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Abstract

Routine bridge inspections require labor intensive and highly subjective visual
interpretation to determine bridge deck surface condition. Light Detection and Ranging
(LiDAR) a relatively new class of survey instrument has become a popular and
increasingly used technology for providing as-built and inventory data in civil
applications. While an increasing number of private and governmental agencies possess
terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities
and potential applications continues to evolve. LiDAR is a line-of-sight instrument and
as such, care must be taken when establishing scan locations and resolution to allow the
capture of data at an adequate resolution for defining features that contribute to the
analysis of bridge deck surface condition. Information such as the location, area, and
volume of spalling on deck surfaces, undersides, and support columns can be derived
from properly collected LiDAR point clouds. The LiDAR point clouds contain
information that can provide quantitative surface condition information, resulting in more

accurate structural health monitoring.

LiDAR scans were collected at three study bridges, each of which displayed a varying
degree of degradation. A variety of commercially available analysis tools and an
independently developed algorithm written in ArcGIS Python (ArcPy) were used to
locate and quantify surface defects such as location, volume, and area of spalls. The
results were visual and numerically displayed in a user-friendly web-based decision
support tool integrating prior bridge condition metrics for comparison. LiDAR data
processing procedures along with strengths and limitations of point clouds for defining
features useful for assessing bridge deck condition are discussed. Point cloud density and
incidence angle are two attributes that must be managed carefully to ensure data collected
are of high quality and useful for bridge condition evaluation. When collected properly
to ensure effective evaluation of bridge surface condition, LIDAR data can be analyzed to
provide a useful data set from which to derive bridge deck condition information.

Xii



1 Introduction

1.1 Background

Through the years of hard use and shrinking maintenance funding, the United States’
bridge infrastructure system has been rapidly deteriorating. A significant percentage of
the nation’s approximately 600,000 bridges are categorized as structurally deficient or
functionally obsolete. In fact, the National Bridge Inventory (NBI) database revels that
approximately 87,000 bridges possess structurally deficient characteristics (Fuchs et al.
2004). This staggering percentage deemed as structurally deficient will require extensive
repair and possible reconstruction, which will exhaust limited resources, but is necessary
to ensure safety and reliability. The current bridge inspection standards require bridges to
be inspected at least once every two years. If the two year inspection period is deemed as
inadequate due visible signs of distress, the inspector can shorten the inspection
frequency. This is done mainly through a visual inspection in which the inspector uses
their expertise and past experiences to determine the condition of the bridge (FHWA
2006). Visual inspection practices are extremely subjective and lead to highly variable
results depending on the inspector. The subjectivity of this process makes it difficult to
gain consistent bridge condition assessments. By introducing remote sensing techniques
such as Light Detection and Ranging (LiDAR) into the current inspection practice, the
variability could be reduced, allowing for accurate determination of defects and precise
allocation of appropriate funding. A general definition of remote sensing is the collection
and measurement of spatial information about an object, area, or phenomenon at a

distance from the data source, without direct contact (Falkner 1995).

The use of LIDAR is a recent development within the civil engineering industry.
Currently, the industry utilizes LiIDAR technology as a high output, low operational cost
survey tool. LIiDAR creates an accurate point cloud rendering allowing for bridge
inventory measures, work site surveys and as-built construction models. With the
continuously narrowing technological gap, LIDAR has advanced tremendously, allowing

for the technology to become economically acceptable. Unfortunately, the civil
1



engineering industry has faltered, due to the lack of funding, to keep pace with the
technological advancements resulting in underutilization of this technology for bridge
condition assessment. However, because numerous Department of Transportations
(DOTs) are already acquiring and using LIDAR systems as a part of their day-to-day
operations, the knowledge and equipment is already available and just requires

repurposing for collection of bridge condition metrics.

1.2 Objective

The objective of this research was to detect and quantify deterioration of a concrete
bridge surface through the application of LIDAR. Several different types of deterioration
were considered, including spalling, scaling and cracking, to determine the level to which
this technology can accurately sense the concrete surface condition. This research was
performed to evaluate the technology’s potential to accurately sense topical bridge deck
defects by comparing with field demonstration. Capabilities of LIDAR were investigated
to incorporate this technology into the present cache of available bridge inspection tools.
The most effective and appropriate methods of data presentation to the end-user were

also considered.

1.3 Content

The present bridge inspection practices and the root causes of the degradation of concrete
material are reveled. A common understanding of the basics of LIDAR, the current state
within the civil engineering realm of the practice and operating parameters are discussed

within chapter two, the literature review.

Four separate field demonstration data collections were conducted to evaluate this
technology’s applicability in the remote sensing arena as an inspection tool, which is
discussed in chapter three. The primary focus of the research was completed on
reinforced concrete decks, which is considered a Commonly Recognized (CoRe)
Structural Element as defined by the American Association of State Highway and
Transportation Officials (AASHTO). Chapter four contains the defect detection results



from these field demonstrations, which were visually and numerically. Concluding
remarks of the technology evaluation and the future work necessary to take this remote

sensing application from research form to user ready are presented in chapter six.



2 Literature Review

The United States’ highway infrastructure faces an unprecedented deterioration problem.
Challenging environmental conditions and increasing traffic volumes make bridges more
susceptible than ever to accelerated deterioration (Scott et al. 2002). Current bridge
construction practices within the United States utilize numerous types of materials, which
include concrete, steel, bituminous, polymer and timber. Of these various types, concrete
is the most widely used material for bridge decks. The knowledge of the current state of
concrete bridge material spurred the investigation into the application of LiDAR as a
remote sensing technology to detect surface defects present on concrete bridge decks. To
accurately assess and diagnose bridge conditions, a firm understanding of the current

state of the infrastructure system is necessary.

Currently the United States’ bridge infrastructure system is in a state of disrepair
stemming from years of limited resources and inadequate maintenance. Recent events
such as the Minneapolis I-35W collapse and the San Francisco-Oakland Bay Bridge
collapse have brought light to this ever growing issue. However, with almost 87,000
bridges within the United States deemed as structurally deficient, 68,000 of which are
concrete, these tragedies are only a precursor of events to come (Federal Highway
Administration (FHWA) 2010).

2.1 Challenges for the National Bridge Inventory Infrastructure

The majority of in-service or planned bridges in the United States utilize a reinforced
concrete deck. Additional material such as timber, steel orthotropic, steel grid, composite
or polymeric are used as alternative bridge deck materials (Ahlborn et al. 2010).
Extensive research is being conducted by various academic, state and federal agencies in
regards to the deterioration mechanisms of traditional reinforced concrete material.
However, research has yet to develop accurate methods for field inspectors to detect

deterioration mechanisms early. This causes the reinforced concrete deck to be



classified, to a certain extent, as a sacrificial element requiring minimal maintenance and

crude methods of condition state evaluation.

During routine bridge inspections, condition states are assigned to individual bridge
elements. These condition states are compiled in a bridge safety inspection report (BSIR)
allowing for the engineer to efficiently assess the individual components of the bridge
and consider potential repair options for deficient elements. Federal and state agencies
utilize self-developed preservation matrices to efficiently allocate resources in the effort
of bridge preservation. Figure 2.1 shows the Michigan Department of Transportation’s
(MDOT) reinforced concrete (RC) deck preservation matrix, which classifies
deterioration, associated actions required for repair and anticipated service life extension
(MDOT 2011a). The matrix generates possible repair options for particular deck

condition states, which consists of two categories, top and bottom surfaces.

BRIDGE DECK PRESERVATION MATRIX — DECKS WITH EPOXY COATED REBAR (ECR)

DECK CONDITION STATE e
Top Surface Bottom Surface REPAIR CPTIONS ANTICIPATED
Deficiencies Deficiencies s S R
BSIR #58a = @ BSIR #58b o m BSIR #58a BSIR #58b
NIA A A Hold (c) No Change No Change 110 dyears
Seal Cracks/Healer Sealer (d) 9 ng :
o < 5% >5 = 2% Epoxy Owverlay 8.9 Mo Change 10 1o 15 years
= 10% z d{K) = 25%(K) Deck Patch () Upby1pt No Change 3to 10 years
Shallow Concrete Overlay (h, i) 6,9 Mo Change 201to 25 years
40k 10% to
t 25%(k; SETa —
4(k) or & ;g:ng L p';'(ﬂﬁg:;?;;;ﬂ:?l:r i 8,9 Mo Change 8 to 10 years
Zor3(k) = 25%(k) HMA Cap (g, h 1) 8,9 Mo Change 2 to dyears
Shallow Concrete Overlay (h, i) 8,9 Mo Change 10 years
dik)ors 2% to 25%(k) MA Cvertay with wals
v Cvariay with water- 8,9 No Change 5107 years
< 3() ~25% (k) proafing membrane (f, h, i) !
HMA Cap (g, h, i) 8,9 Mo Change 1to 3years
2or3(k) >25%(K) e T
eplacemnent with Epoxy ’
Coated Rebar (ECR) Deck 8 9 50+ years

(a)  Percent of deck surface area that is spalled, delaminated, or palched with temporary patch material

(b} Percent of deck underside area that is spalled. delaminated or map cracked.

{ch The “Hold™ eofion implies that there is cn-going maintenance of filling potholes with cold peteh and scaling of incipient spalls.

(dy  Seal cracks when cracks are easily visible and minimal map cracking. Apply healer sealer when crack density is too great to seal individually by hand. Sustains the cument condition longer.

{e}  Crack sealing can alsc be used to seal the perimeter of deck patches.

if Hat Mix Asphalt averlay with walerproofing membrane. Deck patching required prior to pl t of

gy Het Mix Asphalt cap without waterpreofing membrane fer ride quality improvement, Deck should be scheduled for replacement in the 5 year plan,

(h) I bridge crosses cver traveled lanes and the deck contains siag aggregate, do deck replacement.

il When deck bottom surface |s rated poor (or werse) and may have lcose or delaminated concrete over traveled lanes, an in-depth inspection should be scheduled. Any loose o
delaminated concrete should be scaled off and false decking should be placed over treveled lanes where there is potential for additicnal concrete to become locse

k. Contact CAT's Bridge Operations section if a deck with epoxy coatad rebar in poor condition Is Identified,

Figure 2.1: MDOT's RC bridge deck preservation matrix (MDOT 2011a) (See
Appendix D)




The deterioration of the sacrificial reinforced concrete deck is not the direct area of
concern. Rather as the deck degrades the crucial load bearing structural elements, the
superstructure and substructure, become more susceptible to deterioration or accelerated
deterioration. By applying knowledge gained from experimental testing and utilizing
emerging technologies, early signs of reinforced concrete deterioration would be

identifiable and preventative steps could be taken to slow or reverse the process.

2.2 Concrete Deterioration Mechanisms

Concrete deck deterioration can be classified by the location of the defect. Two
categories are utilized in classifying a defect, either a surface or subsurface, with one
often leading to the manifestation of the other (Ahlborn et al. 2010). Several different
deterioration mechanisms are investigated during field inspections, to quantify the
condition of the reinforced concrete deck and the overall surface roughness, which
contributes to the ride quality. Surface cracks, spalling, scaling, delaminations, voids and
expansion joint issues are common methods of deterioration plaguing the National Bridge
Inventory (NBI) infrastructure. All the discussed deterioration mechanisms draw on each
other, resulting in a complex network of cause and effect. Figure 2.2 is simplified model

of the deterioration cause and effect of concrete structures.

Each mechanism presents its own unique suite of challenges when being evaluated using
LiDAR. Surface deteriorations can be directly quantified by way of LIDAR, but the
subsurface deteriorations, delaminations and voids, cannot be directly quantified.
However, these subsurface defects can be indirectly measured and correlated through

surface indicators.

Commonly, reinforced concrete deck construction is a cast-in-place operation due to the
economic advantages. However, the quality control of onsite construction causes
vulnerability such as improper curing, environmental influence and human disruption.
This lack of quality control increases the probability of accelerated or premature crack

manifestation.



Surface cracks can be classified into several different types, typically denoted by the
crack configuration, width and cause. A crack is a linear fracture in concrete and can be
categorized as either structural or non-structural. Structural cracking is the result of dead
load and/or live load stresses exceeding the concrete capacity generating a substantial
crack. Non-structural cracking is initially superficial and is caused by thermal expansion

and shrinkage. Also non-structural cracking can be a function of the material design.
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Figure 2.2: Reinforced concrete deterioration diagram



The most common type of crack present in bridge decks are transverse cracks, which are
often caused by restrained shrinkage and typically occur shortly after construction
(Nowak et al. 2000). Transverse cracking propagates as a non-structural crack, but can
cause localized stresses resulting in serious structural cracking. As the name implies
transverse cracks develop transverse to the traffic flow. Common bridge construction
techniques require the reinforcing steel closest to the concrete surface to be placed
longitudinal to the traffic flow for flexural strength. With inadequate concrete cover over
longitudinal reinforcing steel, chloride ingress is capable of initiating the steel corrosion
process, developing tensile forces and causing longitudinally oriented cracking. The
cracks resulting from the longitudinal steel corrosion process is referred to longitudinal
cracking. Pattern or map cracking is associated with random, multi-directional cracking
commonly resulting for inadequate freeze-thaw protection and the steel corrosion
process. Examples of the three discussed crack varieties can be seen in Figure 2.3
(FHWA 2006). The traffic flow on Figure 2.3 is moving from left to right on the paper.

Transverse Crack Longitudinal Crack Map (Pattern) Cracking

Figure 2.3: Classification of concrete cracks (FHWA 2006) (See Appendix D)

The pertinent measurement of a suspect crack is the width rather than the length, which
can vary from a hairline opening to several inches. The reasoning behind width being the
pertinent measurement is that the larger the crack width, the higher probability of
chloride ingress resulting in steel corrosion. Current inspection standards indicate that a
crack is considered structural when the crack width exceeds 1/16 inch (1.59 mm) as
described in Table 2.1 (FHWA 2006).



Table 2.1: Concrete crack width guidelines (FHWA 2006) (See Appendix D)

Classification English Metric
Non-structural < 1/16 in (0.0625 in) <1.6mm
Hairline
Structural 1 4/15in t 1/8 in (0.0625 in-0.125 i) | 1.6 mm to 3.2 mm
Narrow

Medium 1/8 in to 3/16 in (0.125 in-0.1875 in) 3.2mm to 4.8mm

Wide >3/16 in (0.1875 in) >4.8 mm

Another crucial measurement in assessing the condition of the bridge deck is crack
density. A crack density classification is developed by measuring the cumulative lineal
feet of cracks ina 100 m or 100 ft long and 7.3 m or 24 ft section of pavement,
respectively. The Michigan Department of Transportation (MDOT), as most state
agencies do, has grouped crack density for concrete pavement as listed in Table 2.2 for
ease of classification. The crack density measurements allow for the inspectors to
understand the severity of the distress when assessing pavement condition, which is
similar to bridge decks (Reay et al. 1998). High crack density can be linked to material
failure that typically requires replacement (FHWA 2006). For a trained bridge inspector,
the presence of particular cracks and any associated crack density on a bridge deck is a

good indication of an underlying subsurface deterioration mechanism.

However, being able to quickly locate and quantify surface cracking through the
application of LiDAR, the inspector could generate an informed decision resulting in the
appropriate course of action. The application of LIDAR can improve inspections by
quickly locating and quantifying surface cracking and spalls. Rehabilitation and

maintenance decisions could be enhanced due to the availability of subject rich data.



Table 2.2: Concrete crack density guidelines (FHWA 2006) (See Appendix D)

Density Linear Crack Length per Linear Crack Length per
100 m Pavement Section 100 ft Pavement Section
Low <10m <10ft
Moderate 10 mto 135 m 10 ft to 135 ft
High >135m > 135 ft

An additional deterioration mechanism, delamination, is the direct result of the steel
corrosion process. When the reinforcing steel corrodes, the cross sectional area increases
due to the growth of corrosion products causing the bonded concrete surrounding the
steel to crack and separate from the expanding metal. This subsurface deterioration
mechanism is referred to as concrete delamination, but commonly this subsurface issue
generates surface defects such as a spall. Theoretically, the delamination does not
physically rise to the surface, but rather the now separated concrete material, which
possesses little flexural capacity, breaks away under the applied cyclic vehicular loading.
An example of a spall on a concrete bridge deck can be seen in Figure 2.4. Similar in
appearance, scalling is a deterioration mechanism caused by material degradation
resulting in material loss as seen in Figure 2.5. Current inspection practice denotes that
any measurement of ¥4 in (6.35 mm) in depth is the minimum consideration for spalled or
scaled defects (FHWA 2006).
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Figure 2.5: Example of concrete scaling (Courtesy of Renee Oats) (See Appendix D)
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Expansion joint issues are another primary concern when evaluating an in-service
reinforced concrete bridge deck. The complex interaction shown in Figure 2.2 illustrates
that the previously discussed deterioration mechanisms: cracking, spalling and scaling
contribute to the expansion joint issue. Expansion joints allow for longitudinal expansion
due to material thermal expansion. However, when cracks and spalls are allowed to
propagate the loose material generated fills the expansion joint, inhibiting its function.
By inhibiting the expansion joint, localized stresses due to material thermal expansion are
generated inducing additional cracking and spalling in proximity to the expansion joint.
Other common issues associated with expansion joints are torn or missing seals, armored

plate damage and chemical leaching on the bottom of a joint (FHWA 2006).

The overall surface roughness is another issue considered when assessing a reinforced
concrete bridge deck. Overall roughness is more commonly a user perception measure
rather than a structural health indicator. Surface roughness in a pavement structure is
commonly reported using a standardized roughness measurement referred to as the
International Roughness Index (IR1) (Gillespie 1992). The IRI is a cumulative
measurement of how much displacement is experienced within a single wheel path over a
given mile. In essence the measurement indicates how much movement a vehicle’s
suspension will experience in a given mile. Typical values range from 0 inches per mile
to 300 inches per mile on an extremely degraded road surface. However, due to the short
spans associated with in-service bridges, separate IRIs are not available to the inspector,
but rather incorporated into the IRI rating of the entire road network. The ASTM E1926-
08 is the standard for determining IRI for roadway surfaces (ASTM 2008). No standard
is available specifically for bridge decks.

2.3 Development of Present Bridge Inspection Procedures

Periodic bridge inspections are performed by state and local transportation agencies. To
generate an educated determination of the safety and remaining service life of a bridge,
periodic bridge inspections are critical. Maintenance, repair and rehabilitation measures
are completed based on the results of the bridge inspection findings. Agencies perform

12



many different types of inspections, including initial, routine, hands-on, fracture-critical,

underwater, in-depth, scoping, damage, or special inspections (NCHRP 2007).

The governing standards for all bridge inspections in the United States jurisdiction are the
National Bridge Inspection Standards (NBIS). The NBIS were developed after the
Federal-Aid Highway Act of 1968 and required the Secretary of Transportation to
establish a unifying bridge inspection document to ensure the safety of the traveling
public traversing federally funded bridges. With the enactment of the Surface
Transportation and Assistance Act of 1978, the NBIS was extended to cover all bridges
greater than twenty feet linking public roads. The most recent adaptation of the NBIS
was the result of the Surface Transportation and Uniform Relocation Assistance Act of
1987, which expanded the scope of the bridge inspection program to include special
inspection procedures for fracture critical members and underwater inspection (FHWA
2004).

Under the Surface Transportation and Assistance Act of 1978 bridges publicly owned and
greater than twenty feet in length must be inspected at least once every two years. This
standard is a minimum and if a bridge is found to be in accelerated distress or serves as a
key infrastructure link, the inspection frequency may be increased (FHWA 2004). The
methods of data collection may vary from agency to agency, but must remain within the
realm of acceptable testing standards under the NBIS. Visual inspection is the common
method of inspection, even though it is the most subjective.

The Federal Highway Administration (FHWA) and the National Highway Institute (NHI)
developed the Bridge Inspector’s Reference Manual (BIRM) in 2002. The BIRM details
accepted bridge inspection programs, procedures and techniques (FHWA 2006).
Additionally, inspection certification is required prior to entering into the bridge
inspection career. This inspection certification is obtained upon completion of the NHI
comprehensive training program. Continual learning of emerging inspection techniques
is required to maintain one’s bridge certification, which is accomplished by attending
review courses offered by the FHWA and NHI.

13



2.4 Commonly Recognized Structural Elements

The NBIS itemized key elements are required to be visually inspected to promote
uniformity between bridge inspectors. Elements of interest in the NBIS evaluation are
the deck, superstructure and substructure. The advancements made by the NBIS were to
provide consistent standards for bridge safety inspections. These safety specific
inspection standards generated limited quantifiable data to create performance-based
decision support (FHWA 2004). As a result, the American Association of State Highway
and Transportation Officials (AASHTO) developed the “Guide for Commonly
Recognized (CoRe) Structural Elements” for condition assessment and rating of key
bridge elements on a measureable performance metric scale. The condition state of an
individual structural element is developed from narrative descriptions and quantities.
Raw condition data that is collected can be transformed into useful bridge metrics
allowing for the user to assess condition and allocate resources accordingly. This
identification and evaluation process is further enhanced by including remote sensing
technologies for inspection. By incorporating remote sensing technologies into routine
bridge inspections, useful bridge metrics (e.g. percent delaminations, spalled area) would

be directly captured removing the requirement for human interpretation.

For an element to be properly assessed, the entire element must be evaluated, but
individual sections possessing larger quantities of deterioration are not given increased
precedence. By adapting the current CoRe structural elements’ guide for condition
assessment, remote sensing technologies have the potential to accurately generate
unbiased ratings. Condition state matrices are primarily used to rate the CoRe structural
elements. In this research one element, a reinforced concrete deck was selected for
evaluation. Table 2.3 shows the AASHTO CoRe structural element condition established

condition state matrix for a reinforced concrete deck as an example (AASHTO 2011).
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Table 2.3: Reinforced concrete bridge deck condition state matrix (AASHTO 2011)
(See Appendix D)

Defect Condition Condition Condition Condition
State 1 State 2 State 3 State 4
The condition is
. -~ Narrow size or | Medium size or beyond the
Cracking None to hairline density, or both | density, or both limits

Spalls/Delamination

Moderate spall

Severe spall or
patched area

/Patched Areas None or patch areas showing
that are sound .
distress
Efflorescence None Moderate Severe with rust

without rust

staining

Load Capacity

No reduction

No reduction

No reduction

established in
condition state
three(3),
warrants a
structural
review to
determine the
strength or
serviceability of
the element

2.5 Concerns with Standard Bridge Inspection Procedures

A visual inspection relies heavily on an inspector’s experience, introducing variability
into the equation due to inherent human nature. Inspection consistency is an area of
growing concern. In regards to the quantity of scales and spalling size, inspectors
commonly use crude measuring devices that can induce error into the inspection process.
Cracks are typically located during a visual bridge inspection and then surrounding areas
are sounded with an inspection hammer to confirm adequate subsurface bonding. Depth
and crack gage measurements are rarely collected unless specified and as a result the

probability of chloride ingress cannot be determined.

Both surface and subsurface defect detection are influenced by human interpretation.
Knowing the dependence of human interpretation for distinguishing delaminated concrete
from sound concrete and the high variability between inspectors, one can understand the
issue. During detailed scoping inspections, delaminations are located through the
inspector’s interpretation of the concrete’s acoustical response when struck by an
inspection hammer or a chain drag is performed as depicted in Figure 2.6 and Figure 2.7,
respectively. Both methods require the inspector to excite the concrete surface by either

sticking the surface with a mallet or drag a chain across the surface. An area is
15



considered to contain a delamination if the acoustic response changes pitch from low to
high. The Nondestructive Evaluation Validation Center (NDEVC) reported that the
delamination inspection method can result in variability ranging from 2% to 69%. (Scott
et al. 2002). This range of variability was the result of 22 independent pairs of state

bridge inspectors from various state agencies inspecting a bridge with known

delaminations and a total percent delaminated area.
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2.6 Advanced Concrete Bridge Inspection Techniques

Current inspection standards may not provide the necessary information to adequately
allocate funding or conclusively determine the causes of deterioration. However, with
the recent introduction of nondestructive testing (NDT) methods and retooling of
inspection techniques previously used within other industries, the information gap is
narrowing. Some of the well-known techniques are ground-penetrating radar, impact-
echo and infrared thermography. A majority of the developed NDTs are focused on
subsurface defects. The reasoning is that currently subsurface defects are the most
variable and difficult defects to sense. Additionally, there is reason to believe that by
accurately identifying a surface defect, correlations could be developed to predict if there

are subsurface anomalies present.

2.6.1 Ground-penetrating Radar

Ground-penetrating radar (GPR) is a form of radar acquisition characterized by relatively
low electromagnetic frequencies, with center frequencies as low as 100 MHz, but usually

no lower than 500 MHz. GPR commonly has a wide bandwidth allowing for maximum
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depth penetration while having the sensitivity to detect embedded features (Ahlborn et al.
2010). The transmitted radar waves are passed through the concrete deck and a detector
measures the reflected energy. The reflected energy is then passed through a computer
algorithm producing images. To decipher the images and identify if deterioration is
present, a skilled operator is required. GPR has been shown to detect both surface and
subsurface defects such as cracks, delaminations and steel corrosion (Gastineau et al.
2009). Tremendous strides have been taken in the last decade to produce a viable,
practical and cost effective GPR system. The introduction of air-coupled, vehicle
mounted systems allows for faster data collection and limited traffic disruption.

2.6.2 Impact-echo

Impact-echo is similar to the hammer sound or chain drag bridge inspection techniques
for detecting subsurface defects through acoustical responses. The method was
developed in 1983 as a result of a shift in the National Bureau of Standards’ research on
NDT detection of internal defects within concrete structures. Impact-echo was based on
the knowledge of stress wave propagation in a solid, which is directly affected by the
mechanical properties of the material. The theory is that if an internal defect were
present in the concrete test media, the mechanical properties changes resulting in varying
stress wave propagation. Typical designs revolve around a four wheeled device, which
has a built-in striker to produce the acoustic wave and a microphone to measure the

reflected response, Figure 2.8.
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Figure 2.8: Hand held irripact-echo equipment

By deviating from the traditional inspection techniques, the National Bureau of Standards
sought to mitigate the need for human interpretation. The human interpretation is
substituted by a computer algorithm that processes measured responses and determines
not only if there is a defect present, but also at what depth. Determination of the depth of
the defect can be determined if the measured response indicates a depth in the slab less
than the depth of the actual slab (Gastineau et al. 2009). Current applications of this
technology are to detect subsurface defects such as delaminations, voids and cracks. Rate
of data collection is currently the primary concern hindering this technology, because
many test locations must require traffic disruption. Vehicle mounted instruments are

presently under investigation allowing for an increased data collection rate.

2.6.3 Infrared Thermography

Infrared thermography is based on the radiant temperature measurement of concrete
media by a thermal infrared camera. This method takes advantage of concrete’s thermal
properties in which the radiant temperature will uniformly increase or decrease except in
locations that have subsurface anomalies (Ahlborn et al. 2010). These subsurface defects
will demonstrate a higher rate of radiant temperature change than the surrounding
concrete, producing “hot spots” within the thermal infrared image, as shown in Figure
2.9.
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Issues with thermal imaging technology are mainly focused around environmental
conditions and external containments. The requirement to induce a radiant temperature
change in the concrete has developed a reliance on passive solar illumination. The use of
solar illumination creates an enormous dependence on environmental conditions.
However, the use of artificial illumination or cooling can relieve the dependence on
environmental conditions, but requires a tremendous amount of energy to generate a
significant radiant temperature contrast. External containments can also affect the
method’s reliability; paint, oil spots, standing water or other debris can affect the results
generating false positives. In regards to subsurface defect detection, data collected from
infrared thermography is a relatively simple analysis and thus makes the potential of this

technology very useful.
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2.7 Fundamentals of LIDAR

Light Detection and Ranging (LiDAR), also referred to as Laser-Assisted Data and

Readout (LADAR), is an optical remote sensing technology that can gather information,

such as distance to, reflectivity or other properties, of a target object. This system dates

back millions of years, when SONAR (SOund Navigation and Ranging) the oldest known

variation of modern LiDAR systems evolved naturally as a guidance system used by bats

(Schnitzler and Moss). Bats use SONAR by emitting sound waves in the form of short

‘chirps’ from their noses. The bats hear the echo through their ears that act like two

antennae, which provide a three-dimensional rendering of their surroundings. LiDAR,

SONAR and RADAR are all similar in theory; however, each detection system uses a

different form of energy to emit a signal resulting in different applications.
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A basic LIDAR system consists of a transmitter (radiation source), a receiver (detector)
as well as a control and data acquisition system (Chu 2011). Figure 2.10 shows the basic
LiDAR components and their interactions. Typically, LIDAR employs ultraviolet,
visible, or near infrared light to image objects by eradiating the object with a light energy
source. LiDAR technology has numerous applications, to list a few; geomatics,
archaeology, geography, geology, geomorphology, seismology, forestry, remote sensing
and atmospheric physics. Additionally, adaptations to the technology have allowed for
‘airborne laser swath mapping' (ALSM), 'laser altimetry' and LiDAR Contour Mapping

by utilizing airborne platforms.

Interaction between
radiation and object

Radiation propagation
through medium

Signal propagation
through medium

Transmitter Receiver
(Radiation Source) (Detector)

System Control and Data
Acquisition

A 4

Data Analysis and
Interpretation

Figure 2.10: Basic LiDAR function flow chart
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A LiDAR transmitter is required to provide a radiation source, laser pulses that have a
known wavelength, frequency accuracy, bandwidth, pulse duration, pulse energy,
repetition rate and divergence angle. Normally, a transmitter consists of four systems
including laser bundles, collimating optics, diagnostic equipment and a wave length
control system. Two laser classes are employed in modern LiDAR application, which are
nanosecond (ns) pulsed lasers (time-of-flight scanners) and continuous wave (cw) lasers
(phase-shift scanners). As the names imply the fundamental difference between the two
laser classes is one laser pulses, while the other is a continuous emission of radiation.
Most modern LIiDAR systems employ a ns pulsed laser, primarily due to the fact that the
pulsing action allows for the light emitting diode to remain cool allowing the output
magnitude to be increased without shortening the diode’s lifespan. For LIDAR systems
with spectral analysis capabilities, the transmitter is usually the most critical and
challenging component. The performance and accuracy of a LIDAR system is primarily
driven by the properties associated with its respective transmitter (Chu 2011).

A LiDAR'’s receiver or detection component identifies and collects reflected photon
signals from the illuminated object while minimizing background noise. The receiver is
comprised of telescopes, filters, collimating optics, photon detectors and discriminators.
One key component to highlight is the filter, because the bandwidth of the filter
determines whether the receiver can spectrally distinguish the reflected photons.

Serving as the intermediary between the transmitter and receiver is the data acquisition
and control system. This device records the reflected data and corresponding time-of-
flight information while providing system control and coordination. The data acquisition
and control system consists of a multi-channel scalar, which contains a very precise clock
for data tagging, a discriminator, computer and respective software. As LIDAR systems
advance, the data acquisition and control system becomes more important, because the

data collection rate and abundance of points continues to increase.

There are two common component configurations used, bistatic and monostatic,

depending on the application. A LIiDAR system with a bistatic configuration is ordinarily
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used for applications requiring considerable spatial resolution over a large area. This
degree of spatial resolution is achieved by separating the transmitter and receiver by a
considerable margin. For a monostatic configuration, both the transmitter and receiver
are located in the same place. By placing both the transmitter and receiver in the same
location, the user has in effect created a single-ended system. This single-ended system
allows for precise determination of range and reflectivity. To achieve a high magnitude
of precision while maintaining a sufficient collection speed, a monostatic LIDAR system

utilizing a ns pulsed laser is preferred. The fundamental differences between the bistatic

£

and monostatic LIDAR configurations are shown in Figure 2.11.
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Figure 2.11: Bistatic vs. monostatic LiDAR configurations

24



A monostatic LIDAR configuration is organized in either a coaxial or biaxial
arrangement. In a monostatic, coaxial arrangement, the axis of the ns pulsed laser beam
is coincident with the receiver optic axis (Chu 2011). This arrangement allows for the
detection of near-field backscattered radiation or detection of close objects. However,
over saturation of the receiver optics is common for coaxial systems, so gating the
receiver optics, implementation of a fast shutter or chopper is often required. The biaxial
arrangement has a predetermined range in which the ns pulsed laser beam will not enter
the field-of-view of the receiver optics until meet, helping to avoid the previously
discussed backscattered radiation over saturation.

2.8 LiDAR Operating Parameters

Compared to traditional surveying equipment, a LiDAR system can collect millions of
data points in a single pass of a suspect object allowing for a detailed analysis to be
completed. An issue arises when the object has many faces producing “shadows” or
“blind spots” in the instrumentation’s field-of-view. With common monostatic or biaxial
time-of-flight terrestrial LIDAR systems, the radiation source and receiver are in the
same location and any surface eradiated by the transmitted energy, which reflects the
residual energy directly back to the receiver will be identified. Any surface with limited
reflectivity or refracting properties results in limited energy return to the receiver and
causes false “blind spots” represented as empty space. The LiDAR’s line-of-sight issue
can be resolved by repositioning the device numerous times allowing for the hidden
surfaces of the complex object to be revealed. By combining the multiple point clouds
collected from each reposition a full three-dimensional rendering of the object after the
multiple collection points are fused together.

LiDAR works by radiating an object and detecting the reflected radiation to accurately
determine the distance to the reflected object. This method of distance measurement is
similar to a laser rangefinder, but rather than making a single measurement, LiDAR units
utilize rotating mirrors (or the entire unit rotated allowing for the collection of millions of
measurements over a scene) (CFLHA 2011). Methods of radiation and data collection
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differ between ns pulsed laser (time-of-flight) and cw laser (phase-shift), but the distance

calculations are similar.

For time-of-flight (TOF) laser scanners utilize a sensor to measure the TOF for the
optical radiation pulse to travel to and from the reflected surface. A simple calculation is
then automatically performed within the data acquisition and control system to determine
the object’s distance from the receiver. The calculation for determination of the travel

distance of a pulse is as follows:

Distance = (Speed of Light x Time-of-Flight)/2

TOF scanners have multiple modulation frequencies that are utilized to increase the
measurement accuracy. Additionally, TOF scanners can be used to measure different
data sets bounded by the emitted radiation’s return time. This feature is primarily used in
forestry applications allowing for the generation of both a canopy profile with the “first

return” and a ground surface profile with the “last return”.

In phase-shift units, a continuous laser beam with sinusoidally modulated optical power
is projected from the transmitter and reflected off the suspect object. The reflected
radiation wave is then sensed by the receiver and compared to the original emitted
radiation to determine the present phase shift within the acquired data. Once the phase
shift is determined, the TOF is then automatically calculated using Equation 2:

Time-of-Flight = Phase Shift / (2 x Modulation Frequency)

The distance of the illuminated object is then calculated by substituting the determined

TOF from Equation 2 into Equation 1.

A single ns pulse signal received and measured can only determine the perpendicular
distance from the receiver face to the illuminated object. To orientate the object in three-
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dimensional space the LiIDAR unit repeats the scanning process millions of time per
second referencing each received and measured pulse to the previous pulse. From the
distance and the relative orientation of the laser pulse, the xyz coordinates associated with
each measured pulse can be determined in relative space (Chu 2011). The outputted
information containing the xyz coordinates and associated intensity values for these
millions of sensed data points is referred to as the “point cloud”. From this “point cloud”,
a user can access and visually display the collected data in virtual space. Software can be

used to manipulate and extract features of interest present within the rendering.

2.9 Fixed Terrestrial LIDAR Performance Evaluation

Original applications of LIDAR only required high relative precision (relative dimensions
within the registered point cloud), making the system not applicable to infrastructure
application. To apply LiDAR to the infrastructure sector, the technology needed good
relative precision and high absolute accuracy (robust geo-referencing). Performance
testing and evaluation of several commercially available LiDAR units were completed

focusing on pertinent attributes necessary for the desired application.

Generally, LIDAR’s capabilities, such as accuracy and object detection, are highly
dependent on target range, object reflectivity, and angle of incidence to the reflective
surface (Hiremagalur et al. 2007). Each LIiDAR manufacturer has different methods to
determine specifications such as accuracy terms and often their own trademark
terminology. Limited standard testing protocol has been implemented making it
impossible to compare LIiDAR units solely from the manufacturer’s specifications. Thus,
performance evaluations of fixed terrestrial 3D laser scanning systems for highway

application are necessary.

Data presented in the fixed terrestrial LIDAR performance evaluation section was
generated by the Advanced Highway Maintenance and Construction Technology
(AHMCT) Research Center at the University of California, Davis. The AHMCT
conducted testing and performance evaluations of fixed terrestrial 3D laser scanning

systems for highway applications. The three LIDAR units evaluated by the AHMCT
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were a Leica ScanStation C10, a Trimble GX and an Optech ILRIS-3D. The control test
evaluated the individual LIDAR systems’ performance in an outdoor pavement
environment with maximum repeatability for the available testing conditions. Test
fixtures were positioned on tripods on the side of a selected asphalt section and were
scanned from one stationary point. Test fixtures were designed to test each scanner’s
range precision, target recognition precision, resolution and the effects of target
reflectivity and laser incidence angle (Hiremagalur et al. 2007). The five control test
fixtures shown in Figure 2.12.

Target Recognition gy rfyce Precision Resolution Incidence Angle  Range Precision
Precision Test Fixture

Test Fixture Test Fixture Test Fixture Test Fixture

s

Figu

e

o Ty Ty e '
re 2.12: Control test fixtures (Hiremagalur et al. 2007) (See Appendix D)

The range precision test fixture was comprised of two anodized flat aluminum plates, one
with a dull gray finished (reflectivity ~40%) and one with a flat black color finish
(reflectivity ~10%). The two flat aluminum plates were mounted on a flat 102 x 51 cm
(40 x 20 in) aluminum plate painted flat white (reflectivity ~80%). The scanners and
range precision test fixture were positioned in the same vertical plane creating an angle of
incidence of zero degrees. Point cloud spacing varied from 3 to 10 mm depending on the
internal scanner components and the software utilized. The collected data were analyzed

28



for root-mean-square error (RMSE) of range precision a with 95% confidence interval.
Table 2.4 shows the results from the range precision test fixture evaluation. The results
revealed that as the target distance increased from 50 to 100 m the RMSE gradually
increased, producing lower confidence in the equipment ability to resolve features over
distance (Hiremagalur et al. 2007).

Table 2.4: RMSE (mm) of range precision at 95% confidence interval (Hiremagalur
et al. 2007) (See Appendix D)

Range precision, 95% RMSE (mm)
Range 25m 50m 75m 100 m
Manufacturer
Color
White 4.65 3.23 3.23 4.78
Leica Grey 4.72 4.31 4.68 5.49
ScanStation
Black 4.72 3.45 3.65 7.08
White 2.10 1.65 2.20 1.84
Trimble GX Grey 2.98 4.82 4.92 7.74
Black 3.00 4.82 7.80 11.70
White 13.70 14.25 18.40 21.95
Optech
ILRIS-3D Grey 13.30 14.31 16.48 21.76
Black 13.07 14.07 18.93 18.37

The target recognition precision fixture was a 15 cm (6 in) diameter spherical target with
a vendor-specific planar registration target mounted on a linear stage driven by a high-
precision lead screw that provided accurate and repeatable millimeter-level translation
(Hiremagalur et al. 2007). Both targets were on the same horizontal plane as the scanner
and the recognition target’s face was perpendicular to the scanner. Scans were collected
for the Trimble and Leica units at 25 and 75 m. After completion of the range precision
evaluation, AHMCT found the Optech scanner inadequate for the target recognition
precision. The results showed that as the test range increased, the target recognition
precision of both the Trimble and Leica scanners shifted from an underestimation to an
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overestimation. With a single translation of the target recognition precision fixture, the
maximum underestimation was 0.75 mm at a range of 25 m and the largest
overestimation was 0.80 mm at a range of 75 m. The target recognition precision was
determined to be a linear function with decreasing precision as the range increased. The
location of greatest precision was not the closest range tested, but rather a range of 50 m

+5 m depending on the terrestrial LIDAR unit assessed.

The coverage and incidence angles were determined for the three scanner units by
evaluating a 15 cm (6 in) diameter cylinder. For a visual representation of the angle of
incidence and coverage angle refer to Figure 2.13. The test fixture was painted white, flat
grey and flat black to assess not only the limiting angle of incidence, but also how the
coverage angle varied with different reflectivity. When considering the Light
Reflectance Value (LRV), which is the total quantity of visible and useable light reflected
by a surface in all directions and at all wavelengths when illuminated by a light source,
the white paint should theoretically have the largest potential for reflecting light. A LRV
chart is provided in Figure 2.14. The results from the testing demonstrated this known
LRV characteristic by showing that the white, gray then black paint produced the largest

to smallest coverage angle, respectively.

Angle of Incidence —__

LiDAR System ©

Coverage Angle
Object

Figure 2.13: lllustration of incidence and coverage angles

0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |100%
Figure 2.14: Light reflectance spectrum
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Theoretically, the maximum angle of incidence for a given scanner should not exceed 90°
and the maximum coverage angle should be less than 180°. The results found showed
that due to the scale of the testing fixture a phenomenon referred to as the “edge effect”
and the methods of calculating coverage angle generated maximum coverage angle equal
to 180° (Hiremagalur et al. 2007). However, the results allowed for a comparison
between the scanning units and the color reflectivity from the data collected at 25, 50, 75
and 100 m. The Leica unit produced a coverage angle of 180° for both the white and gray
paints at every scanning range, which was considered optimal for this experiment. Both
the Leica and Trimble scanners demonstrated a lower coverage angle for the identical

colors and the black paint resulted in the least desirable coverage angle for all units.

The definition of resolution for LIDAR systems and other remote sensing technology is
currently a subject of debate within NIST and the ASTM International E57 Committee on
3D Imaging Systems. However, the AHMCT Research Center described resolution as
the ability of the laser scanner to detect, differentiate and record 3D details or features of
an object within the scanner’s range and field-of-view (Hiremagalur et al. 2007). This
definition of resolution diverges from the accepted description of image resolution, which
uses the number of pixels to evaluate the quality of the image, because laser scanners do
not produced images consisting of pixels.

A firm understanding of the internal components of the LiDAR unit is critical to
understand the potential resolution of the scanner. Laser scanner “Resolution” depends
on laser spot size and the smallest angle increment between two consecutive point
measurements (Hiremagalur et al. 2007). For both ns pulsed and cw lasers the light
emitting diode produces a circular, collimated beam. This collinear property results in
the laser beam’s photons to spread slowly apart as it propagates away from the emission
source, generating data fall off the further the subject target is from the unit. To
overcome divergence issues during data collection, focused high energy laser beams with
smaller spot sizes are utilized. This smaller laser spot size results in higher energy per

unit area at the target, leading to higher probability of defect detection.
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The AHMCT Research Center performed testing to visually illustrate and compare the
loss of resolution over distance. The tests were performed at four ranges 25, 50, 75 and
100 m. The test fixture consisted of a 61 cm (24 in) square box with a machined front
panel and tapered slots decreasing from about 6.4 cm (2.5 in) wide at the periphery to
about 0.25 cm (0.1 in) at the center. Contrasting paints were used to demonstrate
reflectivity influence on resolution by painting half the front panel with white flat paint,
and the other half with black flat paint, in addition the rear panel was also painted flat
white. The target was mounted on a tripod, facing perpendicular to the laser scanner and
at the same elevation, such producing an angle of incidence of near 0°. Figure 2.15 is
provided to show a visual representation of the resolution’s dependence on reflectivity
and range. Additionally, a finite rectangular band width across the front panel was
isolated to show the resolution variations from each LiDAR unit. The results from that

post-processing sample are shown in Table 2.5.
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Entire laser point cloud Laser return from front
of test fixture panel

Laser return from rear
panel
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of test fixture panel
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panel

Leica 100 m‘

Isnmetric view with
fromt surface cropped

Figure 2.15: Example of laser point cloud resolution test fixture (Leica) at 25 m and
100 m (Hiremagalur et al. 2007) (See Appendix D)
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Table 2.5: Laser point cloud data of central cross-section (Hiremagalur et al. 2007)
(See Appendix D)
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2.10 Current LIiDAR Applications in Civil Engineering

Terrestrial LIDAR has been research and evaluated for the use in numerous civil
engineering applications. Studies have shown that terrestrial LIDAR can provide useful
metrics for bridge clearance issues, static deflection measurements and surface damage
detection (Wangiu and Shen-En 2011). The ability to accurately assess civil engineering
application with limit public disturbance would greatly enhance the industry allowing for

a cache of useful metrics.

Research pertaining to the reliability of crack detection with the incorporation of
terrestrial LIDAR was conducted in 2008. The results showed that the particular
terrestrial LIDAR unit (Trimble GS200 3D Scanner) allowed for accelerated inspection
of suspect building surfaces, but trend to overestimate the width of the crack by more
than 0.276 in (7.0 mm) (Laefer et al. 2010). The use of the terrestrial LIDAR system
allowed for the creation of a permanent, which allowed for the results to be further

evaluated at a later date or compare to future inspection results (Laefer et al. 2010).

When considering the costs required for the mandatory two year inspection and the
limited amount of funding allocated towards infrastructure maintenance, the desired for a
cost effective alternative to sensors instrumentation is necessary. For bridge clearance
and static deflection analyses, terrestrial LIDAR has been shown to possess the
capabilities to accurately assess the current condition of questionable bridges. Studies
have shown that certain terrestrial LIDAR units are capable of accurately measuring both
bridge clearance and static deflection to 0.125 in (3.00 mm) of the actual height (Wanqiu
and Shen-En 2011). With the obtainable resolution of terrestrial LIDAR systems ever
increasing, the ability to accurately detect minuet surface deviations is becoming

possible, allowing for new applications of the remote sensing technology.

2.11 Summary of Literature Review Sections

From years of hard use and shrinking maintenance funding, the United States’ bridge
infrastructure system has been rapidly deteriorating. Of the nation’s approximately

600,000 bridges, nearly 87,000 bridges possess structurally deficient characteristics.
35



Recent events such as the Minneapolis I-35W and the San Francisco-Oakland Bay bridge
collapses; the deteriorated state of the United States’ bridge infrastructure system has

only been highlighted.

When considering those nearly 87,000 structurally deficient bridges, a vast majority are
constructed of reinforced concrete. Reinforced concrete material is the most widely used
construction material worldwide, mainly due to the material’s low initial cost and on-site
construction capabilities. With such a widely used construction material, knowledge of
deterioration mechanisms and related distresses are crucial. Common concrete
deterioration mechanisms are surface cracking, spalling, scaling, delaminations, voids
and expansion joint issues. These common concrete deterioration mechanisms are
broken down into two categories, based on the defects location through the depth of the
concrete. All the discussed deterioration mechanisms draw on each other, resulting in a
complex network of cause and effect, making determination of cause difficult without
taking into account every facet.

Currently, concrete deterioration is determined by visual inspection, which relies heavily
on an inspector’s experience, introducing variability into the equation due to inherent
human nature. The introduction of variability during the visual inspection is an area of
growing concern. By introducing remote sensing technologies, such as Light detection
and ranging (LIiDAR) systems, the reliance on visual interpretation would be greatly

diminished, increasing the confidence of the inspection report.

LiDAR is currently used by numerous federal and state agencies to create accurate point
clouds renderings, allowing for bridge inventory measures, work site surveys and as-built
construction models. With numerous Department of Transportations (DOTSs) already
utilizing LiDAR systems as a part of their day-to-day operations, the knowledge and
equipment is already available and just requires repurposing for collection of bridge
condition metrics. LiDAR possesses the capabilities to evaluate surface defect on
reinforced concrete bridge decks and could possibly expand to other CoRe structural

elements.
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LiDAR systems consist of a transmitter (radiation source), a receiver (detector) as well as
a control and data acquisition system (Chu 2011). The process in which LiDAR
evaluates an object starts with the transmitter emitting light that travels through the air
until an obstructed by an object with known reflectivity. The light then reflects off the
object, which is detected by the receiver allowing for the control and data acquisition
system to evaluate the distance and intensity of the obstruction. This process is
completed millions of times resulting in a dense point cloud allowing for a virtual

rendering of the obstruction.

Limitations associated with LIDAR are that the technology is a light-of-sight
measurement tool and that non-reflective surfaces are unable to be measured. Due to the
complex shape of a bridge system (deck, superstructure and substructure), the light-of-
sight issue was an area of initial concern. However, by establishing a local coordinate
system of vendor specific targets, multiple scan locations are able to be fused together
illuminating the once shadowed surfaces. The presence of water is another area of high
concern, being susceptible to environmental conditions reduces the versatility of the
technology. The issue with water is the refraction, which causes the LiDAR transmitted
light to bend and enter the water body and never reflect. With no reflected light, no data
points can be collected, so as a resulted it is necessary to remove any standing water from
an object prior to data acquisition. Once the two major limitations are overcome the
LiDAR technology has the capability to produce surface profiles of a reinforced concrete

bridge deck with millimeter precision.

Numerous performance evaluation testing has been conducted to validate the metrics of
LiDAR. One performance evaluation conducted by the Advanced Highway Maintenance
and Construction Technology (AHMCT) Research Center at the University of California,
Davis was highly informational. AHMCT developed multiple test fixtures to evaluate
commercially available LiDAR scanners for range precision, target recognition precision,
resolution and the effects of target reflectivity and laser incidence (Hiremagalur et al.
2007). The test concluded that LiDAR has the capability of producing data with
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millimeter precision for range and target recognition, but is highly dependent on the

reflectivity of the material.

Past research has evaluated the reliability commercially available terrestrial LIDAR
systems as it pertains to estimate of bridge clearances, static deflection measurements and
surface damage detection. The results from the evaluated terrestrial LIDAR systems have
shown that the ability to accurately assess a surface is highly dependent on the system’s
achievable resolution. Terrestrial LIDAR systems can accelerate the inspection practice
of crack identification, but the remote sensing technology tends to overestimate the crack
width by more than 0.276 in (7.0 mm) (Laefer et al. 2010). More recent findings have
shown that terrestrial LIDAR systems have the ability to accurately assess bridge
clearance and static deflections to a acceptable degree of confidence. The findings stated
that the vertical measurements of the terrestrial LIDAR varied from the true

measurements by only 0.125 in (3.00 mm) (Wangiu and Shen-En 2011).

With further evaluation and testing, LIDAR could allow for federal and state inspectors to
generate quantitative measures on surface defects present in reinforced concrete decks.
The technology’s millimeter precision would greatly enhance the inspection standards
and can help decision makers efficiently allocate the shrinking maintenance funding.
Currently, LIDAR has a high initial capital cost, but with numerous federal and state
agencies already owning the equipment the potential for repurposing is there and could

result in a rich surface defect detection metric.
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3 Methodology

3.1 Equipment Used for testing

There are currently three primary platforms for LiDAR; aerial, terrestrial and mobile.

For the performance evaluation document herein, a terrestrial LIDAR system was utilized
for data acquisition. Due to the relatively high capital cost and limited budget, only two
LiDAR systems were considered; a Riegl LMS-Z210ii and a Leica ScanStation C10.
These two systems were available from Michigan Technological University’s School of

Technology and the Michigan Department of Transportation, respectively.

The Riegl LMS-Z210ii is a relatively outdated terrestrial LIDAR system and has been
discontinued due to further technology advancements. The Leica ScanStation C10 is
currently Leica’s versatile terrestrial system and is in production. After reviewing each
system’s performance measures and additional literature regarding previous performance
evaluations of similar systems, it was determined that both systems would be utilized
separately for data acquisition. This decision was made due to the limited testing
standards currently in existence for performance measures of LIDAR systems and the
desire to demonstrate the advancements in the technology. By generating two individual
point cloud data sets, the ability to produce respectable results were greatly enhanced and

allowed for more quantifiable conclusions to be drawn from the findings.

3.1.1 Riegl LMS-Z210ii

The university-owned terrestrial LIDAR system, the Riegl LMS-Z210ii, is a rugged and
fully portable sensor. This system was designed for rapid acquisition of high-density
point clouds rendering high-quality three-dimensional images. A standard Windows
notebook and a Riegl developed bundled software package, RISCAN PRO, controls the
systems and allows for real time viewing of the collected point cloud. With a field-of-
view up to 80° vertically and 360° horizontally coupled with a measurement rate of up to
10,000 points per second, the unit would be able to generate fast high accuracy point

clouds (Riegl 2011). Complementing the Riegl LMS-Z210ii’s fast data acquisition was
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the true color optical camera, which was mounted to the top of the scanning unit. This
optical camera allowed for the integration of true target surface color. The generated
color channel allowed for straightforward texturing of three-dimensional models by

unequivocal correspondence of color pixels and range measurements. Figure 3.1 shows

the instrument setup.

Figure 3.1: Riegl LMS-Z210ii system (Courtesy of Renee Oats) (See Appendix D)

The instrument is a pulsed, dual-axis compensated LiDAR unit in a monostatic
configuration. For the LIiDAR transmitter, a class 1, near infrared laser is utilized for
eradiating the target object. Instrument specific performance specifications can be found
in Table 3.1 (Riegl 2011).
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Table 3.1: Riegl LMS-Z210ii system performance (Riegl 2011)

Maximum measurement range 650 m

Distance accuracy 15 mm

Distance precision 10 mm

Angular (horizontal/vertical) resolution 87 urad / 87 prad
Beam divergence 2.7 mrad

3.1.2 Leica ScanStation C10

Currently, MDOT utilizes the Leica ScanStation C10 as a surveying and inventory
generator tool. By acquiring the services of experienced MDOT surveyors, Kelvin
Wixtrom and Shawn Roy, the operational confidence produced negligible error in the
data collection. This terrestrial LIDAR system, the Leica ScanStation C10 is an “All-in-
One” High-Definition Surveying™ (HDS™) portable surveying instrument. With a full
field-of-view, high-speed, high-accuracy, long range scanner with unmatched versatility
allowed for rich point cloud generation of the all sampled bridges (Geosystems 2011).
The instrument is a compact, pulsed, dual-axis compensated LIDAR unit with the
following system details listed in Table 3.2 (Geosystems 2011). Figure 3.2 shows the

instrument setup.

Table 3.2: Leica ScanStation C10 system performance (Geosystems 2011)

Position accuracy 6 mm

Distance accuracy 4 mm

Angular (horizontal/vertical) resolution 60 prad / 60 prad

Modeled surface precision/noise 2 mm

Target acquisition 2 mm std. deviation
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Figure 3.2: Leica ScanStation C10 system (Courtesy of MTRI) (See Appendix D)

All of the accomplished system performance measures listed above were achieved
through the use of state-of-the-art components and proprietary software. The system
utilizes a ns pulsed class 3R green laser transmitter for eradiating the target object. A
vertically rotating mirror on a horizontally rotating base comprises the scanning optics
projecting the transmitted laser over the selected field-of-view. The projected laser
produces a minimal spot size of 4.5 mm or 7 mm over a distance of 50 m based on
FWHH- and Gaussian-based testing, respectively. With the two systems defined, field
demonstration locations were established.

3.2 Full-scale Field Demonstration Selection

The aim of the full-scale field demonstration selection process was to identify bridges

that had varying degrees of degradation with the potential to be identified and quantified
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using multiple remote sensing technologies including Light Detection and Ranging
(LiDAR). The evaluation of surface defect detection using LiDAR for bridge structural
health monitoring was a portion of a larger venture incorporating multiple remote sensing
technologies allowing for data fusion for an accurate generation of a structural health
index. To accommodate the multiple remote sensing technologies, selection parameters
were established requiring numerous forms of degradation to be present in the selected
bridges. The end goal of the site selection was to identify three bridges within the state of
Michigan that can be inspected (visual and detailed), tested, and evaluated using both
traditional structural health monitoring techniques (strain gages, deflectometers,
accelerometers, live load vehicles, hammer-sounding, chain-drag) for correlation as well
as remote sensing technologies (thermal infrared, 3D optical bridge-evaluation system,
radar, LIDAR)

To allow for a more comprehensive assessment of each technology, the preliminary
selection parameter was defined accordingly by using the National Bridge Inventory
(NBI) rating scale along with current Michigan Department of Transportation (MDOT)
assessment practices. For completeness the NBI rating scale has been provided in Table
3.3. The three bridges were broken down into separate categories, “poor”, “fair”, and
“satisfactory” each of which had correlating NBI deck ratings of four, five and six (or
better), respectively (MDOT 2011b). Due to the nature of the tested remote sensing
technologies a homogenous deck, superstructure and substructure material was preferred.
To accomplish this additional parameter the candidate bridges for each category were
separated by item “43: Main span(s) material type” of the MDOT structure inventory and
appraisal form (such as pre-stressed concrete box beam versus steel continuous). Once
the bridges were broken down into their main material types, it was determined the pre-
stressed concrete I-girder material type bridges were to be further investigated due to the
abundance of candidates in the three categories. Preliminary site visits and appraisals
were conducted allowing for visual observation and validation of document deficiencies

recorded in past inspection reports.
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Table 3.3: NBI rating scale (MDOT 2011b) (See Appendix D)

National Bridge Inventory Rating Scale:

9-Excellent Condition

8-Very Good Condition: No problems noted

7-Good Condition: Some minor problems

6- Satisfactory Condition: Structural elements show minor deterioration

5-Fair Condition: All primary structural elements are sound, but may have minor corrosion, cracking, or
chipping. May include minor erosion on bridge piers.
4-Poor Condition: Advanced corrosion, deterioration, cracking, or chipping. Also, significant erosion of

concrete bridge piers

3-Serious Condition: Corrosion, deterioration, cracking and chipping, or erosion of concrete bridge piers
have seriously affected deck, superstructure, or substructure. Local failures possible.

2-Critical Condition: Advanced deterioration of deck, superstructure, or substructure. May have cracks in
steel or concrete, or erosion may have removed substructure support. It may be necessary to close bridge
until corrective action is taken.

1-“Imminent” Failure Condition: major deterioration or corrosion in deck, superstructure, or
substructure, or obvious vertical or horizontal movement affecting structure stability. Bridge is closed to
traffic, but corrective action may put it back in light service.

0-Failed Condition: Out of service, beyond corrective action.

Following the completion of the preliminary site visits, photographs were collects and

organized. An image database was developed and then used to generate discussion about

each remaining bridge and the suite of technologies’ implementation capability. All the

technologies were judged individually for each bridge with a focus on four criteria;

presence of sensing deficiencies, accessibility, setup and sampling. To generate a

complete evaluation of the four established criteria the deck top surface, bottom surface

and bridge superstructure were individually assessed. Upon completion of the bridge

selection discussion, three field demonstration locations along with a supplemental

selection had been established each fulfilling the selection parameters for the three

separate categories. The bridges selected were as follows:

e Mannsiding Road over US-127 north bound for the “Poor” selection

e Willow Road over US-23 for the “Fair” selection
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o Freer Road for the “Satisfactory” selection

e Mannsiding Road over US-127 south bound for the “Supplemental” selection

The field demonstration locations for the remote sensing technologies can be seen in
Figure 3.3. The “Poor” and “Supplemental”, “Fair”, and “Satisfactory” locations are
displayed in the provided figures as pin A, B, C, respectively. Due to the close proximity
of the “Poor” and “Supplemental” bridge selections only one pin is displayed. Additional
information for each selected field demonstration location is provided in the pertaining

subsection and Appendix A.
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3.2.1 ““Poor” Bridge Selection

The “Poor” bridge selection, MDOT structure n® 1713 — Mannsiding Road over US-127
north bound is located in Clare County approximately ten miles north of Clare, Michigan
(Figure 3.4) and was determined to be the best candidate for field demonstration

purposes.

The field demonstration candidate structure serves Mannsiding Road; a “Major
Collector” road. The bridge was constructed in 1966 and is a three-span pre-stressed
concrete multiple I-beam composite structure. The structure is 130 ft-11 in in length, 31
ft-2 in in width, which translates into 26 in of riding surface. During 1996, the average
daily traffic (ADT) over the structure was found to be 1,000 with 3% being commercial
(MDOT 2011b).

Figure 3.4: ""Poor"" bridge selection

Currently the bridge has no posted speed limit restriction. The crossing spans north
bound US-127; a National Highway System (NHS) route that is not within any federal-
aid urban boundary. The bridge does not meet the desired minimum vertical clearance
for NHS routes. The field demonstration location was located 2.3 miles south of M-61 or

46



approximately 5.5 miles south of Harrison on US-127. The structure is part of an
interchange serving the greater Harrison area, which is considered to be a rural
environment. Figure 3.5 shows two photos of the bridge, one taken in 2008 during a
MDOT scoping/inspection that provided detailed condition information, and the other by
the research team during a site visit in June 2011. The structure is located in Hatton

Township within Clare County.

The condition of the concrete deck surfaces, both top and bottom, were an area of major
concern. A 2008 MDOT scoping inspection classified the deck with a NBI rating of “4”.
The scoping revealed that on the top surface of the concrete deck 176 ft or 4.4% of the
deck was delaminated. Additional testing on the bottom surface revealed that 623 ft* or
15% of the deck was in distress (MDOT 2011b). The deck also possessed light scaling
throughout and numerous transverse, longitudinal and diagonal cracks were present.
Additionally, several high-load hits have resulted in scrapes and spalls of the
superstructure underside, but currently there is no sign of exposed reinforcing steel or
pre-stressing strands. The bridge is scheduled for complete replacement in 2012-13.
Additionally, during the on-site inspection of the selected “Poor” bridge, it was found to
have a complementing twin bridge, Mannsiding Road south bound overpass. The
collection of LIiDAR data was completed allowing for an additional case study, but was
not in the original scope of work. The Mannsiding Road south bound overpass bridge is

described in further detail in the “Supplemental” bridge selection section.
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Figure 3.5: Mannsiding Road photographs (Courtes

3.2.2 *“Fair” Bridge Selection

MDOT structure n® 10892 — Willow Road over US-23 was selected for the “Fair” field
demonstration bridge. The bridge is located in Washtenaw Country approximately three
miles north of Milan, Michigan. An aerial photograph of the selected site is shown in
Figure 3.6.

The “Fair” field demonstration structure serves Willow Road; a “Major Collector” road.
The bridge was constructed in 1962 and is a four-span pre-stressed concrete multiple I-
beam composite structure. The structure is 209 ft in length, 30 ft-10 in in width, which
translates into 26 ft of drivable surface with no availability for shoulder room. During
1997, the ADT over the structure was found to be 2,220 with 3% being commercial
(MDOT 2011b). Currently the bridge has no posted speed limit restriction. The crossing
spans both north and south bound US-23; a NHS route that is not within any federal-aid
urban boundary. The bridge does not meet the desired minimum vertical clearance for

NHS routes. The structure is located in York Township within Washtenaw County.
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Figure 3.6: ""Fair' bridge selection

The current condition of the deck surface is rated at a “5” on the NBI scale. In 2010, the
inspection report indicated that open transverse cracks, diagonal cracks and areas of
delamination were present throughout the deck. Concrete patching had been completed
to help minimize deterioration and prolong the service life of the bridge. Additionally,
areas on the bridge superstructure displayed desired sensing deficiencies over both the
north and south bound lanes. This is attributed to several high-load hits, which had
resulted in scrapes and spalls, but there was no sign of exposed reinforcing steel or pre-
stressing strands. Figure 3.7 shows a photograph of the current condition of the concrete
bridge deck.
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Figure 3.7: Willow Road photograph (Courtesy of MTRI) (See Appendix D)

3.2.3 *“Satisfactory” Bridge Selection

Lastly, the “Satisfactory” bridge was chosen to be the MDOT structure n® 10940 — Freer
Road over 1-94 located in Washtenaw County, approximately one mile east of M-52 in
Chelsea, Michigan. An aerial photograph of the selected site is shown in Figure 3.8.

The field demonstration candidate structure serves Freer Road; a “Major Collector” road.
The bridge was constructed in 1960 and is a four-span pre-stressed concrete multiple I-
beam composite structure. The structure has dimensions of 209 ft in length, 30 ft-10in in
width, which translates into 26 ft of open roadway riding surface with no shoulder.
During 1997, the ADT over the structure was found to be 150 with 3% being commercial
(MDOT 2011b).
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Figure 3.8: ""Satisfactory" bridge selection

Due to the site’s low ADT, this structure was the first to be tested, which allowed for the
entire research team to work in an even safer environment while causing minimal
disruption to local traffic going over the bridge. This site was the ideal location for the
initial data collect to occur, allowing for the researchers to problem shoot any unforeseen

issues prior to the remaining two bridges, which possessed higher ADT volumes.

Currently, the bridge has no posted speed limit restriction. The crossing spans both east
and west bound 1-94; a NHS route that is not within any federal-aid urban boundary. The
bridge does meet the desired minimum vertical clearance for NHS routes with a
measured clearance of 16 ft. The structure is located in Lima Township within

Washtenaw County.

The NBI rating assigned to the concrete deck surface is a “6”. In 2010, the inspection

report indicated that there were several areas of concrete patching accompanied by few

tight transverse and diagonal cracks present on the deck (MDOT 2011b). Concrete

patches were applied to help minimize deterioration and prolong the service life of the

bridge. The report indicated that there were also areas of interest on the superstructure

where the concrete material had spalled and cracked. These areas of interest were located
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at the beam-end locations on the bottom flange. None of the spalled sections were deep
enough revealing any reinforcing steel or pre-stressing strands allowing for corrosion to

occur as shown in Figure 3.9.

| £ N ' :
Figure 3.9: Freer Road photographs (Courtesy of MTRI) (See Appendix D)

3.2.4 “Supplemental” Bridge Selection

The “Supplemental” bridge selection, MDOT structure n® 1712 — Mannsiding Road over
US-127 south bound is located in Clare County approximately ten miles north of Clare,
Michigan and was not originally in the scope of work for the field demonstration.
However, the close proximity of the bridge to the “Poor” selection location allowed for
data acquisition with no additional traffic disruption and permitting. An aerial

photograph of the selected site is shown in Figure 3.10.

The field demonstration candidate structure serves Mannsiding Road; a “Major
Collector” road. The bridge was constructed in 1966 and is a three-span pre-stressed
concrete multiple I-beam composite structure. The structure is 130 ft-11 in in length, 31
ft-2 in in width, which translates into 26 ft of riding surface. During 1996, the ADT over
the structure was found to be 1,000 with 3% being commercial (MDOT 2011b).
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Figure 3.10: ""Supplemental bridge selection

Currently the bridge has no posted speed limit restriction. The crossing spans south
bound US-127; a NHS route that is not within any federal-aid urban boundary. The
bridge does not meet the desired minimum vertical clearance for NHS routes. The field
demonstration location was located 2.3 miles south of M-61 or approximately 5.5 miles
south of Harrison on US-127. The structure is part of an interchange serving the greater
Harrison area, which is considered to be a rural environment. Figure 3.11 shows the
general surface condition of the bridge deck. The structure is located in Hatton Township

within Clare County.

When comparing the condition of the concrete deck surface, top and bottom, of the
“Supplemental” and “Poor” bridge selections drastic differences in the state of
deterioration were noted. The two bridges had been constructed at the same time, but
large variations in the deteriorated state on the concrete deck are documented. An
inspection conducted in 2010, classified the deck with a NBI rating of “7” (MDOT
2011b). The inspection notes stated that minor cracking and shallow scaling in the deck
surface was present, however was not substantial enough to cause structural issues. When
comparing the “Supplemental” bridge deck rating of “7” to the “Poor” bridge selection’s
deck rating of “4” on the NBI scale, questions of construction procedure, inspection

consistency and environmental effects were raised.
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Figure 3.11: Mannsiding Road photographs (Courtesy of Renee Oats) (See
Appendix D)

3.3 Full-scale Field Demonstration Plan

LiDAR can collect millions of data points in a single pass of a suspect object, allowing
for detailed analysis to be completed when compared to traditional surveying techniques.
Due to the fact that LIDAR uses reflected energy to generate a virtual surface of the
suspect object, line-of-sight is required. To produce a complete three-dimensional
rendering of a complex feature numerous collection locations of the device are required
illuminating all the surfaces of the object. If repositioning of the device is not done the
faces not captured within the line-of-sight will produce “shadows” or “blind spots” in the
generated point cloud. These locations within the point cloud will be represented as
empty space containing limited data points. Additionally, because light is the primary
form of energy broadcasted over the selected field for object measurement, water is a
concern. Fundamentally as light enters a body of water the wave bends as it enters a
medium of another density. During this transition, the speed of the energy wave changes,
changing the angle of the incident wave relative to the water surface. This phenomenon
is called refraction, which causes the transmitted LIDAR laser beam to defuse and result
in limited energy return to the LIDAR receiver. The result is a false “blind spot” within
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the point cloud. With this basic knowledge a general field development plan was

developed for a generic bridge situation.

Prior to initializing the LIDAR data collection, a minimum of four points of commonality
had to be established to triangulate and validate a local coordinate system. These points
of commonality were represented as vendor specific targets mounted on sturdy tripods.
Each LiDAR unit required different targets, because of varying manufacturer
requirements. As a result, two local coordinate systems were established. The Leica
ScanStation C10 required vendor specific targets, while the Riegl LMS-Z210ii used

retro-reflective surveying prisms. The two different targets can be seen in Figure 3.12.

Figure 3.12: Vendor specific targets (Leica to left, Riegl to right) (Courtesy of
MTRI) (See Appendix D)

After performing a visual inspection of the bridges, it was determined that due to the
complex lines of the bridge superstructure multiple scan locations were required.
However, to generate a local coordinate system that all the scan locations could be
referenced to, additional points of commonality had to be established. On average eight
points of commonality were established during the field demonstrations and by creating
these points of commonality, the independent LIiDAR point clouds were referenced in a
common local coordinate system allowing for a layered three-dimensional rendering

eliminating the presence of “shadows”. If more than four points of commonality were
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visible from the position of the LIDAR system, higher point precision was obtainable
with reference to the local coordinate system.

Once the local coordinate system was established, the bridge surface needed to be
inspected for standing water ensuring limited generation of false “blind spots”.
Additionally, debris was removed from the concrete deck allowing for limited artifacts to
be generated within the point cloud developing false features on the deck surface. With
the standing water and debris removed from the bridge surface the data acquisition

commenced.

Testing took approximately four hours, which included setup of six to 12 separate scan
locations and demobilization. Scans were collected in units of international feet with
both the Riegl LMS-Z210ii and the Leica ScanStation C10. A sample scan location map
was generated allowing for limited on-site selection of the scan locations, which
accelerated the data collection process. This sample scan location map can be seen in
Figure 3.13. For the Leica ScanStation C10 detailed field sketches were provided to the

research team upon completion of the data acquisition, which are available in Appendix
B.

.« il E %
Figure 3.13: Sample LiDAR collection locations (red dots are LiDAR setups)
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When the equipment positions were fixed, an initial LIDAR scan of the entire
surrounding area lasting approximately five minutes was completed. This overview scan
allowed for the local coordinated system to be established by referencing the points of
commonality within the image by identifying the center of the retro reflective prisms or
vendor specific targets. Once the points were located, a more detail scan at a higher
resolution lasting approximately ten minutes was completed by selecting a window of
interest from the initial rendered image. The previously discussed process was then
repeated for the remaining scan locations allowing for a final three-dimensional rendering

of the subject bridge.

3.4 Post-processing Software Selection

For determination and evaluation of the surface defects present in the acquired point
cloud data from the field demonstration locations, several modeling programs were
considered. The modeling programs that were considered were Certainty 3D’s TopoDOT
modeling software, Quick Terrain Modeler and VR Cardinal Systems point cloud
software. Selection criteria were established to help evaluate the commercially available
software packages for LIDAR data processing. User-friendliness, cost, accuracy, what
the modeling program was designed for and current federal and state agency uses were
the five main criteria used to evaluate the multiple modeling programs.

The methods of analysis and algorithms utilized by a program greatly affect the
obtainable precision and accuracy of the post-processed point could data. The issue
arises when trying to evaluate a program’s accuracy and precision, because of the
proprietary coding utilized to execute the requested task available within the user
interface. To select appropriate modeling software, the associated post-processing point
cloud accuracy and precision of the program and proper procedures were requested for

data extraction.

Certainty 3D’s TopoDOT modeling software is a Bentley MicroStation compatible

software package, which utilizes Bentley developed algorithms to execute self-developed

functions (Certainty 2011). Currently, TopoDOT is used by 40 separate transportation
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agencies and was initially developed to seamlessly post-process Riegl RiScan Pro
projects. However, the increase in demand for a flexible post-processing software
package that is compatible with numerous LiDAR systems, the system has incorporated a
generic LAS LiDAR data file registration function. A LAS data file is a universally
accepted LiDAR file form, which most LiDAR system can produce. The software is
geared towards civil infrastructure point cloud data, both terrestrial and mobile LIiDAR
data can be imported into the user interface allowing for additional user refinement. The
user-interface is identical to that of MicroStation and allows for easy acceptance into the
civil engineering field due to the pre-existing knowledge base. TopoDOT allowed for all

the established criteria to be satisfied except for the associated maintenance fee.

Quick Terrain Modeler is a LIDAR post-processing software, which is relatively
inexpensive and user-friendly. Initially, the software was developed to evaluate and
extract information from aerial LIDAR data sets for topography and land surveying
(Imagery 2011). With the software originally designed for aerial LIDAR data, the ability
to navigate around a complex three-dimensional surface was difficult. When considering
the inexpensive, user-friendly interface of the software, the navigation issue was a minor
detail.

When evaluating the VR Cardinal System’s point cloud software, the design of the user
interface was not intuitive. The user interface required extensive computer operation
knowledge and program specific training to properly evaluate a point cloud data set. This
software was dismissed from consideration due to the difficult user-interface. This
evaluation of the modeling software is in no way implying that the software is poor, but

was rather not appropriate for the desired action items of the research.

Upon conclusion of the software evaluation, Certainty 3D’s TopoDOT modeling
software was deemed the most effective at performing the desired post-processing
techniques. However, the Quick Terrain Modeler was deemed necessary to acquire due
to the lack of available funding to purchase a license for TopoDOT. Certainty 3D did

provide an extended free trial of the TopoDOT software to perform the critical data
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extraction. The Quick Terrain Modeler was used later in the project timeline, when
additional data separation and extraction was necessary to further evaluate the

technologies potential.

3.5 Certainty 3D’s TopoDOT Modeling Software

Prior to reception of the fused point clouds for each bridge, registration and geo-
referencing was completed on the Leica ScanStation C10 data, which was performed by
MDOT. The data sets generated with the Leica ScanStation C10 were geo-referenced to
the State Plane coordinate system, Michigan South zone 2113, High Accuracy Reference
Network 1983 generated from MDOT’s high-accuracy Leica global positioning system
(GPS), as shown in Figure 3.14. The vendor specific targets were the points geo-
referenced, because the targets were constant from scan to scan. By geo-referencing the
data, the point clouds were projected and layered with real time satellite imagery and
high-resolution optical images allowing for visual comparison. With the incorporation of
optical imagery, determination of potential defects was established allowing for the user
to disregard artifacts within the data, which could produce false positives. Additionally,
MDOT assigned boundary conditions to the point clouds eliminating unnecessary data

not associated with the bridge.
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Figure 3.14: Global posmonlng sys
Appendix D)

rtesy of MTRI) (See

The Riegl LMS-Z210ii data unfortunately was corrupted beyond repair, due to
unforeseen issues in the establishment of the local coordinate system. To clarify, the
Riegl LMS-Z210ii point clouds produced from the individual scan locations were
misaligned in all three axes, resulting in the inability to merge the data. However, data
produced from the Leica ScanStation C10 was deemed sufficient for the goals of this
research. The separate Leica ScanStation C10 data was provided in an LAS file format

upon completion of the geo-referencing and boundaries were applied.

Before data filtering commenced, issues arose with available computing memory limiting
the amount of displayable data points. With LiDAR having the capabilities of capturing
millions of data points within a single scan, the size of the fused bridge data ranged from
2.0 gigabytes to 6.4 gigabytes. That large file size required an immense amount of
available memory to display an individual bridge at full point cloud density. As a result,
a computer with an Intel i5 processor with an additional 8.0 gigabytes of memory was
purchased allowing for an increase in displayable point cloud density. It is prudent to
point out that even with the hardware enhancement, the bridge point clouds in their
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entirety were still unable to be displayed. However, this limitation was software related,

ensuring ample, residual memory to complete requested tasks efficiently.

With the hardware issues resolved and the point cloud data received, post-processing of
the data commenced. As described in the previous section, Certainty 3D’s TopoDOT
modeling software was selected to further post-process the field demonstration data
(Certainty 2011). Originally designed for civil engineering applications, the ability to
extract individual features from the raw point cloud data was effortless with TopoDOT.
When first loading the TopoDOT program, the user was prompt to generate a unique file
name and establish a file type. Figure 3.15 shows the user prompt necessary to start
LiDAR processing. A critical step was to define the file type as a seed 3D file, which
allows the user to edit the data within three-dimensional space. To define the file type a
browse button located on the lower, right corner of the user prompt was utilized. With

the desired file name established and proper file type, the file was saved.

M Select Seed Fite - C\ProgramData\ Bentley\MicroStation VB {SELECTSeries 1/\WorkSpace\ Systemsead, =%

Lookin: seed - @7 ihd 55 3

Compiter
w
Network
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Filas ofyps MhcreStaton DG Fisd [ dgn) - Cancal -
h z . Com
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ompute i 2011-11-16 113
' Metwo Do o \
3 l Tap Wieb, Training_ M T
“w Desktop -
Network Y e Can e |
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Libraries
~ . for yan K} Hancock City_Transportatio LiDAR Data
Computer Shartout 1o RITA - A2
Research Update i Summer Research |
w ' 2l
Metwork
File name: Open

Save as type MiroStation LGN Fies (*dgn) - Cancel
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Figure 3.15: TopoDOT initializing user prompt (Certainty 2011) (See Appendix D)
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Now within the user interface, the user had to execute the TopoDOT software package.
With TopoDOT being a Bentley MicroStation compatible software add-on, the program
was required to be active within the user interface. Activation of TopoDOT was
accomplished by finding the “TopoDOT (N)” drop down bar and selecting Start
TopoDOT (Certainty 2011). A text window appeared and verified the user license was
valid, as shown in Figure 3.16. Returning to the user interface, a toolbar on the left hand
side appeared labeled “TopoDOT (N)”, as shown in Figure 3.17. The toolbar contained
all Certainty 3D’s LIDAR developed post-processing functions.

| A MicroStation Vi (SELECTserkes 1) - Text Window

0. LLE. All Rights Reserued

Figure 3.16: TopoDOT’s status text window (Certainty 2011) (See Appendix D)

Once TopoDOT was running, the point clouds were able to be imported individually and
key extractions performed. To properly import the data, the desired LAS file was
registered with TopoDOT by generating a Project.tvw file. This task was completed by
using the “LAS Registration Command” icon found within the TopoDOT (N) toolbar.
With the registration file created, file import parameters were established allowing for the
LAS file to be scaled and geo-referenced. The import file parameters are established by
locating the “File Settings” icon within the “TopoDOT (N)” drop down menu (Certainty
2011). The Leica data as described in an earlier section had units of international feet,

which were required to be input in the “File Settings” user prompt, as shown in Figure
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3.18. Additionally, within the “File Settings™ users prompt the ability to set the data
display rate was available. The ability to down sample the full data set allowed the entire
bridge to be displayed at a slightly less resolution. However, requested features were still
able to be extracted at full resolution. As alluded to earlier, even with the hardware
upgrade, the file size of an individual bridge exceeded the software’s point cloud display

limit, so down sampling was necessary.
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@ v Dotear |[Zo~iZo~To~Bo-~ il EAGEN FRACRA RIS E R AR JGEUY - ]

" X 1 e View 1 Top, Defautt ik [RE |  View 2 ometic, Defaut

SYMPER N TR S

B roponor (v) HEEa -

a
& Mesh Modaling »
T Foature Modeing v
4 visualzation v
- & Defaul it fif2fs]a|s]e| ]| 1% Y z

Elsmant Solaction * idantify cloment 1o add t sat TOPODOT Insded Dafaut

Figure 3.17: MicroStation user interface with TopoDO'I;-activated (Certainty 2011)
(See Appendix D)
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M File Settings E (=] @
File Settings
Units; |Feet |

Thin Data (Nth point) | 20

Riegl V-Line Scanner Settings

Pulse Deviation Limit | 20

LAS File Settings

RGB Range: |0-255 -
Classify by Flight Line
Export Plane Deviation as RGB

| Save ‘ ‘ Cancel ‘

Figure 3.18: Import file settings for establishing import parameters (Certainty 2011)

(See Appendix D)

With the import parameters applied, display parameters were required to be established.

Found under the “Settings” drop down menu, the “Design File” icon was selected to

display the user prompt to apply the desired display units, as shown in Figure 3.19. This

function allowed for the user to select the desired units, the point cloud would be

displayed at, by converting the import file accordingly. The import and design file

parameters are critical steps, which if done incorrectly resulted in geo-reference scaling

Design File Settings
Category Maodify Working Unit Settings
Active Angle
Active Scale :
Angle Readout ===
- Master Unit: [Feet A Label: ft
S —_—
Color Sub Unit: |Inches i Label: | in
Element Attributes Accuracy | 0.1234 - |
Fence Custom
Grid I—/
Isometric
Locks Advanced Settings
Snaps Resolution: 10000 per Distance Meter
Stream Working Area: §.0072E+008 Kilometers
Views Solids Area: 1 Kilometers
Working Units
Solids Accuracy: 1E-008 Meters
Edit
Focus ltem Description
Set linear unit display format. Set to master unit anly(MU), master o
and sub unit(MU:SU), or master, sub and positional

Figure 3.19: Design file settings for establishing display parameters (Certainty 2011)

(See Appendix D)
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With all the import and design file parameters set the LAS files were imported by
entering into the “TopoDOT (N)*” toolbar, locating the “Load Point Cloud from File”,
executing the “Load Point Cloud from File” function and selecting the desired LAS file,
as shown in Figure 3.20 (Certainty 2011). To ensure that the requested data had been
fully displayed to the desired sampling rate, the user returned to the text window and
confirmed that the number of total points visible did not end in multiple nines (9) s, as
shown in Figure 3.21. When this was the case, the quantity of points requested exceeded
the allowable software limits and further down sampling was necessary. The result of
requesting additional points to be displayed than allowable was a program failure and

required TopoDOT to be reopened. This was an iterative process.

M Full_Frees R Deckdgn [30 - Vi DGN] - MicroStation VEi {SELECTseries 1) (Licensed For Academnic Use Dnly) PR 5|
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Figure 3.20: Proper procedure to load desired LAS file '(-Certainty 2011) (See
Appendix D)
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Figure 3.21: Confirming displayable points not exceeded (Certainty 2011) (See
Appendix D)

After confirming that the requested point cloud data imported did not exceed the software
limitations, feature extractions commenced. The TopoDOT user interface displayed the
imported point cloud in four separate windows, as shown in Figure 3.22. The individual
windows allowed for viewing of the data from four vantage points; top, front, right and
isometric. Each window was linked to the other three allowing for real time motion

tracking in all four windows.

Desired feature extraction of the reinforced concrete deck data was performed utilizing
three functions, two TopoDOT and the other MicroStation defined. The two functions
defined by TopoDOT used were the crop points inside and outside of the fenced area and
the MicroStation function was establishing the fence. The fence tool found in the upper
left hand corner was activated, displaying a “Place Fence” user prompt. The fence type
was selected to be “Shape” and the fence mode remained “Inside”, as shown in Figure
3.23. Using the right view window, a fence was established around the bridge deck data
and the crop “Points Outside of Fence” function was used to remove the undesired points
(Certainty 2011). The bridge parapets were removed from the remaining data, resulting

in a planar model with residual artifacts. Residual artifacts produced from vehicles,
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pedestrians or any other disturbances were systematically removed through an iterative

process of cropping.
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Figure 3.22: LiDAR data populated uéer interface (Certainty 2011) (Seé Appendix
D)
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Figure 3.23: Deck extraction utilizing the fence command (Certainty 2011) (See
Appendix D)
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The resulting model was a filtered data set pertaining only to the bridge deck. An
isometric view of the filtered data can be seen in Figure 3.24. All feature extractions
were performed in a similar manner and the resulting point clouds were exported to a
separate LAS file. Exporting was completed by locating the “Export Points’ function,
within the “Point Cloud” icon found in the “TopoDOT (N)” drop down menu, as shown
in Figure 3.25 (Certainty 2011). With the feature extractions completed, the requirement

for the Certainty 3D’s TopoDOT modeling software was longer necessary.
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Figure 3.24: Filtered data pertaining to the bridge deck (Certainty 2011) (See
Appendix D)
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Figure 3.25: Exporting filtered deck data (Certainty 2011) (See Appendix D)

3.6 Quick Terrain Modeler

The requirement for the Quick Terrain Modeler software became apparent when
evaluating the extracted deck data and concluded that the information needed to be
divided into equivalent sections pertaining to the deck length. With terrestrial LIDAR
data acquisition, as the object of interest gets further away from the receiver the relative
point spacing also increasing. This increase in relative point spacing affected the ability
to generate an accurate digital elevation model (DEM), because of the requirement to
apply fixed point spacing to the data. The requirement to apply fixed point spacing over
the entire deck data resulted in an averaging of the data, masking potential defects once
the DEM was produced. Averaging of the data was completed by inserting false points in
the sparsely populated areas and down sampling the points in areas of high concentration.
To combat this requirement the data was further refined into eight equivalent sections

according to the deck length, which was accomplished using Quick Terrain Modeler.

After loading the Quick Terrain modeling software, the user was required to load the

LAS file, to be sectioned. By locating the “Import” drop down menu and selecting the
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“Import Model Data...” command, the user was requested to provide additional
information prior to establishment of the correct file path to the LAS file of interest. The
initial parameters were “Input Format” and “Model Format”, for the required task LAS
and QTA (QTC with QTA Attributes) were selected, respectively. With the initial
parameters defined, the proper file was selected. Data was loaded and displayed in the
user interface allowing for further data extraction, as shown in Figure 3.26 (Imagery

2011).

B Guick Terrain Modeler (USA) (x4, 4715 - [Deck extraction feetias] R %

MH6239sec, B0fps. 6832380 pis, LOD D03

Targeted Point | CARTESIAN {unknown,

Figure 3.26: Proper file import method (Imagery 2011) (See Appendix D)

Before proceeding with the data sectioning, an appropriate naming system was
established for each deck allowing for the user to readily identify the section and relative
location on the deck. With each deck being sectioned into eight equal subsets, a datum
was placed at the mid-span of the deck. Depending on the orientation of the bridge in
reference to north, south, east and west, the first two sections from the datum were
denoted by the number one and the associated bearing. For example, the Willow Road
bridge is orientated east-west and is 209 feet long, so the first section to the east of the

datum was denoted 1E.
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With the file naming system defined, sectioning of the decks commenced. Sectioning
was accomplished by utilizing the “Set Marker” command which was located in the
“Markers” drop down menu, as shown in Figure 3.27. Each marker was set at the
approximate length calculated for each desired segment length. Once the markers were
placed in the approximate locations, the “Start Mensuration” function was used to refine
the positioning of the marker location. The “Start Mensuration” tool was located on top

toolbar, as highlighted in red on Figure 3.27 (Imagery 2011).

B Guick Terrain Modeler (USA) (x84, 4715 - [Deck extrachion feetias] R %
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iiigure 3.27: .S'é"tting marlgérs at desired section extents (Imagery 2011) (See
Appendix D)

To define the subset boundaries allowing for individual data extraction, the “Z polygon”
tool was used to select the extents of the subsets established by the markers, as shown in
Figure 3.28. The “Z polygon” tool was located on the top toolbar and is identified in
Figure 3.28 by a red circle surrounding the icon. With extents selected, exporting of the
selected data to a new LAS file using the established naming convention was completed.
The export process was accomplished by holding down the “Ctrl” key and right-clicking
on the mouse. By doing the specific routine, a command window appeared and the
“Export Points” tool was selected for LAS file export, as shown in Figure 3.29 (Imagery
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2011). All the required subsets for each particular bridge were exported in a similar

manner.

Figull;é 328 :.' .Establish'.ing the Z-Polygon parameters for subset export (Imagery
2011) (See Appendix D)

ifiguFé 329 Proper é'x'port-i'h'é'plr'dcedu re for individﬂél brldge s”u"bsets (Imagery
2011) (See Appendix D)
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Now that the bridge LAS files had been broken down into eight subsets pertaining to
each particular bridge, the subset LAS files were converted into working geotiff DEMs.
To utilize a Michigan Tech Research Institute developed algorithm for automatically
detecting surface defects, the conversion from a LAS to a geotiff DEM was necessary.
For the conversion, the individual subsets were required to be reimported to Quick
Terrain Modeler as a QTT model. The process for importing the LAS file was similar to
that depicted in Figure 3.24, with the “Model Format” changed from a QTA (QTC with
QTA Attributes) to a QTT (Gridded Surface) model (Imagery 2011). When the model
format was adjusted and the “Import” icon was clicked, a user prompt appeared allowing
for the adjustment of the grid sampling based on point density with the subset, as shown
in Figure 3.30. With being able to assign a grid sampling, the masking issue discovered
during the initial post-processing phase was resolved. The default grid sampling value
automatically generated within the user prompt was determine to be the average grid
spacing across the entire segment multiplied by three. By simply dividing the default
value by three and re-inputting the calculated grid spacing, the generated QTT model was

able to be exported to a geotiff DEM without issue.

Flgure330 :.':'Subset fi.Ié import for generation of geotiff DEM (.I.rlnlagery 2011) (See
Appendix D)
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To create the geotiff DEM from the QTT file of the individual deck subsets, right click
on the QTT file name located in the layer table on the left hand side of the user interface,
as shown in Figure 3.31. By right clicking on the desired QTT file, a dialog box
appeared allowing for the user to select “Export to geotiff DEM”. A user prompt
appeared that allowed for the geotiff DEM to be named and saved to the appropriate
directory as a TIF file (Imagery 2011). Again, the export process was completed for all
the deck subsets, finalizing the data filtering process, allowing for smooth integration into
the MTRI developed algorithm.

E
i
%:-

Flgure331 :.\ :'Exportin.é procedure for geotiff DEM filé (Imagery élOll) (See
Appendix D)

3.7 MTRI 3DOBS Spall Detection Algorithm

As part of the larger bridge condition assessment project, the Michigan Tech Research
Institute (MTRI) developed algorithm, called MTRI 3DOBS spall detection algorithm,
was utilized to automatically detect spalls from the bridge deck DEMs and calculate
associated areas and volumes. The algorithm was written in IDLE (Python GUI), a user
defined script that utilizes ESRI ArcMap geo-spatial analysis tools to evaluate inputted
data (MTRI 2011). For detection and determination of defect spalls, the algorithm used a
statistical method available in ESRI ArcMap, called focal statistics. Focal statistics
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evaluates individual cells by establishing boundaries around each cell referred to as
“neighborhoods”. Then the change in cell value is evaluated and compared to
surrounding “neighborhoods”. User defined parameters within the algorithm allowed for
establishment of critical values defining cell value change, which would constitute a
spall.

The MTRI 3DOBS spall detection algorithm evaluates elevation data, allowing for
sudden elevation changes to be detected and compared with user defined spall
characteristics. For proof of concept, MTRI performed analysis on an entire bridge deck
3DOBS DEM, varying the user defined minimum spall size to be considered, allowing
for the establishment of minimum size criteria. The user defined minimum spall sizes
evaluated were 10 cm?, 100 cm? and 1,000 cm? allowing for a trend to be forecasted.
From the testing, MTRI concluded that a minimum detection size of about 40 cm? (6.2

in?) would be optimal.

With the MTRI 3DOBS spall detection algorithm developed to accept any geo-spatial
DEM, the geotiff DEMS exported from Quick Terrain Modeler were valid for processing.
Originally, opening the IDLE (Python GUI) program, the Python shell was the user
prompt displayed. However, the MTRI developed script had to be loaded into the
workspace allowing for the algorithm to be executed. When loaded, a secondary window
appeared containing the MTRI developed script. To run the script, the “Run Module”

function was toggled, which was found in the “Run” drop down menu.

By selecting to run the module, the Python shell user prompt was populated with multiple
system required inputs, as shown in Figure 3.32 (MTRI 2011). Six user defined
parameters were required to be inputted in the Python shell user prompt. Important to
note is that when inputting the working directory path, bridge joint file name and DEM
name, the information provided in the user prompt must match exactly to the actual. If
any character was incorrectly defined the algorithm would fail.
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i:igure 3.32: MTRI 3DOBS spall detection aIgoritFI-m user prompt (MTRI 2011)

Additionally, spall detection parameters were established within the Python shell user
prompt. The max bridge pixel value requested during this process allowed for the user to
define the maximum allowable standard deviation value that would be considered
undamaged concrete. Once the defined standard deviation value was exceeded, that pixel
pertaining to that exceeded standard deviation value was classified as a spall, as defined
by the min spall pixel value. With a spall typically being defined as a volume of removed
material caused from various concrete deterioration mechanisms, surface area also was
required to be defined. The surface area parameter was inputted during the min spall size
request, which established a pixel based minimum area, which was required to be met or

exceeded to be classified as a spall.

With all the user defined parameters established, the algorithm ran automatically,
populating the recognized working directory with outputted ESRI ArcMap files and a

Microsoft Excel spreadsheet, as shown in Figure 3.33. The Microsoft Excel spreadsheet
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contained volume and area calculations pertaining to all detect surface defects. Multiple
iterations of the algorithm were performed on each section of the individual bridge decks
allowing for generation of not only the Microsoft Excel spreadsheet, but a geo-reference
set of visual aids, as seen in Figure 3.34. These visual aids allowed for the user to verify
that the results generated from the algorithm aligned with visible surface defects present

on a high-resolution optical image.

O\[L

Figure 3.33: Populated working directory from MTRI 3DOBS spall detection
algorithm (MTRI 2011)

Refined analysis was performed on areas of known spall volume and compared with a
secondary surface defect detection technology to validate results. With all processes,
meticulous preparation and forethought was necessary to produce the desired result.
Contained within the following sections are the results and discussion produced from the

described methodology.
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Figure 3.34: Optical visual aid for validation of spall detection process (MTRI 2011)
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4 Results/Discussion

With the filtered deck LiDAR pertaining to the individual field demonstration locations
evaluated utilizing the MTRI 3DOBS spall detection algorithm, results are presented.
Principal findings are summarized. Further investigation to the individual field
demonstration results are provided along with specific feature extraction of test spall

locations allowing for comparison of findings to the applied ground truth measure.

4.1 General Findings from Full-scale Field Demonstration

4.1.1 Point Cloud Density Decay

During the field demonstration, the number of bridge deck data acquisition locations was
held constant; the two locations were typically on the bridge approaches on either
abutment. The resolution of the individual scans were held constant at the highest
achievable resolution of 50,000 points/second, except for the Mannsiding Road north
bound (NB) overpass, which was collected at a medium resolution rate due to time
constraints. Unfortunately, the specific resolution of the Mannsiding Road NB overpass
data collect was not provided. Even with the variation in the rate of data collection, a
reoccurring theme became evident during the data post-processing of all four bridge

decks, point cloud density decay.

The findings showed that the point cloud density decayed at an exponential rate rather
than the anticipated linear decay referenced in section 2.9. The theory developed by the
Advanced Highway Maintenance and Construction Technology (AHMCT) Research
Center at the University of California, Davis was for a spherical object, which presented a
constant surface area for detection. The planar bridge deck surface evaluated in this
research produced a diminishing coverage angle resulting in non-linear point cloud

decay. Figures 4.1 through 4.8 visually and graphically show the exponential point cloud

decay of the LIiDAR data as the distance from the receiver is increased.

The Figures 4.1, 4.3, 4.5 and 4.7 visually demonstrate the exponential point cloud decay.
Avreas represented in red are locations near collection points and the blue represents the
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lowest point density captured on the bridge deck surface. The densest recorded reading
for all four bridge decks was 7,736.3 points per ft? (ppft®) (83,186 point per m? (ppm?)),
while the least populated section was 18 ppft® (193.5 ppm?). The remaining figures show
a longitudinal elevation profile of the bridge decks and as the sensed data points approach
the middle bridge span of each deck, the red line transitions to a dashed line. The
transition of the line type is due to the point cloud density decay and the increase in the
relative distance between each point, the white space between the red dashes is assumed

to be a hole by the software.
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Figure 4.1: Mannsiding Road NB point density texture for visual representation
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Figure 4.2: Mannsiding Road NB longitudinal elevation profile
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Figure 4.3: Mannsiding Road SB point density texture for visual representation
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Figure 4.4: Mannsiding Road SB longitudinal elevation profile
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Figure 4.5: Willow Road point density texture for visual representation
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Figure 4.6: Willow Road longitudinal elevation profile
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Figure 4.7: Freer Road point density texture for visual representation
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To explain the unexpected exponential point cloud decay, collection and processing
methods were reevaluated. By relying on two stationary collection locations at a fixed
collection height, the angle of incidence greatly influence the obtainable surface
information. Figure 4.9 and Figure 4.10 show that as the distance from the receiver
increased, the angle of incidence initially increased rapidly and asymptotically
approached 180 degrees. The established relationship for the angle of incidence resulted
in an equal reduction in the coverage angle. When sensing a planar surface for
topographical defects, a coverage angle of nearly 180 degrees would be ideal. However,
with terrestrial LIDAR units, the coverage angle is substantially less than the desired 180

degrees without an elevated platform.

This reduction in coverage angle is only enhanced with the presence of the built-in bridge
arch. As shown in the longitudinal elevation profile graphs, the arches of the bridges
were captured during the data acquisition. The maximum arch present in the four test
cases was estimated to be 0.8ft of elevation change (on Freer Road from abutment to the

middle span).

'l'erres‘@

LiDAR
system

Coverage angle
A1>AZ2>A3

Concrete Deck Surface

Figure 4.9: Visual representation of the reduction in coverage angle over distance
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Figure 4.10: The coverage angle and angle of incidence as the distance varies

4.1.2 Maximum Radius of Capture

When evaluating the MTRI 3DOBS spall detection algorithm results, the estimated
spalled area increased as the distance from the terrestrial LIDAR unit increased. The
cause of the increasing overestimation of spalled area was attributed to the exponential
point cloud density decay rate. By comparing the optical master deck images of each
case study bridge and the algorithm results, a maximum radius of data capture was
generated for the Leica ScanStation C10 at the highest collection rate, 50,000
points/second. In Appendix C, the algorithm results are provided to view the estimated
surface defects. By measuring the distance from the edge of the approach slab to the
point of error saturation, a maximum radius of capture trend was established. The

individual bridge measurements for maximum radius of capture are listed in Table 4.1.
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Table 4.1: Maximum radius of capture for Leica ScanStation C10 at 50,000
points/second

Field Demonstration Location | Approach Slab | Radius of Capture (ft)

. Northeast 0.00
Mannsiding Road NB

Southwest 50.78

o Northeast 66.48
Mannsiding Road SB

Southwest 66.48

. Road North 51.59

reerroa South 52.09

) East 50.76

Willow Road
West 55.37

The average radius of capture, when considering all terrestrial LIDAR locations where a
high resolution scan was collected, was 56.2 ft. The established radius of collection of

56.2 ft only pertains to the case study collection parameters.

4.2 Full-scale Field Demonstration

With the understanding of the exponential point cloud decay and the maximum capture
radius, individual evaluation of the bridge decks was conducted. To reinforce the two
general findings, full deck evaluations for surface defects were conducted; results are
provided and compared with an established ground truth measure. The full deck
evaluations were only performed on data within the established 56.2 foot radius, data
outside the radius was not appropriate for evaluation, because of point cloud decay. For
the algorithm to successfully process the eight subsets for each bridge, constant spall

parameters were established. The constant spall parameters were as follows:

e Max bridge pixel standard deviation: 0.004
e Min spall pixel standard deviation: 0.0040001

e Min spall pixel size: 1.0

Known surface defects located within the established 56.2 foot coverage radius were
further evaluated allowing for a determination of the effectiveness of the technology, data

collection and processing methods under ideal conditions. The extracted surface defects
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were processed at different input parameters than what the entire bridge decks were
processed at. In addition, each comparative ground truth measure was processed at

similar input parameters allowing for a fair comparison.

4.2.1 Ground Truth Measure for Comparison

A technique developed by the Michigan Tech Research Institute, 3D Optical Bridge-
evaluation System (3DOBS), was chosen to be the ground truth for comparison to the
LiDAR technique. 3DOBS utilizes 3D photogrammetry to generate three-dimensional
models from stereo pairs of electro-optical (EO) imagery. The developed models provide
depth and height information that could not otherwise be determined from individual EO
images. A digital single-lens reflex (DSLR), high-quality camera is the main component
of the field system. The system implemented during the field demonstration consisted of

a Nikon D5000 DSLR camera, vehicle mount and a camera triggering device as shown in
Figure 4.11(de Melo e Silva and Brooks 2011).

Figure 4.11: 3DOBS field demonstration data collection system (Courtesy of Renee
Oats) (See Appendix D)

MTRI conducted laboratory testing on 3DOBS; the results showed that the technology is

capable of detecting vertical changes smaller than 0.079 in (2 mm). With the current
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bridge inspection standard of 0.25 in (6.35 mm) for minimum consideration criteria of an
elevation change to be a potential spall, the 3DOBS technology exceeds the established
criteria (de Melo e Silva and Brooks 2011).

4.2.2 “Poor” Bridge Selection

For Mannsiding Road NB, the data collection method was slightly different than the other
case studies as described before. With the two deck scans being located on opposite
abutments and the northeast scan collect at medium resolution, the point cloud decay was
evident closer to the northeast approach slab. The predicated spall area from the
algorithm with the established input parameters was saturated with error at 56.2 ft from
the southwest approach to the northeast approach, as shown in Appendix C. As a result
of the lowered resolution data capture on the northeast approach, only the southwest 56.2
feet of the Mannsiding Road NB data was applicable. The estimated percentage of
defected surface area from the Leica ScanStation C10 data was 2.26% of the relevant
area. The established ground truth measure, 3DOBS, predicted that the defected surface
area to be 1.08% of the same relevant area. Details of the findings are shown in Table
4.2.

A spall of significant size was present within the established 56.2 foot capture radius of
the southwest approach scan allowing for an evaluation of the capabilities of terrestrial
LiDAR under ideal conditions. Figure 4.12 shows the location of the spall in reference to
the entire deck, which is highlighted in red. The spall was evaluated with the algorithm
under the established input spall parameters. Results from the analysis estimated that the
surface area, volume and percent surface area were 2.065 ft* (0.285 m?), 0.067 ft* (0.002
m?®) and 0.06% respectively. Figure 4.13 shows an optical image and the predicted spall
area image from the algorithm for visual comparison. The green color in the predicted
spall area image represents the assumed spalled area.
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Table 4.2: Results from the Mannsiding Road NB selected deck evaluation

Results for Mannsiding Road NB
Selected deck evaluation
ltems 9f Difference
Comparison LiDAR 3DOBS
Bridge surface area 1223.65 ft* (113.68 m?) -
Predicted defect 27.64 t° 13.18 ft? 14.46 ft
area (257m?) | (1.22m? | (1.34m?d)
Predicted defect 2.33 ft® 1.10 ft® 1.23 ft®
volume (0.07m% | (0.03m® | (0.04m°
1 0,
Pred'“i‘:e‘;efe‘:t A 2 26% 1.08% 1.18%

Figure 4.12: Optical image of Mannsiding Road NB showing evaluated spall
location (Courtesy of MTRI) (See Appendix D)
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Figure 4.13: Optibal image and the predicted spall area Image tor visual comparison
(Courtesy of MTRI) (See Appendix D)

3DOBS estimated that the selected spall surface area, volume and percent surface were
1.696 ft* (0.158 m?), 0.064 ft> (0.002 m®) and 0.049%, respectively. The differences in
the three measures were 0.369 ft* (0.127 m?), 0.003 ft* (0.000 m®) and 0.011%
demonstrating that terrestrial LIDAR possesses the capabilities of detecting surface
defects to an acceptable degree of accuracy. Table 4.3 lists dimensions of the evaluated
spall for LiDAR, 3DOBS and the differences. The Mannsiding Road NB demonstrated
the sensitive nature of the data acquisition procedure and when a suspected defect is
within the established maximum radius of capture, determination of the surface condition

IS possible.
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Table 4.3: Isolated section within capture radius on Mannsiding Road NB

Isolated section within capture radius
Items of LiDAR 3DOBS | Difference
Comparison

Predicted defect 2.065 ft? 1.696 ft* 0.369 ft?
area (0.285m?) | (0.158 m%) | (0.127 m?
Predicted defect 0.067 ft3 0.064 ft3 0.003 ft3
volume (0.002m% | (0.002m* | (0.000 m%)

i 0
PrEd'CtheiefeCt %1 0.06% 0.049% 0.011%

4.2.3 “Fair” Bridge Selection

For Willow Road, the two data collection methods pertaining to the evaluation of the
bridge deck condition were high-resolution allowing for the densest point cloud
generation possible. With the two deck scans being located on opposite abutments, the
point cloud decay was evident along the bridge deck surface once the 56.2 foot maximum
radius of capture was exceed from each approach slab. The predicted spall area from the
algorithm with the established input parameters was saturated with error in the center
portion of the deck point cloud, as shown in Appendix C. As a result only the data
contained within the two established maximum radii was evaluated and the remaining
information was deemed inadequate for analysis. The estimated percentage of defected
surface area from the Leica ScanStation C10 data was 6.14% of the selected bridge deck
surface area. The established ground truth measure, 3DOBS, predicted that the defected
surface area to be 3.73% of the selected bridge deck surface area. Details of the findings

are shown in Table 4.4.
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Table 4.4: Results from the Willow Road selected deck evaluation

Results for Willow Road

Itemns of Selected deck evaluation

_ Difference
Comparison LiDAR 3DOBS

Bridge surface area | 2712.17 ft* (251.97 m? -

Predicted defect 166.46 ft> | 101.11 ft? 65.35 ft2
area (15.46 m?) | (9.39 m?) (6.07 m%

Predicted defect 18.97 ft 21.23 ft® 2.26 ft3
volume (054 m% | (0.60m° (0.06 m®)

Predicted defect %

6.14% 3.73% 2.41%
area

To further evaluate the capabilities of the technology in ideal conditions, a section of the
north shoulder of the deck was selected, which was in a severely deteriorated state. The
selected section of the north shoulder was within the 56.2 foot maximum radius of
capture. Figure 4.14 shows the location of the selection section of the north shoulder in
reference to the entire deck, which is highlighted in red. The shoulder was evaluated
with the algorithm under the established input spall parameters. Results from the analysis
estimated that the surface area, volume and percent surface area were 9.91 ft* (0.92 m?),
0.65 ft> (0.02 m®) and 0.18% respectively. Figure 4.15 shows an optical image and the
predicted spall area image from the algorithm for visual comparison. The green color in

the predicted spall area image represents the assumed spalled area.
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Fi'ure 4.14: Optical image of Willow Road showing evaluated surface defect
location (Courtesy of MTRI) (See Appendix D)

Figure 4.15: Optical image and the predicted spall area image for visual comparison
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3DOBS estimated that the selected spall surface area, volume and percent surface were
8.31 ft* (0.77 m?), 0.60 ft* (0.02 m®) and 0.15%, respectively. The variations in the three
measures were 1.60 ft? (0.15 m?), 0.05 ft* (0.00 m*) and 0.03%, respectively. These
results showed that when LiDAR is used within its limitations of maximum capture
radius and resolution, accurate quantification of metrics can be made. Table 4.5 lists
dimensions of the evaluated shoulder for LIDAR, 3DOBS and the differences.

Table 4.5: Isolated section within capture radius on Willow Road

Isolated section within capture radius
Items of LIDAR 3DOBS | Difference
Comparison

Predicted defect 9.91 ft? 8.31 ft? 1.60 ft?
area (0.92 m? (0.77 md (0.15 m?

Predicted defect 0.65 ft® 0.60 ft® 0.05 ft®
volume (0.02 m%) (0.02 m%) (0.00 m%)

1 0
Predlctztgec;efect ) 0.18% 0.15% 0.03%

4.2.4 “Satisfactory” Bridge Selection

For Freer Road, the two data collection methods pertaining to the evaluation of the bridge
deck condition were high-resolution allowing for the densest point cloud generation
possible. With the two deck scans being located on opposite abutments, the point cloud
decay was evident along the bridge deck surface once the 56.2 foot maximum radius of
capture was exceed from each approach slab. The predicted spall area from the algorithm
with the established input parameters was saturated with error in the center portion of the
deck point cloud, as shown in Appendix C. As a result only the data contained within the
two established maximum radii was evaluated and the remaining information was
deemed inadequate for analysis. The estimated percentage of defected surface area from
the Leica ScanStation C10 data was 1.68% of the selected bridge deck surface area. The
established ground truth measure, 3DOBS, predicted that the defected surface area to be
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0.38% of the selected bridge deck surface area. Details of the findings are shown in
Table 4.6.

Differing for Mannsiding Road NB and Willow Road field demonstrations, Freer Road
contained no significant surface deterioration or shoulder distress. Evaluation under ideal
conditions was unable to be completed on Freer Road due to the limited quantity of
surface defects. The limited quantity of surface defects was expected; the selection
parameters established during the field demonstration selection desired a case study

bridge with a rating of “satisfactory” under the NBI rating system.

Table 4.6: Results from the Freer Road selected deck evaluation

Results for Freer Road

Items of Selected deck evaluation

Comparison LiDAR 3DOBS

Difference

Bridge surface area | 2970.24 ft* (275.94 m?) -

Predicted defect 49.82 ft? 11.32 ft? 38.50 ft?

area (463m% | (1.05m?) (3.58 m%
Predicted defect 8.52 ft® 0.34 ft* 8.18 ft®
volume (0.24m% | (0.01md (0.23 m°)

Predicted defect %

1.68% 0.38% 1.30%
area

4.2.5 “Supplemental” Bridge Selection

For Mannsiding Road SB, the short span of the bridge and the collection of data from the
two established locations at high-resolution produced the most dense point cloud over the
entire bridge deck. Limited point cloud decay was visible in the spall algorithm output,
as shown in Appendix C. The estimated percentage of defected surface area from the
Leica ScanStation C10 data was 3.1% of the total bridge deck surface area. The
established ground truth measure, 3DOBS, predicted that the defected surface area to be
1.4% of the total bridge deck surface area. Details of the findings are shown in Table 4.7.
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With the short span and high-resolution data collection techniques performed at the two
established scan locations, the estimated defected metrics were similar. Also to be noted
is that the profile graph provided in the previous section showed that the bridge had
negligible arch and was sloped from the southwest to the northeast approach. The
absence of the arch and the sloped surface allowed for an increase in the coverage angle,
further allowing for increased line of slight from the receiver to the middle span of the
bridge.

Table 4.7: Results from the Mannsiding Road SB full deck evaluation

Results for Mannsiding Road SB

Items of Total deck evaluation

Comparison LiDAR 3DOBS

Difference

Bridge surface area 3403.2 ft* (316.5 m?)

Predicted defect 106.40 ft? 46.50 ft 59.90 ft?

area (9.90m% | (4.32m?) (5.58 m?)
Predicted defect 6.60 ft* 2.94 ft 3.66 ft*
volume (0.18 m% | (0.08 m°) (0.10 m®)

Predicted defect %

3.1% 1.4% 1.7%
area

The evaluation under ideal conditions was unable to be completed on Mannsiding Road
SB due to the limited quantity of surface defects. The limited quantity of surface defects
was unexpected, because the “Supplemental”” bridge was not initially investigated and
surface defects were not documented. However, the results showed that the potential for
the arch and angle of the bridge could greatly affect the clarity of collected data.
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5 Summary

5.1 Sensing Bridge Surface Condition

The research conducted concluded that the point cloud decay rate is not linear, but rather
exponential. When the data was collected at a rate of 50,000 points/second, the
exponential decay resulted in the establishment of a maximum coverage radius of 56.2 ft.
Evaluation of the entire bridge deck data was performed to reinforce the conclusion of the
exponential point cloud decay and the maximum coverage radius. Full bridge deck
results when compared to the established ground truth of 3DOBS demonstrated that the
limited point cloud density in the middle of the field demonstration data developed an
overestimation of the damage surface. The difference in the calculated percentage of
damage surface area for the “Poor”, “Fair” and “Satisfactory” between the LIDAR and
3DOBS data was 55.93%, 34.6%, and 14.56% respectively. No definitive trend can be

established, because of the limited amount of unique field demonstration locations.

However, the two damaged features located within the maximum radius of coverage on
Mannsiding Road NB and Willow Road showed the potential of the technology. The
difference in the calculated percentage of the damaged features located on Mannsiding
Road NB and Willow Road between the LIDAR and 3DOBS data were 0.011% and
0.03%, respectively. The small variation between the two technologies definitively
shows that terrestrial LIDAR has the capabilities of sensing surface defects to an

acceptable accuracy.

5.2 Pros and Cons of the Modeling Software

The two three-dimensional modeling programs utilized for filtering and post-processing
the collected LIDAR data had both associated positives and negatives. Reevaluating the
developed criteria for software selection of user-friendliness, cost, accuracy, what the
modeling program was designed for and current federal and state agency uses, several
conclusions were generated. With regards to the MTRI 3DOBS spall detection algorithm,
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user critiques were provide for further development of the user interface and code

parameters.

5.2.1 Certainty 3D’s TopoDOT Modeling Software

The Certainty 3D’s TopoDOT modeling software provided a user-friendly interface with
available options to effectively filter LIDAR collected data. With the TopoDOT software
utilizing the Bentley MicroStation platform and function configuration, previous
MicroStation experience helped accelerate the learning process (Bentley Systems 2011).
The necessary LIDAR functions are located in a single toolbar, which allowed the user to
perform the necessary operations for filtering the LIDAR data with limited distraction by
non-essential functions not pertaining to the filtering process. Additionally, the free web
based one-on-one instruction enhanced the software experience and allowed for
clarification on the capabilities of the LiDAR specific functions.

For the current LIDAR applications present in the civil engineering industry, the software
allowed for easy navigation and feature selection/extraction in a complex three-
dimensional model. The software was originally designed for terrestrial and mobile
LiDAR data pertaining to civil infrastructure projects, which required minor
manipulation of the developed LIiDAR functions. When considering the unutilized
potential of LIDAR technology and the limited processing software available, the
Certainty 3D’s TopoDOT modeling software is among the most complete software
packages. However, due to the limited LiDAR processing software providers, the cost
for a single license of TopoDOT is fairly high and the requirement of the Bentley
MicroStation software to access TopoDOT increases the associated cost.

Recommendations for improving the Certainty 3D’s TopoDOT modeling software for the
use in the bridge inspection realm would be centered on the high capital cost associated
with the software and the additional software purchases. Pertaining to the data filtering
and processing, the ability to rapidly extracted data of CoRe structural elements would

increase the effectiveness of the software. With the CoRe structural element data
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extracted, the user could develop a meshed surface within MicroStation. The meshed
surface could be used to visually display surface defects and generate volume calculation
of damaged material. With the experience gathered from the performed research, the
Certainty 3D’s TopoDOT modeling software can be classified as a powerful LIDAR
filtering and processing tool with limited missing components.

5.2.2 Quick Terrain Modeler

With the additional LiDAR data filtering required to properly evaluate the effectiveness
of terrestrial LIDAR as an inspection tool, Quick Terrain Modeler was utilized. Limited
exploration into the software’s capabilities were conducted due to the finite tasks
remaining to be performed on the TopoDOT filtered LIDAR data. However, some
concerns were raised regarding the software’s selection criteria after software use. The
Quick Terrain Modeler provided a simply user-friendly interface, which allowed for
limited confusion during the data refinement. The provided LiDAR functions were
elegant, which required little instruction or further investigation into the proper procedure

for executing a command.

When the required filtering tasks were performed with Quick Terrain Modeler, the user
noticed subtle intricacies, which alluded to the original intent of the software as aerial
LiDAR processing software. These intricacies required the user to manipulate the
original functionality of the software and repurpose the provided tools for terrestrial
LiDAR data, requiring additional processing time and assumptions. The main drawback
from the Quick Terrain Modeler software was the three-dimensional navigation, which
allowed for limited user control. With the inputted data already filtered down to the
pertinent bridge deck data, the navigation issue was negligible due to the two-
dimensional nature of the deck data. When the deck data was broken into the established
subsets, necessary for the development of the geotiff DEMs, the mensuration tool was
used to confirm the subset lengths. The mensuration tool was rather cumbersome, with
no feature snap functionality, the selection of the pertinent information and desired

location was questionable. Software improvements may be necessary to gain acceptance
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in the civil engineering industry and perform efficient data processing on terrestrial or

mobile LiDAR data sets for bridge deck applications.

Recommendations for improving the Quick Terrain Modeler software for the use in the
bridge inspection realm would be centered on the navigation capabilities around a
complex three-dimensional element and the mensuration tool. By incorporating multiple
viewing windows into the user interface, the software would become more versatile in
navigating around complex terrestrial and mobile LIDAR data. The redesign of the
mensuration tool is necessary for acceptance into the civil engineering realm. The
addition on a snap feature would allow for the user to confidently measure pertinent
element metrics. With the experience gathered from the performed research, the Quick
Terrain Modeler software can be classified as a useful LiDAR filtering and processing

tool, but requires further development.

5.2.3 MTRI 3DOBS Spall Detection Algorithm

The MTRI 3DOBS Spall Detection Algorithm allowed for automated spall detection with
limited user input required. The MTRI developed script used to perform the automated
spall detection had a relatively simple interface, but the potential of the system was
evident. With only six required user defined parameters, three of which were locating the
necessary input files and output directory, the limited user interaction allowed for limited
generation of error during this phase. The commentary provided during the execution of
the script allowed for the user to follow the methodology and locate issues if the script
crushed. The MTRI 3DOBS Spall Detection Algorithm provided a simple user interface,
which utilized ESRI ArcMap geo-spatial analysis tools to evaluate inputted data

efficiently.

When considering the practicality of the required evaluation parameters for classifying a
spall issues arose. For the current bridge inspection standards for spall classification to
be inputted into the algorithm, knowledge of the evaluated geotiff DEM was necessary

and conversion from inches or centimeters to pixels and standard deviation was required.
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The determination of these input parameters resulted in an iterative process, which
generated delays and assumptions. Additionally, when no metrics were generated to
populate a particular ESRI ArcMap layer at the set input parameters, the script would fail.
The result was the requirement to define the input parameters such that a metric was
generated for each described layer within the algorithm, which resulted in an
overestimation of the spalled area. Script improvements are necessary to enhance the
viability of the algorithm and gain acceptance in the civil engineering industry with

regards to terrestrial LIDAR data.

Recommendations for improving the MTRI 3DOBS Spall Detection Algorithm for the
use in the bridge inspection realm would be centered on the input spall classification
parameters necessary to execute the proper running of the spall detection script. By
fixing the spall input parameters to current bridge inspection standards, the iterative
process would be removed, resulting in efficient data processing and usable bridge
surface metrics. The ability to produce sub-millimeter measurements are impractical
when considering the current inspection standards and the ability to effectively present
spall measures pertaining to current standards would be preferable. With the experience
gathered from the performed research, the MTRI 3DOBS Spall Detection Algorithm can

be classified as a useful surface bridge evaluation tool, but requires further development.

5.3 Implementation of LiDAR for Bridge Inspections

The implementation and repurposing of terrestrial LIDAR will be important for applying
this technology in the bridge inspection field. With the current use of terrestrial LIDAR
in the civil engineering industry as an as-built surveying tool and an inventory data
generator, limited repurposing of the collection process would be required. The
technology would be applicable to any concrete surface inspection, allowing for accurate
generation of surface condition to a certain degree. The utilized data collection method
conducted during the full-scale field demonstration resulted in the need for bridge closure
and inspector exposure to traffic. To eliminate the bridge closure need and remove the
inspector from a potentially harmful situation, a mobile LiDAR platform could be
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utilized. The mobile system is typically mounted on a vehicle, which can move across
the bridge at a constant rate gathering information along the entire bridge deck.
Additional testing and evaluation of LiDAR are required to develop a remote sensing

system that is capable of collecting viable bridge surface metrics at near highway speeds.

By having the bridge inspector collect the data with a terrestrial LIDAR platform, the
inspector would be able to ensure the proper areas are sensed and modeled to generate an
accurate surface assessment. The bridge inspector would be allowed to perform a routine
visual inspection, while gathering the necessary LIDAR information and classifying areas
of concern requiring additional evaluation. However, the issue of traffic disruption and

inspector exposure remains a concern.

By utilizing a mobile LiDAR system, the inspector could collect the necessary
information from the safety of a vehicle. The drawback to mobile LiDAR collection is
the ability to visually discern between debris and potential surface defect. The visual
inspection requirement could be accomplished by incorporating an optical camera
mounted on the vehicle with the capabilities of capturing still images with limited blur
due to the vehicle speed. The captured optical images could then be fused together
generating a master bridge deck image, which would allow for defect determination.
Mobile LiDAR would alleviate traffic disruption and reduce inspector exposure, but

further investigation and evaluation is necessary.

Recommendations for implementing a terrestrial LIDAR system for bridge surface
evaluation would require significant traffic disruption and multiple scan locations would
be necessary to develop a dense point cloud. The closer the scan locations are to one
another the better the ability to measure deterioration mechanisms will be. With the
terrestrial LIDAR unit used in this research, the maximum allowable distance between
each scan location at a collection rate of 50,000 points/second would be 112.4 ft or two
times the maximum coverage radius of 56.2 ft. As discussed in the previous section, the
point cloud decays exponentially as the distance away from the receiver increases. When

incorporating the point cloud decay and laser dispersion rates, the limiting factor for a
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terrestrial LIDAR system is distance. The current state of terrestrial LIDAR and the
findings from this research show that the implementation of a remote sensing system
utilizing terrestrial LIDAR would not be practical for enhancing the bridge inspection
practice without significant traffic disruption. Terrestrial LIDAR has the potential to
assess other defect locations, such as areas on the underside and fascia, which would be
difficult for mobile LiDAR or 3D photogrammetric systems. However, the findings
show that the theory works and with further research into mobile LiDAR, the potential

for a remote sensing, highway speed surface defect detection system could be feasible.
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6 Conclusions and Future Work

The goal of this thesis was to evaluate the surface defect detection capability of terrestrial
LiDAR for reinforced concrete bridge decks. The evaluation of the terrestrial LIDAR
system was accomplished through the collection and processing of data from four
separate field demonstration locations. Processing allowed for characterization of the
minimum resolvable surface defect, maximum conservable distance from LiDAR unit for
detection, determination of point cloud density decay and algorithm limitations. While
these characterizations allow for current federal, state and private agencies to repurpose
current terrestrial LIDAR systems to enhance the reinforced concrete bridge deck

inspection practice, there are still many improvements which can be made.

6.1 Conclusions

From the research conducted herein, the following conclusions were reached:

e The evaluated Leica ScanStation C10 terrestrial LIDAR unit can sense surface
defects to a certain degree of accuracy, but is highly-dependent on five
parameters; angle of incidence, coverage angle, collection rate, reflectivity, height

of collection platform.

e The coverage angle was shown to rapidly decrease the further away from the
terrestrial LIDAR unit. The angle of incidence increased at a similar magnitude to
the coverage angle. The result was limited return of scattered light the further

away from the receiver the object of interest became.

e Point cloud density does not decay in a linear fashion, but rather as an exponential
function that approaches an asymptote between the centers of the two scan
locations. The result of the exponential point cloud decay was the establishment
of a maximum radius of capture of 56.2 ft for the Leica ScanStation C10,

collecting at 50,000 point/second.
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Surface damage sensed within the maximum coverage radius was comparable to
the established ground truth measure, 3DOBS, with relative accuracy. The
difference in the calculated percentage of the sample damaged features located on
Mannsiding Road NB and Willow Road between the LIiDAR and 3DOBS data
were 0.011% and 0.03%, respectively. The small variation between the two
technologies shows that terrestrial LIDAR has the capabilities of sensing surface

defects to an acceptable accuracy.

6.2 Future Work

Areas have been identified where future studies are warranted. These areas were outside

the scope of the current research and would require additional study and/or testing to

fully investigate. Suggestions for future work include the following:

Current literature regarding performance evaluation research for terrestrial
LiDAR systems has mainly performed spherical target recognition precision
testing. Spherical target always presents a constant detectable surface area, which
allows for limited angle of incidence to be developed. By evaluating a planar
surface at varying distances, a firm understanding of the target recognition
precision would be established to better modeling bridge surface defects.

With the issue of the dramatic point cloud density fall off as the object distance
from the terrestrial LIDAR system increased, it was theorized that the reduction in
the coverage angle associated with the bridge induced chamber or arch. A study
should be conducted on the relative effect of volume estimation by introducing

camber into a test specimen with a constant artificial defect present.

The investigation into alternative LIDAR platforms, such as aerial and mobile for
highway infrastructure inspection purposes should be conducted. By transitioning

to a moving platform LiDAR system, uniform point cloud density maybe
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obtainable. A literature review should be conducted pertaining to the state of the
practice to gain a complete understanding of the moving LiDAR platforms.

Laboratory and field testing could follow, if deemed feasible.

Determination of the reinforced concrete bridge deck’s CoRe structural element
condition state would further enhance the measurable performance metric.
Additional refinement of the data collection method would be necessary and
evaluation of the reinforced concrete deck underside would be required to

establish a proper condition state according to AASHTO.

Research seems warranted into the capabilities of multi-platform LiDAR systems
for evaluation and surface defect detection of aged asphalt. With aged asphalt,
the light reflectance index is raised due to the loss of asphalt binder, which may
allow for substantial contrast development. A study should consider the elevated
light reflectance between aged and fresh asphalt. Detectable surface defects

should be evaluated, if found feasible.
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Appendix A: MDOT Field Demonstration Inspection Reports

Michigan Department of Transportation Page 1 of 2

Form P2502 (02/2002) Bridge Safety Inspection Report 509-18033

Facility Federal Structure 1D Inspector Mame  Agency/ Consultant  Inspection Date LEGENP—

MANNSIDING RD 1[181180330005080 | |[RUEGSEGGERF | | for1zot0 |

Feature Latitude Longitude Struc Mum Insp Freg Insp Key 9 New

Us-127 NB |43572267 | Ba4e3384 | 1713 | pa | DKk | |78 Good

Location Length  Width  Year Built Year Recon Br Type Scour Eval  MNo.Pins |56 Fair

2.3 MI S OF M-61 |[130.898d [B1.1701 fi9es b g2 N 4 Poor

2or Less  Critical

pgoghd[ | NBI INSPECTION

1. Surface
SIA-58A

2. Expansion
dts

3. Other
Joints

4. Railings

5. Sidewalks
of curbs

6. Deck
SlA-58

7. Drainage

55 5]

=
-l
-l

Ceoncrete. Light scaling threugheout, Deck surface sounded and 176 sq ft or 4.4% of delamination found. Concrete patched
areas map cracked with adjacent open cracks. (2010),

Concrete. Deck surface sounded and 176 sq ft or 4. 4% of delamination found. C te patched areas map cracked with
adjacent open cracks. (2008),

Conc. between 2% - 10% of deck crked with conc. patched areas. 06{2006).

Strip seals. Debris filled. Rails rusting in scattered locations.(2010),

Mewer strip seals. Minor debris.(2008),

Newer strip seals. Minor debris. 06(2006).

HFR at end joints. Adhesion failure along both, 100% at west. Chips in adjacent concrete. Minor evidence of leakage
observed from underneath west joint, est. 5%.(2010),

HPR at end jts. Minor chips and adhesion failure.(2008),

HPR at end jts. Minor chips and adhesion failure. 06(2008).

Concrete open parapet with single aluminum tube, CSC applied and retrofitted with thrie beam SBGR. Few cracks, small
chips, and incipient spalls. Several rust stained areas along both. Minor weathering on SBGR panels.(2010),

Conc parapet with 1 tube inum with thrie BEM. retro fit. Vert & Long, crks. CSS applied.(2008),

Conc parapet with 1 tube aluminum with thrie BM. retro fit. Vert & Long. crks. CSS applied. 06(20086).

Deck surface sounded and 176 sq ft or 4.4% of delamination found. Concrete patches are map cracked. Deck underside
sounded during detailed soffit inspection, 623 sq ft or 15% distress. False decked by crews over traffic. Deterioration of the
combined area of the top and bottom surface of the deck 10%.(2010),

Deck surface sounded and 176 sq ft or 4.4% of delamination found. Concrete patched areas map cracked. Span 2W has
several large areas of wet leaching map crked areas in sofit. Many trans. and diag. crks. on surface. Many long. and trans.
crks. in soffit most of them leaching. Deck underside scunded during detailed soffit inspection, 623 sq ft or 15% distress.
False decked by crews aver traffic. Deterioration of the combined area of the top and bottom surface of the deck
10%.(2008),

Span 2W has several large areas of wet leaching map crked areas in sofit. Many trans. and diag. crks. on surface. Many
long. and trans. crks. in sofit most of them leaching. apprx. 200ft sq spalled or delam. on surface. Newer concrete patches
on surface. Diag. leaching comer crks. at the NE. See general notes. 06(2006).

Minor debris along brush blocks (2010),

Mo preblems noted. (2008),

Mo problems noted. 06(2006).

Superstructure

8. Stringer
SIA-59

9. Paint
SIA-55A

10. Section
Loss

11. Bearings

66 6]

NN N
NN N

b4 4]

PCl beams. CSC applied to fascias and beam ends at piers. Several minor scrapes and chips on beam 65 over right lane
from HLH's. Couple chips have d since application of CSC. & | beam ends at piers exhibit cracks, small spalls,
andfor incipeint spalls, mainly adjacent to sole plates.(2010),

PCI beams. Minor chips from HLH on BM 6 5. no steel exposed. Several Bm ends over Prs Whiight Crks & Incip spalls.
CSS applied to bm. ends at piers and fascias. (2008),

Minor chips from HLH on BM & S. no steel exposed. Several Bm ends over Prs Waight Crks & Incip spalls. CSS applied to
bm. ends at piers and fascias. 06{20086).

Elasomeric bearing pads. Steel plates have moderate comosion. Seme minor Crks & deformations on Elast Brgs over Prs.
06. Bolster at P2w. delaminated / fractured under beam 3s. in span 3w, causing loss of bearing area. Rating lowered due to
loss of bearing support. Noted area marked with paint.(2010),

Elasomeric bearing pads. Steel plates have moderate comosion. Some minor Crks & deformations on Elast Brgs over Prs.
06. Bolster at P2w. delaminated / fractured under beam 3s. in span 3w, causing loss of bearing area. Rating lowered due to
loss of bearing support. Noted area marked with paint.(2008),

Meopreme pads. Steel plates have moderate comrosion. Some minor Crks & deformations on Elast Brgs over Prs.
0B(2008).

Substructure

12. Abutments 7 7 7 |

SlA-60

13. Piers
SlIA-60

xwy

CSC applied. Couple vertical cracks in both. Crack under beam 45 and moderately leaching crack at north end of west
abut. 116" cpen vertical crack in center of east abut. Delam. on east abut. at const. joint marked with paint.(2010),

Both have vertical cracks with some leaching, also an incipent spall at const. joint. E. abut. CSS applied.(2008),

Both hawve vertical cracks with some leaching, also an incipent spall at const. joint. E. abut. CSS applied. 06(2008).

CSC applied. Horizontal rust stained crack on west face of pier 1W. Bolster at P2w. delaminated / fractured under beam 3s.
in span 3w. causing approx. 50% loss of bearing capacity. Rating lowered due to condition of bolster.(2010),

Piers have conc. repairs and CSS applied. Bolster at P2w, delaminated / fractured under beam 3s. in span 3w, causing
approx. 50% loss of bearing capacity. Rating lowered due to condition of bolster.(2008),

Piers have conc, repairs and CSS applied. 06(2008).

Figure A.1: Mannsiding Road NB routine bridge inspection report (MDOT 2011b)
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Michigan Department of Transportation Page 2 of 2

Form P2502 (02/2002) Bridge Safety Inspection Report 50918033
Facility Federal Structure ID Inspector Mame  Agency/ Consultant  Inspection Date LEGENP—
MANNSIDING RD 1[181180330005080 | |[RUEGSEGGERF | | for1zot0 |
Feature Latitude Longitude Struc Mum Insp Freg Insp Key 9 New
Us-127 NB 143572267 | B44622.84 | h713 | P4 | viok | [7e Good
Location Length Width  Year Built Year Recon Br Type Scour Eval  No.Pins 6 Fair
B3 W S OF Wi |[s08ssq Griro) fioes ] [ ]5 g J W ][] |**  Poor
pe psfig [ | NBI INSPECTION Zortess Criteal
14. Slope 'ﬁ & 6 | Concrete block & grout. Miner cracks and settlement in both slopes. (2010),
Protection Conc block & grout. Minor Crks and settlement in both slopes. (2008),

Cone block & grout. Minor Crks and settlement in both slopes. 06(2006).

15. Approach Ib 8 8 | Concrete approaches. Several small chips adjacent to reference lines. Couple H/L cracks.(2010),
Pavt Concrete approaches. No problems noted. {2008),
Mewer conc. No problems noted. 06(2006).

16. Approach }4 N & | Concrete C&G at all quads. Settled 1/2-1" at all quads. Bit wedged at NE. (2010),

Shidrs Swalk Marrow Bit & Conc curb. (2008),
Marrow Bit & Conc curb, (2008).
17. Approach Vegetated. Mo problems noted.(2010),
Slopes ‘Vegetated. (2008),
Well veg. 06(2008).
18. Utilities
19.Channel M N N
S1A-61 kunl
20. Drainage Mo problems noted. (2010),
Culverts Mo problems noted.(2008),
Mo problems noted. 06 (2006).
JISCELLANEQUS —
Guard Raill Crit Feat Insp{SIA-32) 71 Watr Adeq |:| General Notes
[os[ 1d[ 18 (| Freq  Date 72 ApprAign | PM - Deck patch wi full depth repairs,
364 1 1 I ﬁ 1 924 Frac Crit I bstructure repair, Reseal end joints.
158 - = z - 4 : Temp Supp 8. Note. Photos and description of
[ 1 | ”1 ” ] 92B Und. Walr | I I | . X bolster at P2w. sent to Lansing for
36C 1 n |ﬁ 1| ]]92C splinsp | | I Hi Ld Hit (M) 1 :::::;sf'oﬁ,pa:%:lzum has been
S (N | | | Special Insp Euip. [ | | N106307Inspected 10-11-10

Figure A.1, continued. (MDOT 2011b)
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Form 1717A- 01/2002 Michigan Department of Transportation Control Section

Figure A.1, continued. (MDOT 2011b)

114

MDOT Bridge ID Structure Inventory and Appraisal 508-18033
18  1180330000000509 | Code in red ink
MEI Bridge ID Struct Num Region TSC County City Resp City Location 7- Facility Carried User Name
18118033000S080 | [1713 ] (18] [ ][ 0  |MANNSIDINGRD RUEGSEGGERP
6- Feature Intersected 9= Location Latitude Longitude Qwner Maint Resp
Us-127 NB 2.3 MI S OF M-61 [[43°57 22,67 | | 84° 46 33.84" | 1 [1]
Bridge History, Type, Materials Route Carried By Structure {(ON Record) Route Under Structure (UNDER Record)
27- Year Built 1966 5A- Record Type 1 5A- Record Type 2
106- Year Reconstructed 5B- Route Signing 4 5B- Route Signing 2
202- Year Painted SC- Level of Service 1 5C- Level of Service 1
203 Year Overlay 50- Route Number 01840 5D- Route Number 00127
43 Main Span Bridge Type E] 32 SE- Direction Suffix Q SE- Direction Suffix 0
44- Appr Span Bridge Type f 10L- Best 10ft Unelr- Lt v] 0 10L- Best 10ft Uncl- Lt
77- Steel Type U] 10R- Best 10ft Uncl- Rt 89 99 10R- Best 10t Uncl- Rt 14 ]
78 Paint Type 1] PR Number PR Mumber
79 Rail Type ] Control Section Control Section 18033
80- Post Type 2 11- Mile Point 11- Mile Paint 10510
107- Deck Type 1 12- Base Highway Mebwork ) 12- Base Highway Metwork 1
108A- Wearing Surface 1 13- LRS Route-Subroute 0000010481 00 13- LRS Route-Subroute 0000010408 03
108B- Membrane 0 19- Detour Length 10 19- Detour Length 8
108C- Deck Protection U] 20- Toll Facility 3 20- Tdll Facility 3
26- Functional Class 07 26- Functional Class 02
Structure Dimensions 28A- Lanes On 2 28E- Lanes Under 2
29- ADT 1000 28- ADT 6,069
34- Skew 14 30- Year of ADT 1996 30- Year of ADT 2007
35- Struct Flared L0 || 32 Appr Roadway Width 33.8 42B- Service Type Under 1
45- Num Main Spans 3 I2A/B- Ap Pvt TypeWidth 4 | 338 47L- Left Horizontal Clear 0.0
46- Num Appr Spans 0 42A- Senvice Type On 1 47R- Right Horizontal Clear 44.9
48 Max Span Length 61.0 47L- Left Horizontal Clear 0.0 54A- Left Feature H
49- Structure Length | 1308 || 47R- Right Horizontal Clear 289 548 Left Underclearance o | 0
ggg; mg: :;?é:fhsgw 12 53- Min Vert CIr Ov Deck 99 | a9 Left Signed Underclearance [o] [o
h 100- STRAHNET 1] 54C- Right Feature H
33- Median 0 102- Traffic Direct 2 54D- Right Underclearance 14 | 4
51- Width Curb to Curh 259 108- Truck % 3 Right Signed Underclearance F 3]
?f;vsg:soﬁlr:;ﬁm 31'2 110- Truck Network 0 Under Clearance Year 2010
114- Future ADT 1500 55A- Reference Feature H
115- Year Future ADT 2010 55B- Right Horiz Clearance 10.8
Inspection Data Freeway 1] 56- Left Horiz Clearance 21.0
90- Inspection Date | 10/11/2010 100- STRAHNET 0
91- [ngpecﬁq—. Freq 24 Structure Appraisal 101- Traffic Direction 1
924 Frac Crit Req/Freq N 108- Truck % 8
93A- Frac Crit Insp Date 36A- Bridge Railing 1 110- Truck Network 1
92B- Und Water Req/Freq N 36B- Rail Transition 1 114- Future ADT 11,106
93B- Und Water Insp Date | 36C- Approach Rail 1 115- Year Future ADT 2018
92C- Oth Spec Insp Reg/Freq M 360- Rail Termination 1 Freeway 0
93C- Oth Spep Insp Date G7- Structure Evaluation 4 Proposed Improvements
176A- Und Water Insp Methad 0 68- Deck Geometry 5 75- Type of Work _
58 Deck Rating 4 69- Underclearance 5 76- Length of Improvement -
58A- Deck Surface Rtg 5 71- Waterway Adequacy H 94- Bridge Cost
59- Superstructure Rating 6 72- Approach Alignment 6 05- Roadway Cost
594- Paint Rating M 103- Temporary Structure - 96- Total Cost
60- Substructure Rating 4 113- Seour Criticality N 97- Year of Cost Estimate
61- Channel Rating N Load Rating and Posting
62- Culvert Raling N Miscellaneous 31- Design Load 2
37- Historical Significance 5 41- Open, Posted, Closed A
Navigation Data 98A- Border Bridge State z:'FO?B; (R;g M':_mmm ?:?
38- Navigation Control N 988- Border Bridge % PO 8:'; ';tgg 9 o | 04
39- Vertical Clearance 0.0 101- Parallel Structure N 65- Inv Rig Method 3
40- Horizontal Clearance | 0.0 EPAID —] 86~ Inventory Load 245
111- Pier Protection Stay in Place Foms 70- Posting 5
1186- Lift Brdg Vert Clear 0.0 ) 141- Posted Loading
Print Date 512/2011 11:56:13 195- Analysis 1D 5066
183- Overload Class A




Michigan Department of Transportation

BRIDGE INSPECTION REPORT S09-18033

Page 1

234 /3 ‘Reinf Conc Pier Cap

| ‘66

358 /3 ‘Dk Cr SmF Conc/Latex

I

359 /3 ‘Deck Bott Surf Sm F

|

367 /3 Fonc Surf Coat SmFlig

|

L JE 9t I o et g 90 ]
G T I O
G | O I '
N | TN | O

056/12/2011
Facility Carried Federal Structure 1D Inspector Name Agency Consultant Inspection Date
|MANNSIDING RD ‘ ‘181180330008090 ‘ ‘RUEGSEGGERP ‘ ‘ ‘ ‘10/11/2010 |
Feature Intersected Latitude Longitude Struc Num Region Insp Freq Insp Key
|US—127 NB ‘ ‘435722.67 ‘ ‘844633.84 ‘ ‘1713 ‘ ‘4- Bay ‘ F4 ‘ IXHCJ |
Location Length width Year Built  Year Recon Br Type Scour Eval  No Pins
F.a MI S OF M-61 ‘ ‘39.8983' ‘9.50061 ‘1966 | ‘ ‘ ‘N ‘ | |
CORE ELEMENTS INSPECTION English Units
ﬁ'ﬁmﬁ';‘r EL?::: ' Total Quantity 0|?1tateN1ew oﬁtateniw ofjtateNZw ousjtateNtw 0|§tatelqiw
A ki I O T
i Sl s | s
S e o T [ N |
109 /3 ‘Prestr Con Girder/Bm | ‘784 ‘ |:| El:l D”:l D”:| D| |:|
S [
S R B N N B N [
0 | N N
00 i B | N N o
|
|
|
|
|

378 /3 ‘False Decking Sm Flg

|

CREW RECOMMENDATIONS
Deck Patching

‘ M ‘Seal deck. 06. Deck patch w/ full depth repait

L Jr 9t J e 9t Jr 9t |

CONTRACT RECOMMENDATIONS
Bridge Replacement -1

Approach Pavement |

Superstructure Replacement -1

Joint Repair

L

Railing Repair

W Reseal end jts. 06. 08Clean strip seals. 10

Deck Replacement

Overlay

Detailed Inspection ‘ -1

Zone Paint ‘

Widen
Paint

L

Slope Repair

Substructure Repair ’T Bolster at P2w. Bolster at P2w. delaminated /

Zone Paint

Pin and Hanger

Brush Cut \
Other Crew Work

\ L Sweep deck. 10Scoped for repairs JN106307

Substructure Repair

Other Contract Work

Figure A.1, continued. (MDOT 2011b)
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YT Depart t of Transportati Page 1 of 2

Form P2502 (02/2002) Bridge Safety Inspection Report S08-18033

Facility Federal Structure 1D Inspector Mame  Agency/ Consultant  Inspection Date LEGENP—

MANNSIDING RD 1[181180330005080 | |[RUEGSEGGERF | | for1zot0 |

Feature Latitude Longitude Struc Mum Insp Freg Insp Key 9 New

Us-127sB |[435721.88 | Bads3s | f712 | pa | [RHTF | |7-8 Good

Location Length  Width  Year Built Year Recon Br Type Scour Eval  MNo.Pins |56 Fair

2.3 MI S OF M-61 |[129.898d [B1.1701 fi966 b g2 N 4 Poor

2erl Critical

b pgfig [ | NBI INSPECTION oress s

1. Surface I? 7T l A couple of unsealed cracks in conc. surface. Light shallow scaling, (2010),

SIA-58A A couple of unsealed crks. in conc. surface. Light shallow scaling.{2008),
A couple of unsealed crks._ in conc. surface. 06(2006).
2. Expansion ;3 8 8 | Strip seals. Debris in glands. H/L cracks in adjacent concrete (2010),
Jts Mewer strip seals. Minor debris. (2008),
Mewer strip seals. Minor debris. 06{2008).
3. Other I!S 5 4 | HPR at end joints. Minor spalling. Adhesion faillure along both. Leaking less than 5%.(2010),
Joints HFR at end jts. Minor spalling. Leaking less than 5%.(2008),
HFR at end jts. Minor spallin. Leaking less than 5%. 06{2006).
4. Railings I?_? 7 | Concrete open parapet with single aluminum tube. CSC applied and retrofitted with thrie beam SBGR. Minor spalls and

cracks, some small rust stains. Few shallow spalls in S. brush block. Minor scrapes and weathering on SBEGR panels.(2010)
Conc parapet W/ tube Alum, Mew thrie BM retro carried across bridge. N rail over traffic is new due to Bm replacement
because of HLH. Minor spalls, with some small rust stains. Shallow spalls in S. brush block, Protective coating
applied.(2008),

Ceone parapet WA tube Alum, Mew thrie BM retro carried across bridge. N rail over traffic is new due to Bm replacement
because of HLH. Minor spalls, with some small rust stains. 06 (2006).

5. Sidewalks N 7 N |

of curbs
6. Deck [? 7T | Minor cracking in deck underside. CSC applied to fascias. Few cracks in deck fascias reflecting through coating, some
SlA-58 exhibit rust stains. Minor cracking and shallow scaling in deck surface. (2010),

Minor eracking in deck underside. CSS applied to fascias. Few cracks in deck fascias reflecting through coating. Minor
cracking and shallow scaling in deck surface, (2008),

Some leaching on fascias. fascia is 10-15% map cracked both N & 5. Same. Most Crks on S fascia are rust stained. C5S
applied to fascias. 06{2008).

7. Drainage | | Moproblems noted.(2010),
Mo preblems noted.(2008),
Mo problems noted. 06(2006).

Superstructure

8. Stringer 'ﬁ 6 6 | PCI beams. CSC applied to fascias and beam ends at piers. Cracks, small spalls, and incipient spalls on beam ends
SIA-59 adjacent to sole plates. HLH chipsfscrapes on beams 5&6S over right lane span 2W. Beam 55 has been patched, patch
has chips from new HLH hit. Beam 65 was replaced in 2000.(2010),
PCI beams. 5. fascia beam has a small spall on bottem in W, span at W, pier brg. N fascia Bm has been replaced due to
HLH 2000. Small repaired area Bm 55 Minor HLH spall with no exposed steel on BM 65. Typical cracking on most BM
ends over piers. CSS applied at bm. ends at piers and fascias.(2008),
5. fascia beam has a small spall on bottom in W, span at W, pier brg. N fascia Bm has been replaced due to HLH 2000,
Small repaired area Bm 55. 5. fascia beam has a small spall on bettom in W. span at W. pier brg. Minor HLH spall with no
exposed steel on BM 835, Minor hairline crks on most BM ends over piers. CSS applied at bm. ends at piers and fascias.

06(2008).
9. Paint N N

SIA-594 N 1

10.Section N N N |

Loss

11. Bearings 'ﬁ 8 B l Minor corrosion on steel plates \Minor cracking & deformations on Elast bearings over piers.(2010),
Minor corrosion on steel plates Minor Crking & deformations on Elast Brgs over Prs. (2008),
Minor corrosion on steel plates .Minor Crking & deformations on Elast Brgs over Prs. 06(2006).

Substructure

12. Abutments [7 7T l CSC applied. Couple vertical cracks in both.(2010),
SIA-B0 Few vert. crks. in both abutments. CSS applied.(2008),

Few vert, crks. in both abutments. CSS applied. 06(2008).
13. Piers [7 77 | CSC applied. Bolster on Pier 2W is cracked/delaminated near beam 25.(2010),
SIA-80 Conc. repairs made, CSS. applied. (2008),

Conc. repairs made. CSS. applied, 06(2006).
14. Slope 'p 6 6 | Concrete block & grout. Miner cracks, spalls, missing, and scaling blocks. Minor settiment. 2 missing blocks on top of E.
Protection slope. Void under blocks at south end of west slope.(2010),

Cone block & grout. Minor Crks, spalls with light settiment. 2 missing blocks on top of E. slope.(2008),
Conc block & grout. Minor Crks, spalls with light settiment. 2 missing blocks on top of E. slope. 06(2008).

Approach

15. Appreach p 8 8 | Concrete. H/L cracks in both. Minor chips/scaling and reference lines.(2010),
Pavt Concrete. No problems noted. {2008),
Mew conc. No problems noted. 06(2008).

Figure A.2: Mannsiding Road SB routine bridge inspection report (MDOT 2011b)
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Michigan Department of Transportation Page 2 of 2
Form P2502 (02/2002) Bridge Safety Inspection Report $08-18033
Facility Federal Structure I1D Inspector Name ~ Agency/ Consultant  Inspection Date LEGEND——
[MANNSIDING RD |[181180330005080 | |RUEGSEGGERH | | flor1r2010 ]
Feature Latitude Longitude Struc Num Insp Freq Insp Key New
Us-127 sB |[435721.88 | B44638 | f712 | ks | RHTF ] Good
Location Length Width Year Built Year Recon Br Type Scour Eval  No.Pins Fair
2.3 MI S OF M-61 |i29.8999 [1.170] fi966 | | 1 Poor
2orless  Critical
b pgfo[ ] NBI INSPECTION
16. Approach [N N N |  Narrow Conc curb. (2008),
Shldrs Swalk Narrow Conc curb. 06(2006).
17. Approach Vegetated. No problems noted.(2010),
Slopes Well vegetated. (2008),
Well veg. 06(2008).
18. Utilities
19.Channel N N N |
SIA-61
20. Drainage Minor dirt and debris at NE. and SE. (2010),
Culverts Minor dirt and debris at NE. and SE. (2008),
Minor dirt and debris at NE. and SE. 06(2006).
- - MISCELLANEOUS
Guard Rail Crit Feat Insp(SIA-92) 71 Watr Adeq |:| General Notes
-m E -m :I Freq Date . CSM Crk. seal. Reseal end jts. 06. Healer
72 Appr Align
36A 92A FracCrit [ | B soate. o3
368 928 Und watr [ | [ || "o SUeP [
36C 92C splinsp [ ] [ JJjHiLd Hit v ]
36D Special Insp Euip. [ |

Figure A.2, continued. (MDOT 2011b)
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Form 1717A- 01/2002 Michigan Department of Transportation Control Section

Figure A.2, continued. (MDOT 2011b)
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MDOT Bridge ID Structure Inventory and Appraisal 508-18033
18  1180330000000508 | Code in red ink
MEI Bridge ID Struct Num Region TSC County City Resp City Location 7- Facility Carried User Name
18118033000S080 | [712] (18] [ ][ 0  |MANNSIDINGRD RUEGSEGGERP
6- Feature Intersected 9= Location Latitude Longitude Qwner Maint Resp
Us-127 SB 2.3 MI S OF M-61 [[43°57'21.88" | | 84° 46' 38.00" | 1 [1]
Bridge History, Type, Materials Route Carried By Structure (ON Record) Route Under Structure (UNDER Record)
27- Year Built 1966 5A- Record Type 1 5A- Record Type 2
106- Year Reconstructed 5B- Route Signing 4 5B- Route Signing 2
202- Year Painted SC- Level of Service 1 5C- Level of Service 1
203 Year Overlay 50- Route Number 01840 5D- Route Number 00127
43 Main Span Bridge Type E] 32 SE- Direction Suffix Q SE- Direction Suffix 0
44- Appr Span Bridge Type f 10L- Best 10ft Unelr- Lt v] 0 10L- Best 10ft Uncl- Lt
77- Steel Type U] 10R- Best 10ft Uncl- Rt 89 99 10R- Best 10t Uncl- Rt 14 5
78 Paint Type 1] PR Number PR Mumber
79 Rail Type ] Control Section Control Section 18033
80- Post Type 2 11- Mile Point 11- Mile Paint 10.500
107- Deck Type 1 12- Base Highway Mebwork ) 12- Base Highway Metwork 1
108A- Wearing Surface 1 13- LRS Route-Subroute 0000010481 00 13- LRS Route-Subroute 0000010410 08
108B- Membrane 0 19- Detour Length 10 19- Detour Length 8
108C- Deck Protection U] 20- Toll Facility 3 20- Tdll Facility 3
26- Functional Class 07 26- Functional Class 02
Structure Dimensions 28A- Lanes On 2 28E- Lanes Under 2
29- ADT 1000 28- ADT 6,069
34- Skew 14 30- Year of ADT 1996 30- Year of ADT 2007
35- Struct Flared L0 || 32 Appr Roadway Width 33.8 42B- Service Type Under 1
45- Num Main Spans 3 I2A/B- Ap Pvt TypeWidth 4 | 338 47L- Left Horizontal Clear 56.4
46- Num Appr Spans 0 42A- Service Type On 1 47R- Right Horizontal Clear 0.0
48 Max Span Length 61.0 47L- Left Horizontal Clear 0.0 54A- Left Feature H
49- Structure Length 128.9 47R- Right Herizontal Clear 289 548 Left Underclearance o | 0
ggg; mg: :;?é:fhsgw 12 53- Min Vert CIr Ov Deck 99 | a9 Left Signed Underclearance [o] [o
N 100- STRAHNET 0 54C- Right Feature H
33- Median 0 102- Traffic Direct 2 54D- Right Underclearance 14 | 5
51- Width Curb to Curh 259 108- Truck % 3 Right Signed Underclearance F 5
?f;vsg:soﬁlr:;ﬁm 31'2 110- Truck Network 0 Under Clearance Year 2010,
114- Future ADT 1500 55A- Reference Feature H
115- Year Future ADT 2010 55B- Right Horiz Clearance 10.8
Inspection Data Freeway 1] 56- Left Horiz Clearance 213
90- Inspection Date | 10/11/2010 100- STRAHNET 0
91- [ngpecﬁq—. Freq 24 Structure Appraisal 101- Traffic Direction 1
92A- Frac Crit Req/Freq N 108- Truck % 8
93A- Frac Crit Insp Date 36A- Bridge Railing 1 110- Truck Network 1
92B- Und Water Req/Freq N 36B- Rail Transition 1 114- Future ADT 11,106
93B- Und Water Insp Date | 36C- Approach Rail 1 115- Year Future ADT 2018
92C- Oth Spec Insp Reg/Freq M 360- Rail Termination 1 Freeway 0
93C- Oth Spep Insp Date G7- Structure Evaluation 3] Proposed Improvements
176A- Und Water Insp Method 0 68- Deck Geometry 5 75- Type of Work _
58- Deck Rating 7 69 Underclearance 5 76- Length of Improvement
58A- Deck Surface Rig 7 71- Waterway Adequacy N 94- Bridge Cost
59- Superstructure Rating 6 72- Approach Alignment 6 05- Roadway Cost
594- Paint Rating M 103- Temporary Structure - 96- Total Cost
60- Substructure Rating 7 113- Seour Criticality N 97- Year of Cost Estimate
61- Channel Rating N Load Rating and Posting
62- Culvert Raling N Miscellaneous 31- Design Load 2
37- Historical Significance 5 41- Open, Posted, Closed A
Navigation Data 98A- Border Bridge State z:'FO?B; (R;g M':_mmm ??23
38- Navigation Control N 988- Border Bridge % PO 8:'; ';tgg 9 o | 110
39- Vertical Clearance 0.0 101- Parallel Structure N 65- Inv Rig Method 3
40- Horizontal Clearance 0.0 EPAID 1 66- Inventory Load 28.2
111- Pier Protection Stay in Place Forms I 70- Posting 5
1186- Lift Brdg Vert Clear 0.0 ) 141- Posted Loading
Print Date 6/27/2011 08:15:56 195- Analysis 1D 5065

183- Overload Class A




Michigan Department of Transportation

BRIDGE INSPECTION REPORT S08-18033

Page 1

234 /3 ‘Reinf Conc Pier Cap

| ‘66

358 /3 ‘Dk Cr SmF Conc/Latex

I

362 /3 Fraflmpact SmFlag

|

367 /3 Fonc Surf Coat SmFlg

|

G I T O I '
N R I T I O
N I T I O
LW JC 9 J o JC 9 Jr 9L |

06/27/2011
Facility Carried Federal Structure 1D Inspector Name Agency Consultant Inspection Date
|MANNSIDING RD ‘ ‘181180330008080 ‘ ‘RUEGSEGGERP ‘ ‘ ‘ ‘10/11/2010 |
Feature Intersected Latitude Longitude Struc Num Region Insp Freq Insp Key
|US—127 SB ‘ ‘435721.88 ‘ ‘844638 ‘ ‘1712 ‘ ‘4- Bay ‘ F4 ‘ |QGSE |
Location Length Width Year Built  Year Recon Br Type Scour Eval  No Pins
F.3 MI'S OF M-61 ‘ ‘39.5935| ‘9.50061 ‘1966 | ‘ ‘ ‘N ‘ | |
CORE ELEMENTS INSPECTION English Units
E.'ﬁ',‘,}f,’;‘, E:«e::: ' Total Quantity 0|?1tateN1ew ofjtateul;w ofjtatenzw ousjtateNtw ousitatewiw
ki N I [
T e | N [
el e o . N [ N o [
109 /3 ‘Prestr Con Girder/Bm | ‘781 ‘ |:| I:l D”:l D”:| lj| |:|
) o [ | S |
S R B B N O N [
205 /3 ‘ReinfConc Column | ‘6 ‘ lj”:| ljl:l DH:' lj”:| E |:|
A | N N
|
|
|
|
|

379 /3 ‘Deck Fascia Sm Flag

|

CREW RECOMMENDATIONS
Deck Patching

‘ M ‘Crk. seal. 06. 08 Healer seal(10)

L Jr 9t J e b9t Jr 9t |

CONTRACT RECOMMENDATIONS
Bridge Replacement -1

Approach Pavement |

Superstructure Replacement -1

Joint Repair

L

Railing Repair

['M Endjts. 06. 08 Clean strip seals 10

Deck Replacement

Overlay

Detailed Inspection ‘ -1

Zone Paint ‘

Widen
Paint

[ A

Slope Repair

Substructure Repair ’T Fix bolster pier 2W

Zone Paint

Pin and Hanger

Brush Cut \
Other Crew Work ‘

Substructure Repair

Other Contract Work

Figure A.2, continued. (MDOT 2011b)
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YT Depart t of Transportati Page 1 of 2

Form P2502 (02/2002) Bridge Safety Inspection Report 502-81076

Facility Federal Structure 1D Inspector Mame  Agency/ Consultant  Inspection Date LEGENP—

WILLOW RD |B11810760005020 | [EOLNIEREKK | MDOT INSPECTOR| D4MS2010 |

Feature Latitude Longitude Struc Mum Insp Freg Insp Key 9 New

Us23 |820647.34 | 83405633 | [108s2 | pa | lsogs | |7-8 Good

Location Length  Width  Year Built Year Recon Br Type Scour Eval  MNo.Pins |56 Fair

.1 Mi N OF MONROE COL | bos.gasd [Bo.83sl fise2 b g2 N 4 Poor

2orL Critical

b pgfig [ | NBI INSPECTION oress s

1. Surface 'p 5 6 l Qpen transverse cracks and areas of delam throughout. Diagonal cracking near the reference lines. Several concrete
SIA-58A patches in all spans. 2010),
Transverse cracks at a spacing of 3to 5 feet. There is 64 SFT of bit patched spalls in span 2. The north shoulder ins
span 2 is approximately 85% busted up with areas of shallow spalls. There are spallsand STS along all of the joints, some
are bit patched. diagonal corners cracks in all quads. Approximatly 30 sft bit fille dpatches in span Jw. T(2008),
Transverse cracks at a spacing of 3 to 5 feet. There is 64 SFT of bit patched spalls in span 2. The north shoulder ins span
2 is approximately 85% busted up with areas of shallow spalls. There are spalls along all of the joints, most are bit patched.
diagonal corners cracks in all quads. Few random shallow spalls in spans 2 and 3.(2008).

2. Expansion FZ_ 3 | The joints have been concrete patched, no sealer applied. All joints are leaking.(2010),

Jts Joints 2,3 4 are completely missing and bit patched with a few open areas of spalling. All of the joints are leaking and are
shored up from the underside of the deck.(2008),
Joints 2,34 are completely missing and bit patched with a few open areas of spalling. All of the joints are leaking and are
shored up from the underside of the deck.(2008).

3. Other 33 4 | Pourable end joints with small spalls and leaking.(2010),
Joints Joints 1 and 5 are heavily bit patched. The concrete end headers are breaking up and bit patched. West reference line is
approximatly 60% spalled.(2008),
Joints 1 and 5 are heavily bit patched. The concrete end headers are breaking up and bit patched.(2006).
4. Railings ES 5 | ‘Vertical leaching cracks and leaching map cracking in both rails.{2010),
— Vertical leaching cracks and leaching map cracking in both rails.(2008),
wvertical cracks typical. 4 SFT map cracked area in the north rail at the west end. 6 LFT map cracked areas on the north rail
in span 2. The cutside face o the the north brush-block is 100% tight map cracked with some areas of leaching.{2008),

5 sidewaks N N N|

of curbs
6. Deck p'_s_ 5 | Bottom: Leaching diagonal and transverse cracking. Leaching longitudinal cracks, wet areas and delam, heaviest in the
SIA-58 outside bays. Top: Open transverse cracks and areas of delam throughout. Diagonal cracking near the reference lines,

Several concrete patches in all spans. Heavy leaching and stalactite. on the north deck fascia.(2010),
Diagenal leaching cracks and spall bays 1 and 5 at the west abutment. Some diagonal leaching cracks bay 1 at east
abutment. Leaching map cracks both fascias full length with spalling and spall to steel at the joints.(2008),
Diagonal leaching cracks and spall bays 1 and 5 at the west abutment. Some diagonal leaching cracks bay 1 at east
abutment. Leaching map cracks both fascias full length with spalling and spall to steel at the joints (2006).
7. Drainage | | Catch basins in all quads.(2010),
Catch basins in all quads.{2008),
Catch basins in each approach quad shoulder, The northwest catch basin is full of debris.(2008).

Superstructure
&. Stringer F 6 B | Concrete beam ends have cracks and spalls in the bottom flange typical at the piers. High Load Hit with small spalls in span
5lA-59 2 beam 6 over the right lane of traffic, no re-bar is exposed. High Lead Hit scraps on beams 1,2.4,5,6 over the right lane.

Vertical cracks in the beam webs in span 1 at the north abutment: on the north face of beams 1,26 and the south face of
beam 8. Span 3 beam 1at pier 2 south face. The concrete diaphragm in span 4, bay & has a large spall to steel in the
bottom.(2010),

Concrete beam ends have cracks and spalls in the bottom flange typical at the piers. High Load Hit with small spalls in
span 2 beam 6 over the right lane of traffic, no re-bar is exposed. High Load Hit scraps on beams 1,24 5.6 over the right
lane. Vertical cracks in the beam webs in span 1 at the north abutment: on the north face of beams 1,2,6 and the south
face of beam 6. Span 3 beam 1at pier 2 south face. The concrete diaphragm in span 4, bay 6 has a large spall to steel in
the bottom.(2008),

Concrete beam ends have cracks and spalls in the bottom flange typical at the piers. High Load Hit with small spalls in
span 2 beam 6 over the right lane of traffic, no re-bar is exposed. High Load Hit scraps on beams 1,2,4,5,6 over the right
lane, Vertical cracks in the beam webs in span 1 at the north abutment: on the north face of beams 1,2,6 and the south
face of beam 6. Span 3 beam 1at pier 2 south face. The concrete diaphragm in span 4, bay 6 has a large spall to steel in
the bottom.(2008).

9. Paint NN ON|

SIA-59A

10.Section N N N |

Loss

11. Bearings 'ﬁ 6 B | Elastomeric pads are splitting at fascias at Piers. Steel bearings are correding at piers, flake rust at abutments (2010},

Elastomeric pads are splitting at fascias at Piers. Steel bearings are corroding at piers, flake rust at abutments.(2008),
Elastomeric pads are splitting at fascias at Piers. Steel bearings are comoding at pi: flake rust at abutments.(20086).

Figure A.3: Willow Road routine bridge inspection report (MDOT 2011b)
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Michigan Department of Transportation Page 2 of 2

Form F2502 (02/2002) Bridge Safety Inspection Report 50281076
Facility Federal Structure 1D Inspector Mame  Agency / Consultant  Inspection Date EGENE—
WiLLow RD |B11810760005020 | [EOLMIEREKK | [MDOT INSPECTOR| D4M18/2010 |
Feature Latitude Longitude Strue Num Insp Freq Insp Key 9 New
[us-23 |l42064734 | Bad0se3z | [ossz | PB4 | lsoBs | |7-8 Good
Location Length ~ Width  Year Built ‘Year Recon Br Type Scour Eval  No.Rins |58 Fair
[2.1 MI N OF MONROE COL |20os.geeq [E0.838| [1s62 | B 1Bz | N 11 {** Poor
pefg | NBI INSPECTION Critieal
12. Abutments |5 6 6 || Tight leaching vertical cracks in both abutments. & sft area of delam and cracking under beam 4s in the east
SlA-60 abutment.(2010),

Leaching vertical cracks in both abutments. 6 sft area of delam and cracking under beam 4s in the east abutment.(2008),
Few vertical cracks. East abutment has 4 SFT delaminated / spall area (teacup) under beam 4 with crack extending under
bearing. West abutment has 5 SFT delaminated area (t-cup) under beam 2 west, the crack extends under the
bearing.(2006).

13. Piers b 6 6| Piers have open cracks, delam and spalling in caps and columns.(2010),

SlA-60 Piers have open cracks, delam and spalling in caps and columns.(2008),
Fier 1 has a vertical corner cracks on the top of column 2, some cracking in bays 1 and 2. Pier 2 has cracks and small
spalls with some exposed re-bar on the south end cap, vertical corner cracks on columns 1.2,3 with some rust staining.
Pier 3 has cracks and incipient spalls on the top of column 1 and 2 with some rust staining, horizontal crack in the bottom of
cap in bay 1.(2006).

14. Slope ﬁ 7 u|_ Concrete pad. There is some vegetation growing through the concrete pad.(2010),
Pretection - Cencrete pads.(2008),
Concrete pad. There is some vegetation growing through the concrete pad.(2006).
Approach
15. Approach b 6 B || Bit with chip seal covering. Potholes and raveling in the west reference line.(2010),
Pawt T Bit with chip seal covering. Potholes and raveling in the west reference line.{2008),

Bit to the bridge. There are some longitudinal cracks and the bit us busting up at both of the reference lines the full length
with some areas of open spalls (2006).

16. Approach '7_7_ 5_"_ Bit shoulders with concrete curb and gutter pans.(2010),

Shidrs Swalk Bit shoulders with concrete curb and gutter pans.(2008),
Bit shoulders with concrete curb and gutter pans.{2006).
17. Appreach Grass and brush,(2010),
Slopes Brush and weeds (2008),
Grass and brush covered,{2006).
18. Utilities Conduits in the railings. telephone utilities in both north quads.(2010),

conduits in the railings. telephone utilities in both north quads.(2008),
Cell tower to the northeast of the bridge. 2- 4" utility conduit running through the north bridge railing. There is a phone box
in the northwest and the northeast approach slopes (2008).

19.Channel N N N |

SlA-61
20. Drainage
Culverts
MISCELLANEOUS —
‘Guard Rall P Crit Feat |nsp<5|FA-az} 71 Waageg | ]|General Notes
L req Date 72 Appr Align |7_| outhbound posted 14

36A o2a Fraccrit [ | [ |

368 028 undwar [ | [ J|f PSP P

36C g2c splinsp [ ] [ J|fHILeHitea ]

36D 0 Jp o o | Special Insp Euip. 8|

Figure A.3, continued. (MDOT 2011b)
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Figure A.3, continued. (MDOT 2011b)
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Form 1717A- 01/2002 Michigan Department of Transportation Contral Section
MDOT Bridge ID Structure Inventory and Appraisal 502-81076
b1 1810760000000502 | Code in red ink
MBI Bridge 1D Struct Num Region TSC County City Resp City Location 7- Facility Carried User Name
B11810760005020 | [1o8sz | [08] 0 WILLOW RD ZOLNIEREKK
G- Feature Intersected G- Location Latitude Longitude Owner Maint Resp
us23 [2.1 MI N OF MONROE COL 42° 06'47.34" | [ 83° 40'66.33" | 1 1
Bridge History, Type, Materials Route Carried By Structure (ON Record) Route Under Structure (UNDER Record)
27- Year Built 1862 5A- Record Type 1 5A- Record Type 2
106- Year Reconstructed 5B- Route Signing 4 5B- Route Signing 2
202- Year Painted 5C- Level of Service 0 5C- Level of Service 1
203 Year Overlay 50- Route Mumber 00000 50- Route Mumber 00023
43- Main Span Bridge Type L a2 5E- Direction Suffix o] 5E- Direction Suffix v]
44- Appr Span Bridge Type _ 10L- Best 10ft Uncir- Lt 0 0 10L- Best 10ft Uncl- Lt 14 6
77- Steel Type 0 10R- Best 10ft Uncl- Rt 99 a8 10R- Best 10ft Uncl- Rt 14 i}
78- Paint Type ] PR Mumber FR Number
79- Rail Type 5] Control Section Control Section B1076
80- Post Type 0 11- Mile Point 11- Mile Point 2471
107- Deck Type 1 12- Base Highway MNetwork 0 12- Base Highway Metwork 1
108A- Wearing Surface 1 13- LRS Route-Subroute 0000014312 00 13- LRS Route-Subroute 0000014312 02
108B- Membrane 0 19 Detour Length 3 18- Detour Length 3
108C- Deck Protection o 20- Toll Facility 3 20- Toll Facility 3
26- Functional Class 09 26- Functional Class 02
Structure Dimensions 28A- Lanes On 2 28B- Lanes Under 4
29- ADT 2220 29- ADT 41,226
34- Skew 0 30- Year of ADT 1997 30- Year of ADT 2007
35- Struct Flared 0 32- Appr Roadway Width 299 42B- Service Type Under 1
45- Num Main Spans 4 3248 Ap Pt TypeMidth 4 | 209 47L- Left Horizontal Clear 67.3
46- Num Appr Spans 0 424 Service Type On 1 47R- Right Horizontal Clear 67.3
4&- Max Span Length 70.9 47L- Left Horizontal Clear 0.0 544 Left Fealure H
48- Structure Length | 200 || 47R- Right Horizontal Clear 285 54B Left Underclearance 14 6
S04 Width Left Curb/Sw 0.0 53- Min Vert CIr Ov Deck 99 | 99 Left Signed Underclearance | 14 | El
508- Width Right Curb/Sw 0.0 100- STRAHNET 0 $4C- Right Feature H
33- Median 0 102- Traffic Direct 2 54D-Right Underclearance 14 | 8
51-Width Curb to Curb 285 109- Truck % 3 Right Signed Underclearance | 14 6
52-Width Out to Out 30.3 110- Truck Metwork 1] Under Clearance Year
112 NBIS Length M 114- Future ADT 80 55A- Reference Feature H
115- Year Future ADT 55B- Right Horiz Clearance 9.8
Inspection Data Freeway 0 56- Left Horiz Clearance 335
90- Inspection Date 04/18/2010 100- STRAHNET 2
91- Inspec‘tiof\ Freq 24 Structure Appraisal 101- Traffic Direction 124
92A- Frac Crit Reg/Freq N 108- Truck % I U
93A- Frac Crit Insp Date 36A- Bridge Ralling 1 110- Truck Network 1
92B- Und Water Req/Freq M 36B- Rail Transition o] 114- Future ADT 48,352
93B- Und Water Insp Date [ J6C- Approach Rail 0 115 Year Future ADT 2018
92C- Oth Spec Insp Rea/Freq | N 36D- Rail Termination 0 Freeway 0
93C- Oth Spep Insp Date 67- Structure Evaluation 6 Proposed Improvements
176A- Und Water Insp Methad 68- Deck Geometry 4 75- Type of Work _
58- Deck Rating 5 69- Underclearance 5 76- Length of Improvement
58A- Deck Surface Rig & 71- Waterway Adequacy M 94- Bridge Cost
58- Superstructure Rating ] 72- Approach Alignment 7 95- Roadway Cost
59A- Paint Rating N 103- Temporary Structure - 96- Total Cost
60- Substructure Rating [ 113- Scour Criticality M 97- Year of Cost Estimate
61- Channel Rating N Load Rating and Posting
§2- Culvert Rating N Miscellaneous 31- Design Load 5
37- Historical Significance 5 41- Open, Posted, Closed A
Navigation Data 98A- Border Bridge State ﬁ::oﬁe; Ztg M:'t h&x;t 39000012525&?a=
38- Navigation Contrl N 98B- Border Bridge % oA Mich Oner Rt 8 | 1se
39- Vertical Clearance 0.0 101- Paraliel Structure N 65 Inv Rtg Method 3
40- Horizontal Clearance 0.0 EPA!D Ii 66- Inventory Load 555
111- Pier Protection Stay in Place Forms 70- Posting 5
116- Lift Brdg Vert Clear ) 141- Posted Loading
Print Date 5/11/2011 12:35:06 195- Analysis D 5315
193- Overload Class A
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[\/\/||_|_ov\/ RD ‘ ‘311310750003020 ‘ FOLNIEREKK ‘ ‘MDOT INSPECTOR ‘ P4/1 972010 |
Feature Intersected Latitude Longitude Struc Num Region Insp Freq Insp Key
|US-23 ‘ ‘420647.34 ‘ ‘834056.33 ‘ ‘10892 ‘ ‘6- University ‘ F4 ‘ |RNAR |
Location Length width Year Built  Year Recon Br Type Scour Eval  No Pins
F.1 MI N OF MONROE COL ‘ ‘53.70001 ‘9.3999% ‘1962 | ‘ ‘ ‘N ‘ | |
CORE ELEMENTS INSPECTION English Units
ﬁ'ﬁmﬁ';‘r EL?::: ' Total Quantity 0|?1tateN1ew oﬁtateniw ofjtateNZw ousjtateNtw 0|§tatelqiw
A ki [ I O [
R e N | s s
405 /3 ‘Miscellaneous Exp Jt | ‘492 ‘ DH:| Ijl:l l:l D”:| E |:|
109 /3 ‘Prestr Con Girder/Bm | ‘1250 ‘ |:| I:l D”:l D”:| D| |:|
A o | S o |
S R B B N N N [
oo s ) [ 9 )AL JC 3 L9
0t | N N 1
ol el R | B N N 1 [ N [
|
|
|
|
|

379 /3 ‘Deck Fascia Sm Flag

|

— CREW RECOMMENDATIONS

G | O I O

Deck Patching L‘

Approach Pavement ‘
Joint Repair \
Railing Repair \
Detailed Inspection L

— CONTRACT RECOMMENDATIONS

Bridge Replacement

Superstructure Replacement M

Deck Replacement

Overlay

Widen

Zone Paint ‘

Paint

Substructure Repair ‘ H Repair spall at the east abutment under bearr

Slope Repair ‘
Brush Cut L
Other Crew Work \ H Scale fascias over traffic.

Figure A.3, continued. (MDOT 2011b)

Zone Paint
Pin and Hanger
Substructure Repair

Other Contract Work
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YT Depart t of Transportati Page 1 of 2

Form P2502 (02/2002) Bridge Safety Inspection Report 50581104
Facility Federal Structure 1D Inspector Mame  Agency/ Consultant  Inspection Date LEGENP—
FREER RD |B11811040005050 | [EOLNIEREKK | MDOT INSPECTOR| D&A22010 |
Feature Latitude Longitude Struc Mum Insp Freg Insp Key 9 New
i-94 217447 | Bao01992 | [10840 | pa | urva ] |78 Good
Location Length  Width  Year Built Year Recon Br Type Scour Eval  MNo.Pins |56 Fair
[1.0 MI E OF M-52 | bos.gasd [B2.808 fise0 b g2 N 4 Poor
20 L Critical
b pgfig [ | NBI INSPECTION oress s

1. Surface 'ﬁ & 6 l Several areas of concrete patchi Few tight t se and cracks. Span 25 minor spall with 2 sft of delam
SIA-58A surrounding it. 2010),
Several areas of concrete patching. Few tight transverse and diagonal cracks. Approx center of span 25 minor spall with 2
sft of delam surrounding it. Surface is worn to the aggregate. (2008),
Several areas of concrete patching. Few tight transverse and diagenal cracks.(2006).

2. Expansion k} 8 7 | Joints 2,3.4, 5 and 65 are strip-seals with tight cracking in the surrounding concrete.(2010),
Jis Joints 2,3.4, 5and 6 are strip-seals. All of the joints are filled with some debris.{2008),
Joints 1,2,3,445 are strip-seals, new in 2004. all of the joints are filled with some debris.(2006).
3. Other ?3 8 7 | Jeoints 1 and 7s are pourable joints just to the cutside of the strip-seals at each end of the bridge with areas of adhesion
Joints failure.(2010),
Joints 1 and 7 are pourable joints just to the cutside of the strip-seals at each end of the bridge. Minor adhesion failure,
(2008),

There are pourable joints just to the cutside of the strip-seals at each end of the bridge.(2008).

4. Railings I? 7T l Concrete with a twelve inch top. Few tight leaching vertical cracks typical. Coated with concrete surface coating. (2010),
Concrete with a twelve inch top. Few tight leaching vertical cracks typical. Coated with CSC, (2008),
Concrete jersey with a twelve inch top. Few tight vertical cracks typical (2006).

5. Sidewalks N N N |

of curbs
6. Deck 'p 6 6 | Surface: Several areas of concrete patching. Few tight transverse and diagonal cracks. Span 25 minor spall with 2 sft of
SlA-58 delam surrounding it. Surface is worn to the aggregate. Bottom: Random and transverse leaching cracks. There is some

leaching, delam, and 1 STS along the center line construction joint. 2 SFT STS in span 1s. bay Sw. The west fascia beam
has two incipient spalls and minor leaching. The deck fascias have spalling and cracking near the joint endings.(2010),
The west fascia beam has two incipient spalls and minor leaching. The east fascia beam is cracked and spalled at the
north abutment and at pier 25 has minor leaching.(2008),

There is some leaching along the center line construction joint, Two SFT incipient spall in span one, bay five, The west
fascia beam has two incipient spalls. The east fascia beam is cracked and spalled at the north abutment. (2008).

7. Drainage | | Catch basins in all approach quads.(2010),
Catch basins in all approach quads.(2008),
There is some leaching along the center line construction joint. Two SFT incipient spall in span one, bay five. The west
fascia beam has two incipient spalls. (2006).

Superstructure

8. Stringer 'ﬁ 7T | PCIC beams. There are cracks and shallow spalls on most of the beam end lecations on the bottom flanges, a few of them
SlA-59 have been repaired. Beam ends are coated with concrete surface coating. Concrete diaphragms.(2010),
PCIC beams. There are some cracks and shallow spalls at some of the beam end locations on the bottom flanges, a few
of them have been repaired. Beam ends are coated with CSC, (2008),
PCIC beams. There are some cracks and shallow spalls at some of the beam end locations on the bottom flanges, a few
of them have been repaired.{2008).

9. Paint }l N N | Concrete surface sealer was applied to the bridge railing, substructure, diaphragms and beam ends at the piers and
SIA-594 abutments in 2004. The concrete surface sealer is flaking off because it was applied over debris (2008).

10.Section N N N |

Loss

11. Bearings b 6 B | Elastomeric bearing pads are split and cracked. The sole plates have moderate rust. The elast: ic pads are walking out

from under the beams ends in some locations.(2010),

Elastomeric bearing pads are split and cracked. The sole plates are heavily corroded. The elastomeric pads are walking
out from under the beams ends in some locations. At South abutment BM1W elastomeric pad is too small. {(2008),
Elastomeric bearing pads are split and cracked. The sole plates are heavily correded. The elastomeric pads are walking
out from under the beams ends in some locations.(2006).

Substructure

12. Abutments !?_?_ T | Few vertical cracks typical. North abutment: some areas of concrete patches, South abutment: approx 1 sft delam under
SIA-60 beam BW. (2010),
Few vertical cracks typical. Morth abutment: some areas of concrete patches. South abutment: approx 1 sft delam under
beam 6W. (2008),
Few vertical cracks typical. The north abutment has some areas of concrete patches.(2006).
13. Piers Ih" 77 | All of the piers have several areas of concrete patches with tight random cracking. Concrete surface coating is peeling.
SIA-G0 (2010),
All of the piers have several areas of concrete patches. CSC is peeling. (2008),
All of the piers have several areas of concrete patches,

(2008).
14. Slope Ih' 77 | Grouted sandstone. Some vegetation is growing thru.(2010),
Protection Grouted . Some vegetation is growing thru (2008),

Grouted Some veg ion is growing thru.(2006).

Figure A.4: Freer Road routine bridge inspection report (MDOT 2011b)
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Michigan Department of Transportation Page 2 of 2

Form F2502 (02/2002) Bridge Safety Inspection Report 505-81104
Facility Federal Structure 1D Inspector Mame  Agency / Consultant  Inspection Date EGENE—
[FREER RD |B11811040005050 | [EOLMIEREKK | [MDOT INSPECTOR| Dem2/2010 |
Feature Latitude Longitude Strue Num Insp Freq Insp Key 9 New
[-o4 |42174a7 | Baoo1ss2 | fos40 | PB4 | utva | |7-8 Good
Location Length ~ Width  Year Built ‘Year Recon Br Type Scour Eval  No.Fins |58 Fair
[t.0 MI E OF M52 |208.9899 B2808] fee0 | B Bz | N 11 {** Poor
Critical
Pl oo [ | NBI INSPECTION e

Approach

15. Approach la_s ﬂ|_ The approach pavement is a mix of HMA and concrete. Scuth approach: chip seal, patched areas. open random cracking.
Pavt Morth approach: chip seal with open random and transverse cracks.(2010),
The approach pavement is a mix of HMA and concrete. South approach: chip seal, patched areas, cracking. Morth
approach; chip seal.(2008),
The approach pavement is a mix of HMA and new concrete in 2004, The HMA in bath approaches is heavily map cracked
with some HMA patches and chip sealed over at the east end. (20085).

16. Approach |5 & 7 |  Bit with concrete curb and guiter. Tight transverse cracks in the bit.(2010),

Shidrs Swalk Bit with concrete curb and gutter,
(2008),
Bit with concrete curb and gutter (2006).
17. Approach Grass and weeds. (2010),
Slopes Grass covered.(2008),
Grass covered with one tree in the southwest approach quad.(2006).
18. Utllities Mo utilities are visible in the immediate area (2010},

Mo utilities are visible in the immediate area.(2008),
Mo utilities are visible in the immediate area.(2006).

19, Channel N N N ||

SlA-61
20. Drainage
Culverts

‘Guard Rail Crit Feat | SIA-92 MISCELLANEOUS —

t Feat ] | I —
ran eat Insp{ ) 71 Watr Adeq [ ] General Notes
Freq Date "
72 r Align

36A 92A FracCrit [ | Aopr Algn B

368 928 Und, Walr Temp Supp P

e sac spnsp [] [ J|HLerees B

36D Special Insp Euip. E

Figure A.4, continued. (MDOT 2011b)
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Figure A.4, continued. (MDOT 2011b)
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Form 1717A- 01/2002 Michigan Department of Transportation Contral Section
MDOT Bridge ID Structure Inventory and Appraisal 505-81104
B1 1811040000000505 | Code in red ink
MBI Bridge 1D Struct Num Region TSC County City Resp City Location 7- Facility Carried User Name
B1181104000S050 | [10840 | [08] 0 FREER RD ZOLNIEREKK
G- Feature Intersected G- Location Latitude Longitude Owner Maint Resp
1-94 [1.0 MI E OF m-52 42° 17'44.70" | | 84° 00' 19.92" | 1 1
Bridge History, Type, Materials Route Carried By Structure (ON Record) Route Under Structure (UNDER Record)
27- Year Built 1860 5A- Record Type 1 5A- Record Type 2
106- Year Reconstructed 5B- Route Signing 4 5B- Route Signing 1
202- Year Painted 5C- Level of Service 0 5C- Level of Service 1
203 Year Overlay 50- Route Mumber 00000 50- Route Mumber 00094
43- Main Span Bridge Type L a2 5E- Direction Suffix o] 5E- Direction Suffix v]
44- Appr Span Bridge Type _ 10L- Best 10ft Uncir- Lt 0 0 10L- Best 10ft Uncl- Lt 16 3
77- Steel Type 0 10R- Best 10ft Uncl- Rt 99 a8 10R- Best 10ft Uncl- Rt 16 0
78- Paint Type ] PR Mumber FR Number
79- Rail Type 5] Control Section Control Section B1104
80- Post Type 0 11- Mile Point 11- Mile Point 6633
107- Deck Type 1 12- Base Highway MNetwork 0 12- Base Highway Metwork 1
108A- Wearing Surface 1 13- LRS Route-Subroute 0000014265 00 13- LRS Route-Subroute 0000014261 09
108B- Membrane 0 19 Detour Length 4 18- Detour Length 4
108C- Deck Protection o 20- Toll Facility 3 20- Toll Facility 3
26- Functional Class 09 26- Functional Class o1
Structure Dimensions 28A- Lanes On 2 28B- Lanes Under 4
29- ADT 150 29- ADT 52,222
34- Skew 4 30- Year of ADT 1997 30- Year of ADT 2007
35- Struct Flared 0 32- Appr Roadway Width 299 42B- Service Type Under 1
45- Num Main Spans 4 3248 Ap Pt TypeMidth 4 | 209 47L- Left Horizontal Clear 67.3
4€- Num Appr Spans 0 424 Service Type On 1 47R- Right Horizontal Clear 67.3
48- Max Span Length 70.9 47L- Left Horizontal Clear 0.0 544 Left Fealure H
48- Structure Length | 200 || 47R- Right Horizontal Clear 302 54B- Left Underclearance 16 3
30/ Width Left Curtb/SW 0.0 53- Min Vert Cir Ov Deck 99 | 99 Left Signed Underclearance | 0 | 0
505—W’|ch Right Curb/SW 0.0 100- STRAHNET 0 54C- Right Feature H
33- Median 0 102- Traffic Direct 2 54D- Right Underclearance 16 | 0
51- Width Curb to Curb 285 109- Truck % 3 Right Signed Underclearance | 0 0
52-Width Out to Out 328 110- Truck Metwork 1] Under Clearance Year
112 NBIS Length M 114- Future ADT 60 55A- Reference Feature H
115- Year Future ADT 55B- Right Horiz Clearance 105
Inspection Data Freeway 0 56- Left Horiz Clearance 248
90- Inspection Date 06/02/2010 100- STRAHNET 1
91- |n5pecﬁgf\ Freg 24 Structure Appraisal 101- Traffic Direction 22E
92A- Frac Crit Reg/Freq N 108 Truck % -
93A- Frac Crit Insp Date 36A- Bridge Railing 1 110- Truck Network 1
92B- Und Water Req/Freq N 36B- Rail Transition 1 114- Future ADT 45 964
93B- Und Water Insp Date [ J6C- Approach Rail 1 115 Year Future ADT 2018
92C- Oth Spec Insp Req/Freq | N 36D- Rail Termination 1 Freeway 0
93C- Oth Spep Insp Date 67- Structure Evaluation 7 Proposed Improvements
176A- Und Water Insp Methad 68- Deck Geometry 6 75- Type of Work _
58- Deck Rating 6 69- Underclearance 4 76- Length of Improvement
58A- Deck Surface Rig & 71- Waterway Adequacy M 94- Bridge Cost
58- Superstructure Rating 7 72- Approach Alignment 6 95- Roadway Cost
59A- Paint Rating N 103- Temporary Structure - 96- Total Cost
60- Substructure Rating 7 113- Scour Criticality N 97- Year of Cost Estimate
61- Channel Rating N Load Rating and Posting
62- Culvert Rating N Miscellaneous 31- Design Load 2
37- Historical Significance 5 41- Open, Posted, Closed A
Navigation Data 58A- Border Bridge State 63 Oper Rtg Method z .
35 Navigation Control N 98B- Border Bridge % 64F- Fed Operating Rig 1.900001525878¢
. 101- Parallel Structure N 64M- Mich Oper Rtg ol _m
39- Vertical Clearance 0.0 65 Inv Rtg Method 3
40- Horizontal Clearance 00 EPAID 7 || o5 mventory Los 3.599998474121
111- Pier Protection Stayin Place Forms 70- Posting 5
116- Lift Brdg Vert Clear ) 141- Posted Loading
Print Date 5/11/2011 12:41:05 195- Analysis D 5326
193- Overload Class A




Michigan Department of Transportation

BRIDGE INSPECTION REPORT S05-81104

Page 1
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|FREER RD ‘ ‘311311040003050 ‘ FOLNIEREKK ‘ ‘MDOT INSPECTOR ‘ P6/02/2010 |
Feature Intersected Latitude Longitude Struc Num Region Insp Freq Insp Key
|I-94 ‘ ‘421744.7 ‘ ‘840019.92 ‘ ‘10940 ‘ ‘6- University ‘ F4 ‘ ITSUP |
Location Length width Year Built  Year Recon Br Type Scour Eval  No Pins
|1.o MI E OF M-52 ‘ ‘53.70001 ‘10 | ‘1960 | ‘ ‘ ‘N ‘ | |
CORE ELEMENTS INSPECTION English Units
ﬁ'ﬁmﬁ';‘r EL?::: ' Total Quantity 0|?1tateN1ew oﬁtateniw ofjtateNZw ousjtateNtw 0|§tatelqiw
R ki [ R [
i Sl e W | s
el T o B N N [ N [ [
109 /3 ‘Prestr Con Girder/Bm | ‘1253 ‘ |:| I:l D”:l D”:| D| |:|
A o | S N o |
S R O O N [
| N N S O
A kN | N N 1
|
|
|
|

379 /3 ‘Deck Fascia Sm Flag

|

CREW RECOMMENDATIONS
Deck Patching

‘ L ‘2 sft patch in center of span 2 S.

) I N Y O

CONTRACT RECOMMENDATIONS
Bridge Replacement

Approach Pavement ’7
Joint Repair \
Railing Repair ‘

Detailed Inspection ‘

Superstructure Replacement
Deck Replacement

Overlay M Epoxy overlay

Widen

—

Substructure Repair \

Zone Paint

Slope Repair \
Brush Cut \

Paint
Zone Paint

Pin and Hanger

Substructure Repair

Other Crew Work

’T Scale span 28 bay 3W, span 35 bay 3W, anc

Other Contract Work

Figure A.4, continued. (MDOT 2011b)
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Appendix B: Leica ScanStation C10 Field Sketches
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Figure B.1: Mannsiding Road NB Leica ScanStation C10 collection locations
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Figure B.2: Mannsiding Road SB Leica ScanStation C10 collection locations
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Figure B.3: Willow Road Leica ScanStation C10 collection locations
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Figure B.4: Freer Road Leica ScanStation C10 collection locations
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Appendix C: Algorithm Results
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Figure C.1: Mannsiding Road NB spall algorithm results at established input
parameters
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Figure C.2: Mannsiding Road SB spall algorithm results at established input

parameters
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Figure C.3: Willow Road spall algorithm results at established input
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Appendix D: Clarification of Potential Copyrighted Material

The following materials were generated through the RITA research project, which is the
project my thesis is being funded under. Release of the copyrights have been obtained in
writing and can be viewed on pages 135 to 137. This applies to the following figures:

24,25,26,2.7,29,3.1,32,35,3.7,3.9,3.11,3.12,3.14,4.11,4.12,4.13 and 4.14

The following material is considered public domain. The RITA research project worked
closely with the USDOT and MDOT. Documents and figures have been provided to the
team to enhance the published work. This applies to the following areas:

2.1, 2.3, appendix A and B

The following materials were obtained through the use of “free trial’” versions of
processing software and are considered “fair use” material. The figures are:

3.14 Through 3.25 from Certainty 3D
3.26 Through 3.31 from Quick Terrain

The following materials have been released by the author, allowing for the repurposing of
the material in the thesis. Documentation of the release of rights can be seen on pages
138-140. This applies to the following areas:

Figure 2.12, 2.15 and Table 2.5.
Image Quiality:

Screenshots and low quality images are presented within the thesis. Figures, which are
comprised of screenshots, have a resolution great than 72 dpi. The low quality images
that are not screenshots were obtained from MTRI, a downstate affiliate, working on the
RITA project and the obtained quality was the highest available. This applies to the
following areas:

Screenshots:

Figures2.15, 3.3, 3.4, 3.6, 3.8, 3.10, 3.13, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22,
3.23,3.24, 3.25, 3.26, 3.27, 3.28, 3.29, 3.30, 3.31, 3.32, 3.33 and Tables 2.5, 3.3

Low quality images:

Figures 3.5, 3.7, 3.9
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Michigan Technological University Mail - Authority release of copyrighte...  https://mail.google. com/mail/w/ 0/?ui=2&ik=40b%all e7d &view=pt&searc...

ﬁmw Ryan Hoensheid <rchoensh@mtu.edu>

Authority release of copyrighted material
2 messages

Ryan Hoensheid <rchoensh@mtu.edu> Thu, Apr 19, 2012 at 10:22 AM
To: Khatereh Vaghefi <kvaghefi@@mtu.edu>

Dear Khatereh,

Today | meet with an individual at the graduate school regarding copyrighted material and how to provide proof the
rights had been released to me. The photographs that you provided from the field demonstration are considered
copyrighted material that need to be released for use. The following figures are photographs provided by you and
have been incorporated into the body on my thesis:

2.9

| have attached a PDF of my thesis, so you can view the use of the material. All credit will be given to you
(Khatereh Vaghefi) and an appendix will be included in the final thesis stating the release of copyright, if given.
Could | use the material listed above?

Thank you

-Ryan Hoensheid

.3 rchthes.pdf
9604K

Khatereh Vaghefi <kvaghefi@mtu.edu> Thu, Apr 19, 2012 at 10:55 AM
To: Ryan Hoensheid <rchoensh@mtu.edu>

Yes, It's fine with me.
-Khatereh
[Quoted text hidden])

Khatereh Vaghefi

Graduate Research Assistant (PhD Candidate)
Department of Civil and Environmental Engineering
Michigan Technological University

829 Dow Building

1400 Townsend Drive

Houghton, MI 49931

1ofl 4/24/2012 9:35 PM
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Michigan Technological University Mail - Authority requested for release ...  https://mail.google. com/mail/w/ 0/?ui=2&ik=40b%all e7d &view=pt&searc...

ﬁmw Ryan Hoensheid <rchoensh@mtu.edu>

Authority requested for release of copyright
2 messages

Ryan Hoensheid <rchoensh@mtu.edu> Thu, Apr 19, 2012 at 10:20 AM
To: "Renee O." <roats@mtu.edu>

Dear Renee,

Today | meet with an individual at the graduate school regarding copyrighted material and how to provide proof the
rights had been released to me. The photographs that you provided from the field demonstration are considered
copyrighted material that need to be released for use. The following figures are photographs provided by you and
have been incorporated into the body on my thesis:

24,25, 26,27 31,311,411

| have attached a PDF of my thesis, so you can view the use of the material. All credit will be given to you (Renee
Oats) and an appendix will be included in the final thesis stating the release of copyright, if given. Could | use the
material listed above?

Thank you

-Ryan Hoensheid

m rchthes.pdf
9604K

Renee Qats <roats@mtu.edu> Thu, Apr 19, 2012 at 11:04 AM
To: Ryan Hoensheid <rchoensh@mtu.edu>

Hi Ryan,

Yes, you can use those photographs for your thesis document. It is fine by me if you incorporate them into the body
of your thesis.

Thanks,

Renee
[Quoted text hidden]
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WM Ryan Hoensheid <rchoensh@mtu.edu>

Authority to use copyrighted material

3 messages

Ryan Hoensheid <rchoensh@mtu.edu> Thu, Apr 19, 2012 at 10:07 AM
To: Colin Braoks <colin.brooks@mtu.edu>

Dear Cdlin,

Today | meet with an individual at the graduate school regarding copyrighted material and how to provide proof the
rights had been released to me. The photographs that MTRI provided from the field demonstration selection and
collection are considered copyrighted material that need to be released for uses. The following figures are
photographs provided by MTRI and have been incorporated into the body on my thesis:

31,35 37,39, 312,314,412, 413, 414

All credit will be given to MTRI and an appendix will be included in the final thesis stating the release of copyright, if
given. Could | use the material listed above?

Thank you

-Ryan Hoensheid

Ryan Hoensheid <rchoensh@mtu.edu> Mon, Apr 23, 2012 at 10:10 AM
To: Colin Braoks <colin.brooks@mtu.edu>

[Quoted text hidden]

Colin N. Brooks <cnbrooks@mtu.edu> Mon, Apr 23, 2012 at 11:07 AM
To: rchoensh@mtu.edu

Absolutely - the images are all yours to use, thanks for checking. Talk with you at 3:30 pm.
- Colin

Colin N. Brooks

Research Scientist, Environmental Science Lab Manager
Michigan Tech Research Institute (MTRI)

3600 Green Ct., Suite 100

Ann Arbor, MI 48105

Ph: 734-913-6858 Cell: 734-604-4196

www. mtri.org

www. mtri.org/unpaved

www. glosaocmapping.org

Sent from my Verizon Wireless 4G LTE DROID

----- Original message-----
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ﬁmw Ryan Hoensheid <rchoensh@mtu.edu>

Possible Literature Review Reference
3 messages

Ryan Hoensheid <rchoensh@mtu.edu> Tue, Mar 27, 2012 at 11:19 AM
To: talasky@ucdavis.edu

Dear Dr. Lasky,

My name is Ryan Hoensheid, graduate research assistant at Michigan Technology University located. Currently, |
am evaluating the potential application of terrestrial LIiDAR as it pertains to surface defect detection of reinforced
concrete bridge decks. One of the terrestrial LIiDAR units being evaluated in this case study is the Leica
ScanStation C10, a system that you and your group had previously evaluated.

After reading a great deal of the AHMCT published works, | was hoping to reference a few of the sections in my
literature review. In particular Figure 7 and Table 2 from the TRB publication, "Testing and Performance Evaluation
of Fixed Terrestrial 3D Laser Scanning Systems for Highway Applications".

Would this be appropriate? Of course, full credit and proper citation would given.
Thank you for your time,

-Ryan Hoensheid

Ryan C. Hoensheid E.I.T

Michigan Technological University
MS Civil Engineering

RITA Graduate Researcher

907 College Ave Houghton, MI 49931
231-499-3795

Ryan Hoensheid <rchoensh@mtu.edu> Thu, Apr 19, 2012 at 1:45 PM
To: "Ty A. Lasky" <talasky@ucdavis.edu>

Dr. Lasky,

Is there another publication containing these same figures and tables, that you did retain the copyright?
Thank you

-Ryan Hoensheid

On Thu, Apr 19, 2012 at 12:32 PM, Ty A. Lasky <talasky@ucdavis.edu> wrote:
Ryan,

That is a good point that | hadn't considered. | believe we did assign
copyright to TRB.

| hope this doesn't cause too much difficulty for you and the document.

Ty Lasky
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On 04/19/2012 06:53 AM, Ryan Hoensheid wrote

> Dear Dr. Lasky,

>

> | just wanted to thank you for your quick response time regarding the

> potertial use of material as a reference for a Michigan Technological

> University publication on LIDAR. Today, | meet with the graduate school to
> review my document and expose any possible areas of copyright

> infringement. The reviewer was worried about the reference | provided for
> figures fram your 'Testing and Performance Evaluation of Fixed Terrestrial
> 3D Laser Scanning Systems", since it is a TRB journal publication. Did

> your agency retain the rights to that publication?

>

> Thank you again,

>

> -Ryan Hoensheid

>

> OnThu, Mar 29, 2012 at 2:04 PM, Ty A. Lasky <talasky @ucdavis.edu> wrote:

>

>> One more point. Please refer to this instead of TRB:

>>

>> J. Hremagalur, K.S. Yen, T.A. Lasky, and B. Ravani, “Testing and

>> Performance Evaluation of Fixed Terrestrial 3D Laser Scanning Systems
>> for Highway Applications,” Transportation Research Record: Journal of
>> the Transportation Research Board, No. 2098, pp. 29-40, August 2009.
>>

>> Thanks,

>>

>> Ty

>>

>>

>>

>> Mr. Hoensheid,

>>

>> First, thank you for checking with me

>>

>> Note that the work inthe TRB paper was using a ScanStation, not a C10.
>>

>> With that caveat, referencing the sections with credit and citation

>> would certainly be appropriate.

>>

>> Good luck on your work.

>>

>> Ty Lasky

>>

>>

>> On 03/27/2012 08:19 AM, Ryan Hoensheid wrote:

>>> Dear Dr. Lasky,

>>>

>>> My name is Ryan Hoensheid, graduate research assistant at Michigan
>>> Technology University located. Currently, | am evaluating the

>>> potential application of terrestrial LIDAR as it pertains to surface

>>> defect detection of reinforced concrete bridge decks. Ore of the
>>> terrestrial LIDAR units being evaluated in this case study is the

>>> Leica ScanStation C10, a system that you and your group had

>>> previously evaluated.

>35>

>>> After reading a great deal of the AHMCT published works, | was hoping
>>> to reference a few of the sections in my literature review. In
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>>> particular Figure 7 and Table 2 from the TRB publication, “Testing
>>> and Performance Evaluation of Fixed Terrestrial 3D Laser Scanning
>>> Systems for Highway Applicatiorns".

>35>

>>> Would this be appropriate? Of course, full credit and proper

>>> citation would given.

>>>

>>> Thank you for your time,

>>>

>>> -Ryan Hoensheid

>>>

>>

>>

>

https://mail.google.com/mail/w0/?ui=2&1k=40b%al le Td&view =pt&searc...

Ty A. Lasky <talasky @ucdavis.edu>
To: Ryan Hoensheid <rchoensh@mtu edu=>

Yes.

J. Hiremagalur, K.S. Yen, K. Akin, T. Bui, T.A. Lasky, and B. Ravani,
"Creating Standards and Specifications for the Use of Laser Scanning in
Caltrans Projects," Advanced Highway Maintenance and Construction

Technology Research Center Report UCD-ARR-07-06-30-01, June 30, 2007.

http://ahmct. ucdavis. edw/pdf/UCD-ARR-07-06-30-01-B. pdf
Hope that helps.

Ty
[Quoted text hidden]
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