the inequality of Eq.(3.7) thus proves this impact during 

the winter seasons. During the summer time, the surface temperature is heated up by the 

solar radiation, magnifying the role of the sky temperature on the thermal irradiation 

according to Eq. (2.2). 

 

3.3.2 Difference between the proposed model and EICM model 

One distinguishable feature of the proposed model from the documented models, 

particularly the EICM model, relates to the specification of the lower boundary condition. 

The EICM model, as well as other models like Bentz model (Bentz 2000), adopts a 

constant temperature at a certain depth below the pavement surface, assuming that the 

soil at this depth is capable of supplying infinite heat to keep temperatures therein 

constant. 

When considering the role of the air temperature, the difference between the various 

models‘ methods of estimating the heat convection and thermal irradiation is distinct. 

This is due to the air temperature appearing explicitly in Eq. (2.6) and implicitly in Eq. 

(2.2).  

 

3.3.2.1 Heat convection in different models 

The method for computation of the heat convection coefficient       in the EICM 

model is somewhat unreliable.  This model evaluates       use Eq. (3.8) 

 

                  
                      

                             (3.8) 

 

where    (
o
K) is the average of the surface and air temperatures (Dempsey et al. 1985);   

is constant,        . Setting wind velocity to    , the       is close to zero because 

                
    is minimal. This indicates that the EICM model adopts zero 

convection in the case of free convection (no wind velocity). This zero free convection 

goes against the accepted heat transfer theory (Jiji 2009). Another unreliable factor of Eq. 

(3.8) is that the pavement surface temperature must always be higher than the air 

temperature, otherwise       would be a complex number. This is not always the case as 

demonstrated in Eq. (3.7). 
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To further show the impact of the EICM method to compute      ,, Figure 3.7 plots 

the       calculated from the proposed model, EICM model, and Bentz‘s model, the last 

of which uses Eq. (3.9). 

 

       
                

                
                                           (3.9) 

 

Details pertaining to the difference between Bentz‘s model and the proposed model 

involve analysis on the heat transfer theory relevant to the topic of heat convection and 

thus are out of the scope of this dissertation. However, Figure 3.7 clearly illustrates the 

difference between the models. Use of the       computed from EICM model 

significantly underpredicts the heat convection occurring at the pavement in comparison 

with the Bentz and proposed models. Since this convection normally accounts for the 

heat loss from the ground, adoption of EICM model would overpredict the pavement 

temperature. In addition, this predicted temperature from the EICM is insensitive to 

variations of wind speed, as illustrated through the calculated       (Figure 3.7). 

 

 

Figure 3.7 Comparison between inputted heat convection coefficients for different 

models. Note: when the       in the EICM model computed,         o
C is used in 

order to magnify the computed       of the model.      <0 
o
C results in a complex 

number using Eq. (3.8). 

 

3.3.2.2 Thermal irradiation in different models 

It is necessary to compare the thermal irradiation in the proposed model with the 

EICM model because the EICM is the most widely-used tool to predict the temperature 

distribution in PCC pavements. Unfortunately, the EICM does not use the sky 

temperature to formulate the thermal irradiation at the slab surface. The impact of sky 

temperature on the pavement temperature distribution thus cannot be directly estimated. 

However, the formulation of thermal irradiation in both the proposed model and Bentz 

model are simpler and rely on less uncertain parameters (MEPDG 2004). In EICM 

model, the parameters to compute the thermal irradiation from the sky emissivity 
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includes cloud base factor, average cloud cover during day and night, air vapor pressure, 

and several empirical coefficients (G,  , and J) , etc.  

For the sake of the simplicity and clearance, use of the formula in the EICM model to 

compute the thermal irradiation at the ground surface is not recommended. According to 

heat transfer theory (Jiji 2009), the irradiation should be evaluated using the sky 

emissivity. Methods to this account for sky emissivity are highlighted in the Eq. (3.1) to 

Eq.(3.5), depending on the available local weather data. Tang‘s formula (Eq.(3.4)) is 

recommended and utilized in the proposed model. It links the sky temperature to dew 

point for the best accuracy of temperature prediction in concrete slabs whereas not 

requiring the cloud factor, which can be a highly uncertain parameter. 

 

3.4 Conclusions 

The impact of air temperature on the temperature distribution through pavement slabs 

has been presented from three aspects: (1) the impact of DTA on pavement temperature 

distribution through the slabs, (2) the feasibility of using the sinusoidal-approximated air 

temperature, and (3) the predicted thermal profile results dependence on the correlation 

between the air and sky temperatures. Also, the difference between the proposed model 

and documented models, especially the EICM model, is highlighted in terms of how 

these models characterize the impact of air temperature on the heat convection and 

thermal irradiation. From this study, the following points can be drawn: 

 The daily temperature amplitude affects the temperature distributions across a 

pavement slab during the daytime more than during nighttime. Pavements in regions with 

higher daily air temperature amplitude experience greater negative temperature gradients 

during the nighttime hours.  

 Replacing the field air temperature with the sinusoidal-approximated air 

temperatures does not affect the predicted slab temperature. The occurrence of a sudden 

air temperature drop or increase does not compromise this agreement significantly. 

 Uses of the correlations between air and sky temperatures in a slab-temperature 

predicted model notably influences the predicted results. Methods that estimate the 

thermal irradiation by link the sky emissivity to dew point should be included in a slab-

temperature predicted model.  

 The EICM model tends to significantly underestimate the heat convection 

coefficient and thus overpredict the pavement temperature, compared with the proposed 

and other published models. The use of the EICM model potentially results in the 

predicted temperatures highly insensitive to wind speed variations. 
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Chapter 4 Impact of wind speed
2
 

In-service jointed plain concrete pavements (JPCPs) suffer from diurnal temperature 

variations and lead to thermal deformations across the pavement slab. Stresses caused by 

these deformation depend, to a certain extent, on the pavement geometry and the 

underlying layer support but primarily on the temperature distribution within a slab. They 

thus mainly rely on the in-situ weather conditions, e.g., solar radiation, air temperature, 

wind velocity, and the combination of these factors. Among these conditions, the role of 

wind speed on the pavement temperature distribution merits a thorough study because 

wind velocity greatly determines the amount of heat convection occurring at the 

pavement surface.  

The impact of wind conditions on the temperature profile of a pavement structure has 

been well documented (Kapila et al. 1997; Bentz 2000; Burkan Isgor and Razaqpur 2004; 

Yavuzturk et al. 2005); but formulation of the wind speed on the heat convection 

coefficient remains contentious. Such a coefficient at pavement surface nonlinearly 

increased with wind speed (MEPDG 2004). Currently use of the nonlinearity is based on 

the empirical regression of laboratory experiments. It overlooks the impact of the air 

thermal properties like thermal conductivity, air-flow Reynolds number, etc. on heat 

convection. This impact had been considered by  Kapila et al.  (1997), which connected 

the heat coefficients to the Reynolds and Prandtl numbers of the air. However, Kapila et 

al. assumed that the characteristic length used to compute the Reynolds number is the 

width of the pavement. This characteristic length used is significantly larger than that 

computed from traditional heat transfer theory (Jiji 2009). Although the heat convection 

coefficients calculated from the aforementioned models deviate from each other, it is 

clear that wind velocity directly influences the heat convection at ground surface. If this 

influence is of considerable magnitude, a proper estimate of the heat convection will be 

critical in predicting this influence on both temperature profiles and thermal stresses in 

JPCPs.  

This chapter investigates the impact of wind velocity on the temperature distribution 

in JPCPs and evaluates the role that the heat convection coefficient plays with respect to 

stress profiles in the slab. It centers on the degree that the variation of wind speed on the 

temperature distribution and thermal-stress distribution through a pavement slab. It 

highlights the difference between the methods to computing the heat convection 

coefficients in different models. The reliability of these models is analyzed on the basis 

of the accepted heat transfer theory and of the predicted feasibility. 

4.1 Simulation results 

This chapter estimates the temperature and thermal stresses of a JPCP in Reno, 

Nevada. To assess the maximum stress effect, the pavement temperature regime for July 

12, 2010 is simulated. The thermal parameters regarding the underlying soils under I-80 

                                                 
2 Part of the material contained in this chapter was submitted to Journal of Transportation Engineering for 

considering publication. 
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at Rainbow Ridge Park (in Reno) are obtained from USDA. The slab‘s thickness is 

25.4cm and the local air temperature, dew point temperature, etc., are obtained from 

NOAA. The air temperature series and wind speeds on July 12, 2010 are demonstrated 

Figure 4.1a and Figure 4.1b, respectively. The temperature series can be approximated to 

a sinusoidal period, whereas the wind speed exhibits more randomized deviation with a 

maximum speed of 9m/s. Because of these varying wind velocities in field, the following 

simulates both the temperature profiles and developed thermal-stress profiles of a slab 

under different wind velocities.  

 

 

Figure 4.1 Air temperature and wind speed on July 12, 2010, in Reno, Nevada 

 

4.1.1 Effect of different wind velocities on temperature development 

An increase of wind speed from 0-6 m/s greatly declines the temperature of a slab. 

Degree of the decline depends on the time of a day and on the amount the incoming solar 

radiation (Figure 4.2). During the daytime, the top of the slab declines roughly 2
o
C if the 

weather is a cloudy day; whereas the temperature difference at the bottom seems 

negligible. During a sunny day, the decline at the top would be up to approximately 14
o
C 

at the top and about 8
o
C at the bottom. The reason that wind blow can reduce the 

temperature more in a sunny day is that wind flow at such a day is capable to dissipate 

more energy from the pavement surface. At the night, although the solar radiation 

vanishes, wind still notability affects the pavement temperature, especially during a 

sunny day. This is because the heat inherited during the daytime makes the thermal state 

of the slab different from the state of the surrounding air. At the night time of a sunny 

day, increase of wind speed from 0-6m/s reduces the 4
o
C at the top and 6

o
C at the 

bottom. Therefore, the effect of the wind speed on the pavement slab varies with time and 

depends on the available solar radiation. 

The increase in airflow helps mitigate the nonlinear temperature gradients through the 

slab, especially during the daytime of a sunny day. This gradient reduction is visualized 

at the density of the temperature contours shown in Figure 4.2. During the daytime of 

sunny day, the slab experiencing 6m/s airflow has temperature contours that are spaced 

further away (Figure 4.2d) than those under no wind (Figure 4.2c), indicating higher 

temperature gradients in the slab. The gradient reduction can be also estimated from the 
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temperature cycles that the bottom and top of the slab suffer from. As illustrated in Figure 

4.2, during a sunny day, the amplitude of slab-top temperatures is 38
o
C in the case of 

0m/s wind speed and 28
o
C in the case of 6m/s wind speed. 

 

 

Figure 4.2 Temperature contours of a slab experiencing different wind velocities. Note: 

coordinate system is considered positive downward and measured from the slab‘s top. 

 

 

4.1.2 Computation of the curling-induced stress within a slab 

Curling of rigid pavement slabs has captured considerable attention (Ashraf R. 

Mohamed and Hansen 1996; Ashraf Mohamed and Hansen 1997; Yu et al. 1998; J.E. 

Hiller and Roesler 2008). Several methods have been proposed to compute the exact 

amount of curling-induced stress (Hong et al. 1997; Ashraf Mohamed and Hansen 1997; 

Jacob Eskel Hiller 2007) within JPCP slab. They usually use elastic plane theory to 

compute the thermal stresses within a pavement slab, assuming negligible uniform 

temperature effects. Any temperature profile      results in a specific strain profile 

     : 
 

( ) ( )T z T z                                                           (4.1) 

 

where   (10
−6

/°C) stands for the thermal expansion coefficient of the slab. The strain in 

Eq. (4.1) results in a stress profile proportional to the temperature profile if the stresses 

within the slab develop freely. This stress profile, called free stress profile, is: 
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                                                         (4.2) 

 

where   is the conventional Young‘s modulus of concrete (Pa);   is the Poisson ratio of 

the slab.  

Stresses estimated in Eq. (4.2) are free stresses. They automatically redistribute to 

minimize the stress energy according to the principle of minimum potential energy. The 

redistributed stress is the real stress that the slab subjects to. It can be definitely computed 

by use of 3-D finite element method to evaluate Eq.(4.2) (Pane et al. 1998). However, 

considering that pavement engineering is more of practical importance than theoretical 

importance in nature, this dissertation uses the method proposed by Mohamed and 

Hansen to compute the redistribution of the free stresses (Ashraf R. Mohamed and 

Hansen 1996). This method, easily followed by engineers, is briefly presented in the 

following. 

The stresses in the Equation (4.2) generate a normal internal N (N) and a bending 

moment M (Nm
2
). These two forces are: 
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where   is the thickness of the slab;   is the coordinate that is perpendicular to the slab 

surface and has an origin at the middle of the slab.  

Both the force in Equations (4.3) and the moment in Eq. (4.4) make the slab being in 

a un-equilibrium state. It is thus necessary to impose an equal, opposite force N and 

moment M to balance the resulting stress distribution. These forces come from the self-

weight of the slab and from the reaction among the slab, base, and roadway shoulder. 

Therefore, the self-equilibrating stress      (MPa) resulting from the constraints of 

compatibility is: 

 

3

12
res T

Mz N

h h
                                                       (4.5) 

 

where the second term of the Eq.(4.5) stands for the stress coming from the moment  ; 

the third term, from the force  . 

Other than     , a temperature profile through the slab results in linear stresses 

developed in the slab. This development is due to the restraint of the slab‘s self weight to 

the bending moments M . This moment results in a bending curvature,  ; their 

relationship can be estimated by Eq. (4.6): 
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where x  and y are the bending curvature induced by the    and    respectively, as a 

schematic show in Figure 4.3. 

 

 
Figure 4.3 Schematic showing the bending moment induced by a temperature profile. 

 

Equation (4.6) indicates that if the slab is weightless,   would make the slab deforme 

to a curve with curvature of  . When the temperature variation occurs along z  direction 

only (1-D model), x yM M M  and x y    . Therefore, Equation (4.6) can be re-

arranged to: 
*
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where  

 
* (1 ) /M M E                                                   (4.8) 

 

here 
*M (m

2
) is constant depending on the free stress profile. The curling induced by the 

bending moments is equal to a nominal linear temperature gradient     : 
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Therefore, the linear stress can be computed by (Westergaard 1927; Bradbury 1938): 
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where    and     are the stresses in the transverse and longitudinal directions, 

respectively;    and    are two variables of the stress correction factor (Bradbury 1938).  

These two variables are determined by the dimension of the slab and by the support of the 

subgrade. This dissertation uses the following parameters: 

 Coefficient of thermal expansion 9 / C    

 Young‘s modulus         

 Poisson ratio        

 Slab dimension: X=3.6m (transverse); Y=6.0m (longitudinal); 

 Modulus of subgrade reaction, k=50MPa/m 

When these parameters are used, the stress correction factor for the slab‘s width and 

slab‘s length are          and        , respectively (Westergaard 1927; Bradbury 

1938). The stresses plotted and discussed in this dissertation are the longitudinal stresses, 

which are generally greater than the transverse since       for most instances. 

 

4.1.3 Impact of wind speed on the curling stress 

4.1.3.1 Stress profile 

The airflow helps mitigate the linear and self-equilibrating stresses (Figure 4.4). The 

linear stress significantly decreases when the wind blows across the pavement surface. 

This decrease occurs since the airflow-induced heat dissipation from the slab lessens the 

temperature difference between the top and the bottom and thus reduces the bending 

moment in the slab. The self-equilibrating stress also decreases due to an increased 

airflow. Since wind directly affects the surface only, this influence occurs more at the top 

than the bottom (compare Figure 4.4a and c).  

The total stress is remarkably reduced when wind speed increased from 0 to 6m/s. It 

decreases more notably at daytime than at nighttime. At daytime, when wind speed is 

0m/s, the compressive stress at the top and the tensile stress at the bottom are -3.6MPa 

and 2.2MPa, respectively; when the wind speed increase to 6m/s, these stresses would be 

-2.5MPa and 1.6MPa, respectively. At night, such decreases of the maximum tensile 

stress at the top are less notable (0.2MPa reduction with 6 m/s wind). 

4.1.3.2 Stress contours 

In less windy conditions, the slab bottom suffers from more tensile stress than the top. 

The top of the slab suffers from tensile stresses at nighttime while the bottom experiences 

tensile stresses at daytime. The bottom of the slab, despite experiencing lower absolute 

temperature variation, suffers from higher tensile stresses than the top (Figure 4.5a and 

c). This is because during the daytime, the slabs in less windy regions have more bending 

stress, resulting in the bottom of the slab suffering from a relatively higher tensile stress. 

An increase of wind speed lessens this bending stress and makes the stress bottom 

experienced less tensile stress (Figure 4.5b and c).  

The effect of wind speed on the slab‘s stress distribution depends on the available 

solar radiation. At noon of a cloudy day, the tensile stress at the bottom is not 
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significantly influenced by the airflow speed (comparing Figure 4.5a and b). But on a 

sunny day, the impact of wind velocity on the stress distribution through the depth of the 

slab becomes pronounced in that the stress contours near the top and the bottom are 

densified. This is because during a sunny day, the wind speed dissipates a relatively more 

heat energy from the pavement surface. More heat dissipation leads to less temperature 

gradient near the surface and thus mitigates the stress gradient near the top. 

 

 

Figure 4.4 The predicted thermal stress profile through a slab on a sunny day. Note: 

negative—compressive; positive—tensile. 
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Figure 4.5 Predicted stress distribution in the slab for different wind velocities and 

weather conditions (contours at 0.5 MPa spacing). 

4.1.4 Thermal stresses and wind velocity 

Magnitude of maximum tensile stress to which the slab is subjected linearly decreases 

with an increase in the wind speed, as illustrated in Figure 4.6. The decreasing rates of 

these stresses on a sunny day are significantly higher than that for a cloudy day (Figure 

4.6a and b). This rate at the slab‘s bottom is approximately one-and-half times that at the 

top, regardless of whether it is a sunny day or a cloudy day. This difference further 

suggests that the increase of wind speed decreases the tensile stress at the bottom more 

pronouncedly than it does to the tensile stress at the bottom. It also implies that in a less 

windy condition, the bottom of the slab is prone to fatigue damage. 

 

 

 

Figure 4.6 Maximum tensile stresses in the JPCP as a function of wind speed. 

 

4.1.5 Heat convection coefficients in different models 

Since the wind speed notably affects the temperature development and stress 

development of a JPCP slab, it is necessary to compare the heat convection coefficients 

used in different documented models. This coefficient used in the EICM model is 

computed by Eq. (3.8): 

 

                       
                      

                            (3.8)   

                                      

Eq. (3.8) results in a free convection (no wind velocity) at the ground surface 

approaching zero because       vanishes when    . This zero free convection goes 

against the accepted heat transfer theory (Jiji 2009). The most unreliable factor of 

equation (3.8) is that the slab‘s surface temperature must be higher than the air 

temperature, otherwise       would be a complex number. Because the sign of       

can be either negative of positive (Eq. (3.7) in Section 3.2.3.1), the way the EICM model 

computes the       is questionable. 

Priestley and Thurston (Priestley MJN 1979) recommends a simple formula to 

evaluate the heat convection coefficient as follows  
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                                                                       (4.11) 

 

The free convection in Eq. (4.11) is 13.5W/m
2o

C, approximately twice of the value 

(6.855W/m
2o

C) computed in traditional heat transfer theory (Jiji 2009). This equation 

also demonstrates that the heat convection linearly increases with the wind velocity. Use 

of this relationship potentially overestimates the role of wind speed on the heat 

convection. 

Bentz (Bentz 2000) use Eq. (3.9) to predict the heat convection coefficient for 

concrete: 

 

       
                

                
                                                (3.9) 

 

In Eq. (3.9), the free convection at the pavement surface is 5.6W/m
2 o

C. This value is 

close to the convection coefficient estimated in the traditional heat transfer theory (Jiji 

2009). However, use of the rate of either       or   overrates the role of wind speed on 

the      . 

The heat convection coefficients used in the Bentz model, EICM model, and the 

Modified Blasius model are plotted in Figure 4.7a. Visually, the coefficient computed 

from the EICM model is appreciably lower than that from the proposed model and Bentz 

models. Predicting the pavement temperatures by the use of these models to predict the 

convection will lead to different predicted results. 

Use of the computed heat convection coefficient greatly affects the predicted 

temperature across the pavement. Figure 4.7b plots the wind velocity versus the slab‘s 

maximum temperature on a partly sunny day in July (maximum solar radiation intensity 

of 700 W/m
2
). The slab is assumed in Reno, Nevada. Intuitively, in such a day the 

maximum temperature ranging from 51 to 55 
o
C is unreasonable but from 30 to 45 

o
C is 

more acceptable. In the EICM model, the wind velocity slightly affects the slab‘s 

maximum daily temperature. This insensitivity occurs because the heat convection 

coefficient computed from the EICM model is remarkably less than the other two models 

(Figure 4.7a). Among other two models, the effect of the heat convection computed from 

the Bentz model is more pronounced than that from the proposed model. The reason is 

that the increasing rate of the heat convection coefficient computed from the former 

model (Bentz model) is greater than the rate of the latter. 

Use of the computed heat convection coefficient also influences the predicted 

maximum tensile stresses in a JPCP (Figure 4.7c and d). A distinction between these 

models is pronounced at two aspects: (1) the sensitivity of the stress to wind speed and 

(2) the magnitude of the predicted stresses. First, the maximum tensile stresses estimated 

from the EICM model become less sensitive to the wind velocity than other models. This 

is because compared to the other two models, EICM model results in the heat convection 

coefficient being insensitive to the wind speed. Second, the maximum tensile stress 

estimated in the EICM model is always higher than the other two models. During the 
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nighttime (Figure 4.7c, tensile stress at the top occurs at nighttime), this difference is 

relatively less pronounced because the       during the night hours is comparatively 

lower. During the daytime (Figure 4.7d), the difference becomes more notable because a 

relatively high of       (induced by the solar radiation) magnifies the role of the heat 

convection on the heat loss from the pavement.  

 

 

Figure 4.7 Difference heat convection coefficients and their impacts on the temperature 

and stress through a slab. 

4.2 Discussion 

4.2.1 What the ways to estimate the heat convection coefficient tell us? 

The predicted pavement temperatures from the EICM model are insensitive to the 

wind speed but are sensitive to the slab‘s thermal properties, e.g. thermal conductivity. 

As plotted in Figure 4.7, the predicted results from the EICM model exhibits less 

variation in range of 0m/s to 6 m/s. The insensitivity may help explain, in part, the 

extreme sensitivity of the EICM model‘s prediction to the slab‘s thermal conductivity 

(J.E. Hiller and Roesler 2008; Johanneck and Khazanovick 2010). The higher the thermal 

conductivity, the lower temperature gradient developed in the pavement slab. A slab with 

higher thermal conductivity facilitates the absorbed heat downward propagating to the 

bottom of the slab, making the slab having a relatively uniform temperature gradient. 

Conversely, lowering the slab‘s thermal conductivity will greatly increase the 

temperature gradient development within a slab. The EICM model underestimates the 

heat loss from the pavement surface. It thus results in heat retentions at the top of the 

pavement, increasing the thermal gradient and subsequent thermal stress developed. 

Therefore, the predicted results from the EICM model are sensitive to the variations of 

the thermal conductivity. 
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The Bentz model tends to overstate the impact of wind velocity on the heat 

convection number. This may lead to underestimation of the thermal stresses in the slab, 

especially in high wind speed. As shown in Figure 4.7a, the       computed from Bentz 

model linearly increases with the wind speed. It means that the wind speed can infinitely 

decrease the slab temperature. This goes against the accepted heat transfer theory. The 

proposed model should be a more accurate formula to evaluate the heat convection at the 

pavement surface. This is because it relies on site-specific parameters such as viscosity of 

the air, characteristic length of the JPCP slab, the air‘s thermal conductivity, air Prandtl 

number, and wind velocity. Use of the proposed model, however, may be troublesome 

when the airflow is at turbulent flow levels (>15m/s). Moreover, a specific value for the 

characteristic length for a pavement slab in a pavement still needs further investigation.  

Wind velocity may be troublesome when placing concrete in a fresh state as it may 

cause significant plastic shrinkage cracking of the mix. Although the increase of the wind 

velocity in field can reduce the thermal gradients of the slab, it can also accelerate the 

moisture loss from the slab‘s top and induces higher undesirable drying shrinkage near 

the surface. These drying shrinkage-induced stresses are also significant and may 

compensate or exceed those thermal stresses reduced by the impact of wind. A deep 

understanding the role of airflow to the pavement performance needs a more 

sophisticated model capable to capture the wind velocity‘s impact on the moisture-

temperature profiles of a JPCP slab. The role of wind speed on the moisture escape from 

the pavement slab would be discussed in Section 7.2.1.2. 

 

4.2.2 Does wind speed still greatly influence both the thermal stress and temperature 

across the slabs in other regions? 

Both the discussion in the above section and the predicted results in the Section 4.1 

represent only the sensitivity of the slab temperature and slab thermally-induced stress to 

wind speed in Reno in July 12. In other regions and other seasons, they hardly directly 

reflect either slab-temperature distribution or slab-stress distribution. It thus merits 

discussing whether this impact is notable in other regions and other time. The discussion 

in the following two paragraphs assumes that the proposed model is used. 

This impact in other regions depends strongly the available solar radiation. In lower 

latitude regions, the influence of wind speed on the heat convection at the pavement 

surface is magnified because the relatively higher solar radiation heats up the ground 

surface and increases the      . In higher latitude regions, the role of solar radiation 

declines because      is of a relatively less value. Temperature development within a 

slab primarily depends mainly on the air temperature fluctuation. Therefore, the impact of 

wind speed on temperature development and thermal-stress development relies on where 

the in-service pavement slab locates. 

This impact in other seasons would be lower than that in July. This study uses the 

weather condition in July to distinct the role of wind speed on the pavement temperature 

distribution. In other seasons, the solar radiation wanes so that the       decreases. The 

wind speed only carries limited heat from the pavement surface. It thus plays 
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unnoticeable roles on the slab temperature distribution and thus on the thermal stress 

developed through the slab. 

 

4.3 Conclusions 

The following points can be drawn through the simulation of the temperature 

development and stress development of JPCPs experiencing different wind speeds. 

 The impact of wind velocity on the thermal stresses in JPCPs depends on the 

locations of the pavement. In lower latitude region, the solar radiation heats up the 

pavement surface and increases the difference between the slab surface temperature and 

the air temperature (      . A relatively higher       facilitates the wind drawing 

more heat from the pavement and thus reduces the temperature gradient and thermal 

stress development through the slab.  

 This impact varies seasonally. In summer the       is maximal and the role of 

wind speed is magnified. In other seasons, the solar radiation wanes so that the       

decreases. The wind speed carries only a limited heat from the pavement surface. It thus 

plays unnoticeable roles on the slab temperature distribution and on the developed 

thermal stresses. 

 In summer season with less windy conditions, the temperature gradients near the 

top increase greatly and thus remarkably raise the tensile stress at the bottom during the 

daytime. This stress exceeds the tensile stress at top during the nighttime. Therefore, 

pavement in less windy conditions potentially suffers from greater tensile stress at the 

bottom than the top. 

 Use of the heat convection coefficient from the EICM to predict the temperature 

profile of a slab tends to produce increased thermal stresses in a JPCP. This may help 

explain some of the sensitivity of the coefficient of thermal expansion to the predicted 

fatigue cracking performance in JPCPs. Moreover, the EICM heat convection formula 

embeds an assumption that the temperature at the pavement surface must be higher than 

the air temperature. This assumption is not always true and results in the thermal stresses 

being less sensitive to wind speed. The proposed model considers the factors of the 

viscosity of the air, characteristic length of the JPCP slab, the air‘s thermal conductivity, 

air Prandtl number, and wind velocity. It tends to be more realistic in characterizing the 

heat convection coefficient for a JPCP structure.  
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Chapter 5 Impact of solar radiation
3
 

Temperature distribution of in-service pavement slab depends on both the incoming 

solar radiation (SR) and the slab‘s short-wave surface absorptivity (Richardson and 

Armaghani 1987; Hermansson 2000). The available SR directly influence the  pavement 

temperature because it heats up the slab surface directly  (McCullough and Rasmussen 

1999; Bentz 2000; Ge 2005). This absorbed heat is partially inherited and stored 

underneath the pavement surface layer (Asaeda et al. 1996). The inheritance reflects as a 

net heat loss in the winter season and a net heat gain in warmer seasons. Heat absorption 

at the pavement surface also depends on the slab‘s short-wave surface absorptivity (SA). 

This absorptivity determines the amount of the absorbed heat because it is directly 

multiplied to the available SR. For rigid pavement, the SA usually is not a constant. It 

ranges from 0.65 to 0.85, depending on the texture, color, and worn conditions of the 

pavement surface. The impact of the SR absorption on the slab pavement temperature 

distribution thus merits a deep investigation. 

Further researches are still required to understand the detailed amount of daily solar 

radiation and to estimate the impact of heat history on a pavement slab. Firstly, the 

available SR to a numerical heat transfer model has not gained adequate attention. For 

short-term predictions, McCullough and Rasmussen (1999) proposed a SR of 300W/m
2
 

on cloudy days and 1000W/m
2
 on sunny days. Use of these SR values overlooks the 

preceding-date thermal conditions of both the pavement surface layer and its underlying 

layers. For a long-term prediction, documented literature usually fails to provide details 

concerning the input of the available SR (Asaeda et al. 1996; Masad et al. 1996; Minhoto 

et al. 2005; Yavuzturk et al. 2005). At a specific site, the inputted SRs in a specific year 

should be parameters consisting of both deterministic and probabilistic factors. The 

deterministic factor is the monthly mean SR, a series ranging from a peak value in 

summer to a nadir value in winter. The probabilistic radiation swings between the 

observed monthly maximum and minimum SR. Secondly, the degree to which the SR 

history affects the temperature distribution and thermal-stress distribution through the 

slab needs further investigation. Asaeda et al (1996) studied the heat storage effects on 

the temperature profile across a concrete slab, but failed to study the resulting stresses 

developed in the slab. Kannekanti and Harvey (2006) used the EICM and MEPDG 

models to simulate the impact of absorptivity on the predicted pavement distress, but the 

degree of heat storage was neglected.  

This chapter estimates the effect of the SR on the slab temperature distribution and 

thermal stress distribution through a JPCP slab. Temperatures through both the slab and 

underlying layers are evaluated by the one-dimensional heat transfer model proposed in 

Chapter 2. Yearly inputted SR at the pavement surface is computed by the combination 

of the monthly maximum, mean, and minimum SR observations in the field. This 

computation assumes that the SR variation during a month follows a random normal 

                                                 
3 The Material contained in this chapter has been accepted for publication in KSCE Journal of Civil 

Engineering. The copyright permission is included in Appendix B. 
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distribution, whose standard deviation depends on the uncertainties of the field 

observation. Considering that the SR is available only between the sunrise/sunset times, 

this study also evaluates whether using different sunrise/sunset algorithms affects the 

predicted temperature through a slab.  

 

5.1 Results and discussion 

The following simulation assumes the pavement locates in Reno, Nevada, USA. It 

estimates the temperature distribution and thermal-stress distribution of a JPCP slab. 

Figure 5.1 plots the inputted air temperature, relative humidity, and wind speeds. Any 

data other than on the data-recording date is calculated by the use of cubic spline 

interpolation. The relative humidity is used to compute the dew point by use of the Eq. 

(2.5). The daily peak value of the inputted SR, computed by Eq. (2.14), is plotted in 

Figure 5.2. Due to the uncertainty of the field observations, the variations of the SR in 

some cases are out of the range between the     and     . The used SA is 0.85. 

 

 

Figure 5.1. Inputted meteorological data for the pavement in Reno, Nevada, USA for (a) 

Air temperatures, and (b) air relative humidity and wind Speed. 

 

 

Figure 5.2. The observed and inputted solar radiation. 
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5.1.1 Slab temperature distributions during summer and winter seasons  

SR dominates the slab temperature distributions. Figure 5.3 plots the predicted 24-

hour temperatures through the depth of pavement during the maximum SR days in 

January and July, respectively. Pavement slab in a summer season (Figure 5.3b) is 

remarkably hotter and experiences higher temperature cycles, compared with the 

pavement during the winter time (Figure 5.3a). The maximum slab-surface temperatures 

are approximately 48°C in summertime and 16°C in wintertime. Although the air 

temperature amplitude (maximum – minimum monthly temperature) through the year is 

almost the same (Figure 5.2a), the pavement-surface temperature amplitudes are vastly 

different at 22°C in January and 34 °C in July. In summertime, this hotter state and 

higher daily-temperature amplitude are due to the increased SR notably amplifying the 

pavement temperature during the daytime.  

Pavement in summer experiences greater temperature gradient than in winter. The 

maximum positive gradients are about 12°C in January but 18°C in July. The maximum 

negative gradients were -8 and -12°C in January and July, respectively. These different 

temperature gradients also present in the level of non-linearity of the temperatures. This 

level is much higher during the summer months in comparison to the winter month, as 

denoted by the spacing of the contour lines (Figure 5.3). This is because the absorption of 

SR increases pavement surface temperatures immediately but it takes a longer period of 

time to warm deeper portions of the slab. 

 

5.1.2 Thermal stress regime of JPCP 

The stress computed in this section uses the stress computational method proposed in 

the Section 4.1.3.1. All the used parameters are the same. Here, only the total thermal 

stress is concerned.  

 

 

Figure 5.3. Slab‘s temperature distributions in the maximum SR days of both January and 

July. 

 

5.1.2.1 Thermal stresses during a daily cycle 

JPCP slabs in the summer season suffer from higher stress cycles than in the 

wintertime. Figure 5.4 plots the predicted slab stresses over a 24-hour period during the 
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maximum SR days in January and July. At the top of the slab, the maximum compressive 

stresses are -2.0 and -2.4MPa in January and July, respectively; the maximum tensile 

stresses, 0.8MPa and 2.0MPa. Similarly, the slab‘s bottom suffers from more aggressive 

stress state in July than in January. 

 

 

Figure 5.4. Predicted stress distribution in JPCP slabs during the maximum SR days in (a) 

January and (b) July (Tensile is Positive); 

 

Both tensile and compressive stresses are lower than typical Portland cement concrete 

strengths. However, according to the exponential characteristic of the Paris Law (Paris et 

al. 1999), thermal stresses would greatly increase fatigue damage of the slab. This is 

because when combined with external loading stresses from traffic, the amount of tensile 

thermal stress makes the total stress of a slab close to the flexure tensile strength. 

 

Figure 5.5 plots the monthly maximum thermal tensile stress in a JPCP slab. It 

indicates the following points: 

1. The maximum tensile stresses are relatively lower in January and December. 

They gradually increase from the winter to summer seasons, having a 2.3MPa 

peak tensile stresses at the top of the JPCP slab in July. 

2. The top of a slab undergoes higher maximum thermal tensile stresses than the 

bottom. 

3. The pattern of maximum tensile thermal stresses that a slab suffers from is 

similar to the pattern of the inputted SR plotted in Figure 5.2. 

More tensile stress occurring at the top of the slab verifies the dominated effect of the 

SR on the temperature distribution and stress distribution in a JPCP slab. Tensile stress at 

the bottom occurs during the daytime; that at the bottom occurs during the daylight. 

Because the temperature gradient during the daytime is greater than during the nighttime, 

the linear component of the temperature distribution should cause more tensile stress at 

the bottom than at the top. However, this is not the case as demonstrated in Figure 5.5. It 

means that the level of non-linearity is significant enough to create substantial self-

equilibrating tensile stresses that are more prevalent at the top of the slab. This level can 

be verified the spacing of the contour lines in Figure 5.3, where the top has a denser 

temperature gradient. This denser gradient at the top further verifies the dominated effect 

of the SR on the temperature and stress distributions in a JPCP slab. 
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Figure 5.5. Maximum stresses of a slab with different solar absorptivities. 

 

5.1.2.2 Impact of SA on thermal stress development 

The solar absorption of slab depends not only on the available SR, but also on the SA. 

Figure 5.5 plots the influence of different SA (    =0.65 and 0.85) on the monthly 

maximum tensile stresses developed in a slab. An increase of the slab‘s SA results in the 

increase of the developed thermal stress up to approximately 10% in the summer months. 

At the top and bottom, the maximum stress difference between slabs with 0.65 and 0.85 

SA occurs throughout a year. Its magnitude varies with time, having a nadir in January 

and a zenith in July. This variation further validates the dominated impact of the solar 

radiation on the stress developed within a slab because solar radiation also has a nadir in 

January and a zenith at July. 

 

5.1.3 Effect of the used sunrise/sunset algorithm  

5.1.3.1 Algorithms to compute sunrise/sunset times 

There exist several ways to estimate the sunrise/sunset time of a specific region. The 

simplest method to compute these times are the used set parameters: sunrise 7:00 and 

sunset 19:00, sayed R7S19. They are unaffected by the time of the year. Another option 

is an estimated sunrise/sunset (ESS) time, neglecting solar ecliptic and solar mean 

anomalies. It is proposed at the algorithm of Eqs. (2.10) to (2.13). A more precise and 

complicated algorithm (Hill and Braun 2001) estimates the sunrise/sunset time by 

considering the solar mean anomaly, solar ecliptic, and other factors. This algorithm is 

noted as the Julian Date of sunrise and sunset (JDSS).  

Here uses of these three ways to estimate the sunrise/sunset times in Reno, Nevada, 

USA (latitude = 39.52
o
). Figure 5.6a plots the inputted sunrise/sunset times in Reno, 

Nevada, USA. The ESS times and the JDSS times are quite similar but are notably 

different from the constant R7S19 times. The maximum deviation of R7S19 times from 

JDSS times are approximately 1.5 hours, which potentially either over or underestimate 

the SR absorbed in a JPCP depending on the season.  
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5.1.3.2 Effect of different sunrise/sunset algorithms on the numerical results 

The standard results can be set as the numerical results predicted by the proposed heat 

transfer model that uses the JDSS time. This is because the JDSS times precisely 

characterize the local time available for SR. These standard results are used to verify the 

feasibility of using either simpler ESS of R7S19 sunrise/sunset time model. When an 

individual sunrise/sunset time is used, the predicted slab‘s temperatures (one-hour 

intervals) can be saved as matrix with elements of          (24—hours of a day, 

21—the total discrete-element nodes of the slab, 12—the monthly maximum SR days). 

That is, three matrixes are obtained. Each of them is rearranged by the same arrangement 

method to be a vector. The calibration is conducted by use of the standard result as the X-

coordinate and use of the other two vectors as the Y-coordinate.  

Use of different sunrise/sunset models does not appreciably influence the slab‘s 

temperature prediction (Figure 5.6b). When slab‘s temperatures are predicted, using ESS 

as the inputted sunrise/sunset times obtains almost the same temperature predicted by the 

use of JDSS. The results predicted by use of the R7S19 model also agree well with by use 

of the JDSS model, although the scatter of predictions is slighter larger. Even though the 

highest source of error between these two methods occurs at extreme temperature 

approaching 50°C, these deviations count only for a small portion of the prediction, as 

demonstrated on the regression    list on the Figure 5.6b. Therefore, the prediction using 

the R7S19 model is still fairly accurate even though these times deviated by almost 1.5 

hours in extreme cases. 

 

 

Figure 5.6 (a) Difference between sun time algorithms and (b) their impact on the 

temperature distribution of a slab. 

 

Use of different sunrise/sunset models does not affect the slab‘s temperature 

prediction owning to three seasons. First, amount of the available SR to the slab surface 

is the same during a day period regardless of the used sunrise/sunset algorithm. This is 

because this amount is determined by the observed solar radiation is provided by     , 

     , and      but not by the use of the sunrise/sunset algorithm. This same energy 

absorption results in the thermal budget of a pavement structure being unchanged even 
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though different sunrise/sunset times are used. Secondly, although the sunrise/sunset 

times computed from each algorithm are different, the specific times of the peak SR are 

almost the same (13:00). Thus, the maximum temperatures recording during the midday 

are similar. Finally, the available SR at or around the sunrise/sunset times are relatively 

low. Therefore, the SR-relative heat flux at the pavement surface around the 

sunrise/sunset times is minimal when compared with the heat convection and thermal 

irradiation near hour 13:00.  

 

5.1.3.3 Applicability of the sunrise/sunset algorithm 

Using the above algorithms to compute the sunrise/sunset times in high latitude 

regions (approximately > 65
o
) can bring troublesome results. The R7S19 times are out of 

use in regions such as Alaska, which experiences polar night in winter and undergoes 

polar days in summer. The computation of the JDSS and ESS time requires Eq. (2.12), in 

which    must be in the range of -1 to 1 in order to satisfy the limitations of Eq. (2.10). 

However, if assuming the latitude   is 68
 o

 and sun declination is 23
o
,           

occurs and thus Eq. (2.12) provides unreasonable results. Therefore, all of these 

algorithms to compute the local sunrise/sunset times at high altitude regions should be 

used with caution.  

 

5.1.4 Effect of SR history 

Because SR dominates the slab‘s temperature distribution, it is necessary to 

investigate the influence of the SR history on the temperature dsitribution and stress 

distributions within a JPCP slab. Heat absorption of slab‘s surface is partially dissipated 

to the air and partially transferred downward to heat up the remaining portions of the slab 

(pavement bottom and underlying layers). Some fractions of the downward transferred 

heat possibly stores in the ground during the warm season and then dissipates in the 

subsequent cold season. The history of the SR potentially influences the thermal response 

of a rigid pavement. 

To characterize this influence, a simulation of six continuous days with different 

weather conditions is conducted by replacing the six continual inputted peak SRs in 

Figure 5.2 with artificial peak SRs. As shown in Figure 5.7, the days of 1
st
 (July 15) and 

2
nd

 day are set as sunny days, and the subsequent 3
rd

 and 4
th

 days are set to cloudy days 

(Note: 1—July 15, 2—July 16, etc; 1, 2, 5, 6 are Sunny Days; and 3, 4 are Cloudy Days). 

After the 4
th

 day, the 5
th

 and 6
th

 day is set to sunny days. A sunny day has a SR peak 

value of 1000 W/m
2
; a cloudy day, 300 W/m

2
(McCullough and Rasmussen 1999). 

 

5.1.4.1 SR history impact on temperature distributions 

SR history affects the slab‘s temperature, most notably at the bottom. Figure 5.8 plots 

the temperatures at the top and bottom of a slab on the 3
rd

, 4
th

, 5
th

, and 6
th

 date. For the 

cloudy days, the slab-top temperatures on the 3
rd

 day, which is preceded by a sunny day, 

are slightly higher than that on the 4
th

 day. For the sunny days, the slab-surface 

temperatures on the 5
th

 date, preceded by cloudy day, are slightly lower than those on the 
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6th date. Compared to the top, the impact of the SR history on the slab-bottom 

temperature becomes more pronounced (Figure 5.8a and Figure 5.8b). For instance, the 

slab-bottom temperatures on the 4th date are approximately 3-4
o
C lower than those on 

the 3th day.  

This pronounced impact is due to the heat dissipation at the top being at a higher, 

more effective way than the bottom. One factor of the heat loss from the top is the heat 

convection and thermal irradiation. Another factor is due to the absorbed heat transferring 

downward to heat up deeper portions of the slab. Therefore, although the surface 

absorbed considerable levels of SR, the slab surface is only slightly affected by the SR 

history of previous days. Conversely, the heat loss and gain cycles of the bottom are 

blocked by both the slab and the underlying soils. They thus occur indirectly and slowly. 

This time-dependent process records the SR history (especially short-term SR history) at 

the bottom of the slab.   

 

Figure 5.7  Simulated weather changes during a simulated 6-Day period. 

 

5.1.4.2 SR history impact on JPCP thermal stress 

The impacts of the SR history on the slab‘s thermal stress are visualized at Figure 5.9. 

At the top of the slab, the slab‘s thermal stresses on a day preceded a sunny day (    , 

3rd day) is 0.1-0.3MPa higher than those on a day preceded by a cloudy day (    , 4th 

day). At the bottom of the slab, this difference has an opposite sign, ranging from 0-

0.1Mpa. Since the heat of slab on the 3rd day is inherited from the sunny 2nd day, this 

inheritance results in an equilibrated negative gradient being built in the slab for the 3rd 

day. This gradient leads to a higher tensile stresses at the slab top and a lower tensile 

stress at the slab bottom.  

Conversely, a sunny day experiences higher thermal stresses at the top and less stress 

at the bottom if it is preceded by a cloudy day. In this case, an equilibrated positive 

gradient is built in the slab because the preceding two cloudy days cools the bottom of the 

slab. Compared with the thermal stresses on the 6th date (    ), those on the 5th day 

(    ) are lower at the top and higher at the bottom. For this simulation, the SR from the 

preceding day can result in thermal stress changes ranging from  0.3MPa at the top and 

 0.1MPa at the bottom of the JPCP slab.  

Thermal stresses depend on the mechanical properties, e.g., Young‘s modulus and 

Poisson ratio; and they also rely on the construction conditions, e.g., slab thickness and 

slab dimension. The impact of the heat history on the thermal stress development through 

other slabs may be different from the stresses plotted in Figure 5.9. But the value of the 
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thermal stress will not vary appreciably. One reason is that both Young‘s modulus and 

Poisson ratio of normal Portland concrete slab does not vary greatly even though 

difference water-to-cement ratio is used (Mindness et al. 2002). Other reason is that the 

stress correction factor (   and   ) is insensitive to variations of the slab thickness and 

slab dimension (Westergaard 1927; Bradbury 1938). In others words,    and    vary 

slightly when slab‘s thickness increases from 25cm to 30cm (normal thickness). 

Similarly, a slab with 3m*6m has almost equal    and   with other slab with 4m*7m 

(smaller dimension like 1m*1m slab are out of the scope of this study). 

 

5.1.5 What the dominant role of SR on slab temperatures tell us? 

 

5.1.5.1 Impact of SR on heat transfer model in long-term slab-temperature prediction 

The impact of SR absorption on the slab temperature distribution suggests that 

selection of the inputted yearly SRs is crucial in numerically predicting the environmental 

loadings that rigid pavements suffer from (Qin and Hiller 2011c). Currently, the EICM 

model embedded in the MEPDG repeatedly uses the observed solar radiation as the SR 

input when long-term temperature profiles of a rigid pavement are predicted (MEPDG 

2004). This repeated use ignores the occurrence of small probability events. Extreme 

cases such as a summer day with a maximum SR of 1200 W/m
2
 or such as continual 10-

or-even-30 sunny days may not occur during a particular year observation. But they may 

occur during a 10 or 20 year observation. Therefore, a rational prediction of the thermal 

loadings of the rigid pavements may need considering the probabilistic factors of the 

input solar SR.   

 

 

Figure 5.8. Influence of heat history condition of a JPCP on slab temperatures 

development. 
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Figure 5.9. The effect of heat history on the stress developed in a JPCP slab (a) top and 

(b) bottom of a JCPC slab. 

 

5.1.5.2 Estimations of pavement surface temperature 

The negligible impact of the heat history on the pavement surface temperature 

delivers two signals. Firstly, estimation for the maximum/minimum yearly temperature at 

the pavement surface (such estimation is of extreme importance to asphalt pavements) 

requires only simulation of the temperature on the maximum/minimum SR days. 

Pavement surface temperatures are primarily controlled by the current SRs but are 

negligibly influenced by SR history. This suggests that the extreme pavement surface 

temperatures must appear on the extreme SR days. Estimate to the maximum pavement 

surface temperature, however, needs the long-term local SRs, which are influenced by the 

observational uncertainties of the climatic data.  

Secondly, reproducing the observed temperature results of a pavement slab is 

possible. This type of reproduction can help verify the proposed numerical model which 

aims to simulate the pavement temperatures and subsequent thermal stresses. In 

documented literatures that model the pavement slab temperatures, details concerning 

inputted parameters such as solar radiation are usually not stated (Hermansson 2000; 

Minhoto et al. 2005). Since the inputted SR strongly affects the temperature distribution 

through a slab, any attempt to reproduce the results of a documented heat transfer model 

must estimate the inputted SRs. Reproduction of these models requires intelligent 

deductions for the peak solar radiation values assigned to the specific day by the use of 

the observed pavement surface temperature. This is because this temperature is less 

affected by the solar radiation history (Figure 5.8).  

 

5.1.5.3 Evaluation of pavement surface‘s absorptivity 

Correctly predicting the thermal loadings on rigid pavements also requires a rational 

estimate to the evolution of the slab-surface thermal properties. Use of a constant SA in 

EICM tends to overestimate the developed thermal stresses across the slab (not just 

JPCP) in the first serviced period of a pavement. Currently the EICM model assumes a 

0.85 SA for rigid pavement slabs. However, measured SAs ranging from 0.5 to 0.65 have 

been observed (Levinson and Akbari 2002; Kannekanti and Harvey 2006; Gui et al. 
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2007). As materials become designed to limit urban heat island effects, the SA of the 

concrete surface will be designed to start and remain at a lower value. In the EICM, a 

lowered SA of an actual field pavement slab would lead to an over-prediction of the 

developed thermal stresses and to an unconservative design. The amount of the 

overestimation of this thermal stress depends on the available solar radiation.  

An evolvable, variable inputted SA to the EICM model may be an alternative to allow 

better predictions of the temperature profiles and subsequent performance of a rigid 

pavement. According to experimental research (Levinson and Akbari 2002), the matured 

SA of an unexposed and abraded concrete slab depends on the albedos of the concrete‘s 

components including aggregates, cement, etc. Allowance of a flexible SA input will help 

the pavement engineer provide better input to the thermal model, according to the used 

concrete mixture. It also help estimate the subsequent predicted performance, e.g., 

faulting, transverse cracking, etc., of a rigid pavement. 

To illustrate the effect of the SA on the slab‘s temperature distribution, this study 

artificially set the SA to 0.65 and 0.85. However, the process and rate of SA evolution of 

in-service concrete slabs remains unknown. This SA evolution may be affected by factors 

such as the abrasion of open traffic, the soiling and wetting of local climate, further 

hydration, aggregate polishing, carbonation, etc. 

 

5.2 Conclusions 

This chapter reaches the following conclusions: 

 The SR absorption at the pavement surface dominates the temperature distribution 

and thermal-stress distribution through a slab. In summertime, pavement experiences 

higher temperature gradients and suffers from higher thermal stress, compared with 

winter months.  

 The role of SR absorption on the slab surface becomes more pronounced when 

pavement surface became darkened. The maximum thermal tensile stress of a slab can 

increase up to 0.3MPa when the pavement surface‘s solar absorptivity rises from 0.65 to 

0.85. 

 Algorithms to predict the sunrise/sunset times through a given year do not 

influences the predicted temperature distribution and predicted thermal-stress distribution 

through a slab servicing in middle and low latitude regions. They may become 

unreasonable when the pavement temperatures at higher latitude regions require 

estimation.  

 Heat history of slab can remarkably affect the temperatures of the bottom of a 

slab. When the weather shifts from a sunny day to a cloudy day, an equilibrated negative 

gradient is induced in the slab. Conversely, an equilibrated positive gradient develops in 

the slab when the weather shifts from a cloudy day to a sunny day. Multiple days of 

cloudy weather can amplify these gradients because continuous cloudy days lead to more 

cold energy stored under the slab. The SR from the preceding day can results in a 

 0.3MPa variation in thermal stress at the top and  0.1MPa at the bottom of the slab.  
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 Impact of the heat history on the pavement surface is negligible. The computation 

of the maximum pavement temperature thus requires only predicting the pavement 

temperature in the day with an extremely high solar radiation. However, estimates of this 

extreme solar radiation needs consideration due to the observed uncertainties of site-

specific weather.  
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Chapter 6 Slab-moisture prediction: model development and verification
4
 

Relative humidity (RH) of an in-service concrete slab is tied to both durability and 

performance of concrete including drying shrinkage, chloride ion ingression, sulfate 

attack, etc. Field observations of this internal humidity generally can lose its 

representation because the observation is concurrently affected by local weather 

conditions and their probabilistic nature. Extrapolation of this observation to other 

regions or other time periods potentially leads to delusive interpretation. Moisture 

distribution within a slab is thus more practical to be predicted through a numerical 

model, particularly for design purposes. Certainly, such a model involves determining the 

drying and wetting events on the slab surface. Drying cycles involve moisture loss from 

the slab, whereas wetting process governs the moisture gain. A model capable of credibly 

characterizing these loss and gain processes could then provide reasonable predictions of 

the pore moisture through the slab. 

Numerical simulations have been extensively conducted to study the moisture 

transport within concrete (Z. Bažant and Najjar 1972; Xi et al. 1994; Bazant 2001); but 

only a few adopted a variable boundary condition. Bazant proposed a highly nonlinear 

formula to characterize the moisture transport within a concrete structure at both 

saturated and unsaturated states (Bazant and Najjar 1971; Z. Bažant and Najjar 1972; 

Bazant et al. 1982). These studies normally adopted a constant ambient air RH because 

the used concrete structure was shielded from cyclically-wetting and -drying events. 

However, this controlled boundary condition can not reflect the boundary of in-service 

concrete slabs. These slabs experience uncertain rainfall events, varying ambient air RH, 

and stochastic local wind speed. Inability to accommodate these environmental factors in 

a model aiming to predict slab‘s pore humidity impedes the understanding of stress 

distribution and performance in concrete pavements. 

This study proposes a numerical model to simulate the moisture distribution within 

in-service concrete slabs, considering the occurrences of the wetting and drying cycles. 

The model accommodates the local wind speed, ambient air relative humidity, rainfall 

pattern, etc. It is verified by use of the observed pore humidity of concrete prisms and by 

use of field recorded RH through an in-service slab.  

 

6.1 Model development 

6.1.1 Moisture transport equation 

A one-dimensional finite element model suffices to simulate the moisture transport 

within the concrete slab because the width and length of the slab is typically an order of 

magnitude greater than its thickness. The moisture content within concrete can be termed 

                                                 
4 The material of this chapter, excluding the Section of 6.2.3, has been submitted to journal of Construction 

Building Material for considering publication.  
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as RH (unit, 1). According to the law of mass conservation, the moisture transport 

equation can be expressed as (Jin-Keun Kim and Lee 1999): 

 

( ( )) sRHRH
div D grad RH

t t


  

 
                                      (6.1) 

                                           

where            is a function of time and depth; moisture diffusivity   (m
2
/s) is a 

function of both humidity and porosity of concrete (Jin-Keun Kim and Lee 1999; 

Chunqiu Li et al. 2008a); and   is time,  ;        is the RH‘s dissipation rate, which 

depends on the hydration rate for early age concrete. For hardened concrete,         .  

At saturation, capillary suction dominates the moisture transfer within concrete, 

whereas at unsaturated conditions, vapor- and gas-pressure gradients govern (Hall 1989). 

Slab moisture diffusion thus depends on the pore moisture. This non-linear moisture 

transport can be characterized by an effective diffusivity (Z. Bažant and Najjar 1972): 

0
0 0

1
( )

1
1 ( )

1

n

c

D D
RH

RH





 






                                      (6.2) 

 

where    is the moisture diffusivity at saturation;   is a regression coefficient describing 

nonlinearity of the diffusivity with respect to   , ranging from 6 to 16 for concrete 

(Leech et al. 2003);         , where    is the diffusivity of concrete with 0% RH; 

   , typically ranging from 0.75 to 0.80, is a bifurcate below which the moisture 

migration occurs owning to gas pressure but above which the migration is driven by 

capillary suction (Figure 6.1). 

Eq.(6.1) needs to be transformed to a normalized equation in order to reasonably 

simulate the moisture transport within a concrete slab. Moisture diffusivity is orders of 

magnitude lower than the dimension of the slab, making the condition number of FEM 

stiffness matrix too large to ensure the transient moisture prediction to be correct and 

efficient. To circumvent this problem, a dimensionless scale is applied to rearrange 

Eq.(6.1). This rearrangement begins by introducing the following dimensionless 

variables: 

0 0

,
t z

t z
t l

                                                            (6.3) 

where    is a dimensional scale denoting the depth within the slab       ;    is the 

thickness of the slab;    (s) is the characteristic time of the diffusivity,      
    ,    is 

therefore a dimensionless scale referring to the time.  Substituting Eq. (6.3) into (6.1) 

yields: 

1
( )

m

RH RH

t z Pe z

  


  
                                                    (6.4) 

where     is the Péclet number regarding mass transport, defined as: 
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l
 .                                                            (6.5) 

 

 

Figure 6.1 Diffusivity and RH according to Eq. (6.2). Note:       , RH=0.75. 

 

Eq. (6.4) becomes easier to adapt the element length and time step to ensure the 

convergence of the mass transport Eq. (6.1) (Zdeněk Bažant and Kim 1991). It thus 

overcomes the singularity of the stiffness matrix in the mass transport model under the 

finite element framework.  

    
 

6.1.2 Boundary conditions 

For in-service slabs, moisture transport in soil deep in the subgrade is driven by the 

temperature gradient, capillary force, moisture gradient, etc. The existence of an asphalt 

or gravel base beneath the concrete slab tends to separate the moisture migration between 

the PCC pavement slab and the underlying soils. Therefore, modeling the moisture 

migrations at the slab surface and at the slab bottom is sufficient to estimate the RH 

through the slab depth. 

A numerical solution to Eq. (6.1) thus needs specify a proper boundary condition to 

both the bottom and the top of a pavement slab. Moisture at the bottom is relatively stable 

and less affected by the moisture exchange between the slab and the underlying layers, 

owning to the separated effect of the subbase or subgrade (Chunqiu Li et al. 2008a). In 

this regard, the bottom of a pavement slab can be considered as a Neumann boundary 

with null moisture flux (         . 
The occurrence of wetting and drying cycles complicates the mass transport at the 

pavement surface. During the drying cycles, the top of the slab is treated as a convection 

boundary. The moisture convection at the slab surface depends on the ambient air RH, 

wind speed, RH value at the top of the slab, etc. During the wetting cycles, RH at the top 

can be set to      (Z. Bažant and Najjar 1972). The set is practical because although 

the absorption may dominate the moisture intake in the top and the case of RH>1 may 

occur therein, the wetting front penetration usually locates at a depth of <1cm in a normal 

rain event (Z. Bažant and Najjar 1972). An estimate for the upper boundary thus requires: 
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(1) determination of when the wetting or drying events occur around a year cycle; and (2) 

characterization of the moisture evaporation rate during the drying cycles. 

 

6.1.2.1 Determination of wetting time and wetting intensity 

The time and duration of a specific rainy event need to be known to determine when 

the top of the slab is wet. Usually, meteorological data collected from weather stations 

provides the rainfall intensity at that location. Sophisticated statistical models have been 

proposed to predict the rainfall duration of a specific location (Menabde et al. 1997; 

Sivapalan and Blöschl 1998; Fife and Nokes 2002). However, these algorithms are fairly 

complicate and not commonly used by pavement engineers. For concrete slabs, the 

impact of wetting and drying cycles on the moisture distribution within concrete has 

typically been limited to laboratory studies (Chrisp et al. 2002) and by arbitrarily setting 

wetting and drying cycles in laboratory conditions (Kefei Li et al. 2009; Lin et al. 2010).   

To remedy this issue, this study proposes a new, simple algorithm to compute 

occurrence of wetting and drying events. This algorithm is based on a weighted function 

that uses the observed monthly rainy data as the local rain duration. For example, if the 

expected annual rain hours are 100hr and if each rain event last only 1 hour, then the 

probability of rain event in any given hour is 100/8760 provided that the observed 

monthly rain distribution is uniform. In this case, a specific rainy hour is determined by 

using the uniform distribution to randomly generate a number from 0-1 and by specifying 

an hour as a rainy hour if the number is not greater than 100/8760.  

However, determination of rainy events at a local site tends to be more complex due 

to the variation of the rain duration (generally not equal to 1 hour) and due to the non-

uniformity of rain distribution. For a specific weather station, the annual precipitation 

provides both the precipitation-event number and the monthly rainfall intensity. But the 

duration of each rainy event remains unknown (Western-Regional-Climate-Center 2010). 

Thus, to determine the rain distribution around a given year, two factors are still required: 

(1) the duration of each rain event and (2) the annual distribution of these rain events. 

 

6.1.2.1.1 Assumptions to duration of each rain events 

This study assumes the rainy duration       as follows: 

 Rain with 0.254mm intensity (I) keeps the slab surface wet for 1 hour; 

 Rain with 1.27mm intensity, for 4 hours; 

 Rain with 12.7mm intensity, for 8 hours; 

 Rain with 25.4mm intensity, for 10 hours (e.g.,             ;           , 

etc.). 

 

6.1.2.1.2 Algorithm to compute the annual distribution of these rain events 

Annual distribution of the on-site rainy events is obtained according the local 

observed monthly rain intensity function      (Western-Regional-Climate-Center 2010), 

as shown in Figure 6.2a (black dotted line). Here, the steps to determining the rainy event 

hour    in the case of        (keep the slab surface wet for 4 hours) are illustrated: 
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 Randomly produce a 8760-element vector                  according to 

the uniform distribution (This distribution is applied because the rainy 

probability in any individual hour should be the equal before knowing the 

    ); 
 Discretize      to a 8760-element vector                   by use of a 

cubic spine interpolation method; this step adds the seasonal precipitation 

distribution; 

 Compute the percentage    of each element in the vector,           and 
     ; this step normalizes the seasonal precipitation distribution; 

 Determine the rain event index     
           
           

 , where      and      

signify that slab surface is wet and dry, respectively. This step detects whether 

a specific hour is rainy or not; 

 Consider the duration of a specific rainy event.  If     , then        
         ; this means that if the ith hour is detected to be a rainy hour and 

the rain keep the slab surface wet for 4 hours (      ). This step considers 

the rainy duration of a specific rainy event. 

 Determine the next rainy event by increasing the indices of   from   to     

(because this rainy duration is 4hr). 

In the cases of          , 12.7mm, and 25.4mm,  the rainy index parameter    can 

be obtained by the same algorithm provided above. For an individual hour, summation of 

   at each case of   yields the annual rainy index    (the sum of    at          , 

        ,         , and         ). It should be noted that       may occur 

for a specific index  . This occurrence means that the computation of    at different   is 

overlapped. The overlap, however, has a small probability because from most locations, 

the total wetting events are one order of magnitude less than the total drying events. 

Despite this, a method to circumvent the overlap issue is provided when the feasibility of 

the algorithm is verified.  

 

6.1.2.1.3 Verifications of the rainy-duration assumptions and of the proposal 

algorithm 

Verification pertaining to the rainy events in Rantoul, Illinois is conducted to test the 

feasibility of the proposed method. Figure 6.2 (dotted black data) plots the annual 

precipitation in this region, while Table 6.1 tabulates the number of annual rainy events. 

Use the algorithm provided above to compute the rainy events of this region yields the 

inputted rainy hours series   . A regression analysis between the total monthly rainy 

hours and the monthly rainfall intensity results in a coefficient of determination (R
2
) of 

0.921. This agreement signifies the feasibilities of the algorithm and that of the rainy 

duration assumption.  

It merits noting that the regression coefficient of determination is a random number 

because the     is a random 8760-element vector. In this case, denoting a threshold, e.g. 

       , could minimize the problem of     . 
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Table 6.1 Number and intensity of annual rainy events in Rantoul, Illinois 

Location 
Number of rainy days (time) 

 >0.254mm  >1.27mm  >12.7mm  >25.4mm 

Rantoul, IL 99 69 26 9 

 

6.1.2.2 Drying condition 

6.1.2.2.1 Moisture convection formulation 

Moisture convection during the drying process (    ) controls the mass flow at the 

pavement surface. Its magnitude depends on the concrete‘s porosity, air humidity, RH of 

pavement surface, in-situ wind velocity, etc. Influences of these factors on the moisture 

evaporation of the concrete surface are encapsulated in a widely-used formula named 

Dalton‘s formula (Dalton 1802), which is defined as: 

 

                                                             (6.6) 

 

where   = weight (kg) of water evaporated (kgm
-2

hr
-1

), 

    = pressure of saturated vapor pressure at the concrete surface (kPa), 

  = pressure of vapor pressure of the surrounding air (kPa), and 

    = wind function at which the local wind speed measured at 0.5m above the 

evaporating surface (m/s). 

 

 

Figure 6.2 Monthly rainfall intensity in Rantoul, Illinois, and the computed monthly rainy 

hours. 

 

Initially, Eq. (6.6) was used to compute the bleed water escaping from the concrete 

surface. Its application was then extended to the moisture evaporation over a hardened 

concrete surface covered by water and to the convection of the moisture when the 

hardened concrete surface was free from water content (Mather 1985; Yuan and Wan 

2002). In this drying case, the difference between air RH and concrete-surface humidity 
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is regarded as the driving force because in an isothermal condition, RH linearly correlates 

to the vapor pressure. Using this force, the moisture convection equation becomes: 

 

                                                                (6.7) 

 

where   is a dimensionless scale specifying the moisture loss from the slab surface; 

     and     are the RH of the pavement surface and the surrounding air, respectively; 

and for an isothermal problem,     , called moisture convection coefficient, is only a 

function of the wind speed. 

     may have a complicate analytical solution. However, it can be approximated to 

a linear function, as shown in Eq. (6.8), if a direct Taylor expansion as a derivative point 

of    truncates the higher order terms. 

 

                                                                 (6.8) 

 

where   =               and         ; A and B stands for the capacities of 

surface emissivity and free evaporation.  The use of  Eq.(6.9)  yields: 

 

                                                            (6.9) 

 

6.1.2.2.2 Computation of the near-surface wind speed 

Eq. (6.9) raises a question: how to input the wind speed read from a local weather 

station into the equation? The speed used in Eq. (6.9) should be near a concrete specimen 

surface (0.5m), whereas both weather stations and local airports often collect wind data at 

9m above a flat ground surface. A transformation of the collected wind speed to the wind 

speed at 0.5m above ground surface can be roughly estimated by Eq. (6.10) (Uno 1998). 

 

              
                                               (6.10) 

 

where      is the recorded wind speed provided by a weather station;      (m) is the 

height at which the wind speed is measured by weather stations,       ; and   (m) the 

height of the required wind speed   thus      . Eq. (6.10) thus becomes: 

 

                                                          (6.11) 

 

Eq.(6.11) indicates that the recorded wind speed provided by a local weather station is 

one and a half times larger than the wind speed at 0.5m above the ground surface. 

Therefore, Eq.(6.9) can be rewritten as: 

 

                                                          (6.12) 
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6.2 Modeling verification 

With the moisture diffusivity in Eq. (6.2) and the boundary condition provided in the 

section 2.2, the analytic solution to both Eq. (6.4) and Eq.(6.1) is unique. Achieving such 

a solution, however, is difficult and typically has to be solved to a numerical 

approximation method, such as finite element analysis. In this study, the finite element 

method used is based on the Galerkin weak-solution framework. The specimen is 

discretized by 40 quadratic elements. The time step size is chosen as 1hr as the moisture 

mass transfer is relatively slow process for low diffusivity materials such as concrete. The 

cubic spline interpolation is used when an interpolation is needed. The initial RH within 

the slab is assumed to be 1 throughout the depth of the slab. The Crank-Nicolson method 

is used to implicitly solve Eq. (6.4) and convergence tests are conducted to verify the 

accuracy of the results (Ainsworth and Oden 1997). Numerical code for this simulation 

can be referred to Appendix D. 

 

6.2.1 Verification using laboratory data 

Laboratory data of concrete prisms observed by Kim et al is used to verify the 

moisture diffusion Eq. (6.4). Details relative to the laboratory observation can be referred 

to (Jin-Keun Kim and Lee 1999). The predicted values coincide visually and statistically 

with the observed data, having R
2
 values generally over 0.95 (Figure 6.3). This 

coincidence signifies that the proposed model can accurately predict the moisture 

diffusion within the concrete specimens. Table 6.2 notes the moisture diffusivity 

parameters    used to obtain the best fits between experimental and predicted values. 

With no wind speed in this lab experiment, the verification of the parameters in Eq. (6.12) 

yields          . Exact values for   and   require further verification relative to 

the concrete slabs exposed to natural weather conditions. 

 

 

Figure 6.3 Predicted RH compared to the laboratory observed values at different depths; 

Note: measured data is reproduced from Kim et al (Jin-Keun Kim and Lee 1999). 
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R2 (1) Mean(1) Std(1) 

3cm 0.982 0.010 0.002 

7cm 0.982 0.006 0.002 

12cm 0.933 0.003 0.005 

 

 
R2 (1) Mean(1) Std(1) 

3cm 0.992 0.005 -0.001 

7cm 0.949 0.003 0.006 

12cm 0.746 0.003 0.004 

 

 
R2 (1) Mean(1) Std(1) 

3cm 0.973 0.013 -0.005 

7cm 0.978 0.009 0.004 

12cm 0.977 0.005 0.004 
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Table 6.2 Regressed moisture diffusivities (units: m
2
/h*10

-6
) 

 
w/c=0.28 w/c=0.40 w/c=0.68 

   0.86 1.59 2.57 

 

6.2.2 Verification using field observed data (isothermal model) 

To provide further verification of the proposed numerical model, this study applies 

relative humidity observed in an in-service concrete pavement at Rantoul, Illinois (Kohler 

2005). Weather data in Rantoul is used to compute the wetting and drying condition at 

this site. The monthly rain hours of this region has been plotted in Figure 6.2. Other 

weather conditions including the wind speed and ambient air RH are illustrated in Figure 

6.4. The initial pore RH through the slab is assumed to be 1.0 uniformly. Due to the use 

of fly ash in the concrete mix (Kohler 2005), an equivalent water-to-cement ratio of 0.32 

was used to interpolate the moisture diffusivity the slab.  

The verification indicates that the proposed model can also reliably predict the RH for 

in-service concrete slabs (Figure 6.5). The verification considers the on-site wind 

variations and thus the calibration obtains parameter  =40.32. Recalling that     
      in the above section, one can obtain that         . Therefore, during the drying 

cycles, the Eq. (6.12) becomes the following: 

 

                                                                 (6.13) 

 

The arrangement of Eq. (6.13) with a term of               is used to compare 

with Menzel‘s formulas, as shown in Eq.(6.14), that has been widely used to compute the 

evaporation rate occurring at concrete surface covered with water. 

 

                                                                    (6.14) 

 

 

Figure 6.4 Local wind speeds and seasonal ambient air relative humidity in Rantoul, IL. 
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Figure 6.5 Field observation of internal RH and the predicted values. Note: Field data is  

reproduced from Kohler (Kohler 2005). 

 

6.2.3 Verification using field observed data (couple model) 

The verification plotted in Figure 6.5 is based on the moisture predicted from the 

isothermal model. It means that the daily variation of the local relative humidity is 

independent to the daily temperature variation. Such verification thus fails to characterize 

the wiggle of the daily RH variation because the pore humidity increases with 

temperature. 

 

6.2.3.1 Theoretical basis  

Diffusivity   varies with temperature. Theoretically their correlation obeys the rate 

process theory and can be characterized by the following equation: 

 
  

  
 

 

  
    

 

   
 

 

  
                                             (6.15) 

 

where   is absolute temperature;    is reference temperature (
0
K), normally is selected as 

room temperature;    and    are the values of saturated diffusivity at temperatures   and 

  , respectively; Q is the activation energy (enthalpy) of diffusion process. The value of 

the activation energy was found to be roughly 1300cal/mole for harden concrete.  

The pore humidity varies with temperature as well. Because the moisture-diffusion 

process is orders of magnitude less than the thermal-diffusivity process, the water content 

within a pore could be seen as a constant during a short period such as an hour. But the 

temperature during this hour may greatly change. Thus, RH within a slab varies the 

temperature. The correlation can be characterized by the hydrothermic coefficient   (
o
C

-1
). 

It obeys the following equation: 

 
     

  
 

   

  
  

  

  
                                                    (6.16) 

 

where the    is the local pore RH;      is the equivalent pore humidity at temperature 

of   . It merits noting that at varying   and   , the saturated diffusion    should be 
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estimated by use of      (Z. Bažant and Najjar 1972). That is, the local saturated 

diffusivity has to be estimated by the Eq. (6.17) 

 

            
                                                      (6.17) 

 

In a numerical simulation that considers the varying  , the    has to be estimate by 

use of the Eq. (6.16) at each nodal point and at each time step. This estimation still needs 

the value of hydrothermic coefficient   (Z. Bažant and Najjar 1972). 

This coefficient is always positive because the water content is known to decrease 

with   at constant   . The approximate dependence of the   upon    can be roughly 

evaluated by use of Eq.(6.18), according to Bazant (Z. Bažant and Najjar 1972) 

 

                                                            (6.18) 

 

A plot pertaining to    and   is demonstrated in Figure 6.6. It illustrates that the pore 

   is insensitive to temperature variation in both total-unsaturated and saturated states 

and becomes greatly sensitive when    ranges approximately from 0.6 to 0.8. 

 

 

Figure 6.6 Approximated value of hydro-thermal coefficient at different RH. 

 

6.2.3.2 Verify the field measure by use of couple model 

The verification, first of all, requires to validate whether the predicted slab 

temperature coincide with the observed temperature. The validation uses the weather 

conditions including the wind speed, air temperature, and solar radiation in Rantoul, 

Illinois, to predict the slab temperature. The verifications are conducted to verify the 

temperature at depth of 1.27cm and 11.43 cm (Figure 2.5). 

Use of the coupling thermal- and moisture- transfer model to predict the pore RH 

through a slab requires the following procedures (coupled in series): 

(1) Predict the slab‘s temperatures around a specific year; 

(2) Provide an initial      through the slab; 

(3) Use the predicted temperatures and the previous time-step      to compute the 

saturated moisture diffusivity    by use of Eqs.(6.15) and (6.17); 
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(4) Input the    values (   is different across the slab) to Eq. (6.1) and then use the 

wetting and drying boundary conditions to simulate the      in the next step; 

(5) Use the predicted      to estimate the real    in Eq. (6.16); 

(6) Repeat the steps from (3) to (5) to estimate all the    at all time steps. 

Using of the coupling model greatly increases the confidence of the validation (Figure 

6.7). In Figure 6.7, the embedded graph manifests that the variation of the predicted RH 

coincides with the prediction. The statistical regressions also demonstrate better 

agreement than the results from the isothermal model, which is plotted Figure 6.5. 

 

6.2.4 What the verification tell us? 

The drying evaporation rate (Eq.(6.13)) is used to compute the moisture convection at 

the in-site concrete surface during a drying cycle; the Menzel formula, however, 

commissions to compute the water evaporation from a bleed water surface. Similarity 

between both formulas lies in that a coefficient of           is multiplied to the 

observed wind speed from a weather station. The Similarity suggests that in both drying 

and wetting cases, the wind speed plays a similar role to the water loss from the concrete 

surface. Both equations have a constant value of     if the wind speed is set to zero. This 

constant is the rigid transform parameter between the vapor water pressure and the 

relative humidity. The difference between the two formulas reflects in the terms of        

and 0.253. These two constants characterize the free convection coefficients of drying 

surface and wetting surface, respectively. Therefore, free convection during wetting 

cycles may be appreciably different from that during drying cycles. 

 

 

Figure 6.7 Field observation of internal RH and the predicted values by the use of 

coupled thermal transfer and moisture transport model. 

 

In the case of free convection, evaporation from the concrete surface occurs 

appreciably during wetting cycles whereas the escape of moisture from a drying concrete 

surface is negligible. For the wetting condition, both terms of       and         
     are similar in magnitude for a range of normal wind speed (     = 0~6 m/s). This 

infers that not only windy weather can lead to rapid water loss from the slab surface, but 
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free convection can also be significant. Conversely, for the drying condition, free 

convection plays a secondary role to the decrease of the near-surface moisture. As       

is one-order of magnitude lower than               at lower wind speeds, the escape 

of moisture from a drying concrete surface is minimal in the case of free convection. This 

negligible role is verified by the difference between the RH drops in the lab specimen and 

in on-site concrete slab. For laboratory specimens, Figure 6.3a and b demonstrate that a 

RH drop from 0.98 to 0.95 needs about 20-40 days at a 3cm depth (w/c=0.40 in Figure 

6.3b). For in-service concrete slabs, a similar drop of the RH at 1.27cm requires only 

about 1-2 days (Figure 6.4a). This difference in drying-time scales confirms that during 

the drying cycle, wind dominates moisture loss from the concrete surface whereas water 

loss caused by free convection plays a secondary role.  

This different role is most pronounced during the period immediately after the 

wetting concludes. During this time, the difference between       and     (      

   ) magnifies the influence of the wind speed on the moisture escape from the surface, 

as demonstrated in Eq.(6.13). After this time,           is close to zero and makes 

the moisture loss less sensitive to the wind velocity. 

 

6.2.5 Differences among pore RH, isothermal RH, and equivalent RH 

Until now, the study predicts the RH distribution through in-service slabs using the 

RH predicted by the isothermal RH (      , the equivalent RH (      , and the real 

pore RH (  ). Figure 6.8 plots the entire-year predictions that include these three types 

of RHs at 1.27 and 11.43cm depths of the slab in Rantoul, Illinois. Difference pertaining 

to these humidity merits notating.  

The prediction of       includes an assumption that the temperature within a slab is 

uniform distribution and is 22
o
C everywhere. This is not the case even in a region with a 

calm seasonal temperature pattern. In the case that the activation energy (enthalpy)   of 

diffusion process is a lower magnitude such as 100 (J), the diffusivity of concrete 

depends less on the temperature variation. The moisture predicted from the isothermal 

model can be close to the equivalent relative humidity of the slab. As show in Figure 6.8, 

the       is roughly equal to the       when the        is used. 

The      experiences only a seasonal variation and exhibits negligible daily 

variations. This is because the heat transfer process with a slab is several orders-of-

magnitude greater than the moisture diffusion. In the regard, the       signifies the 

slab‘s pore water content, because variation of such content is minimal during a day 

period. 

The    is the pore RH that can be logged by a moisture sensor such as psychrometer. 

It reflects the real pore humidity within a slab. This means that under the same water 

content, an increase of temperature would increase the         , and vice versa. As 

demonstrated in Figure 6.8, during the colder season, the predicted        is greatly 

lower than both       and the      . But during the summer, the        is slightly 
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higher those two because the average daily temperature across a slab is usually larger 

than 22
o
C, room temperature.  

 

 

Figure 6.8 RH predicted by the isothermal model, the equivalent RH, and the real RH. 

6.3 Conclusions 

1) The wind speed observed from a weather station cannot be directly inputted into 

the Menzel‘s formula to compute the evaporation rate of bleed water from a casting 

concrete surface. The observed wind speed of weather stations in most locations (e.g. 

airports) generally is one-and-half greater than the wind velocity used in Menzel‘s 

formula due to the height of the measurements. 

2) During wetting conditions, both wind speed and free evaporation (zero wind 

speed) significantly affect the moisture escape from the concrete surface. During the 

drying cycle, wind velocity dominates the moisture loss at slab surface, especially during 
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the transition time that the relative humidity at the top approaches the ambient air 

humidity. Free evaporation at a drying concrete surface plays a secondary role to the 

moisture escape in cases with wind at the surface. 

3) Variation of the temperature strongly influences pore RH through an in-service 

slab. Not only does the slab‘s diffusivity depends on the temperature, but  the pore 

relative humidity strongly varies with the temperature variation. Uses of the relative 

humidity predicted by the isothermal model or by the equivalent relative humidity (a 

relative humidity estimated at room temperature) potentially overestimate the slab 

relative humidity during the cold seasons. 
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Chapter 7 Slab-moisture prediction: sensitivity study
5
 

 Relative humidity through the depth of an in-service concrete slab depends on the 

combined effect of local weather factors including wetting/drying events, ambient air 

relative humidity, wind speed, etc. Some of these factors may perform a determinative 

role whereas others possibly act as a secondary role. An investigation to these different 

roles can help to predict the slab‘s RH-associated performance in terms of sulfate attack, 

chloride ion ingress drying shrinkage, warping/curling, and its associated stress 

development. 

Numerical studies of concrete moisture distribution rarely consider a variable ambient 

RH upper boundary condition (Z. Bažant and Najjar 1972; Bazant 2001; Kefei Li et al. 

2009). Lab calibrations of moisture distribution models typically use a constant 

controlled RH to assess its effect on concrete specimens. However, this stable ambient 

RH does not properly mimic scenarios for in-service pavements, which experience not 

only variable air humidity but also wetting/drying cycles. The role of such cycles on the 

RH in concrete has been cursorily studied by artificially adopting fixed wetting and 

drying cycles, such as 15 days or 60 days (Kefei Li et al. 2009; Lin et al. 2010). This 

adoption of fixed cycles neglects the probabilistic nature of the local weather conditions 

and, to a great extent, fails to truly reflect the impact of unpredictable weather timing on 

the concrete‘s RH distribution. It is thus necessary to simulate the impacts of these cycles 

on the moisture budget of in-service slabs.  

This study uses the model proposed in Chapter 6 to simulate moisture distributions 

through the depth of in-service concrete pavement slabs. It examines the impact of 

external factors including the rainfall pattern, wind speed and its daily variation, and 

ambient air RH and its daily variation on the internal RH distribution. It also investigates 

the impact of internal factors like the water-to-cement ratio (w/c ratio) and examines the 

sensitivity of the predicted moisture to the adoption of the numerical boundary conditions. 

The subsequent discussion to the predicted results centers on the following: 

 Why the seasonal air RH plays a dominant role on the slab‘s moisture 

distribution whereas the other weather factors act only in secondary roles? 

 What do these different roles imply with respect to the predicted in-service 

concrete pavement performance? 

 

7.1 Site information 

This study simulates the RH though the depth of a concrete pavement slab located in 

Reno (RE), Nevada to assess the influence of weather condition. This simulation uses the 

following parameters, unless otherwise noted: 

 Monthly precipitation distribution and inputted rainy hours plotted in Figure 7.1a.  

                                                 
5 The material of this chapter has been submitted to journal of Construction Building Material for 

considering publication. 
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 Ambient air RH and local wind speed shown in Figure 7.2b. During a specific day, 

the local wind speed and RH is regarded as constants. 

 A w/c ratio of 0.45. This ratio is used to interpolate the moisture diffusivity. Other 

parameters for the diffusivity include       ,   , and    =0.75 are utilized 

(See in Chapter 6). 

 

 

Figure 7.1 Rainfall distribution, air RH, and wind speed in Reno, Nevada. 

7.2 Results 

Five-year simulations are conducted to examine the evolution of the RH through the 

slab, beginning with the end of the curing. The curing is assumed terminating at the end 

of June 30. The initial RH through the slab at this time is 1.0 uniformly. Usually, the RH 

profiles at the half-time (December 30, 2
nd

 year) and full-time (June 30, 5
th 

year) of the 

prediction are plotted to demonstrate the difference between the predictions that use 

different boundary conditions. 

 

7.2.1 Effect of external factors 

Relative humidity within a slab serviced in Reno is compared to that Los Angeles 

(LA) in order to study the impact of the environmental factors on the moisture 

distribution within in-service slabs. Environmental factors in LA are shown in Figure 7.2. 

The reason of selecting these two regions is due to their discernable seasonal weather 

patterns. First, Reno‘s rainfall pattern (Figure 7.1a) is more uniform than the LA‘s 

(Figure 7.2a) whereas the accumulated rainfall amount in both regions is almost the same 

(seen from the integral of two curves). Second, the total number of rain events in both 

regions are roughly the same, as tabulated in Table 7.1. Third, both wind speed and 

seasonal air RH in Reno is consistently lower than those in LA.  

The notable distinction of weather conditions in both regions leads to remarkably 

different moisture distributions through the slabs during a five-year simulation (Figure 

7.3). The slab in Reno has a lower RH than the slab in LA. Notable differences embody 

not only the near-surface moisture (Figure 7.3c) but also deeper in the slab (Figure 7.3d 
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and e). They infer that the external weather information considerably influences the entire 

moisture profile of the slab.  

However, since all the weather factors including rainfall pattern, wind speed, and air 

RH are different in both regions,  the impact of each of these individual factors on pore 

moisture cannot be discerned. Therefore, an analysis to separate these factors is presented 

in the following. 

 

 

Figure 7.2 Rainfall distribution, air RH, and wind speed in Los Angeles (LA), California. 

 

Table 7.1 Number and intensity of rainy events 

Location 
Number of rainy days (time) 

 >0.254mm  >1.27mm  >12.7mm  >25.4mm 

Reno, NV 52 21 3 1 

Los Angeles, CA 35 23 10 4 

 

 

7.2.1.1 Impact of rainfall pattern 

To assess the impact of the rainfall pattern on the slab-moisture distribution, the rainfall 

patterns of LA is entered into the simulation model with the other weather conditions of 

Reno.  This modified ―LA rainfall pattern‖ can then be compared to the model 

predictions for Reno by use of its own weather factors.  The rainfall pattern does show 

some small influence on the near surface moisture distribution, but shows little impact on 

the deep-slab moisture (Figure 7.4). The near-surface RH difference is partially due to the 

contrasting rainfall distribution of the two regions. However, at a closer look,  it is 

primarily due to the probabilistic factors of a local rain event resulting in a different rainy 

duration and intensity. That is, even if the same rain pattern is used, rain occurring during 

a specific hour in the previous year does not necessarily indicate that rain would happen 

during the same time in the next year. Despite these probabilistically-induced deviations, 

the statistical mean difference between the prediction is 0.005, demonstrating that the 

rainfall pattern does not appreciably affect the moisture profile of concrete slabs in the 

field. 
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Figure 7.3 Predicted RH distributions in slabs in Reno and LA with time and depth. 

 

 

Figure 7.4 Impact of seasonal rainfall pattern on the moisture distribution within a slab. 

 

7.2.1.2 Impact of wind speed 

To assess the impact of wind speed on the predicted moisture distribution, a similar 

exercise is performed where the measured wind speed for LA is substituted for Reno 

wind speeds in the Reno climate. The prediction indictes that seasonal wind speed plays a 

negligible role on the moisture distribution of in-service pavement slab as illustrated in 

Figure 7.5. This is true even though the mean monthly wind velocity in LA is always 0.2-

0.4 0.6 0.8 1

0

0.0508

0.1016

0.1524

0.2032

0.254

RH (1)

D
e
p

th
(m

)

(a) RH (Dec.30, 2nd year)

 

 

0.4 0.6 0.8 1

0

0.0508

0.1016

0.1524

0.2032

0.254

RH (1)

D
e
p

th
(m

)
(b) RH (June 30, 5th year)

 

 

Reno LA

0 1 2 3 4 5
0.5
0.6

0.8

1.0

R
H

 (
1

)

(c) RH at 2.54cm depth

 

 

Reno LA

0 1 2 3 4 5

0.7
0.8
0.9
1.0

R
H

 (
1

)

(d) RH at the middle the slab (12.7cm)

 

 

0 1 2 3 4 5
0.7

0.8

0.9

1.0

Time (year)

R
H

 (
1

)

(e) RH at bottom of the slab (25.4cm depth)

 

 

0.30.4 0.50.6 0.70.8 0.9 1.0

0

0.0508

0.1016

0.1524

0.2032

0.254

RH (1)

D
e
p

th
(m

)

(a) RH (Dec.30, 2nd year)

 

 

0.30.4 0.50.6 0.70.8 0.9 1.0

0

0.0508

0.1016

0.1524

0.2032

0.254

RH (1)

D
e
p

th
(m

)

(b) RH (June 30, 5th year)

 

 

0 1 2 3 4 5
0.5
0.6

0.8

1.0

Year

R
H

 (
1

)
(c) RH at 2.54cm depth

 

 

Reno rainfall pattern LA rainfall pattern

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(d) RH from 1.27 to 25.4cm

R2=0.97621;

std=0.015;  

mean=0.006  

RH (Reno rainfall pattern)

R
H

 (
L

A
 r

a
in

fa
ll

 p
a
tt

e
rn

)



77 

 

1.0m/s greater than the wind speeds in Reno. Overlaps of the RH profile in Figure 7.5a 

(summer day) and Figure 7.5b (winter day) verify the neglegible role of the sesaonal 

wind pattern on an in-service slab‘s moisture distribution. Unlike the deviation of the 

predicted near-surface RH illustrated in Figure 7.4 when substituting rainfall patterns, 

two RH series at 2.54cm depth exhibit higher agreement when wind speed is exchanged 

in the model. Both the agreement and the statistical analysis demonstrate excellent 

agreement between the two swapped wind speeds (Figure 7.5d), further suggesting that 

the seasonal wind speed pattern plays a minimal effect on the moisture within a slab. 

The negligible role of seasonal wind pattern on the slab-moisture profile may further 

imply that the daily variation of the wind speed works as a secondary role as well. To 

confirm this implication, a random number is specified to the daily wind speed according 

to a standard normal distribution. Use of this random number does not alter the monthly 

average wind speed, but vary the wind speed at any specific time.  

Predicted results indicate that the daily wind speed notably influences near-surface 

RH in some cases, but does not affect the RH at greater depths. As illustrated in Figure 

7.6a, predicted RH sparingly deviates from the line of equality when considering RH at 

all depths of the slab, inferring the impact of the daily wind speed variation. However, a 

truncated view of the RH from depths of 1.27cm to 25.4cm, as plotted in Figure 7.6b, 

yields regression coefficient of 1.0; standard deviation of the difference between hourly 

and daily RH variation of 0.001; and maximum deviation of RH from these two methods 

of 0.0016. This statistical agreement, together with the sparse deviation shown in Figure 

7.6a, demonstrates that hourly wind speed does affect the near-surface moisture content, 

but does not influence the moisture budget at even small depths of a concrete slab.  

 

 

Figure 7.5 Impact of the seasonal wind speeds on the pore RH through in-service 

concrete slabs. 
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Figure 7.6 Impact of daily wind variation on the RH distribution within a slab. 

 

7.2.1.3 Impact of the ambient air RH 

Seasonal ambient air RH decisively controls the moisture distribution within in-

service slabs (Figure 7.7). Data labeled with ―LA RH pattern‖ are from the simulation 

that adopts all the weather parameters in Reno except the seasonal air RH, which is 

supplanted by the seasonal air RH pattern in LA. Comparison of the simulated results 

distinguishes the difference between the predicted RH of these two slabs. The plotted 

moisture profiles at both December 30, 2
nd

 year and June 30, 5
th

 year exhibit greatly 

differences, when compared with the data plotted at Figure 7.4 or Figure 7.5. These 

differences infer that the seasonal air RH primarily determine the moisture distribution 

within in-service slabs. 

The determination also can be seen from the similarity between the seasonal near-

surface RH and the seasonal air RH. A relatively larger difference between the RHs of 

the two simulations takes place around June, whereas a relatively less difference occurs 

around December (Figure 7.7c). Similarly, the differences between the seasonal air RHs 

of two regions also have a zenith around June and a nadir around December (Figure 7.1b 

and Figure 7.2b). Such coincidences further infer that the ambient seasonal air RH chiefly 

controls the moisture budget of in-service concrete slabs 

Although the seasonal ambient RH plays a primary role on the RH within a slab, 

slab‘s moisture is not distinctly influenced by the daily variation of ambient air RH. In 

this study, a sinusoidal wave of amplitude 0.08 is utilized for daily air RH changes to 

approximate the monitored ambient RH provided by the weather station at the Reno 

airport. Adoptions of this amplitude in the predicted model result in a band-shape 

deviation along the line of equality, with a standard deviation of 0.041 and maximum 

deviation of 0.007 (Figure 7.8a). A truncated comparison (Figure 7.8b) focusing on only 

the RH values from 1.27 to 25.4cm depth exhibits a better agreement. Therefore, the 

daily variation of the air RH slightly affects only the very near-surface moisture 

distribution. 
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Figure 7.7 Impact of the seasonal air RH on the RH within in-service slabs 

 

Figure 7.8 Impact of the daily air RH variation on the moisture distribution within slabs. 

 

7.2.2 Effect of w/c ratio 

While external factors such as wind speed and ambient RH have varying impacts on a 

slab-RH profile, controllable factors such as the w/c ratio can also potentially play a 

major factor. This study investigates the impact of concrete material properties on the 

internal RH distribution by use of concrete slab with three w/c ratios (0.30, 0.40, and 

0.50). The saturated diffusivity of the concrete with a specific w/c ratio is computed on 

the basis of spline interpolating the diffusivity in Table 6.2. 

Low w/c-ratio concrete has capacity to avoid a rapid moisture escape from the surface, 

but high w/c-ratio concrete does not. The difference between the RHs at specific depths 

of a slab is not proportional to the difference in the w/c ratio (Figure 7.8a and b). Lower 
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w/c ratio concrete slabs have greater pore RH and are less affected by the wetting and 

drying cycles at the slab surface. Unlike the impact of the local weather conditions, a 

variation of the water-to-cement ratio influences the deep-slab moisture greatly but 

affects the near-surface moisture unremarkably. This is primarily because the deep-slab 

RH is primarily controlled by the slab moisture budget but the near-surface moisture 

depends mainly on the boundary condition. As the used boundary is the same, so the near 

surface exhibits less difference. Concrete slab with a higher w/c ratio, however, has a 

greater diffusivity and thus results in the moisture deeper in the slab being easier depleted. 

 

 

Figure 7.9 Impact of water-to-cement ratio on the moisture distribution within slabs. 

 

7.2.3 Effect of the treatments of the upper boundary conditions 

7.2.3.1 Wetting cycles 

While ambient air RH is shown to have a pronounced effect on RH profiles in 

concrete slabs, wetting cycles must also be considered in the numerical model to 

understand the daily variation of the RH profile on a daily and even hourly basis. Figure 

7.10 plots two data sets: one marked by ―with wetting cycle‖ considers the wetting cycle 

whereas the other does not. Notable divergences of the plotted profiles (Figure 7.10a and 

b) confirm the remarkable impact of the wetting cycles on the moisture distribution of in-

service slabs. More deviation appears at winter time (Figure 7.10c, X=0.5, 1.5, etc) 

because in Reno this time period signifies the rainier season of this location. This infers 

that the occurrence of wetting events appreciably impacts the moisture budget within a 

slab. This impact visualizes in the statistical analysis illustrated in Figure 7.10d. The 

analysis demonstrates that when the wetting cycles go unaccounted for, the 

underestimation of the RH of the whole step with a standard deviation of 0.028 (Figure 

7.10d). 
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7.2.3.2 Use of Dirichlet and Neumann upper boundaries during drying cycles 

From a numerical point of view, the specification of the upper boundary conditions 

may lead to different predicted results. The formulation of the upper boundary condition 

is either to fix the moisture value of the variable on the slab surface (Dirichlet type 

boundary condition, representing perfect moisture transfer) or to impose the moisture flux 

normal to the surface (Neumann boundary conditions). Currently, debate still centers on 

whether the upper boundary should be treated as a Dirichlet boundary or a Neumann 

boundary (Torrenti et al. 1999; IDIART 2009).  

 

 

Figure 7.10 Effect of wetting cycles on moisture profiles in a concrete slab. 

 

 

Figure 7.11 RHs within an in-service slab under different boundary conditions. 
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The RHs predicted from a model that uses a Neumann upper boundary are compared 

to that uses a Dirichlet upper boundary, in order to highlight the impact of the adopted 

boundary on the predicted results. A model adopting a Neumann upper boundary results 

in a higher more profile compared to the model using a Dirichlet upper boundary (Figure 

7.11a and b). The RH series at depths of 1.27cm also exhibits discernable deviations 

when different upper boundary conditions are specified (Figure 7.11d). The statistic 

deviations of the entire-slab RH have a standard deviation of 0.021 and a mean deviation 

of 0.05 (Figure 7.11d). These considerable deviations confirm that the adoptions of the 

upper boundary condition in a numerical model that aims to predict in-service slab‘s RH 

greatly influences the predicted results.  

7.3 Discussion 

7.3.1 Why the roles of each weather pattern on the moisture of in-service slab are 

different? 

The data from Figure 7.3 to Figure 7.11 reflect only the moisture distribution within 

in-service slabs in Reno and partially, in LA. In the followings, the discussion will not 

refer to any specific weather pattern and any specific region so that the discussion can be 

extended to the other regions.  

 

7.3.1.1 Decisive role of seasonal air relative humidity 

Seasonal ambient air RH is the determinative factor affecting the moisture budget of a 

slab. This determination can be analyzed from the convection formula shown in Eq.(6.12): 

                                                              (6.12)                                      

Details regarding the physical meanings of the parameters in the Eq.(6.12) can be 

referred to in Chapter 6. In this case,          and         .  

After the curing terminates or a wetting event ends, the slab has a greater RH than the 

surrounding air. Moisture within the slab escapes from the surface to the air. However, 

this moisture outflow cannot maintain at a certain non-zero constant or wiggle around a 

positive constant; otherwise the moisture within the slab will be rapidly depleted to 0. 

That is, the moisture exchange will eventually move toward a state that moisture inflow 

roughly balances moisture outflow. At such a state, the wetting processes lead to 

moisture gain and the drying events result in moisture loss. The data plotted from Figure 

7.3 to Figure 7.11 indicates that the time from the end of the curing to such a stable state 

lasts a period of 5 or more than 5 years.  

This long period means that after a wetting event terminates, the moisture outflow 

must follow an exponential decline and then become negligible; otherwise, the stable 

state will quickly achieve. Usually the interval of the exponential decline lasts 3-5 hours 

(Al-Fadhala and Hover 2001; Hover 2006). Therefore, at most of the time the state of 

    holds in Eq.(6.12) because accumulative time of these intervals and of wetting 

events are orders of magnitude less than accumulative drying time. That is, at most of the 

time the       must wiggle around the     because the condition of     is satisfied 
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only when            . Therefore, the seasonal air RH mainly dominates the pore 

RH at the top of the slab.  

As the moisture diffusion within a slab is a boundary-value problem, this domination 

infers that      dominates the resulting RH profile. This is because the drying period is 

typically one-order of magnitude greater than wetting period. Therefore, seasonal 

ambient air RH dictates the moisture distribution within in-service concrete slabs 

regardless of the regions. 

 

7.3.1.2 Role of wind speed 

Seasonal wind speed acts a secondary role on the slab-moisture distribution, but this 

mechanism needs to be examined during wetting and drying time in order to clarify its 

impact in other regions. During the wetting time, slab surface is wet and         such 

that the role of wind speed is eliminated. During the drying cycle, the condition is 

relatively complicated. Here, this drying period can be divided into two scales: transition 

time (     and total-drying time (    . During this transition time, variation in wind 

speed alters the moisture outflow  . However, an increase of wind speed only shortens 

the length of the transition time, and vice versa. For instance, windy weather after a rain 

event accelerates the moisture loss from a slab surface, making the surface drying faster; 

but it cannot vary the total amount of the evaporation required because this amount is 

determined by the free vapor content at the slab surface. During the total-drying time, 

    diminishes the role of wind speed on the slab-surface moisture exchange. 

The analysis regarding the transition time infers that daily wind variation affects the 

near-surface RH. In Eq.(6.12), a great variation of wind speed      for instance from 2 to 

15m/s (a gust) can appreciably change the value of   by one order of magnitude. During 

the transition time, the term of           is greater than that during the drying time, 

thereby magnifying the role of daily wind variation on moisture convection at the slab 

surface. 

 

7.3.1.3 Influences of wetting cycles and rainfall pattern 

It seems a self-contradiction that the occurrence of wetting cycles influences the 

moisture distribution within a slab, but the rainfall pattern does not affect the slab‘s 

moisture budget. To clearly explain this mechanism, it merits noting that the wetting 

cycle characterizes whether the slab surface is wet or dry whereas the rainfall pattern 

depicts the rainfall distribution in a specific region. 

Nonlinearity of the concrete‘s diffusivity (Figure 6.1) results in the slab‘s RH being 

easily influenced by the wetting cycles, although the measure of the wetting time is one-

order magnitude lower than that of the drying time. During the wetting cycles, absorption 

and permeability dominate the moisture intake. Capillary force makes the concrete 

surface rapidly absorb free water at the surface. The moisture transport during these 

wetting cycles is significantly higher than the water vapor migration during the 

subsequent drying cycle. During the drying cycles, the concrete surface rapidly becomes 

dry whereas the concrete below the surface is still wet. Drying of the surface lowers the 
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near-surface diffusivity, thereby blocking the rapid evaporation of the moisture absorbed 

during the wetting time. In other words, concrete easily absorbs moisture when wetting 

but does not lose it when drying as easily. This phenomenon of the diffusivity leads to the 

wetting cycles greatly affecting the magnitude of the moisture budget within an in-service 

slab, even if the wetting cycles accounts only for a small probability of occurrence (e.g., 

approximately 180/8760 in Reno),  

Moisture budgets of in-service slabs are unremarkably influenced by the local rainfall 

pattern because the slab surface has adequate time to absorb the moisture at each wetting 

event. Usually, the transition time requiring for     is 3-5hr (Al-Fadhala and Hover 

2001; Hover 2006), shorter than time between two adjoining rainy events. This is always 

the case. According to our common knowledge, normally the ground becomes drying 

rapidly after a specific rainy event, and the subsequent rain comes following a relatively 

longer period. This normal phenomenon possibly fails to hold owning to the probabilistic 

characteristic of rainy event in some abnormal cases; e.g., the occurrence of two adjacent 

rains is too close, such as 2hr. These cases, however, are small probability events. In this 

regard, concrete surface has sufficient time to absorb the moisture during each individual 

rainy event. Therefore, once the total rain events are known, the effect of wetting cycles 

on the slab-moisture intake is determined regardless of the seasonal rainy-events 

distribution. Therefore, the rainfall pattern, seasonal rainy-events distribution, acts only a 

secondary role on the moisture budget of an in-service slab. 

 

7.3.1.4 Effect of w/c ratio 

As the concrete‘s moisture diffusivity controls the moisture transport within the slab, 

the w/c ratio affects the entire moisture profile of the slab. During casting, the internal 

RH is initially 1.0 due to free and bleed water appearing in the slab. However, the 

monthly ambient air RH is definitely less than 1. This difference results in a negative 

moisture budget after casting the slab. Concrete with higher w/c ratio has a greater 

diffusivity and becomes easier prone to loss its internal moisture.  

 

7.3.1.5 Why the treatments of the surface boundary influences the predicted results 

remarkably? 

A specification of the Dirichlet upper boundary uses a lower boundary value, leading 

to an underestimation of the RH within in-service slabs. It is noteworthy that a sole 

analysis to the plotted data in Figure 7.11 is inadequate to confirm this underestimation. 

Analysis to this underestimation needs refer to the model verification in Chapter 6 

(Figure 6.7), which uses a Neumann upper boundary and results in visual, statistical 

agreement between the predict results and the observed values. Therefore, the verification 

will result in the predicted results being lower than the observed data if the verification 

uses a Dirichlet upper boundary. This is because the predicted RHs from a model with a 

Dirichlet upper boundary are always less than those from a model with a Neumann upper 

boundary (Figure 7.11). 
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This underestimation is due to two reasons. First, the use of Dirichlet upper boundary 

neglects the transition time as       approaches   . During the drying cycle, the       

is slightly greater than     (                  . Therefore, the wetting cycles 

still influence the near-surface moisture intake for a relatively long period after the 

wetting commences. Secondly, the use of Dirichlet upper boundary also ignores the 

moisture boundary layer existing at the slab surface; the difference between the     and 

      exists in this layer. This ignorance is equal to assuming that the wind velocity at 

the ground surface is infinite and that thickness of the boundary layer vanishes. In fact, 

the existence of this layer makes the slab relatively less sensitive to the daily fluctuation 

of the ambient air RH. In addition, existence of this layer results in the       being 

generally slightly greater than the     so that the negative moisture budget lasts 5year or 

more (Figure 7.3-Figure 7.11). Therefore, adoption of Dirichlet upper boundary uses a 

lower-boundary value and thus consistently under-predicts the RH profile within a slab. 

 

7.3.2 What do the sensitivity studies imply? 

These sensitivity studies and their working mechanisms have implications on the 

construction season selection and optimum w/c ratio design. 

 

7.3.2.1 Construction designs 

Construction of a pavement slab during a season with a low probability of 

precipitation is not necessarily ideal. As shown in Figure 7.10b, a slab in Reno has a 

lower RH within the slab when sheltered from rain. A relatively steep moisture gradient 

is then formed through the slab and would result in greater differential drying shrinkage 

strain. Alternatively, concrete material design that promotes more reversible shrinkage 

and higher creep may help alleviate some of these moisture-induced shrinkage stresses. 

Selection of proper construction seasons can also elongate the longevity of a concrete 

pavement slab. For example, in Reno, the ambient air RH is lowest during the summer. 

Due to the determinative role of the ambient air RH, construction of concrete pavement 

slabs during these seasons can lead to the rapid evaporation of bleed water at the 

pavement surface (Jeong and Zollinger 2003). In this case, adequate curing would be 

critical to avoid the over-development of undesirable drying shrinkage during early ages, 

and to prevent the rapid moisture loss occurring at the surface. In addition to needing 

adequate curing during the early ages of the concrete, a pavement slab in arid climates 

may require greater thickness or shorter joint spacing than in wetter regions to resist this 

differential drying shrinkage.  

 

7.3.2.2 Optimum w/c ratio design 

Designs using a low diffusivity concrete in marine region may be crucial to insulate 

the ingression of chloride ions to the concrete. This type of concrete reduces the ion‘s 

penetration depth during the wetting cycle and declines the moisture exchange between 

the concrete and the external environment.  
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Design of a moderate w/c concrete in mountainous desert regions is decisive to help 

ensure the long-term performance of a slab. On one hand, a high w/c ratio concrete tends 

to make the concrete prone to the variation of the environment factors such as wetting 

and drying cycles. It also facilitates the moisture loss from the concrete and induces a 

great amount of undesirable shrinkage during the service of the slab. On the other hand, a 

lower w/c ratio concrete probably increases the self-desiccation or autogenous shrinkage 

of the slab. Both of them increase the uniformly distributed shrinkage-induced stress 

within the slab and widen the pavement‘s cracking or joints space. 

7.4 Conclusions 

Moisture distribution within in-service slabs is affected by both external and internal, 

controllable factors. Predictions of these RH profiles are also affected by modeling 

parameters such as the treatment of the upper boundary condition. Proper characterization 

and understanding of these factors have distinct implications on the performance of 

concrete pavement slabs. 

1)      Seasonal ambient air relative humidity (RH) plays a dominant role on the 

moisture distribution within an in-service slab. The seasonal rainfall pattern, monthly 

wind speed, and variation of daily RH influence the slab‘s internal RH profile in a 

secondary role. To offset the moisture gradients in arid climates, increasing thickness or 

reducing joint spacing may need to be applied in comparison with wetter regions. 

2)      Daily variation of the local wind speed notably affects the near-surface RH 

because this helps accelerate the escape of water immediately after a wetting event ends. 

3)      Use of a Dirichlet upper boundary greatly underestimates the moisture profiles 

within a slab. This is because this boundary assumes that the pavement surface dry 

immediately after a wetting event ends. After a wetting cycle, there exists a transition 

time during which the moisture escape from the pavement surface exponentially declines 

to zero. Conversely, use of a Neumann convective boundary is more appropriate to model 

moisture movement during drying cycles.  

4)      Concrete easily absorbs moisture when wetting, but typically loses water much 

slower due to the non-linearity of slab‘s moisture diffusivity. Therefore, although the 

probability of precipitation is typically one order of magnitude less than drying in many 

locations, magnitude of the wetting events still control the moisture budget of in-service 

slabs to a large degree.  

 

 

 



87 

 

Chapter 8 Total environmental loadings developed through in-service slabs 

Environmental loadings that in-service pavement slabs suffer from include not only 

thermally-induced stresses (curling stress) but also moisture-induced stress (warping 

stresses). Different from the curling stress, the warping stress exhibits a less-regular 

swing of amplitude. These changes in warping stresses depend mainly on the slab 

moisture diffusion and slab mechanical parameters, e.g., creep compliance. The 

dependency on the moisture diffusion suggests that the warping stress potentially remains 

in a higher stress state immediately after the curing ends. This is because during this 

period, the moisture loss from the slab surface is significantly greater than the other 

period. The dependency on the mechanical parameters suggests that this greater stress 

state may relax progressively since concrete slab have a viscosity properties. An 

investigation to the evolution of the total environmental loadings developed through in-

service slabs potentially serves as the basis for a credible estimate the performance of  in-

service concrete pavement slabs. 

Moisture-induced stresses within concrete specimens have been investigated in 

laboratory conditions, for which both moisture distribution and temperature distribution 

within the specimen are controllable. Series studies of Bazant‘s group have been 

dedicated to the shrinkage-induced stress through lab specimens (Bazant and Raftshol 

1982; Bazant and Chern 1985; Bazant 1998; 2000). These studies consider both the basic 

creep behavior and Pickett effect of concrete slab. The stress-strain response of the 

varying moisture distribution within the slab can be regarded as both elastic and viscous 

behavior, which for concrete, can be characterized by use of a simple Maxwell model 

(Bazant and Asghari 1974; Bazant and Tsubaki 1980; Bazant and Chern 1985). 

Nevertheless, these studies do not center on the environmental loadings developed 

through in-service concrete pavement slabs. The stress-strain response of these slabs is 

relatively complicated because they experience both moisture variation and temperature 

variation. The total environmental loadings developed through an in-service slab may 

exhibit a totally different scenario from the thermally-induced stress when the component 

of the moisture-induced stress is added to the total environmental stress. In extreme 

cases, this total environmental stress may be higher than the bending tensile stress of a 

slab. 

This chapter estimates the total environmental loadings developed through in-service 

slabs. These concrete slabs are regarded as a viscoelastic material, which is characterized 

by use of a Maxwell model. The viscoelasticity of the concrete includes the basic creep 

and drying-induced creep components. The total stresses and the thermal stress are 

analyzed to highlight their differences. The study focuses on the stress developed 

immediately after the curing ends and on relaxation history of the total stress. It also 

concentrates on the influences of the construction season, pavement location, mechanical 

parameters (Young modulus, Poisson ratio, etc.), local weather conditions, and the 

concrete mix properties on the total stress developed through a jointed plain concrete 

pavement slab. 
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8.1 Computational theory to warping and curling stresses  

8.1.1 Creep and relaxation 

The elastic method used to compute the curling stress overlooks the stress relaxation 

and creep behavior of concrete. In the short-term, this assumption may not lead to a 

significant reduction of the curling stresses but possibly reduces these stresses during a 

long period. Therefore, this time-dependent behavior should be considered during the 

computation of the total environmental loadings that in-service pavement slabs suffer.  

An alternative is to regard the slab as a viscoelastic material. Viscosity of a concrete 

slab can be described by several viscoelastic models including the Maxwell chain model 

(Figure 8.1a), Kelvin chain model (Figure 8.1b), or the combination of these model like 

the standard linear solid model (Figure 8.1c). Although the standard linear solid model is 

more accurate than the Maxwell and Kelvin-Voigt models in predicting material time-

dependent stress responses, it mathematically more difficult to assess than the other two 

models. The developed stress cannot be seen as a constant as thermal stresses vary 

rapidly as shown in Chapter 4. Thus, in-situ pavement slabs experience more stress 

relaxation than creep. Therefore, the Maxwell model, capable to more accurately predict 

the relaxation phenomenon, is suitable to estimate the stress behavior of the in-service 

pavement. One added benefit of a simple Maxwell model is the ability to estimate the 

time-dependent stress behavior through a single variable, the viscosity of the concrete. 

For hardened concrete, relaxation of concrete can be computed from the following 

equation modeling the Maxwell chain (Figure 8.1a): 

 
  

 
 

 

 
                                                               (8.1) 

 

where   is the viscocity of the concrete (     ,    is the time derivate of the thermal 

stress (referred hereinafter that any variable with a dot above stands for the time derivate 

of the variable). 

 

 

Figure 8.1 Schematic representations of different viscoelastic models. 
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8.1.2 Warping stresses 

Shrinkage contributes a great portion of the concrete deformation, especially for an 

early-age concrete slab. The shrinkage of a slab depends on the time elapsed and on the 

internal RH distribution of pores within a concrete slab. This shrinkage can be computed 

by the following equation according to the B3 model (Bazant 2000): 

 

                                                                  (8.2) 

 

where      (    is the total or ultimate shrinkage;   (day) is the time the slab begins 

service, usually        days (Bazant 2000);    is the day at which the shrinkage 

stress is concerned;    represents the term of the reversible shrinkage; and       
represents the irreversible shrinkage. They can be computed by the following equations 

(Bazant 2000): 

 

     
               
                    

                   

     (8.3) 

             
    

   
  

(8.4) 

 

where     (day) stands for size dependence and usually         days is used (Bazant 

2000).  

Another parameter needed in Equation (8.2) is the ultimate shrinkage      (µε). 

According to Mindess et al (2002),  it ranges from 415 to 1070 µε for normal Portland 

concrete and          µε is recommended if a measured value not available.  

Creep behavior has to be considered when warping stresses of a pavement slab are 

computed. Unlike the curling stresses, the warping stresses have longer periods which are 

usually 10-90 days in length. This longer period allows the shrinkage-induced stress to 

relax to some degree depending on the viscosity of the concrete material in the slab at 

that time. Considering the viscosity of concrete, the stress-strain correlation due to 

shrinkage can be characterized by Eq. (8.1), in which, for this case, the     is replaced by 

the     . 

 

8.1.3 Drying creep (Pickett effect) 

The deformation of a concrete specimen under sustained loads exceeds the 

summation of a load-free specimen‘s drying shrinkage and of the deformation of a 

specimen that does not dry. This phenomenon was first observed by Pickett (Pickett 

1942). Its mechanism has been thoroughly studied by Bazant et al (Bazant and Chern 

1985; 1998).  
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Figure 8.2 Pickett effect (drying-induced shrinkage. 

 

Considering this phenomenon, the computation of the environmental loading-induced 

stresses through an in-service pavement slab has to be modified as (Bazant and Chern 

1985):  

 

 
  

 
 
 

 
                (8.5) 

 

where      and        stand for the relaxation rates that are induced by     and   , 

respectively. They can be estimated by Eq. (8.6) and Eq. (8.7): 

 

                                                                   (8.6) 

                                                                     (8.7) 

 

where for hardened concrete              ;   and   ranges from        to       , 
in which         is the bending tensile stress of concrete;   is an empirical constant and 

usually           is used (Bazant and Chern 1985). It should be noted that when both 

the combination of warping and curling stresses are computed,             is used in 

Eq. (8.5). 

The stress development through the slab is still based on the Mohamed and Hansen  

method (1997), which has been proposed from Eq. (4.1) to (4.10). That is, one can obtain 

the total stress developed through a slab by use of algorithm from Eq. (4.1) - (4.10) to 

compute the redistribution of the free strain at Eq.(8.5). It should be noted that the 

method used to calculate the free stress is viscoelastic-based but the method used to 

compute the real stresses (the re-distribution of the free stress) is elastic-based. The stress 

redistribution can be computed from the elastic theory because the redistribution occurs 

simultaneously with the development of free stresses. 

 

Sealed +load unseal Unsealed+load

1 2 3

1 2 3   
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8.2 Simulation details 

This study computes the total stress in Eq. (8.5) using the explicit central difference 

method, a method can be referred to any normal numerical analysis textbook (Burden and 

Faires 2000). This method is also used to evaluate rates of moisture- and temperature- 

variations in Eq. (8.6). The viscosity of concrete is a time-dependent function, ranging 

from 0.7*10
6
 to 1.4*10

6       as demonstrated in Figure 8.3 (Bazant 2000).  

 

 

Figure 8.3 Evolution of the viscosity of a slab.  Note: Laboratory observed data is 

reproduced from Bazant (Bazant 2000). 

 

The curing of the concrete is concluded after 3 days the slab casting, i.e.     . The 

simulation assumes the slab is cast at 3 day before April 1, July, 1, and October 1, 

respectively,  in order to analyze the influence of the construction season on the 

developed stress. It uses the thermal stress at 12:00AM as the initial stresses. The 

concrete is assumed having a water-to-cement ratio of 0.45. The bending tensile strength 

of concrete is assumed as 4.6MPa; i.e.       . This simulation estimates the total stress 

evolutions during 5 years after the curing commences. Numerical code for this simulation 

can be referred to Appendix E. 

8.3 Results 

8.3.1 Stress evolution immediately after the curing 

After the curing commences, the top of the concrete slab almost suffers from tensile 

stress even if the slab curing terminates at the hottest season (Figure 8.4). In such 

weather, during the daytime, the slab surface is hot and results in positive temperature 

gradient across the slab. Compressive stress develops at the top if the through-depth slab 

RH is uniform. However, this positive temperature gradient is overwhelmed by the 

ongoing shrinkage, which induces tensile stresses. Therefore, after the curing ends, the 

top of the slab suffers from tensile stress all day round. 

This increase of tensile stress near the top results in the increase of compressive 

stresses developed the bottom; however, the bottom experiences relatively less stress than 

the top of the slab. The total stress at the slab‘s bottom cycles between approximately -
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1.5 to 1.5 MPa for the slab in Reno and between -1.0 and 1.0 for the slab in Los Angeles 

(Figure 8.4). One reason for the stress amplitude differences between the slabs of these 

two regions is that the temperature variation in Reno is relatively greater and leads to 

more thermal stress developed within the slab. The other reason is that Reno has a 

comparatively lower ambient relative humidity and results in the slab undergoing more 

rapid moisture loss and subsequent drying shrinkage. 

The concrete slab in Reno experiences stress relaxation over daily cycles whereas that 

in Los Angeles does not. In both regions, the tensile stresses at the slab top immediately 

increase after the curing terminates. This is because the rapid moisture escape from the 

slab surface leads to a sharp negative RH gradient near the top. For the slab in Reno, the 

wiggle of daily-maximum tensile stress at the top in some time exhibits a plateau (Figure 

8.4a). This infers that the developed stress is greater than the bending tensile stress; thus 

the top of the slab experience stress softening. In Los Angeles, stress softening does not 

occur at the top, even though the total stress is greatly higher than the thermal stresses. 

 

 

Figure 8.4 Stress developments at the top and bottom of the slab for one month after the 

curing ends. Note: tension is positive. 

 

8.3.2 Long-term stress developments 

The stress plotted in Figure 8.4 exhibits reduction of both tensile stress at the top and 

compressive stress at the top. These reductions suggest that the stress developed through 

the slab can possibly relax progressively. To show this stress relaxation, Figure 8.5 plots 

the daily maximum tensile stress at the top and the daily maximum compressive stress at 

the bottom over a five-year period following concrete casting and curing. 

The developed stresses exponentially decline after the curing ends. They become 

stable approximately 3-6 months after the casting of the slab. The exponential decrease of 

the developed stress is conspicuous for the stress near the slab surface. The developed 
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(b) Stress developed after the curing ends (Los Angeles, top)

 

 


total


thermal

June 30 Jul 5 Jul 10 Jul 15 Jul 20 Jul 25 Jul 30
-3
-2
-1
0
1
2
3
4
5

Date

S
tr

e
ss

 (
M

P
a
)

(c) Stress developed after the curing ends (Reno, bottom)
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tensile stress drops to a nadir after approximately 6 months duration. After this period, 

the shrinkage-induced stresses become stable since the subsequent nadirs and zeniths 

appear roughly at the same time and in same magnitude (Figure 8.5). 

The duration required for this stabilized time is not significantly affected by the 

weather conditions. Reno has both lower ambient relative humidity and fewe rain events, 

but experiences higher wind speed than Los Angeles. These aggressive weather 

conditions make the concrete slab in Reno experience a quicker moisture loss after the 

curing ends. However, in both regions, the time required for  the total stresses to become 

cyclically stable coincides well (Figure 8.5). The reason behind this phenomenon is that 

only a notable moisture-varying rate can lead to warping stress. However, an 

inconspicuous rate does not result in distinguishable stress difference as both the Pickett 

effect and relaxation behavior of the slab can immediately relax the stresses induced by 

this slight moisture varying rate. This means that the shrinkage-induced stress 

progressively loses its domination. Therefore, after several months the stresses induced 

by the moisture variations are minimal because the stress relaxation dissipates these 

stresses. 

 

 

Figure 8.5 Stress relaxation during 5 years after the curing ends. 

 

8.3.3 Does the stress at the stable state converge to the thermal stress? 

The stress at the cyclically-stable state diverts from the thermal stress. This is because 

the slab pore RH strongly relies on the temperature variation. Daily variations of the 

temperature result in the swing of the internal concrete pores‘ RH and thus in the swing 

of total stress. To illustrate this issue, the total-stress profile and thermal-stress profile are 

plotted (Figure 8.6) and the daily total-stress contour and thermal stress contour on June 

30, 5th year are depicted (Figure 8.7).  

At the stable state, the stress during daytime coincides with the thermal stress whereas 

the stress during the nighttime does not. During daytime (top is compressive stress), the 

temperature at the top is greater than the room temperature (usually 22
o
C). The RH near 

the top thus slightly increases such that the total compressive stress at the top should be 

slightly greater than the thermal stress. But at the cyclically-stable state, the estimated 

total stress coincides with the thermal stress and, in some cases, slightly higher than the 

thermal stress (Figure 8.6). This is because the creep effect and Pickett effect make the 
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elastically-developed stress relax to some degree. During the night time (top is tensile 

stress), the top of the slab is at a lower temperature and the bottom of the slab remains 

relative hot. This different thermal condition results in contraction occurring at the top 

and develops tensile stress therein. The estimated total tensile stresses are remarkably 

greater than the computed thermal stresses (Figure 8.6). 

At the cyclically-stable state during the summer months, the top of the slab suffers 

from a total tensile stress greater than the thermal stress owning to two reasons. First, 

both terms of      and      in Eq.(8.6) are less than 1 when the local slab is in 

tension; but these terms are greater than 1 when in compression. This difference results in 

a greater portion of the developed compressive stress being relaxed during the day hours 

(compressive at the top) than the night hours. Secondly, during the night time, the RH 

declines within the slab as the temperature drops (Eq. (6.16)). The decline of the pore RH 

through the slab magnifies the term of      in Eq. (8.6). It thus increases the reversible 

component of the shrinkage during this time and enlarges the developed tensile stress 

near the top of the slab. These two reasons result in the developed stress relaxing to a 

lesser magnitude during the night hours, and results in the estimated total stress diverging 

from the thermal stress during the nighttime. 

 

 
Figure 8.6 slab-stress profiles at the cyclically-stable time suggest that the total stresses 

divert from the thermal stress; maximum tensile stress at the bottom appears 13:00PM, 

maximum compressive stress the top at night time (In Reno). 

 

8.3.4 Impact of construction season on the developed stresses 

Stress relaxation depends on the RH, stress, slab‘s viscocity, etc. This dependency 

suggests that construction season may greatly influence the stress developed within a 

slab. To illustrate this influence, this study assumes that pavement slabs in Reno and Los 

Angeles are cast and commencing curing on at March 30, June 30, and September 30, 

respectively.  
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Figure 8.7 Thermal stress versus total stress on June 30, 5th year  (In Reno). 

 

The developed total stresses after the curing ends are greatly affected by the 

construction seasons (Figure 8.8). In Reno, the slab built in June experiences largest 

stress whereas slabs paved in September potentially suffer from the lowest total stresses 

(Figure 8.8a). In Reno, the ambient RH from September to December is relatively higher. 

Another reason for this phenomenon is that the autumn season in Reno is less-windy than 

April and July (Figure 7.1b). Therefore, the slab built in September experiences a lower 

rate of moisture escaping from the surface. It thereby suffers from less moisture-induced 

stresses developing within the slab when compared to the slab paved in October. 

However, this does not necessarily mean that any slab built in October will be subject to 

less environmental loadings over the course of its service life. For instance, in Los 

Angeles, a slab paved in March tends to suffer from greatest stress but that one paved in 

June experiences a relatively lower stress, especially immediately after the curing ends 

(Figure 8.8b). This is because in Los Angeles the ambient RH in June is at its zenith, 

resulting in a lower rate of moisture escaping from the surface and thus in a less tensile 

stress at the top.   Therefore, it is critically important to note the site-specific ambient RH 

patterns to construct concrete pavement slabs that undergo lower total stress 

development, thereby promoting long-term pavement performance with respect to fatigue 

cracking development. 

 

8.3.5 Environmental loadings of concrete slabs in different regions 

8.3.5.1 Stress developed in coastal and arid regions 

The concrete slabs in the region within less air RH tend to experience higher stress. 

Figure 8.9 plots the daily maximum-tensile stress developed through slabs in Reno, 

Nevada; Las Vegas, Nevada; Los Angeles, California; Astonia, Oregon. The former two 

regions attribute to lower ambient RH, arid regions. Concrete pavements in these arid 

regions tends to experience more stress across the slab. The latter two regions are coastal 

locations with a higher ambient RH. The slabs built in these regions undergo less stress; 
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the softening of stress does not occur at the top under the assumed geometry and 

construction date. 

An interesting result is that the slab in Las Vegas suffers from less total stress 

development compared to the slab in Reno, Nevada (Figure 8.10a). Since Las Vegas has 

lower seasonal ambient RH, this is contradicting to the conclusion that the slabs in 

regions with lower ambient RH experience higher total stresses. This phenomenon occurs 

for distinct three reasons. 

First, moisture escaping from the slab in Reno occurs more rapidly than in Las Vegas. 

In Las Vegas, the ambient RH is lower than that in Reno (Figure 8.10b). Thus, the RH 

near the top of slab dramatically drops because the ambient RH directly controls the RH 

near the surface. The drop of slab-surface RH reduces the near-surface diffusivity and 

thus blocks rapid moisture escape from the surface. This is because the slab moisture 

diffusivity highly decreases at lower pore RH (Figure 6.1). Thus, after the curing ends, 

the slab in Las Vegas tends to suffer from less shrinkage stress. 

 

 

 

Figure 8.8 Influence of the slab-constructed seasons on the stress developed within slab 

after the curing ends. 

 

Secondly, the RH of the slab in Reno is more easily affected by temperature 

variations. The hydrothermic coefficient reveals that the internal concrete RH is sensitive 

to temperature variation when the RH ranges from 0.4-0.6 (Figure 6.6). This sensitivity 

forces the slab in Reno to incur higher tensile stresses because the daily reductions of the 

RH near the top of the slab are relatively larger. This reduction is dramatic during the 

nighttime, as shown in the temperature decrease of the slab in Reno (Figure 3.3b). 

Finally, the windier climate in Las Vegas (Figure 8.10c) reduces the thermal stress 

developed through the slab and reduces the diffusivity of the slab. The wind speed in Las 

Vegas is typically 1.0-1.5 m/s greater than in Reno. This windy climate in arid regions 

can reduce the environmental loading developed through a slab due to three reasons. 

 

0 5 10 15 20 25 30
2

3

4

Yield

5

Date

S
tr

e
ss

 (
M

P
a
)

(a) Daily-maximum stress developed after 
                                           the curing ends (Reno, top)                                              

 

 


Mar 30


June 30


Sep 30

0 5 10 15 20 25 30
2

3

4

Yield

5

Date

S
tr

e
ss

 (
M

P
a
)

(b) Daily-maximum stress developed after 
                                         the curing ends (Los Angeles, top)                                       

 

 


Mar 30


June 30


Sep 30



97 

 

 

Figure 8.9 Daily maximum slab-tensile stresses developed in different regions. 

 

 

 

Figure 8.10 Slab‘s stress development and weather conditions. 

 

1. First, this windy climate reduces the nonlinearity of the temperature 

gradient near the top and lessens the bending stress across the slab. It thus reduces the 

thermal stress developed and thus the total stress. 
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2. The windy climate in Las Vegas reduces the temperature across the slab. It 

thereby decreases the moisture diffusivity of the slab since the slab moisture diffusivity 

increases with temperature (Eq. (6.15)). 

3. The windy climate in Las Vegas does not notably affect the moisture 

distribution within the slab. As there are very few rain events occurring in either region, 

the slab surface is in drying conditions most of the time. These conditions make the slab 

moisture distribution insensitive to the wind speed, as illustrated in Chapter 7. 

These three reasons confirm that the windy climate in Las Vegas can decrease the 

total environmental loadings developed through the slab therein.  

 

 

8.3.5.2 Application to other regions 

Although the data from Figure 8.4 to Figure 8.8 reflects only the moisture distribution 

within in-service slabs in Reno and partly represent that in Los Angeles, the predicted 

total stress developed within the slabs can be extended to other regions. 

A rapid escape of moisture from the slab surface is the main reason resulting in the 

larger tensile stress near the surface. After the curing ends, concrete pavement slabs are 

satured through their depth regardless of region; whereas the surrounding air has 

relatively lower RH. This difference results in a rapid moisture loss from the slab surface 

and induces tensile stress at the top. In regions with a relatively higher ambient RH (e.g. 

RH>0.75), the moisture escape occurs for a shorter duration because the moisture 

diffusion within a saturated slab is greater than within an unsaturated slab. Therefore, the 

developed stress relaxes soon after the curing terminates (Figure 8.8 and Figure 8.9). In 

regions with a  lower ambient RH (e.g. RH<0.75), the moisture near the concrete slab‘s 

surface would quickly equilibrate to the ambient RH. However, the portion of the slab 

deeper in the slab is still saturated because the lower RH near the slab surface (less 

diffusion near the surface) blocks the continuous, rapid loss of moisture from the slab 

surface. A greater negative RH gradient thereby develops near the surface. This 

formation of this gradient results in the stress softening occurring at the slab surface, but 

the deeper portions of the slab remain at  a relatively lower stress state (Figure 8.9a and 

c).  

Arguments in the above paragraph confirm that the developed stress through slabs in 

other regions still experience similarly developed total stresses to those  in Reno and Los 

Angeles. That is the following:  

 Tensile stresses at the top would be close to the bending tensile strength. This 

is the case since the moisture escape is so quick that the rate of the shrinkage-

induced stress development overwhelms rate of stress relaxation. 

 The relaxation of the stress to a cyclically-stabilized state lasts several months. 

The rate of moisture loss reduces several days after the curing terminates. This 

is because in regions with higher ambient RH, the moisture loss declines. This 

is also because in regions with less ambient RH, the nonlinearity of the 

moisture diffusion impedes the moisture loss rates exponentially. When the 
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rate of stress relaxation is quasi-balanced with the rate of the shrinkage-

induced stress, the total stress reaches a cyclically-stabilized state. 

 The total stresses at the cyclically-stable state possibly divert from the thermal 

stresses. The degree of the divergence may exhibit different scenarios, 

depending on the daily temperature amplitude of the slab. In regions where 

the slab undergoes a relative lower temperature variation, the total stress may 

eventually converge to the total stress because    and    in Eq. (8.6) are 

minimal so that the Pickett effect and the viscosity behavior can relax the 

developed stress immediately.  

 The construction season influences the developed stresses after the curing 

ends. This influence may also exhibit different scenarios than what is plotted 

in Figure 8.8. This is because other regions have different seasonal ambient 

relative humidity, wind speed, solar radiation, etc. It also may not reach a 

solution that a slab paved in September would be result in a lower stress 

developed immediately after the curing ends. However, it can be concluded 

that paving a slab in a season with less daily temperature amplitude and with 

higher ambient RH increase the likelihood  of better performance of in-service 

slabs due to the reduced environmental stresses developed. 

 

8.4 Discussion 

8.4.1 Sensitivity of the developed total stress to the pavement slab 

The simulation in this study hardly exhausts the possible factors that influence the 

total stresses developed through a slab. These factors can be divided into four sets: 

pavement structure constraints; slab mechanical parameters; slab shrinkage 

characteristics; and environmental factors. 

 

 

8.4.1.1 Slab mechanical parameters 

The total stress development also relies on the slab‘s mechanical parameters such as 

the viscosity of the slab. An increase of the viscosity will elongate transition time that the 

developed total stresses become stable. Conversely, a reduction of the slab‘s viscosity 

reduces the shrinkage-induced stress. In this case, the plateau of the stress curve in Figure 

8.8a may not be present, meaning that the softening of the total stress would not occur. 

Therefore, the detailed magnitudes of the total stress strongly rely on the mechanical 

parameters of the slab.  

Dependency of the total stress development on the elastic mechanical parameters is 

relatively complicated. Intuitively, an increase of the Young‘s modulus raises the 

estimated total stress and thermal stress; whereas increase of the Poisson rate declines 

those stress. A rise of Young‘s modulus from 20GPa to 30GPa would results in a 1.5 

factor increase of the plotted stresses shown in Figure 8.4 to Figure 8.8. However, this 
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factor actually acts in a more complicated behavior because increase of these stresses 

promotes the drying shrinkage of the slab (Hansen and Almudaiheem 1987). This is 

because the variation of the stress alters both the creep effect and the Pickett effect of the 

slab. Nonlinearity of these effects complicates the role of the elastic mechanical 

parameters on the total stress development. 

 

8.4.2 Slab mixture properties 

Decrease of water-to-cement ratio reduces the total stress developed through in-

service concrete slabs. This study does not refer to those slabs mixed with cementitious 

materials such as fly ash and only considers the mixture properties of normal Portland 

cement concrete. Provided that all the other conditions are the same, the slab containing 

different water-to-cement ratio results in different estimated total stresses. A lower w/c 

ratio concrete slab impedes a faster moisture escape from the concrete slab so that there 

should be less shrinkage-induced stress after the curling ends. Such a slab also has a less 

ultimate shrinkage     (Hansen and Almudaiheem 1987; Bissonnette et al. 1999). It thus 

has less reversible and irreversible shrinkage and experience relatively less environmental 

loadings.  However, extremely low water-to-cement ratios (< 0.30) may exacerbate the 

autogenous shrinkage component within the ultimate shrinkage level. 

A lower water-to-cement ratio concrete slab also results in the final total stress 

diverging to a lesser degree from the thermal stress. In the cyclically-stabilized state, the 

equivalent relative humidity       ) of a slab is stable such that the daily moisture-

varied rate of the pore RH depends on the daily temperature cycle, but not on the 

variation of the pore water content. This means that in a specific region, the      depends 

only on the ultimate      (Eq. (8.2)). A decrease of the water-to-cement ratio thus 

reduces the      and according to Eq. (8.2), leads to the reduction of the warping-induced 

stress. 

 

8.4.3 Impact of wetting cycles 

The occurrence of the wetting events reduces the shrinkage-induced stress. This is the 

case if the events occur after the curing ends and after the stabilized state reaches. 

Undoubtedly, the occurrence of wetting events after the curing ends reduces the rate of 

moisture loss and thus diminishes the shrinkage induced tensile stresses. After the 

cyclically-stabilized state is reached, a rain event can make the slab suffers from less 

thermal gradient and less daily variation of slab‘s RH. The latter reduces the warping 

stress. Also, rainy events increase  the near surface moisture content and RH. This 

reduces the term of reversible shrinkage because the term of the reversible shrinkage (   

in Eq.(8.3)) decreases as    increases. Therefore, a rainy event during the cyclically-

stabilized state decreases both thermal stresses and the shrinkage-induced stresses.  
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8.4.4 What does the estimation of total-stress evolution tell us? 

A sophisticated model is needed to estimate the total environmental loadings that an 

in-service slab is subjected to. Without a credible model, these loadings would potentially 

be improperly characterized, especially the tensile stress near the top. First, a sole 

analysis to the thermal stress may delude us to believe that after the curing ends, the hot 

climate makes the slab surface slab compressed, but this is not the case. The developed 

shrinkage-induced tensile stress is so great that the tensile stress overwhelms the 

compression resulting from the temperature increase. Secondly, even when moisture 

evolution within a slab is in a quasi-balanced state, the dependency of the slab‘s RH on 

the temperature variation still results in the total stress at the stable state diverting from 

the thermal stress. 

 

8.5 Conclusions 

This study estimates the total warping and curling stress developed through in-service 

slabs after the curling ends. The following conclusions can be drawn: 

(1) Immediately after the curing is terminated, the shrinkage-induced stress 

overwhelms the thermal stress. During several days after the curling, the slab top still 

suffers from only tensile stress but not compressive stress, even during a hot season. The 

total tensile stresses during the night time can be greater than the bending strength of 

normal Portland concrete, inducing slab surface softening through microcracking at 

shallow depths. However, this stress softening only occurs near the top; it may not occur 

in the regions with higher surrounding air RH. 

(2) Decrease of water-to-cement ratio reduces the total stress developed through in-

service concrete slabs. A lower w/c ratio concrete slab impedes a faster moisture escape 

from the concrete slab so that there should be less shrinkage-induced stress after curling 

ends. Such a slab typically also has a less ultimate shrinkage, unless extremely low w/c 

ratio concrete is placed. It thus has less reversible and irreversible shrinkage and 

experiences less environmental loadings. A lower water-to-cement ratio concrete slab 

also results in the final total stress diverging less from the thermal stress because of the 

lower ultimate shrinkage of this slab. 

(3) Dependency of the total stress development on the elastic mechanical parameters 

is relatively complicated. Intuitively, an increase of the Young‘s modulus raises the 

estimated total stress and thermal stress; whereas increase of the Poisson rate reduces 

those stresses. The role of these two parameters, however, acts in a more complicated 

behavior since an increase of these stresses promotes the drying creep of the slab. This is 

because the variation of the stress alters both the creep effect and the Pickett effect of the 

slab. Nonlinearity of these effects complicates the role of the slab‘s elastic mechanical 

parameters on the total stress development. 

(4) The developed stress through the slab relaxes exponentially. Approximately 3-6 

months are required to make this stress cyclically-stabilized. At the cyclically-stabilized 

state, the total stress does not converge to the thermal stresses. This is because the RH 
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through a slab varies the temperature fluctuation across the slab. Variation of temperature 

leads to variations in both the internal pore RH and reversible shrinkage rate, which make 

the total tensile stress divergent from the thermal stress. Thus, it may lead to delusive 

results if the environmental loadings that the in-service slab subjects to are estimated by a 

model that solely analyzes the thermal stress. 
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Chapter 9 Conclusions and future works 

This dissertation investigates the total environmental loadings that in-service slabs are 

subjects to by estimating the thermal- and shrinkage-induced stresses. The thermally-

induced stress is evaluated by use of a 1-D dimensional heat transfer model to predict the 

temperature distribution through the slab and by use of the elastic theory to compute the 

stress induced by the predicted temperature profile. The shrinkage-induced stress is 

evaluated by use of the visco-elastic theory to compute the stress induced by the moisture 

gradient developed though the slab. Moisture distribution is predicted by a proposed 

model that considers the wetting and drying cycles occurring at the pavement surface. 

The computation of the total environmental loadings considers the relaxation behavior 

and Pickett effect of the concrete. 

 

9.1 Conclusions 

(1) Air temperature 

The daily temperature amplitude affects the temperature distributions across a 

pavement slab during the daytime more than during nighttime. Pavements in regions with 

higher daily temperature amplitudes experience greater negative temperature gradients 

during the nighttime hours. Using a sinusoidal approximation function as an input of air 

temperature in a numerical model does not compromise the prediction, even if a sudden 

air temperature drop or increase occurs. There exists several correlations between air and 

sky temperatures. Uses of different correlations result in different temperature 

distributions through a concrete slab. Methods that directly link the sky emissivity to dew 

point are recommended in a numerical model commissioning to predict pavement 

temperatures. 

 

(2) Wind speed 

Impact of wind velocity on the thermal stresses in JPCPs depends on the climatic 

location of the pavement. In lower latitude regions, the solar radiation heats up the 

pavement surface and thus increases the difference between the slab-surface temperature 

and the air temperature (      . A relatively higher       facilitates the wind drawing 

more heat from the pavement and thus reduces the temperature gradient and thermal 

development through the slab. This impact varies seasonally. In summer, the       is 

maximal and the role of wind speed is magnified. In other seasons, the solar radiation 

wanes so that the       factor decreases. The wind speed only carries a limited heat 

away from the pavement surface. It thus plays un-notable role on the slab temperature 

distribution and thus on the developed thermal stress.  

Using the heat convection coefficient from the EICM to predict the temperature 

profile of a slab tends to overestimate thermal stresses in a JPCP. This may help explain 

some of the sensitivity of the thermal expansion coefficient to the predicted fatigue 
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cracking performance in JPCPs. Moreover, the EICM heat convection formula embeds an 

assumption that the slab surface temperature must be higher than the air temperature. 

This assumption is not always true. Furthermore, the heat convection coefficient estimate 

from the EICM model is significantly less than the value computed from accepted heat 

transfer theory. Use of this model potentially results in the thermal stresses being less 

sensitive to wind speed. The proposed modified model considers the factors of the 

viscosity of the air, characteristic length of the JPCP slab, the air‘s thermal conductivity, 

air Prandtl number, and wind velocity. It tends to be more realistic in characterizing the 

heat convection coefficient for a JPCP structure.  

The wind speed observed from a weather station cannot be directly inputted into the 

Menzel‘s formula to compute the evaporation rate of bleed water from a casting concrete 

surface. The observed wind speed of weather stations in most locations (e.g. airports) 

generally is one-and-half times greater than the wind velocity used in Menzel‘s formula. 

This is because the heights of the measurements are different than wind speeds that affect 

the surface directly.  

During wetting conditions, both wind speed and free evaporation (zero wind speed) 

significantly affect the moisture escape from the concrete surface. During the drying 

cycle, wind velocity dominates the moisture loss at slab surface, especially during the 

transition time that the relative humidity at the top approaches the ambient air humidity. 

Free evaporation at a drying concrete surface plays a negligible role to the moisture 

escape in cases with wind at the surface.  

 

(3) Solar radiation (SR) 

The temperature distribution and thermal-stress distribution through a slab are mainly 

determined by the SR absorption at the pavement surface. Because more SR energy is 

available during the summer season, the pavement experiences higher temperature 

gradients and thus suffers from higher thermal stress in comparison with winter months. 

The impact of the heat history on the pavement surface is negligible. Computation of the 

maximum pavement temperature thus needs only to predict the pavement temperature in 

the day with the extremely high solar radiation. The estimate of this extreme solar 

radiation, however, needs to consider the observed uncertainties of the local weather.  

The role of SR absorption on the slab surface becomes more pronounced when with 

darken pavement surfaces. The maximum thermal tensile stress of a slab can increase up 

to 0.3MPa when the pavement surface‘s solar absorptivity rises from 0.65 to 0.85. 

 

(4) Internal relative humidity of concrete 

Seasonal ambient air relative humidity (RH) plays a dominant role on the moisture 

distribution within an in-service slab. The seasonal rainfall pattern, monthly wind speed, 

and variation of daily relative humidity influence the internal RH profile of the concrete 

in a secondary role. To offset the moisture gradients in arid climates, increased thickness 

or reduced joint spacing may need to be applied in comparison with wetter regions.  

Concrete easily absorbs moisture when wetting. It typically loses water much slower 

due to the non-linearity of moisture diffusivity. Thus, although the probability of 
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precipitation is typically one order of magnitude less than drying in many locations, the 

magnitude of the wetting events still control the moisture budget of in-service slabs to a 

large degree. 

Variation of the temperature strongly influences pore RH of an in-service slab. Not 

only does the slab‘s diffusivity depend on the temperature, but also the pore RH strongly 

varies with the temperature variation. Use either of the RH predicted by the isothermal 

model or of the equivalent relative humidity (a relative humidity estimated at room 

temperature) potentially overestimate the slab RH during the colder seasons. 

 

(5) Total environmental loadings that in-service slabs suffer from 

Immediately after the curing terminates, the shrinkage-induced stress overwhelms the 

thermal stress such that several days after the curling, the slab top suffers from only 

tensile stress but not compressive stress, even in a hot season. The total tensile stress 

during the night time can be greater than the bending strength of normal Portland 

concrete and make the slab surface undergo softening. However, this stress softening 

only occurs near the top; it may not occur in the regions with higher air RH.  

Decrease of water-to-cement ratio reduces the total stress developed through in-

service slabs. A lower w/c ratio concrete slab impedes a faster moisture escape from the 

concrete slab so that there should be less shrinkage- induced stress after curling ends. 

Such a slab also has a less ultimate shrinkage, except in extremely low w/c ratio cases. It 

thus has less reversible and irreversible shrinkage and experiences relatively lower 

environmental loadings. A lower water-to-cement ratio concrete slab also results in the 

final total stress diverging less from the thermal stress because of the lower ultimate 

shrinkage of the concrete. 

Dependency of the total stress development on the elastic mechanical parameters is 

relatively complicated. Intuitively, an increase of the Young‘s modulus raises the 

estimated total stress and thermal stress; whereas an increase of the Poisson rate declines 

those stress. The role of these two parameters, however, is played in a more complicated 

behavior because an increase of these stresses promotes the drying shrinkage of the slab. 

This is because the variation of the stress alters the creep effect and the Pickett effect of 

the slab. Nonlinearity of these effects complicates the role of the elastic mechanical 

parameters on the total stress development. 

The developed tensile stress at the top relaxes exponentially. Approximately 3-

6months are required to make this stress stabilized (cyclically). At the stabilized state, the 

total stress does not converge to the thermal stresses. This is because the pore RH through 

a slab varies with the temperature variation. Variation of temperature leads to variations 

in both the pore RH and reversible shrinkage rate, which make the total tensile stress 

divergent from the thermal stress. Thus, it may lead to delusive results if the 

environmental loadings that the in-service slab subjects to are estimated by solely 

analyzing the thermal stress. 

 

(6) What is needed to be done at the next step? 
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It is needed to develop a sophisticated model to estimate the total environmental 

loadings that in-service concrete slab are subject to. Without a credible model, these 

loadings would potentially be improperly characterized, especially the tensile stress near 

the top. First, a sole analysis to the thermal stress may delude us to believe that after the 

curing ends, the hot climate make the slab surface slab compressed. But this is not the 

case. The developed shrinkage-induced tensile stress is so great that the tensile stress 

overwhelms the compression resulting from the temperature increase. Second, even when 

moisture evolution within a slab is in a cyclically stable state, the dependency of the 

relative humidity on the temperature variation still results in the final stress diverting 

from the thermal stress. 

 

9.2 Future works 

(1) Characterize the built-in curling 

This dissertation centers on the temperature distribution and moisture distribution 

through in-service hardened concrete pavement slabs. The hydrating concrete is out of 

consideration. However, in-service slabs usually have a built-in curling, which is induced 

by non-uniformity of the hydrating heat releasing during the hydrating state. This heat 

normally results in a negative built-in temperature gradient because the released heat is 

trapped at the bottom of the slab but effectively escapes from the pavement surface. Only 

this gradient results in a tensile stress occurring at the near surface. That is, the 

computation of the thermal stresses should be super-positioned with the built-in curling. 

Although the built-in curling will eventually relax to some degree, neglecting this built-in 

curling stress may either underestimate or overestimate the thermal stress developed 

through the slabs. 

 

(2) Compute the stress-strain relationship after the stress-softening takes place. 

This dissertation does not consider the stress-softening of the slab. When the stress is 

greater than the bending tensile strength of the concrete, stress yield is assumed. Actually, 

this yield leads to damage and may initialize micro-cracking. The post-yield stress-strain 

correlation is thus more complicated. For instance, micro-cracking may take place so that 

the bending stress across the slab is relaxed dramatically. Further investigations need to 

be dedicated to this post-yield stress-strain response and to how this stress softening may 

initiate larger structural cracks under external traffic loadings. 

 

(3) Estimate the fatigue damage of rigid pavement 

Estimating the total environmental loadings that the slab is subject to is not the 

ultimate goal. In practice, the fatigue damage of the rigid pavement is of greater concern. 

The environmental loadings themselves, especially in the long term, do not lead to the 

cracking or even failure of the slab in most cases. Accumulation of fatigue damage is of 

primary concern especially in that both these loadings are of seasonal and daily cycles. 

Future researches need to center on this topic. 
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(4) Developed 2-D model to predicted the moisture and temperature through the slab 

The models proposed in this dissertation are based on 1-D dimension heat and mass 

transfer theory. Use of these models means that edge of the slab has the same boundary 

as the middle of the slab. This leads to some errors because the media near the edge can 

have different thermal properties and different diffusivity than the media beneath the 

center of the slab.  

 

(5) Considering the soaking effect on the moisture distribution within the slab 

The proposed mass transfer used to simulate the pore RH distribution through in-

service slabs adopts      when the slab surface is wetting. In fact, the wetting 

concrete surface has RH>1. This means that the proposed mass transfer model uses a 

lower upper boundary value and possibly underestimates the moisture uptake during the 

wetting condition. The underestimation of the upper boundary may lead to some 

underestimation of the moisture distribution through the slab, although the total wetting 

time is an order-of-magnitude lower than the drying time. Future studies expect a model 

considering the soaking effect during the wetting time. 
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Appendix C—1-D heat transfer model 

% this program deals with 1-d heat transfer problem 

% written by Yinghong Qin, all right reserved 

% beta=0.5 is used to reduce the error. 

clc; 

clear; 

%% geometry constants and thermal constants 

para=xlsread('thermalpara.xls'); 

mat=length(para(:,1)); 

heatcon=para(:,2); 

density=para(:,3); 

heatcapa=para(:,4); 

% 

%% climatic input 

% (1) solar radiation 

latitude=39.5; % latitude of reno, NV 

[sunrise,sunset]=sunrscal(latitude); 

solar=xlsread('climatedata.xls','reno','C11:N13'); 

solarmean=solar(1,:); %mean solar radiation; in month; unit==kWh/m2/day; 

solarmin=solar(2,:);  %min solar radiation; in month 

solarmax=solar(3,:);  %max solar radiation ; in month 

solarmean=solarmean*41.666; %http://en.wikipedia.org/wiki/Insolation; unit==w/m^2; 

solarmin=solarmin*41.666; % convert 

solarmax=solarmax*41.666; % convert 

[daterefmin,daterefmax,datenum]=manudata(solarmax,solarmean,solarmin); 

solarannual=12*pi*datenum./(sunset-sunrise); 

% (2) inputted date referred 

dewpoint=xlsread('climatedata.xls','dewpoint'); % unit 0F 

dateref=[0;dewpoint(:,1);365]; 

% (3) daily temperature 

temperature=xlsread('climatedata.xls','reno','C61:N63'); 

anmeanannual=temperature(1,:); 

au=anmeanannual(1)/2+anmeanannual(end)/2; 

anmeanannual=[au,anmeanannual,au]; 

flucannual=temperature(3,:)-temperature(2,:); %calculate 

au=flucannual(1)/2+flucannual(end)/2;  

flucannual=[au,flucannual,au]*0.5; 

anmeanannual=interp1(dateref,anmeanannual,(0:365)','spline'); 

flucannual=interp1(dateref,flucannual,(0:365)','spline'); 

% (4) wind velocity 

windannual=xlsread('climatedata.xls','reno','C69:N69'); % unit m/s 

au=windannual(1)/2+windannual(end)/2; 
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windannual=[au,windannual,au]; 

windannual=interp1(dateref,windannual,(0:365)','spline'); 

% (5) air relative humidity 

RHannual=xlsread('climatedata.xls','reno','C68:N68'); % unit m/s 

au=RHannual(1)/2+RHannual(end)/2; 

RHannual=[au,RHannual,au]; 

RHannual=interp1(dateref,RHannual,(0:365)','spline'); 

%% other parameters 

% 

Q=0; % heat generation; 

emiss=0.93; %emissivity 

sigma=5.669e-8; %stefan-boltzmann constant 

cover=0.1; % cloud cover 

absorp=0.78; 

ch_length=0.151; %characteristic length 

visco=16.01*10^-6; %viscocity of air 

pr=0.7; % Pr numver of the air 

kair=0.027; % wiki 

%% space discrete 

tbase=0.10; 

enslab=10; 

tslab=0.25; %unit m, 10in=0.254m 

enbase=3; 

[elink,coorlink,nelement,coorslab]=discrete(tslab,tbase,enslab,enbase); 

slabelink=elink(1:10,:); 

%% initial conditions 

% give the initial temperature 

nnode=length(coorlink(:,1)); 

%% 

tt=xlsread('initial.xls','initial_reno');  

tt=interp1(tt(:,1),tt(:,2),coorlink,'spline'); 

%% simulate preparation 

tempall=[]; % used to store the temperature in the max solar radiation day of each month. 

initialtemp=[]; 

years=1; 

simu_days=365*years; % how much days is expected to be simulated 

datecount=1; % use for save the initial temperature 

solarradiation_annual=[]; 

for DAY=1:simu_days 

    %% get the climatic data in the given day 

    DAYAU=mod(DAY,365); 

    anmean=anmeanannual(DAYAU+1); 

    fluc=flucannual(DAYAU+1); 
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    vwind=windannual(DAYAU+1); 

    RHday=RHannual(DAYAU+1); 

    solarr=solarannual(DAYAU+1); 

    %% 

    hr=24; %how much hours do you want? 

    t=hr*60*60; 

    dt=600; 

    U_day=[]; % a vector used to store the temperature of slab 

    countmax=1; 

    % 

    for time=0:dt:t 

        cc=sparse(zeros(nnode,nnode)); 

        kk=sparse(zeros(nnode,nnode)); 

        rr1=zeros(nnode,1);  

        %% loop over elements for stiffnes matrix 

        for i=1:nelement 

        % get the node number of element 

        n1=elink(i,1); 

        n2=elink(i,2); 

        n3=elink(i,3); 

        %determine which layer the element within------------------------ 

        if n2<tslab 

            nmat=1; 

        end 

        if n2>tslab&&n2<tslab+tbase 

            nmat=2; 

        end 

        if n2>tslab+tbase 

            nmat=3; 

        end 

        % finish material properties determination----------------------- 

        lelement=coorlink(n3)-coorlink(n1);% calculate element length 

        klocal=heatcon(nmat)/lelement*[7/3.,-8/3.,1/3.;-8/3.,16/3.,-8/3.;1/3.,-8/3.,7/3.]; 

        clocal=density(nmat)*heatcapa(nmat)*lelement*[2/15.,1/15.,-

1/30.;1/15.,8/15.,1/15.;-1/30.,1/15.,2/15.]; 

        rq=Q*lelement*[1.0/6;2.0/3;1.0/6]; 

        %assemble kk and cc 

        kk(n1,n1)=kk(n1,n1)+klocal(1,1); 

        kk(n1,n2)=kk(n1,n2)+klocal(1,2); 

        kk(n1,n3)=kk(n1,n3)+klocal(1,3); 

        kk(n2,n1)=kk(n1,n2); 

        kk(n2,n2)=kk(n2,n2)+klocal(2,2); 

        kk(n2,n3)=kk(n2,n3)+klocal(2,3); 
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        kk(n3,n1)=kk(n1,n3); 

        kk(n3,n2)=kk(n2,n3); 

        kk(n3,n3)=kk(n3,n3)+klocal(3,3); 

        cc(n1,n1)=cc(n1,n1)+clocal(1,1); 

        cc(n1,n2)=cc(n1,n2)+clocal(1,2); 

        cc(n1,n3)=cc(n1,n3)+clocal(1,3); 

        cc(n2,n1)=cc(n1,n2); 

        cc(n2,n2)=cc(n2,n2)+clocal(2,2); 

        cc(n2,n3)=cc(n2,n3)+clocal(2,3); 

        cc(n3,n1)=cc(n1,n3); 

        cc(n3,n2)=cc(n2,n3); 

        cc(n3,n3)=cc(n3,n3)+clocal(3,3); 

        rr1(n1)=rr1(n1)+rq(1); 

        rr1(n2)=rr1(n2)+rq(2); 

        rr1(n3)=rr1(n3)+rq(3); 

        end 

    % boundary condition giving 

    % 1) air temperautre 

    hour1=time/3600; 

    airtemp1=anmean+fluc*sin(pi*(hour1-7)/12); 

    [dewpointin]=dewcompute(RHday,  airtemp1); 

    wind=vwind; 

    tt1=tt(1); 

    % 2) convection 

    [qconv1]=reynolds(tt1,airtemp1,wind,ch_length,visco,kair,pr); % function 

    % 3)irradiation 

    refnum=2; % refnum 1--bentz model, 2--berdahl model, 3--Swinbank model 

    [qirra1]=irrbentz(tt1,airtemp1,dewpointin,cover,sigma,emiss,refnum); % refnum 1--

bentz model, 2--berdahl model, 3--Swinbank model 

    % 4)solar absorption 

    

[qabsorp1]=solarradiation(hour1,absorp,solarr,sunrise(DAYAU+1),sunset(DAYAU+1)); % 

function 

    % 5) give heat flux to the top of slab 

    rr1(1)=qconv1+qabsorp1+qirra1; 

    rr1(nnode)=0.03*heatcon(3);  

    %heat flux from the bottom of the earth 

    % finish heat flux------------------------------- 

    renewcc=cc/dt+0.5*kk; 

    renewrr=0.5*rr1+(cc/dt-(1-0.5)*kk)*tt;%b=0.5; 

    tt=renewcc\renewrr; 

    %% 1) save the data on the maximum solar-radiation days 

    if DAY/365>years-1 
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        if mod(time,3600)==0&&time~=0 

            U_day=[U_day;tt(1:2*enslab+1)']; 

            countmax=countmax+1; 

        end 

    end 

    %% 2) save the data on the minimum solar-radiation days 

    end 

    tempall=[tempall;U_day]; 

end 

tempall=[coorlink(1:2*enslab+1)';tempall]; 

tempall=[(-1:8759)'/24,tempall]; 

xlswrite('tempall.xls',tempall,'reno_wholeyear'); 

xlswrite('initial.xls',[coorlink,tt],'initial_reno');  
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Appendix D—couple heat- and mass-transfer model 

% this program and its associated subroutines are designed to compute the 

% moisture profile within the concret pavement slab; 

% written by Yinghong Qin, all right reserved 

clear all; 

clc; 

format long g; 

%% 1) load weather conditions 

days=365; % provide how much day you want to simulate 

dayloopbegin=1; 

slen=0.254; %meter, 12in=30.48 centimeter 

eslab=40; % how much elements you want 

nodeslab=2*eslab+1; % total number of the slab 

coor=linspace(0,1,nodeslab)'; 

% ************************************** % finish the discretization 

slabelink=zeros(eslab,3); 

for i=1:eslab 

    slabelink(i,1)=2*i-1; 

    slabelink(i,2)=2*i; 

    slabelink(i,3)=2*i+1; 

end 

% ++++++++++++++++++++++++++++++++++++++ % finish the link 

%% 3)^^^^^^^^^^^^^^^^^^^^^^^^^ % give the parameter relative to diffusivity 

wc=0.45; % water cement ratio 

% 3) porosity of concrete slab 

C1_25=[0.28,0.86;0.4,1.59;0.68,2.57]; 

C1_25=interp1(C1_25(:,1),C1_25(:,2),wc,'spline')*10^-6; 

alpha0=0.10; 

hc=0.75; 

n=6; % see bazant paper 

QR=1300; % Q/R see bazant paper 

temp_ref=22; 

T0=temp_ref+273; % reference temperature; 

%% give the initial boundary conditions 

initialcon=[0*0.0254 1;0.5*0.0254,1;1*0.0254 1; 2*0.0254 1;3*0.0254 1;4.5*0.0254 1; 

5*0.0254 1; 6*0.0254 1;8*0.0254 1;9*0.0254 1;10*0.0254 1]; 

coorindex=coor*slen; 

RHa=interp1(initialcon(:,1),initialcon(:,2),coorindex,'linear'); 

%RHa=0.98*ones(nodeslab,1); 

%% 

A=199.65976; % 186.65976; 

% *************************************** 
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%% 4) other parameters 

  

%  &&&&&&&&&&&&&&&&  finish the inital condition 

incre=days*24*1; % increment of time unit hour 

URH=zeros(incre+1,nodeslab); % a vector used to store the moisture of slab 

URH_real=zeros(incre+1,nodeslab); 

count=1; 

%% interpolation the weather data 

% (1) wind speed and air relative humidity 

windrhdata=xlsread('climatedata.xls','reno','C68:N69'); 

rhdata=windrhdata(1,:); % get the relative humidity 

winddata=windrhdata(2,:); % get the wind speed; 

% 

%windrhdata=xlsread('climatedata.xls','losangeles','C68:N69'); 

%rhdata=windrhdata(1,:); % get the relative humidity 

%winddata=windrhdata(2,:); % get the wind speed; 

% 

% (2) rainfall information 

consthour=1; % the hour of construction 10---10AM; 

slag=xlsread('slag.xls','reno_d'); % "reno_d' or 'losa_d' 

%% 2)************************************** % discretize the space 

[vwind]=datacomputenoflu(winddata,incre,dayloopbegin,1);%197 suggest the 

construction at the middle of the July; 

% air relative humidty 

airrehum=xlsread('climatedata.xls','losangeles922','S32:T56'); 

[xreno,rhfit,R2]=rhamplitude(airrehum); % retude the amplitude of daily relative 

humidity 

[RHair]=airrh(rhdata,incre,dayloopbegin,consthour,xreno); 

%% 

temp=xlsread('tempall.xls','reno_wholeyear'); 

temp_all=[]; 

for i=2:length(temp(2:end,1))+1 

    temp_au=interp1(temp(1,2:end),temp(i,2:end),coorindex(1:2*eslab+1),'spline'); 

    temp_all=[temp_all;temp_au']; 

end 

temp_all=[temp_all;temp_all(1,:)]; 

coeff=[]; 

rh_real_initial=RHa; 

%% all the inputted data would be arranged here by use of the "shiftinfo" 

%% function to meet the construction-season requirement. 

dateindex=(0:8760)'/24+1; % the first not the 0th day but 1day 

construct_begin=181;  %220; 

construct_hour=1; 
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[RHair]=shiftinfo(RHair',construct_begin,construct_hour); 

[slag]=shiftinfo(slag,construct_begin,construct_hour); 

[vwind]=shiftinfo(vwind',construct_begin,construct_hour); 

[temp_all]=shiftinfo(temp_all,construct_begin,construct_hour); 

%% 

yearrun=5; 

moisture_all=[]; 

moisture_all_equ=[]; 

for yearrun=1:5 

     

%% 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++ 

for step=1:incre+1 

    % 

    T1=mean(temp_all(step,:))+273; 

    coef=T1/T0*exp(QR/T0-QR/T1); % hydrocoefficient; 

    C1=C1_25*coef; 

    tlen=slen^2/(C1); %tlen=t0 

    t_max=days*24/tlen; 

    timest=linspace(0,t_max,incre+1); 

    dt=timest(2)-timest(1); 

    % 

    cc=sparse(zeros(nodeslab,nodeslab)); 

    kk=sparse(zeros(nodeslab,nodeslab)); 

    rr=zeros(nodeslab,1); 

    % the temperature of the slab is expected to be input from here 

    % but it should be noted that the time step and the increment is the 

    % same and also the calculated should be one by one step 

    %% loop over elements for stiffnes matrix 

    for i=1:eslab 

        % get the node number of element 

        n1=slabelink(i,1); 

        n2=slabelink(i,2); 

        n3=slabelink(i,3); 

        lelement=coor(n3)-coor(n1);% calculate element length 

        %determine the position of is wet of dry------------------------ 

        %if RHa(n1)==1 

            %Cfir=D0w*exp(Nwet*RHa(n1))*kama; 

        %else 

            Cfir=C1*(alpha0+(1-alpha0)/(1+((1-RHa(n2))/(1-hc))^n)); % ??????????????? 

        %end 

        %if RHa(n2)==1 
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            %Csec=D0w*exp(Nwet*RHa(n2))*kama; 

            Csec=C1*(alpha0+(1-alpha0)/(1+((1-RHa(n2))/(1-hc))^n)); 

        %if RHa(n3)==1 

            %Cthi=D0w*exp(Nwet*RHa(n3))*kama; 

            Cthi=C1*(alpha0+(1-alpha0)/(1+((1-RHa(n2))/(1-hc))^n)); 

        audiag=[(Cfir*tlen)/slen^2,(Csec*tlen)/slen^2,(Cthi*tlen)/slen^2]; 

        Pe=diag(audiag,0); % peclet number 

        % finish material properties determination---------------------- 

        klocal=1/(lelement)*Pe*[7/3.,-8/3.,1/3.;-8/3.,16/3.,-8/3.;1/3.,-8/3.,7/3.]; 

        clocal=lelement*[2/15.,1/15.,-1/30.;1/15.,8/15.,1/15.;-1/30.,1/15.,2/15.];        

        %assemble kk and cc 

        kk(n1,n1)=kk(n1,n1)+klocal(1,1); 

        kk(n1,n2)=kk(n1,n2)+klocal(1,2); 

        kk(n1,n3)=kk(n1,n3)+klocal(1,3); 

        kk(n2,n1)=kk(n1,n2); 

        kk(n2,n2)=kk(n2,n2)+klocal(2,2); 

        kk(n2,n3)=kk(n2,n3)+klocal(2,3); 

        kk(n3,n1)=kk(n1,n3); 

        kk(n3,n2)=kk(n2,n3); 

        kk(n3,n3)=kk(n3,n3)+klocal(3,3); 

        cc(n1,n1)=cc(n1,n1)+clocal(1,1); 

        cc(n1,n2)=cc(n1,n2)+clocal(1,2); 

        cc(n1,n3)=cc(n1,n3)+clocal(1,3); 

        cc(n2,n1)=cc(n1,n2); 

        cc(n2,n2)=cc(n2,n2)+clocal(2,2); 

        cc(n2,n3)=cc(n2,n3)+clocal(2,3); 

        cc(n3,n1)=cc(n1,n3); 

        cc(n3,n2)=cc(n2,n3); 

        cc(n3,n3)=cc(n3,n3)+clocal(3,3); 

    end 

    %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++ 

    % 1) wet at the slab's surface 

    if slag(step)==1 

        RHa(1)=1; % relative humidity at the top of the specimen 

        renewcc =cc/dt; 

        renewrr=(renewcc-kk)*RHa; 

        ccff=renewcc(2:nodeslab,2:nodeslab); 

        rrff=renewrr(2:nodeslab); 

        ccfp=renewcc(1:1,2:nodeslab); 

        rrff=rrff-RHa(1)*ccfp'; 

        RHf=ccff\rrff; 

        RHa(2:end)=RHf; 
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        % begin the C-R method 

        renewcc=cc/dt+0.5*kk; 

        renewrr=(cc/dt-0.5*kk)*RHa; 

        ccff=renewcc(2:nodeslab,2:nodeslab); 

        rrff=renewrr(2:nodeslab); 

        ccfp=renewcc(1:1,2:nodeslab); 

        rrff=rrff-RHa(1)*ccfp'; 

        RHf=ccff\rrff; 

        RHa(2:nodeslab)=RHf;   

    % 2) drying cycle--need consider the convection at the ground surface 

    else if slag(step)==0  

        rr(1)=A*(0.253/21.89+0.216*vwind(step)*0.66)*(-RHa(1)+RHair(step)); % provide 

a variable air relative humidity and vwind speed 

        % 0.096 refers to Zawde berhane's paper 

        renewcc=cc/dt+0.5*kk; 

        renewrr=rr+(cc/dt-(1-0.5)*kk)*RHa;%b=0.5; 

        RHa=renewcc\renewrr; 

        end 

    end 

    for cor=1:length(RHa) 

        if RHa(cor)>=1 

            RHa(cor)=1; 

        else if RHa(cor)<=0; 

                RHa(cor)=0; 

            end 

        end 

    end 

    % 

    [rh_real]=realrh(RHa,temp_all,step,rh_real_initial,temp_ref); 

    rh_real_initial=rh_real; 

    for cor=1:length(rh_real) 

        if rh_real(cor)>=1 

            rh_real(cor)=1; 

        else if rh_real(cor)<=0; 

                rh_real(cor)=0; 

            end 

        end 

    end 

    % 

    URH(count,:)=RHa'; 

    URH_real(count,:)=rh_real'; 

    count=count+1; 
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    % 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

end 

moisture_all=[moisture_all;URH_real(1:end-1,:)]; 

moisture_all_equ=[moisture_all_equ;URH(1:end-1,:)]; 

URH=zeros(incre+1,nodeslab); % a vector used to store the moisture of slab 

URH_real=zeros(incre+1,nodeslab); 

count=1; 

end 

% 

moisture_all=[moisture_all;rh_real']; 

moisture_all_equ=[moisture_all_equ;RHa']; 

index=(0:length(moisture_all(:,1)))'/24; 

moisture_all=[coorindex';moisture_all]; 

moisture_all=[index,moisture_all]; 

moisture_all_equ=[coorindex';moisture_all_equ]; 

moisture_all_equ=[index,moisture_all_equ]; 

% 

xlswrite('moisture_all.xls',moisture_all,'reno'); 

xlswrite('moisture_all.xls',moisture_all_equ,'reno_equ_rhnodaily'); 
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Appendix E—compute the total environmental loads 

clear all; 

clc; 

temp_all=xlsread('temp_more.xls','reno_beta'); 

moisture_all=xlsread('moisture_more.xls','reno_beta'); 

visco=xlsread('visco.xls','viscofit'); 

% 

% 

coor_temp=temp_all(1,2:end); 

coor_moisture=moisture_all(1,2:end); 

total_stress=[]; 

thermal_stress=[]; 

[initialstress]=thermalstressprofile(temp_all(1:2,2:end)); 

% 

total_stress=[total_stress;initialstress]; 

thermal_stress=[thermal_stress,initialstress]; 

shrinkagemax=600; 

dayload=3; 

% 

[M,N]=size(temp_all(2:end,2:end)); 

hour=(1:M+2)'; 

[visco_hour]=visco_compute(visco,hour); 

% 

deformtrack=[]; 

creep=zeros(1,N); 

% 

for i=3:M 

    visco=visco_hour(i)*10^6; 

    temp=[coor_temp;temp_all(i-1:i+1,2:end)]; 

    moisture=[coor_moisture;moisture_all(i-1:i+1,2:end)]; 

    day=dayload+i/24; 

    %[thermalstress,moisturestress,totalstress, 

initialstress,deform]=stresscalculaterevise(temp,moisture,initialstress,shrinkagemax,visco

,dayload,day); 

    [thermalstress,totalstress, 

initialstress,deform]=stresscalculaterevise(temp,moisture,initialstress,shrinkagemax,visco

,dayload,day); 

    total_stress=[total_stress;totalstress]; 

    thermal_stress=[thermal_stress;thermalstress(2,:)]; 

    %moisture_stress=[moisture_stress;moisturestress]; 

    deformtrack=[deformtrack;deform]; 

end 
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xlswrite('stress_all.xls',[temp_all(1:M,1),total_stress],'totalstress_reno'); 

xlswrite('stress_all.xls',[temp_all(1:M,1),thermal_stress],'thermalstress_reno'); 

% this function is designed to computed the thermal induced stress, 

% moisture induced stress, and the total stress 

function [thermalstress,totalstress, 

initialstress,deform]=stresscalculaterevise(temp,moisture,initialstress,shrinkagemax,visco

,dayload,day) 

EMOD=2.0586e10; 

NU=0.15; 

EXP=9e-6; % the expansion 

Emulti=EMOD/(1-NU); 

%% 

% interpolate data according to the initial strss coor 

tempuse=[]; 

for i=1:3 

    au=interp1(temp(1,:),temp(i+1,:),moisture(1,:),'spline'); 

    tempuse=[tempuse;au]; 

end 

moistureuse=moisture(2:4,:); 

au=interp1(initialstress(1,:),initialstress(2,:),moisture(1,:),'spline'); 

initialstress=[moisture(1,:);au]; 

temp=[moisture(1,:);tempuse]; 

% 

% 

threshold=2; 

% 

[DEDsh]=desh_dt(day,dayload,shrinkagemax,moistureuse); 

[DeDT]=tempratedeformation(EXP,tempuse); 

[DeDsh]=pickettmoisture(shrinkagemax,moistureuse, initialstress(2,:)); 

[DeDtemp]=picketttemp(tempuse, initialstress(2,:)); 

devisco=initialstress(2,:)/visco*1e6; 

% pickett effect refuced stress 

%for INDEX=1:length(devisco) 

    %if sign(devisco(INDEX))==sign(DeDsh(INDEX)) 

        %DeDsh(INDEX)=-1*DeDsh(INDEX); 

    %end 

    %if sign(devisco(INDEX))==sign(DeDtemp(INDEX)) 

        %DeDtemp(INDEX)=-1*DeDtemp(INDEX); 

    %end 

%end 

DeDT=DeDT-Mean(DeDT); 

detotal=-DEDsh-DeDT-devisco-DeDsh+DeDtemp; 
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%detotal=-DEDsh-DeDT-devisco-DeDsh+DeDtemp;%+DeDsh+DeDtemp-devisco;%-

creep; 

%% -devisco is must-term to ensure the converge 

%% -DeDsh is also a must-term to reflect the phenomenon 

%% ----detotal=-DeDT-devisco-DeDsh+DeDtemp; 

% 

dsigma=detotal*Emulti*1e-12;  

stress_au=initialstress(2,:)+dsigma; 

totalstress=stressprofile(initialstress(1,:),stress_au); 

[thermalstress]=thermalstressprofile([temp(1,:);temp(3,:)]); 

%initialstress=[initialstress(1,:);thermalstress(2,:)]; 

[totalstress]=deformcontrol(totalstress, 4.6); 

initialstress=[initialstress(1,:);totalstress]; 

deform=detotal; 

end 

% 

%% (0) 

% 

function [DKh_Dt,Kh]=khcompute(moistureuse,interval) 

M=length(moistureuse(2,:)); 

DKh_Dt=zeros(1,M); 

Kh=zeros(1,M); 

for i=1:M 

    au=moistureuse(2,i); 

    Kh(i)=1-au^3; 

    DKh_Dt(i)=-3*au^2*(moistureuse(3,i)-moistureuse(2,i))/interval; 

end 

end 

%% (1) 

function [gradient]=gradientcom(temp,interval,index) 

% this function aims to compute the gradient of the inputted "temp"; It 

% return a row with 1*n elements 

% ************************************************** 

% temp is a 3*n matrix, 

% internal is the step time 

% index is the differential method, 1, forward, 2 central, 3 backward 

% ************************************************** 

if index==1 

    gradient=(temp(2,:)-temp(1,:))/interval; 

end 

if index==2 

    gradient=(temp(3,:)-temp(1,:))/(2*interval); 

end 
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if index==3 

    gradient=(temp(3,:)-temp(2,:))/interval; 

end 

end 

%% (2) 

% 

function [DEDsh]=desh_dt(day,dayload,sh_all,moistureuse) 

%******************************************************************* 

% new 

% this function computes the differential rate of the shrinkage.  

% day stands for the current day 

% dayload stands for the load-begining day 

%   (1) day is the day the curing ends 

%   (2) dayload is the day we want to compute 

%   (3) sh_all is the total shrinkage 

%   (4) rh(1) is the previous hour 

%   (5) rh(2) is the current hour 

%   (6) tsh is the ultimate shrinkage 

%% 

%**************************************************************** 

tsh=600; % unit day 

au=(day-dayload)/tsh; 

tanhvalue=tanh(au^0.5); % an auxiliary variabl 

[DKh_Dt,Kh]=khcompute(moistureuse,1);% 1 is one-hour interval, compute Kh and its 

rate 

%term1=-sh_all*3*DKh_Dt*tanhvalue; 

term2=-sh_all*Kh*(1-tanhvalue^2)*0.5/(tsh^0.5*(day-dayload)^0.5); 

DEDsh=term2;%+term1; 

[DEDsh]=deformcontrol(DEDsh, 8); % threshold 10ue 

end 

%% (3) 

% 

function [DeDT]=tempratedeformation(EXP,temp) 

% new 

% this function designed to compute the deformation induced by temperature 

% rate; detail refers to the line 771 in the prelim meeting 

[gradient]=gradientcom(temp,1,2); % 2 central different method 

DeDT=EXP*gradient*10^6; %10^6 is used to convert the deformation to ue 

[DeDT]=deformcontrol(DeDT, 45); % threshold 50ue 

end 

%% (4) 

% 

function [DeDsh]=pickettmoisture(sh_all,moistureuse, initialstress) 
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% new 

%% this function is design to compute the pickett moisture induced 

%% shrinkage. Details can be referred to Eq.(29) in the prelim meeting 

% rh1=moistureuse(2,:); 

% rh2=moistureuse(3,:); 

% sh_all=800; 

% new 

ft=4.6; 

g=2; % use to compute the \Psi 

r=0.3/ft; % compute the coefficient r, see Bazant's paper 

psi=-g*3*moistureuse(2,:).^2; 

[gradient]=gradientcom(moistureuse,1,2); 

DeDsh=sh_all*psi.*(1-r*initialstress); 

DeDsh=DeDsh.*gradient.^2;%gradient; % 

DeDsh=DeDsh.*sign(gradient); 

[DeDsh]=deformcontrol(DeDsh,1.0); % threshold 5ue 

end 

%% (5) 

% 

function [totalstress]=thermalstressprofile(temp) 

% this function computes the total, linear, residual stresses induced by 

% themal gradient within a slab. 

%************************************************************** 

% (3) temp must be a 2*N matrix, in which 1st row is coor, 2rd temp 

% if temp is a matrix with >2*N matrix, the totalstress only compute the 

% stress induced by the 2nd-row temperature profile 

%************************************************************** 

coor=temp(1,:); 

if coor(1)==0 % if the coor begin from the top 

    coor=coor-abs(coor(end))/2; 

end 

% 

tslab=abs(coor(1))+abs(coor(end)); %the thickness of concrete slab 10in 

EXP=9e-6; % the expansion 

EMOD=2.0586e10; 

NU=0.15; 

k=50*10^6;% unit pa 

Xlen=3.6; %slab transverse dimension unit M 

Ylen=6; %slab longiditunal dimension unit M 

lsmall=((EMOD*tslab^3)/(12*(1-NU^2)*k))^0.25; 

lx=Xlen/lsmall; 

ly=Ylen/lsmall; 
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cxcycurve=[1.05755  1.96403 2.56835 2.8705  3.07194 3.17266 3.22302 3.32374 3.3741  

3.42446 3.57554 3.6259  3.77698 3.97842 4.07914 4.28058 4.48201 4.68345 4.93525 

5.13669 5.33813 5.58993 5.84173 6.2446  6.54676 7   7.55396 8.10791 8.71223 9.06475 

9.51799 10.2734 11.0288 11.7338 12.3381 12.9928 

0.00845917  0.047735    0.0915013   0.126571    0.170464    0.205597    0.240746    

0.280275    0.315424    0.368156    0.412064    0.4604  0.504309    0.53941 0.58773 

0.631623    0.679911    0.723804    0.772077    0.811574    0.84228 0.87297 0.912452    

0.951886    0.98256 1.01319 1.03939 1.0524  1.05661 1.0521  1.04756 1.03853 1.0295  

1.02049 1.0247  1.02449 

]'; % this parameter never change 

CX=interp1(cxcycurve(:,1),cxcycurve(:,2),lx,'spline'); 

CY=interp1(cxcycurve(:,1),cxcycurve(:,2),ly,'spline'); 

% 

tempdata=temp(2,:); 

pars=polyfit(coor,tempdata,3); 

% initial the polyfit parameters 

A=pars(4); % constant 

B=pars(3); % z 

C=pars(2); % z^2 

D=pars(1); % z^3 

  

h2=abs(coor(1)); %half deep of the slab 

Mstar=EXP*(B/3.0*h2^3+D/5.0^2*h2^5); 

Nstar=EXP*(A*2.0*h2+C/3.0*2*h2^3); 

DT=-12*Mstar/(EXP*(2*h2)^2); 

con=EMOD/(1-NU); 

residualstress=con*(-EXP*tempdata+12*Mstar*coor/((2*h2)^3)+Nstar/(2*h2)); 

linearstress=DT*EXP*EMOD/((1-NU^2)*2*h2)*(CX*NU+CY)*coor;  

totalstress=(residualstress+linearstress)*10^-6; 

totalstress=[coor+abs(coor(end));totalstress]; 

end 

%% (6) 

% 

function [DeDtemp]=picketttemp(tempuse, initialstress) 

% new 

%% this function aims to compute the pickett deformation induced by 

%% tempeature variation 

% 

ft=4.6; 

alpha_1=0.63; % a constant see bazant paper ,0.063 

rho=0.3/ft;  

[gradient]=gradientcom(tempuse,1,2); 

DeDtemp=alpha_1*(1-rho*initialstress).*gradient; 
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DeDtemp=DeDtemp.*sign(gradient); 

[DeDtemp]=deformcontrol(DeDtemp, 50); % threshold 5ue 

end 

%% (7) 

% 

function [stressp]=stressprofile(coor,stress) 

% this function compute the stress redistribution with a concrete slab 

% using the Nforce and Mforce Mforce method proposed in Mohamed and Hansen 

% paper, the stress distribution was computed using elastic model since the 

% redistribution is finished immediately 

%% parameter given 

space=(abs(coor(1))+abs(coor(end)))/200; 

coorau=coor; 

coor=coor(1):space:coor(end); 

stress=interp1(coorau,stress,coor,'spline'); 

EMOD=2.0586e10; 

NU=0.15; 

CX=0.69; 

CY=1.03; 

EXP=9e-6; % the expansion 

%% 

% interpolation 

Nforce=0; 

Mforce=0; 

h=2*abs(coor(end)); 

%% compute the force 

for i=1:length(coor)-1 

    dz=coor(i+1)-coor(i); 

    z=(coor(i+1)+coor(i))/2; 

    Nforce=Nforce+(stress(i)/2+stress(i+1)/2)*dz; 

    Mforce=Mforce-z*(stress(i)/2+stress(i+1)/2)*dz; 

end 

%% compute the stress 

stressres=stress+coor*12*Mforce/h^3-Nforce/h; 

Mstar=(1-NU)*Mforce/EMOD; 

DT=-12*Mstar/(EXP*(h)^2); 

stresslin=DT*EXP*EMOD/((1-NU^2)*h)*(CX*NU+CY)*coor; 

stressp=stressres+stresslin; 

stressp=interp1(coor,stressp,coorau,'spline'); 

end 

%% (8) 

% 

function [DE]=deformcontrol(DE, threshold) 
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% this function aims to limited the free deformation occurence at the 

% surface 

%************************************************ 

% DE is a vector, 

% threshold is a scale, must be a positive number 

%************************************************ 

for i=1:length(DE) 

    if abs(DE(i))>threshold 

        if DE(i)>0 

            DE(i)=threshold; 

        else DE(i)=-threshold; 

        end 

    end 

end 

end 
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