
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2008 

Towards greater accuracy in individual-tree mortality regression Towards greater accuracy in individual-tree mortality regression 

Clara Antón Fernández 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Forest Sciences Commons 

Copyright 2008 Clara Antón Fernández 

Recommended Citation Recommended Citation 
Antón Fernández, Clara, "Towards greater accuracy in individual-tree mortality regression", Dissertation, 
Michigan Technological University, 2008. 
https://digitalcommons.mtu.edu/etds/124 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Forest Sciences Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/90?utm_source=digitalcommons.mtu.edu%2Fetds%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/90?utm_source=digitalcommons.mtu.edu%2Fetds%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages


 

TOWARDS GREATER ACCURACY IN INDIVIDUAL-TREE 
MORTALITY REGRESSION 

 

 

By 

CLARA ANTÓN FERNÁNDEZ 

A DISSERTATION 

Submitted in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

(Forest Science) 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2008 

 

 

 

 

Copyright © Clara Antón Fernández 2008 



 

 

 

 

This dissertation, "Towards greater accuracy in individual-tree mortality regression " is 
hereby approved in partial fulfillment of the requirements for the degree of DOCTOR OF 
PHILOSOPHY in the field of Forest Science. 

 

School of Forest Resources and Environmental Science 

 

Signatures: 

Dissertation Advisor  ________________________________________________ 

Dr. Robert E. Froese 

Committee  ________________________________________________ 

Dr. David D. Reed 

 ________________________________________________ 

Dr. James B. Pickens 

 ________________________________________________ 

Dr. Qiuying Sha 

 

 

Dean  ________________________________________________ 

Dr. Margaret R. Gale 

 

 

Date _________________________________________________ 

 



 

 

Page iii 

ABSTRACT 

Background mortality is an essential component of any forest growth and yield model. 

Forecasts of mortality contribute largely to the variability and accuracy of model 

predictions at the tree, stand and forest level. In the present study, I implement and 

evaluate state-of-the-art techniques to increase the accuracy of individual tree mortality 

models, similar to those used in many of the current variants of the Forest Vegetation 

Simulator, using data from North Idaho and Montana. The first technique addresses 

methods to correct for bias induced by measurement error typically present in 

competition variables.  The second implements survival regression and evaluates its 

performance against the traditional logistic regression approach.   

I selected the regression calibration (RC) algorithm as a good candidate for addressing 

the measurement error problem. Two logistic regression models for each species were 

fitted, one ignoring the measurement error, which is the “naïve” approach, and the other 

applying RC. The models fitted with RC outperformed the naïve models in terms of 

discrimination when the competition variable was found to be statistically significant. The 

effect of RC was more obvious where measurement error variance was large and for 

more shade-intolerant species. The process of model fitting and variable selection 

revealed that past emphasis on DBH as a predictor variable for mortality, while 

producing models with strong metrics of fit, may make models less generalizable.  

The evaluation of the error variance estimator developed by Stage and Wykoff (1998), 

and core to the implementation of RC, in different spatial patterns and diameter 

distributions, revealed that the Stage and Wykoff estimate notably overestimated the 

true variance in all simulated stands, but those that are clustered. Results show a 

systematic bias even when all the assumptions made by the authors are guaranteed. I 

argue that this is the result of the Poisson-based estimate ignoring the overlapping area 

of potential plots around a tree. Effects, especially in the application phase, of the 

variance estimate justify suggested future efforts of improving the accuracy of the 

variance estimate.  



 

 

Page iv 

The second technique implemented and evaluated is a survival regression model that 

accounts for the time dependent nature of variables, such as diameter and competition 

variables, and the interval-censored nature of data collected from remeasured plots. The 

performance of the model is compared with the traditional logistic regression model as a 

tool to predict individual tree mortality. Validation of both approaches shows that the 

survival regression approach discriminates better between dead and alive trees for all 

species.  

In conclusion, I showed that the proposed techniques do increase the accuracy of 

individual tree mortality models, and are a promising first step towards the next 

generation of background mortality models. I have also identified the next steps to 

undertake in order to advance mortality models further. 
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INTRODUCTION TO THE DISSERTATION 
El hombre de estos campos que incendia los pinares 

su despojo aguarda como botín de guerra 
antaño hubo raído los negros encinares 
talado los robustos robledos de la sierra. 

Hoy ve sus pobres hijos huyendo de sus lares 
la tempestad llevarse los limos de la tierra 

por los sagrados ríos hacia los anchos mares 
y en los páramos malditos, trabaja, sufre y yerra. 

Antonio Machado (1875-1939) 

The man of this countryside who burns the pinewoods 
and awaits the remains like battle-won booty, 

in the past has razed the black ilex woods 
and cut down the robust oak stands of the sierra. 

Today he sees his poor children fleeing their homes, 
the storm carrying away the topsoil 

down the sacred rivers to the wide seas; 
and on accursed barren plains he labors, suffers and roams. 

 

Most of us, city dwellers, have started to forget how much we depend on forests. We 

rely on forests for clean water and air, wood supply, grazing and fodder, landscape, 

habitat for wild game and fish, to stabilize soil, and for recreational outdoor 

opportunities. The unprecedented rapid increase in human population of the last century 

due to medical advances and the vast increase in agriculture productivity, multiplies our 

demands on the forests. At the same time, this unprecedented growth in human 

population is increasing the competition for the use of forested land. As a result, large 

amounts of woodlands are being degraded, urbanized or converted to agricultural land. 

The remaining forests have to meet the demands of the population. In this scenario, the 

multi-objective optimization of forest resources is a key factor to meet the demands of 

the population and preserve the potential of forested lands.  

Optimization of forest resources requires, in most cases, forest management, which 

includes human interventions. To lead the forest towards a multi-objective goal is not an 

easy task. Many factors affect the productivity of the forest in different areas, and many 

of these factors interact with each other. Moreover, unlike agriculture, forestry has long 

rotation periods, which make predicting interventions effects even harder. Hence, the 

need of tools and models that assist forest managers in their decisions.  

1 Forest models 

There are six different basic types of forest vegetation simulation models: forest growth 

and yield models, ecological gap models, ecological compartment models (resources 
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fluxes), process/mechanistic models, vegetation distribution models, and hybrid models 

(Monserud, 2003). 

Forest growth and yield models form the oldest and broadest class. Forest yield 

models are usually statistical models that have traditionally been used to estimate 

diameter at breast height (DBH), tree height, and total volume. The most important 

advantage of this type of model is their ability to predict tree and stand characteristics in 

detail. However, forest yield models are not linked to underlying causes of productivity: 

the carbon and nutrient cycles, or the moisture regime and climate (Monserud, 2003). 

Consequently, these statistical models are unable to simulate either the impacts of 

future climate change on forest stands or the forest growth dynamics of some regions 

where historical data are not available (Peng, 2000; Schwalm and Ek, 2001). This is 

considered their fundamental disadvantage. 

Ecological gap models are built by and for ecologists (Monserud, 2003). These models 

study successional population dynamics by estimating the establishment, diameter 

growth, and mortality of each tree on a small plot, usually equivalent to a gap or opening 

formed by a dominant tree’s death. Gap models prediction timeframe is usually 100-

1000 years, which makes validation a difficult task. 

Ecological compartment (resources fluxes) models main purpose is to predict fluxes 

from one ecosystem compartment to another (Godfrey, 1986). These models rarely link 

directly to forest management (Monserud, 2003). 

Process or mechanistic models are built mainly as a tool for scientific explanation 

rather than prediction. They attempt to model the growth processes based on the 

underlying causes of productivity. They usually require large amounts of detailed 

environmental data and complex calculations, and involve physiological observations 

difficult to measure, which limits their ability to scale up to the stand or the region 

(Hinckley et al., 1996 in Monserud, 2003) and makes validation difficult. Another 

drawback of this type of models is that the knowledge of some important physiological 

processes is very limited, and some of the processes are so poorly understood that an 

accurate physiological model is not yet possible (Hinckley et al., 1996). 
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Vegetation distribution models predict the occurrence of a specific vegetation zone or 

biome for each point on the landscape. Since they predict potential vegetation, they 

have been widely used to address questions of vegetation distribution under climate 

change. However, due to the broad scales they manage it is difficult to incorporate any 

management effects. The model “biome” (Prentice et al., 1992) is one of the most well 

known vegetation distribution models. 

Hybrid models are an attempt to merge the best of process based models and the 

empirical-based forest yield models. Although this type of model is promising, further 

development is needed before they can be considered a realistic option (Monserud, 

2003). 

Among these types of models, forest yield models are the most widely used in forest 

management. Forest yield models not only provide an efficient way to forecast 

resources but, more importantly, have the ability to make detailed predictions of tree and 

stand dynamics. This detail on stand structure, species composition, and silvicultural 

treatment response make this type of model well suited to analyzing alternative methods 

for compatible forest management.  

Within forest yield models, the Forest Vegetation Simulator (FVS) is not only one of the 

most widely used, but also covers an important area in North America. FVS is an 

individual-tree, nonspatial, stand growth model built around a set of empirically derived 

equations of diameter growth, height growth, crown ratio, regeneration and mortality 

(Dixon, 2003).  

Forest growth and yield models typically consist of several components that work 

together to simulate forest growth and management actions. The three main 

components are: establishment model, diameter/basal area increment, and mortality 

model.  

Mortality plays a critical role in forest dynamics. The death of a tree directly reduces 

density measures, and affects the social position of the remaining trees, which in turn 

defines diameter growth, potential regeneration and probability of mortality of the 

residual trees. Although mortality plays a defining role in stand structure and dynamics, 
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it still remains one of the least understood components of the growth and yield models 

(Hamilton, 1986; Guan and Gertner, 1991b; Lutz and Halpern, 2006).  

2 The mortality component 

Mortality might be classified according to the intensity of the event. For example, 

mortality is often divided into “background” mortality and “catastrophic” mortality (Lugo 

and Scatena, 1996). 

Background mortality affects individual trees and it is usually associated with 

senescence (aging), competition, and succession (Lugo and Scatena, 1996). In 

background mortality, tree death often represents a point in a continuum. When a tree 

cannot mobilize or acquire enough resources to support its respiratory requirements or 

fight the attack of opportunistic agents, the tree eventually dies. The immediate cause of 

death might be a root disease, an insect attack, or other agent, but those agents are just 

the last, but secondary, factor in a series of debilitating factors; e.g., drought, nutrients 

deficiency (Franklin et al., 1987).  

A tree allocates its resources depending on innumerable factors such as temperature, 

water, light and nutrient availability, reproductive stage, presence of herbivores, or 

competition. Biomass allocation will differ depending on the type of competition (Bazzaz, 

1996). If, for example, a tree has been overtopped by other trees it will allocate more 

energy and biomass to try to grow faster and it will decrease its allocation to root growth 

and production of chemical defenses, which will make it more prone to pathogen 

attacks. If competition takes place below ground, as it might happen in dry stands, the 

tree will allocate more resources on increasing its root system. In any of the above 

cases the tree that cannot meet its respiratory requirements finally dies of starvation or 

an attack of one or various opportunistic agents. 

Catastrophic mortality affects large-scale events and occurs when a forest is impacted 

by an external force such as fire, hurricanes, or epidemic attacks of certain insects. 

Catastrophic mortality is usually unpredictable. 
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Forest models commonly simulate catastrophic and background mortality separately. 

This dissertation focuses on background mortality, specifically in aspatial individual tree 

mortality models. Such models characterize the mortality of individual trees, in contrast 

to the ones that model mortality at the stand level, or ignore the absolute or relative 

position of individual trees. 

Several functions and methods have been used to model background mortality, 

including the Weibull function (e.g. Somers et al., 1980), logistic function (e.g. Hamilton 

and Edwards, 1976), negative exponential (e.g. Moser, 1972), gamma function (Kobe 

and Coates, 1997), Richard’s function (e.g. Buford and Hafley, 1985), the exponential 

(e.g. Kobe and Coates, 1997), and more recently, techniques such as recursive 

partitioning, also known as classification and regression trees (e.g. Fan et al., 2006), 

artificial neural networks (e.g. Guan and Gertner, 1991a), and survival analysis (e.g. 

Woodall et al., 2005a). From the above alternatives, the logistic function is the most 

common (Monserud, 1976; Vanclay, 1995; Monserud and Sterba, 1999). Furthermore, 

Guan and Gertner (1991b) suggested that the best function to model individual tree 

mortality modelling might be the logistic function. 

3 Modelling mortality 

Mortality is difficult to model or predict. It is rare and highly stochastic, and yet an 

essential component of any stand growth model and any timber management system 

(Lee, 1971; Monserud, 1976). For example, Gertner (1989) found in a study of the 

precision of predictions made with the STEMS model (Belcher and Brand, 1982) that 

most of the variability of the predictions of either the number of trees per hectare or the 

basal area per hectare was associated with the mortality component of the model he 

studied. Furthermore, the proportion of the prediction variability due to mortality 

increased as the projection period increased. Guan and Gertner (1991b) considered the 

above situation common in stand simulation modelling. 

The difficulties of acquiring adequate data to model mortality have forced modelers to 

use non-optimal solutions. In North America, the most widely used forest growth 

simulator framework, the Forest Vegetation Simulator (FVS) (Dixon, 2003), predicts 
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mortality in many of its variants using a Stand Density Index (SDI) based mortality model 

(Dixon, 1986; Johnson and Dixon, 1986). The SDI mortality model simulates some 

background mortality at the tree level, using a logistic regression function of tree DBH.  

Other background mortality due to competition is simulated by constraining stand-level 

stocking using size-density relationships. Stand-level mortality estimates are dispersed 

among trees following logic from the TWIGS model (Buchman, 1983; Buchman and 

Lentz, 1983; Buchman et al., 1983; Teck and Hilt, 1990) or on shade tolerance of 

individual species, social position, and crown ratio. Related equations have not been 

empirically fitted; this approach essentially constrains individual-tree simulations using 

generally accepted stand-level emergent properties. 

Other FVS variants, such as the Northern Idaho variant (Bush and Brand, 1995), 

simulate mortality using the Prognosis type mortality model (Stage, 1973). Dixon (2003) 

notes that this approach is used in variants only where there were enough inventory 

data suitable for developing the equations. This approach simulates background 

mortality using a logistic regression model, with a set of predictor variables including 

diameter at breast height and estimated diameter increment. 

4 Improving individual tree mortality models 

This dissertation aims to advance individual tree mortality models. I focus on two main 

aspects: correcting for measurement error in competition variables, and studying new 

forms for the mortality model that allow more flexibility exploring and modelling time 

dependent effects.  

Correcting for measurement error in mortality models 

Measurement error affects all FVS component models that include competition variables 

estimated by sample survey. Essentially, because some predictor variables in 

component models are estimated using samples, they are estimated with error. This 

measurement error can cause bias in the predictions of the models and can cause loss 

of power in detecting relationships among variables while fitting the model (Stage and 

Wykoff, 1998; Carroll et al., 2006). Most FVS components include competition variables, 



 

 

7 

and are, therefore, subject to measurement error source bias. Recently, methods have 

been proposed to address the problem but have been confined to the linear statistical 

model (e.g., the Prognosis large-tree diameter equation; Stage and Wykoff 1998). Since 

The Prognosis type mortality model of FVS uses a logistic model, as do many other 

mortality models, the methodology applied by Stage and Wykoff (1998) is not applicable. 

The objective of this first chapter is to build a methodology to correct for measurement 

error in individual tree mortality models. 

Logistic versus survival analysis for mortality models 

Individual tree mortality has been typically modelled using the conventional logistic 

model, which does not directly account for changes in the covariate values over time. 

Yet, many of these covariates do vary over time (e.g. diameter, crown ratio, density, and 

climatic variables). The most natural alternative to handle such covariates would be to 

use survival analysis techniques with time-dependent covariates. There are already 

some examples of the application of survival analysis techniques in forestry (e.g. 

Volney, 1998; Rose Jr et al., 2004; Woodall et al., 2005a; Woodall et al., 2005b), and 

some of them even include time dependent covariates (e.g. Rose et al., 2006). 

However, none of them aims to model or study background mortality in individual tree 

mortality models, and addresses time dependent covariates. Moreover, to my 

knowledge, survival analysis has never been compared to logistic regression in the 

context of individual tree mortality models.  

The objective of my second chapter is to use survival analysis techniques to fit a model 

that accounts for the time dependent nature of some of the variables and the interval-

censored nature of data collected from remeasurements, and to compare this model 

with the traditional logistic regression model as a tool to predict individual tree mortality. 

On the variance of local competition variables 

The core of the measurement error correction for both diameter increment/basal area 

and mortality models is the variance of the error. Stage and Wykoff (1998) derived 

equations to estimate these variances. To derive the estimate of the variance error they 
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had to make some assumptions. For example, they assumed a random spatial 

distribution (Poisson distribution) of the trees and their diameters.  

The objective in this chapter is to study the behavior of the variance of local competition 

variables in different spatial patterns and diameter distributions and to compare it with 

the behavior of Stage and Wykoff’s (1998) approximation to the variance. It is also the 

objective of this chapter to study the sensitivity of the mortality models to the error 

variance. 

Summary 

The objectives of these three studies together aim to advance the accuracy of individual 

tree mortality models. When considered in the larger context of forest growth and yield 

models, such as FVS, improving the accuracy of the mortality component should result 

in more realistic forecasts of stand structures and dynamics. This is because the 

number, size and social position of dead trees directly influence the variables that define 

stand structure and dynamics, and thus feed back into other model components, such 

as those that simulate dimensional change and regeneration.   
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CHAPTER 1. A MEASUREMENT ERROR MODEL OF 
INDIVIDUAL-TREE MORTALITY  

1 Introduction 

Trees compete with neighboring vegetation for scarce resources such as light, water 

and nutrients. The availability of these resources needed by a tree to exist in a given site 

is called growing space (Smith, 1986). Competition for growing space between 

individual trees plays an important role in forest stand dynamics. Specifically, 

competition leads to a reduction in growth, reproduction and/or chances of survival of at 

least one of the competing individuals (Begon et al., 1996). Hence, including competition 

variables in models of tree diameter growth and mortality has been both useful and 

important. 

Competition is commonly conceptualized at two levels, the tree and the stand level. 

Stand competition variables represent average competition in the stand, although they 

may also characterize competition from areas not represented at the sample location. 

This is especially true in water limited situations (Bormann, 1957; Stage, 2003). Local 
competition variables, on the other hand, are estimates of the competition in the 

vicinity of the tree. They add resolution to the competition, particularly in light limited 

ecosystems (Stage, 2003), and are usually estimated from sample plots.  

Traditionally, characterizing local and stand competition has been attempted through 

density measurements derived from sampling plots; e.g. point basal area and trees per 

acre. The sampling procedure used to estimate competition generates error, commonly 

known as measurement error, which is error due to inaccurate measurements, error-in-

variables, and, in the forestry literature, sampling error, probably because this type of 

error is generated in the sampling process (e.g. Stage and Wykoff, 1998). The estimates 

obtained through sampling may be unbiased with respect to the true value of the 

competition variable, but the variance of the estimates change with the spatial structure 

of the trees, tree diameter distribution, and plot size. The spatial structure of the trees 
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affect the variance of the competition variables through the number of trees present in 

each plot; for example, a clustered stand, where trees tend to be clumped, will have 

higher error variance than one with a very regular distribution of the trees, i.e. a 

plantation, since the density of trees varies highly from the dense clumps to the bare, or 

almost bare, space between clumps. When competition variables take into account the 

density and tree sizes, i.e. stand basal area (SBA), the variance is also affected by the 

diameter distribution. For instance, old stands will have higher variances than young 

stands with very similar small diameter trees. The plot size also influences the variance 

of competition variables. All else equal, smaller plots will tend to have larger variances 

than large plots, since the larger the plot, the larger the area is being considered, and 

the closer to the mean the measurement will be. Plot sizes do not change usually during 

the simulation of the stands, but plot size of the simulated stands may differ from the 

plots used to fit the data. Plot sizes may also differ among stands in the fitting dataset.  

When variables with measurement error are used to model and predict diameter growth 

or mortality, and the measurement error is not accounted for, the effects on the models 

can be nontrivial. Summarizing the effects, Carroll et al. (2006) describe what they call 

the “triple whammy of measurement error”: (1) it causes bias in parameter estimates; (2) 

it leads to a sometimes profound loss of power for detecting interesting or important 

effects; and, (3) it masks features of the data, making graphical analysis difficult. All 

three are straightforward to illustrate by example. In the left panel of Figure 1-1, a 

unimodal function typical of those used to characterize diameter increment as a function 

of size is presented (e.g., Wykoff 1990). In the right panel, the same data, with the 

predictor variable perturbed to simulate measurement error, is shown. In this example, 

both graphically and statistically, most of the relationship is masked by the error. 
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Figure 1-1. An illustration of the effects of measurement error on bias, loss of power, and 
obscuring of features in the data. Hypothetical increment data presented on the left are 
augmented with simulated measurement error in the predictor, on the right. After Carroll 
et al. (2006) created by Robert Froese. 

Treatment of measurement error has been the focus of extensive literature in medicine 

(e.g., Rosner et al., 1989; Prentice, 1996; Zeger et al., 2000), but few are the examples 

that can be found in forest modelling. Curtis et al. (1974) were among the first to discuss 

the applicability of measurement error models in a forestry setting. Although they did not 

directly address the problem, they noted that error in the independent variable affects 

regression coefficients and is a source of the differences between site index estimation 

curves and height growth curves. Another example of measurement error in site index 

equations is given by Smith and Watts (1987), who found when developing a site index 

model for black spruce (Picea mariana Mill.) that accounting for measurement error in 

height increased prediction accuracy. Goelz and Burk (1992; 1996) and Wang et al. 

(2004) also explored the effects and treatment of measurement error in nonlinear or 

simultaneous site index systems. Tang and Wang (2002) presented a two-stage 

measurement error model for simultaneous equations. Hann and Zumrawi (1991), 

Kangas (1997), and Hynynen and Ojansuu (2003) examined the impact of error 

associated with variables influenced by sampling design, namely competition variables, 

on the accuracy of diameter and basal area increment model predictions, while Stage 

and Wykoff (1998) and Kangas (1998) also examined the impact on coefficients 

estimated in model development.  

Notably, the effect of measurement error in individual-tree mortality models has received 

no obvious attention, despite these models sharing the same issues with competition 
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variables and being important components of forest simulation systems. For example, 

Buchman et al. (1983), Hamilton (1986), Teck and Hilt (1990), Monserud and Sterba 

(1999), Yang et al. (2003), and Temesgen and Mitchell (2005) all developed mortality 

models that rely upon competition variables subject to measurement error. In this 

chapter, I evaluate a comprehensive approach to accounting for measurement error in 

mortality model development and application. 

1.1 Modelling Tree Mortality 

Mortality is a discrete event; a tree may be either alive or dead. Although there are a few 

methodologies to model this type of behavior, logistic regression is the most common in 

individual-based forest models (Hasenauer et al., 2001; Rose Jr, 2002). The logistic 

model has the form: 

௠ܲ ൌ ݕሺ݌ ൌ 1|࢞ሻ ൌ 11 ൅ ࢞ࢼି݁ ൌ 1 ࢞ࢼ݁ ൅  ࢞ࢼ݁

where Pm, is probability of mortality, and ࢞ࢼ is a linear combination of the regression 

coefficients and the predictors. The logistic model implicitly assumes that either all 

remeasurement intervals are similar, or the differences in remeasurement intervals do 

not affect the outcome (Callas et al., 1998). Because it is common in permanent plot 

data to have variable remeasurement periods and the probability of mortality increases 

with time, I adopted the modification suggested by Monserud (1976) to account for 

uneven remeasurement periods: 

௠ܲ ൌ 1 െ ൤1 െ 11 ൅ ൨௧࢞ࢼି݁
 

where t is the length of the observation period in years. This modification of the logistic 

model treats the survival probability as a compound interest phenomenon (Monserud, 

1976).  
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1.2 Measurement Error in Simulation Systems 

Measurement error associated with competition variables affect most simulation 

systems where competition variables estimated through sampling are included. These 

simulation systems involve many of the basal area/diameter increment and mortality 

models.  

Stage and Wykoff (1998) proposed a solution for the basal area increment problem 

based upon a method of moments estimator presented by Fuller (1987). Their approach, 

which they call “Structural Based Prediction” (SBP), has two phases: estimation and 

application. In the estimation phase, the error in predictor variables is estimated and 

explicitly accounted for in parameter estimation, closely following Fuller's theory. In 

application and to generate predictions, the coefficients of the regression equation are 

dynamically modified, case-by-case, using current estimates of error in the simulated 

system. A constraint is that certain intermediate matrix computations must be stored as 

they are necessary to compute the modification. Stage and Wykoff (1998) demonstrated 

SBP using the Prognosis basal area increment equation (Wykoff, 1990), though the 

method is applicable in general to linear models. 

Measurement error methods require having some knowledge about the error variance. 

The four most common ways to gain this knowledge are (Carroll et al., 2006): 

• external validation data, where a parallel study measures the “gold standard”, the 

true value, and the error-prone estimate;  

• instrumental data, where another variable, the instrumental variable, is 

observable in addition to the unbiased measurement; 

• internal replicates, where two or more estimates for the same individual are 

available in the study; 

• and external estimation of the variance, where the variance is estimated from 

other studies or derived from previous knowledge.  
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Since it is not common in forest inventories to measure the “gold standard”, or to have 

replicates of the measurements, the variance of the competition variables is most easily 

estimated externally.  

External estimation procedures without replicated measurements or spatial data require 

simplifying assumptions (Smith and Watts, 1987; Stage and Wykoff, 1998; Lappi, 2005). 

To estimate error in stand basal area (SBA), Stage and Wykoff (1998) used the usual 

sample-based estimator, considering each single sampling point in the stand an 

estimate of SBA. For basal area in the vicinity of the tree being simulated (Point Basal 

Area or PBA), they derived an estimator assuming a spatially random (Poisson) tree 

distribution, with a spatially variable parameter, and tree diameters independent of their 

location and of the location of the rest of the trees. 

Fuller’s (1987) method-of-moments estimator and Stage and Wykoff’s (1998) SBP 

approach are restricted to linear models and, therefore, they are not applicable to the 

intrinsically nonlinear logistic case. For nonlinear models, the recent literature describes 

five main approaches of accounting for measurement error in modelling. They include: 

regression calibration (Carroll and Stefanski, 1990; Pierce and Kellerer, 2004), 

simulation extrapolation (Cook and Stefanski, 1994; Stefanski and Cook, 1995), score 

function methods (Stefanski and Carroll, 1987; Stefanski, 1989; Nakamura, 1990), 

likelihood and quasilikelihood (Carroll et al., 1984; Wang et al., 1996), and Bayesian 

methods (Gustafson, 2004). The first two approaches are widely applicable, general 

methodologies, although they result in estimators that are only approximately consistent. 

The last four approaches share the advantage of resulting in estimators that are fully 

consistent more generally than the first two approaches.  

Both regression calibration (RC) and simulation extrapolation (SIMEX) are 

straightforward and potentially applicable in fitting any regression model. The main 

difference between the two methods is that SIMEX relies on computer simulation to 

estimate the parameters, while on the RC approach the variables measured with error 

are replaced with conditional expected values, and then used as if the error did not exist. 

These differences result in two important advantages of the RC approach: first, RC is 

computationally less intensive than SIMEX; second, because in RC the data are 
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corrected before fitting the model, contrary to SIMEX, correcting for measurement error 

in the application phase is straightforward. Notably, when RC is applied to linear 

regression and the error variance is estimated externally (i.e., not using replicated 

measurements), RC reproduces Fuller’s (1987) method-of-moments estimator (Carroll 

et al., 2006). Instead of using unaltered data and adjusting the model, as in Stage and 

Wykoff’s approach, with RC the data are adjusted before developing or applying an 

unaltered model. Additionally, no data from the fitting dataset have to be stored to 

correct for measurement errors in a new application.  

1.3 Objectives 

The overall goal was to investigate the effect of applying measurement error 

methodologies in individual-tree mortality modelling in forestry, using Prognosis as a 

model system. The overall objective is developed in three specific objectives: 

(1) implement a measurement error methodology for nonlinear models in individual tree 

mortality models,  

(2) assess the effects of the proposed methodology on the model by comparing a model 

fitted ignoring measurement error and a model fitted with the competition variables 

corrected for measurement error, and  

(3) evaluate the differences in performance of the two models when applied to an 

independent validation dataset. 
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2 Materials and methods 

The overall approach was to fit the same candidate mortality model, with and without 

applying the RC method, and compare the results. Two data sets were obtained from 

the Northern Rocky Mountain region for the analysis; one was used for calibration and 

the other for validation. The models, fitted with the calibration dataset, were used to 

predict mortality in the validation dataset, so the performance of both approaches could 

be compared. 

2.1 Regression Calibration 

The classical additive error model is usually defined as W = X + U, where X is the 

unobservable, true value of the error-prone predictor and U is the observation error. 

Then, the essence of RC is estimating X, using the correspondent surrogate W, along 

with Z, which are the error-free predictor variables. In application for individual tree 

mortality models, this means that measured PBA, basal area of larger trees in the 

vicinity of the trees (PBAL) and/or SBA and any other assumed error-free variables 

(e.g., diameter at breast height, crown ratio) are used to predict the correspondent real 

value of PBA, PBAL and/or SBA. 

A best linear approximation for X for the classical additive error model was 

independently derived by both Carroll and Stefanski (1990) and Gleser (1990), and it is 

defined as follows when the error variance (Σ௨௨ሻ is estimated externally: 

,௜ࢆ|௜ࢄሺܧ ௜ሻࢃ ൎ ௪ߤ̂ ൅ ൫Σ෠௫௫, Σ෠௫௭൯ ቈΣ෠௫௫ ൅ Σ෠௨௨ Σ෠௫௭Σ෠௫௭௧ Σ෠௭௭቉ିଵ ൬ࢃ௜ െ ௜ࢆ௪ߤ̂ െ ௭ߤ̂ ൰ 

Where Σ෠௨௨ ൌ ∑ ൫ஊ෡ೠೠ൯೔೙೔సభ ௡  

Σ෠௭௭ ൌ ∑ ሺࢆ௜ െ ௜ࢆ௭ ሻሺߤ̂ െ ௭ሻ௧௡௜ୀଵߤ̂ ݊ െ 1  
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Σ෠௫௭ ൌ ∑ ሺࢃ௜ െ ௜ࢆ௪ ሻሺߤ̂ െ ௭ሻ௧௡௜ୀଵߤ̂ ݊ െ 1  

Σ෠௫௫ ൌ ∑ ሺࢃ௜ െ ௜ࢃ௪ ሻሺߤ̂ െ ௪ሻ௧௡௜ୀଵߤ̂ ݊ െ 1 െ Σ෠௨௨ 

௪ߤ̂ ൌ ௫ߤ̂ ൌ ௭ߤ̂ ·തതതࢃ ൌ  ·ഥࢆ
Σ in general denotes a covariance matrix for two random variables indicated by 

subscript, and i=1,2,…,n represents the set of all individual observations. Note that a 

linear relationship between X and (W, Z) is assumed. 

The error variance (Σuu) was estimated adopting the same procedures as developed by 

Stage and Wykoff (1998). The authors explain these procedures in detail, which I do not 

reproduce here. Note that the estimates assume that: (1) tree locations follow a random 

(Poisson) pattern, and thus, independence of the location of each tree from the location 

of the rest of the trees; (2) the diameter of each tree is independent of the location of the 

rest of the trees; (3) the parameter of the Poisson forest varies spatially; and (4) the tree 

counts at a single sampling point are each estimates of the parameters of the local 

population. 

The literature provides little guidance on the selection of Z, other than to include all 

available variables (e.g., Hunter et al., 1996; Carroll et al., 2006; Kim et al., 2006). 

Therefore, all of the candidate predictors in the RC correction were used; these 

variables were the two covariates measured with error, PBAL and SBA, and the two 

error-free covariates, DBH and crown ratio (CR). In a few cases, the adjusted values of 

PBAL and SBA were negative, which I replaced with 0 before model fitting.  

In summary, the error variance was estimated following Stage and Wykoff (1998). Then, 

the RC algorithm was implemented separately for each species using PBAL, SBA, DBH 

and CR as predictors, obtaining the estimates of the measurement-error-free variables.  
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2.2 Calibration and Validation Data 

Two data sets, obtained from the same geographic region as those used in prior 

development of the Prognosis model, were used for model development and testing. 

The calibration set was the larger of the two, and came from the USDA Forest Service, 

Rocky Mountain Region “Permanent Plot” program. This set includes an arbitrary 

sample of treated, regenerating stands in northern Idaho and western Montana, though 

in each stand control (untreated) conditions are also monitored.  

The calibration data set is made up of clusters of 3 fixed-area plots installed in arbitrarily 

selected stands, which usually had been selected for pre-commercial thinning. No less 

than one control and three treated clusters were randomly located in a given stand. 

Plots were of 8.0 m radius and spaced 1.5 chains (1 chain = 66 ft. or 20.12 m) apart on 

a line. On each plot, species, DBH and crown length were recorded for all trees larger 

than a breakpoint DBH that varied by stand (usually 7.62 or 12.7 cm). At establishment, 

10-year inside bark radial increment was measured for a sub-sample of one tree, by 

species, in each 5.08 cm diameter class, beginning at 7.62 cm. Sample data were 

obtained from stands located on the Idaho Panhandle (Kanisku, Coeur d’Alene and St. 

Joe), Flathead, Kootenai and Lolo US National Forests. Two re-measurement periods of 

approximately 10 years were available for many stands. 

The validation data are from the USDA Forest Inventory and Analysis (FIA) program in 

the same geographic region. Relatively few of the FIA plots established in Idaho and 

Montana have been re-measured since the last periodic inventory, conducted in the 

1980s in Idaho and 1990s in Montana. These “old” design plots used a cluster of 5, 7 or 

10 variable-radius point samples at each field location and a constant basal area factor 

of 9.183 m2⋅ha-1. In 1999, FIA began a transition to a new inventory program, using a 

“new” design based on a cluster of four 7.3 m radius fixed-area subplots (Bechtold and 

Patterson, 2005). Some new design plots were established prior to 1999 under a Forest 

Health Monitoring (FHM) program. Under both designs, trees of all species greater than 

12.7 cm DBH were measured for DBH, height and crown length, among other variables, 

and ten-year inside bark radial increment was measured using increment cores for a 

sub-sample that included two trees, by species, for each 5.1 cm diameter class. When 
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and where the new design plots are established at an old FIA field location, trees that 

were previously measured on the old plot are identified and measured one last time. 

Because only 10% of the new design plots are measured each year, and not all new 

design plots will be established at an old field location, only a small subset of FIA data 

are presently available with two field measurements.  

Because the two datasets vary substantially in species representation, diameter and 

stand characteristics, the analysis was restricted to a subset of the available data. The 

three species best represented in both data sets were selected for the study: Douglas-fir 

(Pseudotsuga menziesii [Mirb.] Franco), grand fir (Abies grandis [Dougl. ex D. Don] 

Lindl.), and lodgepole pine (Pinus contorta Dougl. ex Loud.). The two sets also 

represent different management histories; the calibration set is the larger, principal set, 

but emphasizes managed conditions and stands sometimes in early stages of 

development. To make the validation set more comparable, I reserved only trees and 

stands where both SBA and DBH were less than the 99th percentile of the same 

variables in the calibration set.  

2.3 Model Development and Evaluation 

My approach emphasized discerning the effect of RC and not developing an 

operationally useful mortality model. To develop a credible foundation, I screened a 

simple set of potential predictor variables, and their usual transformations, commonly 

included in operational models (e.g., Hamilton, 1986; Monserud and Sterba, 1999; 

Temesgen and Mitchell, 2005). These included DBH, CR, CR0.5, PBAL, SBA, and 

SBA0.5. I generated kernel density estimates of mortality as a function of each predictor 

variable, by species, and used these as a guide to develop two logistic models for each 

species. The first used the measured values of the competition variables, ignoring 

measurement error; I call this the naïve approach. The second model was developed 

after correcting the competition variables for the measurement error with regression 

calibration, which I call the RC approach. All models were fit using maximum likelihood 

in the statistical computing software R (R Development Core Team 2008). Standard 

errors for model coefficients were estimated using bootstrapping. Log odds ratio for 
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each variable using the interquartile range found in the calibration data were computed 

to facilitate the interpretation of the effect of coefficients in the models. 

Traditionally in the forestry literature the goodness-of-fit criteria has included the χ2 test, 

and more recently the Hosmer-Lemeshow test (Hosmer and Lemesbow, 1980). Recent 

studies, however, do not recommend these tests due to their instability (Hosmer et al., 

1997; Alenius et al., 2003). The quality of fit of the two models was instead evaluated 

using the generalized R2
N index of Nagelkerke (1991) and Cragg and Uhler (1970) to 

characterize the general predictive ability. Further characterization of quality of fit was 

achieved by calculating the probability of concordance, c or c-index, (Harrell et al., 

1982; Harrell et al., 1984), which is a measure of the model’s predictive discrimination. 

The c-index is computed by taking all possible pairs of trees, such that one is alive and 

the other dead; then, the index is the proportion of such pairs with the dead tree having 

a higher predicted probability of mortality than the live one. A widely used measure of 

diagnostic discrimination, the area under a receiver operating characteristic curve (AUC) 

is identical to the c-index (Hanley and McNeil, 1982). The c-index takes values from 0.5 

to 1, where a value of 0.5 indicates random predictions, and a value of 1 indicates 

perfect separation.  

2.4 Model Validation 

To evaluate the differences in performance of the two versions of the models I applied 

naïve and RC models to an independent dataset. I used the first measurement from this 

validation dataset to predict mortality for each species, and I compared the results to the 

observed mortality in the second measurement to analyze the predictive accuracy of 

both approaches. 

Predictive accuracy of a logistic model has two components: reliability and 

discrimination (Harrell et al., 1984). Reliability measures the extent to which the 

predictive probabilities agree with or differs from the observed frequencies. 

Discrimination addresses how well the model can discriminate between dead and alive 

trees. I used the slope and intercept estimates from Cox’s measures of calibration and 

refinement (Cox, 1958; Harrell and Lee, 1991; Miller et al., 1991) as indices of reliability 
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and discrimination, respectively. I augmented these with the additional metrics U, the 

unreliability index (Harrell and Lee, 1991), D, the discrimination index (Harrell and Lee, 

1991), and the c-index used to evaluate goodness-of-fit in the calibration data. 

Cox’s measures of calibration and refinement (Cox, 1958; Harrell and Lee, 1991; 

Miller et al., 1991) characterize the relationship between observed and predicted 

outcomes. This is based on fitting a separate binary logistic model to the validation 

sample, where the response is the observed outcome and the predictor is the probability 

forecast for that case from the model being validated. The new calibration equation is 

defined as: 

ሺܾ݋ݎܲ ௜ܻ| ௜ܲሻ ൌ 11 ൅ ݁ିሺ௔ା௕௅೔ሻ 
where Pi is the predicted probability from the logistic model being validated, and 

௜ܮ ൌ ሺݐ݅݃݋݈ ௜ܲሻ ൌ log ൬ ௜ܲ1 െ ௜ܲ൰ 

Ideally, for the model being validated, the calibration equation would have an intercept of 

zero and a slope of one (Miller et al., 1991). The intercept, a, denotes the overall 

calibration of the model if the slope, b, is one; otherwise, a denotes the calibration at 

p=0.5. In any case, a>0 indicates that the predictive probability is in general too low, and 

a<0 indicates that the predictive probability is too high. 

The unreliability index U can be calculated as (Harrell and Lee, 1991): 

ܷ ൌ ሺ0,1ሻܮ െ ,ሺܽܮ ܾሻ െ 2݊  

Where L(a,b) is the minimum likelihood for all a,b and L(0,1) is the value of the likelihood 

at a=0, b=1. A perfectly reliable model would have an unreliability index U=0. 

The discrimination index D is calculated as (Harrell and Lee, 1991): 
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ܦ ൌ ,ሺܽܮ 0ሻ െ ,ሺܽܮ ܾሻ െ 1݊  

Where L(a,0) is minimum likelihood for all a when b=0. D has expected value 0 if there 

is no discrimination. 

2.5 Benchmark Comparisons 

To place the naïve and RC models in context, I compared these models to two extant 

mortality equations in the region. The first was the current Prognosis mortality model, 

developed by Hamilton (1986), and the second a set of mortality equations developed 

by Temesgen and Mitchell (2005) for a Prognosis variant for southeastern British 

Columbia, an area immediately adjacent to my study area. 

Hamilton’s model (1986) uses the 10-year diameter increment from the antecedent 

period to the one being projected as an explanatory variable. Because this variable was 

not available in the validation data, it was imputed using the Prognosis basal area 

increment equation, re-calibrated using FIA periodic inventory data from the 1980s and 

1990s (Froese, 2007; Froese and Robinson, 2007). While this introduces some error, 

my objective was only to provide a general context for the RC results, not to rigorously 

evaluate alternative models. The results for Hamilton’s model should be considered 

accordingly. 
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3 Results  

The two datasets selected for this study differ markedly in size, mortality rate, and tree 

and stand characteristics. The calibration dataset consist of 25,344 trees with an 

average mortality proportion of 5.0%, whereas the validation dataset includes 4,007 

trees with a mean mortality proportion of 15.3% (Figure 1-1). P. contorta, the 

predominant species in the calibration set, has the largest differences in mortality rates 

between datasets. A. grandis represents, on the other hand, the smallest proportion of 

trees in both sets, while P. menziesii dominates the validation dataset. The datasets 

also differ in tree and stand characteristics (Figure 1-2). The largest differences in the 

distribution of the candidate variables between the calibration and validation datasets 

are found in P. contorta, which has also the narrowest distribution of DBH and PBAL in 

the former dataset.  

 

Figure 1-1. A hierarchical distribution of sample trees by species, status, and data set. The 
area of each rectangle is proportional to the number of individual trees in that category. 
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Figure 1-2. Boxplots of the four candidate variables for the calibration (top) and validation 
(bottom) datasets, by species. 

3.1 Regression Calibration and Data Screening 

The effect of RC on the error-prone variables is, in general, of shrinkage towards the 

mean (Figure 1-3). In other words, for large values of the observed variable, W, the 

predicted values of the corresponding unobserved error-free variable, X, tend to be 

smaller than W, and vice versa. The corrections were similar among the three species, 

but vary between variables and datasets. The shrinkage towards the mean effect was 

more noticeable for PBAL than for SBA, and it was larger for the validation set. Notably, 

the estimated error variance was much larger for PBAL than for SBA in both sets, and 

much larger for the validation than for the calibration set for both variables. 
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Figure 1-3. RC adjustments relative to the observed measurement of error-prone 
predictors. Solid lines are smoothed estimates of the median, and dashed lines are 
smoothed estimates of the lower and upper quartiles, respectively. 

Variable screening revealed the trends of mortality along the candidate variables (Figure 

1-4). The direction and slope were roughly congruent in both datasets for all variables, 

although the differences in average mortality rate result in parallel lines at different 

mortality rates, especially visible in SBA for A. grandis and P. contorta. The only, but 

eminent, difference between calibration and validation mortality trends was found in 

DBH, were the validation dataset shows a clear tendency to mortality reduction with 

increasing DBH, while the calibration dataset shows, if any, a trend of higher mortality 

with increasing DBH. In general, mortality decreases rather sharply for CR values 

between 0 and 40% approximately, after which the descent becomes more moderate. A. 

grandis shows the most abrupt fall, while P. menziesii shows the weakest, though all the 

species and datasets show a markedly descent in mortality with CR. Competition 
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variables exhibit an increase in mortality with increasing competition, with P. contorta 

being the species with the most pronounced slope.  

The effect of RC in respect with mortality trends differed among species, sets and 

predictor variables (Figure 1-5c,d). Generally, the effect of RC, if any, was to steepen 

the trend. Similarly to Figure 1-3, when there was an RC effect it was always greater for 

the validation set than it was for the calibration set, and larger for PBAL than for SBA. 

For example, RC had no obvious effect on the trend in mortality across SBA for A. 

grandis, which was quite flat, in either set. In contrast, RC had a noticeable effect on the 

trend across PBAL and SBA for P. contorta that was particularly large for the validation 

set. 
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Figure 1-4. Kernel density estimates of observed mortality as a function of each of the 
candidate predictor variables for the calibration and validation data sets. 
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3.2 Model Calibration 

Initial tests suggested that all variables excluding DBH were promising predictors and 

followed the expected biological trend. Consistently with results from screening, 

diameter variables were statistically significant for all species, but as already suggested 

by the screening the coefficients indicated increasing mortality with increasing diameter, 

contrary to most mortality models in use (e.g., Hamilton, 1990; Monserud and Sterba, 

1999; Temesgen and Mitchell, 2005). Additionally, model performance in the validation 

was downgraded when diameter variables were included in the model. Therefore DBH 

variables were dropped as candidate predictors. Test fits also showed that it was easy 

to construct complex, statistically significant models that performed poorly on the 

validation data. I suspected this was due to a mixture of overfitting and parameter 

instability due to collinearity among candidate predictors. Correlations among 

independent variables were high, and slightly increased when RC was applied (Table 

1-1). 

Table 1-1. Correlation among some candidate variables for the calibration dataset. All 
correlations are statistically significant (p<0.001). 

DBH PBAL PBAL-RC SBA0.5 (SBA-RC)0.5 CR0.5 
DBH 1
PBAL 0.22 1
PBAL-RC 0.25 0.97 1
SBA0.5 0.53 0.74 0.82 1
(SBA-RC)0.5 0.55 0.77 0.84 1 1 
CR0.5 -0.44 -0.69 -0.77 -0.74 -0.77 1 

Including both competition variables lead to either instability in the coefficients (P. 

menziesii), either competition variable becoming not significant (p>0.05) in naïve and 

RC models (P. contorta), or was significant in naïve models but not in RC (A. grandis). 

Therefore, the combination of CR0.5 and competition variables that yielded the most 

parsimonious model was selected, namely PBAL. The final models were therefore fitted 

for all the species with PBAL and CR0.5. The coefficient estimates for both variables 

were statistically different from zero (α = 0.05) for all three species and for both naïve 

and RC fits, with the exception of PBAL in the model for A. grandis. For all three species 

the predicted mortality was more sensitive to CR0.5 than it was to PBAL; estimated log 
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odds ratio for PBAL ranged from -0.11 – 0.55, while log odds ratios for CR0.5 were in the 

range of -1.50 – -3.18. For consistency, I retained PBAL in the model for A. grandis 

though PBAL was not a significant predictor under either the naïve or RC approaches. 

Table 1-2. Summary of parameter estimates, bootstrap standard errors and p-value for the 
naive and RC models fitted using the calibration dataset. Log odds ratio increment is 
approximately the interquantile of the distribution of the variable for the three species in 
the calibration dataset, where for CR, PBAL is 10.2 m2/ha, and for PBAL, CR is 40 %. 

Species Model Predictor Coefficient Std. Err. p-value Log odds 
ratio 

Abies grandis 
 

Naïve 
Intercept -1.4076 0.3798 <0.001  
PBAL -0.0095 0.0053 0.087 -0.10 
CR0.5 -1.5808 0.1525 <0.001 -3.16 

RC 
Intercept -1.3711 0.4619 0.002  
PBAL -0.0104 0.0073 0.158 -0.11 
CR 0.5 -1.5892 0.1682 <0.001 -3.18 

Pinus contorta 
 

Naïve 
Intercept -3.5446 0.3249 <0.001  
PBAL 0.0461 0.0045 <0.001 0.47 
CR 0.5 -1.0763 0.1265 <0.001 -2.15 

RC 
Intercept -3.7717 0.3565 <0.001  
PBAL 0.0534 0.0055 <0.001 0.55 
CR 0.5 -1.0074 0.1372 <0.001 -2.01 

Pseudotsuga menziesii 
 

Naïve 
Intercept -3.7795 0.3368 <0.001  
PBAL 0.0189 0.0047 <0.001 0.19 
CR 0.5 -0.7485 0.1297 <0.001 -1.50 

RC 
Intercept -3.4640 0.3937 <0.001  
PBAL 0.0136 0.0068 0.043 0.14 
CR 0.5 -0.8531 0.1442 <0.001 -1.71 

The effect of RC was small, but noticeable, on the model fit to the calibration data (Table 

1-2). RC affected all coefficients, including the intercept and the coefficient for CR0.5, a 

predictor assumed to be error free and not adjusted by the RC procedure. For P. 

contorta, RC increased the sensitivity of predicted probability to PBAL and decreased it 

to CR0.5; for P. menziesii, RC produced the opposite result. RC also invariably increased 

the estimated standard error of each of the coefficients (Figure 1-5), though not 

sufficiently to change any conclusions about significance (α = 0.05). The effect of RC on 

goodness of fit metrics was negative, but very small (Table 1-3). 
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Figure 1-5. Distribution of bootstrap PBAL estimates of model coefficients for the naïve 
and RC model, for the three species studied. 

 

Table 1-3. Goodness of fit measurements for the models fit to the calibration data 

Species Model c-index R2
N Residual 

Deviance 

Abies grandis 
Naïve 0.698 0.094 1,683.7 
RC 0.697 0.093 1,684.7 

Pinus contorta 
Naïve 0.759 0.179 3,843.6 
RC 0.759 0.178 3,849.0 

Pseudotsuga menziesii 
Naïve 0.642 0.054 3,491.3 
RC 0.640 0.050 3,503.4 

3.3 Model Validation 

The effects of RC were much more noticeable in the model validation than they were in 

the model calibration, particularly for P. contorta (Table 1-4). For this species, RC 

improved the model performance as measured by R2
N and all five of the metrics of 

reliability and discrimination. The RC model was also superior to Hamilton’s model as 

judged by R2
N, D and the c-index. Temesgen’s model for P. contorta performed worst 

among alternatives, including the naïve model. Results for P. menziesii were less 

consistent; RC improved the model for P. menziesii, by margins similar to the 
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improvements for P. contorta, as judged by R2
N and the three metrics of discrimination. 

However, the two metrics of reliability indicated worse performance under RC than 

observed for the naïve model. In contrast to the results for P. contorta, the RC model for 

P. menziesii was inferior to Hamilton’s model based on all metrics, except the slope of 

the calibration function, but still superior to Temesgen’s model in all metrics but U. For 

A. grandis, RC resulted in a uniformly slight degradation in model performance, though 

both the naïve and RC models were superior to Hamilton’s model based on all but one 

metric. 
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Table 1-4. Measures of overall explanatory power (R2
N), reliability and discrimination for 

the four models applied to the validation dataset. Temesgen and Mitchell (2005) did not fit 
a model to A. grandis. 

Species Model R2
N

Reliability Discrimination 

Intercept U Slope D c-index

Abies grandis 
Naïve 0.218 1.140 0.107 0.976 0.124 0.786
RC 0.210 1.138 0.112 0.967 0.119 0.780
Hamilton 0.144 -0.013 0.140 0.554 0.080 0.730

Pinus contorta 

Naïve 0.120 -0.153 0.112 0.508 0.083 0.675
RC 0.122 0.005 0.089 0.595 0.085 0.684
Hamilton 0.085 -0.136 0.022 0.671 0.058 0.650
T&M1 0.050 -0.844 0.278 0.200 0.033 0.648

Pseudotsuga menziesi 

Naïve 0.097 0.018 0.011 0.846 0.049 0.693
RC 0.112 0.410 0.013 0.998 0.057 0.703
Hamilton 0.132 -0.258 0.003 0.806 0.067 0.722
T&M1 0.086 -0.396 0.007 0.724 0.043 0.670

 1 Temesgen and Mitchell 

Kernel density plots of observed mortality against CR and PBAL in the validation set 

showed that the naïve, RC and Hamilton’s model all captured the mortality trends to 

various degrees, but generally forecast mortality rates lower than those observed in the 

data (Figure 1-6). The effect of RC was small with respect to CR for all three species, 

and small with respect to PBAL for A. grandis. In contrast, RC had a large effect for P. 

contorta and P. menziesii, tempering the predicted mortality particularly beyond about 

30 m2 ha-1 and bringing the trend in line with that observed in the validation set. Only the 

RC and Hamilton’s model approximate the observed trend in all cases, with the RC 

model superior to Hamilton’s model in many cases. 
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Figure 1-6. The distribution of observed and predicted mortality with respect to the 
observed PBAL, for the three species examined. 
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4 Discussion 

In this chapter the regression calibration approach was selected to correct for 

measurement error in individual tree mortality models. This methodology was 

demonstrated using two datasets from the northern Idaho and western Montana. The 

largest of these datasets was used for calibrating alternative models that either ignore or 

address measurement error in competition variables, and the smallest of the datasets 

was used for the validation of the models. The sets differ among other characteristics in 

plot size, management, diameter distribution, species composition, average mortality 

rate and stocking. These broad differences have proved to be an asset in illustrating the 

importance of correcting for measurement error in model calibration and application. 

Initially, I expected that the fundamental differences between the two data sets would be 

an unavoidable limitation, as the calibration set clearly emphasizes young, managed 

stands quite in contrast in structure and mortality rate from the FIA data, which as 

random samples are representative of the average forest condition in the region (Figure 

1-1, Figure 1-1). However, this disparity in the datasets turned out to be an asset for two 

reasons. First, the relationship between mortality rate and DBH or SBA is clearly 

different in the two data sets, and this has implications for variable selection in mortality 

modelling, in general. More importantly, the intrinsic difference in variability of tree and 

stand conditions between the two sets meant that the RC effect was actually much more 

obvious in application of the fitted model. In other words, had I investigated RC based 

only on the model calibration I might have been inclined to conclude that the utility of the 

method was limited. 

4.1 Variable selection 

One of the variables that most individual tree mortality models have in common is DBH. 

For example, Buchman et al., (1983), Hamilton (1986), Monserud and Sterba (1999), 

Eid and Tuhus (2001), Yang et al. (2003), Moore et al. (2004), Zhao et al. (2004) and 

Temesgen and Mitchell (2005) all included DBH or one or more transformations of DBH 

in their models. According to Hawkes (2000) the use of diameter as a covariate in 

mortality models is mainly because statistical analysis shows a relationship between 
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size and mortality in forest yield tables, representing competitive self-thinning. The 

calibration dataset involves almost exclusively pre-commercially thinned stands; in these 

stands, self-thinning has been interrupted through artificial reduction in density (Smith et 

al., 1996), breaking the empirical link between DBH and mortality rate, at least until 

stand density recovers. This would explain the lack of trend between mortality and DBH 

in the calibration set. However, Monserud and Sterba (1999) argued that DBH is a 

measure of the ability of a tree to compete for scarce resources. Monserud and Sterba 

did not cite any work to support this argument, and a literature review has not revealed 

any empirical study that supports this theory. I hypothesized that the clear relationship 

between DBH and mortality presented by Monserud and Sterba (1999) and apparent 

also in the validation set (Figure 1-4) is mostly associated with relationships between 

stand density and size, and not with the increased ability of larger trees to compete for 

scarce resources that, although probable, is a much weaker relation than the former. My 

theory would only explain the lack of a defined trend between mortality and DBH but not 

the decreasing trend visible at least in two species. Preliminary work showed that the 

negative trend is a typical example of confounding variables, where CR is correlated 

with DBH and mortality, and DBH seems to be negatively correlated with mortality until 

CR is included in the model. Exploratory tests showed negative DBH coefficients, 

decreasing mortality with increasing diameter, in both P. contorta and P. menziesii 

models, when DBH was the only variable included in the model. When models were 

fitted with both CR and DBH, the DBH coefficients were statistically not significant (P. 

menziesii) or significant (p<0.05), but had small log odds ratio (P. contorta).  

These hypotheses are speculative, and should be investigated further. However, if 

supported, they suggest that mortality models intended for application in managed 

stands should eschew DBH, despite empirical evidence of utility, and rely instead upon 

more direct proxies indicative of vigor and competition, such as CR and PBAL. Results 

presented in this chapter suggest that this approach can perform as well or better than 

models that rely on DBH as a predictor variable. The RC model was superior to 

Hamilton’s model for A. grandis and superior to Temesgen’s and arguably similar in 

performance to Hamilton’s model for P. contorta and P. menziesii (Table 1-3). 
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Variable selection has proven challenging due mainly to overfitting, collinearity among 

covariates, and inadequacy of selection criteria for logistic regression. Test fits showed 

that it was easy to construct complex, statistically significant models with superior model 

selection criteria, e.g. residual deviance, that performed poorly on the validation data. 

Astrud et al. (2008) found similar results while studying the appropriate level of 

complexity for a simulation model using an annual radial increment model. Astrud et al. 

(2008) noted that more complex models with higher traditional model selection criteria 

do not result in the best predictive model and suggest that the most traditional or 

common ways to select variables or models might not be the most appropriate since 

they tend to produce overfitting. Overfitting can be partially overcome by using 

resampling (Harrell, 2001); e.g. bootstrap; but it does not guarantee a parsimonious 

model and is no substitute for a validation with an independent dataset. Thus, it is 

fundamental to assess the predictive ability of the models with independent data since, 

as I have shown in this study (Table 1-3 and Table 1-4), better values of model selection 

criteria such as R2
N or the c-index, do not necessarily mean better performance as 

predictive models. 

4.2 Measurement error and regression calibration 

At least two parts of Carroll et al.’s (2006) “triple whammy” were clearly evident in my 

analysis. The third part, loss of power for detecting important effects, was not apparent; 

all predictor variables I examined that were statistically significant (α=0.05) in the RC 

approach were already significant in the naïve approach. I did, however, find clear 

evidence that measurement error masked features in the data (Figure 1-4) and 

introduced bias in parameter estimates (Figure 1-6, Table 1-3). Differences between the 

calibration and validation sets have likely enhanced these conclusions. For example, the 

effect of RC was relatively small on features in the calibration data, such as the trend 

between mortality and PBAL (Figure 1-5c), likely because these stands had been made 

deliberately homogeneous through pre-commercial thinning. In contrast, the more 

structurally complex validation data had larger measurement error, larger adjustment 

through RC (Figure 1-3), and a more obvious RC effect on the observed trend between 

mortality and PBAL (Figure 1-5c). Notably, after RC was applied, the observed trend 
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with PBAL in the validation data was driven towards that observed in the calibration 

data. 

More obvious was the effect that measurement error had on apparent bias in the 

parameter estimates. It is important to note that the treatment of measurement error is 

important only where error-prone variables have shown utility as predictor variables. For 

example, for A. grandis PBAL was not a useful predictor of mortality even under the RC 

approach; any trend between PBAL and mortality seemed already accounted for by the 

much stronger relationship between mortality and CR0.5. For the other two species, 

however, the RC approach led to obvious improvements in nearly all measures of 

predictive ability on the validation data (Table 1-3). The improvement in both metrics of 

discrimination is especially desirable, showing that the RC models are better able to 

capture the functional relationship between the competition variables and tree mortality. 

This implies greater accuracy in future simulations of plot-level dynamics, as well as 

population behaviour, leading to more realistic simulation of stand structures as they 

evolve with time. Evidence of the RC effect was also likely enhanced by differences 

between the calibration and validation data. Had the two data sets been similar, the 

effect of measurement error would have been similar and the bias in parameter 

estimates relative to the error free values would have been difficult to detect. In other 

words, RC has the effect of standardizing data for differences in measurement error, 

leading to more consistent simulations among stand structures, whether these 

differences are due to different geography, site quality, management, or even within-

stand development through time. 

4.3 Benchmark comparisons 

The overall objective in this chapter was to investigate the effect of applying 

measurement error methodologies in individual-tree mortality modelling in forestry. 

Thus, the focus in the validation phase was not on the quality of the predictions, per se, 

but on the differences in performance between the two approaches. Considering the 

differences between the two datasets, and especially taking into account the 

peculiarities of the calibration set, it was surprising to see how Hamilton (1986) model 

never outperformed either the naïve or the RC model in all measures.  
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The RC approach benefits are most consistent for P. contorta, where each measure of 

overall explanatory power, reliability and discrimination improved with respect to the 

naïve approach. Improvements are also clear for P. menziesii, although not as 

consistent as in P. contorta. Shade-tolerance is associated with the statistical 

significance of the competition variable (Table 1-1), and it seems to be related also with 

the magnitude of the improvements brought by the RC approach. The most shade-

intolerant of the three species, P. contorta, benefits the most from the RC approach, 

followed by P. menziesii in benefits and in shade-tolerance. For A. grandis, the most 

tolerant species, the improvements of RC are absent since the one variable with 

measurement error, PBAL, is not even statistically significant. 

4.4 Assumptions, improvements and future work 

One of the keys to adequately applying RC is the correct estimation of Σuu. I have 

adopted the methodology described by Stage and Wykoff (1998). However, Stage and 

Wykoff already mentioned that a refinement of the variance model is needed. Moreover, 

Lappi (2005) critiques many aspects of Stage and Wykoff’s methodology. Stage and 

Wykoff assumed the classical measurement error (see section 2.1 in Materials and 

methods), where the error term is distributed independently of the true value, versus 

Berkson measurement error, where the error term is distributed independently of the 

observed value. Lappi suggests that since the local density around a tree affects tree 

growth, Stage and Wykoff’s (1998) assumption that the measurement error is 

uncorrelated with the true value is not applicable for local density, and therefore the 

assumption of classical measurement error is incorrect. Lappi also notes that the 

assumption of Poisson locations of trees is not likely valid. However, Lappi does not 

suggest any solution to these problems and, even though the estimations of Σuu 

proposed by Stage and Wykoff might not be perfect, the results seem coherent. 

Furthermore, since there are no obvious better alternatives at this time I consider Stage 

and Wykoff’s approach the best option. 

A closer examination of how variables are selected and how the RC correction is 

structured is also needed. Little guidance is available in the literature, other than to 

include all available covariates (e.g., Hunter et al., 1996; Carroll et al., 2006; Kim et al., 
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2006) and that the relationship between X and (W,Z) is assumed to be linear (Carroll et 

al., 2006). I included DBH and CR in the RC correction for PBAL and SBA, though the 

former are tree-level variables used to correct the latter, which are not. It may be that 

transformations of Z are required or desirable to meet the linearity assumption. Also, I 

applied RC by species to the entire data set; in conceivable applications, this would be 

repeated each model projection cycle, allowing the RC correction to change as stand 

structure and estimated measurement error variances change (Stage and Wykoff, 

1998). However, since measurement error should also vary stand by stand, it may be 

that a more sophisticated algorithm would allow for a more accurate specification of Σuu 

and a more effective RC adjustment in both the calibration and application phases. 
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5 Conclusions 

Despite limited data, correction for measurement error using Regression Calibration 

improved the predictive ability of individual tree mortality models, particularly in terms of 

discrimination, and changed how mortality responds to competition variables. These 

effects were larger when the models included variables with high error variance and 

when the species were shade intolerant. Available calibration data from intensively 

managed stands also revealed that past emphasis on DBH as a predictor variable, while 

producing models with strong metrics of fit, may make models less generalizable. An 

errors-in-variables solution via RC should be compared to Stage and Wykoff’s (1998) 

structural based prediction, particularly in the context of the diameter increment model. 

Because RC corrections are before models are fit or applied, it may offer a unified 

approach. The practical and theoretical tradeoffs between methods need to be 

examined and quantified. 
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CHAPTER 2. SURVIVAL REGRESSION AS AN 
ALTERNATIVE FOR MODELLING INDIVIDUAL TREE 

MORTALITY 

1 Introduction  

Individual tree mortality is most commonly modeled with logistic regression, but other 

methods have been historically used in forestry to model this binary outcome. These 

include the Weibull function (e.g. Somers et al., 1980), negative exponential (e.g. Moser, 

1972), gamma function, Richard’s function (e.g. Buford and Hafley, 1985), the 

exponential (e.g. Kobe and Coates, 1997), and more recently, techniques such as 

recursive partitioning, also known as classification and regression trees (e.g. Fan et al., 

2006), neural networks (e.g. Guan and Gertner, 1991), and survival analysis (e.g. 

Woodall et al., 2005a). The prevalence of logistic regression in models of individual tree 

mortality, among other options to model dichotomous outcomes (Hasenauer et al., 2001; 

Rose Jr, 2002), seems to be related to its straightforward parameter interpretation (Rose 

et al., 2006). 

Event occurrence and dichotomous outcomes are also the focus of other fields, such as 

epidemiology and biology. In those fields, survival analysis techniques are much more 

commonly used than other alternatives. Two reasons that might have contributed to the 

lack of interest in survival analysis in forestry include: (1) the usual lack of data on tree 

age, that has led some authors to conclude that survival analysis techniques cannot be 

used (Flewelling and Monserud, 2002); and (2) the intrinsic peculiarities of most of the 

available data on mortality. These peculiarities include the time-dependent nature of the 

key variables traditionally used to predict background mortality, and the interval 

censored character of most mortality data. 

Data in permanent plots are usually collected by revisiting the site after a period of time, 

such as 5 or 10 years. This yields interval censored mortality data. That is, the exact 

date of a tree death is not known; the only information available is that a tree died within 
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certain interval or that it survived at least until the end of the interval. The second 

characteristic that distinguishes tree mortality from usual epidemiology cases is that 

some of the most important forestry covariates, such as diameter, crown ratio and 

competition, change with time; i.e., are time-dependent variables. These characteristics, 

especially when they are concurrent, are uncommon in other fields, and have delayed 

the application of survival analysis techniques in tree mortality modelling.  

1.1 Survival analysis techniques 

In survival analysis, the technique focuses on modelling time until an event of interest. 

This approach can be used to answer questions such as:  

• Which proportion of trees will survive through time t? 

• How a change in competition increases or decreases the odds of survival? 

• Does thinning have an effect on mortality? 

• How long does the effect of thinning on mortality last? 

• Is mortality rate constant through time? 

Following, I present a survey of basic ideas behind survival analysis, drawing from 

Harrell (2001) and Collett (1994). 

 

One of the key characteristics of survival analysis techniques is that they can handle 

censored data. Censoring occurs when the exact time of the event is not known. Left 
censoring occurs when the only information available about the time of the event is that 

it occurred before a certain point in time; e.g. the tree was already dead in the first 

measurement. Right censoring occurs when the follow-up of the event has finished 

before the event has occurred; e.g. the last time the plot was revisited the tree was still 

alive, so there is no available information about when the tree died, it is only known that 

the tree was still alive at the last measurement. Interval censoring occurs when there is 

no exact information of the time of the event but it is known that it has happened within a 

certain time interval; e.g. the tree died between measurements. In forestry, right and 

interval censoring are very common. Inventories are usually performed in a periodic 
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manner; therefore, they yield interval censored data when trees died between 

measurements and are right censored data otherwise.  

In survival analysis, survival is usually defined by any of three functions: the survival 

function, the hazard function, or the cumulative hazard function. These functions all 

describe, in different ways, the same distribution. The survival function, S(t), is a 

decreasing function that defines the probability that a tree dies after a certain time t, and 

it is, therefore, bounded between 0 and 1. It can also be interpreted as the probability 

that the tree survives until certain time t. F(t), the cumulative distribution function, is 

thus the probability that the individual dies before a certain time t. 

ܵሺݐሻ ൌ ܲሺܶ ൐ ሻݐ ൌ 1 െ ܲሺܶ ൑  ሻݐ

ሻݐሺܨ ൌ ܲሺܶ ൑ ሻݐ ൌ 1 െ ܵሺݐሻ 

The hazard function, λ(t), is the event rate at time t conditional on survival until time t or 

later. In individual tree mortality terms, the hazard function λ(t) gives the probability of a 

tree dying during a very small time interval, assuming that the tree has survived up to 

the beginning of the interval. The hazard function is especially useful in comparing the 

risk of death among different classes or groups. For example, one might examine 

whether risk varied between two different values of local competition or crown ratio. 

ሻݐሺߣ ൌ lim௨՜଴ ܲሺݐ ൏ ܶ ൑ ݐ ൅ ܶ|ݑ ൐ ݑሻݐ ൌ ሻݐሺܵݐሻ݀ݐሺܨ ൌ ݂ሺݐሻܵሺݐሻ 

The cumulative hazard function, Λ(t), is the cumulative risk up to time t. This function 

is non-decreasing and can take any value between zero and infinity. 

Λሺtሻ ൌ න λሺνሻdν ൌ  െ log Sሺtሻ ୲
଴  

ܵሺݐሻ ൌ ݁ିஃሺ௧ሻ  
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The simplest technique for survival analysis is the homogeneous failure time 
distribution, where there are no covariates to differentiate between subjects, but a 

survival distribution function is assumed. Nonparametric estimation of the survival 

distribution with no covariates is also possible. The Kaplan-Meier estimator (Kaplan 

and Meier, 1958) and the Altschuler-Nelson estimator (Altshuler, 1970; Aalen, 1976; 

Fleming and Harrington, 1984; Nelson, 2000) are the two most common estimators in 

this category. 

Survival analysis techniques that allow for covariates are called survival regression 
models. The two most widespread survival regression models are the proportional 

hazards model and the accelerated failure time model. In a proportional hazards (PH) 
model, the effect of a covariate is multiplicative with respect to the hazard. The hazard 

function does not need to be specified if using the Cox’s semiparametric proportional 
hazard model (Cox, 1972). Accelerated failure time (AFT) models differ from the 

proportional hazard models in that the predictors act multiplicatively with respect to 

survival time. An advantage of AFT models over PH models is that the regression 

parameters in an AFT models are robust towards ignored covariates, which is not the 

case for PH models (Lambert et al., 2004). The exponential and the Weibull distributions 

are the only distributions that can describe both a proportional hazards model or an 

accelerated failure time model.  

PH models can be expressed in the form:  ݄࢞ሺݐሻ ൌ ݃ሺ࢞ሻ݄଴ሺݐሻ 

where x is a vector of explanatory variables, x = {x1, x2, ...}, g(x) is a function of x 
independent of the time variable t, and h0(t) is the baseline hazard function, the hazard 

function for an individual for whom the values of all explanatory variables that make up 

the vector x are zero. 

Among PH models, Cox’s semiparametric model is one of the most widely used 

multivariate survival methods. The most important advantage of this approach is that, 

without knowing the baseline hazard, the coefficients for each covariate can still be 

calculated. Therefore, there is no assumption about the shape of the hazard function.  
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The Cox model is more efficient than parametric models when the assumptions about 

the parametric model are not true. However, in the presence of heavily interval censored 

data, as it is the case in most tree mortality datasets, parametric models are robust and 

generally more informative than their non-parametric counterparts (Lindsey, 1998).  

The Weibull model is the most widely used parametric survival model. It can be used in 

AFT or PH approaches. If the survival time has a Weibull distribution, which has scale 

parameter λ and shape parameter γ, then the hazard function is such that:  

݄଴ሺݐሻ ൌ  ఊିଵݐߛߣ

The hazard function for the ith individual has a Weibull distribution with scale parameter ݁ߣఉ࢞೔ and shape parameter γ: 

݄௫,௜ሺݐሻ ൌ ݁ఉ࢞೔ݐߛߣఊିଵ 

AFT models can be expressed in the form: 

݄௫ሺݐሻ ൌ ݃ሺݔሻ݄଴ሺ݃ሺݔሻݐሻ 

and the AFT Weibull model has the form: 

݄௫,௜ሺݐሻ ൌ ݁ఉ࢞೔ߛߣ൫݁ఉ࢞೔ݐ൯ఊିଵ ൌ ൫݁ఉ࢞೔൯ఊݐߛߣఊିଵ 

so that the survival time of this individual has a Weibull function with parameters ݁ߣఉ࢞೔ఊand shape parameter γ. 

1.2 Survival analysis in forestry 

Examples of survival analysis techniques used to study individual tree mortality in 

diverse contexts can be found in the literature; however, most of them are focused on 

forest health related issues. For example, Preisler and Slaughter (1997) used the log-

normal distribution to analyze the simultaneous effects of tree characteristics and tree 

locations on the survival of individual trees in stands affected by annosum root disease. 

Volney (1998) studied tree mortality following a jack pine budworm outbreak using a 
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nonparametric proportional hazards model and Cox’s proportional hazard model. He 

and Alfaro (2000) used an accelerated failure time model to analyze resistance of white 

spruce to the attack of white pine weevil. More recently, survival analysis techniques 

were used to develop an individual tree mortality model to help detect, monitor and 

mitigate large-scale forest health issues (Woodall et al., 2005b). This last model has the 

peculiarity that the driving variable is DBH increment instead of the usual variable, time. 

There are also examples of forestry applications using survival analysis that are not 

focused on forest health related issues. Burgman et al. (1994) used a Cox model to 

develop background mortality models for mountain ash (Eucalyptus regnans) and alpine 

ash (Eucalyptus delegatensis) in Australia. The time scale used was the difference 

between the age at study entry and the age at death or present age. Rose et al. (2004) 

developed a method for deriving whole-stand survival models. Rose et al. (2006) used 

survival analysis techniques to model and predict individual tree survival using 

permanent plots in loblolly pine plantations. In this study, measurements were taken 

annually and the driving variable was age of the stand. Additionally, the Rose et al. 

(2006) model considered silvicultural treatment and tree and stand characteristics 

effects on survival. Fan et al. (2006) analyzed tree survival in oak forests using a 

combination of classification and regression tree and survival analysis, using the 

nonparametric Kaplan-Meier estimator. 

All of the above models, except for the Woodall et al. (2005a; 2005b) and Burgman et al. 

(1994) models, use age or time from a certain event, such an insect outbreak, as the 

driving variable. Unfortunately, when background mortality is modelled in uneven aged 

stands neither of these direct measures of time can be used. A more unconventional 

approach was suggested by Woodall et al. (2005a), who used DBH as the driving 

variable instead. Woodall et al. noted the high potential that survival analysis offers and 

that survival analysis techniques have not been used extensively in forestry due to the 

dearth of detailed time and age data for large-scale inventories. However, traditional 

logistic regression models assume constant hazard, that is, if we assume that all 

important covariates are included in the model, mortality rate is constant in time. If one 

makes a similar assumption for survival regression models, an initial point of time can be 

defined arbitrarily, similarly to logistic regression. For example, we can define as time 
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zero the first time the plot was measured, i.e. the first measurement, and consider time 

as the driving variable, similarly to Burgman et al. (1994).  

Most mortality models and studies using survival analysis techniques do not focus on 

background individual tree mortality, and the ones that do are not applicable to uneven 

age stands or do not address the interval censored characteristics of the dataset and the 

time-dependent nature of most of the variables. In fact, from the aforementioned models 

only Rose et al. (2006) addressed interval censoring and the time-dependent nature of 

the variables. Most surprising is that, although the advantages of survival analysis 

techniques to analyze large-scale inventory tree mortality are apparent (Woodall et al., 

2005a; Woodall et al., 2005b), there is no comparison in the literature between survival 

regression models and the traditional logistic regression approach. 

1.3 Logistic regression versus survival analysis 

Most fundamental covariates in individual tree mortality models are time-dependent (e.g. 

DBH, PBA, PBAL, SBA, CR). However, conventional logistic regression does not allow 

the inclusion of time-dependent covariates; instead, the values of the covariates at the 

beginning of the interval are used and assumed to be constant through the period. 

Leffondré et al. (2003) evaluated logistic regression in matched-control data with time-

dependent covariates and observed that logistic regression estimates were less 

accurate in some scenarios, especially when the covariates were correlated. In their 

study the logistic regression estimates were always very close to the true parameters for 

the fixed covariates, but time-dependent covariate parameters were over-estimated in 

some cases and under-estimated in others. Therefore, one would expect that taking into 

account time-dependent information could help to more accurately assess the impact of 

the covariates in tree mortality. 

Since logistic regression cannot handle time-dependent variables, dealing with more 

than 2 measurements per tree poses some difficulties. In logistic regression the problem 

can be addressed in more than one way, none of them ideal. First, one can just ignore 

all measurements but two consecutive measurements. In this way we are ignoring 

expensive available mortality data and the always small number of dead trees would be 
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smaller than it could potentially be, wasting existing information. Conversely, the 

estimates would be unbiased. Second, we can consider only the first and last 

measurements, ignoring the change in time-dependent covariates. In this case since we 

are using values from the first measurement and ignoring any change in between, our 

conclusions might be biased. Third, we could consider the first two consecutive 

measurements for live trees, and for dead trees at any measurement we consider the 

last measurement the tree was seen alive and the measurement it was seen for the first 

time dead. In this case, the bias from using not updated covariates will be smaller but 

we might be overestimating the mortality rate because we are ignoring that some dead 

trees were observed for more than one period. For example, if it is known that the tree 

survived 15 years after the first measurement and it died sometime between the 15th 

and 20th year after the first observation, and we only take into account the last 5 years 

(15th – 20th years), we are overestimating the mortality rate. Fourth, we consider two 

non-consecutive measurements, similarly to the treatment of the data for chapter 1. With 

this approach we would be discarding some of the costly mortality data, but less than 

with the first option, and we would be ignoring changes in the time-dependent variables. 

These problems would be solved if we can use an approach that accounts for time-

dependent and interval-censored data.  

There are no practical and comparable evaluations in the literature, to my knowledge, 

between logistic regression and AFT survival regression models. However, there are a 

few papers on comparability of logistic regression and PH models. The main conclusion 

that all of these papers reach is that, when the follow-up period is short and the event is 

rare, proportional hazard models, mainly Cox models, and logistic regression yield 

similar solutions (Green and Symons, 1983; Annesi et al., 1989; Callas et al., 1998).  

Survival analysis techniques not only have the potential to handle time-dependent and 

interval censored data, but they allow testing the assumption of a constant hazard 

function and modelling changing hazard functions (Collett, 2003). In a similar way that 

spatial analysis of prediction residuals is a versatile tool to study the effects of missing or 

incorrectly modeled variables in the prediction of diameter or mortality (Froese and 

Robinson, 2007), survival analysis techniques can be a strategic tool to study defining 
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variables that change with time. For example, effects of droughts, winds, thinning, 

unusual high/low temperature periods, or el niño/la niña effect.  

The potential benefits from the use of survival analysis techniques to model individual 

tree mortality models seem substantial, but it first has to be proven that the survival 

analysis approach is able to perform at least at the same level as the traditional logistic 

regression approach. 
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2 Objectives 

There is no comparison in the literature that I am aware of between survival regression 

models and the traditional logistic regression approach for modelling individual tree 

mortality. Given that survival analysis has theoretical benefits in this context and has 

shown promise in some studies, the goal of this chapter was to undertake such a 

comparison. Comprising this goal, my objectives were to: 

1) assess the differences between the logistic regression and the survival 

regression approach by comparing the fit of both models,   

2) test the hypothesis of constant hazard in the fitting dataset,  

3) compare the predictive ability of both approaches when applied to an 

independent validation dataset.  
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3 Methodology 

3.1 Approach 

The general strategy to compare the traditional logistic approach to the survival 

regression approach is to compare the naïve mortality models fitted in chapter 1 with 

new survival regression models fitted using the same original dataset and variables. 

Because of the difference in the methods the dataset used to fit the logistic regression is 

a subset of the set used to fit the survival regression. The difference between the two 

datasets is that in the survival regression set all available data for each species will be 

used; that is, any tree with at least 2 measurements will be part of the calibration 

dataset.  

Various semiparametric and parametric models for interval-censored data allow for time-

dependent covariates. However, none of these have yet been implemented in R (R 

Development Core Team, 2008). I have selected a method based on Odell et al. (1992) 

that allows for fixed and time-dependent covariates, left, right, interval and non-censored 

events. This method is flexible and possesses a direct computational solution, and is 

described in Sparling et al. (2006). 

Data from the first measurement included dead trees. In theory, these dead trees could 

be included in the model as left censored data, since the Sparling et al. (2006) 

methodology allows for this type of censoring. However, when the model includes time-

dependent variables, as it is this case here, it requires data for an initial time when it is 

known that the individual was event free, e.g. the tree was alive. Given that such 

information was unavailable, dead trees at the first measurement are excluded from the 

analysis. In the case of the survival analysis model all trees were assumed to enter the 

study at time zero, even though the actual calendar year might vary by stand. 

As a measure of overall predictive ability I chose the generalized R2
N (Cragg and Uhler, 

1970; Nagelkerke, 1991), and as a measure of predictive discrimination I chose the c-
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index. In order to be able to compare fairly both approaches, I calculated these indices 

with respect to their ability to predict mortality, and not survival.  

The models’ ability to predict mortality was tested on an independent validation dataset 

(described in chapter 1). The performance of the models was assessed with measures 

of discrimination and unreliability described in chapter 1.  

3.2 Sparling methodology 

Sparling et al. (2006) provide the likelihood function, hazard and cumulative hazard 

function, and a section on model diagnostics that include the deviance statistic. As a 

brief description of the model I present the likelihood function used to fit the models, the 

hazard function, and the cumulative hazard function, used to calculate the predictions. 

The likelihood function is defined as: 

ܮ ൌ ෑ ൞ ௜݂൫ݐ௜หݖ௜, ௜ܻሾሺ௧೔ሻሿ൯ఋಶ೔ ൈ ,௜ݖ௜หݐ௜൫ܨ ௜ܻሾሺ௧೔ሻሿ൯ఋಽ೔ ൈ ቀ1 െ ,௜ݖ௜หݐ௜൫ܨ ௜ܻሾሺ௧೔ሻሿ൯ቁఋೃ೔ ൈ൤ܨ௜ ൬ݐோ೔ฬݖ௜, ܻ௜ቂቀ௧ೃ೔ቁቃ൰ െ ௜ܨ ൬ݐ௅೔ฬݖ௜, ܻ௜ቂቀ௧ಽ೔ቁቃ൰൨ఋ಺೔ ൢ௡
௜ୀଵ  

Where 

iRδ = 1 if right censored at time ti < xi, 0 otherwise 

iLδ = 1 if left censored at time ti > xi, 0 otherwise 

iIδ = 1 if interval censored with tLi < xi ≤  tRi, 0 otherwise 

iEδ = 1 if has an event observed exactly at time ti = xi, 0 otherwise 

zi is a vector of p fixed covariates for the ith subject 

][ tiY denotes the sequence of time-dependent covariate values up to time t for the ith 

subject. 
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The general form of the hazard function is: 

,௜ݖ൫߬௜௝หߣ ௜௝൯ݕ ൌ ௜௝߬௜௝ఈିଵ൫1ߚߙ ൅  ௜௝߬௜௝൯௞ߚ

where ߚ௜௝ ൌ ݁ఏାఊ′௭೔ାఎ′௬೔ೕ iji yz
ij e '' ηγθβ ++= , and  α > 0 and k are general hazard function 

parameters. In particular, κ = 0 yields a Weibull hazard for event times, κ = 1 yields a 

log-logistic hazard, α = 1 and κ = 0 yields a negative binomial distribution. The hazard 

function for κ = 0 is constant at α = 1, increasing for α > 1, and decreasing 0< α < 1. 

The survival function is calculated as 

ܵሺݐሻ ൌ ݁ିஃሺ௧ሻ, where 

Λሺݐሻ ൌ ෍ ൛ఛ೔ሺೕశభሻஸ௧ ൟܫ ቂߤ௜௝ሾఛ೔ሺೕశభሻሿ െ ௜௝ሾఛ೔ೕሿቃ௞೔ିଵߤ
௝ୀ௢  

and at time u ߤ௜௝ሺ௨ሻ ൌ ൣଵାఉ೔ೕ௨ഀ൧భషഉଵି఑  and for κ ≠ 1, and for κ = 1 ߤ௜௝ሺ௨ሻ఑ୀଵ ൌ ln ሾ1 ൅   ఈሿݑ௜௝ߚ
The optimal value of κ can be estimated from the data, but if the event rate is low there 

is inadequate information about the true shape of the hazard function to allow precise 

estimation of κ. Recall that κ = 0 yields a Weibull hazard, and that for κ = 0 and α = 1 the 

hazard function is constant. Since we are trying to model background mortality we are 

assuming constant hazard, therefore I selected the Weibull constant hazard form (κ = 0, 

α = 1), with hazard function: 

,௜ݖ൫߬௜௝หߣ ௜௝൯ݕ ൌ ௜௝߬௜௝ଵିଵ൫1ߚ1 ൅ ௜௝߬௜௝൯଴ߚ ൌ ௜௝ߚ ൌ ݁ఏାఊ′௭೔ାఎ′௬೔ೕ 
For the statistical significance of the estimated parameters of the covariates the Wald 

test was used. Usually, the likelihood ratio test is preferred to the Wald test because the 

latter is sensitive to problems in the estimated variance-covariance matrix in the full 

model (Harrell, 2001). However, because the survival regression models fitting process 

consume a non trivial amount of time and the likelihood ratio test would require fitting 
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each model at least four times (one for each variable, one for the intercept and one the 

full model), the Wald test was considered a sufficient approximation to the true 

significance test. The Wald test was calculated following Sparling et al. (2006) and the 

original code in SAS written by the authors. The Wald test to test β = β0 is defined as: 

ܹ ൌ ሺߚ െ ሻߚሺݎܽݒ଴ሻଶߚ  

Where β is the estimated parameter and β0 is the hypothesized value. 

3.3 Software 

Data analysis, simulations and graphs for this chapter were done in R environment (R 

Development Core Team, 2008). Data manipulation was carried out in MySQL (2008) 

on the Microsoft WindowsXP platform. 

Since no package was available in the R environment to fit the proposed model, I 

followed the Sparling et al. (2006) methodology and the original SAS code the authors 

made publically available, to code the algorithms in R and to fit the models. One of the 

challenges of writing the code to optimize non-standard functions is to test that the code 

is error free. Unfortunately the data used by Sparling et al. (2006) were not publicly 

available, so an alternative to test the accuracy of the code was needed. The approach I 

used was to contrast the gradient function at several different points with that computed 

numerically by the grad function in numDeriv library version 2006.4.1 (Gilbert, 2008). 

The likelihood was compared to the likelihood obtain by fitting a similar equation, but 

ignoring the time-dependent nature of the variables, with the survreg function in survival 

library version 2.34-1 (Therneau and Lumley, 2008). 
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4 Data 

The calibration dataset used to fit the models in chapter 1 had a maximum of 4 

measurements per tree. For the logistic regression, as previously discussed in chapter 

1, only measurements 1-3 or 2-4 for each plot were selected. The objective for choosing 

these remeasurements in the logistic regression was to select similar intervals long 

enough to include enough mortality data but short enough that the variables wouldn’t 

change significantly. For the survival regression calibration dataset there are no 

constraints on the length or number of periods considered. Therefore, all available trees 

with at least 2 measurements (i.e. 1 remeasurement period) were included in the 

survival calibration dataset. 

The differences in the ability of both approaches to handle time-dependent variables 

resulted, therefore, in differences between calibration datasets. These differences are 

obvious (Table 2-) in both the total number of trees and the total number of dead trees. 

The number of trees available for each species in the survival calibration dataset is more 

than 50% larger than the available trees for the correspondent species in the logistic 

calibration dataset. In contrast, the proportion of dead trees in the logistic calibration 

dataset for the three species is always larger than the correspondent survival dataset. 

Differences in the average period of observation for trees of each species do not vary 

substantially, although it tends to be higher in the survival dataset. Differences in 

mortality percentage between both datasets are only negligible for P. contorta. 

Similarly to chapter 1, only trees and stands where both SBA and DBH were less than 

the 99th percentile of the same variables in the calibration set were reserved. The final 

validation dataset differed from the one used in chapter 1 in that the 99th percentile was 

calculated from the survival calibration set instead of the logistic calibration set. 
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calibration datasets is in general larger for both competition variables than for DBH and 

CR.    

 

Figure 2-2.  Distribution of the variables for the three datasets. For the survival dataset 
each measurement of each tree used to fit the model has been considered a separate 
measurement. 
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5 Results 

5.1 Fitting phase 

Direct comparison of estimated parameters (Table 2-) for the survival regression and 

logistic regression approaches is not possible since they are not parameterized using 

similar equations. Nevertheless, it is possible to compare both approaches by studying 

how they differ in their reactions to changes in the covariates (Figure 2-3). The largest 

differences between survival and logistic models appear for the case where  CR and 

PBAL are small. In general, the logistic models predict lower probability of mortality for 

trees with small CR than do survival models, but predict higher mortality for suppressed 

trees with CR 40% or larger. Logistic regression models appear to be more sensitive to 

PBAL than survival models for P. contorta and P. menziesii and less sensitive for A. 

grandis. 

 

 LOGISTIC SURVIVAL 
 Parameter Std. Err. p-value1 Parameter Std. Err. p-value2

 Abies grandis Abies grandis 
Intercept -1.4076 0.3798 0.001 -1.0137 0.3336 0.002
PBAL -0.0095 0.0053 0.087 -0.0181 0.0052 0.001
CR1/2 -1.5808 0.1525 <0.001 -1.7381 0.1222 <0.001
 Pinus contorta Pinus contorta 
Intercept -3.5446 0.3249 <0.001 -2.7577 0.2332 <0.001
PBAL 0.0461 0.0045 <0.001 0.0347 0.0035 <0.001
CR1/2 -1.0763 0.1265 <0.001 -1.4074 0.0835 <0.001
 Pseudotsuga menziesii Pseudotsuga menziesii 
Intercept -3.7796 0.3368 <0.001 -2.9964 0.2620 <0.001
PBAL 0.0189 0.0047 0.001 0.0130 0.0036 <0.001
CR1/2 -0.7485 0.1297 <0.001 -1.1151 0.0937 <0.001
1 Likelihood ratio test; 2 Wald test 

Table 2-2. Summary of the models for the logistic regression and survival regression 
approaches. 

The statistical significance of the estimated parameters is similar in both approaches. 

There is only one exception; PBAL for A. grandis is not significant (α=0.05) for the 

logistic model but is significant for the survival model. Notice that the p-values 

correspond to different significance tests. 
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Another way to evaluate the candidate models is with respect to measures of fitness of 

the models to the calibration datasets. While differences in deviance are not directly 

comparable due the differences in the datasets used to fit the models, the c-index and 

the R2
N can give an idea of the explanatory ability of the models. The R2

N is always 

larger in the logistic models, while the relative difference in c-index varies across 

species.  

 

 
Figure 2-3. Sensitivity plots. Predictions for 10 years. 

 

Species  R2
N c-index 

Abies grandis Logistic 0.698 0.094 
Survival 0.675 0.095 

Pinus contorta Logistic 0.759 0.179 
Survival 0.712 0.163 

Pseudotsuga menziesii Logistic 0.642 0.054 
Survival 0.597 0.076 

Table 2-3. Measures of predictive power for the calibration data. 

All survival regression models have been fitted assuming constant hazard function (α = 

1); that is, it is explicitly assumed that the hazard does not change with time. Actually, 

this assumption can be tested and results from this test are shown in Table 2-.  Using a 

95% significance level, the null hypothesis could not be rejected for A. grandis and P. 

menziesii, but the test for P. contorta rejected the null hypothesis, suggesting increasing 

hazard with time.  
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Species α p-value
Abies grandis 1.08 0.329 
Pinus contorta 1.10 0.039 
Pseudotsuga menziesii 0.93 0.160 

Table 2-4. Likelihood ratio test where H0: no change in mortality rate with time. 

 

5.2 Validation phase 

The ultimate goal of individual tree mortality equations in the context of growth and yield 

models is to accurately predict mortality in a variety of stands. Hence, the most 

adequate approach to validate a model is to test its performance in an independent 

dataset. When survival regression models were tested in the independent validation 

dataset described in chapter 1 the results, when compared to those of logistic 

regression models, vary by species, but, overall, survival models were able to better 

discriminate alive and dead trees, and explained more variability (Table 2-).  The 

differences were always larger for P. contorta and P. mensiezii than for A. grandis. 

Measures of reliability were better for logistic regression models than for survival in A. 

grandis and P. mensiezii, but worse for P. contorta.  

 

Species Model R2
N 

Reliability Discrimination 
Intercept U Slope D-index c-index

Abies grandis 
Logistic 0.220 1.165 0.106 0.983 0.124 0.788 
Survival 0.225 1.246 0.131 0.958 0.127 0.793 

Pinus contorta 
Logistic 0.111 -0.150 0.131 0.488 0.077 0.668 
Survival 0.121 -0.125 0.127 0.501 0.084 0.677 

Pseudotsuga menziesi 
Logistic 0.094 0.011 0.014 0.832 0.048 0.689 
Survival 0.109 0.044 0.017 0.827 0.056 0.701 

Table 2-5. Measures of overall explanatory power (R2
N), reliability and discrimination for 

the four models applied to the validation dataset. 

When predictions for logistic and regression models are compared along variables 

differences between both models are small for CR, but meaningful for PBAL. The largest 

differences are found in P. contorta and P. menziesii (Figure 2-4). Overall, the kernel 
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density estimates of the survival models more closely follow the observed mortality than 

the logistic regression models (Figure 2-4b). 

 

 

Figure 2-4. Kernel density estimates of observed and predicted mortality for the survival 
and logistic models in the validation dataset. 

Suppressed trees with PBAL over 40 have the largest differences in predicted mortality 

shown between survival and logistic models. For these trees the logistic model generally 

predicts higher mortality than the survival model.  
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6 Discussion 

6.1 Data and model form 

One of the multiple challenges that individual tree mortality modelers face is the scarcity 

of quality data, if not data in general. Survival regression, an alternative to the traditional 

approach using logistic regression, maximizes the use of the information in the available 

datasets because there is no restriction on the length or number of observation periods 

it can handle, and because it updates the values of the covariates every time new 

information is available. The original logistic model implicitly assumes that the 

remeasurement periods are similar or that the length of the period does not affect the 

outcome (Callas et al., 1998), which is not usually the case when tree mortality is being 

modelled. Ingram and Kleinman (1989) cautioned against using logistic regression when 

remeasurement periods vary because it can seriously bias estimates, and preliminary 

results of this study that included consecutive and alternate remeasurement periods 

resulted in inferior model fit and prediction accuracy (results not shown), supporting 

Ingram and Kleinman’s (1989) opinion.  

Logistic regression models that use remeasurement periods larger than 1 year to model 

annual mortality assume constant probability of mortality within the period studied.  Cao 

(2000) argued that this assumption is not correct because the probability varies annually 

with changes in stand and tree attributes, and proposed an iterative method to calculate 

annual diameter growth and survival that accounts for yearly changes in stand and tree 

characteristics. In his study, he showed that the iterative method yields better mean 

relative and absolute deviation and better log-likelihood values than the traditional 

method, although he did not validate his results using an independent dataset. 

Nevertheless, his results, corroborated by Flewelling and Monserud (2002),  and 

theoretical arguments seem robust enough to deserve further analysis in the survival 

regression context. Cao’s survival logistic equations only considered age, basal area 

and diameter as predictors, and these latter two predictors were themselves based on a 

diameter increment equation calibrated using the diameter at the beginning and at the 

end of the period considered. It is unclear if the author did or did not consider the same 
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tree in each interval as a separate observation. In the survival regression context Cao’s 

approach would cause incongruities since the diameter predicted at time t+a with an 

equation based on the values of the variable at time t will not match the observed value 

of the variable at time t+a. This does not necessarily poses a problem towards the 

quality of the fitted model, and the potential improvement in the model might very well 

overcome any initial drawback. A possible alternative approach for model fitting is to 

interpolate the values of the variable between the two measurements. Fortunately the 

selected survival regression approach for this chapter allows for updates in time-

dependent variables without updates in the status of the tree.  

The Weibull form for the survival regression selected for this chapter has several 

advantages and one main possible drawback. The Weibull survival equation is one of 

the most widely used parametric functions in survival analysis, it can describe constant 

and monotone hazard functions, and it can be interpreted as a PH or AFT model. I 

consider all of these characteristics an advantage. However, the Weibull survival 

regression cannot model non-monotone, e.g. bathtub shape, hazard functions. This type 

of hazard functions would not likely appear when modelling non-background mortality, 

because the effect of a fire, heavy winds, etc, is likely to result in high initial hazard that 

decreases with time. However, when exploring the possible effects of time-dependent 

variables in background mortality it might be useful to have more flexibility in the shape 

of the hazard function. For example, if one is studying the effect of a severe 5-year 

drought, it might be interesting to study the background mortality before and after the 

drought at the same time, and examine the recovery curve in mortality after the drought. 

The methodology described and the code written for this chapter are fairly flexible and 

would allow modelling ofnon-monotone shapes of the hazard function without further 

development efforts.   

6.2 Fitting phase 

Differences in the significance of the PBAL parameters for A. grandis can have two 

origins. First, the p-value for the logistic model is not very large, and the increase in 

power due to the major increase in total number of observed trees and dead trees could 

cause the p-value to get close to the p-value for the survival model. The second possible 
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cause of differences is the differences between the log-likelihood ratio test and the Wald 

test already pointed out in the methodology section. As noted by Harrell (2001) the Wald 

test is sensitive to problems in the estimated variance-covariance matrix in the full 

model, and to the way the parameter appears in the model. 

An interesting possibility of survival analysis is to test the hypothesis of constant hazard 

functions. When I tested this hypothesis for the survival models (Table 2-) two out of the 

three species studied could be assumed to have constant hazard. P. contorta, in 

contrast, was found to have increasing mortality with time at α = 0.05. In the context of 

background mortality models, and taking into account that the year of establishment of 

the plot (year zero) is potentially different for each stand, this might indicate the need to 

study the possible leverage of one or more stands with 4 remeasurements. If I was 

studying the effect of a treatment in stands where all data have the same starting year 

(e.g. 1989), this would indicate that the treatment had a statistically significant negative 

result on the survival probability of P. contorta trees. 

6.3 Validation phase 

Overall, the survival regression approach results in a consistent improvement of the 

discrimination and overall explanatory power of the models that is encouraging. Notably, 

survival regression models better allocate tree mortality, assigning more probability of 

mortality to trees that actually die than the logistic regression models. Correctly 

allocating mortality among trees is important because the size and social position of the 

dead trees influence the variables that define stand structure and dynamics. The death 

of a tree directly reduces density measures, and affects the social position of the 

remaining trees, which in turn defines diameter growth, potential regeneration and 

probability of mortality of the residual trees. Thus, the correct allocation of tree mortality 

of the survival regression models results in models that produce more realistic stand 

structure and dynamics.  

Reliability measures improved for P. contorta, but worsen for A. grandis and P. 

mensiezii. These results are in concordance with differences observed in mortality rates 

in the calibration datasets. Species with the highest differences in reliability also had the 
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highest difference in mortality ratio between the two datasets. For P. contorta, the only 

species with similar mortality rate in both datasets, reliability improves using the survival 

model, suggesting that with similar mortality rates in the other two species reliability 

might as well improve in survival models. This high sensitivity of empirical mortality 

models to the characteristics of the calibration dataset resulting in temporal and spatial 

inflexibility is one of the arguments made against empirical mortality models (Hawkes, 

2000). Some authors have suggested a shift in emphasis toward modelling for 

exploration and explanation, rather than to predict with high levels of accuracy as a tool 

to overcome the problems in mortality modelling related with the poor understanding of 

tree mortality processes and the chronic shortage of data (Hawkes, 2000). Survival 

regression would be a valuable tool on both fronts since, as presented in the 

introduction and methodology sections of this chapter, it uses more efficiently the data 

available (Ingram and Kleinman, 1989) and is also a catalyst for the study of 

environmental time-dependent variables. 

At first, it might be disconcerting to see that the slopes decrease but the D-index and c-

index increase. This actually has an easy explanation. Recall from chapter 1 that the D-

index is a likelihood ratio test to test the hypothesis that the coefficient is statistically 

different from zero; that is, is an indicator of the explanatory power of the model. Even 

with a higher slope, the explanatory power of one model can be lower than the 

explanatory power of the other model if the variability of the predictions around the 

observed values is high. This concept is easier to describe in the simple linear case (y = 

a+bx). Figure 2-5 reproduces the data and the fitted line for two simple linear models. 

On the left panel the slope is higher, but the variability around the predicted values is 

also higher than in the right panel, yielding higher slope but lower R2. In the left panel, x 

values correspond better on average to the actual y variables, but for a similar predicted 

x value the corresponding y can vary markedly. The ability of the model to explain 

variability in the dependent variable is better in the model represented on the right panel, 

a higher x corresponds more often with higher y, although values of x do not correspond 

necessary with similar magnitude of y.  
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Figure 2-5. An illustration for the simple linear regression case of higher explanatory 
power with lower slope. The linear regression model in the left panel (bold line) has a 
slope of 0.81 and R2 of 0.91, while the model on the right panel (bold line) has a slope of 
0.69 and R2 of 0.98. 

One of the main objectives of this chapter was to compare the performance of survival 

analysis against the traditional logistic regression approach to model background 

mortality. In this chapter it has been shown that survival analysis models have the 

capacity to outperform the traditional logistic regression approach, leaving the door open 

to the study of the influence of other time-dependent variables or events in non 

catastrophic mortality. The methodology presented is able to model a relatively wide 

variety of hazard functions, including Weibull and log-logistic hazard, and a negative 

binomial distribution of event times. This flexibility is a strength of the proposed 

methodology in terms of exploring changes in background mortality related with time-

dependent variables. Further research on this study area should include the 

implementation of a similar approach to Cao’s (2000) iterative method adjusted to 

survival regression. 
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7 Conclusions 

The potential advantages of survival regression models to model individual tree mortality 

have been reported in several studies (e.g. Burgman et al., 1994; Rose Jr, 2002; Rose 

Jr et al., 2004; Woodall et al., 2005a; Woodall et al., 2005b; Rose et al., 2006). 

However, to my knowledge there has not been a survival regression individual tree 

background mortality model that addresses the time-dependent nature of most of the 

covariates and the interval-censored character of tree death events, and that is 

applicable to uneven age mixed-species stands. In this chapter a survival regression 

background mortality model for individual trees that allows for time-dependent variables 

and interval censored events has been fitted to a relatively broad geographic area 

dataset and it has been compared to the traditional logistic regression approach. The 

empirical comparison of both approaches has proved that the survival regression model 

is superior, in terms of overall explanatory power, and discrimination, to the logistic 

regression approach to model individual tree background mortality.  
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CHAPTER 3. EVALUATION OF THE SENSITIVITY OF A 
POISSON BASED LOCAL COMPETITION VARIANCE 

ESTIMATE TO SPATIAL PATTERNS 

1 Introduction 

Competition among neighboring trees plays an important role in forest stand dynamics. 

Because competition affects each of the basic components of most tree growth models 

(Begon et al., 1996), it is broadly included in forest growth and yield simulation systems 

(Hann and Zumrawi, 1991). Competition variables, such as stand or point basal area, 

are, like most measured variables, subject to measurement error. The main source of 

error for competition variables arises from the variability inherent to point estimation 

(Stage and Wykoff, 1998) that originates when competition variables are estimated 

through sampling. 

The potential effects of measurement error when ignored in regression model 

development are well known, and include bias in the coefficients of the model parameter 

estimates and bias in model predictions (Canavan and Hann, 2004). The recognition of 

these critical latent risks has motivated sustained attention in forestry literature for the 

last five decades (e.g. Jaakkola, 1967; Hann and Zumrawi, 1991; Stage and Wykoff, 

1998; Lappi, 2005). Most of these studies examined the effects of alternative sampling-

unit designs on the sensitivity of the models to the competition variables (Jaakkola, 

1967; Stage and Wykoff, 1998; Hynynen and Ojansuu, 2003; Lappi, 2005), and on 

growth-model predictions (Hann and Zumrawi, 1991; Stage and Wykoff, 1998; 

Ledermann and Eckmüllner, 2004); but few of them propose a method that addresses 

totally or partially the negative effects of measurement error. Ledermann and Eckmüllner 

(2004) proposed the record splitting method to adjust the resolution of the basal-area-in-

larger trees competition variable during simulation. The record splitting method does not, 

however, address other problems caused by measurement error in model fitting, such 

as bias in the coefficients or the lack of validity of the test for the statistical significance 
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of the coefficients of the model. Stage and Wykoff (1998), in contrast, proposed a 

solution to address the adverse effects of measurement error in both the fitting and the 

prediction phases of the models, which they called “Structural Based Prediction” (SBP). 

The methodology they proposed was based on Fuller’s method of moments regression 

estimator (Fuller, 1987), which assumes, as well as many other approaches to correct 

for measurement error, some knowledge of the variance of the measurement error 

(Fuller, 1987; Carroll et al., 2006). The correct estimation of the variance is one of the 

most critical steps in all of the most widely used approaches for the correction of 

measurement error (Fuller, 1987; Carroll et al., 2006). 

Estimates of the variance can be obtained from internal replicates, that is, when several 

measurements of the competition variable are available one can estimate the variance 

with the usual sample-based estimator. Standard forest inventories do not include 

replicates of local competition variables, and doing so would multiply the cost of the 

inventories; however, when more than one plot is measured in each stand it is possible 

to estimate the variance of the stand competition from those replicates. Other options 

when internal replicates are not available include estimating the variance from external 

studies or deriving it from the data available in the inventory. Because the variance 

changes with the spatial structure, diameter distribution and plot size (Stage and Wykoff, 

1998) the former option would require herculean work and data that are usually not 

available on inventories. The latter involves assumptions about the spatial pattern of tree 

locations, and about the diameter correlation among neighboring trees. This last 

approach was selected by Stage and Wykoff  (1998) to implement the only methodology 

developed until now that corrects for measurement error in competition variables in both 

the calibration and application phases of diameter increment / basal area models. Even 

though the variance equations developed by the mentioned authors are the only ones 

available at the moment, and albeit the variance estimates are a key component of the 

approach, there has been no study of the performance of the equations with respect to 

the estimation of the real variance in simulated or real stands.  
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1.1 The variance of local competition variables  

As mentioned earlier, Stage and Wykoff’s approach requires certain assumptions to 

derive the variance. One of the main assumptions is that tree locations and tree 

diameters follow a random (Poisson) pattern. Thus, it assumes independence of the 

location of each tree from the location of the rest of the trees, independence of the 

diameter of each tree from the diameters and locations of the rest of the trees, and 

hence, that the tree counts in each diameter class is itself a Poisson-distributed variable. 

These assumptions are not met in practice (Stage and Wykoff, 1998; Lappi, 2005), but 

so far there is no better feasible approximation to the variance of measurement error in 

local competition variables.  

With the above assumptions and an asymptotic approximation to the variance of the 

percentile component by Wilks (1962), Stage and Wykoff derived an estimate of the 

variance of two local competition variables, point basal area (PBA) and point basal area 

of larger trees (PBAL) (see Stage and Wykoff (1998) for details). 

1.1.1 Sampling local competition variance 

The sampling variance of PBA in the neighborhood of the tth tree is estimated according 

to Stage and Wykoff (1998) as: 

ሻܣܤ௧ሺܲݎܽݒ ൌ ܣܤܲܣܤܵ ܿଶ ቎ቌ෍ ௝ସ௝ܽܪܤܦ௝ܯ
௥

௝ୀଵ ቍ െ ௧ସܽ௧ܪܤܦ ቏ 

Where DBH is diameter at breast height, c=π/[4(10,000 cm2/m2)] for diameters in cm 

and area in hectares, a is the area of the plot, M is the number of trees per area, and r is 

the number of tree records left in the inventory sample point at the current time step. 

The reasoning behind the last term of the equation is that when we sample the local 

competition around a tree, every sample includes that particular tree, and thus its 

distribution is not a true Poisson distribution but it is truncated since all potential plot 

locations including a certain tree always include at least that tree.  
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Froese (2003) argued that Stage and Wykoff erroneously omitted the Mt term on the last 

part of the equation, and thus: 

ሻܣܤ௧ሺܲݎܽݒ ൌ ܣܤܲܣܤܵ ܿଶ ቎ቌ෍ ௝ସ௝ܽܪܤܦ௝ܯ
௥

௝ୀଵ ቍ െ ௧ସܽ௧ܪܤܦ௧ܯ ቏ 

The point basal area of larger trees (PBAL) is defined as (1-pt)*PBA, where pt is the 

percentile position of the tree based on the total stand inventory. The variance of PBAL 

is derived from an estimate of the variance of 1 minus percentile (vPCT) by Wilks 

(1962). In this chapter, unless otherwise stated, when I refer to Stage and Wykoff’s 

equation I will be referring to the above corrected version.  

An estimate of the PBAL variance for tree t is: 

ሻܮܣܤ௧ሺܲݎܽݒ ൌ ଶܣܤܲ · ܥܲݒ ௧ܶ ൅ ሺ1 െ ሻܣܤ௧ሺܲݎܽݒ௧ଶሻ݌ െ ܥܲݒ ௧ܶ ·  ሻܣܤ௧ሺܲݎܽݒ

where ௧ܶ ൌ ௣೟ሺଵି௣೟ሻ௥  , and r is the number of trees in the plot. 

1.1.2 The shrinkage factor 

Stage and Wykoff claimed that samples with higher than average counts per point were 

more frequently overestimating the local mean and variance, and that samples with 

lower than average counts per point were more frequently underestimating the true 

mean and variance. To overcome this problem, they added a shrinkage factor (SF) 

which is a multiplier to the PBA variance. The suggested SF was: 

ܨܵ ൌ ܣܤܵ ܸܲ ൅ ሺ1 െ ܸܲሻܲܣܤܲܣܤ  

Where PV is a constant taking a value between 0 and 1. Stage and Wykoff found a 

value for PV empirically, based on the criterion of minimizing the error of the estimate of 

the resulting model. The selected PV was 1, so SF=SBA/PBA. The main effect of the 

shrinkage factor is to shrink the estimated variance from the single sample towards a 

central value for the stand (Stage and Wykoff, 1998). 
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The SF is applied to all stands regardless of their spatial structure, diameter distribution 

or variance. Stage and Wykoff did not investigate whether this shrinkage factor was 

necessary for all types of stands and conditions, or if a correction for certain spatial 

structures was needed. Therefore, many questions remain unanswered. For example, 

since the SF was empirically derived one might query if the SF should be recalculated 

for each dataset to minimize the error of the estimate of the resulting model. In fact, 

since the under or overestimation of the local variance varies with the spatial pattern it 

might be necessary to adjust the SF stand by stand. For example, the variability of the 

differences between the estimates and the true local variances will be higher in a 

clustered stand than in a regular stand, so the SF adjustment needed to correct the 

under and overestimation in these two stands might be different. 

1.2 Sensitivity of the model to PBA variance 

Stage and Wykoff (1998) performed a simulation to test the sensitivity of the projections 

using Structural Based Prediction to the Poisson variance model. They introduced a 

variance multiplier (VM) in the model that scaled the variance of local competition 

variables. Four different VM values were tested: 0.0, 0.5, 1.0, 2.0, and they found that 

140-year volume projections with non-zero variance multipliers (VM = 0.5, 1.0, 2.0) 

varied less than 6% among themselves, but the projection assuming no error-variance 

(VM) was only 80% of that obtained with the rest of the values. They also noted that 

increasing the VM forced PBA and PBAL coefficients towards zero, and seemed to 

decrease growth predictions at low stand densities and increase largely growth 

predictions at high stand densities. While this sensitivity analysis provided some useful 

information, it was rather arbitrary. An analysis where the variance was derived from a 

typical range of actual or simulated actual stand structures could provide a more realistic 

approximation of the sensitivity in genuine applications.  

In regression calibration (RC) as well as in the fitting phase of Stage and Wykoff’s 

algorithm, the average variance of all trees is used to correct the adverse effects of 

measurement error (see Chapter 1). Hence, overestimation of the variance in some 

trees or stands will compensate, at least partially, for the underestimation in some other 
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trees and stands. The bias, if any, of the estimates will be reduced, but the overall 

variance might still be biased, resulting in bias in model coefficients. 

When we use the measurement error-corrected models to predict future mortality or 

basal area growth in a typical application context, the measurement error corrections are 

made tree-by-tree (SBP) or stand-by-stand (RC). This implies that the reduction in the 

bias of the fitting phase due to averaging disappears or is severely reduced during the 

prediction phase, and thus, the effects of the deviations of the variance estimates from 

the true variances might have a large effect on predictions. Thus, sensitivity of the 

models in the fitting and prediction phase must be studied separately. 

The variance of the measurement error is a defining component of both SBP and RC 

methodologies. The equations used to estimate it assume several hypotheses that are 

known to be false. Previous analyses on the sensitivity of the models to these 

assumptions have been useful first approximations, but many questions remain 

unanswered, including the bias of the variance estimates in different spatial patterns, the 

impact of the SF in stands with different spatial patterns, or if the effect of the SF is 

affected by the diameter distribution.  

1.3 Objectives and Approach 

The overall goal in this chapter is to study the behavior of the variance of local 

competition variables in different spatial patterns and diameter distributions, and to study 

the sensitivity of the mortality models to deviations from the estimated variance of local 

competition variables. 

This overall goal is divided into four specific objectives: 

- examine and quantify the deviations of the variance estimate from the real 

variance for different spatial patterns and diameter scenarios, 

- analyze the effect of the shrinkage factor used by Stage and Wykoff (1998) in 

the estimate of the variance for different spatial patterns, 
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- study the sensitivity of the coefficients in the mortality model to measurement 

error variance, and 

- examine the sensitivity of model predictions to measurement error variance. 

My approach to these objectives has two parts. First, I create simulated, spatially-explicit 

stands, for which the real measurement error variance can be quantified, and to which 

different variance approximations can be compared. Second, I use sample plot data 

from the calibration and validation data sets used in Chapter 1 to test the sensitivity of 

variance multipliers and assumptions about the shrinkage factor. 
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2 Creating spatially-explicit simulated stands 

The variety of spatial patterns and diameter distributions combinations found in North 

American forests is so large that it would be impossible to test all of them, at least in the 

scope of this chapter. Therefore, I selected four combinations of spatial patterns and 

diameter distributions that represent a variety of situations of natural stands with rather 

distinct patterns. To ensure and control the assumptions necessary to calculate the 

variance, the stands were simulated using spatial point processes (Stoyan and 

Penttinen, 2000). I selected four prototypical stands covering a wide range of spatial 

patterns, including a highly clustered stand, a Poisson forest, and stands defined by 

inhibition processes. A thorough introduction to point processes can be found in Diggle 

(2003), and for a more mathematical presentation see Stoyan et al. (1995).  

The prototypical stands should be realistic not only in terms of their spatial pattern, but 

also in terms of their diameter distributions and correlation in diameter among 

neighboring trees. The first step to succeed in this goal is to recreate suitable spatial 

patterns, the second step is to assign diameters according to the objective stands. 

2.1 Spatial point process 

The first prototypical stand is intended to represent a young, naturally-regenerated and 

even-aged stand, so I will be referring to it as young. The young stand represents the 

early stages of development, with a clear clustering due to environmental heterogeneity, 

seed dispersion or competition with other species. The mean and variance of tree 

diameter should be relatively small. Young stands were simulated using the spatially 

homogeneous Matèrn cluster process (Matèrn, 1960, 1986). To simulate this process, 

three parameters must be specified; I adopted values of the intensity of the Poisson 

process of cluster centers of 0.01, radius of the clusters 3.0 m, and mean number of 

trees per cluster of 10. 

The second prototypical stand recreates a Poisson forest, so it will be called Poisson. As 

a stand matures, the spatial distribution has a tendency towards regularity (Reed and 

Burkhart, 1985; Stoyan and Penttinen, 2000). So the Poisson forest represents an 
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intermediate state between a young stand and a mature stand. The spatial point process 

used to generate this stand is a homogeneous Poisson process. The variance in the 

tree diameters is larger than in the young stand, and the number of trees is smaller. The 

Poisson process requires only one parameter be specified; the value I used to simulate 

this forest is λ=0.08. 

The third prototypical stand aims to recreate an “old growth” stand, and therefore I name 

it old. This stand is simulated by assuming trees are distributed according to a softcore 

inhibition process (Ripley and Kelly, 1977). The SBA, mean diameter and diameter 

variance are the largest of all stands. These stands have been generated using the 

Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970; Chib and 

Greenberg, 1995), a Markov Chain algorithm, to generate simulated realizations from 

the pairwise soft core interaction spatial point process (Ripley and Kelly, 1977). The soft 

core process has three parameters: β, σ, and κ (0,1). This is an inhibitive process with 

the interpoint interaction decreasing smoothly with distance. The parameter β indicates 

the base intensity, the σ and κ parameters controls the strength of the interaction, with 

larger values of σ corresponding to stronger interaction, and larger values of κ 
corresponding to weaker interactions. The soft core point process has probability density 

function: 

݂ሺݔሻ ൌ ௡݁ିߚߙ ∑ ቆ ఙฮ௫೔ି௫ೕฮቇ೔ಬೕ ௞/ଶ
 

Where X represent the points (trees) of the pattern, n is the number of points in the 

pattern, α is the normalizing constant, and || xi-xj|| indicates the distance between xi and 

xj.The parameters I selected to simulate the old stand were β=0.09, σ=1, κ=0.5. 

The fourth prototypical stand, plantation, represents a very uniform plantation which has 

undergone light thinning. The spatial pattern of trees is defined by a hardcore process 

(Matèrn, 1960, 1986), which means that there is no tree within the inhibition distance of 

each tree, in this case 1.5 meters. The initial intensity of the Poisson process of 

proposed points is 0.1. The thinning process was simulated after the diameter 
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assignation; strips of 4 meters in width were placed each 25 meters and any tree falling 

within these strips was removed from the stand. 

2.2 Assigning diameters 

Once the tree spatial patterns have been simulated the next task is to assign realistic 

diameters to trees. The literature on forest spatial pattern simulation focuses mainly on 

reconstructing the spatial patterns of stands from tree lists. For example, Hanus et al. 

(1998) proposed a nonsimple sequential inhibition process to generate coordinates for a 

tree list based on the inhibition distance derived from the maximum crown width of an 

open-grown tree of the same species and DBH as the subject tree. Hann and Zumrawi 

(1991) following Newnham and Maloley (1970) started by simulating the random spatial 

patterns of trees, which they used to calculate the free growing space around each 

point, then sort the tree list and the areas and assign the trees to a location according to 

the hierarchy of both ordered lists. Pretzsch (1997) developed a stand structure 

generator designed for the modelling and reproduction of spatial stand structures from 

tree lists and qualitative data on the spatial pattern. The spatial pattern was the result of 

a combination of a non-homogeneous Poisson process and a hard-core process. There 

is also a fair amount of literature on this topic in the German language. Hui et al. (2003) 

proposed a method based solely on information about the angle index1 (Hui and Gadow, 

2002) and stand density to reproduce the spatial distribution of trees. Lewandowski and 

von Gadow (1997), also in German, presented a method based on the spatial 

distribution of neighbor-attributes for reproducing the structure of an heterogeneous 

mixed forest.  

Methodologies to assign tree characteristics to a spatial point pattern without a tree list 

include Reed and Burkhart (1985), who proposed to generate the diameters as a 

random variable from the correlation of diameters of neighboring trees based on the 

desired overall population characteristics and the characteristics of the neighboring 

trees. Pukkala (1989) presented two methods to predict DBH based upon tree locations. 

The first method predicts DBH directly from the position of neighbors in the vicinity of the 
                                                 
1 The uniform angle index is derived from the angles subtended by adjacent neighbors at the 
reference trees. 
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tree. The rationale of this first method is based on dependencies of tree DBH on tree 

density at different distances from the object tree. For example, if the number of trees 

per hectare increases towards the tree, it is probably a small individual. If, on the 

contrary, the stocking is very low around a tree but it increases with distance, it is 

probably a dominant tree. In the second method the tree size was assigned by 

estimating the local diameter distribution in a subearea around the object tree and 

sampling that distribution to obtain the diameters. More recently, Pommerening and 

Stoyan (2006) simulated Poisson, Matérn hard-core and a Matérn cluster process to 

investigate the need of edge correction in estimating indices of spatial forest structure. 

For the assignment of diameters they followed Nagel and Biging’s (1995) methodology 

(in German), which transforms uniform random numbers to Weibull-distributed random 

numbers. The methodologies described by Pukkala (1989) and Nagel and Biging’s 

(1995) do not require an existing tree list; they generate the tree diameters directly from 

the spatial position of neighbors in the vicinity of the object tree, general stand 

parameters, and an assumed diameter distribution.  

Since the objective of this work is not to reconstruct the spatial pattern of certain tree 

lists but to compare the variance of local competition variables in a variety of realistic 

spatial patterns and diameter distributions, the methods that do not require a previous 

tree list, Pukkala (1989) and Nagel and Biging (1995), are adequate. I selected the first 

method described by Pukkala (1989) because of the difficulty in reading Nagel and 

Biging’s (1995), written in German, and because Pukkala’s first method is simpler than 

the second and does not suppose any major disadvantage. Pukkala’s first method, 

which only requires information about the position of the trees and the stand density, 

only explained about 40% of the variability in tree diameters of the mapped stands 

studied by Pukkala (1989). The author found that the greatest share of variation was in 

the stochastic residual component, which was found to be close to normal. Therefore, 

Pukkala included a random variable normally distributed with zero mean and 

approximate standard deviation 0.7. As a result of having 70% of the variability 

produced by a normally distributed variable, the diameter distributions of the stands 

were highly normal, and the variability of diameters in plantation stands were higher than 

one would expect in such situations. Therefore, the standard deviation of the normal 
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random variable for the plantation stands was reduced to 0.1. The diameter distributions 

of young stands calculated according to Pukkala methods were within the expected 

range for this type of stands and within similar simulations (Pommerening and Stoyan, 

2006). However, the Poisson and old stands’ diameter distributions had an unusually 

normal shape.  For these two stand types the diameters were reassigned, so their final 

diameter distribution was Weibull truncated. 

One of the most common functions used to describe diameter distributions in forestry is 

the Weibull distribution, although it is not appropriate for stands with small (e.g. <7 cm) 

mean diameter (Merganič and Sterba, 2006). The Weibull distribution has three 

parameters: α, b and c. α is a location parameter, b is a scale parameter and c is shape 

parameter. The parameter b can be interpreted as the 63rd percentile of the diameter 

distribution (Bailey and Dell, 1973). 

The probability density function (pdf) of the Weibull distribution is defined as: 

݂ሺݔሻ ൌ ܾܿ ቀݔ െ ܾߙ ቁ௖ିଵ ݁ቀ௫ିఈ௕ ቁ೎
 

I note that, in forestry, inventory data are usually truncated; that is, only trees above a 

certain diameter (T) are measured. Fortunately, equations for the truncated Weibull 

function are given by (Zutter et al., 1986) and reproduced in Merganič and Sterba 

(2006): 

்݂ ሺݔሻ ൌ ܾܿ ቀܾݔቁ௖ିଵ ݁൬்೎ି௫೎௕೎ ൰  
ሻݔሺ்ܨ ൌ 1 െ ݁൫் ௕ൗ ൯೎݁ି൫௫ ௕ൗ ൯೎

 

்ݔ ൌ ܾ ቈ൬ܾܶ൰௖ െ ln൫1 െ ሻ൯቉ଵ௖ݔሺ்ܨ
 

where x indicates DBH, f(x) the probability density function, and F(x) the cumulative 

distribution function. 
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In summary, Poisson and old stands were first assigned diameters according to Pukkala 

(1989) methodology, including the random variable. Second, new diameters were 

assigned from a Weibull truncated distribution to each tree conditioned on the original 

diameter. In this second phase diameters were assigned according to the hierarchy of 

the diameters calculated by Pukkala’s methodology, so dominant trees were still 

dominant and suppressed trees were still suppressed. For example, if the diameter of a 

tree was the 15th smallest tree in the diameter ்ܨሺݔሻ ൌ ଵହ௡ 0.95  where n is the total 

number of trees in the stand, and 0.95 was added to avoid extreme large trees. For the 

Poisson stands I used b=15, c=0.87, and T=5, for old stands b=25, c=0.87, and T=5. 

2.3 Randomization 

In my simulated stands, differences among observed and estimated variances could be 

due to the spatial pattern, to the diameter correlations or to diameter variance. In order 

to analyze the origin of the potential differences between estimated and true variances, 

one or two randomizations were performed in each prototypical stand. The first 

randomization consisted on permuting DBH (rdbh) to ensure that there was no DBH 

correlation among neighbor trees (García, 2007). The second randomization was 

performed over the coordinates (rxy), so all the stands with this second randomization 

had Poisson spatial patterns.    

2.4 Prototypical stands 

The results of the spatial point processes and diameter assignments are four 

prototypical stands (Figure 3-1). Each stand type was replicated 10 times using exactly 

the same parameters. However, because point processes are stochastic, each 

realization differs from the rest of the realizations of the same stand type in tree location, 

total number of trees and other tree and stand characteristics. All created stands had a 

square shape and an area of 1 ha.  
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Figure 3-1. One of the 10 realizations of each typified stand. Circles represent tree 
diameter. The diameters are not shown in real scale but the scale is similar for all plots. 

For young stands the variance among DBHs of the same stand is relatively small. The 

mean of the average DBH of the 10 young stands simulated is only 12.5 cm, with a 

standard deviation of the average DBH of 2.3 cm. Mean and standard deviation of the 

average DBH per stand are larger for Poisson stands, 19.03 cm and 5.14 cm 

respectively, and even larger for old stands, 28.3 cm and 8.9 cm respectively, while 

plantation stands have the lowest standard deviation, 0.6 cm, and one of the largest 

means, 24.3 cm. 

All variations of the stands, non-randomized and randomized (DBH and coordinates) 

had in each realization the same stand characteristics, that is, same SBA, same mean 

and DBH variance and total number of trees. 

I used the Clark and Evans aggregation index (Clark and Evans, 1954), R , as a 

crude metric of clustering in the typified stands. R is a dimensionless number, defined as 

the ratio of the observed mean nearest neighbor distance in the pattern to that expected 

in a Poisson point process of the same intensity. A value R>1 suggest ordering, that is, 

inhibition process, and R<1 suggests clustering. To correct for bias in the R index due to 

edge effect, the Donnelly edge correction (Donnelly, 1978) was applied. The average R 

index for each stand type is as follows: 
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Table 3-1. R index of clustering. 

 non-random rdbh rxy 
young 0.51 0.51 0.99
Poisson 1.00 1.00 - 
old 1.14 1.14 1.00
plantation 1.18 1.18 1.00

In summary, a total of 40 realizations were created, that is, 10 realizations of each of the 

4 prototypical stands. On each of these 40 stands two or one (Poisson stands) 

randomizations were performed, so a total of 110 stands were simulated. 
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3 Methods 

The overall approach has two main parts. In the first one, plot sampling is simulated on 

the 110 spatially-explicit stands. For each tree included in each sampling plot the real 

measurement error variance is quantified and compared to different variance 

approximations. In the second part, sample plot data from the calibration and validation 

data sets used in Chapter 1 are used to test the sensitivity of variance multipliers and 

assumptions about the shrinkage factor. 

For the first part of the approach three variances will be calculated for each tree included 

in every plot: the PBA variance following Stage and Wykoff’s methodology with the 

shrinkage factor (hereinafter “S&W”) and without the shrinkage factor (hereinafter 

“RAW”), and the true PBA variance.  

The actual PBA variance will be calculated using bootstrapping, by placing 50 random 

plots around each tree and calculating the PBA for each of these plots. I assume that 

the variance of these 50 replicates is a good approximation to the real variance of the 

PBA around the subject tree; therefore, hereinafter I refer to this variance as “REAL”. 

The plots will have the same size and shape as the sample plots. 

A similar approach to Stage and Wykoff (1998) was used to test the sensitivity of model 

coefficients and predicted mortality to changes in the estimated variance. The values of 

the variances used to evaluate the sensitivity of the model will depend upon the results 

of the analysis of the first part of the approach on young stands.   

Data analysis, simulations and graphs for this chapter were done in R environment (R 

Development Core Team, 2008) using the ‘spatstat’ package (Baddeley and Turner, 

2005). 

3.1 Sampling simulation 

Six sampling plots were placed randomly in each stand. The sampling plots were 

selected in such way that their areas did not intersect with each other and that their 

centers were at least 12 meters from the edge. Around each tree falling inside any of 



 

 
  95 

these six plots 50 new randomly placed plots were located. The variance of the PBA of 

these resampling plots was used to calculate REAL for each tree. These plots were of 

similar size and shape as the original sampling plots and were located in such a way 

that all 50 resampling plots included the tree of interest. For each of the trees falling in 

every sampling plot three variances were calculated: the estimated real variance 

(REAL), and the Stage and Wykoff (1998) approximation to PBA variance with (S&W) 

and without (Hann and Zumrawi, 1991) shrinkage factor. 

In each stand, plot locations were recalculated, so, for example, the location of the six 

plots in the first stand is different for the non-random stand, the one with random DBH 

and the one with random location of trees. 

Root mean square error (RMSE) was used to assess the difference in the precision of 

the variance estimates (S&W and RAW) and REAL. For example, in the case of Stage 

and Wykoff, the RMSE was calculated as: 

ܧܵܯܴ ൌ ට∑ ሺோா஺௅೔ିௌ&ௐ೔ሻమ೙೔సభ ௡   

3.2 Sensitivity analysis using field data 

The second part of my approach focuses on testing the sensitivity of model coefficients 

and predicted mortality to changes in the estimated variance. For analyzing the 

sensitivity of model coefficients to variations in the variance estimate all stands in the 

fitting dataset of Chapter 1 were assumed to be young stands. Several variance 

multipliers were selected in accordance to the results obtained during the simulation for 

young stands, and applied to the estimated variance. Coefficients and statistical 

significance of the coefficients were compared for the species most sensitive to 

competition from the three studied in Chapter 1, that is, P. contorta.  

The evaluation of the sensitivity of the model to Stage and Wykoff variance was 

evaluated similarly to Stage and Wykoff’s (1998) approach, but the multipliers were 

chosen according to the results of the first part of this chapter, that is, their magnitude 

will correspond approximately to the magnitudes of the differences found between 
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variance estimates and true variances in Chapter 1. For each multiplier a new model will 

be fitted using the same calibration dataset as Chapter 1 but applying the multiplier to 

the variance.  

Four stands from the Chapter 1 validation dataset were selected arbitrarily, two of them 

with P. contorta and two of them with P. menziesii as the main species. The stands were 

selected such that per species one stand had significantly lower PBAL variance than the 

other. For each of these four stands mortality is estimated repetitively, each time using a 

different value from a range of different PBAL variance multipliers. In this phase, 

because the variance of SBA will be the same for each tree in each stand SBA will not 

be included in RC, as this makes some of the matrices not invertible, and therefore the 

algorithm produces an error. In conceivable applications this problem should be unlikely 

to be encountered, and could be avoided by using the values of all the variances, except 

for Σ௨௨, and the means from the fitting RC model, in a similar approach to Stage and 

Wykoff (1998). Since SBA is not included in any of the models and the measurement 

error associated with SBA is notably smaller than that associated with PBAL, the 

selected approach, ignoring SBA, should not cause major deviations. 
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4 Results 

4.1 Comparisons of variance estimators 

The RAW estimates of the variance are, on average, larger than the S&W estimates for 

each stand, with minor exceptions (Table 3-2. Summary of the results for REAL, S&W, 

and RAW per stand type based on average values of the 10 realizations. Standard 

deviations are the mean over all plots and stands of the standard deviations of the PBA 

variance per plot.Table 3-2 and Figure 3-2). When differences between average stand 

REAL and RAW variance estimates are calculated, the maximum values range from 

over 1,000 for old stands, to as low as 14 for randomized young stands. In contrast, 

maximum differences between average stand REAL and S&W estimates range, in 

absolute values, from 12 in the young stand to over 500 in the old stand. Differences in 

individual trees are much larger than differences per stand (Figure 3-2), with values over 

3,000 in old stands, and over 1,000 in Poisson stands. Individual differences are 

significantly reduced when the SF is used (S&W), but mainly in trees where the variance 

estimate is underestimating REAL.  

Both approaches overestimate REAL in all stands but the clustered stands (R<1, see 

Table 3-1). It is precisely in clustered stands, young stands with non-randomized 

coordinates, where the largest differences proportional to REAL can be found. In these 

stands REAL is more than 3 times the estimated S&W or RAW. In absolute value, 

however, the largest differences are found in old stands for both S&W and RAW (530 

and 1,069 respectively). The bias of the PBA variance estimate tends to diminish when 

the location of the trees is randomized, except in the case of plantation stands. Contrary, 

randomization of DBH only decreases bias for young stands. 
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Figure 3-2. Distribution of differences between average stand REAL and RAW variance 
estimates. 

 
Table 3-2. Summary of the results for REAL, S&W, and RAW per stand type based on 
average values of the 10 realizations. Standard deviations are the mean over all plots and 
stands of the standard deviations of the PBA variance per plot. 

Stand type 
PBA variance mean and  

SD (in parenthesis) 
Difference with 

respect to REAL1 REAL / variance estimate 

REAL S&W RAW S&W RAW S&W RAW 

yo
un

g 

modeled 118 
(35) 

36 
(4)

57 
(4)

-82 
(-0.69)

-61 
(-0.52) 3.28 2.07 

rdbh 80 
(25) 

28 
(4) 

48 
(5) 

-52 
(-0.65) 

-32 
(-0.4) 2.86 1.67 

rxy 17 
(7) 

29 
(4)

31 
(4)

12 
(0.71) 

14 
(0.82) 0.59 0.55 

P
oi

ss
on

 

modeled 303 
(149) 

373 
(85) 

445 
(89) 

70 
(0.23) 

142 
(0.47) 0.81 0.68 

rdbh 194 
(76) 

320 
(74) 

383 
(79) 

126 
(0.65) 

189 
(0.97) 0.61 0.51 

ol
d 

modeled 786 
(349) 

1,199 
(310)

1,706 
(359)

413 
(0.53)

920 
(1.17) 0.66 0.46 

rdbh 868 
(348) 

1,398 
(400)

1,937 
(471)

530 
(0.61)

1,069 
(1.23) 0.62 0.45 

o.rxy 762 
(302) 

983 
(257)

1,347 
(301)

221 
(0.29)

585 
(0.77) 0.78 0.57 

pl
an

ta
tio

n modeled 58 
(22) 

101 
(3)

114 
(3)

43 
(0.74) 

56 
(0.97) 0.57 0.51 

rdbh 54 
(21) 

103 
(4)

114 
(3)

49 
(0.91)

60 
(1.11) 0.52 0.47 

rxy 66 
(23) 

100
(4) 

119
(3) 

34 
(0.52) 

53 
(0.8) 0.66 0.55 

1Percentage relative to REAL in parenthesis 
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4.2 Shrinkage factor 

The effect of the SF in the estimates of the REAL variance depends on the spatial 

distribution of the trees and the diameters. Overestimation of the variance in plots with 

higher PBA than average and underestimation of the variance in plots with lower PBA 

than average is clear in Poisson, old, and plantation stands (Figures 3-4, 3-5, and 3-6). 

Non-random young stands, on the contrary, have a tendency to overestimate REAL in 

plots with lower PBA than average; this trend is exacerbated when the SF is used 

(Figure 3-3). In all the rest of the stands the shrinkage factor reduces the bias of the 

estimates with respect to PBA/SBA. The correction is, however, insufficient; that is, even 

after applying the SF, the overestimation of the variance in plots with higher PBA than 

average and underestimation of the variance in plots with higher PBA than average is 

still present. 
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Figure 3-3. Effects of the shrinkage factor (SF) in the difference between the variance 
estimate and REAL for young stands. 



 

 
  101 

 

Figure 3-4. Effects of the shrinkage factor (SF) in the difference between the variance 
estimate and REAL for Poisson stands. 
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Figure 3-5. Effects of the shrinkage factor (SF) in the difference between the variance 
estimate and REAL for old stands. 
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Figure 3-6. Effects of the shrinkage factor (SF) in the difference between the variance 
estimate and REAL for plantation stands. 
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Table 3-3. Root mean square error (RMSE) for the variance of PBA variance. 

  RMSE RMSE difference
(RAW-S&W)  stand type S&W RAW 

young non-random DBH 138.63 122.42 -16.21
random DBH 91.75 81.73 -10.02
random DBH and coordinates 19.34 22.8 3.46

Poisson non-random DBH 317.26 388.53 71.27
random DBH 250.29 334.56 84.27

old non-random DBH 1,036.72 1,898.19 861.47
random DBH 988.35 1,885.72 897.37
random DBH and coordinates 680.88 1,300.38 619.5

plantation non-random DBH 57.96 78.21 20.25
random DBH 60.18 77.69 17.51
random DBH and coordinates 52.67 77.42 24.75

The S&W approach is, on average, more precise than the RAW approach (Table 3-). 

The SF (S&W) reduces RMSE considerably in old stands, where the variances are 

higher. The RAW approach, on the contrary, outperforms the S&W approach in terms of 

precision in young stands, where the average REAL variance is the smallest, but only 

when the spatial pattern is clustered. 

4.3 Fitting phase 

In relative terms the larger differences between calculated variances and estimated 

variances occur in the young clustered stands. For the non-random DBH case, REAL is 

more than 3 times larger than that estimated by S&W. The Chapter 1 fitting dataset 

contains mainly young stands, with low PBA and PBAL estimated variance (Table 3-4). 

Certainly, not all the stands in the fitting dataset of Chapter 1 are as clustered as the 

simulation presented for this chapter, so, for purposes of testing the sensitivity to the 

Poisson assumptions for this type of stands, I will use a multiplier for the PBAL variance 

with values ranging from 0.25 to 3 (0.25, 0.5,1, 2, 3). 
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Table 3-4. Average variances of competition variables of the two datasets used in Chapter 
1 calculated following Stage and Wykoff (1998). 

 PBAL variance PBA variance 
 Calibration Validation Calibration Validation 
A. grandis 29 136 46 186 
P. contorta 6 116 16 173 
P. menziesii 20 137 37 199 

 
 
Table 3-5. Parameters and standard errors of the coefficients (in parenthesis) of the P. 
contorta model fitted using different multiplier for the variance estimate. All coefficients 
had a p<.001 at α=0.05. The standard errors were calculated by 500 bootstrap. 

 Variance Multiplier
 3 2 1 0.5 0.25 naive 

Intercept -4.013
(0.405) 

-3.923
(0.358) 

-3.77
(0.351) 

-3.691
(0.346) 

-3.651 
(0.333) 

-3.545 
(0.308) 

PBALRC 0.064
(0.007) 

0.059
(0.006) 

0.053
(0.005) 

0.051
(0.005) 

0.050 
(0.005) 

0.046 
(0.004) 

CR0.5 -0.943
(0.153) 

-0.964
(0.136) 

-1.007
(0.134) 

-1.032
(0.133) 

-1.044 
(0.131) 

-1.076 
(0.121) 

Residual 
deviance 3,867 3,856 3,849 3,847 3,846 3,844 

 

Increasing the variance of local competition variables has three main effects for the P. 

contorta model (Table 3-5). The first is an increase in the magnitude of the competition 

variable and the intercept coefficient, and a decrease in the magnitude of the CR0.5 

coefficient. The second is an increase in the standard errors of the variables with 

increasing variance, and the third is an increase in the residual deviance. 

Ten-year mortality predictions (Figure 3-8) show larger differences in mortality 

predictions between the naïve and the 0.25 multiplier lines than between the 0.25 and 

0.5 multipliers. Increasing the variance estimate increases the sensitivity of the model to 

local competition (PBAL); with increasing variance the model predicts higher mortality 

for high PBAL and lower for low PBAL. Differences are larger for low CR and tend to 

disappear rapidly with increasing CR. 
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Figure 3-6. 10-year sensitivity plot for the P. contorta model. 

 

4.4 Application phase 

Four stands from the validation dataset of Chapter 1 were selected according to the 

criteria detailed in the Methods section (Table 3-6). The first two stands were used to 

predict mortality in P. contorta and the last two in P. menziesii. The first and second 

stands have similar mean DBH but different DBH variance and mean VPBAL. The third 

stand had higher mean DBH than the fourth and much higher DBH variance. 
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Table 3-6. Characteristics of the selected validation stands. 

 
mean 

DBH(cm) 
variance 
DBH(cm) SBA(m2/ha)

mean 
PBAL variance 

stand1  24.84  91.02  37.20  114.69 
stand2  23.78  61.42  32.02  61.60 
stand3  47.23  558.41  47.02  201.12 
stand4  16.01  70.23  22.90  28.62 

Predictions for individual trees offer a wide variety of reactions to the increase in 

variance (Figure 3-8). P. menziesii predictions appear indifferent to any change in the 

variance of the local competition variable (PBAL). On the contrary, the effect of 

increasing the PBAL variance estimate in P. contorta is generally to increase the 

differences between trees with higher probability of mortality and trees with lower 

probability. In other words, trees with relatively high predicted probability of mortality in 

the null model were more sensitive to the multiplier than trees with relatively low 

predicted probabilities. The trend is relatively consistent across trees. Therefore, on 

average, predicted mortality for P. contorta increases with increasing variance, but 

predicted mortality for P. menziesii remains practically constant. 
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Figure 3-8. Probability of mortality in a 5-year period with different PBAL variance 
estimates for 4 different stands in the validation dataset. The mean for all the trees in the 
stand is shown in bold. 

 

The effects of increasing variance on P. contorta are not similar in all trees. Some trees 

increase their probability of mortality sharply while others are unaffected or experience a 

decrease in predicted probability with increasing error variance. This asymmetry in the 

effects of changes in error variance alters the hierarchy of probability of mortality, so 

some trees that at variance multiplier 0.25 have lower probability of mortality than 

another tree, at variance multiplier 1 have higher probability than the other tree.  
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5 Discussion 

The main objective in this chapter has been studying and quantifying the bias of the 

local competition variance, as recommended by Stage and Wykoff (1998), in different 

spatial patterns and diameter distributions . The analysis has revealed a serious 

overestimation of the true variance in most cases, including Poisson forests. I argue that 

this bias results from inadequacy of the simple Poisson assumption in the S&W 

estimator, which ignores that all possible plot samples including the tree of interest have 

overlapping areas. The estimated variance is also biased with respect to the spatial 

pattern, underestimating the variance in highly clustered stands, and considerably 

overestimating it in regular stands. This suggests, therefore, that accounting for the 

spatial patterns would improve the variance estimates. Consequences of these 

departures from the real variance in terms of model application are far from negligible, 

and justify the effort of correcting the variance to account for overlapping and for 

differences in spatial patterns. 

Stage and Wykoff’s approximations overestimate the variance of local competition 

variables in all stands but those with a clustered spatial structure. If we take into account 

that the variance estimates are derived directly from the distribution of a Poisson forest it 

is surprising to see that the estimates for Poisson stands, with or without randomized 

DBH, are considerably larger than the calculated variance. In the case of Poisson 

stands with randomized DBH, a Poisson forest is ensured by the simulation, and 

independence of DBH from the location of the rest of the trees is guaranteed by the 

randomization of the diameters. Even in this case, when all the assumptions are 

guaranteed to be met, the overestimation is substantial. I argue that the reason behind 

the overestimation of the variance is that the possible sampling points around a tree 

have overlapping areas, and this is incongruent with some of the properties of the 

Poisson distribution. One of these defining properties is the memorylessness property 

(Cox et al., 1980). It is derived from this property that the number of events (trees) in 

one time interval or area is independent from the number of events (trees) in an interval 

or area that is disjoint from the first interval or area. However, if two areas are not 
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disjoint, but are actually overlapping, the number of trees in one area is not independent 

of the other area. Since all possible samples including a tree must have an overlapping 

area that includes the tree of interest, all possible sampling plots are not disjoint, and 

thus, not independent. The expected value is still λ, so the estimates are unbiased, but 

the true variance is smaller than the estimated variance. If, for example, the sampling in 

a Poisson forest with parameter λ is such that the expected value of the overlapping 

area of the plots of size A and radius r is a, the expected number of trees per plot would 

still be λ·A but the variance would be λ·(A – a), because the overlapping area doesn’t 

contribute to the variance, it remains constant. Since any possible plot must include the 

tree of interest a is the expected overlapping area of two plots with centers within a 

distance r of the tree of interest. 

Stage and Wykoff noted that the variance model they proposed was in apparent 

contradiction with the fact that the Poisson distribution admits empty plots (count zero). 

Since the tree of interest is always included in any sample plot that measures the local 

competition around that tree, the authors concluded that empty plots are actually not 

possible. They addressed this problem by subtracting the portion of the variance 

contributed by the subject tree. The problem is actually not related with a truncated 

Poisson but with the overlapping area of potential plots. Notably, there is no need to 

correct for the truncated Poisson since the tree of interest will always be included in the 

overlapping area, and because the only variance considered is outside the overlapping 

area, a true Poisson distribution can be assumed.  

For all calculations of this chapter the corrected version of Stage and Wykoff’s equation 

(Froese, 2003) has been used. The original estimate suggested by Stage and Wykoff 

(1998) reduced the variance under the truncated Poisson by subtracting the portion of 

the variance contributed by the subject tree. This corrected partially the overestimation 

product of overlapping. The corrected version used in this dissertation (Froese, 2003) 

does not include any variance related to the tree of interest, and therefore the estimated 

variance is smaller than the original, and the residual overestimation was smaller. If 

instead of the corrected version, estimates would have been calculated with the original 

variance, the overestimation would have been aggravated. This does not mean, though, 
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that any of the two suggested options to estimate a truncated Poisson variance is, in 

fact, correct. The variance of a Poisson truncated distribution, described elsewhere (Xie 

and Aickin, 1997), gives estimates that are between Froese (2003) and Stage and 

Wykoff (1998).  

Stage and Wykoff’s variance estimate assumes independence of tree diameters from 

the location of the remaining trees. Stage and Wykoff argued that attributes of the trees 

used to estimate the measurement error variances already include some of the effects 

of stand dynamics processes that produce the spatial autocorrelation among neighbor 

tree attributes. That is, if large trees tend to be close to smaller trees, the diameters of 

trees considered to calculate the variance will show this tendency, so if there is a large 

tree in the plot the rest of the trees will tend to be smaller, and in this way the diameter 

correlations are included in the variance estimate. 

If we assume that my assignation of diameter is realistic, and Stage and Wykoff’s 

reasoning holds, no significant differences should be found between non-random and 

random DBH. This is because, according to Stage and Wykoff’s theory, the 

autocorrelation of diameter would be at least partially incorporated into the estimate. 

Table 3-2 shows that the precision of the estimates of non-random and random DBH are 

relatively similar (difference less than 5% of larger value) in old, and plantation stands. 

Young stands have higher discrepancies between non-random and random DBH, with 

differences between 14% and 34% of the larger value. In general the estimates are 

better for random DBH stands, with the only exception of plantation stands for SW. 

However, Table 3-2 shows that in all but young stands randomization of DBH produces 

larger differences between average REAL and S&W, indicating that the PBA variance is 

on average better estimated in non-random DBH stands than in rdbh stands, but 

individual differences between REAL and the estimates are larger in rdbh. This implies 

that a correction wouldn’t be needed in the fitting phase, since SBP and RC uses 

average variance to correct for measurement error in the fitting phase, but, because 

SBP uses the individual tree measurement error variance in the application phase, 

better estimates might be obtained if DBH correlation is taken into account. One option 

to roughly estimate the DBH correlation at the plot level in a stand is to compare the 

variance of DBH within the plot and between plots. If the variance of DBH within plots is 
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smaller than the variance of DBH in the stand, then the correlation of DBH at the 

distances considered by the sampling plot can be considered positive, and negative 

otherwise (García, 2007). How to incorporate this effect in the equations needs further 

study. 

As expected, the best estimates of the variance are for the Poisson forest, and the 

estimate worsens with departures of the R index from 1. The only stands were REAL 

and RAW underestimate the variance are young clustered stands. When the locations of 

the trees in young stands are randomized the underestimation disappears and RMSE 

improves (see Table 3-2 and Table 3-3). In general, the bias estimation of the variance 

tends to diminish when the location of the trees is randomized. Thus, considering spatial 

pattern is necessary to improve the estimate of the variance of local competition. The 

problem is then how to estimate the spatial pattern from unmapped stands. One option, 

as suggest by Diggle (1979) is to use plot to stand variance ratios as indicators of spatial 

structure. In this case, one would estimate the variance of the number of trees in the plot 

by assuming a Poisson forest, and estimate the variance of the number of trees 

between plots by simply calculating the variance of the number of trees per plot in the 

stand. However, if only one plot per stand is available this approach is not feasible. 

Other options include to estimate the degree of clustering from remotely sensed data 

(Uuttera et al., 1998; Morsdorf et al., 2004).  

5.1 Shrinkage factor 

Stage and Wykoff (1998) reasoned that samples with higher than average trees per 

point will more frequently overestimate the true local mean and variance, and samples 

with lower than average trees per point will more frequently underestimate it. The stands 

simulated for this study show similar tendencies in all cases but the clustered stands.  

Clustering seems to have an inverted trend, with samples with higher than average trees 

per point will more frequently underestimate the true local competition variance. This 

tendency disappears when clustered stands have random DBH, supporting the need to 

account for diameter correlation in the variance estimate.   
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The shrinkage factor improves the variance estimate (Table 3-1and 3-2) for all stand 

types except the cluster stands. This exception seems to be explained by the 

decreasing effect of the SF on the magnitude of the variance estimates. Because cluster 

stands are the only stands where the real PBA is underestimated, when SF is applied 

the decreasing effect results in an even worse underestimation of the variance. 

As the variance estimate stands the SF has an overall positive effect on the variance 

estimates. The SF reduces drastically the tendency to overestimate the true local 

variance in samples with higher than average trees per point, and vice versa, but in 

most cases even after applying the SF the tendency is still evident. The residual trend 

varies with spatial pattern and diameter autocorrelation, which indicate that once the 

variance estimates are adjusted for these two factors, as suggested earlier in the 

discussion, a new study of the effect and necessity of the SF should be performed. 

5.2 Fitting phase 

The sensitivity analysis of the coefficients to bias in variance estimates has exposed the 

potential consequences of under and overestimation of the variance, albeit with 

limitations imposed by the low variance of the fitting dataset. For instance, Stage and 

Wykoff looked at the differences in the coefficients with different variance multipliers for 

the basal area increment model, and found that with higher variance multipliers 

coefficients involving local competition were forced towards zero. Contrary to what 

Stage and Wykoff noted, this study shows that an increase in the variance translates in 

an increase in the competition coefficients, enhancing the sensitivity of the model to the 

competition variable for the P. contorta model (seeFigure 3-2). The effects of potential 

bias in the variance estimate seem to be, therefore, of an unforeseeable sign. Effects of 

the coefficients for different species might differ from those found for P. contorta, and 

although the effects are not radical, the impact might be more sizeable if the dataset 

used had larger variances. When fitting operative models the dataset would likely 

include a higher variety of stand structures and ages, with higher variances than those 

of the fitting dataset used in this chapter, thus a more accurate variance estimate might 

be very beneficial. 
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Under or overestimation of the variance has an apparent effect on the estimated value 

of model coefficients, but not so much on their statistical significance. Similar to results 

presented by Kangas (1998), all coefficients that were clearly significant remained 

significant. Kangas (1998) also observed that those coefficients which were not so 

clearly significant were significant in some realizations but not in others. Because in this 

study the two variables included in the P. contorta model were highly significant 

(p<0.001) it was not possible to study the effect of variance fluctuations with respect to 

coefficient significance. 

Realistically, since we know that in most cases Stage and Wykoff’s equation 

overestimates the variance, and since in the fitting phase the variance used is the 

average over all trees and stands, we can presume that unless the fitting dataset has an 

unusual proportion of clustered stands, the estimates of the coefficients calculated with 

the real variance should be fairly close to those estimated using Stage and Wykoff’s 

equation. Differences between a multiplier of 1 and 0.5 are not very large, so coefficients 

shouldn’t divert much from the ones obtained in Chapter 1 with a correct PBA variance 

estimate. However, this lack of sensitivity of the model coefficients to changes in the 

variance might be influenced by the overall small variance of the local competition 

variables in the stands of the calibration dataset. A more representative calibration 

dataset will have larger variances and results on the sensitivity of the model to changes 

in the variance might differ from the ones obtained here. 

5.3 Application phase 

Overall 5-year predicted mortality in stand 1 more than doubles between variance 

multipliers of 0.25 and 3. Taking into account that the most common individual tree 

simulation engines do not predict mortality in a deterministic way, but use the probability 

of mortality to reduce proportionally the number of trees represented by the sample tree 

in the stand (Dixon, 2003), the effect of under or overestimating the variance are not 

negligible during application. The possible effects of miscalculation of the variance of 

local competition variables on mortality predictions might be very large and will be likely 

reflected in the calibration indexes of any validation. These results differ from the small 
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differences found by Stage and Wykoff in 140 year old simulation for the basal area 

increment model. 

The minor effect of the changes in the variance for the P. menziesii model reveals that 

the effect depends greatly on the sensitivity of the model to the variable. P. contorta is 

more shade intolerant, and therefore more sensitive to PBAL than P. menziesii. The 

effects on the predicted probability of mortality of PBAL variance deviations are much 

larger in the first than in the second species. 

Another interesting point to consider is the asymmetrical effect of changes in the error 

variance in different trees. This unequal behavior to increases or decreases in the 

variance has an effect on the hierarchy of probability of mortality of the stands. Since 

some of the most commonly used measures of a model’s predictive discrimination are 

based on comparing the probability of mortality of pairs of trees such that one is alive 

and the other dead, e.g. c-index (Harrell et al., 1982; Harrell et al., 1984), the 

asymmetrical effect will also likely affect discrimination indexes on the validation results. 

In the case of SBP it has to be noted that in the application phase the correction is made 

tree by tree and the variance estimate used to correct measurement error is the one 

calculated for each individual tree. If differences in average estimated variance and 

REAL can be over 400, the differences between individual tree estimations for the 

variance and REAL can reach over 2,000 (see Figure 3-2) even after the SF. These high 

individual differences might produce an undesired effect on predictions. An interesting 

question to be addressed in the future is if these rather large differences between real 

and estimated variances in individual trees have such a large effect on basal area 

increment models as it has in mortality.  
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6 Conclusions 

The study of the behavior of the local competition variance suggested by Stage and 

Wykoff (1998) has uncovered a major omission in the variance estimate. Ignoring that all 

the possible plot samples including a tree of interest have overlapping areas causes 

overestimation of the variance in most spatial patterns. Addressing this bias should be a 

priority in the improvement of the estimates. 

This study has revealed that underestimation of the variance in highly clustered stands 

can be large, and that, in general, accounting for the spatial patterns and diameter 

correlation would improve the variance estimates. It has also been shown that the effect 

of the SF differs depending on the spatial structure of the stands. It is therefore 

concluded that taking into account the spatial structure of the trees is necessary to 

improve the accuracy of the variance. Approaches to estimate the spatial patterns and 

diameter correlations from unmapped stands have been suggested.  

Although coefficients don’t seem to be very sensitive, at least for this calibration dataset, 

to small departures from Stage and Wykoff approach, in application differences are 

much larger and suggest that implementing the above improvements would certainly 

enhance the already proven abilities of measurement error techniques to increase the 

predictive ability of the models. 
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SUMMARY AND CONCLUSIONS 

This dissertation aimed to advance individual tree mortality models, focusing on two 

main aspects: correcting for measurement error in competition variables in mortality 

models, and evaluating survival analysis techniques as an alternative to modelling 

background individual tree mortality. In this work I have implemented state of the art 

techniques that have proven to enhance the performance of background mortality 

models.  

In the first chapter the implemented algorithm to correct for measurement error in 

competition variables successfully increased the discrimination ability of the models 

where the competition variable studied was statistically significant. These improvements 

were larger when the species were shade intolerant. The fitting and variable selection 

process revealed that past emphasis on DBH as a predictor variable for mortality, while 

producing models with strong metrics of fit, may make models less generalizable. 

Results from the second chapter suggest that not only is survival regression adequate to 

model background mortality, but it is superior in terms of discrimination to the traditional 

logistic regression. The potential of survival regression to model and test changes in 

mortality through time and the superiority of this approach to the logistic regression open 

the door to the evaluation and modelling of tree mortality responses to environmental 

and human disturbances through time, e.g. thinning, droughts, allowing more flexibility 

exploring and modelling time dependent effects. Another advantage or survival 

regression is the ability to optimize the use of the information available in the calibration 

datasets.  

The core of the most commonly used measurement error correction algorithms is the 

error variance. In the third chapter of this dissertation I evaluated the sensitivity of the 

estimate proposed by Stage and Wykoff (1998) to derive the local competition error 

variance from a single sample plot. I uncovered a major omission in the variance 

estimate that results in a noticeable overestimation of the true variance in most stand 

types. The study also revealed that variations in the estimate has a noticeable effect on 
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the predicted mortality, especially for those more shade intolerant species, which justify 

the need to correct the source of the general overestimation and adjust the variance 

estimate to account for variability in spatial patterns.      

One of the elements that highlights the results of this dissertation is the fortunate 

availability of two independent datasets, which has allowed not only to fit parsimonious 

models which performs similarly to models with three times more variables, but has also 

given credibility to the claims of improvement made in this work (Hawkes, 2000).  

Mortality is still a rare and highly unpredictable event, but the improvements, especially 

in terms of discrimination, presented in this dissertation if implemented in growth and 

yield models will result in more realistic stand structures and more sensible 

management decisions, which can potentially turn in more efficient use of forest 

resources. 

  



 

 
  122 

1 References 

Hawkes, C., 2000. Woody plant mortality algorithms: description, problems and progress. 
Ecological Modelling 126, 225-248. 

Stage, A.R., Wykoff, W.R., 1998. Adapting distance-independent forest growth models to 
represent spatial variability: effects of sampling design on model coefficients. Forest Science 44, 
224-238. 

 

 


	Towards greater accuracy in individual-tree mortality regression
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION TO THE DISSERTATION
	1 Forest models
	2 The mortality component
	3 Modelling mortality
	4 Improving individual tree mortality models
	5 References

	CHAPTER 1. A MEASUREMENT ERROR MODEL OFINDIVIDUAL-TREE MORTALITY
	1 Introduction
	1.1 Modelling Tree Mortality
	1.2 Measurement Error in Simulation Systems
	1.3 Objectives

	2 Materials and methods
	2.1 Regression Calibration
	2.2 Calibration and Validation Data
	2.3 Model Development and Evaluation
	2.4 Model Validation
	2.5 Benchmark Comparisons

	3 Results
	3.1 Regression Calibration and Data Screening
	3.2 Model Calibration
	3.3 Model Validation

	4 Discussion
	4.1 Variable selection
	4.2 Measurement error and regression calibration
	4.3 Benchmark comparisons
	4.4 Assumptions, improvements and future work

	5 Conclusions
	6 References

	CHAPTER 2. SURVIVAL REGRESSION AS ANALTERNATIVE FOR MODELLING INDIVIDUAL TREEMORTALITY
	1 Introduction
	1.1 Survival analysis techniques
	1.2 Survival analysis in forestry
	1.3 Logistic regression versus survival analysis

	2 Objectives
	3 Methodology
	3.1 Approach
	3.2 Sparling methodology
	3.3 Software

	4 Data
	5 Results
	5.1 Fitting phase
	5.2 Validation phase

	6 Discussion
	6.1 Data and model form
	6.2 Fitting phase
	6.3 Validation phase

	7 Conclusions
	8 References

	CHAPTER 3. EVALUATION OF THE SENSITIVITY OF APOISSON BASED LOCAL COMPETITION VARIANCEESTIMATE TO SPATIAL PATTERNS
	1 Introduction
	1.1 The variance of local competition variables
	1.2 Sensitivity of the model to PBA variance
	1.3 Objectives and Approach

	2 Creating spatially-explicit simulated stands
	2.1 Spatial point process
	2.2 Assigning diameters
	2.3 Randomization
	2.4 Prototypical stands

	3 Methods
	3.1 Sampling simulation
	3.2 Sensitivity analysis using field data

	4 Results
	4.1 Comparisons of variance estimators
	4.2 Shrinkage factor
	4.3 Fitting phase
	4.4 Application phase

	5 Discussion
	5.1 Shrinkage factor
	5.2 Fitting phase
	5.3 Application phase

	6 Conclusions
	7 References

	SUMMARY AND CONCLUSIONS
	1 References


