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Abstract

ab-initio Hartree Fock (HF), density functional theory (DFT) and hybrid potentials

were employed to compute the optimized lattice parameters and elastic properties of

perovskite 3-d transition metal oxides. The optimized lattice parameters and elastic

properties are interdependent in these materials. An interaction is observed between

the electronic charge, spin and lattice degrees of freedom in 3-d transition metal

oxides. The coupling between the electronic charge, spin and lattice structures orig-

inates due to localization of d-atomic orbitals. The coupling between the electronic

charge, spin and crystalline lattice also contributes in the ferroelectric and ferromag-

netic properties in perovskites. The cubic and tetragonal crystalline structures of

perovskite transition metal oxides of ABO3 are studied.

The electronic structure and the physics of 3-d perovskite materials is complex and

less well considered. Moreover, the novelty of the electronic structure and properties

of these perovskites transition metal oxides exceeds the challenge offered by their com-

plex crystalline structures. To achieve the objective of understanding the structure

and property relationship of these materials the first-principle computational method

is employed.

CRYSTAL09 code is employed for computing crystalline structure, elastic, ferromag-

netic and other electronic properties.

xxi



Second-order elastic constants (SOEC) and bulk moduli (B) are computed in an

automated process by employing ELASTCON (elastic constants) and EOS (equation

of state) programs in CRYSTAL09 code. ELASTCON, EOS and other computational

algorithms are utilized to determine the elastic properties of tetragonal BaTiO3, rutile

T iO2, cubic and tetragonal BaFeO3 and the ferromagentic properties of 3-d transition

metal oxides. Multiple methods are employed to crosscheck the consistency of our

computational results.

Computational results have motivated us to explore the ferromagnetic properties

of 3-d transition metal oxides. Billyscript and CRYSTAL09 code are employed to

compute the optimized geometry of the cubic and tetragonal crystalline structure of

transition metal oxides of Sc to Cu. Cubic crystalline structure is initially chosen

to determine the effect of lattice strains on ferromagnetism due to the spin angular

momentum of an electron.

The 3-d transition metals and their oxides are challenging as the basis functions and

potentials are not fully developed to address the complex physics of the transition

metals. Moreover, perovskite crystalline structures are extremely challenging with

respect to the quality of computations as the latter requires the well established

methods.

Ferroelectric and ferromagnetic properties of bulk, surfaces and interfaces are explored

by employing CRYSTAL09 code. In our computations done on cubic TMOs of Sc−Fe

xxii



it is observed that there is a coupling between the crystalline structure and FM/AFM

spin polarization. Strained crystalline structures of 3-d transition metal oxides are

subjected to changes in the electromagnetic and electronic properties. The electronic

structure and properties of bulk, composites, surfaces of 3-d transition metal oxides

are computed successfully.

xxiii
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Chapter 1

Introduction

Silicon (Si) microfabrication techniques have been highly successful in reducing the

size of MOSFET. This trend has resulted in ultra small gate lengths for MOSFETs.

According to Moore’s law [1], the number of transistors on a chip is expected to double

every year. It has been predicted that Si MOSFET will continue to scale down to

device dimensions of 10 nm.

Due to miniaturization, the size of a Si MOSFET is approaching the atomistic range.

It is a challenge to design the MOSFET of sub-100 nm size as it has touched the

atomic physics limit. Moreover, the trend of miniaturization in Si microfabrication

industry is now severely constrained [2]. High electric fields [3, 4], electron tunneling

and leakage currents have significant impacts on the future of Si as a material of

1



choice. Appearance of tunneling currents through ultra thin gate oxide introduces a

physical limitation on the design of Si MOSFETs [3, 4]. The emergence of secondary

effects in a MOSFET strengthens the case of computational physics simulations [5]

as a viable method [6].

The secondary effects in Si MOSFET validate the research on alternative technologies.

It is expected that the shrinking [2] of Si MOSFET will continue for several years till

the advent of alternative technologies.

Spintronics is one of the very exciting alternative technologies. The spin of electron

is a quantum mechanical property. Coupling between electron charge and spin in

transition metals results in giant magnetoresistance (GMR) [7].

Electron spins are spontaneously polarized in these transition metals resulting in a

high magnetic moment. Transition metals such as Cr and Fe are employed in GMR

devices [8] based upon the thin film composite nanostructures. Magnetoresistance

effect appears due to interfacial properties of nanostructured composites of transition

metals [7]. Degeneracy is partially lifted perpendicular to the interfaces in thin film

composites utilized for GMR devices. The energy discretization is utilized for spin-

dependent tunneling. Transition metals possess spin-dependent density of states for

spins being up or down.

2



The spintronics technology based upon the magnetoresistance logic is relatively free

from the challenges of scaling and power consumption [9]. Magnetoresistance effect

consumes less power as it utilizes the spin angular momentum of an electron. Existing

spintronic devices provided a solution to challenge of high-density data storage for

the modern microprocessor applications [8, 7]. TMR and other spintronic device

mechanisms were also developed upon the spin-dependent tunneling mechanism. The

spintronic device approaches based upon GMR effect has not materialized into three-

terminal spintronic devices.

In early spintronic designs, the Schottky junctions [10] formed between transition

metals and other materials have not been able to inject spin with maximum efficiency.

The spin scattering and spin relaxation at interfaces are major challenges in current

spintronic designs [11]. Therefore, it has remained a challenge to implement an three-

terminal spintronic device based upon the composites of ordinary metals as well as

transition metals.

Oxides of transition metals possess a variety of electronic structure and properties.

Research into ferroic properties of these materials has been performed by refs. [12, 13,

14, 15, 16]. The mechanism of elastic coupling [17, 18, 19] in transition metal oxides

has been widely researched. Our research on transition metal oxides is motivated

by the prospect of low power dissipation in spintronic devices of transition metal

oxides. In these materials, there is an interplay between the electronic charge, spin

3



and orbitals (see section 1.1 on the physics of TMOs). These materials exhibit a

significantly higher electronic exchange and correlation due to localized d-orbitals.

The degeneracy is partially lifted in these materials due to electrostatic field. Electron

spins and charge dipoles are spontaneously formed in oxides of transition metals. The

spontaneous polarization and magnetization result in ferroelectric and ferromagnetic

properties respectively.

A variation in ferroelectric, ferromagnetic and ferroelastic properties is possible in

these materials due to compression as well as expansion of the crystalline lattice. The

elastic properties of 3-d transition metal oxides must be explored due to coupling

between electron spin angular momentum and crystalline symmetry of perovskites.

The injection, control and detection of the quantum mechanical electron spin [20]

through lattice coupling can lead to a new paradigm shift in nanoelectronics. Oxides

of transition metals, however, can also be utilized to inject an electron spin in a

controlled manner [21]. These spin states can be injected, transported and detected

in transition metals at room temperature. Devices based upon the electron spin

in 3-d transition metals can couple electron spin exchange with periodic crystalline

structure.

Variations in the competition between the crystal field and electron spin exchange

due to an external pressure may also result in spin transitions. Oxides of transition

4



metals are magnetic semiconductors and do not suffer from these spin relaxation

issues typically associated with ordinary metals.

Pressure-induced spin transitions can be implemented as logic states. Therefore,

a novel device based upon the spin angular momentum of an electron provides an

alternative to the charge-based logic. The significance of the electron spin angular

momentum increases at nanoscale [22]. Novel logic designs can be implemented to

utilize the electron spin [23].

The major focus of this research project is to develop the methods and materials

by exploring the elastic properties of ferroic materials. The first principle computa-

tional methods are viable techniques to study the atomistic and molecular level logic

designs which are physically realizable now [6]. We have employed first principle

computational techniques to compute the elastic properties of 3-d transition metal

oxides. The coupling between the spin and lattice structure in transition metal oxides

is explored in BaScO3, BaTiO3, BaV O3, BaCrO3, BaMnO3 and BaFeO3. We have

studied spin-strain coupling in cubic and tetragonal structures of BaTiO3, BaFeO3

and BaxFe1−xT iO3.

The devices based upon the spin polarization in the oxides of these transition metals

can be utilized for sensing, actuation, high density data storage and spintronic ap-

plications. A whole new range of processors can be developed based upon the spin

logic.

5



1.1 Introduction to Transition Metal Oxide (TMO)

physics

Transition Metal Oxides (TMOs) can occur in a A(Ba)B(Sc − Cu)O3 perovskite

crystalline structure form. Our research has been focused on the perovskite structures

containing Ba atom positioned at the edge, transition metals Sc− Cu at the centre

and O atom at each face of the unit cell (see Figures: 1.1 and 1.2).

In cubic perovskites of TMOs, an octahedral cage is formed having O atoms at the

corners and transition metal positioned at the centre of the cage.

The interaction between the electronic spin and lattice structure is weak in an ordinary

metal or gas due to valence electrons located in s and p orbitals.

Sections below will discuss the electronic configuration, d-orbitals, chemical bonding

and crystal field in TMOs. The Figure 1.6 shows the crystal structure, crystal field,

energy doublets and triplets for a cubic ABO3 perovskite.

1.1.1 Electronic Structure of TMOs

Oxides of transition metals form a rich variety of crystalline structures. The wide

variety of crystalline structures is caused by partially filled d− orbitals of transition

6



metal ions. The position of transition metals and their ionic radii results in a diver-

sity of crystalline structures such as hexagonal, orthorhombic, tetragonal and cubic.

Crystalline structure is coupled with the electron charge, spin and atomic orbitals in

each unit cell.

Crystalline structures of BaTiO3, BaFeO3 and rutile T iO2 are shown Figures 1.1

and 1.2. We computed the optimized lattice structures of these crystalline material

systems.

1.1.2 Electronic configuration of transition metals (TMs), Ba

and O atoms

The electronic properties of transition metals are different than ordinary metals. The

electronic configuration in transition metals result in partially filled d-orbitals. The

electron wavefunctions and probability density function of a d-orbital is significantly

different than the s and p orbitals. For ordinary metals the valence electrons occupy

s − p orbitals. Figures 1.3 and 1.4,1.8 and 1.9 show the electronic configurations of

Ba, O, T i and Fe atoms and shapes of s, p and d orbitals.

7



Figure 1.1: Unit cells of cubic BaFeO3 and BaTiO3 respectively. Yellow
and red spheres represent Ba and O. Fe and Ti atoms are positioned in the
middle of the octahedral cage.

8



Figure 1.2: Unit cell of rutile TiO2. Red colored sphere represents O atoms.
Ti atom is positioned in the center of the octahedral cage.
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Figure 1.3: Electronic configurations of Ba and O atoms.
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Figure 1.4: Electronic configurations of Ti and Fe atoms.
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In oxides of transition metals, the interaction between electron spin and charge is

significantly higher due to position of valence electrons. The quantum mechanical

wavefunction of an electron in d-orbital of the transition metal adjusts itself to various

shapes due to coulomb force between electrons and parent ion.

Electronic configurations of d− electrons in TMs are delocalized or localized due to

varying amount of screening from electrons in adjacent ions.

1.1.3 Crystal Field in TMOs

Crystal field and ligand field are two most prominent models which are based on the

electrostatic and molecular orbital approaches. These models explain the inorganic

chemistry of transition metal oxides. The crystal field emphasizes the energy split-up

due to p − d hybridization between transition metal ions and O atoms as shown in

Figure 1.6.

Bethe gave the concept of crystalline field in 1929. The highly localized d− orbitals

and their interactions with the spin, orbital and lattice degrees of freedom can be

modelled by the crystal field theory.

A single line energy diagram may be drawn to show the energy splittings with ref-

erence to the the central free ion. Degeneracy of a transition metal ion is lifted by
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the octahedral arrangement between the central TM and six surrounding O ions in

an octahedral field. Electric, magnetic fields and pressure on the octahedral complex

perturbs these energy levels due to a change in the crystal field.

Splitting of energy levels is represented as #.The value of # depends upon the position

and radii of cations and surrounding anions in a crystal. The spherically symmetric

crystalline field provides the central energy. The splitting energies are raised by the

perturbations initiated by crystal field of TM cation and O anions.

The value of Crystal Field Split- Off Energy (CFSE), also known as ∆, varies for oc-

tahedral, tetrahedral or other interactions in TMOs. The insulator-metallic behavior

in ABO3 perovskites is due to localization vs. delocalization resulting from crystal

field. The electrons in the eg are at higher electron levels than the electrons at t2g

due to the position of O atoms in crystals.

The partial lifting of double degeneracy of eg orbital energy states can also lead to

distortions resembling Jahn-Teller effect if there are enough electrons to fill these

levels. The displacement of TM cations vs. O anions stabilizes the crystalline system

with dz2 − r2 electrons going to a lower energy state as they undergo less repulsion

in comparison with dx2 − y2 electrons.

In case of cubic BaTiO3, the energy splits into #oct. The upper two orbitals are

placed at 3/5#oct above the quantum center of gravity and the lower three are placed
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at 2/5#oct. These orbitals are assumed to be in a spherically symmetric field with

the reference energy higher than the free ion energy.

However, the crystal field approach has its limitations as the CFSE fails to provide

any contribution due to the electronic correlations in dn orbitals in TMs. Values of

crystal field in third row transition metal oxides are in the range of 2-3 eV.

An energy Hamiltonian can be based upon the CFT having energy components due

to dxy, dxz and dyz sub-orbitals known as t2g and dx2−y2 , dz2 sub-orbitals known as eg:

Heff = Hhund +Ht2g +Heg (1.1)

In Eq. 1.2, the subscripts i and j stand for the nearest atomic neighbors, a†iγσ and

ajγ′σ are the creation and annihilation operators representing small changes in energy

of electrons occupying the atomic orbitals

Heg = #
∑

i

Liz +
∑

<ij>σγγ′

tijγ γ
′
(a†iγσajγ′σ) +

∑

β

HUβ
(1.2)

∑

β

HUβ
= HU +HUt2g

+HUeg
(1.3)
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Figure 1.5: Octahedral cages formed between TM and O atoms. Top:
Octahedral cage with cubic symmetry. Middle: octahedral cage with small
strain. Bottom: octahedral cage with a large strain.
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Figure 1.6: The crystal field split-off and lifting of the energy degeneracy
in a cubic TMO.
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Figure 1.7: Top: Figure shows the crystal field and spin alignment before
strain. Bottom: Figure shows new spin alignment after strain.

17



1.1.4 Chemical Bonding in TMOs

In electrostatic theory, the cations and anions are chemically bonded and approx-

imated as point charges or point dipoles. In a vacuum state and free of any field

or external strain, the d-orbitals of a transition metal ion are energetically degener-

ate. Energies of these atomic orbitals are raised with the approach of the O ions or

negative field affected by the nature of the chemical bonding.

In a ground state, the force of attraction between the positively charged TM ion

and negatively charged O ion is altered by the combination of ionic and covalent

components of chemical bonding.

Chemical bonding in oxides of transition metals is a combination of ionic and covalent

bonding. Covalent bonding in transition metal oxide like BaTiO3 and rutile T iO2

results in d0 orbitals. The Mott insulators result due to highly localized nature of

TM orbitals. Transition from metallic to a non-metallic state in TMOs occurs due

to large contribution of ionic bonding. The higher percentage of ionic bonding in

BaFeO3 results in small band gap.

In TMs, electron localization induces strong electron correlations affecting the chem-

ical bonding in TMOs. Pressure-induced transitions in TMOs provide an increase in

the electron wavefunction overlaps between the neighbors to induce a change from
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the localized to an itinerant behavior. The itinerant behavior results in spin polarized

states.

The chemical bonding between the TM d and O p orbitals can result in significant

overlap due to covalent bonding and no overlap due to ionic bonding for T i-Fe TM

series. Electrons in ABO3 may be localized, delocalized or remain partially localized

due to a delicate balance between the covalent and ionic bonding affecting the Hund

energy and crystal field stabilizing energy.

Cubic BaTiO3 is an insulator with AFM state due to covalent bonding. Whereas

cubic BaFeO3 is a charge-transfer type insulator with a FM state due to Fe.

A Mott insulator with antiferromagnetic, charge-transfer type insulator with para-

magnetic and conductor with ferromagnetic spin polarization is due to a varying

electron exchange and correlation influenced by the chemical bonding.

1.1.5 d Orbitals in TMOs

Atomic orbital function als expresses the probability of finding an electron in a par-

ticular region around the atomic nucleus.

The angular part of electron wave function can be expressed by spherical harmonics.
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Figure 1.8: The 1s and 2px, 2py and 2pz orbitals.

There is a 5-fold degeneracy due to the spherical potential on an isolated transition

metal in a vacuum.

In the case of unstrained and perfect octahedral symmetry the d orbital is split into

a pair of sub-orbitals. The dz2 and dx2−y2 and dxy, dxz, and dyz sub-orbitals are split

as two separate grups. Two higher energy orbitals and three lower energy orbitals are

named differently in van Vleck, Mulliken and Bethe’s notations [24].

The electron wave functions of eg sub-orbitals pointing towards O2− ions are located

at higher energy than the t2g which are pointing away from the O2− ions. These

partially degenerate sub-orbitals provide an additional degree of freedom [25].
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Figure 1.9: Five d orbitals are shown: dz2 , dx2−y2 , dxy, dyz and dxz.

Inside a d-orbital, the first of three electrons will fill the t2g sub-orbital as per the

Hund’s rule to have their spins up. The fourth electron will fill the t2g energy level

with spin-down or will fill the eg energy level with spin-up.

Highly localized d orbitals in a transition metal oxide, may result in high exchange
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or correlation. Electrons in d orbitals experience the competitive forces [26] of the

coulomb repulsion resulting in localization of the electrons at atomic lattice sites

whereas the p − d hybridization delocalizes these electrons. The delicate balance

[27] between these two forces in transition metal oxides results in metal-insulator

transitions accompanied with changes in their electronic properties. The TMOs of

V , Mn and Cr possess the mix of covalent and ionic characteristics.

Figures 1.9 show the 3-dimensional plots of probability density of electrons having a

varying shape due to spherical harmonics resulting from l = 2.

The perovskite type TMO such as R(R = Ba,Ca)T iO3 is one of a prototype of

the transition metal oxides having T i transition metal in center of a cage formed by

O atoms. In these transition metal oxides, T i ion has t2g configuration which are

three-fold degenerate.

The distortions appear as changes in energies of the distorted octahedral. Distortions

also produce additional splittings in the energy of eg and t2g sub-orbitals.

For T iO2, the eg and t2g energies are located near the bottom of conduction band.

The eg is located approximately 2 eV higher in energy as compared with t2g. The

partial density of state curve for t2g is steeper and the one for eg has higher width and

low amplitude. The nature of the curve suggests that density of states pertaining to

t2g is highly localized [27].
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1.1.6 Spin Exchange in TMOs

Exchange interaction effects were discovered independently by physicists Werner

Heisenberg and P. A. M. Dirac in 1926. Electrons are fermions and electron spins

polarized in opposite direction have more mutual repulsion than electrons with spins

polarized in same direction.

The term JH is the Hund’s energy which shows that t2g electrons are localized very

well in the singlet or triplet form depending upon the number of electrons available

in cubic ABO3

Hhund = JH
∑

i

SiS
t2g
i (1.4)
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Figure 1.10: Electronic configuration of Ba and O atoms.
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Figure 1.11: Electronic configuration of Sc and Ti atoms.

25



Figure 1.12: Electronic configuration of V and Cr atoms.
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Figure 1.13: Electronic configuration of Mn and Fe atoms.
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1.2 Introduction to CRYSTAL09 Program

The CRYSTAL09 employs ab-initio computational techniques for computing the elec-

tronic structure and properties of crystalline materials. It is based upon the linear

combination of atomic orbitals (LCAO). The CRYSTAL09 code possesses basis sets,

potentials, geometry optimization techniques to compute the single point energy and

properties of a variety of crystalline structures.

1.2.1 Computational Paremeters

The high-pressure cubic and tetragonal phases of BaFeO3 were computed by em-

ploying BILLY program in combination with CRYSTAL code.

Later, CRYSTAL09 code was employed to compute the elastic constants and bulk

moduli of cubic and tetragonal BaFeO3 phases. The computational parameters were

kept consistent throughout these computations. Shrinking factor was adjusted to 16

32, tolerances on SCF were kept as 9 9 9 9 18 and the tolerances on energy gradient

were also set to 9.

The bulk moduli are computed by employing the ELASTCON (second-order elastic

constants) and EOS (equation of state).
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1.2.2 ELASTCON Algorithm

The computation of elastic constants and the bulk modulus is an automated process

in the ELASTCON program. It begins with determining the crystalline symmetry of

tetragonal BaTiO3 and deformations are applied to exploit the available symmetries.

The analytic first derivative and the numerical second derivative of total energy are

computed for each deformation. Levenberg Marquardt (LM) curve fitting [29] is ap-

plied to compute the elastic constants. The computation of the elastic constants for

tetragonal BaTiO3 is complicated due to its crystalline geometry and the position

of the atoms in the perovskite crystalline structure. With the lowering of crystalline

symmetry, the number of independent elastic constants increases and geometry opti-

mization steps are also increased.

The linear deformation of solids is expressed by Hooke’s law as:

σij =
∑

kl

Cijklεkl (1.5)

where i, j, k, l = 1, 2, 3, σi,j,k,l, εk,l and Ci,j,k,l are stress, strain and second-order elastic

constant tensors.

The second-order elastic constants may be computed with different techniques. Molec-

ular dynamics [30] and ab-initio computational techniques are two prominent meth-

ods to compute the elastic constants and bulk modulus. The ab-initio computational
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techniques compute the second-order elastic constant (SOEC) from the total energy.

The elastic constants can be computed from the Taylor series expansion of the total

energy with respect to the applied strains, as shown in Eq. (1.6). The Taylor series

terms up to the second-order may be utilized for the estimation of the elastic con-

stants if the strains are very small and the higher order terms have negligible effects

on the computational results.

E (V, ε) = E(V0) +
∑

α

σαεα +
V

2

∑

αβ

Cαβεαεβ + ..... (1.6)

The terms α, β = 1, .., 6 express the elastic constants in Voigt notation and V0 is the

equilibrium volume. The second term in Eq. (1.6) may be ignored if the crystalline

geometry of the system is fully optimized. The third term in Eq. (1.6) can be

rewritten to express the elastic constant as the second derivative of the total energy

with respect to the applied strain in a crystalline direction

Cαβ =
1

V

∂2E

∂εα∂εβ 0

. (1.7)

In Eq. (1.7), the terms Cαβ, E, and V express the elastic constant tensor, energy and

volume of the crystalline structure, respectively.

The ab-initio computations are achieved by calculating the analytic first derivative

and numerical second derivative of the total energy with respect to the applied strain.
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The appropriate number of strains are applied in a systematic manner, the elastic

constants are calculated, and the compliance coefficients are computed from Eq. (1.8).

The compliance coefficients are then utilized for the computation of the bulk modulus

as shown in Eq. (1.9).

[S] = [C]−1 (1.8)

B = 1/(S11 + S22 + S33 + 2(S12 + S13 + S23)). (1.9)

The terms Sij and B in Eq. (1.9) express the compliance tensor elements and bulk

modulus, respectively.

1.2.3 EOS Algorithm

The EOS algorithm utilizes systematic changes [31] in the volume around the opti-

mized equilibrium state of a crystalline structure. The EOS calculations are carried

out by selecting a range of volumes around a minimum total energy at an equilibrium

state of the tetragonal BaTiO3 crystalline structure. The EOS algorithm permits

selection of a range of volumes and a number of volumes within that range. At each

of the volumes in the range, the constant volume optimization is carried out. The

energy vs. volume results are curve-fitted to an EOS such as Murnaghan EOS [32]

given in Eq. (1.10).

The Crystal09 code [33] can accomplish an optimization of the internal co-ordinates
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and lattice parameters while keeping the volume constant (see ref. [33] for the detailed

description of CVOLOPT option of geometry optimization). The EOS algorithm

in CRYSTAL09 computes the energy for a range of volumes around the optimized

equilibrium volume, and is equipped with a wide variety of equations of state such as

Birch Murnaghan, 3rd order Birch Murnaghan, logarithmic, Vinet and polynomial. In

this paper, the 3rd order Birch Murnaghan equation of state algorithm was utilized for

computing the bulk modulus from the energy vs. volume computations as expressed

in Eq. (1.10):

E(V ) = BoVo

[
1

B′(B′ − 1)

(
Vo

V

)B′−1

+
V

B′Vo
− 1

B′ − 1

]
+ Eo. (1.10)

In Eq. (1.10), V0 represents the volume at the minimum energy, B0 is the bulk

modulus at pressure P = 0, B′ is the derivative of the bulk modulus B at P = 0

and E0 is the minimum energy. The optimization of crystalline geometry at each

step is done during energy-volume (E-V) calculations. The bulk modulus results are

obtained with Levenberg-Marquardt curve fitting of the E vs. V computations.

1.2.4 BILLY Program

Billy script [5] is employed within CRYSTAL09 code to compute the optimized crys-

talline structure of BaFeO3. There are various options available within BILLY pro-
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gram. The optimized crystalline structure is determined in BILLY program by em-

ploying the small variation in the lattice parameter value for a range from .0001 to 5

percent of a lattice parameter value. The values of the energy within a given range of

the lattice parameter are curve-fitted by a polynomial of third degree. The optimized

lattice parameter is then computed at the lowest energy by the nonlinear least square

curve-fitting of the energy values obtained.

Accuracy of BILLY program was crosschecked by employing the non-linear least

square curve fitting using MATHEMATICA. The values of optimized lattice pa-

rameters computed with BILLY script and MATHEMATICA showed a significant

agreement in the optimized values of lattice parameters.

1.3 Thesis statement

The electronic structure, elastic and ferroic properties of 3-d transition metal oxide

perovskites are computed. A coupling between the crystalline structrure, electronic

charge and spin has been explored. The computational results of electronic structure,

elastic and ferroic properties are compared with experimental values where possible.

The pursuit of electronic spin based electronics may be addressed by the exploration

and development of materials which enable spin states to be manipulated through
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elastic strain. The electronic structure, elastic and ferroic properties of 3-d transition

metal oxide perovskites are of particular interest. ab-initio computational modeling

is a valuable instrument to explore these materials. Model results will be compared

with experimental values where possible.

1.4 Research outline

We performed ab-initio computations to explore the electronic structure and prop-

erties of 3-d transition metal oxides. Hartree Fock (HF), density functional theory

(DFT) and hybrid potentials were employed to determine the electronic structure

of cubic and tetragonal perovskites of T i and Fe transition metals. The electronic

structure and elastic properties of rutile T iO2 were also computed. Moreover, oxides

of 3-d transition metals of Sc, T i, V , Cr, Mn and Fe were chosen to compute the

ferromagnetic and antiferromagnetic properties resulting from spin exchange.

Chapter 2 consists of the ab-initio computations of lattice parameters, elastic con-

stants and bulk moduli of tetragonal BaTiO3. A variety of potentials, basis sets and

algorithms were employed to expand the scope of our computational effort. Following

are the main points of our computational research on tetragonal BaTiO3.
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† ab-initio computations are carried out for determining the electronic structure

and elastic properties of tetragonal BaTiO3.

† Optimized lattice parameters, elastic constants and bulk moduli of tetragonal

are computed with two basis sets, a variety of potentials. The ELASTCON and

EOS programs are employed for computing second-order elastic constants and

bulk moduli.

† The computational values of the lattice parameters, elastic constants and bulk

moduli are compared with experimental values where possible.

Chapter 3 contains the computations of the optimized electronic structure and prop-

erties of rutile T iO2. These computations were carried out to confirm the merit of the

computational methods employed on tetragonal BaTiO3 and rutile T iO2. Following

are the main points of our computational research on rutile T iO2.

† Computations are performed on rutile T iO2 to understand the causes of dis-

agreement between the experimental and computational values of lattice pa-

rameters, elastic constants and bulk moduli.

† ab-initio computations are carried out to determine the electronic structure and

elastic properties of tetragonal rutile T iO2.

† The computations are attempted with new hybrid potentials that introduce the
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effective exchange and correlation effects required for rutile T iO2 computations

[34].

† A comparison between the experimental and computational values of lattice

parameters, elastic constants and bulk moduli is performed.

† The merit of the computational methods is crosschecked by comparing the ex-

perimental and computational results.

In chapter 4, the optimized crystalline structure and elastic properties of cubic and

tetragonal BaFeO3 crystalline structures are explored. The theoretical values of

lattice parameters, elastic constants and bulk moduli from other sources are presented

for comparison where possible.

† ab-initio computations are carried out for determining the electronic structure

and elastic properties of novel cubic and tetragonal BaFeO3. A wide variety of

basis sets and potentials are employed.

† The optimized lattice parameters, elastic constants and bulk moduli are com-

puted for the cubic and tetragonal BaFeO3.

† Computational values of bulk moduli computed from second-order elastic con-

stants and equation of state are compared.
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Chapter 5 contains the computations about the coupling between the crystalline struc-

ture and FM/AFM properties. These computations are performed on cubic BaScO3,

BaTiO3, BaV O3, BaMnO3, BaCrO3 and BaFeO3. We employed the CRYSTAL09

code to detect the interdependence between the FM/AFM spin and external pres-

sure on cubic BaScO3, BaTiO3, BaV O3, BaMnO3, BaCrO3 and BaFeO3. Spin

transitions may be coupled due to a significant overlap in atomic orbitals. We try to

hydrostatically compress and expand the crystalline structures of BaV O3, BaMnO3

and BaCrO3 as well as BaScO3, BaTiO3 and BaFeO3.

† The computations of the FM/AFM energy are done for the optimized cubic

crystalline structure of each oxide.

† The computations are repeated for a variety of material systems to explore

the interaction between the crystalline lattice structure and FM/AFM spin

configuration.

† ab-initio computations of the FM/AFM energy are carried out for HF, DFT

and hybrid potentials to check the consistency.

† The coupling is explored between electron spin transitions, atomic orbitals and

hydrostatic pressure on the cubic crystalline structure of BaScO3, BaTiO3,

BaV O3, BaMnO3, BaCrO3 and BaFeO3.

Chapter 6 contains a detailed summary, conclusions and future research on the tran-
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sition metal oxides. The challenges in the optimized crystalline structure, elastic

properties are discussed. The causes of the disagreement between the computational

and experimental values are highlighted. The significance of an agreement between

the computational values obtained second order elastic constants and bulk moduli is

also discussed for crystalline systems having no experimental values.
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Chapter 2

Crystalline Geometry and Elastic

Properties of Tetragonal BaTiO3

2.1 Introduction

The perovskites are an important class of materials with applications in the fields of

memory, logic design and switching. However, the theoretical exploration of these

materials is not on par with their technological importance. Crystalline BaTiO3

possesses a perovskite geometry which may occur in cubic, tetragonal, rhombohedral

or orthorhombic crystalline phases. There is a general lack of data on the mechanical

properties of all phases of BaTiO3. However, there have been attempts [1, 2, 3, 4,
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5, 6, 7] to understand the electronic and mechanical properties of this material. For

example, the computation of elastic constants and the bulk modulus was reported by

Piskunov et al [8] for cubic BaTiO3 using ab-initio computational methods.

At room temperature, BaTiO3 has tetragonal crystalline geometry. In the past, the

elastic constants and bulk modulus of tetragonal BaTiO3 could not be computed

due to the complexity of the system. Due to recent advancements in basis sets,

geometry optimization, and computational power, ab-initio computational techniques

can now be employed. In this paper, the computations of elastic constants and the

bulk modulus of tetragonal BaTiO3 are obtained with ab-initio Hartree Fock (HF),

density functional theory (DFT) and hybrid potentials using two different basis sets.

An important factor that affects the efficiency and accuracy of computation is the

determination of the optimized geometry of the crystalline structure. The geometry

optimization is an essential step for calculating elastic constants and bulk moduli

because it is assumed that all displacements are made relative to a system in equi-

librium. The total geometry optimization finds both the atomic positions and lattice

parameters of the unit cell which minimize the total energy. In addition, the geom-

etry optimization in the CRYSTAL09 code [9] used here has features which make it

an efficient program for calculating mechanical properties. For example, there is an

option which permits optimization of the system at constant volume, which facilitates
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the determination of a total energy vs. volume curve which is necessary for equation

of state (EOS) calculations.

As a cross-check, the bulk modulus is found independently with the program ELAST-

CON [10] and a separate EOS program. The ELASTCON algorithm determines the

number of crystalline deformations based upon the crystalline geometry of tetragonal

BaTiO3. Geometry optimization of the crystalline structure is carried out after each

deformation. The analytic first derivative, numerical second derivative and Levenberg

Marquardt (LM) curve fitting is performed in sequence to compute elastic constants

for the tetragonal BaTiO3. A detailed discussion of the ELASTCON program can

be found in refs. [10, 11].

The task of crystalline geometry optimization of the perovskite BaTiO3 has remained

a challenge because the crystalline system undergoes a sudden decrease in energy

when it is deformed. This sudden decrease in the strain vs. energy computations has

been reported earlier [1, 12, 13] and was observed with the ELASTCON algorithm.

Detailed energy vs. strain computations were carried out to explore this sudden

decrease in energy.
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2.1.1 ELASTCON Algorithm

The computation of elastic constants and the bulk modulus is an automated process

in the ELASTCON program. It begins with determining the crystalline symmetry of

tetragonal BaTiO3 and deformations are applied to exploit the available symmetries.

The analytic first derivative and the numerical second derivative of total energy are

computed for each deformation. Levenberg Marquardt (LM) curve fitting [14] is ap-

plied to compute the elastic constants. The computation of the elastic constants for

tetragonal BaTiO3 is complicated due to its crystalline geometry and the position

of the atoms in the perovskite crystalline structure. With the lowering of crystalline

symmetry, the number of independent elastic constants increases and geometry opti-

mization steps are also increased.

The linear deformation of solids is expressed by Hooke’s law as:

σij =
∑

kl

Cijklεkl (2.1)

where i, j, k, l = 1, 2, 3, σi,j,k,l, εk,l and Ci,j,k,l are stress, strain and second-order elastic

constant tensors.

The second-order elastic constants may be computed with different techniques. Molec-

ular dynamics [15] and ab-initio computational techniques are two prominent meth-

ods to compute the elastic constants and bulk modulus. The ab-initio computational
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techniques compute the second-order elastic constant (SOEC) from the total energy.

The elastic constants can be computed from the Taylor series expansion of the total

energy with respect to the applied strains, as shown in Eq. (2.2). The Taylor series

terms up to the second-order may be utilized for the estimation of the elastic con-

stants if the strains are very small and the higher order terms have negligible effects

on the computational results.

E (V, ε) = E(V0) +
∑

α

σαεα +
V

2

∑

αβ

Cαβεαεβ + ..... (2.2)

The terms α, β = 1, .., 6 express the elastic constants in Voigt notation and V0 is the

equilibrium volume. The second term in Eq. (2.2) may be ignored if the crystalline

geometry of the system is fully optimized. The third term in Eq. (2.2) can be

rewritten to express the elastic constant as the second derivative of the total energy

with respect to the applied strain in a crystalline direction

Cαβ =
1

V

∂2E

∂εα∂εβ 0

. (2.3)

In Eq. (2.3), the terms Cαβ, E, and V express the elastic constant tensor, energy and

volume of the crystalline structure, respectively.

The ab-initio computations are achieved by calculating the analytic first derivative

and numerical second derivative of the total energy with respect to the applied strain.
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The appropriate number of strains are applied in a systematic manner, the elastic

constants are calculated, and the compliance coefficients are computed from Eq. (2.4).

The compliance coefficients are then utilized for the computation of the bulk modulus

as shown in Eq. (2.5).

[S] = [C]−1 (2.4)

B = 1/(S11 + S22 + S33 + 2(S12 + S13 + S23)). (2.5)

The terms Sij and B in Eq. (2.5) express the compliance tensor elements and bulk

modulus, respectively.

2.1.2 EOS Algorithm

The EOS algorithm utilizes systematic changes [11] in the volume around the opti-

mized equilibrium state of a crystalline structure. The EOS calculations are carried

out by selecting a range of volumes around a minimum total energy at an equilibrium

state of the tetragonal BaTiO3 crystalline structure. The EOS algorithm permits

selection of a range of volumes and a number of volumes within that range. At each

of the volumes in the range, the constant volume optimization is carried out. The

energy vs. volume results are curve-fitted to an EOS such as Murnaghan EOS [16]

given in Eq. (2.6).

The Crystal09 code [9] can accomplish an optimization of the internal co-ordinates
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and lattice parameters while keeping the volume constant (see ref. [9] for the detailed

description of CVOLOPT option of geometry optimization). The EOS algorithm

in CRYSTAL09 computes the energy for a range of volumes around the optimized

equilibrium volume, and is equipped with a wide variety of equations of state such as

Birch Murnaghan, 3rd order Birch Murnaghan, logarithmic, Vinet and polynomial. In

this paper, the 3rd order Birch Murnaghan equation of state algorithm was utilized for

computing the bulk modulus from the energy vs. volume computations as expressed

in Eq. (2.6):

E(V ) = BoVo

[
1

B′(B′ − 1)

(
Vo

V

)B′−1

+
V

B′Vo
− 1

B′ − 1

]
+ Eo. (2.6)

In Eq. (2.6), V0 represents the volume at the minimum energy, B0 is the bulk modulus

at pressure P = 0, B′ is the derivative of the bulk modulus B at P = 0 and E0 is

the minimum energy. The optimization of crystalline geometry at each step is done

during energy-volume (E-V) calculations. The bulk modulus results are obtained

with Levenberg-Marquardt curve fitting of the E vs. V computations.

2.2 Choice of basis sets

The selection of basis sets affects the calculation of the elastic constants and bulk mod-

ulus as reported in refs. [17, 18, 19, 20], particularly for a material such as BaTiO3.
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The first basis set chosen uses the 8-411d1 basis set for oxygen and HAYWSC ECP

basis set for Ba and Ti atoms from the Crystal06 basis set library [9] because of its

prior use in BaTiO3 [8, 19]. For comparison, a second basis set, used previously for

urea [17], was selected using a 6-31d1 set for oxygen and the HAYWSC ECP for Ba

and Ti. We have named the combination of basis sets 8-411d1 and HAYWSC ECP

as basis set 1 and 6-31d1 and HAYWSC ECP as basis set 2.

As will be shown, the variation in the values of elastic constants and bulk modulus

confirms the fact that the choice of basis sets can severely affect the results. The

choice of basis sets indicates a trade-off between the reliability of the results and the

required computational time. Our approach is to check the credibility of the results

by employing the basis sets in two different algorithms for the bulk modulus and com-

paring the results attained using these basis sets with each other and experiment. In

contrast with 6-31d1, the 8-411d1 basis set is optimized to suit the nature of chemical

bonding and atomic position of oxygen in the transition metal oxide ScMnO3 [20].

The positions of the oxygen atoms in ScMnO3 is similar to a BaTiO3 unit cell which

has a slightly off-centered T i atom caged in the middle of an octahderal formed by

six oxygen atoms. Because of this, basis set 1 (with the 8-411d1 set for oxygen) is

expected to provide better results for BaTiO3.
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2.3 Selection of Hartree Fock, DFT and hybrid po-

tentials

The computations of elastic constants and the bulk modulus were performed with the

potentials HF, DFT and hybrid mixing of the former with the latter. The DFT and

hybrid exchange correlation potentials are employed due to the lack of correlation of

HF as reported in [8].

In a hybrid potential, there is a significant balance between the electron exchange and

correlation for a crystal field formed between the transition metal T i and O nearest

neighbors. Due to the effect of the crystal field, the transition metal oxides are

insulators with a significantly higher band gap. This is unlike the situation in oxygen

with s and p electrons resulting in an itinerant and delocalized electron gas. These

d electrons are highly localized resulting in wide band gaps and a significant change

in the probability density of inter-atomic and intra-atomic orbitals. The electron

localization affects the choice of a basis set for oxygen atoms. It is very important

that the basis set is optimized for the valence electrons of oxygen which are covalently

bonded with a transition metal.

Corà [19] utilized HF, DFT and hybrid exchange correlation potentials and a 8-411d1

basis set for the oxygen atom of cubic BaTiO3 to calculate the lattice constants, bulk

51



modulus, and band gap. In that work, hybrid exchange and correlation potentials

were used with an optimum percentage of HF exchange to account for the exchange

and correlation parts of a highly correlated transition metal oxide. Hybrid exchange

correlation potentials were found to be efficient, reliable and accurate in comparison

with HF and DFT potentials. Based on that prior work, hybrid exchange potentials

are used here for the tetragonal phase of BaTiO3.

2.4 Discussion of computational results

The comparison of lattice constants a, c and the ratio c/a with experimental values is

shown in Tables 2.1 and 2.2 for basis sets 1 and 2, respectively. The values of optimized

lattice constants have shown a better agreement with the experimental values for basis

set 1 than basis set 2. The computational values of a and c are slightly higher than the

experimental values for DFT-PWGGA, DFT-BLYP, DFT-B3LYP and DFT-B3PW

exchange correlation potentials employed with basis set 1. The optimized lattice con-

stants a and c computed with HF and DFT-LDA exchange correlation are included

for reference but are not expected to produce good agreement with experiment be-

cause the HF potential has no correlation and the DFT-LDA assumes a homogeneous

electron gas. Interestingly, the optimized values of lattice constants a and c computed

with basis set 2 show relatively large deviations from the experimental values of 3.99

and 4.03. The values of the optimized lattice constants a and c are equal for Hartree
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Fock, exchange correlation and hybrid potentials employing basis set 2 as shown in

Table 2.2. The fact that the tetragonal character has been missed for all potentials

chosen suggests that basis set 2 is inadequate for this system. It is generally observed

that local DFT (LDFT) exchange correlation potentials underestimate and nonlocal

DFT (NLDFT) exchange correlation potentials overestimate the lattice constants.

The computational values of elastic constants and bulk moduli show a trend of better

agreement with the experimental values for basis set 1 than for basis set 2 as shown in

Tables 2.3 and 2.4. Likewise, the comparison of computational values of bulk moduli

computed with the EOS method indicates a better agreement with experimental val-

ues as shown in Tables 2.5 and 2.6 for basis set 1 relative to basis set 2, respectively.

Also given in those tables are the values of the bulk modulus determined from the

ELASTCON calculation and the agreement in B using two, independent, methods

demonstrates the quality of the numerical methods employed. The computational val-

ues of bulk moduli in Table 2.5 calculated with basis set 1, for DFT-BLYP, PWGGA,

B3LYP and B3PW potentials, fall within the range of experimental values of bulk

modulus reported by [21]. The trend of consistency between the computational and

experimental values of elastic constants and bulk moduli for basis set 1 vs. basis set

2 can also be seen by comparing results of elastic constants and bulk moduli shown

in Figures 2.1-2.4. Comparing Figures 2.1 and 2.2, it is evident that basis set 2 pro-

duces results for the bulk modulus consistently larger than experiment, whereas the

basis set 1 results effectively bracket experiment. Those figures also show the good
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agreement between the two methods used to compute B. Figure 2.3 using basis set

1 shows better agreement with experiment for the elastic constants than basis set 2

used in Figure 2.4, particularly for the hybrid potentials. Figures 2.3 and 2.4 also

indicate the spread in experimental values.

The discrepancy in results for lattice constants, elastic constants, and bulk modulus

from basis set 2 and experiment [22, 23] is the consequence of the coefficients and

exponents of the outermost Gaussian functions in a 6-31d1 basis set for the oxygen

atom [17]. The 6-31d1 basis set was initially optimized for the oxygen atom in a

unit cell of urea [17]. Therefore, the values of coefficients and exponents of these

sp Gaussians are significantly larger to optimize the basis set for the requirements

of hydrogen bonding and the peculiar position of the oxygen atom in a unit cell of

urea [17, 18]. As a result, the values of elastic constants, particularly C11, C33 and

consequently bulk moduli (B), are largely affected by the values of these coefficients

and exponents of sp type Gaussian functions. This is apparent from Table 2.4 where

the values of C11 and C33 are consistently much larger than experiment and the results

using basis set 1, Table 2.3. The basis sets are merely approximations of wavefunctions

for valence electrons taking part in the chemical bonding. Therefore, the difference

in the nature of chemical bonding in a urea vs. BaTiO3 unit cell increases this

inconsistency in the computational values for basis set 2 in comparison with basis set

1 and experimental values. The nature of chemical bonding is complex in BaTiO3 and

is different from the hydrogen bonding of urea. Moreover, the basis set 8-411d1 has
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already been optimized for ab-initio computations of magnetic properties of ScMnO3

[20]. The transition metal oxide like BaTiO3 is a highly correlated material system

due to the contracted nature of its d orbitals. The localized nature of transition

metal oxides demands an oxygen basis set which is specially optimized to suit these

transition metal oxides as in refs. [19, 20, 8].

Regarding basis set 1, the DFT-LDA have shown higher bulk modulus values due

to the underestimation of the optimized lattice constant values, whereas the compu-

tations done with DFT-PWGGA and DFT-BLYP have shown lower values of bulk

modulus due to the overestimation of optimized lattice constants. The computations

done with hybrid potentials have shown the optimum values of bulk modulus as a

consequence of the fact that the optimized lattice constants are comparatively close

to the experimental values. In contrast with these results, the computational values

of bulk modulus are higher with the basis set 2 as reported in Tables 2.5 and 2.6. The

large increase in computational values of bulk modulus for the basis set 2 is attributed

to the deviation in optimized lattice constants from the experimental values.

The computational results obtained with the PWGGA and hybrid potentials and basis

set 1 are expected to be relatively accurate based on prior work for cubic BaTiO3

[8] and rutile T iO2 [10] crystalline systems. Moreover, the values of bulk modulus

computed with ELASTCON and EOS algorithms are sufficiently close to each other

for the same potential and basis set. These facts point to the importance of selecting a

55



variety of basis sets, potentials and algorithms and comparing the results. Therefore,

the computational values of elastic constants computed with hybrid potentials are

reliable if we ignore the variations in computations originating due to the order-

disorder nature of the tetragonal BaTiO3.

While comparing the results of elastic constants and bulk moduli obtained with basis

set 1 vs. experimental values and basis set 2 vs. experimental values, the former shows

a relatively better agreement in comparison with the latter [24, 25, 26, 27, 21]. This

agreement is specifically significant in the case of a hybrid exchange and correlation

potential used with basis set 1. The computational accuracy of hybrid exchange and

correlation potentials has been reported by Corà [19]. The computational values of

bulk moduli of cubic BaTiO3 are highly accurate for the optimum percentage of

Hartree Fock and DFT exchange and DFT correlation potential. The accuracy of

a hybrid exchange correlation potential is ingrained in the exchange and correlation

parts of hybrid potential which improves the lattice parameters, bulk modulus and

band gap of cubic BaTiO3 as reported in ref. [19].

Regarding any comparisons made of computational to experimental values, it should

be noted that for this system there is a considerable variation between the exper-

imental values of elastic constants and bulk moduli [24, 25, 27, 21]. These varia-

tions in computational and experimental values of elastic constants and bulk moduli

[24, 26, 28, 6, 21] have been constantly observed in a variety of experimental results.
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The causes of variation in experimental and computational values of elastic constants

and bulk modulus may not be completely known. For the case of computational

values, there are significant contributions due to an inefficient basis set, as in case of

basis set 2, which makes the choice basis set so vital for the accuracy of results. On

the other hand, the variation in computational and experimental values may not be

an isolated effect due to the effect of the crystalline geometry on the computational

and experimental values. (see A.0.1 and A.0.2 from Chemical Physics Letters)

2.5 Conclusions

The second order elastic constants and equations of state parameters were obtained

for tetragonal BaTiO3. We have observed close agreement between the values of the

bulk modulus independently computed with ELASTCON and EOS methods. There

have been attempts [29, 30, 31] to compute the different properties of tetragonal

BaTiO3. However, the computational values of elastic constants and bulk modulus

of tetragonal BaTiO3 are not available in the literature. We have further verified the

computational accuracy of the results by implementing different algorithms, poten-

tials and basis sets for rutile T iO2 [10] and cubic BaTiO3 [8]. The computational

results obtained with these crystalline systems have provided additional evidence for

the accuracy of the computational results presented here for tetragonal BaTiO3. It

has been observed that the crystalline structure and position of atoms in tetragonal
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phase [32, 33] has increased the complexity of our computations. The agreement in

computational values of bulk modulus provided an opportunity to verify the compu-

tational accuracy of elastic constants of tetragonal BaTiO3.

The computational results of the optimized lattice constants obtained with basis

set 1 and exchange correlation potential PWGGA and hybrid exchange correlation

potentials B3LYP and B3PW have shown good agreement with respect to experiment.

Therefore the employment of HF, DFT and hybrid exchange correlation potentials

have essentially reinforced the computational merit of hybrid potentials as was found

by Corà [19] for cubic phase BaTiO3. The variations in computational values of

elastic constants and bulk moduli are mainly attributed to the quality of basis sets

and choice of potential. Basis set 1 is better designed to represent the interatomic

and intra-atomic chemical nature of O, T i and Ba for BaTiO3 and, as expected,

provided better agreement with experiment than basis set 2. It is important to note

that differences in the sp orbital basis set for oxygen resulted in large differences in the

C11 and C33 elastic constants. The inconsistency in computational results of elastic

constants and bulk modulus for the two chosen basis sets compared with experimental

values points at the importance of choosing an appropriate basis set for reliable and

accurate ab-initio computations.

The order -disorder nature [33] of perovskite BaTiO3 is another important factor that

makes the computation of optimum values of the bulk modulus problematic, requiring
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accurate basis sets and potentials. It has been observed that the computation of

the bulk modulus for tetragonal BaTiO3 is coupled intimately with the geometry

optimization of its complex crystalline structure. Slight deviations in the values of

optimized lattice constants a and c have shown large effects on the computational

values of bulk moduli.

Based upon our computational results and the experimental data on tetragonalBaTiO3,

we conclude that there is a degree of consistency in the elastic properties. Further

work on basis sets and exchange correlation potentials is necessary for improved com-

parison with experiment. Additionally, improvements in the experiments are impor-

tant for continued progress on this important crystalline system.

Table 2.1: The values of relaxed lattice constants (in
o
A), ambient

volume (in
o
A3), and total energy, E (in a.u.), for tetragonal BaTiO3.

The computations were done by using Hartree-Fock, DFT LDA,
PWGGA, BLYP, B3LYP and B3PW potentials using basis set 1.
(see section 2.2).

a c c/a Vol. E
HF 3.96 4.26 1.07 67.17 -307.5388

LDA 3.93 3.93 1.00 61.12 -307.8828
PWGGA 4.00 4.03 1.00 64.75 -309.5928

BLYP 4.05 4.14 1.02 68.12 -309.4749
B3LYP 4.01 4.10 1.02 66.15 -309.4084
B3PW 3.98 4.02 1.01 63.75 -309.5360

Exp. [22, 23] 3.99 4.03 1.01 64.16 -
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Table 2.2: The values of relaxed lattice constants (in
o
A), ambient

volume (in
o
A3), and total energy, E (in a.u.), for tetragonal BaTiO3.

The lattice constants are computed with Hartree-Fock, DFT LDA,
PWGGA, BLYP, B3LYP and B3PW potentials with basis set 2
(see section 2.2). O-631d1 basis set for O atom was not optimized
for transition metal oxides resulting in the lattice parameters that
differ significantly from experimental values.

a c c/a Vol. E
HF 3.98 3.98 1.00 63.23 -307.4627

LDA 3.90 3.90 1.00 59.50 -3.07.7595
PWGGA 3.95 3.95 1.00 61.94 -309.4862

BLYP 4.00 4.00 1.00 64.06 -309.3636
B3LYP 3.97 3.97 1.00 62.66 -309.3082
B3PW 3.94 3.94 1.00 61.27 -309.4393

Exp. [22, 23] 3.99 4.03 1.01 64.16 -

Table 2.3: The elastic constants and bulk modulus computational
results using the Hartree Fock and DFT LDA, PWGGA, BLYP,
B3LYP and B3PW potentials with basis set 1 (see section 2.2). All
values are in GPa.

C11 C12 C13 C33 C44 C66 B
HF 308. 128. 88. 66. 121. 163. 62.

LDA 444. 93. 93. 444. 224. 224. 210.
PWGGA 354. 76. 56. 227. 175. 194. 139.

BLYP 285. 82. 58. 146. 73. 160. 110.
B3LYP 315. 95. 64. 166. 76. 177. 123.
B3PW 371. 89. 61. 228. 148. 204. 145.

Exp.[24] 211±6 107±5 114±8 160 ±11 56.2±1.7 127±4 125-141[21]
[25] 242.7 128.3 122.6 147.9 54.9 120.1 -
[27] 275.1 178.9 151.55 164.8 54.3 113.1 -
[26] 222.9 - 147.0 240.0 61.7 133.7 -
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Table 2.4: The elastic constants and bulk modulus computations
using the Hartree Fock, DFT LDA, PWGGA, BLYP, B3LYP and
B3PW potentials with basis set 2 (see section 2.2). All values are
in GPa.

C11 C12 C13 C33 C44 C66 B
HF 408. 154. 154. 408. 185. 185. 239.

LDA 480. 129. 129. 480. 163. 163. 246.
PWGGA 445. 107. 107. 445. 214. 214. 220.

BLYP 382. 111. 111. 382. 185. 185. 201.
B3LYP 414. 123. 123. 414. 200. 200. 220.
B3PW 463. 119. 119. 463. 223. 223. 234.

Exp.[24] 211±6 107±5 114±8 160 ±11 56.2±1.7 127±4 125-141[21]
[25] 242.7 128.3 122.6 147.9 54.9 120.1 -
[27] 275.1 178.9 151.55 164.8 54.3 113.1 -
[26] 222.9 - 147.0 240.0 61.7 133.7 -

Table 2.5: Equation of state results for tetragonal BaTiO3 with the
Birch Murnaghan 3rd order equation. The energy-volume curve
was fitted with eleven points and the range of volume around equi-
librium was chosen as ±10% using basis set 1 (see section 2.2).
The value of the bulk modulus, BEL, as calculated from Eq. (2.5)
is given in the last column for comparison.

BEOS(GPa) Vo(
o
A3) E0(a.u.) BEL(GPa)

HF 62. 67.41 -307.5386 62.
LDA 198. 61.16 -307.8827 210.

PWGGA 144. 64.75 -309.5928 139.
BLYP 96. 68.09 -309.4749 110.

B3LYP 104. 66.07 -309.4083 123.
B3PW 149. 63.82 -309.5360 145.

Exp.[21] 125-141 - -
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Table 2.6: Equation of state data for BaTiO3 using the 3rd-order
Birch Murnaghan equation. Eleven points in the energy-volume
curve were used and the range of volumes used around equilibrium
was ±10% using basis set 2 (see section 2.2). The value of the bulk
modulus, BEL, as calculated from Eq. (2.5) is given in the last
column for comparison.

BEOS(GPa) Vo(
o
A3) E0(a.u.) BEL(GPa)

HF 202. 64.23 -307.4678 239.
LDA 238. 59.07 -307.7672 246.

PWGGA 221. 61.93 -309.4862 220.
BLYP 203. 64.09 -309.3636 201.

B3LYP 229. 62.77 -309.3082 220.
B3PW 230. 61.41 -309.4395 234.

Exp. [21] 125-141 - -
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Figure 2.1: The computational values of bulk moduli are shown for basis
set 1 computed with HF, DFT and hybrid functionals. The minimum and
maximum experimental values of bulk moduli, titled as Exp.(Min.) and
Exp.(Max.), are taken from ref. [21]. All values are in GPa.
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Figure 2.2: The computational values of bulk moduli are shown for basis
set 2 computed with HF, DFT and hybrid functionals. The minimum and
maximum experimental values of bulk moduli, titled as Exp.(Min.) and
Exp.(Max.), are taken from ref. [21]. All values are in GPa.

64



Figure 2.3: The computational and experimental values of elastic constants
and bulk moduli are shown for basis set 1 computed with HF, DFT and
hybrid exchange correlation potentials. The experimental values titled as
Exp.1, Exp.2, Exp.3 and Exp.4 are taken from refs.[24, 25, 27, 26, 21]. All
values are in GPa.
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Figure 2.4: The computational and experimental values of elastic constants
and bulk moduli are shown for basis set 2 computed with HF, DFT and
hybrid exchange correlation potentials. The experimental values titled as
Exp.1, Exp.2, Exp.3 and Exp.4 are taken from refs.[24, 25, 27, 26, 21]. All
values are in GPa.
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Chapter 3

Electronic Structure and Properties

of Rutile T iO2

3.1 Introduction

Titanium dioxide (T iO2) is an important transition metal oxide, which exists in

anatase, rutile and brookite phases [1]. There is a considerable interest in the fabri-

cation [2] of this material. It is employed extensively in optical devices, photovoltaic

cells, gas sensors, and electrochemical storage devices [3]. The thin films of rutile

T iO2 have been widely tested due to their potential as materials suitable for solar

cells, self-cleaning coatings and photocatalysis applications. Due to its technolog-
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ical importance, the crystalline structure and properties of rutile T iO2 phases has

remained a major focus of researchers [1, 4, 5].

Ab-initio Hartree Fock (HF) and density functional theory (DFT) techniques are

employed by various research groups to compute the optimized electronic structure,

band gap and charge density of rutile T iO2 [6, 7, 1, 8].

The ab-initio computation of the elastic constants and bulk moduli of rutile T iO2 is

presented in this work using the CRYSTAL09 code [9]. The availability of precise and

accurate values of experimental lattice parameters, elastic properties [10] and chemical

bonding [11] has provided a considerable challenge to ab-initio computational codes.

Computational codes based upon the linear combination of atomic orbitals (LCAO)

and plane waves (PW) were employed to compute the optimized crystalline structure

of rutile T iO2 [6, 7, 1, 8, 5]. However, the inadequacy of the existing potentials [1, 7, 6]

to accurately predict the physics of T iO2 has motivated a detailed analysis of a wide

range of existing and new potentials [12, 6]. Research on the structural and electronic

properties has confirmed the relative accuracy of the hybrid potentials [12, 6, 7, 1, 6].

There has been no systematic effort to explore the elastic properties of rutile T iO2

using the LCAO code CRYSTAL09 [9]. CRYSTAL09 possesses a combination of ge-

ometry optimization techniques, basis sets, potentials and algorithms such as ELAST-

CON [9] (for second-order elastic constants) and EOS (equation of state) [9]. The

experimental values of lattice parameters, elastic constants and bulk moduli [10] of
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the T iO2 rutile phase provided an opportunity to confirm the relative merit of the

self consistent field (SCF) process, the ELASTCON and EOS programs [13, 14].

3.2 Computational procedure

We employed two different basis sets and a variety of potentials to compute the

optimized lattice constants and elastic properties (see section 3.3 for the discussion of

potentials and basis sets). The ELASTCON [9] and EOS [9] algorithms are employed

to compute the elastic constants and bulk moduli of rutile T iO2 in an automated

manner.

The two basis sets employed are named as basis set 1 and 2 (see section 3.3 for

basis set definitions). Optimized lattice parameters are computed with HF, DFT

and hybrid potentials using the two unique basis sets. The computations of elastic

constants and bulk moduli are performed by employing the ELASTCON algorithm

[9]. The computations of the equation of state and bulk moduli are carried out by

the EOS algorithm. Finally, the bulk moduli obtained with ELASTCON and EOS

algorithms are compared.

Optimized lattice parameters, elastic constants and bulk moduli, obtained with basis

set 1 and 2, are also compared with the experimental values where possible.
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A possible contribution of this research work is to assist a general reader in under-

standing the complex dependance of the elastic properties on the quality of basis sets,

potentials, SCF process, ELASTCON and EOS parameters. Experimental values of

lattice parameters, elastic constants and bulk moduli of rutile T iO2 provide additional

assistance for implementation of ELASTCON and EOS programs.

A significant number of computations and experiments are conducted on rutile T iO2.

It is also noticed that a high precision has been achieved in the experimental lattice

parameters of rutile T iO2 [15]. The availability of the experimental values of lattice

constants, elastic constants and bulk moduli of rutile T iO2, provides a highly valuable

resource to conduct new research. In contrast, computations of elastic constants and

bulk moduli have been done in an isolated and non-systematic manner.

A vast majority of ab-initio computations have already tried DFT exchange and

correlation potentials [7, 16, 1]. The need for hybrid potentials arose because HF

underestimated and DFT potentials overestimated the lattice parameters of rutile

T iO2. It has been found that the higher exchange and correlation associated with the

transition metals requires new hybrid potentials with variable exchange and correla-

tion [7, 16, 1]. The HF, DFT as well as hybrid potentials are employed in this work

[9] to fill the gap with regard to the efficient, accurate and systematic computation

of elastic properties of rutile T iO2.
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3.3 Potentials and basis sets

The HF, local and non-local DFT potentials have consistently resulted in inadequate

results of the lattice parameters. First principles computations using PW codes [17,

18, 19, 20, 21, 22] can not employ the hybrid mixing of HF exchange and DFT

correlations.

Therefore, we employed hybrid potentials in our computations of elastic properties

as suggested in refs. [6, 1, 7, 16]. The hybridization between the T i d-orbitals and

O p-orbitals requires that an adequate percentage of exchange and correlation is

introduced in the potential while computing the electronic structure of a material

[23]. The DFT-PWGGA and DFT-PBE potentials lack the exchange part and HF

lacks the correlation part barring them from being as accurate as hybrid potentials.

In addition to using hybrid potentials, the proper choice of basis sets, SCF tolerances,

ELASTCON and EOS parameters can achieve the optimum efficiency as well as

accuracy (see sections 3.4 and 3.6). Moreover, it is necessary to employ adequate

SCF tolerances consistently.

We selected the O-8411d1[24] and O-6311d1 basis sets for O atoms and defined these

basis sets as basis set 1 and 2, respectively. Both basis sets used a pseudopotential

basis set for the T i atom [9]. The aim of employing these combinations was to separate
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the basis set dependency from other factors such as potentials, SCF parameters,

ELASTCON and EOS tolerances.

The purpose of selecting basis set 1 and 2 is to understand the role of a basis set in

combination with each individual potential. For basis set 1 and 2, the computations

of lattice parameters, elastic constants and bulk moduli are performed with a specific

purpose to assist a general reader.

The sensitivity of of the elastic properties with respect to deviations in the lattice

parameters [1] suggests that a detailed set of potentials must be employed to compute

the lattice parameters and understand their influences on the elastic constant values.

The impact of a particular potential and basis set on the computational values of

lattice parameters, elastic constants and bulk moduli values can be understood by

careful comparisons of results achieved for a variety of these basis sets and potentials.

Further, we have also performed comparisons of our computational results for each

potential and basis set combination with the refs. [1, 16, 7] to confirm their research

findings.
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3.4 Experiments

Due to its technological importance, a significant number of experiments have been

conducted on rutile T iO2 [25, 22, 10]. The experimental results of the electronic

structure, band gap, optic and elastic properties are available for rutile T iO2. The

lattice parameters of the rutile T iO2 have been determined [15] precisely up to the

fifth significant figure. In addition, the pressure and temperature dependence of elastic

constants and bulk moduli have also been explored through experimental means.

The experimental and computational values of elastic constants and bulk moduli [10]

of rutile T iO2 have special significance as they serve the purpose of linking these

vital branches of research. The importance of achieving a consistency in the lattice

parameters of rutile T iO2 among diverse experimental techniques and computational

codes is a remarkable achievement which has been repeatedly observed [6, 7, 1, 16].

However, there are deviations in the experimental values of elastic constants and bulk

moduli due to their dependence on the experimental details, pressure and temperature

conditions [26]. Therefore, the sources that cause the variations in the experimental

values[27, 26, 10, 28] must also be considered. However, the dependence of the exper-

imental results on the nature of the experimental set up and ambient conditions can

be explored and understood by robust and reliable ab-initio computational methods.
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Fortunately, a detailed research is carried out by ref. [29] on variations in experimental

and computational values of elastic constants and bulk moduli of rutile T iO2. The

elastic properties vary with changes in temperature and pressure conditions.

An increase in pressure has shown an increase in the elastic constants and bulk mod-

uli values [29] for rutile T iO2. Moreover, the values of C11,C33, C66, C12 and C13

increase with increasing pressure whereas the pressure dependence of C44 is not clear.

Moreover, the elastic constants are nonlinearly dependent on the temperature. Our

ab-initio computational values of elastic constants and bulk moduli are relatively in-

dependent of pressure variations to provide a reliable and independent set of values.

Another important area where the experiments are performed is the volume charge

density and chemical bonding of rutile T iO2 [11]. The quantitative convergent beam

electron diffraction (QCBED) technique was employed to determine the experimental

volume charge density and chemical bonding. The experimental data was utilized to

confirm the contribution of ionic and covalent bonding in rutile T iO2. The exper-

imental charge density maps predicted the the p − d hybridization between T i 3-d

electrons and O ligands.

The charge density influenced by highly localized d-orbitals of T i atoms influences

the selection of proper basis sets and potentials in ab-initio computations (see section

on the potential, basis sets 3.3 and discussion of results 3.6).
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Unlike the precision in the experimental lattice parameters, the computational values

of lattice parameters vary in the second significant figures. The variation in the lat-

tice parameter values is partially due to the complex nature of the chemical bonding

of rutile T iO2. Moreover, the sensitivity of the computational values of lattice pa-

rameters is attributed to the choice of potentials and basis sets. However, the hybrid

potentials can map the chemical bonding and charge density of rutile T iO2 with a

considerable accuracy.

In general, the ab-initio computations are lacking the level of accuracy of the exper-

iments. However, the extensive computational effort by refs. [7, 16, 1, 6, 30] has

provided guidance for the present study.

3.5 Computational parameters

For the computation of lattice parameters and elastic properties, the SCF toler-

ances and other computational parameters were carefully chosen. The ELASTCON,

EOS and SCF tolerances were adjusted due to the highly localized nature of transi-

tion metal T i d-orbitals. The ELASTCON and other parameters were adjusted as

STEPSIZE= 0.01, NUMDERIV = 7, LGRID = (75, 434) and SHRINK= 9× 9.

The SCF tolerances were fixed as TOLINTEG=9 9 9 9 18 and TOLDEE= 9 [22].
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3.6 Discussion of results

Tables 3.1 and 3.2 show the optimized lattice parameters computed with basis sets

1 and 2, respectively. Considerable agreement between the computational and ex-

perimental values of lattice parameters computed with DFT-PWGGA, DFT-PBE,

DFT-B3LYP and DFT-B3PW potentials can be seen in Table 3.1. The experimental

values from refs. [2, 10, 4] are provided at the bottom of Table 3.1. The optimized

lattice parameters show less agreement with the experimental values in case of basis

set 2 as shown in Table 3.2.

Elastic constants and bulk moduli computed with ELASTCON are presented in Ta-

bles 3.3, 3.4 and Figures 3.1, 3.2. For basis set 1, the agreement between the com-

putational and experimental values of elastic constants is better with non-local DFT

and hybrid potentials only. The disagreement between the computational and exper-

imental values of elastic constants is significantly higher for basis 2 as shown in Table

3.4. The values of elastic constants and bulk moduli are higher than the experimental

values as the O-6311d1 basis set fails to represent the chemical bonding required for

rutile T iO2.

Tables 3.5 and 3.6 show the comparisons between the bulk moduli values computed

with ELASTCON and EOS algorithms. Excellent agreement is observed between the

computational values of bulk moduli achieved with ELASTCON and EOS programs
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(see Figure 3.2). The agreement between the bulk moduli values points at the compu-

tational accuracy of the ELASTCON and EOS programs. Moreover, it is important

that a good agreement in computational results should also be crosschecked with the

experimental values of the bulk moduli given at the bottom of Tables 3.5 and 3.6.

Table 3.5 shows a better agreement between the computational and experimental

values [4, 22, 1, 5].

However, there is a considerable disagreement between the computational and ex-

perimental values of C11, C12, C13, C33, C44, C66 and B for basis set 1 and 2 with

HF and DFT-LDA potentials as shown in Tables 3.3 and 3.4. On the other hand,

the computational values of C11, C12, C13, C33, C44,C66 and B provide a significant

agreement with the experimental values computed with DFT-PWGGA, DFT-PBE

and hybrid potentials for basis set 1 as shown in Table 3.3 and Figure 3.1.

In addition, slightly better agreement between the computational and experimental

values of lattice parameters, elastic constants and bulk moduli is observed for the

hybrid potentials. The hybrid potentials have shown better agreement due to the

adequate percentage of exchange and correlation contributions to total energy of the

crystal specifically important for the highly correlated physics of the T i transition

metal. The localized nature of the T i atom d-orbitals contributes to the higher

exchange and correlation effects.

The HF, local DFT and non-local DFT potentials can not predict results as effectively
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as hybrid potentials. Moreover, the computational values of lattice parameters, elastic

constants and bulk moduli deviate from the corresponding experimental values for

HF and DFT-LDA potentials [6]. It can be easily seen in Tables 3.1-3.6. In fact, the

lack of correlation in HF and the localized nature of DFT-LDA potentials make these

potentials less effective for transition metal oxides which possess the covalent as well

as ionic nature of chemical bonding.

It must be mentioned that DFT-PWGGA and DFT-PBE exhibit better agreement

with experimental results due to the non-localized nature of the rutile T iO2 volume

charge density. However, the agreement between the DFT-PWGGA, DFT-PBE and

experimental results of elastic constants may not be adequate which can be confirmed

by values in Tables 3.2, 3.4 and 3.6.

3.7 Conclusions

The technological applications of titanium dioxide (T iO2) have generated a signifi-

cant research activity in experimental and computational sciences. Computational

research has resulted in testing the merit of basis sets, potentials and new programs.

The elastic properties of rutile T iO2 are computed and compared with experimental

values. The dependance of experimental values on experimental set up, temperature

and pressure conditions can not be ignored. The computations of elastic constants
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and bulk moduli by a wide variety of ab-initio techniques provide results to generate

new experiments on this material.

We have separated the factors that determine the quality of computational results

of the lattice parameters and elastic properties. The non-local DFT and hybrid po-

tentials present better agreement with the experimental values of lattice parameters,

elastic constants and bulk moduli. However, the disagreement between the computa-

tional and experimental values of the elastic constants and bulk moduli for HF and

DFT-LDA potentials [17, 18, 20] is significant.

The computations presented for rutile T iO2 with different potentials are motivated by

a variety of challenges related with the existing potentials. For a crystalline system

such as rutile T iO2, which has considerable visibility in the experimental research

arena, an integrated set of computational results have significant utility. These com-

putations can guide researchers to appreciate the subtle influences of the charge den-

sity on lattice parameters and elastic properties of rutile T iO2.
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Table 3.1: The values of relaxed lattice constants (in
o
A) and am-

bient volume (in
o
A3) and total energy, E (in a.u.), for rutile TiO2.

The computations were done by using Hartree-Fock, DFT LDA,
PWGGA, BLYP, PBE0, B3LYP and B3PW potentials using basis
set 1. (see sections 3.2, 3.3, 3.4 and 3.6 .)

a(
o
A) c(

o
A) V ol(

o
A3) Density(g/cm3) E(a.u.)

HF 4.568 2.980 62.11 4.264 -415.125024
LDA 4.559 2.932 60.98 4.351 -415.4375020

PWGGA 4.640 2.976 64.08 4.140 -417.745101
PBE 4.647 2.978 64.32 4.125 -417.450436

BLYP 4.66 3.01 65.67 4.040 -417.646742
B3LYP 4.629 2.976 63.78 4.160 -417.525784
B3PW 4.599 2.961 62.63 4.236 -417.647585
PBE0 4.627 2.973 63.69 4.627 -417.800715

Exp.[2, 10, 4] 4.59 2.96 62.36 - -

Table 3.2: The values of relaxed lattice constants (in A0) and ambi-
ent volume (in (A0)3) and total energy, E (in a.u.), for rutile TiO2.
The computations were done by using Hartree-Fock, DFT LDA,
PWGGA, BLYP, PBE0, B3LYP and B3PW potentials using basis
set 2. (see sections 3.2, 3.3, 3.4 and 3.6 .)

a(
o
A) c(

o
A) V ol(

o
A3) Density(g/cm3) E(a.u.)

HF 4.561 2.991 62.24 4.262 -415.030280
LDA 4.539 2.904 59.84 4.433 -4.15.303870

PWGGA 4.619 2.946 62.82 4.220 -417.622557
PBE 4.625 2.949 63.05 4.204 -417.329627

BLYP 4.657 2.971 64.41 4.117 -417.520930
PBE0 4.571 2.940 61.46 4.317 -417.245299

B3LYP 4.607 2.957 62.75 4.225 -417.408695
B3PW 4.583 2.942 61.81 4.292 -417.533064

Exp.[31] 4.593 2.958 62.40 - -
Exp. [2, 10] 4.59 2.96 62.36 - -
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Table 3.3: The elastic constants and bulk modulus computational
results using the Hartree Fock and DFT LDA, PWGGA, BLYP,
PBE0, B3LYP and B3PW potentials with basis set 1. All values
are in GPa. (see sections 3.2, 3.3, 3.4 and 3.6.)

C11 C12 C13 C33 C44 C66 B
HF 363.88 216.43 184.34 625.97 164.08 276.93 269.71

LDA 311.10 210.59 175.15 504.48 159.31 252.60 243.15
PWGGA 266.41 177.25 148.88 462.40 138.23 223.33 208.06

PBE 261.66 176.04 146.29 457.73 135.14 221.06 205.14
BLYP 255.76 133.27 142.78 477.90 153.90 206.05 187.60
PBE0 277.37 184.91 155.40 494.27 139.18 234.10 217.12

B3LYP 281.36 186.22 156.70 505.70 140.29 236.43 219.85
B3PW 293.89 193.64 164.11 517.48 146.55 245.56 229.13

Exp.[10] 268.00 175.00 147.00 484.00 124.00 190.00 212.00,230.00

Table 3.4: The elastic constants and bulk modulus computational
results using the Hartree Fock and DFT LDA, PWGGA, BLYP,
PBE0, B3LYP and B3PW potentials with basis set 2. All values
are in GPA. (see sections 3.2, 3.3, 3.4 and 3.6.)

C11 C12 C13 C33 C44 C66 B
HF 393.38 237.08 209.69 662.10 170.85 302.60 295.27

LDA 170.95 384.96 204.67 577.12 130.39 278.53 265.91
PWGGA 222.60 273.01 182.34 522.34 123.35 246.21 237.24

PBE 220.46 269.67 180.65 517.01 122.22 243.67 234.72
BLYP 259.83 225.99 174.58 508.73 123.33 235.50 231.32
PBE0 267.06 281.97 203.06 578.72 138.82 273.17 262.62

B3LYP 295.27 239.63 192.98 562.44 137.12 261.30 254.96
B3PW 268.97 269.36 197.01 568.79 136.54 267.48 257.44

Exp.[10] 268.00 175.00 147.00 484.00 124.00 190.00 212.00,230.00
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Table 3.5: Equation of state results for tetragonal TiO2 with the
Birch Murnaghan 3rd order equation. The energy-volume curve
was fitted with eleven points and the range of volume around equi-
librium was chosen as ±10% using basis set 1. (see sections 3.2,
3.3, 3.4 and 3.6.)The value of the bulk modulus, BEL, calculated
separately, is given in the last column for comparison.

BEOS(GPa) Vo(
o
A3) E0(a.u.) BEL(GPa)

HF 266.65 62.29 -415.125014 269.71
LDA 241.02 60.98 -415.4374458 243.15

PWGGA 205.84 64.09 -417.745066 208.06
PBE 202.42 64.33 -417.450408 205.14
BLYP 190.81 65.93 -417.646784 187.60
PBE0 232.36 62.24 -417.3564061 217.12
B3LYP 216.58 63.81 -417.525805 219.85
B3PW 226.04 62.66 -417.647557 229.13

Exp.[10] - - - 212.00,230.00

Table 3.6: Equation of state results for rutile TiO2 with the Birch
Murnaghan 3rd order equation. The energy-volume curve was fit-
ted with eleven points and the range of volume around equilibrium
was chosen as ±10% using basis set 2. (see sections 3.2, 3.3, 3.4 and
3.6.)The value of the bulk modulus, BEL, calculated separately, is
given in the last column for comparison.

BEOS(GPa) Vo(
o
A3) E0(a.u.) BEL(GPa)

HF 292.73 62.31 -415.030267 295.27
LDA 278.99 59.84 -415.303858 282.68

PWGGA 238.71 62.87 -417.622543 237.24
PBE 235.96 63.10 -417.329611 234.72

BLYP 229.03 64.45 -417.520911 231.32
PBE0 262.66 61.49 -417.2452817 262.62

B3LYP 252.43 62.81 -417.408677 254.96
B3PW 256.16 61.83 -417.533045 257.44

Exp.[10] - - - 212.00,230.00
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Figure 3.1: The computational and experimental values of elastic constants
and bulk moduli are shown. All values are in GPa.
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Figure 3.2: The computational and experimental values of bulk moduli are
shown. All values are in GPa.
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Chapter 4

Optimized Lattice Parameters and

Elastic Properties of BaFeO3

4.1 Introduction

Transition metal oxides exhibit interesting properties such as high-temperature super-

conductivity, colossal magnetoresistance and ferroelectricity. The exceptional prop-

erties of these materials have enhanced research interests in newly found ferroic prop-

erties.The ABO3 (where A = Ba, Sr, Ca, B = Co, Fe,Mn and O = Oxygen) per-

ovskites can be employed as spintronic sensors, solid oxide fuel cells (SOFC), oxygen

separation membranes and catalysts [1]. These materials undergo pressure-induced
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phase transitions. The knowledge about the elastic properties of perovskites is vital

for their implementation as novel sensors and actuators. A detailed research on the

crystalline structure and elastic properties of cubic and tetragonal BaFeO3 have not

been attempted.

Researchers [2] have widely employed ab-initio simulations, fabrication and character-

ization techniques to explore these materials. The hexagonal, triclinic and rhombohe-

dral phases are successfully found by researchers [3, 4, 5, 6, 7, 8]. The X-ray diffraction

techniques have been employed to determine the crystalline structure of thin films of

BaFeO3 [9]. The pseudocubic and tetragonal crystalline structures have been found

in thin films of BaFeO3. Ferroic properties are found in crystalline structures of

BiFeO3 and BaFeO3 [10, 9] by experimental and computational methods.

Advancement in the computational speed has resulted in efficient DFT and hybrid

potentials and basis sets. The crystalline geometry optimization techniques have con-

tributed to the success in the exploration of the novel crystalline structure and prop-

erties of these materials. We employed ab-initio computational methods to determine

the electronic structure, elastic constants and bulk moduli of BaFeO3. However,

a the detailed exploration of lattice parameters, elastic constants and bulk moduli

of BaFeO3 has not been done by first-principles computational techniques. CRYS-

TAL09 code possesses geometry optimization techniques which can be utilized to
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compute the crystalline structure and elastic properties of high-pressure phases of

complex crystals.

The ab-initio computational techniques are employed to compute the elastic proper-

ties of cubic and tetragonal perovskite BaFeO3 for a wide variety of basis sets and

potentials.

Moreover, the ab-initio computational techniques are employed to compute the lattice

parameters of cubic and tetragonal BaFeO3. The geometry optimization techniques

available in CRYSTAL09 code are utilized for computing the cubic and tetragonal

structures with HF, local, non-local DFT and hybrid potentials.

Advancement of computational speed and processing power has led to a thrust in

the computational effort on perovskites [11, 12, 13, 14, 7, 6, 2]. The novel phases of

the novel class of perovskites are being discovered and experimented. CRYSTAL09

employes the first principles computational techniques to determine the electronic

structure and properties of a wide variety of materials.

CRYSTAL09 code has unique crystalline geometry optimization algorithms which can

be utilized for the innovative research into the novel phase discoveries. We employed

BILLY script in CRYSTAL09 code to determine the crystalline structure of cubic

BaFeO3. We employed all necessary checks to separate the numerical noise and

physics.
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We employed ELASTCON and EOS algorithms for the computation of elastic con-

stants and bulk moduli of cubic and tetragonal BaFeO3.

4.2 Procedures

The high-pressure cubic and tetragonal phases of BaFeO3 were computed by em-

ploying BILLY program in combination with CRYSTAL code.

Later, CRYSTAL09 code was employed to compute the elastic constants and bulk

moduli of cubic and tetragonal BaFeO3 phases. The computational parameters were

kept consistent throughout these computations. Shrinking factor was adjusted to 16

32, tolerances on SCF were kept as 9 9 9 9 18 and the tolerances on energy gradient

were also set to 9.

The bulk moduli are computed by employing the ELASTCON (second-order elastic

constants) and EOS (equation of state).

4.2.1 Potentials and basis sets

The basis sets and potentials were chosen from CRYSTAL09 basis set library [15].

The basis sets are defined as basis set 1 and 2. The basis set 1 consist of Fe-86-

96



411d41G-towler-1992a and O-8-411d1-bredow-2006 while basis set 2 consists of Fe-

86-411d41G-towler-1992b and O-8-411d1-cora-2005. The basis set for Ba atom is

kept as ECP. Moreover, the basis sets for Ba and O atoms are already employed on

tetragonal BaTiO3 and rutile T iO2.

4.2.2 Billy script

Billy script [15] is employed within CRYSTAL09 code to compute the optimized

crystalline structure of BaFeO3. There are various options available within BILLY

program.

The optimized crystalline structure is determined in BILLY program by employing

the small variation in the lattice parameter value for a range from .0001 to 5 percent of

a lattice parameter value. The values of the energy within a given range of the lattice

parameter values are curve-fitted by a polynomial of third degree. The optimized

lattice parameter is then computed at the lowest energy by the nonlinear least square

curve-fitting of the energy values obtained.

Accuracy of BILLY program was crosschecked by employing the non-linear least

square curve fitting using MATHEMATICA. The values of optimized lattice pa-

rameters computed with BILLY script and MATHEMATICA showed a significant

agreement in the optimized values of lattice parameters.
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4.2.3 Computational tolerances

The accuracy of the computations can be enhanced by employing the tighter toler-

ances for the energy and its gradient. The SCF convergence was achieved by employ-

ing the BROYDEN SCF technique. The numerical values of various parameters in

BROYDEN were adjusted adequately [15].

4.3 Computational results

Tables 4.1 - 4.3 show computational results of optimized lattice parameters, volume,

density, total energy, elastic constants and bulk moduli of cubic BaFeO3 with basis

set 1 (see section 4.2.1 for basis set definitions). The HF, local, non-local DFT and

hybrid potentials were employed. The values of lattice parameters from refs. [16, 17]

are shown in Tables 4.1 and 4.4.

Tables 4.4 - 4.6 show computational results of optimized lattice parameters, volume,

density, total energy, elastic constants and bulk moduli of cubic BaFeO3 computed

with basis set 2 (see section 4.2.1 for basis set definitions). The HF, local, non-local

DFT and hybrid potentials were employed.

Tables 4.2 and 4.6 contain computational values of elastic constants. Computational
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results obtained with DFT-LDA, DFT-PWGGA and DFT-PBE potentials for basis

set 1 and 2 are shown in these Tables.

Tables 4.7- 4.10 present the computational results of the optimized lattice parameters,

volume, density, total energy, elastic constants and bulk moduli of tetragonal BaFeO3

computed with basis set 1 and 2 (see section 4.2.1 for basis set definitions). The HF,

local, non-local DFT and hybrid potentials were employed. The optimized lattice

parameters show a significant agreement with the experimental values reported by

ref. [18].

However, we did not compare our results with the experimental lattice parameters of

the thin film tetragonal structures of BaFeO3 as done earlier by refs. [9, 19]. This

is due to the fact that the lattice parameters of thin films structures are fairly large

than the bulk cystalline structures.

4.4 Analysis

Computational values of lattice parameters , volume, density and total energy are

computed with basis set 1 and 2 (see section 4.2.1 for basis set definitions). These

computations were performed for cubic and tetragonalBaFeO3. The HF, local DFT,

non-local DFT and hybrid potentials were employed as shown in Tables 4.1 and 4.10.
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A considerable agreement can be observed between our values of optimized lattice

parameters and the theoretical values by refs. [16, 17]. The computational values

of lattice parameters obtained with HF, DFT and hybrid potentials agree with each

other as shown in Tables 4.1 and 4.4.

Values of elastic constants and bulk moduli, computed with ELASTCON and EOS

algorithms, are presented in Tables 4.2, 4.3, 4.5 and 4.6. A significant agreement can

be observed in values of bulk moduli computed from elastic constants and equation

of state employing ELASTCON and EOS programs respectively (see Figure 4.1).

The computational value of elastic constants and bulk moduli from ref. [20] are also

presented in 4.2, 4.3, 4.5 and 4.6. They employed LSDA potentials using plane-wave

(PW) code for computing elastic constants and bulk moduli.

Tables 4.7 and 4.8 show lattice parameters, volume, density and energy computed

with basis set 1 and 2 (see section 4.2.1 for basis set definitions). The values of a, c

and c/a depict a novel ferroelectric property accompanied with non-d0 displacement in

BaFeO3 resulting in a large difference between a and c. Tetragonal BaFeO3 is unlike

the tetragonal BaTiO3 showing a large difference between the lattice parameters a

and c.

Higher percentage of ionic bonding between the Fe and O atoms may have resulted

in significant exchange and correlation effects. High value of c/a point at the large

anisotropy in tetragonal BaFeO3 due to Fe atom.
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Values of bulk moduli computed with EOS algorithm are shown in Tables 4.8 and

4.10. Elastic constants and bulk moduli values are significantly lower than their

corresponding values of cubic BaFeO3 as shown in Tables 4.2, 4.3, 4.5 and 4.6.

4.5 Concluding Remarks

Computations of lattice parameters, elastic constants and bulk moduli of cubic and

tetragonal BaFeO3 were carried out with HF, local DFT, non-local DFT and hybrid

potentials. Two different basis sets were chosen. Computational values of lattice pa-

rameters of cubic phase were compared with the values from ref. [20]. A significant

agreement in values of lattice parameters was observed. Moreover, the values of elastic

constants and bulk moduli were compared with the computational values. A consid-

erable disagreement was observed while comparing our values of elastic constants and

bulk moduli with values from ref [20].

For tetragonal phase, the values of lattice parameters, elastic constants and bulk

moduli were computed. Comparisons were made with the experimental values of

lattice parameters [18] and a significant agreement was again observed.
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Table 4.1: The values of relaxed lattice constants (in A0), ambient
volume (in (A0)3), density (in gm/cm3), and energy (in a.u.) for
cubic BaFeO3. The computations were done by using Hartree-
Fock, DFT LDA, PWGGA, PBE and B3LYP potentials employing
basis set 1. (see sections 4.2, 4.4 and 4.5.)

a(A0) Vo((Ao)3)) Density(g/cm3) E(a.u.)
HF 3.956 61.91 6.486 -1511.67809

LDA 3.819 55.73 7.204 -1510.95477
PWGGA 3.916 60.07 6.684 -1515.00777

PBE 3.921 60.29 6.660 -1514.483489
B3LYP 3.921 60.29 6.656 -1514.619036
Exp. a 3.994 - - -
Th. a 3.975 - - -
Th. a 4.116 - - -

a. Refs. [16, 17, 21]

Table 4.2: The elastic constants and bulk modulus computational
results using the Hartree Fock and LDA, PWGGA and PBE po-
tentials with basis set 1. (see sections 4.2, 4.4 and 4.5.) All values
are in GPa.

C11 C12 C44 B
LDA 194.28 225.78 131.71 215.28

PWGGA 107.77 155.23 88.37 139.41
PBE 108.05 150.96 89.50 136.65

LSDAa 238.54 164.33 105.35 205.18
a. Ref. [20]
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Table 4.3: Equation of state results for cubic BaFeO3 with the Birch
Murnaghan 3rd order equation. The energy-volume curve was fit-
ted with eleven points and the range of volume around equilibrium
was chosen as ±10% employing basis set 1 (see sections 4.2, 4.4 and
4.5. The value of the bulk modulus, BEL is given in the last column
for comparison.)

BEOS(GPa) Vo(
o
A3) E0(a.u.) BEL(GPa)

HF 129.70 61.94 -1511.6746041 -
LDA 212.85 55.73 -1510.954822 215.28

PWGGA 142.16 60.04 -1515.007794 139.41
PBE 149.87 60.27 -1514.483511 136.65

B3LYP 146.31 60.35 -1514.6i90517 142.65
LSDAa 189.06 - - -

a. Ref. [20]

Table 4.4: The values of relaxed lattice constants (in A0), ambient
volume (in (A0)3), density (in gm/cm3), and energy (in a.u.) for
cubic BaFeO3. The computations were done by using Hartree-
Fock, DFT LDA, PWGGA, PBE and B3LYP potentials employing
basis set 2. (see sections 4.2, 4.4 and 4.5.)

a(
o
A) Vo(

o
A3) Density(g/cm3) E(a.u.)

HF 3.955 62.10 6.49 -1511.670839
LDA 3.831 56.24 7.14 -1510.948553

PWGGA 3.911 59.82 6.71 -1515.006266
PBE 3.916 60.09 6.68 -1514.481171

B3LYP 3.917 60.13 6.67 -1514.616494
Exp. a 3.994 - - -
Th. a 3.975 - - -
Th. a 4.116 - - -

a. Refs. [16, 17, 21]
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Table 4.5: The elastic constants and bulk modulus computational
results using the Hartree Fock and LDA, PWGGA and PBE po-
tentials with basis set 2. (see sections 4.2, 4.4 and 4.5.) All values
are in GPa.

C11 C12 C44 B
LDA 212.26 242.37 138.84 232.33

PWGGA 129.20 106.93 106.93 157.93
PBE 129.87 167.60 108.43 155.02

LSDAa 238.54 164.33 105.35 205.18
a. Ref. [20]

Table 4.6: Equation of state results for cubic BaFeO3 with the Birch
Murnaghan 3rd order equation. The energy-volume curve was fit-
ted with eleven points and the range of volume around equilibrium
was chosen as ±10% employing basis set 2 (see sections 4.2, 4.4 and
4.5. The value of the bulk modulus, BEL is given in the last column
for comparison.)

BEOS(GPa) Vo(
o
A3) E0(a.u.) BEL(GPa)

LDA 160.64 59.83 -1515.0062726
PWGGA 155.87 60.07 -1514.4811825 -

PBE 155.87 60.07 -1514.4811825 -
B3LYP 157.94 60.18 -1514.6165046 -
LSDAa 189.06 - - -

a. Ref. [20]

Table 4.7: The values of relaxed lattice constants (in
o
A), ambient

volume (in
o
A3), density (in gm/cm3), and energy (in a.u.) for tetrag-

onal BaFeO3. The computations were done by using Hartree-Fock,
DFT LDA, PWGGA, PBE and B3LYP potentials employing basis
set 1. (see sections 4.2, 4.4 and 4.5.)

a(
o
A) c(

o
A) c/a Vo(

o
A3) Density(g/cm3) Eo(a.u.)

HF 3.797 4.099 1.079 59.13 6.79 -1511.872043
LDA 3.708 4.222 1.138 58.08 6.91 -1510.962842

PWGGA 3.860 3.860 1.000 60.24 6.67 -1515.012308
PBE 3.830 4.125 1.077 60.53 6.63 -1514.48623

B3LYP 3.881 4.043 1.041 60.90 6.59 -1514.62652
Exp. [18] 3.997 4.031 1.008 64.42 - -

104



Table 4.8: Equation of state results for tetragonal BaFeO3 with the
Birch Murnaghan 3rd order equation. The energy-volume curve
was fitted with eleven points and the range of volume around equi-
librium was chosen as ±10% employing basis set 1 (see sections 4.2,
4.4 and 4.5.

BEOS(GPa) Vo(
o
A3) E0(a.u.)

HF 200.00 59.20 -1511.8782039
LDA 138.07 58.08 -1510.962836

PWGGA 130.95 59.79 -1515.0123155
PBE 127.62 60.53 -1514.4862532

B3LYP 221.70 62.37 -1514.6283632

Table 4.9: The values of relaxed lattice constants (in
o
A), ambient

volume (in
o
A3), density (in gm/cm3), and energy (in a.u.) for tetrag-

onal BaFeO3. The computations were done by using Hartree-Fock,
DFT LDA, PWGGA and PBE potentials employing basis set 2.
(see sections 4.2, 4.4 and 4.5.)

a(
o
A) c(

o
A) c/a Vo(

o
A3) Density(g/cm3) Eo(a.u.)

HF 3.799 4.099 1.078 59.19 6.784 -1511.8693632
LDA 3.773 3.954 1.0479 56.29 7.133 -1510.949963

PWGGA 3.841 4.047 1.0536 59.71 6.725 -1515.009354
PBE 3.867 4.050 1.0473 60.57 6.629 -1514.4709459

Exp. [18] 3.997 4.031 1.008 64.427 - -

Table 4.10: Equation of state results for tetragonal BaFeO3 with the
Birch Murnaghan 3rd order equation. The energy-volume curve
was fitted with eleven points and the range of volume around equi-
librium was chosen as ±10% employing basis set 2 (see sections 4.2,
4.4 and 4.5.

BEOS(GPa) Vo(
o
A3) E0(a.u.)

HF 197.55 59.24 -1511.869363
LDA 217.17 56.32 -1510.949958

PWGGA 154.22 59.71 -1511.869363
PBE 135.13 60.58 -1514.470945
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Equation of state bulk moduli values for Cubic BaFeO3

B(EOS) B(EL)

LDA 212.85 215.28

PWGGA 142.16 139.41

PBE 149.87 136.65

B3LYP 146.31 142.65
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Figure 4.1: Computational values of bulk moduli for cubic BaFeO3 are
shown. Beos and Bel represent the computational values obtained with EOS
(equation of state) and ELASTCON (second-order elastic constants) algo-
rithms.
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Chapter 5

Spin-Strain Coupling in 3-d

Transition Metal Oxides

5.1 Introduction

The experimental verification of spin-dependent tunneling were started in early 70’s

by Tedrow and Julliere [1, 2]. In 1985, Johnson and Silsbee [3] discovered the coupling

between the electron charge and spin in interfaces of transition metals. The GMR

effect was discovered in a Fe-Cr superlattice by Albert Fert [4] and Peter Grǔnberg [5]

in 1988. Due to success of GMR device, the spin field effect transistor was proposed
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by [6]. These discoveries further influenced the research interest in the interfacial

properties of thin film composites of transition metal oxides [7].

Researchers [8, 9, 10] employed the first-principle computational techniques and fabri-

cation to explore the interfacial properties in ferroic composites. They observed that

the elastic coupling depends upon a number of factors such as lattice strain, orbital

overlaps and chemical bonding.

The crystal field theory and localized nature of d orbitals in oxide of transition metals

is widely researched for transition metal oxides (TMOs)[11, 12, 13, 14]. However, the

ab-initio computational techniques have not been employed to explore the coupling

between the crystalline structure and electron spin angular momentum in TMOs.

We employed the ab-initio computations on a large variety of transition metal ox-

ides of Sc − Fe. The CRYSTAL09 code is employed to compute the change in the

FM/AFM energy and exchange energy by applying the hydrostatic compression and

expansion of periodic unit cells of BaScO3, BaTiO3, BaV O3, BaCrO3, BaMnO3

and BaFeO3. The unrestricted Hartree Fock (UHF), Spin-DFT and Spin-hybrid

potentials are employed for computing the UHF and FM/AFM exchange energy.

We chose the cubic crystalline materials of BaScO3, BaTiO3, BaV O3, BaCrO3,

BaMnO3 and BaFeO3 to fully understand the factors responsible for the coupling.

The supercells consisting of 02 unit cells were employed in these computations. Fig-
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ures 5.1 and 5.2 show the clusters employed for cubic BaTiO3 and BaFeO3. The

compressive and tensile strains were introduced in step-wise manner by reduction and

expansion of the lattice constant for each transition metal oxide.

5.2 Computations

The Crystal09 code [15] is employed to compute the UHF and exchange energy for the

ferromagnetic and antiferromagnetic spin polarization in each of the transition metal

oxides. The unrestricted Hartree Fock (UHF), Spin-DFT and Spin-hybrid potentials

are employed during these computations. Care is taken to keep the parameters of self

consistent field (SCF) process consistent during these computations. The optimized

lattice constants, computed with BILLY script, were employed during these compu-

tations. Same basis sets were employed for Ba and O atoms consistently whereas the

basis set for the specific transition metal was replaced.

The computational results of open-shell and exchange energy computed with UHF,

Spin-DFT and Spin-hybrid potentials for the cubic crystalline systems are shown

in Tables 5.1 - 5.6 and Figures 5.3 - 5.8. The open-shell and exchange energies

are computed at optimized crystalline structure of each material. Four additional

computations are carried out for each oxide by employing increments of .005 in values

of lattice constants.
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5.2.1 Quantum mechanical model

Maekawa et al [12] has performed a detailed study on the quantum mechanical inter-

pretation of crystal field theory (CFT) for manganite transition metal oxides (TMOs).

In TMOs, a delicate balance exists between the crystal field and Hund’s pairing en-

ergy. The energy degeneracy in these materials is partially lifted due to the crystal

field formed by the cations and anions. The crystal field depends upon the nature of

chemical bonding between the transition metal and O atoms.

It has been observed that changes in FM/AFM energy and exchange energy appear

during compression and expansion of the crystalline lattice. Change in UHF and

FM/AFM exchange energy may be caused by the coupling between the localized d−

orbitals and crystalline structure. The chemical bonding between transition metal

and O atom results in a large overlap causing the fluctuations in FM/AFM energy

and exchange energy for BaV O3, BaCrO3 and BaMnO3.

The quantum mechanical model can be equally applicable to Manganites (AMO3),

Titanates (ATiO3) and Vanadates (AV O3) as the crystal field varies in all these

TMOs [12]. The Hamiltonian for a transition metal oxide based upon the splitting of

d orbitals due to the crystal field is given in Eq. 5.1

Heff = Hhund +Ht2g +Heg (5.1)
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The Heg term in Eq. 5.1 represents the energy component due to eg sub-orbitals

which are σ- bonded with the px and py sub-orbitals. The Ht2g term represents the

energy component due to t2g sub-orbitals which are π- bonded the pz sub-orbitals

[12].

The term Hhund expresses the energy term assicated with Hund’s rule

Hhund = JH
∑

i

SiS
t2g
i (5.2)

The second term in Eq. 5.1 due to localized t2g orbital results in an antiferromagnetic

spin polarization.

Ht2g = JijS
t2g
i S

t2g
j (5.3)

Equation 5.4 expresses the Heg as

Heg = #
∑

i

Liz +
∑

<ij>σγγ′

tijγ γ
′
(a†iγσajγ′σ) +

∑

β

HUβ
(5.4)

In Eq. 5.4, the subscripts i and j stand for the nearest neighbors, a†iγσ and ajγ′σ are

the creation and annihilation operators, respectively. Small changes in the electron

energy are introduced due to the compression and expansion of the lattice constant

as shown in Table 5.1-5.5 and Figures 5.3 to 5.8.
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t =
∑

<ij>σγγ′

tijγ γ
′
(a†iγσajγ′σ) (5.5)

tγγ
′

ij = αγγ′ toij (5.6)

The electrostatic energy term U expresses the on-site electron correlation in transition

metal cations resulting in the electron localization on transition metal sites. The

symbol t in Eq. 5.5 is the hopping integral expressing electrons hopping between i

and j sites.

The term #ε in Eq. 5.7 expresses the crystal field energy and the term
∑

i Ti shows

the orbital angular momentum [12] in TMOs.

# ε = #
∑

i

Ti (5.7)

5.3 Results

The computations of FM/AFM and exchange energy were performed with Hartree

Fock, DFT-LDA, DFT-PWGGA and DFT-B3LYP. An atomic cluster containing 02

unit cells was employed for each crystalline system. The atomic matrix used in these
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computations is : 



a/2 a/2 a

a/2 a a/2

a a/2 a/2





The unrestricted Hartree Fock method was employed to compute changes in exchange

energy for small strains on the unit cell of cubic crystalline ABX3 systems. The lat-

tice sites A and X contained Ba and O atoms while B site was replaced with Sc, T i,

V , Cr, Mn and Fe transition metals. An interdependence between the ferromag-

netic, antiferromagnetic exchange and lattice strain is found. It is observed that the

exchange energy is lowered or enhanced consistently for hydrostatic compression and

expansion of cubic BaScO3, BaTiO3, BaV O3, BaCrO3, BaMnO3 and BaFeO3.

The computational results are shown in Table 5.1 - 5.6 and Figures 5.3-5.6. Fig-

ures 5.3-5.6 show a consistent trend of increase in energy with expansion of cubic

crystalline structure. A linear increase in FM/AFM energy and exchange energy vs.

applied hydrostatic strain is observed for BaScO3, BaTiO3 and BaFeO3. Whereas,

oscillations in FM/AFM energy and exchange energy vs. applied strain are seen for

BaV O3, BaCrO3 and BaMnO3. In Tables 5.1 - 5.6 the Efm., Efm.
exch., Eafm. and Eafm.

exch.

terms represent the UHF energy for FM spin polarization, FM exchange energy, UHF

energy for AFM spin polarization and AFM exchange energy respectively.

Table 5.1 show the computational results for cubic BaScO3 achieved with Hartree
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Fock, DFT-LDA, DFT-PWGGA and DFT-B3LYP. The FM energy is lower than

AFM energy for HF and non-local DFT potentials whereas AFM energy is lower

than FM energy for DFT-LDA potential.

Table 5.2 shows the computational results for cubic BaTiO3. The Hartree Fock, DFT-

PWGGA and DFT-B3LYP potentials were employed. The AFM energy is lower than

FM energy for HF and DFT-PWGGA potentials.

Table 5.3 shows the computational results for cubic BaV O3. The Hartree Fock,

DFT-LDA, DFT-PWGGA and DFT-B3LYP potentials were employed. FM energy

was lower than AFM energy for HF and B3LYP potentials.

Table 5.4 shows the computational results of cubic BaCrO3 The AFM energy was

lower in value than FM energy computed with HF and DFT potentials. Table 5.5

show the computational results of cubic BaMnO3. HF, DFT-LDA, DFT-PWGGA

potentials were employed. For optimized crystalline structure, the FM energy was

lower than AFM energy for DFT-LDA and DFT-PWGGA potentials. For HF and

DFT-B3LYP potentials, the AFM energy was lower than FM energy.

Table 5.6 shows the computational results of cubic BaFeO3 done with HF, DFT-LDA

and DFT-PWGGA and DFT-B3LYP potentials. For HF and DFT-B3LYP potentials,

the FM energy was lower than AFM energy. The FM and AFM energy was equal in

value for DFT-PWGGA and DFT-LDA potentials.
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5.4 Analysis of results

Figures 5.6-5.8 show variations in Hartree Fock FM energy for hydrostatic compres-

sion and expansion of cubic BaV O3, BaCrO3 and BaMnO3. It is observed that

Figures 5.3, 5.5 and 5.8 show no fluctuations in the FM energy for BaScO3, BaTiO3

and BaFeO3.

For cubic BaV O3, BaCrO3 and BaMnO3, the atomic orbitals of transition metals

(TMs) and O overlap with each other during hydrostatic compression. In case of

BaV O3, BaCrO3 and BaMnO3, the electron spins of TM and O atoms fluctuate for

compression as well as expansion of crystals. Oscillatory trend in BaV O3, BaCrO3

and BaMnO3 is accompanied by the overlap between the atomic orbitals resulting

in spin fluctuations. The distorted crystalline structure of BaV O3, BaCrO3 and

BaMnO3 results in higher orbital overlaps and spin fluctuations.

It can be seen in Tables 5.1-5.6 and Figures 5.3-5.8 that there is a lowering of

FM/AFM and exchange energies due to during hydrostatic compression of crystals.

According to crystal field theory, the degeneracy is lifted with the compression. The

effects of compression on the lowering of the FM and exchange energies has been

observed for manganites and cuperates by ref. [12]. For BaV O3, BaCrO3, BaMnO3

and BaFeO3 with more electrons occupying the eg levels, the FM and exchange

energies are more sensitive to hydrostatic compressions and expansions. In case of
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BaScO3 and BaTiO3 the electron spins belonging tot2g orbitals do not fluctuate due

to large lattice parameter a.

The oxides of transition metal have varied number of electrons in their highly corre-

lated d- orbitals. The contracted wavefunctions of d electrons in BaScO3, BaTiO3,

BaV O3, BaMnO3 and BaFeO3 experience the varied degree of competitive forces

[16] due to electrostatic repulsion. The electrostatic forces may localize the electrons

around ionic cores while the hybridization may favor the overlaps between valence p

and d orbitals of O and transition metals to delocalize the valence electrons. More-

over, the ionic and covalent components are varied by hydrostatic strains on crystals.

For hydrostatic compression, the ionic bonding decreases at the expense of covalent

bonding.

In case of BaScO3, the lower value of FM total energy and FM exchange energy needs

further exploration. The charge density maps for BaScO3 may help in understanding

the chemical bonding and its role in determining the FM energy.

The weak nature of π bonding between T i-O t2g-p sub-orbitals respectively results

in antiferromagnetic exchange in BaTiO3 as shown in Table 5.2. While σ bonding

between transition metal eg and oxygen p electrons in V to Fe results in ferromagnetic

exchange as can be seen in Tables 5.3-5.6. If eg sub-orbital is occupied by electron, it

changes the position of atoms and crystalline lattice structure undergoes Jahn Teller

distortions. The change in the position of atoms, usually coupled strongly with eg
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electrons, may not happen in BaTiO3 as there are no electrons to occupy eg energy

levels. The effect of compressive strains on cubic BaTiO3 can be observed in Table

5.2 and Figure 5.5.

The transition metal eg and oxygen p sub-orbitals form a stronger σ bond whereas

the transition metal t2g and oxygen p sub-orbitals form a weaker π bond. The σ and

π has consequences to determine the ferromagnetic or antiferromagnetic energy.

5.5 Concluding Remarks

We have employed first principles computational techniques to compute the coupling

between the electron spin and lattice strain. The spin exchange is computed for a

wide variety of perovskite cubic crystalline transition metal oxides. It is observed that

the compressive strain on the bulk lattice structure results in the lowering of the spin

exchange energy. It is also observed that the compressive strain lowers the exchange

energy in all transition metal oxides. The lowering of the exchange energy can be

interpreted as spin-strain coupling between the transition metal eg and p orbitals

forming a σ bond.

121



Table 5.1: Computations of Efm., Efm.
exch., Eafm. and Eafm.

exch. are done
with Hartree Fock, DFT-LDA, DFT-PWGGA and DFT-B3LYP
potentials for cubic BaScO3. Optimized values of lattice constant
a are used. The units of energy are in Hartree.

a Efm Efm
exch. Eafm Eafm

exch.

HF 4.222 -2019.15430 -132.65117 -2019.0250 -132.4049
LDA 4.095 -2017.13884 - -2017.1412 -

PWGGA 4.175 -2024.1167 - -2024.1142 -
B3LYP 4.218 -2023.7225 - -2023.7043 -

HF 4.227 -2019.1544 -132.6425 -2019.02520 -132.3953
LDA 4.100 -2017.1388 - -2017.1412 -

PWGGA 4.180 -2024.1170 - -2024.1145 -
B3LYP 4.223 -2023.7225 - -2023.7042 -

HF 4.232 -2019.1545 -132.6330 -2019.02598 -132.3766
LDA 4.105 -2017.1388 - -2017.1412 -

PWGGA 4.185 -2024.1172 - -2024.11479 -
B3LYP 4.228 -2023.7224 - -2023.7042 -
Exp.a 4.13 - - - -

HF 4.237 -2019.1545 -132.6240 -2019.0283 -132.3673
LDA 4.110 -2017.1387 - -2017.1411 -

PWGGA 4.190 -2024.1173 - -2024.1148 -
B3LYP 4.233 -2023.7224 - -2023.7040 -

HF 4.242 -2019.1545 -132.6150 -2019.0282 -132.3578
LDA 4.115 -2017.1386 - -2017.1409 -

PWGGA 4.195 -2024.1173 - -2024.1148 -
B3LYP 4.238 -2023.7222 - -2023.7038 -

a. See Refs. [17]
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Table 5.2: Computations of Efm., Efm.
exch., Eafm. and Eafm.

exch. are done
are done with Hartree Fock, DFT-LDA and DFT-B3LYP potentials
for cubic BaTiO3. Optimized values of lattice constant a are used.
The units of energy are Hartree.

a Efm. Efm.
exch. Eafm. Eafm.

exch.

HF 4.015 -2196.0888 -138.4584 -2196.7306 -138.7112
LDA 3.935 -2194.5160 - -2194.6420 -

B3LYP 4.218 -2201.3644 - -2201.3644 -
HF 4.020 -2196.0907 -138.4465 -2196.7306 -138.6977

LDA 3.940 -2194.5166 - -2194.6421 -
B3LYP 4.223 -2201.3644 - -2201.3644 -

HF 4.025 -2196.0907 -138.43402 -2196.7306 -138.6842
LDA 3.940 -2194.5171 - -2194.6421 -

B3LYP 4.228 -2201.3644 - -2201.3644 -
Exp.a 3.94,4.02,4.03 - - - -

HF 4.030 -2196.0925 -138.4222 -2196.7305 -138.6708
LDA 3.945 -2194.5175 - -2194.6421 -

B3LYP 4.233 -2201.2021 - -2201.3642 -
HF 4.035 -2196.0943 -138.4107 -2196.7304 -138.6577

LDA 3.950 -2194.5178 - -2194.6419 -
B3LYP 4.238 -2120.7983 - -2201.3641 -

a. See Ref. [18]
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Table 5.3: Computations of Efm, Eexch, Eafm and Eexch are done
with Hartree Fock, DFT-LDA, DFT-PWGGA and DFT-B3LYP
potentials for cubic BaV O3. Optimized values of lattice constant a
are used. The units of energy are Hartree.

a Efm. Efm.
exch. Eafm Eafm.

exch.

HF 3.907 -2385.1472 -144.855 -2385.0032 -144.3554
LDA 3.921 -2383.4052 - -2383.4089 -

PWGGA 3.969 -2390.8149 - -2390.8073 -
B3LYP 3.919 -2390.2370 - -2390.2264 -

HF 3.912 -2385.1538 -144.8675 -2385.0036 -144.3406
LDA 3.926 -2383.4139 - -2383.4169 -

PWGGA 3.974 -2390.8095 - -2390.8073 -
B3LYP 3.924 -2390.2463 - -2390.2272 -

HF 3.917 -2385.1545 -144.8415 -2385.0038 -144.3259
LDA 3.931 -2383.4162 - -2383.4162 -

PWGGA 3.979 -2390.8096 - -2390.8148 -
B3LYP 3.929 -2390.2473 - -2390.2180 -
Theorya 3.843-3.900 - - - -

HF 3.922 -2385.1545 -144.8774 -2385.0040 -144.3112
LDA 3.936 -2383.4155 - -2383.4072 -

PWGGA 3.984 -2390.8099 - -2390.8074 -
B3LYP 3.934 -2390.2482 - -2390.2187 -

HF 3.927 -2385.1591 -144.8717 -2385.0041 -144.2966
LDA 3.946 -2383.4036 - -2383.4067 -

PWGGA 3.989 -2390.8098 - -2390.8072 -
B3LYP 3.939 -2390.2485 - -2390.2286 -

a. See Ref. [19]
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Table 5.4: Computations of Efm, Efm
exch, Eafm and Eafm.

exch are done
with Hartree Fock, DFT-PWGGA and DFT-B3LYP potentials for
cubic BaCrO3. Optimized values of lattice constant a are used. The
units of energy are Hartree.

a Efm Eexch. Eafm Eexch.

HF 3.890 -2586.0427 -151.8044 -2585.2942 -150.2527
PWGGA 3.932 -2591.6821 - -2591.6821 -

B3LYP 3.930 -2591.0157 - -2590.9943 -
HF 3.895 -2586.0452 -151.7922 -2585.2942 -150.2385

PWGGA 3.937 -2591.6821 - -2591.6821 -
B3LYP 3.935 -2591.0160 - -2590.9801 -

HF 3.900 -2586.0477 -151.7802 -2585.2943 -150.2243
PWGGA 3.942 -2591.7052 - -2591.6821 -

B3LYP 3.940 -2590.9938 - -2590.9938 -
Theorya 3.8536 - - - -

HF 3.905 -2586.0487 -151.7666 -2585.2916 -150.2102
PWGGA 3.947 -2591.7055 - -2591.6820 -

B3LYP 3.945 -2591.0873 - -2590.9938 -
HF 3.910 -2586.0509 -151.7546 -2585.2914 -150.1961

PWGGA 3.952 -2591.7058 - -2591.6819 -
B3LYP 3.950 -2591.1006 - -2590.9797 -

a. See Ref. [20]
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Table 5.5: Computations of Efm, Efm
exch, Eafm and Eafm.

exch are done
with DFT-LDA, DFT-PWGGA and DFT-B3LYP potentials for cu-
bic BaMnO3. Optimized values of lattice constant a are used. The
units of energy are Hartree.

a Efm Eexch. Eafm Eexch.

HF 3.874 -704.9155 -76.8556 -704.9916 -77.1601
LDA 3.822 -706.9945 - -706.9888 -

PWGGA 3.896 -710.6341 - -710.5635 -
B3LYP 3.925 -710.1267 - -709.9275 -

HF 3.879 -705.9401 -78.2257 -704.9926 -77.1503
LDA 3.827 -706.9945 - -706.9887 -

PWGGA 3.901 -710.6285 - -710.5634 -
B3LYP 3.930 -710.1269 - -709.9272 -

HF 3.884 -705.9412 -78.2206 -704.9935 -77.1405
LDA 3.832 -707.0306 - -706.9892 -

PWGGA 3.906 -710.6316 - -710.5634 -
B3LYP 3.935 -710.1295 - -709.9268 -
Exp.a 3.806 - - - -

HF 3.889 -705.9423 -78.2192 -704.9943 -77.1310
LDA 3.837 -707.0296 - -706.9890 -

PWGGA 3.911 -710.6293 - -710.5632 -
B3LYP 3.940 -710.1291 - -709.9255 -

HF 3.894 -704.9130 -76.8050 -704.9950 -77.1214
LDA 3.842 -707.0255 - -706.9880 -

PWGGA 3.916 -710.6404 - -710.5630 -
B3LYP 3.945 - -709.9250 -

a. see Ref. [21]
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Table 5.6: Computations of Efm, Efm
exch, Eafm and Eafm.

exch are done
with Hartree Fock, DFT-LDA, DFT-PWGGA and DFT-B3LYP
potentials for cubic BaFeO3. Optimized values of lattice constant
a are used. The units of energy are Hartree.

a Efm Eexch. Eafm Eexch.

HF 4.155 -3023.9438 -165.2933 -3023.5233 -164.7191
LDA 3.852 -3021.9662 - -3021.9065 -

PWGGA 3.917 -3030.0156 - -3030.01562 -
B3LYP 3.927 -3029.4513 - -3029.2331 -

HF 4.160 -3023.9442 -165.2866 -3023.5236 -164.7117
LDA 3.857 -3021.9126 - -3021.9059 -

PWGGA 3.922 -3030.0935 - -3030.0156 -
B3LYP 3.932 -3029.4524 - -3029.2398 -

HF 4.165 -3023.9445 -165.2800 -3023.5238 -164.7043
LDA 3.862 -3021.9054 - -3021.9054 -

PWGGA 3.927 -3030.01553 - -3030.01553 -
B3LYP 3.937 -3029.4524 - -3029.2387 -
Exp.a 3.994 - - - -

HF 4.170 -3023.9448 -165.2733 -3023.5239 -164.6970
LDA 3.867 -3021.9665 - -3021.9047 -

PWGGA 3.932 -3030.0947 - -3030.01542 -
B3LYP 3.942 -3029.4534 - -3029.2385 -

HF 4.175 -3023.9451 -165.2668 -3023.5241 -164.6897
LDA 3.872 -3021.9040 - -3021.9040 -

PWGGA 3.937 -3030.0952 - -3030.0152 -
B3LYP 3.947 -3029.4544 - -3029.2383 -

a. see Ref. [21]
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Figure 5.1: An octahedral is formed by O atoms having Fe atom in the
middle. Yellow and red color spheres represent Ba, O and Fe atoms could
not be seen as these are positioned in the middle of each cage in a perovskite
BaFeO3.
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Figure 5.2: An octahedral is formed by O atoms having Fe atom in the
middle. Yellow and red color spheres represent Ba and O while grey colored
Ti atoms are positioned in the middle of each cage in a perovskite BaTiO3.
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Figure 5.3: Exchange energy vs. lattice strain for cubic BaScO3. A de-
crease in exchange energy can be seen for the compression of lattice. The
straight line is drawn to signify the linearity of the trend.
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Figure 5.4: Exchange energy vs. lattice strain for cubic BaTiO3. A de-
crease in exchange energy can be seen for the compression of lattice. The
straight line is drawn to signify the linearity of the trend.

Figure 5.5: Exchange energy vs. lattice strain for cubic BaV O3. A decrease
in exchange energy can be seen for the compression of lattice. There is smaller
deviation from the linear trend.
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Figure 5.6: Exchange energy vs. lattice strain for cubic BaCrO3. A slight
increase in the exchange energy can be seen for the compression of lattice.
The nonlinear dependence of the exchange energy on lattice strain is more
pronounced.

Figure 5.7: Exchange energy vs. lattice strain for cubic BaMnO3. A
decrease in exchange energy can be seen for the compression of lattice. The
oscillatory character of exchange energy is also persistent.
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Figure 5.8: Exchange energy vs. lattice strain for cubic BaFeO3. The non-
linear dependence of the exchange energy on the compression of lattice can
be observed. Exchange energy has slightly increased with the compression
of the lattice in this case.
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Chapter 6

Conclusions

We have performed the ab-initio computations on the electronic structure, elastic

properties and spin-strain coupling in 3-d transition metal oxides with perovskite

crystalline structure. The electronic structure, elastic constants and bulk moduli are

computed for the tetragonal BaTiO3, rutile T iO2, cubic and tetragonal BaFeO3.

The ab-initio computations are also carried out to explore the coupling between the

FM/AFM properties and crystalline lattice structures of 3-d transition metal oxides

of BaScO3, BaTiO3, BaV O3, BaMnO3, BaCrO3 and BaFeO3.

We computed the electronic structure, elastic constants and bulk moduli of tetragonal

BaTiO3. These computations were done to fill the research gap as the ab-initio

computations of the elastic constants and bulk moduli were not carried out prior to
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our work. We compared our computational results with the experimental values of

the lattice parameters, elastic constants and bulk moduli from various sources. We

have pioneered to explore the elastic properties of the tetragonal BaTiO3. Tables

2.3 - 2.6 and Fgures 2.1 - 2.4 show the lattice parameters, elastic constants and bulk

moduli results for tetragonal BaTiO3.

The computations of lattice parameters and elastic properties of rutile T iO2 was per-

formed to crosscheck the reliability of our computational values. The experimental

and computational values of lattice parameters, elastic constants and bulk moduli for

rutile T iO2 are widely explored by researchers.Our ab-initio computational results

show a significant agreement with the computational and experimental values of lat-

tice parameters determined by other researchers. In chapter 3, the Tables 3.1 - 3.6

show the values of lattice parameters, elastic constants and bulk moduli for rutile

T iO2.

After a detailed understanding of the factors that can enhance the effectiveness of our

computational results for tetragonal BaTiO3 and rutile T iO2, we explored the crys-

talline structure, elastic constants and bulk moduli of cubic and tetragonal BaFeO3.

Computational values of optimized lattice parameters, elastic constants and bulk

moduli of cubic and tetragonal BaFeO3 were determined with HF, DFT and hybrid

potentials. We employed the HF, DFT and hybrid potentials, basis sets and other

computational parameters which were already tested on tetragonal BaTiO3 and ru-
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tile T iO2 crystalline systems. The computational values of lattice parameters of cubic

and tetragonal BaFeO3 were compared with the theoretical and experimental values

performed.

A significant agreement has been observed between our computational values of lat-

tice parameters and the values obtained by other researchers. The values of elastic

constants and bulk moduli for cubic BaFeO3 were compared with ab-initio compu-

tations done with Local Spin Density Approximation (LSDA) potential by Rached et

al. An agreement in the values of elastic constants and bulk moduli was observed. In

chapter 4, Tables 4.1 - 4.10 show the lattice parameters, elastic constants and bulk

moduli of cubic and tetragonal BaFeO3.

The 3-d transition metal oxides with a perovskite crystalline structure undergo a

coupling between the electron spin, charge, atomic orbitals and crystalline structure

due to electronic configuration of d-orbitals. The computations were carried out to

explore the coupling between the FM/AFM properties resulting from parallel and an-

tiparallel spin polarization and hydrostatic strains on the cubic crystalline structures

of BaScO3, BaTiO3, BaV O3, BaMnO3, BaCrO3 and BaFeO3.

The Unrestricted Hartree Fock (UHF), Spin-DFT and Spin-hybrid DFT potentials

were employed for computing the total energy for different spin polarization. Basis

sets for Ba and O atoms employed in BaScO3, BaTiO3, BaV O3, BaMnO3, BaCrO3

and BaFeO3 crystalline systems were chosen from CRYSTAL09 code basis set library.
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The computational values of total energy and FM/AFM spin exchange energy showed

an increase in UHF energy and FM/AFM spin exchange energy for hydrostatic ex-

pansion of all crystalline systems. We also observed a decrease in UHF energy and

FM/AFM exchange energy for all crystalline systems under hydrostatic compression.

A linear relationship between the crystalline structure and FM/AFM spin exchange

was observed for cubic BaScO3, BaTiO3 and BaFeO3. Whereas an oscillatory rela-

tionship between the crystalline structure and FM/AFM spin exchange was observed

for cubic BaV O3, BaMnO3 and BaCrO3. The linear relationship between lattice

strain and exchange energy for cubic BaScO3, BaTiO3 and BaFeO3 was accompa-

nied with no changes in spin. It was observed that the spin transitions are coupled

with the electronic orbitals and crystalline lattice.Tables 5.1 - 5.6 and fgures 5.1 - 5.8

presented in chapter 5 show computational results of change in FM/AFM energy due

to hydrostatic compression and expansion for BaScO3, BaTiO3, BaV O3, BaMnO3,

BaCrO3 and BaFeO3.

6.1 Research accomplishments

† We have pioneered to perform the ab-initio computations on electronic structure

and elastic properties of tetragonal BaTiO3 successfully.

† A considerable agreement was observed between the computational and the
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experimental values of lattice parameters and bulk moduli for hybrid potentials

employed in combination with basis set 1.

† A more significant agreement between the computational values of optimized

lattice parameters and experimental values was also observed for rutile T iO2.

† The merit of these computational methods was confirmed by the agreement be-

tween our computational results and experimental values from other researchers.

† We have also pioneered to compute the electronic structure and elastic proper-

ties of novel cubic and tetragonal BaFeO3.

† We have observed a significant agreement between the computational values

of optimized lattice parameters, the theoretical and experimental results from

other sources for cubic and tetragonal BaFeO3.

† Computational values of bulk moduli computed with ELASTCON and EOS

programs have shown a significant agreement for the tetragonal BaTiO3, rutile

T iO2, cubic and tetragonal BaFeO3 crystal systems.

† We explored the novel coupling between the electronic charge, spin and lattice

structure.

† A novel interaction is detected between the crystalline lattice structure and

electronic spin.
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6.2 Future directions

The tetragonal BaTiO3 possesses a displacement-type ferroelectric behavior. The

elastic properties of tetragonal BaTiO3, a displacement-type ferroelectric, are not

completely understood. A general lack of agreement between the computational and

experimental values of elastic constants and bulk moduli is observed. A compre-

hensive future effort is needed to understand the influence of the complex physics,

experimental conditions and computational parameters on this general disagreement.

The experimental and computational effort must be performed in an integrated man-

ner through a collaborative effort to understand the challenge of disagreement between

the former and the latter. The computational and experimental methods are fairly

different but the former can always lead the latter as being more effective. For rutile

T iO2, a significant agreement between the computational and experimental values of

lattice parameters, elastic constants and bulk moduli is only an initial step in the

right direction. The challenges of the pressure and temperature dependency of the

crystalline structure and elastic properties need to be addressed.

Moreover, the merit of computational programs of ELASTCON and EOS has en-

hanced the authenticity of the computational values of rutile T iO2. However, these

computations can be extended further to cover the electronic bang gap and volume

charge density to fully understand the physics of rutile T iO2.
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A detailed set of computations must also be followed to understand the pressure

and temperature dependence of the elastic properties in all simple and complex crys-

talline structures. This may help in contributing to an increased reliability of our

computational results.

There is a lack of experimental values of the lattice parameters for the high pressure

phases of BaFeO3. The experimental research must be carried out to determine the

cubic and tetragonal crystalline structure and elastic properties in a detailed manner.

We have started the pressure-induced phase transitions study of cubic and tetragonal

phases. These computations of the pressure-induced phase transitions must also be

continued to confirm the possibility of a phase transition from cubic to tetragonal

BaFeO3 phase.

The novelty associated with the physics of transition metal oxide and our ab-initio

computational methods has equally contributed to an initial evidence of an interac-

tion between the electronic charge, spin, orbitals and lattice structure. However, an

independent experimental verification of our computational results may enhance the

veracity of our research effort.

Experiments must be conducted on 3-d transition metal oxides to establish the re-

liability of our computational results. The experimental detection of the pressure-

induced phases and their impact on spin transitions may provide a key to verify
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the computational results and to crosscheck the authenticity of our results on 3-d

transition metal oxide perovskites.
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