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Abstract1 
Acute alcohol consumption has been reported to decrease mean arterial pressure 

(MAP) during orthostatic challenge, a response that may contribute to alcohol-mediated 

hypotension and eventually syncope. Muscle sympathetic nerve activity (MSNA) 

increases during orthostatic stress to help maintain MAP, yet the influence of alcohol on 

MSNA during orthostatic stress has not been determined. We hypothesized that alcohol 

ingestion would blunt arterial blood pressure and MSNA responses to progressive lower 

body negative pressure (LBNP). MAP, MSNA, and heart rate (HR) were recorded during 

progressive LBNP (-5, -10, -15, -20, -30, and -40 mmHg; 3 min/stage) in 30 subjects (age 

24 ± 1 yrs). After an initial progressive LBNP protocol (pre-treatment), subjects were 

randomly assigned to consume alcohol (0.8g ethanol/kg body mass; n=15) or placebo 

(n=15) and then repeated the progressive LBNP protocol (post-treatment). Alcohol 

increased (drug × treatment, P  0.05) resting HR (59 ± 2 to 65 ± 2 beats/min) and 

MSNA (13 ± 3 to 19 ± 4 bursts/min) when compared to placebo. While alcohol increased 

MAP (83 ± 2 to 87 ± 2 mmHg), these increases were also observed with placebo (82 ± 2 

to 88 ± 1 mmHg; treatment, P < 0.05; drug × treatment, P > 0.05). During progressive 

LBNP, a prominent decrease in MAP was observed after alcohol (drug × time × 

treatment, P < 0.05), but not placebo. There was also a significant attenuated response in 

forearm vascular resistance (FVR) during progressive LBNP (drug × time × treatment, P 

< 0.05). MSNA and HR increased during all LBNP protocols, but there were no 

differences between treatments or groups (drugs). In summary, acute alcohol ingestion 

induces an attenuation in blood pressure response during an orthostatic challenge, 

possibly due to the effect that alcohol has on impairing peripheral blood vessel 

constriction.

                                                                 
1 The material in this abstract was previously published in the American Journal of Physiology – 
Endocrinology and Metabolism.    
 
Carter JR, Stream SF, Durocher JJ & Larson RA. (2011). Influence of acute alcohol ingestion on 

sympathetic neural responses to orthostatic stress in humans. American journal of 
physiology Endocrinology and metabolism 300, E771-778. 
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Chapter 1 
INTRODUCTION 

1.1 Homeostasis  
The autonomic nervous system (ANS) is critical in preserving homeostasis 

throughout the body. Walter Cannon first coined this term in 1929, with “homeo” 

meaning like or similar and “stasis” meaning a condition. He described the human body 

as an open system that interacts with the environment, and hypothesized that those 

changes in the surrounding environment create internal disturbances of the system. “Such 

disturbances are normally kept within narrow limits, because autonomic adjustments 

within the system are brought into action, and thereby wide oscillations are prevented 

and the internal conditions are held fairly constant” (Cannon, 1929). This homeostasis is 

maintained by negative feedback. By comparing organisms to machines, Rosenblueth, 

Wiener, and Bigelow (1943), a physiologist, mathematician, and engineer, respectively, 

were able to recognize the importance of negative feedback in the living organism. “The 

behavior of some machines and some reactions of living organisms involve a continuous 

feed-back from the goal that modifies and guides the behaving object (Rosenblueth, 

1943).”   

When homeostasis is disrupted, the possibility of cardiovascular risks increase. 

Many lifestyle choices, such as alcohol consumption, contribute to this disruption of 

homeostasis. Alcohol has been shown to increase the incidence of both hypertension 

(Zilkens et al., 2005; Lichtenstein et al., 2006; Kloner & Rezkalla, 2007; Saremi & 

Arora, 2008; van de Wiel & de Lange, 2008; Klatsky, 2009; Wakabayashi, 2009) and 

orthostatic hypotension (Fisher, 1979; Hollister, 1992; Narkiewicz et al., 2000; Medow et 

al., 2008; Freeman et al., 2011; Lanier et al., 2011). While the long-term effects of 

moderate alcohol consumption and hypertension have been well studied and are thought 

to be due to sympathoexcitation (Johnson et al., 1986; Grassi et al., 1989; Iwase et al., 

1995; Randin et al., 1995; Kloner & Rezkalla, 2007), the link between alcohol induced 

hypotension after an orthostatic stress is still unclear.    
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1.2 Autonomic Nervous System 
Unlike the somatic nervous system, which is voluntary, the ANS operates 

predominately without any conscious input or voluntary control.  Its role is to innervate 

cardiac muscle, smooth muscle, and many exocrine and endocrine glands (Cannon, 

1929).  It is further subdivided into two divisions, the parasympathetic and the 

sympathetic nervous systems, which are both constantly active to some degree. The 

sympathetic nervous system is perhaps best known for Cannon’s infamous “fight or 

flight” analogy, and is responsible for mobilizing the body’s systems during physical or 

mental stress by increasing heart rate, increasing heart contractility, and constricting 

blood vessels. Cannon described how an animal responds to threats and that all of the 

changes that occur are “directly serviceable in making the organism more effective in the 

violent display of energy which fear or rage or pain may involve” (Cannon, 1915). The 

sympathetic nervous system is the main division of the ANS that is responsible for 

vascular tone (Cannon, 1929). The parasympathetic nervous system, also known as the 

“rest and digest” response, is responsible for conserving energy and is usually 

complementary of the sympathetic nervous system (Cannon, 1929).  

1.2.1 Adrenergic Receptors 
Adrenergic receptors are receptors that respond to both norepinephrine and 

epinephrine (Furchgott, 1959). The main neurotransmitter used to transmit information to 

the target tissue in the sympathetic nervous system via post-ganglionic fibers is 

norepinephrine (NE). NE can also be released in the bloodstream along with epinephrine 

(E) through stimulation of the adrenal medulla. T

three  (Bylund, 2007) 1 1, 2 receptors are important to the 

1 receptors are found in blood vessels and have a higher 

affinity for NE than E. Stimulation of these will cause vasoconstriction (Furchgott, 1959; 

Charkoudian & Rabbitts, 2009) 2 receptors are also found in many blood vessels and 

stimulation of these adrenergic receptors will result in vasodilation (Furchgott, 1959). 

1 receptors, which are found on 

the heart, have affinity for both epinephrine and norepinephrine. If these are stimulated, 
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there is an increase in both heart rate and heart contractility (Furchgott, 1959). There are 

2 3 2 receptors are found in many membranes of adrenergic axon 

terminals and have the ability to inhibit NE release (Marieb & Hoehn, 2008) 3 receptors 

are found in adipose tissue and stimulation will result in lipolysis (Marieb & Hoehn, 

2008). 

1.2.2 Muscle Sympathetic Nerve Activity 
Microneurography is a technique used to record sympathetic neural traffic. It 

measures the post-ganglionic efferent sympathetic bursts to skeletal muscle beds, i.e. 

muscle sympathetic nerve activity (MSNA). Microneurography originated in Sweden in 

1965-1966 by researchers Karl-Erik Hagbarth and Åke Vallbo who first developed the 

technique by inserting needles into their own ulnar nerves (Vallbo et al., 2004). In the 

late 1960s and early 70s, Gunnar Wallin and Göran Sundlöf learned the 

microneurography system from Hagbarth and made vast contributions to the development 

of not only the method, but of the role of the sympathetic nervous system in health and 

disease (Vallbo et al., 2004). This has especially played an important role in advancing 

our understanding of the pathophysiology of cardiovascular disease (Grassi & Esler, 

1999; Charkoudian & Rabbitts, 2009).  For more information about the technique itself, 

please refer to the muscle sympathetic nerve activity section in the methods of this thesis.  

Although MSNA is a measurement of the sympathetic outflow to the vasculature 

of skeletal muscle, it appears to reasonably represent sympathetic activity to other 

vascular beds and thus be a good indicator of overall sympathetic activity . It has been 

demonstrated that there is a correlation between renal NE spillover and MSNA and also 

between cardiac NE spillover and MSNA (Wallin et al., 1992; Wallin et al., 1996). As 

outlined previously, with every sympathetic burst, NE is released by post-ganglionic 

sympathetic fibers and binds to vascular receptors (Morlin et al., 1983). This process 

elicits varying levels of vasoconstriction and beat-to-beat control of arterial blood 

pressure.  These bursts represent a collection of action potentials of several nerve fibers 

(Wallin, 2006) and occur in rhythm with the cardiac cycle (Sundlof, 1978). MSNA is 

largely modulated  via the baroreflex and has a negative correlation with blood pressure, 
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specifically diastolic blood pressure (DAP) (Sundlof, 1978). If there is a decrease in 

blood pressure, there is typically an increase in MSNA which elicits vasoconstriction and 

a subsequent increase in blood pressure. If there is an increase in blood pressure, there 

will typically be a decrease in MSNA. As a result, there will be less sympathetic tone, 

which will decrease blood pressure (Sundlof, 1978). The relationship between MSNA 

and arterial blood pressure via the baroreflex is a classic example of a negative feedback 

system to aid in homeostasis. 

1.2.3 Blood Pressure Regulation 
Baroreceptors are mechanoreceptors with sensory afferent nerve endings located 

in blood vessels and the heart. They detect increases or decreases in blood pressure or 

volume by the change in stretch/deformation (Kirchheim, 1976).  High-pressure arterial 

baroreceptors are located in the aortic arch and the carotid artery and low-pressure 

cardiopulmonary baroreceptors are located in the heart (Kirchheim, 1976; Mosqueda-

Garcia et al., 2000; Freeman, 2006). If a change in blood pressure or volume is detected, 

the number of signals being sent to the nucleus tractus solitarii (NTS) in the medulla via 

afferent pathways changes, and there is a corresponding modification in sympathetic and 

parasympathetic outflow (Kirchheim, 1976). As a result, there is a change in sympathetic 

neural activity, heart rate, heart contractility, vascular tone, and total peripheral 

resistance, which results in a correction of blood pressure (Charkoudian & Rabbitts, 

2009). 

Mean arterial pressure (MAP) is the product of cardiac output (CO) and total 

peripheral resistance (TPR) (Shepherd, 1987), and CO is the product of heart rate (HR) 

and stroke volume (SV) (Rushmer & Smith, 1959). The most immediate regulation of 

arterial blood pressure is through the baroreflex (Sundlof, 1978). A summary of the short-

term events that take place if there is a decrease in MAP, including the ones that were 

already discussed, is outlined in Figure 1.2.  
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Figure 1.1 A neurogram and the corresponding blood pressure during an approximately  
30 second period of baseline. Note the relationship between fluctuations in blood 
pressure and MSNA such that burst occur more frequently during reductions in blood 
pressure. MSNA, muscle sympathetic nerve activity; a.u., arbitrary units 
 

There are several other methods the body uses to maintain a stable blood pressure, 

including the kidneys which participate predominantly in long-term control. The 

sympathetic nervous system can stimulate the kidneys to release renin, which activates 

the renin-angiontensin-aldosterone system (Rowell, 1993). When activated, this system 

can increase water and salt retention and thus, increase blood volume. Angiontensin II 

will also stimulate vasopressin release from the posterior pituitary gland, which can 

increase water and salt reabsorption. Angiontensin II and vasopressin are vasoconstrictors 

as well (Rowell, 1993). This is also diagrammed in Figure 1.3. Additionally, local factors 

can play a role in blood pressure regulation. Endothelial cells can release vasodilators 
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such as nitric oxide (NO) and prostaglandins, which can decrease local sympathetic tone 

and therefore, TPR (Wolf et al., 1999). 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 The body’s short-term response to a decrease in blood pressure via the 
baroreflex. MAP, mean arterial pressure; NTS, nucleus tractus solitarii; MSNA, muscle 
sympathetic nerve activity; HR, heart rate; CO, cardiac output.  
 

 

 

 

 

 

 
 
 
 
 
 
Figure 1.3 The body’s long-term response to a decrease in blood pressure. MAP, mean 
arterial pressure; SNS, sympathetic nervous system. NA+, sodium. 
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1.3 Orthostatic Hypotension 
Orthostatic hypotension (OH) often results after a postural change to the upright 

position. One of the first physiological accounts of this came from Thomas Lewis who 

was a medical doctor studying British soldiers in World War I.  He noticed a drop of 30 

mmHg or more in blood pressure as soldiers went from supine to erect (Lewis, 1920). 

This idea was expanded on by Swedish physicians, Bjure and Laurell, who in the late 

1920s and 30s demonstrated that patients with orthostatic hypotension had reduced stroke 

volume and cardiac output (Streeten, 1999). 

In the past, OH was used to describe an abnormal drop in blood pressure after 

standing up. However, the American Autonomic Society and the American Academy of 

Neurology defines  OH as a decrease in SAP of at least 20 mmHg or DAP of at least 10 

mmHg within three minutes of standing ((NIAAA), 2012). It is more common in elderly 

(Vaddadi et al., 2007; Freeman et al., 2011), females (Ganzeboom et al., 2006), 

astronauts that return from space (Mano & Iwase, 2003), and highly trained endurance 

athletes (Raven & Pawelczyk, 1993). It occurs spontaneously in 0.5% of individuals 

(Medow et al., 2008) and is also a major risk factor for falls, which can lead to serious 

injuries (Naschitz & Rosner, 2007).  

When a person stands up, anywhere from 300-800 mL of blood redistributes to 

the lower part of the body such as the legs, buttocks, pelvis, and splanchnic region 

(Freeman, 2006). As a result, there is a drop in stroke volume (SV), cardiac output, and 

arterial blood pressure (Burke et al., 1977). The baroreceptors located in the carotid 

arteries, aorta, and the heart quickly detect the drop in blood volume and pressure 

(Bradley & Davis, 2003). The heart rate increases almost immediately due to 

parasympathetic withdrawal and an increase in sympathetic activity (Burke et al., 1977; 

Freeman, 2006). There is also vasoconstriction in the splanchnic, renal, and skeletal 

muscle regions and a subsequent increase in TPR (Burke et al., 1977; Rowell, 1993; 

Freeman, 2006). Additionally, the contraction of the leg and abdominal muscles upon 

standing activates the skeletal and respiratory pumps and enhances venous return to the 

heart (Bradley & Davis, 2003; Medow et al., 2008). An orthostatic challenge has also 
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been shown to increase plasma NE levels (Mosqueda-Garcia et al., 2000), as well as 

renin, angiotensin II, aldosterone, and vasopressin (Tidgren et al., 1990; Norsk, 1992), all 

of which help to maintain blood pressure. As a result of all the above mechanisms, 

arterial blood pressure is generally well maintained during orthostasis (Burke et al., 1977; 

Sundlof & Wallin, 1978; Mano & Iwase, 2003; Freeman, 2006; Ichinose et al., 2006).  

OH is due to a drop in CO and/or insufficient vasoconstriction (Sharpey-Schafer, 

1956; Medow et al., 2008; Freeman et al., 2011). It is associated with primary and 

secondary autonomic disorders, postural tachycardia syndrome, or reflex syncope 

(Medow et al., 2008). OH is often exacerbated by many factors like alcohol, medications 

(e.g. vasodilators, diuretics, antidepressants), hypovolemia (e.g. hemorrhage, diarrhea, 

vomiting), eating a large meal, exercise, prolonged bed rest, time of day (i.e. morning), a 

warm environment, or having poor respiratory or skeletal pump functioning (Fisher, 

1979; Medow et al., 2008; Moya et al., 2009; Freeman et al., 2011). It can be 

symptomatic or asymptomatic (Bradley & Davis, 2003; Freeman et al., 2011).  It may 

result in presyncopal symptoms, such as dizziness, lightheadedness, blurred vision, 

weakness, fatigue, and nausea (Medow et al., 2008) or syncope itself if there is a 

transient loss of consciousness (Moya et al., 2009; Lanier et al., 2011). If syncope results 

it is often neurally-mediated, with a sympathetic withdrawal and parasympathetic 

activation (Medow et al., 2008; Moya et al., 2009). 

There are a few variants of OH that have recently been discussed in the literature. 

Initial OH is a drop in SAP of at least 40 mmHg and/or DAP of 20 mmHg within 15 

seconds of standing (Wieling et al., 2007; Freeman et al., 2011). If often happens in 

young, asthenic subjects or the elderly (Moya et al., 2009). In delayed OH, there is a fall 

in BP beyond three minutes of a postural change (Moya et al., 2009). There is a decrease 

in venous return over time and this causes a reduced CO. It is mostly seen in older 

individuals (Freeman et al., 2011).  
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1.3.1 Methods for Inducing Orthostatic Stress  
Lower body negative pressure (LBNP) and head-up tilt (HUT) are two common 

ways to elicit an orthostatic challenge. During LBNP, a pressure gradient is created by 

placing the lower body into an air-tight chamber with a negative pressure compared to the 

surrounding air. As a result, blood is displaced from the upper body to the lower body 

and limbs. If done progressively in discrete stages, this action gradually unloads the 

baroreceptors (Freeman, 2006). The head-up tilt is similar in that the subjects lay supine 

and then their head is tilted, usually 60-80 degrees for up to 60 min to unload the 

baroreceptors (Freeman, 2006). The main difference between these two applications is 

that splanchnic volume increases with head up tilt whereas it decreases with LBNP 

(Taneja et al., 2007). If done properly, these passive orthostatic challenges do not 

substantially activate the skeletal muscle pump (Freeman, 2006). For more information 

on the LBNP protocol that we used, please see the procedures section in the methods 

description of this thesis. 

1.4 Syncope  
An early French physician, Pierre Piorry described syncope in 1826 as “the heart 

continues to beat, but the beats have not force enough to overcome the resistance which 

is given by gravity” (Hill, 1894).  Syncope is a short- lived event with rapid onset.  It is 

due to a decrease in cerebral perfusion, which causes a brief loss of consciousness, 

followed by a spontaneous recovery (Mosqueda-Garcia et al., 2000; Vaddadi et al., 2007; 

Chen et al., 2008; Costantino et al., 2008; Moya et al., 2009).    

Syncope is a common problem, and has been reported to account for up to 1% of 

all emergency department visits and up to 3% of hospital admissions (Morichetti & 

Astorino, 1998; Blanc et al., 2002). The Framingham Study examined over 5,000 

subjects over 26 years and showed that 3% of men and 3.5% of women had at least one 

syncopal episode throughout that time period (Savage et al., 1985), and another study 

showed that syncope has a lifetime incidence of 35% (Ganzeboom et al., 2006). It is 

estimated that expenses related to syncope are approximately $2 billion a year (Sun et al., 
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2005). Syncope is related to a higher increase in fractures, injuries, depression, and 

decreased quality of life (Moya et al., 2009). 

Syncope is not a disease itself, but often an outcome due to another underlying 

cause (Zaidi & Fitzpatrick, 2000). Ganzeboom et al. (2006) reported that the lifetime 

incidence of syncope in the general public were caused by everyday situations that 

affected the maintenance of orthostatic blood pressure, such as a postural changes, people 

taking certain medications, and people suffering from hypovolemia (Ganzeboom et al., 

2006). All of these situations can cause a decreased CO and/or TPR. If the systolic blood 

pressure drops below 50 mmHg, cerebral hypoperfusion will likely result in syncope 

(Sharpey-Schafer, 1956).  

The most common kind of syncope that occurs due to orthostatic hypotension is 

vasovagal syncope, which is a type of neurally-mediated syncope (NMS). For being so 

common, the pathophysiology behind this type of syncope is still not fully understood 

(Aydin et al., 2010), but it is often a result of a combination of parasympathetic activation 

and sympathetic withdrawal (Mosqueda-Garcia et al., 2000). Figure 1.4 depicts how 

orthostatic stress might cause vasovagal syncope, a conceptual model commonly referred 

to as the ventricular theory (Mosqueda-Garcia et al., 2000). It was first popularized by 

Sharpey-Schafer as he noticed a reflex mechanism that can overcome the baroreflex 

(Sharpey-Schafer, 1956). The abrupt loss of MSNA is often the last physiological 

incident that sets off orthostatic responses (Wallin & Sundlof, 1982; Mano & Iwase, 

2003). However, this statement has recently been challenged by Cooke et al. (2009) who 

has shown that in some presyncopal subjects there was no withdrawal of MSNA 

immediately preceding syncope despite decreases in blood pressure. More research in this 

area is needed. 

1.5 Alcohol  
As mentioned previously, there are many triggers for syncope. The consumption 

of alcohol has been shown to attenuate blood pressure responses after a lower body 

negative pressure protocol (Eisenhofer et al., 1984; Narkiewicz et al., 2000) and this  
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Figure 1.4 The normal response to an orthostatic challenge, such as a postural change, 
and the ventricular theory describing how an orthostatic challenge may contribute to 
syncope (abnormal response). In the abnormal response, there is a sympathetic 
withdrawal and a parasympathetic activation, causing a decrease in vascular tone, heart 
rate, and blood pressure. SV, stroke volume; CO, cardiac output; BP, blood pressure; 
NTS, nucleus tractus solitarii; HR, heart rate.  
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could theoretically result in orthostatic hypotension and eventually syncope. Ganzeboom 

et al. (2006) reported that almost 3% of the people who had a syncopal episode had 

ingested alcohol prior to losing consciousness.  

Alcohol is generally regarded as the most abused drug in the United States (Wolf 

et al., 1999) and it has been noted that its overall harm is greater than heroin, cocaine, 

and methamphetamine (Nutt et al., 2010). It can be a huge personal, family, social, and 

economical burden. Each year in the United States, alcohol plays a role in over 100,000 

lives lost and has an economic toll over $184.6 billion (United States. Dept. of Health and 

Human Services. Office of the Secretary. & National Institute on Alcohol Abuse and 

Alcoholism (U.S.), 2000). At any given point, approximately 20-40% of patients in urban 

hospitals are admitted as a result of an alcohol-related incident (United States. Dept. of 

Health and Human Services. Office of the Secretary. & National Institute on Alcohol 

Abuse and Alcoholism (U.S.), 2000). A standard drink is considered to be a 12 ounce 

bottle of beer, a 5 ounce glass of wine, or a 1.5 ounce shot of 80-proof spirits ((NIAAA), 

2012). It is recommended that males not consume more than two drinks per day and 

females not consume more than one drink per day ((NIAAA), 2012). Any more than this 

“moderate drinking” over an extended period of time and negative side effects are most 

likely to occur.  

Alcohol is classified as a depressant, because it decreases the excitatory actions of 

the neurotransmitter glutamate and increases the inhibitory actions of the 

neurotransmitter gamma-aminobutyric acid (GABA) (United States. Dept. of Health and 

Human Services. Office of the Secretary. & National Institute on Alcohol Abuse and 

Alcoholism (U.S.), 2000).  Once it is consumed, roughly 20-25% of it is absorbed by the 

stomach, and 75-80% by the small intestine (Tateoka et al., 2007). Alcohol 

dehydrogenase, an enzyme found in the liver, converts most of the ethanol to 

acetaldehyde and then aldehyde dehydrogenase converts acetaldehyde to acetate 

(Diamond & Messing, 1994). If the alcohol is ingested on an empty stomach it only takes 

one hour for 90% of it to be absorbed and for the individual to reach his or her peak 

alcohol level (Wolf et al., 1999; Tateoka et al., 2007). Alcohol readily crosses the blood-
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brain barrier and intoxication can develop starting at levels 50 to 150 mg per dl (Diamond 

& Messing, 1994), which is roughly equivalent to readings by a portable breath test of 

0.05% to 0.15%.  

1.5.1 Long-Term Effects 
Alcohol has been suggested to play a key role in the development of certain 

cardiovascular diseases. In the United States, cardiovascular diseases contributes to more 

deaths annually than any other groups of diseases (United States. Dept. of Health and 

Human Services. Office of the Secretary. & National Institute on Alcohol Abuse and 

Alcoholism (U.S.), 2000). The long-term effects of alcohol consumption are well 

documented. Moderate to heavy drinking (i.e. greater than one drink a day for women 

and greater than two drinks a day for men) leads to hypertension (Zilkens et al., 2005; 

Lichtenstein et al., 2006; Kloner & Rezkalla, 2007; Saremi & Arora, 2008; van de Wiel 

& de Lange, 2008; Klatsky, 2009; Wakabayashi, 2009), and this is likely caused, in part, 

by overstimulation of the sympathetic nervous system (Johnson et al., 1986; Grassi et al., 

1989; Iwase et al., 1995; Randin et al., 1995; Kloner & Rezkalla, 2007). Moderate to 

heavy drinking can also lead to cancer, stroke, and cardiomyopathy among other health 

risks (Kloner & Rezkalla, 2007; Saremi & Arora, 2008; Klatsky, 2009). However, light 

drinking (i.e. not more than one drink a day for women and not more than 2 drinks a day 

for men) may lower the risk of several diseases. More specifically, cardiovascular risk 

associated with alcohol appears to have a J-shaped curve for mortality, coronary heart 

disease, blood pressure, and other cardiovascular events (Sun & Reis, 1996; Di 

Castelnuovo et al., 2002; Kloner & Rezkalla, 2007; van de Wiel & de Lange, 2008; 

Klatsky, 2009). Light drinking lowers the risk for several of these cardiovascular 

diseases, but any more than this recommended amount and risks appear to increase. The 

benefits of alcohol, no matter what the type, could be due to the anticoagulant and anti-

inflammatory properties they contains, as well as the ability to increase HDL levels (Sun 

& Reis, 1996; Di Castelnuovo et al., 2002; Kloner & Rezkalla, 2007; van de Wiel & de 

Lange, 2008; Klatsky, 2009).  
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1.5.2 Short-Term Effects 
Whereas the negative effects of the long-term consumption of alcohol are well 

documented, the short-term effects of moderate alcohol consumption remain 

controversial. Most results investigating the influence of short-term alcohol ingestion are 

documented after subjects reach mild intoxication levels. Results from these studies 

demonstrate that acute alcohol consumption generally increases MSNA (Zsoter & 

Sellers, 1977; Grassi et al., 1989; Iwase et al., 1995; Randin et al., 1995; van de Borne et 

al., 1997; Spaak et al., 2008), along with heart rate (Giles et al., 1982; Kupari, 1983; Stott 

et al., 1987; Grassi et al., 1989; Iwase et al., 1995; Randin et al., 1995; van de Borne et 

al., 1997; Narkiewicz et al., 2000; Yoda et al., 2005; Takahashi et al., 2008). 

The relationship between acute alcohol consumption and blood pressure is not as 

clear as the MSNA studies. Many studies showed that after ingestion, resting MAP 

remains unchanged (Chaudhuri et al., 1994; Tomaszewski et al., 1995; van de Borne et 

al., 1997; Narkiewicz et al., 2000; Tateoka et al., 2007; Spaak et al., 2008; Takahashi et 

al., 2008) or increases (Grassi et al., 1989; Nixon et al., 1989; Iwase et al., 1995; Randin 

et al., 1995)  

The effect that alcohol consumption has on the vasculature is also unclear. Most 

studies have demonstrated that at rest, alcohol ingestion results in peripheral vasodilation 

(Altura et al., 1979; Kupari, 1983; Johnson et al., 1986; Malpas et al., 1990; van de 

Borne et al., 1997), greater  increases in skin blood flow (Fewings et al., 1966; Gillespie, 

1967; Iwase et al., 1995; Wolf et al., 1999; Yoda et al., 2005), and a decrease in 

peripheral resistance (Kupari, 1983; van de Borne et al., 1997).   However, other studies 

report no changes in flow mediated dilation after alcohol consumption (Chaudhuri et al., 

1994; Spaak et al., 2008) and no change in forearm vascular resistance (Narkiewicz et al., 

2000). It may be that alcohol consumption results in variable effects depending on which 

vascular beds are being examined (Johnson et al., 1986).  

Several studies report an increase in blood flow to the splanchnic region after 

alcohol consumption (Carmichael et al., 1988; Orrego et al., 1988; Chaudhuri et al., 

1994; Israel et al., 1994), as well as an augmentation to gastrointestinal blood flow and a 
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drop in systemic vascular resistance (Tateoka et al., 2007).  The vasculature of the 

splanchnic region has an critical role in the maintenance of blood pressure because it has 

the greatest volume of blood of all the regional beds (Chaudhuri et al., 1994) (Taneja et 

al., 2007).   

Alcohol has also been shown to alter plasma hormone levels (Johnson et al., 

1986), but the results are not conclusive. Many studies have reported that acute ingestion 

increases plasma NE (Eisenhofer et al., 1984; Ireland et al., 1984; Randin et al., 1995) 

and inhibits vasopressin release (Eisenhofer & Johnson, 1982). Alcohol may also 

increase plasma E (Ireland et al., 1984) and has shown to have contradictory effects on 

plasma cortisol (Jenkins & Connolly, 1968; Linkola et al., 1979; Ireland et al., 1984).  

1.5.3 Acute Alcohol Consumption and an Orthostatic Challenge 
Previous studies have demonstrated that acute alcohol consumption leads to a 

decreased blood pressure response during a progressive lower body negative pressure 

protocol (Eisenhofer et al., 1984; Narkiewicz et al., 2000). Narkiewicz et al. (2000) also 

reported a blunted forearm vascular resistance (FVR) response in the alcohol group 

during progressive LBNP. These responses may be due to a lack of blood vessel 

constriction (Eisenhofer et al., 1984; Narkiewicz et al., 2000).  However, it was not 

determined if the blunted vasoconstriction was due to a decreased sympathetic response 

during the orthostatic challenge (Narkiewicz et al., 2000), or whether the sympathetic 

response was still present, but the dilator effect of alcohol suppresses the vasoconstriction 

(van de Borne et al., 1997; Wolf et al., 1999; Narkiewicz et al., 2000).  

To date, no studies have examined the influence of acute alcohol ingestion and 

direct neural recordings of MSNA during an orthostatic stress.  It is possible that a 

decrease in MSNA could contribute to alcohol-mediated hypotension during an 

orthostatic challenge. The purpose of this study was to understand the role that MSNA 

may have in the regulation of the blood pressure during lower body negative pressure 

(LBNP) after acute alcohol consumption.  We hypothesized that alcohol ingestion 

would blunt arterial blood pressure and MSNA responses to progressive LBNP.  
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Chapter 2  
METHODS2 

2.1 Subjects 
Thirty subjects (23 males, 7 females) from the local community of Houghton, 

Michigan volunteered to participate in this study.  There were 15 subjects in the alcohol 

group (12 males, 3 females: age 23 ± 1 yrs, height 180 ± 3 cm, weight 86 ± 3 kg, BMI 27 

± 1 kg/m2) and 15 subjects in the placebo group (11 males, 4 females: age 25 ± 1 yrs, 

height 175 ± 2 cm, weight 76 ± 3 kg, BMI 25 ± 1 kg/m2). Subjects were randomly 

assigned to either the alcohol or placebo group. All participants had no personal or family 

history of substance abuse or cardiovascular disease. Subjects had to be at least 21 years 

of age. All females were tested in the early follicular phase of their menstrual cycle, since 

it has been shown that MSNA can vary depending on the phase of the menstrual cycle 

(Carter et al., 2009; Fu et al., 2009). This study was approved by the Michigan 

Technological University Institutional Review Board (M0472) and all subjects provided 

written consent prior to the study. 

2.2 Procedures 
Subjects arrived at the laboratory at 7:30 AM after undergoing an overnight fast 

and from abstaining from alcohol for a minimum of 72 hours and from caffeine and 

exercise for at least 12 hours. Upon arrival, subjects were given two granola bars (Nature 

Valley, General Mills Sales) to eat and water if needed in an attempt to control for the 

amount of food in the gastrointestinal tract during testing. Subjects filled out the subject 

information sheet and consent form and took a preliminary breath test. Their height and 

weight were then recorded. Following a five minute resting period, three blood pressures 

                                                                 
2 The material in this chapter was previously published in the American Journal of Physiology – 
Endocrinology and Metabolism.    
 
Carter JR, Stream SF, Durocher JJ & Larson RA. (2011). Influence of acute alcohol ingestion on 

sympathetic neural responses to orthostatic stress in humans. American journal of 
physiology Endocrinology and metabolism 300, E771-778. 
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were taken with an automated sphygmomanometer in the seated position with each 

measurement separated by a minute. After these measurements, the participants were 

asked to use the restroom to void their urine and to change into shorts. Subjects were then 

instructed to lay supine in the LBNP chamber with their lower torso inside the chamber. 

All participants wore a neoprene skirt that created a vacuum right below the subjects’ 

iliac crest, which would allow venous blood to be shifted from the upper torso to the 

lower extremities (Mano & Iwase, 2003; Freeman, 2006). This simulates an orthostatic 

stress. Subjects were then prepped to record heart rate, blood pressure, blood flow, and 

MSNA.    

Subjects underwent five minutes of resting baseline data, followed by a 

progressive LNBP protocol that consisted of three minutes each at -5, -10, -15, -20, -30, 

and -40 mmHg (pre-treatment).  Following this treatment, subjects remained supine and 

consumed either the alcohol or placebo through a straw, depending on what group they 

were randomly assigned to. Participants had 15 minutes to drink at which time their 

heads were supported at an incline to make it easier to ingest the liquid. Following this 15 

minutes, there was a 30 minute waiting period to allow for blood alcohol levels to reach 

their peak.  After this 45 minute period in which no measurements were recorded, 

subjects repeated the 5 minute baseline and the progressive LBNP protocol (post-

treatment). Table 2.1 outlines the experimental timeline. Subjects were carefully 

monitored for presyncopal symptoms and continuously asked for feedback. If any signs 

did occur such as a drop in systolic blood pressure less than 80 mmHg, profuse sweating, 

light headedness, or nausea, the experiment was stopped immediately.   

The participants were blinded to as which treatment they would be receiving. The 

alcohol group consumed 2.5 mL/kg body mass of 40% vodka (0.8 g ethanol/kg body 

mass) diluted in a 1:4 mixture of Crystal Light (Kraft Foods Global, Inc.) and the placebo 

group ingested 12.5 mL/kg body mass of Crystal Light. The amount of liquid was the 

same whether the subject drank the alcohol or placebo. Crystal light was chosen to mask 
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Table 2.1 
Timeline of the experimental protocol. 

 
 
 
 
 
 
 
 

 

the taste of the alcohol and at the same time be low in sugar. The rims of all the glasses 

were also wiped with vodka in another attempt to disguise the drink. The amount of 

alcohol used in this experiment would be roughly equivalent to four or five drinks for the 

average participant, considering that 1.5 ounces of vodka is equivalent to one standard 

drink (Lichtenstein et al., 2006; (NIAAA), 2012). This was consistent with what other 

studies had used.  

2.3 Measurements 

2.3.1 Heart Rate 
 Heart rate was measured using a three- lead electrocardiogram. Two electrodes 

were placed on the shoulders and one was placed on the lower left rib cage. Baseline 

heart rates were successfully recorded on all 30 subjects for both pre- and post-treatment. 

However, one placebo subject reached presyncope during the post-treatment LBNP 

protocol, making our heart rate measurements for the entire study (baseline plus LBNP), 

n=15 for alcohol and n=14 for placebo. 

2.3.2 Blood Pressure 
After an initial five minute resting period when subjects first arrived to the 

laboratory, three blood pressures each separated by a minute, were recorded in the seated 

position using an automated sphygmomanometer (Omron HEM-907XL; Omron Health 

Care). The automated sphygmomanometer was also used to record three supine blood 

pressures (each separated by a minute) immediately before the pre-treatment and post-

Baseline Progressive 
 LBNP 

Treatment 
(Alcohol 

or 
Placebo) 

Baseline Progressive 
 LNBP 

5 min 18 min 

15 min 
 ingestion 
 30 min 

rest 

5 min 18 min 
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treatment protocols. The average of these three blood pressures was used to determine 

baseline values. Beat-to-beat blood pressure was also recorded throughout the entire 

experiment using the Finometer (Finapres Medical Systems, Amsterdam, The 

Netherlands). The Finometer is a noninvasive blood pressure acquisition. It was used to 

precisely record the relative changes in the blood pressure and the readings from the 

automated sphygmomanometer were used for absolute baseline measurements. Blood 

pressures were recorded as systolic, diastolic, and mean arterial pressures. Mean arterial 

pressures were calculated as DAP plus one-third of the pulse pressure (SAP minus DAP). 

All blood pressures were taken on the right limbs of the subjects. Baseline measurements 

were obtained on all 30 subjects for both pre-and post-treatment.  For the entire study 

(baseline plus LBNP), n= 15 for alcohol and n=14 for placebo (due to the presyncopal 

participant).  

2.3.3 Muscle Sympathetic Nerve Activity 
Microneurography is a technique that allows direct measurement of autonomic 

function, more specifically, the sympathetic nerve activity to the vasculature of muscle 

beds (Freeman, 2006). Microneurography was performed on the right leg of each subject. 

Multifiber recordings of MSNA were obtained by inserting a sterilized tungsten 

microelectrode into the superficial peroneal nerve located in the popliteal region behind 

the knee. A reference electrode was placed roughly two centimeters from this recording 

electrode. The nerve signal was amplified (80,000 gain), band-pass filtered (700-2,000 

Hz), and integrated at a time constant of 0.1 seconds to obtain a mean voltage display of 

nerve activity.  This signal has a latency period of approximately 1.3 seconds after an R-

wave occurs. MSNA recordings were considered satisfactory when spontaneous pulse 

synchronous bursts did not change during auditory stimulation or stroking of the skin and 

increased during end-expiratory apnea. 

MSNA can be quantified by: 1) burst frequency, often recorded as bursts per 

minute 2) burst per 100HB, since MSNA is linked to the cardiac cycle, and 3) total 

MSNA, which is a combination of burst frequency and the area under each burst.  

Microneurography is fast acting and measurements can be taken instantaneously. It is 
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safe, can be recorded for an extended period of time, burst pattern and activity is similar 

among different nerve sites, and it is highly reproducible from day to day (Freeman, 

2006). 18 individuals (9 placebo and 9 alcohol) had successful MSNA recordings that 

were obtained throughout the entire experiment (baseline plus LBNP). 25 subjects (13 

alcohol and 12 placebo) had successful MSNA recordings for the baselines of both pre-

treatment and post-treatment. 

2.3.4 Alcohol Content 
 The subject’s alcohol level was measured using a portable breath analyzer (Alco-

Sensor III, Intoximeters) borrowed from Michigan Tech Public Safety. The portable 

breath analyzer uses the breath alcohol content to estimate the blood alcohol content. The 

laboratory was given demonstrations and adequate instruction on how to properly use the 

portable breath analyzer.  Upon arrival to the laboratory, the subjects were given a breath 

test to ensure that they did not have any alcohol already in their system.  The subjects 

were also given a breath test immediately before starting the post-treatment and also at 

the end of the post-treatment protocol. Blood alcohol readings were obtained for all 30 

participants. Following completion of the study, alcohol subjects were given snacks and 

water and were continuously monitored. When their blood alcohol content measured less 

than 0.075% they were allowed to exit the laboratory. All participants had to have their 

transportation arranged ahead of time and the subjects in the alcohol group were required 

to sign a voluntary waiver in which they agreed to abstain from operating a motor vehicle 

for 24 hours upon completion of the study.  

2.3.5 Blood Flows 
 Forearm blood flow (FBF) was measured using venous occlusion 

plethysmography (EC6; D.E. Hokanson, Bellevue, WA) during the baseline and LBNP 

stages of both protocols. Mercury- in-silastic strain gauges were placed around the 

maximal circumference of the subject’s left forearm. Cuffs were placed on the left wrist 

and also on the upper left arm of the subject. The wrist cuff was inflated to 220 mmHg to 

arrest circulation to the hand. The upper arm cuff was continuously inflated (8 seconds) 

to 60 mmHg and deflated (7 seconds) for a 15 second cycle. When inflated, the upper 
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cuff occluded venous blood flow but still allowed arterial blood flow. FBF was measured 

in milliliters per 100 milliliters per minute and used to calculate vascular resistance and 

vascular conductance. Forearm vascular resistance (FVR) was calculated as MAP divided 

by FBF, whereas forearm vascular conductance (FVC) was the reciprocal of this. 

Baseline measurements were obtained on 15 alcohol subjects and 14 placebo subjects. 

Blood flows were successfully measured on all 15 of the alcohol subjects for the duration 

of the experiment, and due to the presyncopal subject, measurements were obtained on 13 

placebo participants. 

2.4 Data Analysis 
Data were imported and analyzed in the WinCPRS software program (Absolute 

Aliens, Turku, Finland). R-waves were identified from the electrocardiogram and marked 

in the time series. MSNA bursts were automatically detected on the basis of amplitude 

using a signal- to-noise ratio of 3:1 within a 0.5 second search window centered on a 1.3 

second expected burst peak latency from the previous R-wave. Potential bursts were 

displayed and edited by one trained investigator that was blinded to the intervention. The 

average burst area occurring during baseline was normalized to a mean value of 100. 

MSNA was expressed as bursts per minute, bursts per 100 heart beats, and total MSNA 

(i.e. the sum of normalized burst areas per minute).  

2.5 Statistical Analysis 
All collected data were analyzed using commercial software (SPSS 15.0, SPSS, 

Chicago, IL). Subject characteristics for alcohol and placebo groups were compared 

using independent t-tests. Repeated measures ANOVA with time (progressive LBNP 

stages) and treatment (pre- vs. post-treatment) as the within factor variables and drug 

(alcohol vs. placebo) as the between-factor variable to analyze values at rest (drug × 

treatment interaction) and throughout the LBNP protocol (drug × time × treatment 

interaction). When significant drug × time × treatment interactions were observed, each 

group was analyzed separately as time × treatment, and a priori post hoc analyses of 

treatment were performed when a time × treatment interaction was significant. One-tailed 
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analyses were performed on blood pressure, MSNA, and blood flow responses based on 

our directional hypotheses, which were guided by prior literature. Means were considered 

significantly different when P  0.05. Results are expressed as means ± SE. 
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Chapter 3 
RESULTS3 

3.1 Baseline Responses 
Pre- and post-treatment baseline values for alcohol and placebo are shown in 

Table 3.1. SAP, DAP, and MAP all increased significantly from pre-treatment to post-

treatment in both alcohol and placebo (treatment, P < 0.05; drug × treatment, P > 0.05). 

HR, MSNA bursts/min, and BAC were elevated in alcohol post-treatment (treatment, P < 

0.05), but not placebo. HR, MSNA bursts/min, and BAC were also significantly different 

in the alcohol group than compared with the placebo group (drug × treatment, P  0.05). 

Blood flows remained the same in both treatments and there was no difference between 

alcohol and placebo.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                 
3 The material in this chapter was previously published in the American Journal of Physiology – 
Endocrinology and Metabolism.    
 
Carter JR, Stream SF, Durocher JJ & Larson RA. (2011). Influence of acute alcohol ingestion on 

sympathetic neural responses to orthostatic stress in humans. American journal of 
physiology Endocrinology and metabolism 300, E771-778. 
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Table 3.1 
Pre- and post-treatment baseline values for alcohol and placebo groups. 

    
 -treatment -treatment -treatment -treatment 

    120 ± 3    124 ± 4*    117 ± 2    123 ± 2* 
      64 ± 2      69 ± 2*      64 ± 2      71 ± 2* 
      83 ± 2      87 ± 2*      82 ± 2      88 ± 1* 

      59 ± 2      65 ± 2*†      59 ± 3      58 ± 3 
      13 ± 3      19 ± 4*†      15 ± 2      15 ± 2 

      23 ± 5      30 ± 5      25 ± 3      26 ± 3 
  6330 ± 1312  8535 ± 1479  6630 ± 750  6958 ± 806 

     2.1 ± 0.2     2.1 ± 0.2     2.1 ± 0.3     2.0 ± 0.2 
      45 ± 4      47 ± 3      46 ± 5      49 ± 4 

     2.5 ± 0.2     2.4 ± 0.2     2.5 ± 0.3     2.3 ± 0.2 
   0.00 ± 0.00   0.08 ± 0.01*†   0.00 ± 0.00   0.00 ± 0.00 

Values are means ± SE (n = 15 for alcohol and n = 15 for placebo unless otherwise 
noted). SAP, systolic arterial pressure; DAP, diastolic arterial pressure; MAP, mean 
arterial pressure; HR, heart rate; MSNA muscle sympathetic nerve activity (n = 13 for 
alcohol and n = 12 for placebo); HB, heart beats; a.u., arbitrary units; FBF, forearm blood 
flow; unit = ml/100ml/min; FVR, forearm vascular resistance; FVC forearm vascular 
conductance (n = 15 for alcohol and n = 14 for placebo, all forearm variables); BAC, 
blood alcohol content. *P < 0.05 pre- vs. post-treatment baseline data in respective 
groups. †P  0.05 for alcohol vs. placebo groups. (Carter et al., 2011). 
 

3.2 Progressive LBNP Responses 

3.2.1 Hemodynamic Responses 
 Figure 3.1 and 3.2 demonstrate the responses showed by SAP, DAP, MAP 

(Figure 3.1) and HR (Figure 3.2) during progressive LBNP. Arterial pressures were 

significantly attenuated after alcohol but not placebo (drug × time × treatment, P < 0.05).  

HR responses increased during progressive LBNP, but there was no difference between 

pre- and post-treatment. 
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Figure 3.1 Changes ( ) in SAP, DAP, and MAP during progressive LBNP. n=15 for 
alcohol and n=14 for placebo. Alcohol blunted arterial blood pressure responses. *P < 
0.05 vs. corresponding post-alcohol value. SAP, systolic arterial pressure; DAP, diastolic 
arterial pressure; MAP, mean arterial pressure. (Carter et al., 2011).  
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Figure 3.2 Changes ( ) in HR during progressive LBNP. n=15 for alcohol and n=14 for 
placebo. Progressive LBNP elicited similar increases in HR during both treatments (pre- 
vs. post-treatment) and groups (alcohol vs. placebo). Drug × time × treatment interactions 
were P > 0.05 for HR, whereas the time effect was P < 0.001 for each treatment in both 
groups. HR, heart rate. (Carter et al., 2011). 
 

3.2.2 Sympathetic Responses 
 Figure 3.3 portrays similar findings to the HR response. MSNA responses all 

increased during progressive LBNP for both alcohol and placebo, but there was no 

difference between pre- and post-treatments.   
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Figure 3.3 Changes ( ) in MSNA qualified as bursts/min, bursts/100 HB, and total 
MSNA during progressive LBNP. Progressive LBNP elicited similar increases in MSNA 
during both treatments (pre- vs. post-treatment) and groups (alcohol vs. placebo). Drug × 
time × interactions were P > 0.05 for all MSNA variables, whereas the time effect was P 
< 0.001 for each treatment in both groups. MSNA, muscle sympathetic nerve activity; 
HB, heartbeat; a.u., arbitrary units. (Carter et al., 2011). 
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3.2.3 Vasculature Responses 
Lastly, Figure 3.4 demonstrates the responses showed by FBF, FVR, and FVC to 

progressive LBNP. Increases in FVR were significantly blunted (drug × time × treatment, 

P < 0.05) during progressive LBNP following the consumption of alcohol, whereas FVR 

responses were not altered by placebo. Changes in FBF and FVC were not different 

between pre- and post-treatment in the alcohol or placebo groups during progressive 

LBNP. 
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Figure 3.4 Changes ( ) FBF, forearm vascular resistance (FVR), and forearm vascular 
conductance (FVC) during progressive LBNP. Increases in FVR were significantly 
blunted by alcohol (group × time × treatment, P < 0.05). Drug × time × treatment 
interactions were P > 0.05 for both FBF and FVC, whereas the time effect was P < 0.01 
for each treatment in both groups. *P < 0.05 vs. corresponding post-alcohol value. FBF, 
forearm blood flow; FVR, forearm vascular resistance; FVC, forearm vascular 
conductance. (Carter et al., 2011). 
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Chapter 4  
DISCUSSION 

We investigated sympathetic neural and cardiovascular responses to lower body 

negative pressure both before and after ingestion of alcohol or placebo. There are three 

primary findings. First, alcohol consumption increased resting HR and MSNA burst 

frequency. Second, alcohol blunted the arterial blood pressure responses during 

progressive LBNP, yet there was no difference in MSNA responses pre-and post-

treatment.  Third, alcohol compromises increases in FVR during progressive LBNP, but 

has no effect on FVC.  

Previous studies have shown that acute alcohol consumption raises resting HR 

(Zsoter & Sellers, 1977; Giles et al., 1982; Kupari, 1983; Stott et al., 1987; Grassi et al., 

1989; Iwase et al., 1995; Randin et al., 1995; van de Borne et al., 1997; Narkiewicz et 

al., 2000; Yoda et al., 2005; Takahashi et al., 2008), resting MAP (Grassi et al., 1989; 

Iwase et al., 1995; Randin et al., 1995), and MSNA (Grassi et al., 1989; Iwase et al., 

1995; Randin et al., 1995; van de Borne et al., 1997; Spaak et al., 2008). This study also 

demonstrated increases in resting HR and MSNA bursts/min after alcohol, but not 

placebo consumption. In contrast, both placebo and alcohol demonstrated increases in 

resting blood pressure after drink ingestion.  

Stott et al. (1987) also reported increases in arterial blood pressure in both placebo 

and alcohol groups after acute ingestion. It would be easy to assume that the increase in 

arterial pressure is due to an increase in plasma volume, which would increase CO and 

thus, MAP. This may or may not be the case in both the present study and others (Stott et 

al., 1987). Jordan (2000) demonstrated that if a 175 pound (79 kg) person consumed 500 

mL of water, the total plasma volume would only change by one percent. Almost all of 

the water would be dispersed into the intra- and extracellular space and would only 

increase plasma volume by a total of 35 ml (Jordan, 2002). However, our subjects, on 

average, consumed 1,000 mL of water. Most studies that look at water drinking and 

blood pressure responses examined a maximum of 500 mL consumption (Jordan et al., 

2000; Endo et al., 2002; Jordan, 2002; Claydon et al., 2006; Callegaro et al., 2007).  
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Jordan et al. (2000) found that in patients with severe autonomic failure, drinking 480 mL 

of tap water vs. 240 mL caused a much greater increase in SAP. The effects of water 

consumption may be dose dependent, and the effect of more than 500 mL of water 

ingestion should be examined further.   

Arterial blood pressure reactivity to acute water ingestion appears to be quite 

variable. Jordan et al. (2000) found that 480 mL of tap water caused a significant increase 

in SAP in patients with severe autonomic failure or in the older control group, but not the 

younger control group. HR did not increase in the younger control group either. 

Callegaro et al. (2007) displayed that in normotensive subjects who ingested 500 mL of 

water, SAP, DAP, and MSNA all increased significantly compared with baseline 

measurements. Claydon et el. (2006) showed that in patients who consumed 500 mL of 

water, MAP significantly increased, but HR remained the same. Endo et al. (2002) found 

that after 500 mL of water ingestion significantly increased MAP and HR, and 

significantly decreased MSNA. It is evident that the research is inconclusive.  However, 

collectively it appears as if drinking a large amount of water in a short amount of time 

can elicit acute increases in arterial blood pressure. However, how this influences HR or 

MSNA remains debatable. Many of these studies suggest that the increase in blood 

pressure may be due to enhanced sympathetic activation (Jordan et al., 2000; Jordan, 

2002; Claydon et al., 2006; Callegaro et al., 2007), and this may be stimulated by the 

osmolality of the liquid being ingested (Brown et al., 2005; Claydon et al., 2006; May & 

Jordan, 2011). 

Another potential explanation for the increases in arterial blood pressure in both 

the alcohol and placebo groups could be distension in the lower torso. Many of our 

subjects stated that they wish they could have voided their urine before the post-treatment 

protocol began; however this was not an option with the microneurography technique. 

Hvarness et al. (1999) demonstrated that a “full bladder” and the urge to urinate increased 

mean blood pressure in 12 healthy females. Fagius et al. (1989) not only demonstrated an 

increase of blood pressure with bladder distension, but also an increase in MSNA as well. 

Since alcohol inhibits vasopressin release (Eisenhofer & Johnson, 1982), it might be 
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reasonable to assume that the alcohol group would have a greater gastric distention due to 

a greater urinary volume. However, Jones (1990) observed that the greatest urinary 

output after alcohol consumption occurs one to two hours after ingestion, which would 

have occurred following the completion of the experiment. Although we did not measure 

gastric or bladder distension in this study, it is reasonable to assume similar distention in 

both groups (i.e., alcohol vs. placebo) because the total amount of liquid consumption 

was similar. We believe the physiological data and comparisons are valid given this 

placebo-based time control approach. 

The increase in resting HR in the alcohol group appears to be due to increase in 

sympathetic activity and does not seem to be caused by withdrawal of the 

parasympathetic nervous system. Specifically, Eisenhofer et al. (1985) treated a group of 

subjects with atropine (a parasympathetic blockade) after ingestion of ethanol or placebo. 

At rest, HR was increased in the alcohol group when compared with placebo. After 

atropine, both alcohol and placebo elicited similar increases in HR and there was no 

difference between the two groups. Since the ethanol group did not demonstrate a greater 

increase in HR after atropine infusion, the increase in HR after ethanol ingestion is 

unlikely to be vagally mediated (Eisenhofer et al., 1985). 

Alcohol appears to elicit a paradoxical vasoconstriction and vasodilation. 

Specifically, acute alcohol consumption increases sympathetic activity to both the heart 

and blood vessels, but this sympathoexcitation appears to be opposed by peripheral 

vasodilation (van de Borne et al., 1997; Wolf et al., 1999). Our subjects demonstrated no 

change in resting FVR, despite the increase in MSNA. It may be that alcohol 

consumption results in variable effects depending on where the vascular beds are located 

throughout the body (Johnson et al., 1986).  However, others report that alcohol elicits 

peripheral vasodilation at rest (Altura et al., 1979; Kupari, 1983; Johnson et al., 1986; 

Malpas et al., 1990; van de Borne et al., 1997). Although MSNA is increasing, it is 

possible that the vasoconstriction is being attenuated by the direct vasodilator effect of 

alcohol on the peripheral blood vessels, and that is why there is no change in resting 

FVR.  
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How exactly alcohol causes peripheral vasodilation remains uncertain, but there 

are many studies that have looked at alcohol’s effect on the peripheral vasculature. It has 

been reported that alcohol might -adrenoceptor-mediated vasoconstriction by 

-adrenoceptors (Takeda & Momose, 1983; Eisenhofer et 

al., 1984). Nore -agonist, and is important for increasing 

vasoconstriction in peripheral blood vessels. Eisenhofer et al. (1984) studied subjects 

after they were given NE infusions alone or NE plus ethanol. The group who received NE 

plus ethanol had an increase in DAP, but this response was blunted compared to the 

group who had only received NE infusions.  The ethanol plus NE group demonstrated 

higher levels of plasma NE. This indicates that ethanol increases plasma NE, perhaps 

through sympathetic activation.  More importantly, this study displays that although 

blood pressure increases, its response is blunted and this may be due to the direct actions 

of alcohol on the periphery. Different subjects in this same study were also given 

1 agonist) or methoxamine plus ethanol. DAP and SAP 

increases were significantly attenuated in the methoxamine plus ethanol group. Since 

1 agonist, these results reveal that alcohol has an inhibitory effect on 

-adrenoceptor mediated vasoconstriction (Eisenhofer et al., 1984). Similarly, Takeda et 

al. (1983) looked at the effects of ethanol in the guinea-pig. They noticed that contractile 

responses to stimulation of adrenergic nerves were reduced as well as the contractile 

responses to NE infusion (Takeda & Momose, 1983).  

Other studies also support the idea of peripheral vasodilation due to alcohol’s 

effect on the blood vessels.  Gillespie et al. (1967) studied six patients who had at least 

one sympathectomized upper limb. After oral ingestion of whiskey, these subjects had a 

robust increase in skin blood flow. This demonstrates that the vasodilator properties 

associated with alcohol consumption are not produced by central inhibition (Gillespie, 

1967). Altura et al. (1979) looked at the vasculature effects of ethanol in young male rats. 

Ethanol inhibited the vasoconstrictor effects of NE, angiotensin, and vasopressin; ethanol 

also had a direct effect on the smooth muscle itself. They concluded that alcohol caused 

peripheral vasodilation by direct relaxation of blood vessels, and blunted the 
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vasoconstrictor responses of vasoactive substances (Altura et al., 1979). Finally, Randin 

et al. (1995) provided -adrenergic 

blockade. After this infusion, blood pressure and calf vascular resistance actually 

decreased and HR still increased. This finding reinforces the significance of sympathetic 

activation in response to alcohol ingestion (Randin et al., 1995), -

adrenoceptors in blood pressure regulation. In conclusion, the effects of alcohol on the 

vasculature seem to depend upon both sympathetic activation to the heart and blood 

vessels, and peripheral vasodilation (van de Borne et al., 1997; Wolf et al., 1999). The 

peripheral vasodilation that occurs appears to be due to an impairment of the sensitivity 

of -adrenoceptors. Nevertheless, at rest alcohol still exerts increases HR and MSNA.  

The second main finding is that alcohol ingestion blunts arterial blood pressure 

responses to progressive lower body negative pressure, despite an increase in HR and 

MSNA. This is consistent with what other studies have reported (Eisenhofer et al., 1984; 

Narkiewicz et al., 2000). Eisenhofer et al. (1984) demonstrated a greater drop in SAP 

during four stages of LBNP after ethanol ingestion, despite greater increases in plasma 

NE. HR increased in both the alcohol and placebo group throughout LBNP, and there 

was no difference between groups. Due to the increase in NE and the drop in blood 

pressure, the authors concluded that ethanol exhibits inhibitory effects on 

-adrenoceptor 

agonists (Eisenhofer et al., 1984). 

Narkiewicz et al. (2000) reported similar results after alcohol ingestion. At rest, 

HR increased compared to placebo, but there was no change in arterial blood pressure or 

FVR. However, they only used 400 mL of liquid compared to the roughly 1,000 that our 

study had used, which might explain the differences in resting arterial blood pressure 

findings between studies. During progressive LBNP, Narkiewicz et al. (2000) reported 

that MAP significantly decreased throughout the four stages in the alcohol group. FVR 

responses were also significantly blunted when compared to the placebo and this is 

similar to what we had demonstrated. Similar to Eisenhofer et al. (1984), HR increased 

throughout the LBNP protocol, but there was no different between alcohol or placebo. 
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Narkiewicz et al. (2000) concluded that this alcohol- induced hypotension was due to an 

impairment of vasoconstriction. However, they did not measure MSNA or plasma 

catecholamines, thus they could not conclude with certainty that the vasoconstriction was 

attenuated due to decreased sympathetic activity (Narkiewicz et al., 2000).  

Our study was the first to examine MSNA responses during graded LBNP after 

acute ethanol ingestion. MSNA typically increases during progressive LBNP through a 

baroreflex response (Sundlof & Wallin, 1978), and peripheral vasoconstriction  often 

depends on the degree of MSNA activation (Fu et al., 2002; Mano & Iwase, 2003; 

Wallin, 2006). TPR must increase in order to maintain a stable blood pressure. Our study 

confirms that reductions of blood pressure during LBNP are more dramatic after alcohol, 

but these responses do not appear to be related to any attenuation in MSNA or HR; we 

demonstrate similar increases of MSNA and HR during LBNP before and after alcohol 

consumption. However, the greater decreases in blood pressure after alcohol were 

associated with greater reductions in FVR. As mentioned previously, alcohol seems to 

elicit sympathetic activation that is directly opposed by the dilator effects of alcohol. The 

similar increases in MSNA and HR both pre- and post-treatment in both alcohol and 

placebo groups demonstrate that the sympathetic reactivity to LBNP after alcohol is 

intact. This is also supported by the enhanced increase in NE in the alcohol group during 

LBNP in the study done by Eisenhofer et al. (1984). However, the blunted FVR response 

that we and Narkiewicz et al. (2000) report exists despite preserved increases in MSNA, a 

finding we attribute to the -adrenoceptors discussed previously (Takeda 

& Momose, 1983; Eisenhofer et al., 1984). We suggest that a decrease in -adrenergic 

receptor sensitivity attenuates vasoconstrictor effect of increased sympathetic activity 

(Wallin, 2006), and that this resulted in the more dramatic reductions in arterial blood 

pressure during LBNP after ethanol ingestion. 

-adrenergic receptor sensitivity remains a viable explanation for 

our findings, another interpretation could be that alcohol alters sympathetic baroreflex 

function. MSNA is mediated by the arterial baroreflex. Since there was a greater drop in 

blood pressure during LBNP after alcohol consumption, it is reasonable to speculate that 
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there should have been an augmentation in MSNA during graded LBNP (i.e., classic 

negative feedback control). Others suggest an impairment of the baroreflex function after 

alcohol (Zsoter & Sellers, 1977; Abdel-Rahman et al., 1987; Narkiewicz et al., 2000). A 

decrease in baroreflex sensitivity could have contributed to the lack of MSNA adjustment 

in our subjects, despite the larger drop in blood pressure. Theoretically, this could lead to 

attenuated vasoconstriction during progressive LBNP, eventually leading to a greater 

decrease in blood pressure.  However, with this being said, we found alcohol to cause an 

increase in resting MSNA burst frequency between pre- and post-treatment and this is 

consistent with the literature. Therefore, we do not believe alcohol would cause an 

augmentation in sympathetic outflow at rest and attenuation in sympathetic outflow 

during progressive LBNP. No matter the mechanism, it is evident acute alcohol ingestion 

can lead to hypotension upon an orthostatic challenge, which might precede syncope. 

The last important finding in our study was that alcohol blunts FVR responses to 

LBNP after ethanol ingestion. This is similar to what Narkiewicz et al. (2000) 

demonstrated. However, Narkiewicz et al. (2000) did not report FVC. We did examine 

FVC, but found no changes at rest or during progressive LBNP between alcohol and 

placebo. Thus, caution should be taken when interpreting the blunted FVR results 

reported in the present study and others (Narkiewicz et al., 2000). Changes in 

conductance appear to be a better indicator of regional vascular responses in maintaining 

blood pressure than changes in resistance (O'Leary, 1991). More specifically, when CO is 

not in a steady state (i.e. progressive LBNP), changes in resistance may not be as reliable 

as changes in conductance (O'Leary, 1991). 

4.1 Summary 
In summary, acute alcohol ingestion increased resting HR and MSNA burst 

frequency. During progressive LBNP, alcohol elicits more of a dramatic decrease in 

arterial blood pressure, despite similar increases in MSNA both pre- and post-alcohol. 

This can be interpreted two -adrenoceptors, 

causing a peripheral vasodilation despite the increase in MSNA. During progressive 

LBNP, when TPR must increase to maintain a stable blood pressure, the vasodilator 
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effects of alcohol attenuates the sympathetic-mediated vasoconstriction, which eventually 

results in a significant drop in arterial blood pressure. 2) Since arterial blood pressure and 

MSNA are inversely related, the more dramatic drop in arterial pressure in the alcohol 

group during LBNP should have been accompanied by an increase in MSNA. Thus, it 

remains plausible that alcohol decreases baroreflex sensitivity. Finally, although FVR 

responses were blunted during LBNP after alcohol ingestion, these responses should be 

interpreted with caution because FVC is more of a reliable measurement when CO is not 

in a steady state.     

4.2 Clinical Relevance 
This study is important in advancing our mechanistic understanding of how acute 

alcohol ingestion can lead to orthostatic hypotension, and eventually syncope. After 

consuming even one or two drinks, one should be cautious when moving from a supine or 

seated position to standing and postural changes should be done in a slow, careful 

manner. This is particularly significant if one has a history of neurally-mediated syncope, 

or is currently taking any medications that may cause low blood pressure, or is suffering 

from hypovolemia. Alcohol ingestion can potentially exacerbate any pre-existing 

conditions that may lead to OH.   

4.3 Limitations and Future Work 
Limitations of this study include the fact that our subjects had to consume a very 

large amount of liquid in a short amount of time. Many of them complained about having 

the urge to urinate before the post-treatment protocol even started. If the subjects did 

undergo gastric/bladder distension, we did not have the equipment available to monitor. 

However, the experimental approach (i.e., double-blinded, placebo-based) still allows for 

appropriate comparisons to test the stated hypotheses. Another limitation is that we did 

not measure any hormone levels throughout the experimental protocol. Measurements of 

NE and E would have given us valuable insight in to understanding what might have 

been happening at the peripheral level. Also, we did not attempt to elicit presyncope for 

the safety of our subjects. Therefore, we don’t know what would have happened to 
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MSNA responses had the LBNP protocol been extended, but we can assume that 

responses would have followed the trend that we had observed.  

Future investigations of acute alcohol ingestion and orthostatic stress might 

include ethanol infusions instead of oral ingestion. This would take out the possibility of 

gastric/bladder distension and also be more time efficient. However, this eliminates the 

role of gastric absorption, which may be important.  Additionally, future work might also 

examine the responses of alcohol or placebo in combination with infusion of -agonist 

prior to progressive LBNP -adrenoceptor sensitivity, then 

- -agonists plus ethanol would provide a 

better understanding of what occurs at the periphery. Lastly, having our subjects fill out a 

questionnaire about their alcohol consumption, similar to the one used by the National 

Institute on Alcohol Abuse and Alcoholism (Alcoholism, 2003), would provide a  

quantification of the drinking patterns of our subjects. We could then use their alcohol 

habits to see if there is a correlation with how they respond to orthostatic stress after 

acute alcohol consumption.   
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Appendix A-1: Raw data for subject characteristics    

Placebo 

Subject Sex Age (years) Height (cm) Weight (kg)  BMI (kg/m2) 

1 F 21 177.5 48.2 15.3 

2 M 23 169.5 71.0 24.7 

3 M 23 176.0 77.2 24.9 

4 M 33 183.0 94.1 28.1 

5 M 23 183.0 79.3 23.7 

6 F 28 162.0 61.8 23.5 

7 M 30 169.5 74.0 25.8 

8 M 26 187.0 95.4 27.3 

9 M 28 172.0 78.0 26.4 

10 M 23 180.5 73.0 22.4 

11 F 21 165.0 62.8 23.1 

12 M 21 175.0 80.5 26.3 

13 F 24 178.0 78.7 24.8 

14 M 26 170.0 71.5 24.7 

15 M 23 183.0 94.0 28.1 
 

Alcohol  

Subject Sex Age (years) Height (cm) Weight (kg)  BMI (kg/m2) 

16 F 21 164.5 75.7 28.0 

17 M 24 182.0 83.5 25.2 

18 F 22 166.0 78.0 28.3 

19 M 22 172.0 73.6 24.9 

20 M 21 196.0 105.6 27.5 

21 F 30 165.5 64.3 23.5 

22 M 22 186.0 78.3 22.6 

23 M 23 182.0 77.6 23.4 

24 M 24 182.5 92.0 27.6 

25 M 22 179.0 91.0 28.4 

26 M 34 170.0 75.5 26.1 

27 M 21 186.0 107.5 31.1 

28 M 22 186.0 107.3 31.0 

29 M 21 186.0 97.0 28.0 

30 M 21 191.0 81.5 22.3 
 



48 
 

Appendix A-2:  Raw data for resting seated blood pressures taken with an automated sphygmomanometer upon subject 
arrival.  

Placebo 

Subject SAP (mmHg) DAP (mmHg) MAP (mmHg) 

1 112.5 81.3 91.7 

2 128.0 65.7 86.5 

3 121.0 73.5 89.3 

4 132.8 79.5 97.3 

5 119.7 71.7 87.7 

6 119.8 75.0 89.9 

7 128.5 79.5 95.8 

8 125.7 67.0 86.6 

9 134.3 71.0 92.1 

10 141.0 82.8 102.2 

11 111.0 71.5 84.7 

12 112.0 77.3 88.9 

13 94.3 65.0 74.8 

14 106.3 56.0 72.8 

15 135.0 64.5 88.0 
 

Alcohol  

Subject SAP (mmHg) DAP (mmHg) MAP (mmHg) 

16 101.0 70.3 80.5 

17 139.8 85.0 103.3 

18 109.3 66.5 80.8 

19 138.7 83.3 101.8 

20 131.7 80.3 97.4 

21 97.5 65.3 76.0 

22 119.3 65.0 83.1 

23 113.5 55.3 74.7 

24 115.5 68.8 84.4 

25 149.8 96.5 114.3 

26 132.3 81.0 98.1 

27 137.8 85.3 102.8 

28 124.5 81.3 95.7 

29 126.8 66.5 86.6 

30 118.0 68.0 84.7 
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Appendix A-3: Raw data for baseline blood pressures taken with an automated sphygmomanometer in the supine 
position 

Placebo 

Pre-treatment Post-treatment 

Subject 
SAP 

(mmHg) DAP (mmHg) MAP (mmHg) 
SAP 

(mmHg) DAP (mmHg) MAP (mmHg) 

1 107.7 71.0 83.2 111.0 73.3 85.9 

2 116.7 49.3 71.8 122.0 56.0 78.0 

3 115.7 64.7 81.7 114.3 66.0 82.1 

4 114.7 60.3 78.4 114.0 73.0 86.7 

5 106.7 57.0 73.6 120.8 70.0 86.9 

6 111.7 66.3 81.4 127.0 76.7 93.5 

7 122.3 84.3 97.0 126.7 86.7 100.0 

8 128.7 63.7 85.4 134.0 66.0 88.7 

9 122.7 63.7 83.4 127.3 68.0 87.8 

10 126.7 68.3 87.8 133.0 70.7 91.5 

11 117.0 76.7 90.1 111.3 75.0 87.1 

12 115.0 63.7 80.8 121.3 75.0 90.4 

13 104.7 59.7 74.7 125.7 81.7 96.4 

14 119.3 56.7 77.6 122.0 66.7 85.1 

15 117.3 55.3 76.0 128.0 63.7 85.1 

Alcohol 

Pre-treatment Post-treatment 

Subject 
SAP 

(mmHg) DAP (mmHg) MAP (mmHg) SAP (mmHg) DAP (mmHg) MAP (mmHg) 

16 105.3 68.3 80.6 101.7 69.0 79.9 

17 125.0 64.7 84.8 139.0 64.3 89.2 
18 107.0 63.7 78.1 104.3 63.0 76.8 

19 118.3 60.7 79.9 138.3 80.3 99.6 

20 129.7 65.0 86.6 123.3 78.3 93.3 

21 92.3 64.3 73.6 93.3 68.3 76.6 

22 128.3 58.7 81.9 125.3 61.3 82.6 
23 113.7 54.7 74.4 117.7 61.0 79.9 

24 117.3 62.0 80.4 124.3 72.3 89.6 

25 135.0 78.7 97.5 146.7 77.7 100.7 

26 114.7 66.3 82.4 117.0 68.0 84.3 

27 135.0 68.3 90.5 130.0 79.3 96.2 
28 122.0 61.0 81.3 139.7 65.7 90.4 

29 138.7 71.0 93.6 144.3 58.7 87.2 

30 112.0 57.0 75.3 121.3 67.0 85.1 
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Appendix  A-4: Raw data for blood alcohol content. Measured in %, which is equal to g/100 mL.  

Placebo 

Subject Pre-treatment Post-treatment 

1 0.000 0.000 

2 0.000 0.000 

3 0.000 0.000 

4 0.000 0.000 

5 0.000 0.000 

6 0.000 0.000 

7 0.000 0.000 

8 0.000 0.000 

9 0.000 0.000 

10 0.000 0.000 

11 0.000 0.000 

12 0.000 0.000 

13 0.000 0.000 

14 0.000 0.000 

15 0.000 0.000 
 

Alcohol 

Subject Pre-treatment Post-treatment 

16 0.000 0.122 

17 0.000 0.086 

18 0.000 0.111 

19 0.000 0.100 

20 0.000 0.078 

21 0.000 0.078 

22 0.000 0.078 

23 0.000 0.076 

24 0.000 0.062 

25 0.000 0.088 

26 0.000 0.077 

27 0.000 0.061 

28 0.000 0.036 

29 0.000 0.076 

30 0.000 0.119 
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Appendix A-5: Raw data for SAP (mmHg) during LBNP 

Placebo 

Pre-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 107.7 104.7 104.6 102.3 100.3 94.7 91.9 

2 116.7 118.1 119.0 119.8 114.3 104.6 95.2 

3 115.7 112.7 111.4 111.3 111.6 106.8 99.3 

4 114.7 113.5 114.0 113.7 111.9 110.1 104.0 

5 107.6 111.8 113.0 110.5 108.1 105.4 103.2 

6 111.7 112.4 110.7 108.0 107.6 105.7 102.7 

7 122.3 122.2 121.3 120.0 121.4 118.7 112.0 

8 128.7 130.7 125.7 126.5 123.5 114.7 111.1 

9 122.7 123.3 120.0 123.5 121.4 121.5 118.1 

10 126.7 129.9 125.6 122.0 119.4 117.8 111.8 

11 117.0 118.8 119.9 119.6 117.7 109.2 106.4 

12 115.0 115.1 115.6 114.8 114.3 110.2 108.3 

13 104.7 111.5 112.9 119.9 128.9 126.5 119.6 

14 122.0 116.4 118.1 118.7 119.1 115.9 117.4 

15 117.3 116.3 116.5 108.4 116.8 112.4 111.1 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 111.0 109.5 108.1 106.3 103.3 98.8 95.6 

2 122.0 122.0 120.6 117.6 111.9 . . 

3 114.3 113.9 116.9 116.3 115.0 114.5 109.6 

4 114.0 115.8 115.6 114.3 114.3 110.4 107.3 

5 120.8 119.7 118.8 121.3 120.6 109.4 102.9 

6 127.0 124.8 123.7 121.5 116.4 112.8 109.4 

7 126.7 126.9 126.2 123.6 125.0 119.8 109.0 

8 134.0 139.8 143.1 137.4 131.9 128.2 120.4 

9 127.3 129.2 128.4 131.2 129.7 128.6 123.6 

10 133.0 133.4 134.1 132.3 132.9 128.4 126.6 

11 111.3 117.4 118.0 119.8 122.3 127.9 133.5 

12 121.3 115.2 117.7 117.4 115.5 113.7 109.9 

13 125.7 131.3 124.6 136.7 142.1 138.8 134.4 

14 122.0 132.3 133.6 134.2 131.2 131.0 128.9 

15 128.0 125.2 122.9 125.7 126.3 126.8 130.1 
 



52 
 

Alcohol  

Pre-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 105.3 101.4 109.4 106.7 103.1 99.5 100.1 

17 125.0 129.0 120.3 127.1 129.3 129.7 127.2 

18 107.0 112.4 113.5 114.4 111.8 110.2 107.3 

19 118.3 121.7 124.8 127.2 133.8 134.5 134.1 

20 129.7 131.6 128.0 123.0 114.1 111.5 105.9 

21 92.3 95.9 99.3 99.7 101.2 96.3 90.5 

22 128.3 133.4 131.2 130.4 134.1 126.8 121.9 

23 113.7 111.9 111.2 108.5 108.9 101.5 98.2 

24 117.3 115.3 115.6 116.9 115.4 110.2 111.7 

25 135.0 139.5 135.3 137.3 143.8 138.2 132.9 

26 114.7 115.5 118.9 115.2 123.3 115.2 110.6 

27 135.0 135.3 139.2 134.2 130.5 126.0 128.9 

28 122.0 121.5 116.9 116.2 118.8 116.8 112.2 

29 138.7 138.5 135.6 133.5 130.8 129.3 124.5 

30 112.0 115.6 114.7 115.3 111.1 105.7 107.1 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 101.7 100.5 100.8 94.5 91.6 91.8 91.9 

17 139.0 137.6 137.8 138.4 136.2 133.3 133.4 

18 104.3 106.6 104.2 102.1 100.4 95.8 95.5 

19 138.3 139.3 133.5 140.4 139.9 138.7 133.6 

20 123.3 122.9 117.1 111.5 107.6 106.5 101.7 

21 93.3 99.4 99.2 99.4 99.5 94.2 89.7 

22 125.3 131.1 126.6 119.3 118.4 116.6 112.3 

23 117.7 118.0 114.0 105.4 106.0 99.8 107.1 

24 124.3 124.0 123.1 122.2 122.5 123.0 116.8 

25 146.7 148.8 148.3 149.8 145.4 140.4 140.2 

26 117.0 116.7 115.5 112.8 111.0 106.8 99.8 

27 130.0 128.9 125.7 124.9 123.9 120.6 119.0 

28 139.7 135.7 134.0 129.3 122.2 116.9 113.8 

29 144.3 145.0 145.9 147.3 148.4 133.5 132.0 

30 121.3 121.5 127.7 126.2 125.1 119.5 113.7 
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Appendix A-6: Raw data for DAP (mmHg) during LBNP 

Placebo 

Pre-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 71.0 69.5 71.1 70.9 70.5 70.2 70.7 

2 49.2 50.1 49.5 50.1 48.0 45.7 42.4 

3 64.7 62.1 62.6 63.6 63.9 62.3 56.5 

4 60.3 59.4 60.9 61.4 62.9 63.4 62.2 

5 57.5 61.1 63.0 62.0 62.7 64.3 64.5 

6 66.3 64.7 65.8 66.9 67.5 66.7 65.9 

7 84.3 82.7 82.3 82.8 84.6 86.6 84.7 

8 63.7 64.6 66.3 64.9 63.6 64.3 65.8 

9 63.7 63.2 61.7 63.8 63.6 65.7 65.6 

10 68.3 68.1 67.7 66.5 66.9 65.6 65.0 

11 76.7 75.8 75.8 75.5 74.3 73.2 76.1 

12 63.7 63.5 63.6 62.9 63.3 62.4 61.4 

13 59.7 62.7 64.0 69.9 74.2 74.8 72.7 

14 56.7 52.6 52.7 51.6 52.8 53.7 55.4 

15 55.3 54.0 54.8 52.3 56.9 56.1 56.3 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 73.3 71.4 70.7 70.0 69.8 70.3 70.6 

2 56.0 55.5 54.9 53.6 51.2 . . 

3 66.0 66.0 67.1 67.8 66.4 66.8 64.3 

4 73.0 74.2 74.0 72.7 73.6 72.5 72.6 

5 70.0 68.2 68.8 70.2 68.9 66.1 66.6 

6 76.7 75.9 75.2 74.4 73.3 73.3 72.7 

7 86.7 86.7 86.6 86.3 86.9 86.1 82.9 

8 66.0 69.4 71.9 70.3 69.2 70.1 67.1 

9 68.0 68.2 67.5 70.0 69.6 71.2 70.7 

10 70.7 71.5 71.8 72.0 73.1 72.0 74.0 

11 75.0 77.3 77.4 78.9 81.8 87.7 91.4 

12 75.0 71.5 72.3 71.5 68.1 69.2 68.0 

13 81.7 84.3 82.8 87.6 90.5 91.6 91.7 

14 66.7 69.7 68.6 66.8 67.2 67.7 68.4 

15 63.7 61.1 60.7 62.8 63.5 65.4 67.6 
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Alcohol 

Pre-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 68.3 65.2 69.3 69.1 68.6 67.5 70.6 

17 64.7 66.2 64.2 66.5 67.0 69.5 70.0 

18 63.7 65.8 66.4 67.5 67.2 68.5 68.1 

19 60.7 62.1 65.6 66.2 70.2 71.6 73.3 

20 65.0 65.9 64.5 61.7 58.8 58.1 57.0 

21 64.3 66.8 68.2 69.0 70.2 70.0 67.7 

22 58.7 59.1 58.2 57.8 59.4 58.0 58.5 

23 54.7 52.4 51.7 50.5 50.6 49.4 51.0 

24 62.0 59.7 60.2 61.1 60.8 61.3 64.1 

25 78.7 82.0 77.7 78.8 82.2 79.2 77.6 

26 66.3 67.0 68.5 66.7 72.1 68.9 69.2 

27 68.3 69.2 71.0 69.5 68.6 68.7 70.0 

28 61.0 60.8 58.1 59.6 63.3 63.0 61.4 

29 71.0 70.7 69.6 69.2 68.4 67.7 67.8 

30 57.0 57.6 58.3 58.5 59.1 58.9 60.2 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 69.0 69.5 70.6 68.5 67.7 69.0 71.3 

17 64.3 63.0 62.4 62.3 62.4 62.4 64.0 

18 63.0 64.2 64.3 63.0 63.0 62.6 62.8 

19 80.3 81.0 80.7 83.5 81.9 81.2 78.5 

20 78.3 77.4 75.6 73.7 73.5 72.5 72.1 

21 68.3 70.9 71.2 71.7 71.9 70.2 69.4 

22 61.3 63.1 61.8 59.4 57.2 57.5 57.5 

23 61.0 59.6 58.0 53.9 53.2 50.5 55.7 

24 72.3 70.0 70.6 70.8 71.1 72.7 72.7 

25 77.7 79.5 80.2 81.7 79.9 77.7 78.4 

26 68.0 68.3 67.7 67.5 66.4 65.0 63.6 

27 79.3 79.2 78.5 78.7 78.2 78.2 76.5 

28 65.7 62.8 62.9 61.1 57.8 56.0 54.9 

29 58.7 58.2 57.6 58.2 59.3 54.8 53.8 

30 67.0 66.8 69.4 69.7 69.7 69.5 69.1 
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Appendix A-7: Raw data for MAP (mmHg) during LBNP 

Placebo 

Pre-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 83.2 80.8 81.7 79.8 78.3 75.2 74.2 

2 71.8 73.0 72.5 72.5 69.5 64.4 59.8 

3 81.7 78.3 78.5 78.8 79.0 76.6 70.2 

4 78.4 77.6 79.1 79.1 79.6 79.3 76.2 

5 74.3 78.5 80.4 78.6 78.1 78.5 77.6 

6 81.4 79.7 81.3 82.6 83.7 81.5 79.1 

7 97.0 96.1 94.9 94.6 96.2 96.6 92.7 

8 85.4 86.3 85.7 84.5 83.2 79.9 79.1 

9 83.4 82.8 80.3 82.2 81.5 83.0 81.5 

10 87.8 88.1 87.0 84.9 84.2 82.4 80.1 

11 90.1 90.1 90.6 90.1 88.6 83.4 84.3 

12 80.8 81.0 80.7 79.7 79.4 77.6 76.6 

13 74.7 77.5 78.2 85.8 91.5 90.8 85.5 

14 77.6 74.0 74.0 72.7 73.7 73.3 74.5 

15 76.0 74.1 74.5 70.4 75.8 73.7 74.0 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 85.9 83.4 82.3 80.6 78.8 76.4 75.1 

2 78.0 77.7 76.9 74.6 71.1 . . 

3 82.1 81.9 83.4 83.9 82.6 82.3 79.3 

4 86.7 87.6 87.0 85.2 85.5 83.0 81.7 

5 86.9 85.7 86.5 87.3 85.4 79.9 78.5 

6 93.5 92.9 92.0 91.0 89.0 87.7 84.5 

7 100.0 100.2 99.8 98.6 99.2 96.1 88.9 

8 88.7 92.9 95.2 91.3 88.0 86.9 84.0 

9 87.8 88.5 87.3 90.0 88.7 89.4 87.5 

10 91.5 91.9 91.8 91.2 92.0 89.7 91.0 

11 87.1 90.8 90.9 92.0 94.6 99.8 103.7 

12 90.4 86.7 87.4 86.7 82.7 83.5 81.0 

13 96.4 102.0 97.3 104.1 108.3 106.9 105.2 

14 85.1 90.8 89.9 87.7 86.0 85.2 85.1 

15 85.1 81.8 80.7 82.7 83.0 84.3 86.6 
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Alcohol 

Pre-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 80.6 77.7 83.3 82.0 80.5 78.3 81.1 

17 84.8 86.2 83.0 86.2 85.8 86.8 86.7 

18 78.1 80.9 81.8 83.1 82.1 81.8 81.0 

19 79.9 82.2 86.3 87.2 92.0 92.7 93.7 

20 86.6 87.6 85.7 82.2 77.7 75.9 73.1 

21 73.6 77.1 78.9 79.4 80.4 77.3 72.4 

22 81.9 82.8 81.6 81.5 83.3 80.0 78.3 

23 74.4 72.7 72.7 71.1 71.8 68.8 68.2 

24 80.4 77.8 78.3 79.3 78.4 76.7 78.8 

25 97.5 100.9 96.6 97.3 101.9 98.0 95.1 

26 82.4 83.1 84.9 82.6 88.7 83.7 81.7 

27 90.5 91.1 93.2 90.7 89.0 87.7 88.7 

28 81.3 81.3 77.7 78.4 81.8 80.8 78.1 

29 93.6 93.4 91.8 90.7 89.4 88.0 86.2 

30 75.3 76.3 77.1 76.7 76.3 74.7 76.2 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 79.9 80.0 80.7 77.4 75.8 76.4 77.7 

17 89.2 87.7 87.8 87.9 86.2 85.8 85.9 

18 76.8 76.5 76.4 73.9 73.4 71.4 71.5 

19 99.6 99.4 96.7 100.5 99.4 98.8 96.0 

20 93.3 92.6 89.3 86.9 85.7 84.7 83.8 

21 76.6 79.7 80.0 79.7 79.5 75.6 72.6 

22 82.6 87.0 84.4 80.7 78.5 78.1 76.9 

23 79.9 78.7 76.2 71.1 70.4 66.1 72.4 

24 89.6 86.9 87.5 85.9 86.4 86.9 83.4 

25 100.7 102.3 102.3 103.7 101.0 97.8 96.8 

26 84.3 84.3 83.1 82.2 80.5 77.5 73.6 

27 96.2 95.6 94.2 93.7 93.1 92.7 91.1 

28 90.4 87.0 86.8 84.2 80.2 77.8 76.5 

29 87.2 86.5 86.8 88.0 89.2 82.0 80.5 

30 85.1 85.0 89.2 88.9 88.3 85.7 83.6 
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Appendix A-8: Raw data for HR (bpm) during LBNP 

Placebo  

Pre-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 60.4 63.8 65.7 67.5 70.3 80.3 88.0 

2 64.8 64.1 62.1 62.6 65.1 71.1 80.9 

3 65.2 61.3 63.7 63.6 65.3 75.2 77.3 

4 53.9 54.6 56.2 59.8 63.5 64.6 69.2 

5 50.0 50.4 51.5 54.2 58.3 61.2 66.0 

6 45.2 44.9 46.6 46.5 47.0 47.3 50.4 

7 63.3 61.9 64.3 66.0 67.8 72.2 79.5 

8 52.8 54.4 54.2 55.1 54.8 68.9 73.7 

9 50.1 50.2 49.6 47.6 49.8 52.4 54.6 

10 78.3 73.5 82.4 78.4 81.4 82.9 90.6 

11 71.1 68.6 69.1 69.8 69.7 81.6 92.3 

12 66.1 66.1 66.4 66.7 68.7 76.2 84.5 

13 40.2 42.3 43.0 47.2 49.3 59.8 68.9 

14 57.9 58.0 60.2 62.4 63.7 67.0 73.3 

15 64.6 62.7 63.1 64.2 64.6 71.3 77.6 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 58.5 59.2 60.7 62.8 69.1 79.6 87.8 

2 62.9 64.4 62.8 66.4 73.6 . . 

3 61.0 60.0 62.1 62.1 63.3 67.3 72.2 

4 54.0 55.5 55.9 56.0 58.3 61.2 65.7 

5 47.7 44.9 46.3 51.7 54.6 62.2 68.2 

6 42.4 43.4 42.5 43.2 46.0 48.0 54.3 

7 58.6 59.6 60.4 62.7 63.6 69.5 80.7 

8 55.2 54.4 57.9 62.0 66.6 79.2 103.1 

9 52.3 50.3 49.7 52.0 53.3 56.7 61.6 

10 76.2 77.3 74.4 79.4 80.6 85.1 94.7 

11 73.4 73.7 74.9 78.1 84.9 93.0 118.0 

12 67.8 69.7 69.4 68.8 66.1 73.0 77.0 

13 43.3 42.8 42.8 44.7 45.5 54.7 64.2 

14 58.0 58.4 58.4 59.2 66.7 72.6 77.2 

15 65.9 63.2 63.8 65.2 67.0 71.5 75.2 
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Alcohol  

Pre-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 78.8 76.0 82.2 78.5 78.1 84.3 94.8 

17 51.4 52.8 56.4 55.2 56.7 62.9 64.8 

18 63.4 61.6 61.3 61.9 64.7 72.5 86.5 

19 56.2 57.5 57.7 59.8 60.8 63.4 68.5 

20 60.0 59.2 59.5 58.2 58.4 62.4 66.1 

21 65.0 65.8 65.6 65.5 66.6 74.1 83.5 

22 55.2 55.5 56.7 56.2 58.0 61.8 66.8 

23 56.0 57.0 57.1 57.2 55.6 61.9 72.1 

24 55.6 54.6 55.1 54.1 54.4 61.9 66.3 

25 59.9 63.7 59.4 63.0 67.2 65.9 67.6 

26 58.8 60.0 60.1 60.2 61.4 64.3 69.3 

27 62.1 61.3 63.0 64.7 69.2 74.4 78.6 

28 48.9 52.1 53.6 60.4 67.0 69.0 73.9 

29 66.4 69.9 71.1 70.6 70.1 68.1 70.1 

30 54.4 54.3 54.8 55.4 56.0 58.2 60.0 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 78.6 81.6 83.9 83.4 87.5 95.1 101.5 

17 59.2 61.2 57.9 57.6 62.2 61.9 66.9 

18 66.0 65.7 65.7 64.0 70.2 71.2 83.0 

19 68.2 70.2 76.0 80.0 84.8 87.9 97.5 

20 66.1 66.5 67.0 72.4 72.2 76.7 83.9 

21 63.8 64.6 63.2 64.5 65.9 71.6 77.7 

22 59.1 58.3 59.1 59.3 59.6 63.0 70.0 

23 59.5 62.7 61.6 61.0 63.9 67.5 73.7 

24 55.8 55.3 57.3 64.6 60.2 65.9 75.3 

25 66.3 69.4 73.1 73.1 73.9 72.4 75.7 

26 60.8 61.4 61.4 63.1 64.2 68.5 72.8 

27 65.9 68.6 71.1 73.6 76.3 79.2 81.6 

28 65.5 66.7 70.7 72.5 75.1 78.5 81.9 

29 73.4 71.8 73.8 74.9 74.4 74.6 77.8 

30 61.7 62.4 64.6 63.7 63.8 66.4 74.1 
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Appendix A-9: Raw data for MSNA burst frequency (bursts/min) during LBNP 

  Placebo  

Pre-treatment 

Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 13.0 12.7 18.7 22.7 25.3 29.3 36.0 

2 24.2 21.3 26.7 27.0 29.3 31.0 35.3 

3 . . . . . . . 

4 12.6 12.3 15.3 18.3 26.0 28.7 32.7 

5 . . . . . . . 

6 15.4 16.7 17.0 21.3 19.7 21.7 31.3 

7 11.8 12.3 16.0 18.0 20.0 13.7 27.3 

8 . . . . . . . 

9 18.2 19.3 19.7 22.3 21.3 24.0 30.0 

10 7.2 . . . . . . 

11 15.0 17.0 17.3 18.7 21.7 39.7 45.7 

12 17.0 . . . . . . 

13 9.0 9.0 14.0 18.7 21.3 35.0 37.7 

14 6.4 8.3 10.3 13.0 20.7 24.3 29.3 

15 25.2 24.0 24.7 24.0 30.7 37.0 45.3 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 15.8 15.7 17.3 21.3 24.7 36.3 44.7 

2 23.6 26.7 31.7 29.0 31.3 . . 

3 . . . . . . . 

4 9.4 11.0 14.0 9.7 6.7 16.0 26.3 

5 . . . . . . . 

6 16.6 19.0 19.0 24.7 25.7 30.3 38.0 

7 18.0 16.0 20.3 22.7 23.7 26.0 24.3 

8 . . . . . . . 

9 13.4 16.3 16.7 21.3 22.7 28.7 32.0 

10 11.6 2.0 4.3 6.0 8.7 7.7 9.0 

11 9.8 21.0 26.3 50.0 52.3 58.3 46.3 

12 23.0 . . . . . . 

13 9.0 12.7 12.7 16.7 19.0 21.7 30.3 

14 9.2 11.0 14.7 24.1 32.7 35.0 35.8 

15 20.8 23.0 26.3 26.7 32.0 35.0 42.5 
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 Alcohol  

Pre-treatment 

Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 5.6 5.3 5.7 10.0 12.7 12.0 18.7 

17 7.0 11.0 17.3 19.7 24.0 31.0 40.7 

18 13.4 15.3 18.0 18.0 19.3 28.3 28.3 

19 14.2 18.3 26.3 27.0 28.3 31.7 33.3 

20 6.2 10.0 11.7 10.3 18.7 22.7 27.7 

21 . . . . . . . 

22 21.4 21.7 22.3 23.3 23.7 34.0 38.7 

23 . . . . . . . 

24 5.4 . . . . . . 

25 15.6 . . . . . . 

26 37.4 37.7 39.0 46.0 48.7 51.0 61.3 

27 16.8 21.0 17.3 26.3 29.0 43.3 38.0 

28 7.4 . . . . . . 

29 12.4 14.3 17.3 18.7 18.7 30.0 35.7 

30 2.4 8.3 8.3 17.7 19.3 25.7 29.0 
 

Post-treatment 

Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 11.0 . . . . . . 

17 20.8 22.7 27.0 29.3 32.7 43.7 41.7 

18 9.0 13.0 17.0 21.0 21.0 27.3 34.0 

19 45.2 46.3 55.0 55.7 61.7 66.3 69.7 

20 13.6 20.0 25.0 25.0 29.3 37.3 35.5 

21 . . . . . . . 

22 17.8 22.0 17.7 22.0 20.3 23.7 26.3 

23 . . . . . . . 

24 19.4 . . . . . . 

25 34.4 . . . . . . 

26 32.8 30.3 41.7 39.7 43.0 44.3 59.0 

27 12.4 16.0 17.0 24.7 26.3 35.3 40.7 

28 10.2 . . . . . . 

29 13.8 17.3 17.7 22.3 23.3 34.0 38.3 

30 2.6 4.0 6.0 10.3 15.0 24.7 29.3 
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Appendix A-10: Raw data for MSNA burst incidence (bursts/100 HB) during LBNP 

Placebo  

Pre-treatment 

Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 21.7 20.0 28.6 33.7 36.2 36.5 40.9 

2 37.6 33.3 43.0 43.3 45.4 43.7 43.8 

3 . . . . . . . 

4 23.5 22.7 27.4 30.9 41.1 44.3 47.3 

5 . . . . . . . 

6 34.4 37.3 36.7 46.0 41.8 46.1 62.3 

7 18.8 20.0 25.1 27.6 29.7 19.1 34.5 

8 . . . . . . . 

9 36.7 38.9 40.1 47.2 43.2 46.2 55.2 

10 9.4 . . . . . . 

11 21.2 25.0 25.2 27.2 31.3 48.8 49.6 

12 25.9 . . 

13 22.6 21.8 33.1 40.9 44.8 59.3 54.9 

14 11.1 14.5 17.2 21.0 32.6 36.5 40.0 

15 39.3 38.3 39.2 37.5 47.4 52.1 58.6 
 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 27.2 26.7 28.7 34.2 35.9 45.8 51.0 

2 37.7 41.7 50.5 43.9 42.7 . . 

3 . . . . . . . 

4 17.4 19.9 25.1 17.4 11.4 26.2 40.1 

5 . . . . . . . 

6 39.3 43.8 44.9 56.9 55.8 63.2 69.9 

7 30.9 27.0 33.9 36.4 37.2 37.5 30.3 

8 . . . . . . . 

9 25.9 32.9 33.8 41.0 42.8 50.9 52.2 

10 15.4 2.6 5.9 7.6 10.9 9.1 9.6 

11 13.4 28.6 35.3 64.1 61.8 63.2 39.4 

12 34.0 . . . . . . 

13 21.5 30.6 30.2 38.5 42.9 40.1 47.6 

14 16.0 18.9 25.1 40.9 49.2 48.4 47.4 

15 31.6 36.5 41.4 41.0 48.0 49.3 57.1 
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Alcohol  

Pre-treatment 

Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 7.1 7.1 6.9 12.8 16.3 14.2 19.7 

17 13.7 20.9 31.0 35.8 42.4 49.5 62.9 

18 21.3 24.9 29.5 29.2 30.1 39.2 32.9 

19 25.4 32.0 45.9 45.3 46.7 50.3 48.8 

20 10.5 16.9 19.7 17.9 32.2 36.6 41.9 

21 . . . . . . . 

22 38.9 39.2 39.4 41.7 41.0 55.4 58.0 

23 . . . . . . . 

24 9.8 . . . . . . 

25 26.2 . . . . . . 

26 64.0 62.8 65.0 76.2 79.3 79.7 88.5 

27 27.4 34.4 27.8 40.9 42.2 58.6 48.7 

28 15.3 . . . . . . 

29 18.8 20.6 24.4 26.5 26.7 44.1 51.2 

30 4.4 15.4 15.2 31.9 34.5 44.3 48.6 
 
 

Post-treatment 

Subject Base 
-5 

mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 14.3 . . . . . . 

17 35.1 37.2 46.8 51.2 52.7 70.8 62.5 

18 13.7 19.8 25.9 32.8 30.0 38.5 41.1 

19 66.5 66.2 72.7 69.9 73.1 75.7 71.6 

20 20.7 30.2 37.5 34.7 40.9 49.1 41.7 

21 . . . . . . . 

22 30.2 37.9 29.9 37.1 34.1 37.8 37.8 

23 . . . . . . . 

24 34.9 . . . . . . 

25 52.0 . . . . . . 

26 54.1 49.7 67.9 63.0 67.2 64.9 81.2 

27 19.0 23.5 24.3 33.8 34.8 44.9 50.2 

28 15.6 . . . . . . 

29 18.9 24.3 24.0 29.9 31.4 45.7 49.6 

30 4.2 6.4 9.3 16.2 23.4 37.2 39.8 
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Appendix A-11: Raw data for total MSNA (arbitrary units) during LBNP   

 Placebo  

Pre-treatment 
Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 4609 5354 7779 8912 8274 12598 15826 
2 10573 9006 11640 11261 12168 15278 17325 
3 . . . . . . . 
4 5687 6042 6502 8353 13203 16495 21440 

5 . . . . . . . 
6 5487 5959 7103 8878 7615 8695 13855 
7 6360 6977 9385 10928 11074 4578 10736 
8 . . . . . . . 
9 8273 13476 12975 17148 16477 18335 22880 

10 4152 . . . . . . 
11 6846 11308 12606 14710 15229 36415 47145 
12 7563 . . 
13 4886 4851 7266 12641 13441 17510 25745 
14 3213 3842 5401 6291 9144 10436 13153 

15 11909 9297 9129 7930 11168 16020 20148 
 

Post-treatment 
Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 6621 7145 8314 10411 12512 19687 25596 
2 11589 15417 19663 19400 22309 . . 

3 . . . . . . . 
4 5181 7001 9932 9790 4993 11408 23153 
5 . . . . . . . 
6 8238 11740 12786 17832 19654 27377 37019 
7 9481 8183 10674 12310 11241 11186 11993 

8 . . . . . . . 
9 4964 5613 6807 8947 11968 17447 22266 
10 6889 600 1307 1683 3361 2740 3384 
11 4292 11439 16912 24271 27004 32647 32984 
12 11292 . . . . . . 

13 2501 4842 5780 8303 10097 12129 22366 
14 5185 6379 9652 21558 24413 29710 34710 
15 7264 5967 6941 9440 10283 17971 30495 
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Alcohol  

Pre-treatment 
Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 3079 3477 3307 6815 7658 6359 11534 
17 3634 9159 12808 16770 19524 25519 33452 
18 6606 7456 8613 8625 7231 8367 10866 
19 5669 9174 14275 16480 16307 20127 25614 
20 3189 6280 7395 5623 11579 14100 18213 

21 . . . . . . . 
22 11814 15188 24073 17029 19966 32140 40229 
23 . . . . . . . 
24 2688 . . . . . . 
25 8201 . . . . . . 

26 17536 22691 26836 33397 30548 37507 54065 
27 7135 10364 10013 14418 16176 23810 21987 
28 4553 . . . . . . 
29 3823 5261 5863 7267 8488 15707 20878 
30 1114 5253 5130 12235 13918 20250 25578 

 

Post-treatment 
Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 12009 . . . . . . 
17 6695 12347 16770 18687 20967 29334 31806 
18 4495 8252 10724 13996 16537 23867 31742 

19 19648 25210 31862 32259 36694 44524 54592 
20 7761 13831 18189 16468 19905 29585 30339 
21 . . . . . . . 
22 10165 16305 8892 10348 8281 11423 18275 
23 . . . . . . . 

24 6911 . . . . . . 
25 17147 . . . . . . 
26 9560 8749 9930 9693 10328 10384 13294 
27 6517 9223 11539 17726 25467 37435 49485 
28 5948 . . . . . . 

29 5881 6548 4605 7412 9074 14939 19209 
30 1696 2055 3471 5706 9201 16484 18937 
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Appendix A-12: Raw data for FBF (ml/100ml/min) during LBNP    

Placebo  

Pre-treatment 
Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 1.6 1.5 1.5 1.5 1.4 1.4 1.6 
2 2.0 2.0 1.9 1.7 1.6 1.6 1.5 
3 3.0 2.8 2.7 3.0 2.8 2.6 2.6 

4 1.2 1.0 1.1 1.1 1.1 1.0 1.0 
5 1.7 1.8 1.7 1.5 1.6 1.4 1.1 
6 1.8 1.5 1.7 1.7 1.8 1.7 1.7 
7 1.7 1.5 1.9 1.7 1.7 1.6 1.6 
8 1.8 1.7 1.8 2.0 1.8 2.0 1.9 

9 2.1 2.0 1.9 1.6 1.5 1.3 1.1 
10 5.2 5.0 5.1 4.1 3.7 2.8 2.3 
11 1.0 0.8 0.8 0.8 0.8 0.8 0.7 
12 1.7 1.4 1.3 1.4 1.5 1.4 1.1 
13 . . . . . . . 

14 2.3 2.0 1.9 1.8 1.6 1.3 1.4 
15 2.0 2.6 2.4 2.2 2.3 2.5 2.4 

 

Post-treatment 
Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

1 1.5 1.5 1.6 1.5 1.6 1.3 1.3 

2 2.5 2.6 2.6 2.5 2.7 . . 
3 3.2 2.6 3.1 2.8 3.0 2.9 2.7 
4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 
5 2.0 1.4 1.3 1.5 1.1 1.2 1.2 
6 1.6 1.5 1.6 1.4 1.4 1.1 1.0 

7 1.7 2.3 1.8 1.7 1.8 2.0 1.5 
8 1.7 1.5 1.6 1.6 1.5 1.3 1.1 
9 1.3 1.6 1.6 1.5 1.5 1.3 1.2 
10 3.7 3.4 2.6 2.4 2.6 2.2 1.8 
11 1.6 1.5 1.4 1.3 1.2 1.2 1.7 

12 1.5 1.3 1.0 1.0 1.0 0.8 0.9 
13 . . . . . . . 
14 1.8 1.6 1.5 1.3 1.3 1.3 1.2 
15 2.8 2.6 2.5 3.1 2.8 3.2 3.1 

 

 



66 
 

Alcohol  

Pre-treatment 
Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 1.8 1.6 1.8 1.6 1.3 1.2 1.2 
17 1.6 1.3 1.5 1.4 1.4 1.2 1.3 
18 1.4 1.2 1.2 1.1 1.0 0.9 0.9 
19 3.0 2.6 2.3 2.5 2.3 2.3 2.5 

20 1.7 1.5 1.6 1.4 1.4 1.5 1.3 
21 1.1 0.9 1.0 1.0 1.0 0.9 0.9 
22 1.3 1.5 1.2 1.1 1.0 0.9 1.0 
23 2.8 2.3 2.9 2.8 2.1 3.0 2.2 
24 2.0 1.6 1.7 1.5 1.4 1.5 1.2 

25 2.2 1.6 2.1 2.1 1.9 1.8 2.2 
26 1.3 1.2 1.5 1.3 1.3 1.5 1.3 
27 3.2 3.0 3.2 2.7 2.8 2.6 2.6 
28 1.8 1.7 1.6 1.6 1.4 1.4 1.2 
29 4.2 4.1 4.7 3.8 4.0 3.6 3.0 

30 2.3 2.2 1.9 1.6 1.7 1.4 1.1 
 

Post-treatment 
Subject Base -5 mmHg -10 mmHg -15 mmHg -20 mmHg -30 mmHg -40 mmHg 

16 1.6 1.5 1.4 1.3 1.2 1.9 1.4 
17 1.6 1.6 1.6 1.6 2.3 1.2 1.5 

18 1.6 1.4 1.4 1.2 1.3 1.2 1.1 
19 2.5 2.4 2.2 2.1 2.2 2.0 2.3 
20 1.6 1.5 1.3 1.1 1.2 1.1 1.0 
21 1.3 1.2 1.1 1.0 1.1 0.9 1.0 
22 1.3 1.2 1.2 1.2 1.4 1.2 1.1 

23 2.2 2.4 2.1 2.1 2.0 2.0 2.2 
24 1.7 1.3 1.4 1.3 1.4 1.1 1.3 
25 2.6 2.7 3.5 2.9 2.8 2.6 2.5 
26 2.3 1.7 1.5 1.5 1.3 1.2 1.5 
27 2.2 1.8 2.0 2.1 2.0 2.3 2.0 

28 1.3 1.3 1.3 1.3 1.3 1.5 1.3 
29 4.2 4.2 4.0 3.8 3.5 3.7 4.2 
30 3.0 2.8 3.4 2.7 2.7 2.3 1.5 
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Appendix A-13: Raw data for FVR (mmHg/ml/100ml/min) during LBNP  

Placebo 

Pre-treatment 

Subject Base -5 mmHg 
-10 

mmHg 
-15 

mmHg 
-20 

mmHg 
-30 

mmHg 
-40 

mmHg 

1 52.8 53.8 54.9 53.2 54.6 53.7 45.5 

2 35.1 37.2 37.4 42.9 44.0 39.2 40.0 

3 27.4 27.9 28.6 26.3 28.1 29.1 26.5 

4 64.3 79.0 73.5 69.7 74.8 82.6 78.2 

5 42.6 44.3 48.6 51.9 50.4 54.7 70.5 

6 44.6 51.8 46.5 49.4 45.8 48.0 47.3 

7 56.9 62.5 50.9 57.2 56.1 60.7 59.1 

8 47.0 50.3 48.7 42.2 46.7 40.9 42.6 

9 40.0 41.6 42.6 52.4 54.3 65.4 74.1 

10 17.0 17.7 17.1 20.6 22.7 29.3 34.7 

11 93.5 109.0 110.5 110.8 107.6 107.6 119.0 

12 48.7 56.3 62.3 56.2 52.5 55.8 73.0 

13 . . . . . . . 

14 34.3 36.4 38.1 39.3 44.8 57.3 55.0 

15 37.1 28.7 31.2 31.4 32.5 29.5 30.6 
 

Post-treatment 

Subject Base -5 mmHg 
-10 

mmHg 
-15 

mmHg 
-20 

mmHg 
-30 

mmHg 
-40 

mmHg 

1 55.8 55.1 53.0 55.6 50.8 57.8 58.1 

2 30.9 29.5 29.4 29.7 26.7 . . 

3 25.7 30.9 27.3 30.4 27.4 27.9 29.5 

4 75.7 79.3 79.0 76.9 79.9 77.0 77.0 

5 42.9 60.3 64.4 59.1 75.1 68.2 66.6 

6 59.7 62.1 58.6 63.3 62.8 82.7 81.7 

7 57.5 43.7 56.4 56.9 54.8 48.4 60.6 

8 52.8 60.2 60.9 57.6 60.3 65.5 74.7 

9 65.2 56.1 54.1 58.8 59.3 66.7 73.3 

10 25.0 27.4 35.1 37.4 35.5 41.4 49.6 

11 53.2 58.7 63.2 71.5 77.7 83.5 62.5 

12 60.5 69.3 86.7 83.2 81.7 108.0 95.0 

13 . . . . . . . 

14 48.3 55.9 59.7 67.9 65.3 63.7 70.2 

15 30.6 31.0 32.1 27.0 30.0 26.0 28.3 
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Alcohol  

Pre-treatment 

Subject Base -5 mmHg 
-10 

mmHg 
-15 

mmHg 
-20 

mmHg 
-30 

mmHg 
-40 

mmHg 

16 45.8 49.6 46.4 52.9 62.0 63.0 69.1 

17 52.1 63.9 55.3 62.5 61.0 74.3 66.6 

18 57.6 66.3 70.6 76.6 83.6 93.2 86.8 

19 27.0 31.0 37.0 34.3 39.8 41.0 37.0 

20 51.5 59.6 54.1 57.2 55.6 51.2 58.5 

21 68.1 81.3 76.8 81.1 79.0 84.2 78.6 

22 62.9 56.3 66.4 74.3 83.7 87.6 79.1 

23 26.6 32.3 24.8 25.2 34.8 23.2 30.9 

24 41.2 47.7 46.7 51.9 55.6 49.8 66.3 

25 44.0 64.2 46.3 46.3 54.7 55.1 43.1 

26 61.2 67.9 57.9 64.4 66.6 57.3 64.9 

27 28.5 30.8 29.5 33.4 32.4 33.2 34.5 

28 45.5 47.6 47.7 49.7 57.7 57.8 66.0 

29 22.3 22.5 19.5 24.1 22.3 24.4 29.1 

30 32.9 35.1 39.8 46.6 44.7 55.1 70.7 
 

Post-treatment 

Subject Base -5 mmHg 
-10 

mmHg 
-15 

mmHg 
-20 

mmHg 
-30 

mmHg 
-40 

mmHg 

16 50.2 55.0 56.5 60.1 61.3 40.3 54.2 

17 54.4 53.6 56.2 56.0 37.9 73.9 55.5 

18 48.4 56.0 53.7 63.3 58.0 60.5 67.3 

19 39.9 41.5 43.3 47.5 44.8 48.9 41.2 

20 58.5 60.9 67.5 78.3 69.2 75.4 86.2 

21 60.9 68.2 74.4 77.7 73.7 81.5 75.9 

22 62.2 71.5 70.6 67.1 57.3 62.9 72.1 

23 36.7 32.4 35.8 34.2 35.6 32.6 33.6 

24 53.7 69.4 63.6 64.5 59.7 76.0 63.7 

25 39.2 37.7 29.5 35.3 35.6 38.1 38.0 

26 37.2 50.4 54.9 54.9 60.8 65.5 50.1 

27 43.0 53.8 47.5 44.6 45.4 40.1 45.4 

28 69.6 67.3 65.5 62.7 60.9 52.3 57.0 

29 20.6 20.4 21.5 23.4 25.3 22.0 19.2 

30 28.3 30.8 25.9 32.6 32.9 37.9 54.0 
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Appendix A-14: Raw data for FVC (ml/100ml/min/mmHg)*100 during LBNP  

Placebo  

Pre-treatment 

Subject Base -5 mmHg 
-10 

mmHg 
-15 

mmHg 
-20 

mmHg 
-30 

mmHg 
-40 

mmHg 

1 1.9 1.9 1.8 1.9 1.8 1.9 2.2 
2 2.9 2.7 2.7 2.3 2.3 2.6 2.5 

3 3.7 3.6 3.5 3.8 3.6 3.4 3.8 
4 1.6 1.3 1.4 1.4 1.3 1.2 1.3 
5 2.3 2.3 2.1 1.9 2.0 1.8 1.4 
6 2.2 1.9 2.1 2.0 2.2 2.1 2.1 
7 1.8 1.6 2.0 1.7 1.8 1.6 1.7 

8 2.1 2.0 2.1 2.4 2.1 2.4 2.3 
9 2.5 2.4 2.3 1.9 1.8 1.5 1.3 
10 5.9 5.6 5.9 4.9 4.4 3.4 2.9 
11 1.1 0.9 0.9 0.9 0.9 0.9 0.8 
12 2.1 1.8 1.6 1.8 1.9 1.8 1.4 

13 . . . . . . . 
14 2.9 2.8 2.6 2.5 2.2 1.7 1.8 
15 2.7 3.5 3.2 3.2 3.1 3.4 3.3 

 

Post-treatment 

Subject Base -5 mmHg 
-10 

mmHg 
-15 

mmHg 
-20 

mmHg 
-30 

mmHg 
-40 

mmHg 

1 1.8 1.8 1.9 1.8 2.0 1.7 1.7 
2 3.2 3.4 3.4 3.4 3.7 . . 
3 3.9 3.2 3.7 3.3 3.7 3.6 3.4 

4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 
5 2.3 1.7 1.6 1.7 1.3 1.5 1.5 
6 1.7 1.6 1.7 1.6 1.6 1.2 1.2 
7 1.7 2.3 1.8 1.8 1.8 2.1 1.6 
8 1.9 1.7 1.6 1.7 1.7 1.5 1.3 

9 1.5 1.8 1.8 1.7 1.7 1.5 1.4 
10 4.0 3.7 2.9 2.7 2.8 2.4 2.0 
11 1.9 1.7 1.6 1.4 1.3 1.2 1.6 
12 1.7 1.4 1.2 1.2 1.2 0.9 1.1 
13 . . . . . . . 

14 2.1 1.8 1.7 1.5 1.5 1.6 1.4 
15 3.3 3.2 3.1 3.7 3.3 3.9 3.5 
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Alcohol  

Pre-treatment 

Subject Base -5 mmHg 
-10 

mmHg 
-15 

mmHg 
-20 

mmHg 
-30 

mmHg 
-40 

mmHg 

16 2.2 2.0 2.2 1.9 1.6 1.6 1.4 
17 1.9 1.6 1.8 1.6 1.6 1.3 1.5 

18 1.7 1.5 1.4 1.3 1.2 1.1 1.2 
19 3.7 3.2 2.7 2.9 2.5 2.4 2.7 
20 1.9 1.7 1.8 1.7 1.8 2.0 1.7 
21 1.5 1.2 1.3 1.2 1.3 1.2 1.3 
22 1.6 1.8 1.5 1.3 1.2 1.1 1.3 

23 3.8 3.1 4.0 4.0 2.9 4.3 3.2 
24 2.4 2.1 2.1 1.9 1.8 2.0 1.5 
25 2.3 1.6 2.2 2.2 1.8 1.8 2.3 
26 1.6 1.5 1.7 1.6 1.5 1.7 1.5 
27 3.5 3.3 3.4 3.0 3.1 3.0 2.9 

28 2.2 2.1 2.1 2.0 1.7 1.7 1.5 
29 4.5 4.4 5.1 4.2 4.5 4.1 3.4 
30 3.0 2.8 2.5 2.1 2.2 1.8 1.4 

 

Post-treatment 

Subject Base -5 mmHg 
-10 

mmHg 
-15 

mmHg 
-20 

mmHg 
-30 

mmHg 
-40 

mmHg 

16 2.0 1.8 1.8 1.7 1.6 2.5 1.8 
17 1.8 1.9 1.8 1.8 2.6 1.4 1.8 
18 2.1 1.8 1.9 1.6 1.7 1.7 1.5 

19 2.5 2.4 2.3 2.1 2.2 2.0 2.4 
20 1.7 1.6 1.5 1.3 1.4 1.3 1.2 
21 1.6 1.5 1.3 1.3 1.4 1.2 1.3 
22 1.6 1.4 1.4 1.5 1.7 1.6 1.4 
23 2.7 3.1 2.8 2.9 2.8 3.1 3.0 

24 1.9 1.4 1.6 1.5 1.7 1.3 1.6 
25 2.6 2.6 3.4 2.8 2.8 2.6 2.6 
26 2.7 2.0 1.8 1.8 1.6 1.5 2.0 
27 2.3 1.9 2.1 2.2 2.2 2.5 2.2 
28 1.4 1.5 1.5 1.6 1.6 1.9 1.8 

29 4.8 4.9 4.7 4.3 4.0 4.5 5.2 
30 3.5 3.2 3.9 3.1 3.0 2.6 1.9 
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Appendix B-1: Mean values plus/minus SE for pre-treatment    
 

Variable Group N Baseline -5 mmHg -10 mmHg -15 mmHg 

SAP Placebo 14 117 ± 2 117 ± 2 116 ± 2 116 ± 2 

 mmHg Alcohol 15 120 ± 3 121 ± 3 121 ± 3 120 ± 3 

DAP Placebo 14 65 ± 2 65 ± 2 65 ± 2 65 ± 2 

 mmHg Alcohol 15 64 ± 2 65 ± 2 65 ± 2 65 ± 2 

MAP Placebo 14 82 ± 2 82 ± 2 82 ± 2 82 ± 2 

 mmHg Alcohol 15 82 ± 2 83 ± 2 84 ± 2 83 ± 2 

HR Placebo 14 59 ± 3 58 ± 2 60 ± 3 61 ± 3 

 bpm Alcohol 15 60 ± 2 60 ± 2 61 ± 2 61 ± 2 

MSNA  Placebo 9 14 ± 2 15 ± 2 17 ± 1 20 ± 1 

bursts/min Alcohol 9 15 ± 3 18 ± 3 20 ± 3 23 ± 3 

MSNA  Placebo 9 26 ± 3 27 ± 3 30 ± 3 35 ± 3 

bursts/100 HB Alcohol 9 25 ± 6 30 ± 5 33 ± 5 39 ± 6 

Total MSNA Placebo 9 6363 ± 842 7456 ± 1075 8683 ± 877 10643 ± 1182 

a.u. Alcohol 9 6724 ± 1692 10092 ± 1881 12778 ± 2603 14649 ± 2747 

FBF Placebo 13 2.1 ± 0.3 2.0 ± 0.3 2.0 ± 0.3 1.9 ± 0.2 

unit  Alcohol 15 2.1 ± 0.2 1.9 ± 0.2 2.0 ± 0.2 1.8 ± 0.2 

FVR Placebo 13 47 ± 5 51 ± 7 50 ± 7 51 ± 6 

 mmHg/unit Alcohol 15 45 ± 4 50 ± 4 48 ± 4 52 ± 5 

FVC*100 Placebo 13 2.5 ± 0.3 2.4 ± 0.3 2.4 ± 0.4 2.3 ± 0.3 

 unit/mmHg Alcohol 15 2.5 ± 0.2 2.3 ± 0.2 2.5 ± 0.2 2.2 ± 0.2 
 

unit = ml/100ml/min 
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Variable Group N -20 mmHg -30 mmHg -40 mmHg 

SAP Placebo 14 116 ± 2 112 ± 2 108 ± 2 

mmHg  Alcohol 15 121 ± 3 117 ± 3 114 ± 4 

DAP Placebo 14 66 ± 2 66 ± 2 66 ± 2 

 mmHg Alcohol 15 66 ± 2 65 ± 2 66 ± 2 

MAP Placebo 14 82 ± 2 81 ± 2 79 ± 2 

 mmHg Alcohol 15 84 ± 2 82 ± 2 81 ± 2 

HR Placebo 14 62 ± 3 69 ± 3 75 ±3 

 Bpm Alcohol 15 63 ± 2 67 ± 2 73 ± 2 

MSNA  Placebo 9 23 ± 1 28 ± 3 35 ± 2 

bursts/min Alcohol 9 26 ± 3 33 ± 3 37 ± 3 

MSNA  Placebo 9 39 ± 2 43 ± 4 49 ± 3 

bursts/100 HB Alcohol 9 42 ± 5 51 ± 4 54 ± 5 

Total MSNA Placebo 9 11736 ± 1029 15676 ± 2001 21214 ± 3642 

a.u. Alcohol 9 15971 ± 2349 21947 ± 3012 27876 ± 4324 

FBF Placebo 13 1.8 ± 0.2 1.7 ± 0.2 1.6 ± 0.2 

 unit Alcohol 15 1.7 ± 0.2 1.7 ± 0.2 1.6 ± 0.2 

FVR Placebo 13 52 ± 6 55 ± 6 58 ± 7 

mmHg/unit  Alcohol 15 56 ± 5 57 ± 5 59 ± 5 

FVC*100 Placebo 13 2.3 ± 0.3 2.1 ± 0.2 2.0 ± 0.2 

 unit/mmHg Alcohol 15 2.1 ± 0.2 2.1 ± 0.3 1.9 ± 0.2 
 

unit = ml/100ml/min 
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Appendix B-2: Mean values plus/minus SE for post-treatment    

Variable Group N Baseline -5 mmHg -10 mmHg -15 mmHg 

SAP Placebo 14 123 ± 2 124 ± 2 124 ± 2 124 ± 3 

 mmHg Alcohol 15 124 ± 4 125 ± 4 124 ± 4 122 ± 5 

DAP Placebo 14 72 ± 2 73 ± 2 73 ± 2 73 ± 2 

 mmHg Alcohol 15 69 ± 2 69 ± 2 69 ± 2 68 ± 2 

MAP Placebo 14 89 ± 1 90 ± 2 89 ± 2 90 ± 2 

 mmHg Alcohol 15 87 ± 2 87 ± 2 87 ± 2 86 ± 2 

HR Placebo 14 58 ± 3 58 ± 3 59 ± 3 61 ± 3 

 Bpm Alcohol 15 65 ± 2 66 ± 2 67 ± 2 69 ± 2 

MSNA  Placebo 9 14 ± 2 16 ± 1 19 ± 2 24 ± 4 

bursts/min Alcohol 9 19 ± 4 21 ± 4 25 ± 5 28 ± 4 

MSNA  Placebo 9 25 ± 3 29 ± 3 33 ± 2 41 ± 4 

bursts/100 HB Alcohol 9 29 ± 7 33 ± 6 38 ± 7 41 ± 6 

Total MSNA Placebo 9 5970 ± 714 7590 ± 821 9755 ± 1153 13651 ± 2002 

a.u. Alcohol 9 8046 ± 1680 11391 ± 2218 12887 ± 2867 14699 ± 2675 

FBF Placebo 13 2.0 ± 0.2 1.8 ± 0.2 1.7 ± 0.2 1.7 ± 0.2 

 unit Alcohol 15 2.1 ± 0.2 1.9 ± 0.2 2.0 ± 0.2 1.8 ± 0.2 

FVR Placebo 13 50 ± 4 53 ± 4 56 ± 5 57 ± 5 

 mmHg/unit Alcohol 15 47 ± 4 51 ± 4 51 ± 4 54 ± 4 

FVC*100 Placebo 13 2.2 ± 2.5 2.1 ± 0.2 2.0 ± 0.2 2.0 ± 0.2 

 unit/mmHg Alcohol 15 2.4 ± 0.2 2.2 ± 0.3 2.3 ± 0.3 2.1 ± 0.2 
 

unit = ml/100ml/min 
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Variable Group N -20 mmHg -30 mmHg -40 mmHg 

SAP Placebo 14 123 ± 3 121 ± 3 117 ± 4 

mmHg  Alcohol 15 120 ± 5 116 ± 4 113 ± 4 

DAP Placebo 14 73 ± 2 74 ± 2 74 ± 3 

 mmHg Alcohol 15 68 ± 2 67 ± 2 67 ± 2 

MAP Placebo 14 89 ± 2 88 ± 2 87 ± 2 

 mmHg Alcohol 15 85 ± 2 83 ± 2 82 ± 2 

HR Placebo 14 63 ± 3 70 ± 3 79 ± 5 

 Bpm Alcohol 15 70 ± 2 73 ± 2 80 ± 2 

MSNA  Placebo 9 27 ± 4 32 ± 4 36 ± 3 

bursts/min Alcohol 9 30 ± 5 37 ± 4 42 ± 5 

MSNA  Placebo 9 43 ± 5 47 ± 4 48 ± 4 

bursts/100 HB Alcohol 9 43 ± 6 52 ± 5 53 ± 5 

MSNA Placebo 9 14685 ± 2442 19951 ± 2720 26731 ± 2617 

total area Alcohol 9 17384 ± 3177 24219 ± 3985 29742 ± 4781 

FBF Placebo 13 1.7 ± 0.2 1.6 ± 0.2 1.5 ± 0.2 

 unit Alcohol 15 1.9 ± 0.2 1.7 ± 0.2 1.7 ± 0.2 

FVR Placebo 13 59 ± 5 63 ± 6 64 ± 5 

 mmHg/unit Alcohol 15 51 ± 4 54 ± 5 54 ± 5 

FVC*100 Placebo 13 1.9 ± 0.2 1.9 ± 0.3 1.8 ± 0.2 

 unit/mmHg Alcohol 15 2.2 ± 0.2 2.1 ± 0.2 2.1 ± 0.3 
 

unit = ml/100ml/min 
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Appendix C-1: Repeated Measures ANOVA for baseline measurements 

Baseline SAP 

Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W Approx. Chi-Square df S ig. Huynh-Feldt 

treatment 1.000 0.000 0 . 1.000 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 

treatment*drug 3.902 1.000 3.902 0.119 0.37 
 
 
Baseline DAP 

Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W Approx. Chi-Square df S ig. Huynh-Feldt 

treatment 1.000 0.000 0 . 1.000 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 

treatment*drug 22.355 1.000 22.355 0.842 0.18 

Baseline MAP 

Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W Approx. Chi-Square df S ig. Huynh-Feldt 

treatment 1.000 0.000 0 . 1.000 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 

treatment*drug 15.073 1.000 15.073 0.753 0.20 

Baseline HR 

Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W Approx. Chi-Square df S ig. Huynh-Feldt 

treatment 1.000 0.000 0 . 1.000 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (2-tailed) 

treatment*drug 63.370 1.000 63.670 9.812 0.004 
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Baseline MSNA 
(bursts/min) 

Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W Approx. Chi-Square df S ig. Huynh-Feldt 

treatment 1.000 0.000 0 . 1.000 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 

treatment*drug 96.148 1.000 96.148 2.781 0.05 

Baseline MSNA (bursts/100HB) 

Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W Approx. Chi-Square df S ig. Huynh-Feldt 

treatment 1.000 0.000 0 . 1.000 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 

treatment*drug 141.750 1.000 141.750 1.724 0.10 

Baseline Total MSNA 

Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W Approx. Chi-Square df S ig. Huynh-Feldt 

treatment 1.000 0.000 0 . 1.000 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 

treatment*drug 1.789E+07 1.000 1.789E+07 1.728 0.10 

Baseline FBF 

Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W Approx. Chi-Square df S ig. Huynh-Feldt 

treatment 1.000 0.000 0 . 1.000 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 

treatment*drug 0.023 1.000 0.023 0.163 0.35 
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Baseline FVR 

Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W Approx. Chi-Square df S ig. Huynh-Feldt 

treatment 1.000 0.000 0 . 1.000 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 

treatment*drug 17.859 1.000 17.859 0.199 0.33 

Baseline FVC 

Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W Approx. Chi-Square df S ig. Huynh-Feldt 

treatment 1.000 0.000 0 . 1.000 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 

treatment*drug 3.473E-06 1.000 3.473E-06 0.144 0.35 
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Appendix C-2: Repeated Measures ANOVA for blood pressures 

 
Mauchley's Test of Sphericity 

Within Subjects  
Effect Mauchly's W 

Approx.  
Chi-Square df S ig. Huynh-Feldt 

Treatment 1.000 0.000 0 . 1.000 
Time 0.001 167.270 20 0.000 0.288 
Treatment * Time 0.062 69.047 20 0.000 0.536 

Test of Within-Subjects Effects 

Source 
Type III Sum  

of Squares df 
Mean 

Square F Sig. (1-tailed) 

Treatment 2071.313 1.000 2071.313 13.407 0.001 
Time 3385.479 1.730 1956.979 23.772 0.000 
Treatment * Time 54.903 3.216 17.072 0.903 0.225 

Treatment * Time * Drug 243.467 3.216 75.704 4.006 0.005 
 
 
 
 

 
Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W 
Approx. Chi-

Square df S ig. Huynh-Feldt 
Treatment 1.000 0.000 0 . 1.000 
Time 0.001 162.545 20 0.000 0.328 
Treatment * Time 0.012 110.417 20 0.000 0.367 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 

Treatment 2673.830 1.000 2673.830 19.781 0.000 
Time 10.327 1.968 5.246 0.274 0.379 
Treatment * Time 62.708 2.203 28.470 3.264 0.021 
Treatment * Time * Drug 45.451 2.203 20.635 2.366 0.049 
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Mauchley's Test of Sphericity 

Within Subjects Effect 
Mauchly's 

W 
Approx. Chi-

Square df S ig. Huynh-Feldt 

Treatment 1.000 0.000 0 . 1.000 
Time 0.002 156.346 20 0.000 0.335 
Treatment * Time 0.023 93.828 20 0.000 0.413 

Test of Within-Subjects Effects 

Source 

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. (1-tailed) 
Treatment 2297.701 1.000 2297.701 27.084 0.000 
Time 598.921 2.008 298.341 10.546 0.000 
Treatment * Time 88.504 2.478 35.713 2.916 0.025 

Treatment * Time * Drug 69.373 2.478 27.993 2.285 0.049 
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Appendix C-3: Repeated Measures ANOVA for heart rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Mauchley's Test of Sphericity 

Within Subjects Effect 
Mauchly's 

W 
Approx. Chi-

Square df S ig. Huynh-Feldt 
Treatment 1.000 0.000 0 . 1.000 
Time 0.000 205.027 20 0.000 0.274 
Treatment * Time 0.011 111.207 20 0.000 0.345 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (2-tailed) 

Treatment 1229.545 1.000 1230 14.825 0.002 
Time 12205.339 1.645 7420 119.257 0.000 
Treatment * Time 96.019 2.069 46.417 2.305 0.108 
Treatment * Time * Drug 44.995 2.069 21.751 1.080 0.348 



81 
 

Appendix C-4: Repeated Measures ANOVA for MSNA 

 
Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W 
Approx. Chi-

Square df S ig. Huynh-Feldt 

Treatment 1.000 0.000 0 . 1.000 
Time 0.002 84.597 20 0.000 0.379 
Treatment * Time 0.003 80.634 20 0.000 0.531 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 
Treatment 698.501 1 698.501 2.311 0.074 
Time 14049.910 2 6178.816 117.767 0.000 

Treatment * Time 56.723 3.186 17.806 0.693 0.285 
Treatment * Time * Drug 41.724 3.186 13.097 0.510 0.344 
 
 
 
 

 
Mauchley's Test of Sphericity 

Within Subjects Effect 
Mauchly's 

W 
Approx. Chi-

Square df S ig. Huynh-Feldt 
Treatment 1.000 0.000 0 . 1.000 
Time 0.011 61.973 20 0.000 0.542 

Treatment * Time 0.029 48.942 20 0.000 0.671 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 
Treatment 385.914 1.000 385.914 0.910 0.177 
Time 18620.876 3.251 5727.526 74.564 0.000 
Treatment * Time 155.472 4.028 38.600 0.974 0.215 
Treatment * Time * Drug 131.529 4.028 32.656 0.824 0.258 
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Mauchley's Test of Sphericity 

Within Subjects Effect 
Mauchly's 

W 
Approx. Chi-

Square df S ig. Huynh-Feldt 

Treatment 1.000 0.000 0 . 1.000 
Time 0.000 106.951 20 0.000 0.325 
Treatment * Time 0.001 100.994 20 0.000 0.304 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 
Treatment 1.992E+08 1.000 1.992E+08 0.634 0.219 
Time 1.003E+10 1.952 5.138E+09 95.252 0.000 

Treatment * Time 9.348E+07 1.821 5.133E+07 0.771 0.231 
Treatment * Time * Drug 5.401E+07 1.821 2.965E+07 0.445 0.314 
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Appendix C-5: Repeated Measures ANOVA for forearm blood flows 

 
Mauchley's Test of Sphericity 

Within Subjects Effect 
Mauchly's 

W 
Approx. Chi-

Square df S ig. Huynh-Feldt 

Treatment 1.000 0.000 0 . 1.000 
Time 0.004 133.278 20 0.000 0.316 
Treatment * Time 0.102 54.266 20 0.000 0.668 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 
Treatment 0.668 1.000 0.668 0.911 0.175 
Time 7.989 1.898 4.209 15.850 0.000 

Treatment * Time 0.333 4.009 0.083 1.170 0.164 
Treatment * Time * Drug 0.086 4.009 0.022 0.303 0.438 
 
 
 
 

 
Mauchley's Test of Sphericity 

Within Subjects Effect Mauchly's W 
Approx. 

Chi-Square df S ig. Huynh-Feldt 
Treatment 1.000 0.000 0 . 1.000 
Time 0.028 85.145 20 0.000 0.507 

Treatment * Time 0.058 67.851 20 0.000 0.611 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 
Treatment 580.244 1.000 580.244 0.862 0.181 
Time 5043.282 3.045 1656.502 19.884 0.000 
Treatment * Time 194.336 3.664 53.044 0.908 0.228 
Treatment * Time * Drug 441.426 3.664 120.487 2.062 0.049 
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Mauchley's Test of Sphericity 

Within Subjects Effect 
Mauchly's 

W 
Approx. Chi-

Square df S ig. Huynh-Feldt 

Treatment 1.000 0.000 0 . 1.000 
Time 0.006 123.620 20 0.000 0.335 
Treatment * Time 0.124 49.595 20 0.000 0.730 

Test of Within-Subjects Effects 

Source 
Type III Sum 

of Squares df 
Mean 

Square F Sig. (1-tailed) 
Treatment 0.000 1.000 0.000 2.676 0.057 
Time 0.001 2.012 0.000 10.874 0.000 

Treatment * Time 7.456E-05 4.380 1.702E-05 1.921 0.053 
Treatment * Time * Drug 2.468E-05 4.380 5.63E-06 0.636 0.326 
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Appendix D-1: Post-hoc paired t-tests for baseline measurements 

SAP (Alcohol) 

95% Confidence 
Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre-baseline vs Post-baseline 4.797 -9.443 -0.150 2.210 14 0.022 
 
 

SAP (Placebo) 
95% Confidence 

Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre-baseline vs Post-baseline 5.860 -9.693 -2.027 3.279 14 0.003 

 
 

DAP (Alcohol) 
95% Confidence 

Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre-baseline vs Post-baseline 4.653 -8.851 -0.456 2.378 14 0.016 
 
 

DAP (Placebo) 
95% Confidence 

Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre-baseline vs Post-baseline 7.160 -10.569 -3.751 4.505 14 0.000 

MAP (Alcohol) 
95% Confidence 

Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre-baseline vs Post-baseline 4.700 -8.055 -1.345 3.005 14 0.005 
 
 

MAP (Placebo) 
95% Confidence 

Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre-baseline vs Post-baseline 6.773 -10.069 -3.477 4.408 14 0.001 

HR (Alcohol) 
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95% Confidence 
Interval 

Pairing Mean Lower Upper t df 
S ig. (2-
tailed) 

Pre-baseline vs Post-baseline 5.187 -7.799 -2.574 4.259 14 0.002 
 
 

MSNA bursts/min (Alcohol) 
95% Confidence 

Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre-baseline vs Post-baseline -5.985 -12.516 0.547 -1.996 12 0.035 
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Appendix D-2: Post-hoc Paired T-tests 

 
95 % Confidence 

Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre -5 mmHg vs Post -5 mmHg 0.827 -0.288 1.942 1.590 14 0.067 
Pre -10 mmHg vs Post -10 mmHg 1.467 -0.320 3.253 1.761 14 0.050 
Pre -15 mmHg vs Post -15 mmHg 2.280 0.458 4.102 2.683 14 0.009 

Pre -20 mmHg vs Post -20 mmHg 4.133 1.336 6.930 3.170 14 0.004 
Pre -30 mmHg vs Post -30 mmHg 4.293 1.528 7.058 3.330 14 0.003 
Pre -40 mmHg vs Post -40 mmHg 4.500 1.594 7.406 3.321 14 0.003 
 
 
 

 

95% Confidence 
Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre -5 mmHg vs Post -5 mmHg 0.960 -0.451 2.371 1.489 14 0.084 
Pre -10 mmHg vs Post -10 mmHg 2.160 -0.432 4.752 1.787 14 0.048 

Pre -15 mmHg vs Post -15 mmHg 3.600 1.019 6.180 2.992 14 0.005 
Pre -20 mmHg vs Post -20 mmHg 5.587 1.353 9.820 2.831 14 0.070 
Pre -30 mmHg vs Post -30 mmHg 5.727 1.850 9.603 3.168 14 0.004 
Pre -40 mmHg vs Post -40 mmHg 5.633 1.793 9.474 3.146 14 0.004 

 
 
 

 
95% Confidence 

Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre -5 mmHg vs Post -5 mmHg 0.453 -0.440 1.346 1.089 14 0.148 

Pre -10 mmHg vs Post -10 mmHg 0.653 -0.464 1.771 1.254 14 0.116 
Pre -15 mmHg vs Post -15 mmHg 1.187 0.035 2.338 2.211 14 0.022 
Pre -20 mmHg vs Post -20 mmHg 2.873 0.844 4.903 3.036 14 0.005 
Pre -30 mmHg vs Post -30 mmHg 3.353 1.110 5.592 3.212 14 0.003 
Pre -40 mmHg vs Post -40 mmHg 3.730 1.239 6.228 3.210 14 0.003 
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95% Confidence 

Interval 

Pairing Mean Lower Upper t df 
S ig. (1-
tailed) 

Pre -5 mmHg vs Post -5 mmHg 1.529 -3.679 6.737 0.630 14 0.270 

Pre -10 mmHg vs Post -10 mmHg -0.797 -5.421 3.827 -0.370 14 0.359 
Pre -15 mmHg vs Post -15 mmHg 0.906 -3.331 5.144 0.459 14 0.327 
Pre -20 mmHg vs Post -20 mmHg 7.381 0.595 14.167 2.333 14 0.018 
Pre -30 mmHg vs Post -30 mmHg 5.204 -4.477 14.885 1.153 14 0.134 
Pre -40 mmHg vs Post -40 mmHg 6.866 -0.083 13.814 2.119 14 0.026 
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Appendix E: Copyright clearance 

Figure 4.1 A screenshot of the American Physiological Society’s copyright permission 
page. This can be found on their web page at 
http://www.theaps.org/mm/Publications/Copyright-and-Permissions 

Figure 4.2 A screenshot of the American Physiological Society’s copyright permission 
page stating the rights of authors to reuse published articles in theses. This can be found 
on their web page at http://www.theaps.org/mm/Publications/Copyright-and-Permissions 
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