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Abstract

To estimate a parameter in an elliptic boundary value problem, the method of equa-

tion error chooses the value that minimizes the error in the PDE and boundary

condition (the solution of the BVP having been replaced by a measurement). The

estimated parameter converges to the exact value as the measured data converge

to the exact value, provided Tikhonov regularization is used to control the instabil-

ity inherent in the problem. The error in the estimated solution can be bounded

in an appropriate quotient norm; estimates can be derived for both the underlying

(infinite-dimensional) problem and a finite-element discretization that can be imple-

mented in a practical algorithm. Numerical experiments demonstrate the efficacy

and limitations of the method.

x



Chapter 1

Introduction

Many problems in physics, engineering, and other disciplines can be well modeled by

partial differential equations (PDEs). Most of these PDEs contain parameters that

are determined by the physical system under study. While the direct (or forward)

problem is concerned in solving the PDE for the unknown dependent variable, its

related inverse problem is to estimate the parameters from observations of the solu-

tion to the direct problem. Such problems are known in the literature as parameter

or coefficient identification problem. Due to the increasing number of applications,

parameter identification problems now form an integral part of the theory of inverse

and ill-posed problems.

In this work, we consider three inverse problems related to the following elliptic

boundary value problems (BVPs):

(i) Poisson’s equation with Neumann boundary conditions:

−∇ · (aN∇u) = fN in Ω,

aN
∂u

∂n
= gN on ∂Ω,

(1.1)

(ii) Poisson’s equation with Dirichlet boundary conditions:

−∇ · (aD∇u) = fD in Ω,

u = 0 on ∂Ω,
(1.2)
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(iii) Equations of isotropic linear elasticity:

−∇ · σ = fE in Ω,

σn = gE on ∂Ω,
(1.3)

where

σ = σ(u) = 2μ∗ε+ λ∗ tr(ε)I,

ε = ε(u) =
1

2
(∇u+∇uT ).

Equation (1.1) can be viewed as the steady state of the groundwater flow model,

where the vertical transmissivity is assumed to be small enough to consider the flow

as only two-dimensional. In this case, u represents the piezometric head (groundwa-

ter level), aN is the hydraulic conductivity or the transmissivity for a two-dimensional

aquifer (it characterizes the ability of a geologic material, such as soil or rocks, to

transmit water), fN is the recharge (characterizing sources or sinks through Ω), and

gN describes the inflow and outflow through ∂Ω. See, for example, [1–4] for a more

detailed discussion.

For a heterogeneous, flat metal plate occupying the domain Ω, (1.2) models,

for instance, the steady-state heat flow, where then u represents the temperature

distribution, fD is the heat source and/or sink, and aD is the thermal conductivity.

In the study of material sciences, especially in the linear elasticity theory, the

equations in (1.3) are known as the equations of isotropic elasticity, where u repre-

sents the displacement, fE is a body force, σ is the stress tensor, and ε is the the

linearized strain tensor. The boundary condition in (1.3) indicates that the mem-

brane is stretched by the edge traction gE. The parameters μ∗ and λ∗ are called the

Lamé moduli, and they describe the elasticity properties of the membrane.

Computing, for instance, the piezometric head u from aN , fN , and gN will be

called the forward problem; it is a matter of solving the BVP (1.1). Similarly for

the other two BVPs. Here we are considering the following inverse problems :

(1) Suppose that aN and u = uN are related via the BVP (1.1), given fN , gN , and

a measurement zN of uN , estimate aN .

(2) Suppose that aD and u = uD are related via the BVP (1.2), given fD and a

measurement zD of uD, estimate aD.

2



(3) Suppose that μ∗, λ∗ and u = uE are related via the BVP (1.3), given fE, gE,

and a measurement zE of uE estimate μ∗ and λ∗.

The forward problems above have been studied extensively throughout the last

decades and their theoretical aspects are fairly complete. For a comprehensive treat-

ment of the Poisson equation, we recommend the books Evans [5] and McOwen [6].

The text by Duvaut and Lions [7] is an excellent reference for the elasticity problem.

Accurate simulation of groundwater movement is a major concern in hydrology.

It is vital in such simulations to have reliable values for the aquifer parameters such as

the hydrolic conductivity. Besides the high cost of finding (or accurately estimating)

these values from a large number of core samples, the values of these parameters can

vary dramatically from one sample point to another, and consequently, such readings

might give a very poor estimate to the true parameter. Instead, one can estimate

the hydrolic conductivity from a measurement to the piezometric head by solving

the inverse problems of the Poisson BVP, see [1–4,8] for this direction. The inverse

elasticity problem has been studied from theoretical standpoint, for example in [9–

12]. Recently, interesting applications in elasticity imaging have emerged; see [13,14]

and the references therein. More specifically, using successive ultrasonic scans, it is

possible to measure interior displacements in human tissue (for example, breast

tissue). Since the elastic properties of abnormal tissue are significantly different

from those of normal tissue, it might be possible to locate and discover tumors by

solving an inverse problem for the Lamé moduli μ∗ and λ∗.

A common feature of most inverse problems is the ill-posedness. As a result,

finding solutions that are stable, both numerically and analytically, is very chal-

lenging and requires a fine blending of various branches of mathematics. This is

reflected in the nature of the error bounds presented in Section 2.2; if the data can-

not be measured sufficiently accurately, the convergence is not guaranteed. This

is also shown by explicit examples by Kohn and Lowe [15] and Alessandrini [16].

Moreover, if ∇u vanishes on some open set, then (1.1) (similarly for the BVPs (1.2)

and (1.3)) provides no information about the unknown parameter aN on that set,

and consequently, we have no uniqueness result. Constructing stable algorithms for

solving inverse problems is usually done by regularization. Roughly speaking, this

means replacing the original ill-posed problem by a nearby well-posed problem. We

give a brief introduction to the theory of regularization in Section 2.1.
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To solve the above inverse problems, we use the method of equation error. The

method of equation error chooses the value of the parameter that minimizes the error

in the PDE and boundary condition. We prove that the method converges provided

Tikhonov regularization is used. We also derive error bounds on the computed

solution. Numerical experiments demonstrate the efficacy and limitations of the

method. The equation error approach applied to the above inverse problems has been

used by many researchers; see [8,12,17]. However, our results have been obtained in

a manner that is both more understandable and more amenable to generalization.

The main results reside in Chapter 4 and 5. Further experiments and some heuristic

results are given in Chapter 6.
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Chapter 2

Background

2.1 Ill-posedness of inverse problems

The purpose of this section is to give a brief introduction to the theory of inverse and

ill-posed problems, an active area of study due its numerous applications in science

and engineering, including physical, biomedical, and geophysical applications. For

in-depth theoretical treatment and a wide list of applications in the subject, we

recommend the books [18–21].

2.1.1 Orientation

Probably there is no unified definition of what an inverse problem is. According

to many references, inverse problems are concerned with determining causes for

observed or desired effects. This definition is somewhat subjective and the precise

meaning varies from application to another, so we shall not go over specific examples

here.

However, it is almost universal that most of inverse problems encountered in

science and engineering are ill-posed, and as a consequence, finding stable numerical

and analytical methods for solving inverse problems is exceptionally difficult and

very challenging. According to Jacques Hadamard [22], a problem is well-posed if

and only if the following properties hold

• for each admissible data, at least one solution exists (existence);

• for each admissible data, at most one solution exists (uniqueness);

5



• the solution depends continuously on the data (stability).

If at least one of the above properties is violated, the problem is usually labeled

ill-posed (in the sense of Hadamard). Hadamard believed that any mathematical

model of a physical phenomenon should satisfy these properties.

Abstractly, let X and Y be vector spaces, and assume T : X → Y is given. An

inverse problem can be posed as:

given y ∈ Y , find x ∈ X satisfying Tx = y.

In other words, an inverse problem asks for a solution of the equation Tx = y.

However, not every equation Tx = y represents a ‘genuine’ inverse problem, but

only those in which the operator T has certain properties. To simplify the exposition

below, we will assume that X and Y are Hilbert spaces and T : X → Y is a bounded

linear operator. Further we pose the above inverse problem more compactly as

Tx = y. (2.1)

Mathematically, problem (2.1)1 is said to be well-posed (in the sense of Hadamard)

if and only if the following three conditions hold2:

• Existence: for each y ∈ Y , there exists at least one x ∈ X such that Tx = y.

• Uniqueness : for each y ∈ Y , there exists at most one x ∈ X such that Tx = y.

• Stability : the solution x of Tx = y depends continuously on y; that is, if y ∈ Y ,

{yn} ⊂ Y , Tx = y, Txn = yn for all n ∈ Z
+, then ‖yn − y‖Y → 0 implies

‖xn − x‖X → 0 as n → ∞.

Since the first two conditions imply that T−1 exists, the third condition is equivalent

to the condition that T−1 be continuous.

If T is not bijective, then, in hopes of getting a well-posed problem, one may

instead consider the modified problem

T̃ x = y, (2.2)

1Or, more precisely, the problem of solving equation (2.1).
2Here it is enough to assume X and Y are normed spaces.
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where3 T̃ : N (T )⊥ → R(T ) and is defined by T̃ x = Tx. Note that now T̃ is bijective,

and so the existence and uniqueness conditions above are satisfied. If further R(T )

is closed (and hence it is a Banach space), then by the open mapping theorem it

follows that T̃−1 is continuous, and thus problem (2.2) is well-posed. In this way we

succeeded in fulfilling Hadamard’s postulates by such reformulation of the original

problem. Therefore the critical question is, what if R(T ) is not closed? In this case,

we show that T̃−1 cannot be continuous, and hence, neither the modified problem

nor the original problem is well-posed.

Theorem 2.1.1. T̃−1 is continuous if and only if R(T ) is a closed subspace of Y .

Proof. Assume T̃−1 is continuous, and let y ∈ R(T ) (the closure is taken in Y ).

Therefore, there exists a sequence {xn} ⊂ N (T )⊥ such that T̃ xn → y, and thus,

{T̃ xn} is Cauchy in Y . But {xn} is also Cauchy in the Banach space N (T )⊥ since

‖xn − xm‖X ≤ ‖T̃−1‖‖T̃ xn − T̃ xm)‖Y ,

and so xn → x ∈ N (T )⊥. Since T is continuous, it follows that y = Tx ∈ R(T ),

which completes the proof.

From the above discussion we see that Tx = y is a true inverse problem if R(T )

fails to be closed. In this case, and the ill-posedness cannot be treated by any

simple mathematical trickery as we tried to accomplish above (to obtain existence

and uniqueness). Therefore, it might be wiser to leave our earlier approach and try

to attack the problem from different perspectives.

In practice it is often the case that we don’t know the exact y, but all what we

know is a measurement yδ ∈ Y of y, with an error, say, ‖y−yδ‖Y ≤ δ. But we might

be still interested in obtaining an approximation to a solution of Tx = y. Since

yδ (or even y itself) might not be in R(T ), we encounter another dilemma, not to

mention the lack of uniqueness if T is not injective! All the above reasons motivates

us to leave the search for only ‘classical’ solutions and attempt to generalize our

concept of a solution to include ‘generalized’ solutions in a meaningful sense which

we will describe below.

3Here, N (T ) denotes the kernel (or the null space) of T , N (T )⊥ is the orthogonal complement
of N (T ), and R(T ) denotes the range of T .
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If the existence property fails for Tx = y, i.e. R(T ) is not all of Y , then we may

look for an element xl ∈ X such that Txl is ‘closest to’ y. Thus for y /∈ R(T ), we

reformulate Tx = y as: find xl ∈ X such that

‖Txl − y‖Y = min
x∈X

‖Tx− y‖Y .

This is called the method of least-squares, and such an xl, if it exists, is called a

least-squares solution of (2.1). Clearly for y ∈ R(T ), equation (2.1) has a (classical)

solution which is also a least-squares solution. However, for y /∈ R(T ), a least-

squares solution is not guaranteed to exist. Actually, we have the following existence

theorem, see [21] for proof.

Theorem 2.1.2. Equation (2.1) has a least-squares solution if and only if y ∈
R(T )⊕R(T )⊥. Further, if xl is a least-squares solution, then Txl = Py where Py

denotes the orthogonal projection of y onto R(T ).

Thus if R(T ) is closed, then Y = R(T )⊕R(T )⊥, and so (2.1) has a least-squares

solution for evey y ∈ Y . Even with above pessimistic result, we have succeeded at

least in extending space of admissible data, R(T ), to the larger space, R(T )⊕R(T )⊥,

which is a dense subspace of Y .

Now if T is not injective, or equivalently the null space of T , N (T ), is nontrivial,

then a least-squares solution, if it exists, cannot be unique. For if xl is a least-squares

solution of (2.1) for a y ∈ R(T )⊕R(T )⊥, then

‖T (xl + n)− y‖Y = ‖Txl − y‖Y = min
x∈X

‖Tx− y‖Y ∀n ∈ N (T ),

and so a least-squares solution cannot be unique whenever T is not injective. On

the other hand, if T is injective and x1 and x2 are any two least-squares solutions of

(2.1), then by Theorem 2.1.2 we have the characterization

Tx1 = Py = Tx2,

and so x1 = x2 since T is injective, and thus, a least-squares solution is unique

whenever T is injective.

When T is not injective, the usual remedy of the lack of uniqueness is to seek
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the least-squares solution that is of smallest norm4. That is, we find an x̂ ∈ X such

that x̂ is a least-squares solution of (2.1) and

‖x̂‖X = inf
x∈X

{‖x‖X : x is a least-squares solution of (2.1)} .

In the literature, x̂ is called a minimum-norm least-squares solution of (2.1). It can

be shown [18,19,21] that the minimum-norm least-squares solution of (2.1) is unique,

and further it is characterized as the unique element in N (T )⊥ satisfying

T x̂ = Py,

provided, of course, y ∈ R(T )⊕R(T )⊥.

Thus based on the above discussion, the general interpretation of Tx = y is:

Find the minimum-norm least-squares solution of Tx = y.

This takes care of any lack of uniqueness and also a simple lack of existence, that

is, y /∈ R(T ) but y ∈ R(T )⊕R(T )⊥.

Now let T † : R(T ) ⊕ R(T )⊥ → X denote the mapping that assigns to each

y ∈ R(T ) ⊕ R(T )⊥ the (unique) minimum-norm least-squares solution of Tx = y.

Thus the equation x̂ = T †y means x̂ is the minimum-norm least-squares solution of

Tx = y. The operator T † is called the (Moore-Penrose) generalized inverse of

T . For brevity, we will write D(T †) = R(T ) ⊕ R(T )⊥ for the domain of T †. We

summarize some of the important results regarding the operator T †; see [18,19,21].

Theorem 2.1.3. Let X and Y be Hilbert spaces and T : X → Y be a bounded linear

operator. Then

(a) T † is linear,

(b) D(T †) is dense in Y ,

(c) R(T †) = N (T )⊥,

(d) N (T †) = R(T )⊥,

4Another strategy, which is often suggested by the applications of (2.1), is to minimize ‖Lx‖Z ,
where L : X → Z is another operator, in place of ‖x‖X . For example, L might be a differentiation
operator.
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(e) T † is continuous if and only if R(T ) is a closed subspace of Y .

Thus, from part (e) of the theorem above, we see again that (2.1) is a ‘true’

inverse problem when R(T ) is not closed (even with the general interpretation of

Tx = y). We will describe one way of dealing with the stability issue in the next

section.

2.1.2 Tikhonov regularization of linear problems

In the last section, we have investigated the abstract inverse problem

Tx = y, (2.3)

where X and Y are Hilbert spaces and T : X → Y is a bounded linear operator.

We interpret the problem Tx = y as asking for x = T †y, the minimum-norm least-

squares solution of Tx = y. This takes care of any lack of uniqueness and also a

simple lack of existence (y /∈ R(T ) but y ∈ R(T )⊕R(T )⊥). However, if R(T ) is not

closed, then T † is unbounded (discontinuous) and there exists a sequence {yn} ∈ Y

with

yn → y and T †yn � T †y = x

(or even worse, T †yn is undefined). In such situation, we would like to obtain stable

approximations to x = T †y. Procedures that lead to stable approximations to an

ill-posed problems are called regularization methods.

The idea of regularization is to approximate the operator T † by a family of

operators {Rα : Y → X |α > 0} such that these approximations get better as

α → 0. To put it in other words, the ill-posed problem x = T †y is approximated

by a family of ‘nearby’ well-posed problems {xα = Rαy |α > 0} such that xα → x

as α → 0+. We will describe one of the most popular regularization methods,

Tikhonov regularization.

In Tikhonov regularization, the regularization operator Rα is given by

Rα = (T ∗T + αI)−1 T ∗.

It can be shown [18, 19, 21] that T ∗T + αI is invertible, and so Rα is well-defined.

For y ∈ Y , α > 0, let xα,y = Rαy. Then xα,y is characterized as the unique solution
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of the optimization problem

min
x∈X

‖Tx− y‖2Y + α‖x‖2X .

The number α > 0 is called a regularization parameter.

For y ∈ D(T †), we write x0,y = T †y. We have the following convergence result;

see, for example, [18, 19, 21].

Theorem 2.1.4. Let X and Y be Hilbert spaces and T : X → Y be a bounded linear

operator. For all y ∈ D(T †) we have

xα,y → x0,y as α → 0+.

Although this result is important, it is not directly applicable to a practical

problem since we don’t know y, but only an estimate yδ. We have the following

result concerning this issue, see [18, 19, 21].

Theorem 2.1.5. Let X and Y be Hilbert spaces and T : X → Y be a bounded linear

operator. If y, yδ ∈ Y , ‖yδ − y‖Y ≤ δ, and α > 0, then

‖xα,yδ − xα,y‖X ≤ δ

2
√
α
.

Now using the triangle inequality, we can decompose the total error as

total error︷ ︸︸ ︷
‖xα,yδ − x0,y‖X ≤

regularization error︷ ︸︸ ︷
‖xα,y − x0,y‖X +

perturbation error︷ ︸︸ ︷
‖xα,yδ − xα,y‖X

≤ ‖xα,y − x0,y‖X +
δ

2
√
α
.

Notice now, at one hand we would like to let α → 0 to force the regularization error

to converge to zero, on the other hand we lose the grip over the perturbation error

if α converges to zero at a faster rate than δ2 does. This suggests that α cannot be

chosen independent of δ. In particular, if we choose α as a function of δ (α = α(δ))

such that

α(δ) → 0 and
δ√
α(δ)

→ 0 as δ → 0,
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then it follows that

‖x0,y − xα,yδ‖X → 0 as δ → 0.

In the general regularization theory, this is to say that Tikhonov’s method with the

above choice of α = α(δ), leads to a regular or convergent algorithm for the solving

problem (2.3).

Notice that this result does not give any convergence rates. However, under

certain ‘smoothness’ assumptions5 on y, it can be shown [18,19,21] that:

Theorem 2.1.6. Let X and Y be Hilbert spaces and T : X → Y be a bounded linear

operator, and suppose that y ∈ D(T †). If x0,y ∈ R ((T ∗T )μ) for some μ ∈ (0, 1],

then

‖xα,y − x0,y‖X ≤ Cαμ,

where C > 0 is independent of α.

Thus, provided x0,y ∈ R ((T ∗T )μ) for some μ ∈ (0, 1], we see that

‖xα,yδ − x0,y‖X ≤ Cmax

{
αμ,

δ√
α

}

for some C > 0 independent of α and δ. In particular, if α = α(δ) = c0δ
2/(2μ+1) for

some c0 > 0, then

‖xα,yδ − x0,y‖X = O
(
δ2μ/(2μ+1)

)
as δ → 0.

Note that the best rate of convergence for ‖xα,yδ − x0,y‖X that one can obtain is

O(δ2/3), which happens when μ = 1.

One may ask if it is possible to improve the above order O(δ2/3) to say o(δ2/3),

possibly by a stronger smoothness assumption on x0,y, say if μ > 1? The answer

is negative and it can be shown this is the best (optimal) rate one can get from

Tikhonov’s method, regardless of how smooth x0,y is. Actually, it can be shown that

if x0,α = T †y ∈ R(T ∗T ), and ‖xα,yδ − x0,y‖X = o(δ2/3), and α = α(δ) is chosen such

that α(δ) → 0 as δ → 0, then x0,α is trivial, that is, x0,α = 0.

5Some authors refer to these assumptions as ‘source conditions’ or ‘abstract smoothness condi-
tions’. The precise definition of the operator (T ∗T )μ (for general T ) requires tools from the spectral
theory which is beyond the scope of this presentation. In Appendix A, we outline the theory in
the special case that T is compact.
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2.1.3 Morozov’s discrepancy principle

As we have seen in last section, any a priori choice α = α(δ) satisfying

δ√
α(δ)

→ 0 as α → 0,

leads to a convergent algorithm for the solution of Tx = y. Further, with the

particular choice of α(δ) = c0δ
2/(2μ+1), one can obtain the optimal rate of convergence

O
(
δ2μ/(2μ+1)

)
, provided we know that T †y ∈ R ((T ∗T )μ). It practice, we either don’t

know μ, or even if we know μ, any positive c0 gives an optimal asymptotic rate of

convergence, but the choice of c0 obviously has a huge impact for a given value

of δ > 0. For these reasons, it might be reasonable (and necessary) to take the

actual data vector yδ into account when choosing the regularization parameter α. A

parameter choice method that incorporates both δ and yδ is called an a posteriori

parameter choice rule. We will describe one such rule, namely, the Morozov’s

discrepancy principle (MDP).

In the MDP, the parameter α = α(δ, yδ) is chosen such that

‖Txα,yδ − yδ‖X = δ.

The following theorem shows that the MDP rule induces a convergent regularization

method provided y ∈ R(T ), see [18, 19, 21].

Theorem 2.1.7. If y ∈ R(T ), then if α(δ, yδ) is chosen using the MDP, then

xα(δ,yδ),yδ → T †y as δ → 0.

For the rate of convergence, we have [18, 19,21]:

Theorem 2.1.8. Suppose y ∈ R(T ) and T †y ∈ R(T ∗). If α = α(δ, yδ) is chosen by

the MDP, then

‖xα(δ,yδ),yδ − T †y‖X = O(δ1/2).

Further, this rate is optimal no matter how smooth T †y is, except in the case that T

is finite-rank (i.e., R(T ) is finite-dimensional).

In the next section, we present a numerical example demonstrating the efficiency

of the MDP.
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2.1.4 Numerical Example

Now we present an example of an inverse problem arising in statics. See [19] for the

derivation of the model.

The Hanging Cable. Imagine a cable of variable density hanging between two

horizontal supports, as in Figure 2.1. Assume that the tension T in the cable is

constant and that the vertical deflection y of the cable at any point is small relative

to the length of the cable. A mathematical model is then

y(s) =

∫ 1

0

k(s, t)x(t)dt, 0 < s < 1,

where x(s) is the weight density of the cable, and the kernel k(s, t) is given by

k(s, t) =

{
t(1− s)/T, 0 ≤ t ≤ s,

s(1− t)/T, s ≤ t ≤ 1.

The inverse problem we wish to pose is: what distribution of the variable mass

of the cable causes the observed deflection mode y?

Mathematically, this inverse problem can be posed as:

Kx = y (2.4)

where K : L2(0, 1) → L2(0, 1) is defined by

(Kx)(s) =

∫ 1

0

k(s, t)x(t)dt, 0 < s < 1.

We point out [19, 21] that K : L2(0, 1) → L2(0, 1) is in fact continuous for any

kernel k ∈ L2(0, 1)× L2(0, 1). First, we show that this inverse problem is ill-posed;

stability will be our main concern. Using the Riemann-Lebesgue lemma [23], for any

f ∈ L2(0, 1) we have

lim
n→∞

∫ 1

0

f(t) sin(nπt)dt = 0,

Consider any x ∈ L2(0, 1). For each n ∈ Z
+, define xn(t) = x(t) + sin(nπt). Then

14



 

 

 

  

Figure 2.1: Hanging Cable.

by Lebesgue’s dominated convergence theorem, we have

lim
n→∞

‖Kxn −Kx‖2L2(0,1) =

∫ 1

0

lim
n→∞

(∫ 1

0

k(s, t) sin(nπt)dt

)2

ds = 0

for any k ∈ L2(0, 1)2, while

‖xn − x‖2L2(Ω) =

∫ 1

0

sin2(nπt)dt =
1

2
,

showing the instability of the problem. Since in practice the sag in the cable is

measured at only finitely many points along the s-axis, the inverse problem must be

discretized. To do so, we may choose to discretize the integral using the trapezoid

rule on a uniform grid of size h = 1/n, and we sample y on the same grid, resulting

in a system of linear equations

Ax = y,

where

Aij = hk(si, tj), yi = y(si), i, j = 1, 2, . . . , n− 1,

with

si = ih, tj = jh.

As a particular example6, we will take y(s) = (s3 (s− 2) + s) /12 and T = 1, so that

the exact solution is x(t) = t(1− t). Since usually we have inexact data, we simulate

the situation by adding d% (measured in the Euclidean norm) uniformly distributed

random noise to the true y; thus the noisy data vector yδ satisfies

‖yδ − y‖/‖y‖ = d%,

6Regardless of the physical plausibility of such choice.
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where ‖ · ‖ is the Euclidean norm. Thus we are trying to solve the system of linear

equations

Ax = yδ (2.5)

for x. For the first test, we take n = 20 and d = 1. Figure 2.2 shows the computed

solution (i.e. by solving (2.5)) along the exact solution. Obviously, the plot shows

an unpleasant result; the computed solution is a poor approximation to the exact

solution. Motivated by our numerical experience, we would expect to get better

approximations as n increases. Thus, we repeated the experiment, with n = 40 at the

same noise level, the result is shown in Figure 2.3. Now the computed solution has

nothing to do with the exact solution! Such numerical instability is inherited from

the original problem, which we know it is ill-posed. Since the finer the discretization,

the closer the the matrix A approximates the operator K, the instability in the

original problem (2.4) is inherited to the discretized problem (2.5). This explains

why the unregularized solutions are getting worse as n increases.

Now we use Tikhonov regularization applied to the discrete problem (2.5) in

hopes of getting better results. Thus, the solution is now computed using the formula

x = (A∗A+ αI)−1 A∗yδ.

The regularization parameter α is chosen by the discrepancy principle. Plots for the

exact solution versus the computed solution for various values of n and noise level

d% are shown in Figure 2.4.

�

�

�

Figure 2.2: Exact (solid), computed (dots), n = 20, noise level 1%.
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Figure 2.3: Exact (solid), computed (dots), n = 40, noise level 1%.

(a) n = 40, noise level 5% (b) n = 40, noise level 1%

(c) n = 80, noise level 5% (d) n = 80, noise level 1%

Figure 2.4: Exact (solid), regularized solution (dots).

2.1.5 Tikhonov regularization of nonlinear problems

In this section we will briefly go over the main results developed so far in theory of

nonlinear ill-posed problems. All the results in this section can be found in [18].

We want to solve

F (x) = y (2.6)
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where F : D(F ) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and

Y , and D(F ) denotes the domain of F . Throughout this section we assume that:

(i) Equation (2.6) has an exact solution (but not necessarily unique), and the

term ill-posed nonlinear problem will mean that the solutions do not depend

continuously on the data;

(ii) F is continuous;

(iii) F is weakly (sequentially) closed: this means for any sequence {xn} ∈ D(F ),

weak convergence of xn to x in X and weak convergence of F (xn) to y in Y

imply that x ∈ D(F ) and F (x) = y.

For x∗ ∈ X, we say x† is an x∗-minimum-norm solution of F (x) = y if

F (x†) = y

and

‖x† − x∗‖ = min
x∈D(F )

{‖x− x∗‖ |F (x) = y} .

Usually x∗ is an a priori guess of the exact solution, and allows one to select a

particular solution in the case of multiple solutions. In general, an x∗-minimum-

norm solution need not exist nor be unique.

Theorem 2.1.9. Under the assumptions of this section, x† exists.

If problem (2.6) is ill-posed, then it must be regularized. As for the case of

linear problems, a widely used method is Tikhonov regularization. Thus one seeks

a solution of the optimization problem

min
x∈D(F )

‖F (x)− yδ‖2Y + α‖x− x∗‖2X . (2.7)

where α > 0 is a regularization parameter, yδ ∈ Y is an approximation of the exact

right-hand side y of problem (2.6), and x∗ ∈ X.

Theorem 2.1.10. Under the assumptions of this section, problem (2.7) admits a

solution. Since F is nonlinear, the solution will not be unique, in general.
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Any solution to (2.7) will be denoted by xδ
α. The following theorem shows that

the problem of solving (2.6) is stable in the sense of continuous dependence of the

solutions on the data yδ.

Theorem 2.1.11. Let α > 0 and let {yk} and {xk} be sequences where yk → yδ and

xk is a minimizer of (2.7) with yδ replaced by yk. Then there exists a convergent

subsequence of xk and the limit of every convergent subsequence is a minimizer of

(2.7).

We have the following convergence result. Note the assumption on the choice of

α = α(δ), which is the same as for the linear case.

Theorem 2.1.12. Let yδ ∈ Y with ‖y− yδ‖ ≤ δ and let α(δ) be such that α(δ) → 0

and δ2/α(δ) → 0 as δ → 0. Then every sequence {xδk
αk
} where δk → 0, αk = α(δk),

and xδk
αk

is a solution of (2.7), has a convergent subsequence. The limit of every

convergent subsequence is an x∗-minimum-norm solution. If in addition, the x∗-

minimum-norm solution x† is unique, then

lim
δ→0

xδ
α(δ) = x†.

We conclude by the following result which gives the convergence rate of the

Tikhonov method for nonlinear problems.

Theorem 2.1.13. Let D(F ) be convex, let yδ ∈ Y with ‖y − yδ‖ ≤ δ and let x† be

an x∗-minimum-norm solution. Moreover, let the following conditions hold:

(i) F is (Fréchet) differentiable,

(ii) there exists γ > 0 such that ‖F ′(x†) − F ′(x)‖ ≤ γ‖x† − x‖ for all x ∈ D(F ) in

a sufficiently large ball around x†,

(iii) there exists w ∈ Y satisfying x† − x∗ = F ′(x†)∗w and

(iv) γ‖w‖ < 1.

Then for the choice α ∼ δ, we obtain

‖xδ
α − x†‖ = O(

√
δ) and ‖F (xδ

α)− yδ‖ = O(δ).
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2.2 Literature review

Since most inverse problems are ill-posed, many popular techniques for solving in-

verse problems use some sort of numerical optimization. The unknown parameters

are chosen to be those best agreeing with observed data according to some criterion.

In this section, we will describe several optimization-based algorithms for solving

the inverse problems considered in this work.

2.2.1 The output least-square method (OLS)

Assume that the observable data and the desired parameters are related by a math-

ematical model, such as a differential equation, and that the data can be simulated

for any appropriate estimate of the parameters. The OLS is very natural: choose

values for the parameters, simulate the data and compare it with the observed data,

then measure the misfit (usually in some norm).

For example, in the context of BVP (1.1), this amounts to solving the optimiza-

tion problem

min
a

‖u(a)− z‖,

where z is the observed data, and u(a) represents the simulated data obtained by

solving (1.1) with the exact parameter aN replaced by a.

In practice, the solution of the BVP (1.1) is simulated by the finite element

method. If we write uh(ah) for the finite element solution of (1.1), then the unknown

parameter aN is estimated by a solution of the optimization problem

min
ah∈K(r)

h

1

2
‖uh(ah)− zN‖2, (2.8)

where h is the mesh size in the finite element discretization. To be precise, let
{
T h

}
be a family7 of triangulations of the domain Ω, where h denotes the maximum

7For most of the results belows, it is also assumed to be regular and quasi-uniform, that is,
there exists ν > 0 such that

νh ≤ ρT ≤ hT ≤ h for all T ∈ T h, h > 0,

where hT is the diameter of T and ρT is the diameter of the largest ball contained in T .
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diameter of any triangle in T h. Define

L
(r)
h =

{
w ∈ C(Ω̄)

∣∣w|T ∈ Pr for all T ∈ T h
}
,

K
(r)
h =

{
a ∈ L

(r)
h

∣∣∣ c0 ≤ a ≤ c1

}
,

U
(r)
h = L

(r+1)
h × L

(r+1)
h ,

where Pr is the space of polynomials in two variables of degree at most r. The

numbers c0 and c1 are given a priori bounds on the true parameter(s). Notice that

c0 must be positive in order for the simulation to be well-defined8.

In the case the norm in (2.8) is the L2 norm, Falk [24] proved the following result.

Theorem 2.2.1. Suppose that ah is any solution of (2.8), there exists a constant

C > 0 independent of h and ‖uN − zN‖L2(Ω) such that

‖ah − aN‖L2(Ω) ≤ C

(
hr +

‖uN − zN‖L2(Ω)

h2

)
, (2.9)

for all h sufficiently small.

In this result, it is assumed that uh ∈ L
(r+1)
h , and that the true parameter aN

and the solution uN are both smooth, namely, aN ∈ Hr+1(Ω) and uN ∈ Hr+2(Ω).

Also, it is assumed that

∇uN · �d > 0 on Ω (2.10)

for some constant unit vector �d ∈ R
2. Assumption (2.10) can be perceived as a

nondegeneracy condition on the experiment that resulted in the given data. In

context of the groundwater flow model, this assumption means that there is always

some flow in the direction �d. This allows PDE (1.1) to be considered as a first order

hyperbolic PDE for aN . We point out that under the nondegeneracy condition

(2.10), Falk showed that there is at most one coefficient a ∈ H1(Ω) satisfying (1.1).

The OLS method, applied to the problem of estimating the Lamé moduli in the

system of linear, isotropic elasticity (1.3), was analyzed by Gockenbach [11]. For the

sake of convenience, he expressed the inverse problem in terms of the shear modulus

μ∗ and the bulk modulus ρ∗ = μ∗ + λ∗ instead of in terms of μ∗ and λ∗. The main

8If ah < 0, then the finite element solution uh(ah) is not guaranteed to exist. This condition is
also physical: transmissivity by definition is positive.
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results obtained by Gockenbach are derived under the following assumption on the

strain:

min {|ε(uE)12|, |tr (ε(uE)) |} ≥ c > 0. (2.11)

It is assumed that uE ∈ W 1,r+3(Ω)2 and m∗ = (μ∗, ρ∗) ∈ W 1,r+1(Ω)2, for some

positive integer r. Condition (2.11) can be considered as a nondegeneracy condition

on the experiment: at each point in Ω, the strain is neither a pure shear nor a pure

expansion, and so, it is possible to estimate both the shear modulus and the bulk

modulus. Similar to (2.10), condition (2.11) allows the PDE in (1.3) to be viewed

as a hyperbolic PDE for m∗, which was first proved by Cox and Gockenbach in [10].

The following two results were proved in [11].

Lemma 2.2.1. There exists a constant C, depending only on uE and the constant

c in (2.11), such that

‖m‖L2(Ω) ≤ C‖σ (m,uE) ‖L2(Ω). (2.12)

Lemma 2.2.2. Suppose u ∈ H3(Ω)2 satisfies (2.11), and m ∈ H1(Ω)2. Then there

exists a > 0 such that v = σ(m,u)q, q(x) = (eax1 , eax2), satisfies

‖σ(m,u)‖L2(Ω) ≤ C

{
‖σ(m,u)n‖L2(∂Ω)‖σ(m,u)‖L2(∂Ω) +

∣∣∣∣
∫
Ω

σ(m,u) · ε(v)
∣∣∣∣
}
.

(2.13)

The constant C depends on u and a but is independent of m.

Using the previous two results, it was shown that the inverse problem has a

unique solution, precisely:

Corollary 2.2.1. Suppose u∗ ∈ H3(Ω)2, and m1 = (μ1, ρ1),m2 = (μ2, ρ2) ∈ H1(Ω)2

each satisfies, together with u = u∗, the BVP (1.3), then m1 = m2.

Let m̃ be the L2–projection of the true coefficient mE into the finite element

space L
(r)
h × L

(r)
h . Let us fix an mh ∈ K

(r)
h × K

(r)
h , then by the triangle inequality

and Lemma 2.2.1, we have

‖mh −mE‖L2(Ω) ≤ ‖m̂‖L2(Ω) + ‖m̃−mE‖L2(Ω)

≤ ‖σ(m̂, uE)‖L2(Ω) + ‖m̃−mE‖L2(Ω),
(2.14)

where m̂ = mh−m̃. By a standard approximation result (see [11] and the references
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therein) we have

‖m̃−mE‖L2(Ω) ≤ Chr+1.

In view of (2.13), in order to bound the first term on the right-hand side of (2.14)

one needs to have some control over the term

‖σ(mh, uh(mh))n− gE‖2L2(∂Ω),

which is not given by the fact that uh(mh) solves the weak form of the BVP (1.3).

Therefore, the OLS problem considered in [11] takes the form

min
m∈K(r)

h ×K
(r)
h

Jh(m) = ‖uh(m)− zE‖2L2(Ω) + h3‖σ(m,uh(m))n− gE‖2L2(∂Ω).

We cite the main result obtained in [11].

Theorem 2.2.2. There exists a constant C such that if mh is a minimizer of Jh,

then

‖mh −mE‖L2(Ω) ≤ C

(
hr +

‖zE − uE‖L2(Ω)

h2

)
. (2.15)

The constant C depends on c0, c1, ν, ‖mE‖W r+1,∞(Ω) and ‖uE‖W r+3,∞(Ω), but is in-

dependent of h.

In the result above, it is assumed that the boundary edge traction gE is chosen

in such a way that the nondegeneracy condition (2.11) is satisfied.

Note that Theorem 2.2.2 provides a convergence proof if the data zE is accurate

enough. For example, if zE is the exact interpolant of uE in U r
h, then by a standard

approximation result

‖zE − uE‖L2(Ω) ≤ Chr+2,

and therefore, the error bound (2.15) reduces to

‖mh −mE‖L2(Ω) ≤ Chr,

showing the convergence of the proposed method. However, for less accurate data,

the error bound (2.15) blows up as h → 0, mirroring the instability of the inverse

problem. Similar discussion extends to Falk’s result for the scalar inverse problem.
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2.2.2 A variational method

A variational method for identifying the coefficient aN in the BVP (1.1) was intro-

duced by Kohn and Lowe [15]. It is motivated by the simple observation that, for

any positive weights γ1 and γ2, the minimum of the functional

F (a, σ) = ‖σ − a∇u‖2L2(Ω) + γ1‖∇ · σ + fN‖2L2(Ω) + γ2‖σ · n− gN‖2L2(∂Ω)

is achieved only when σ = a∇u with a(x) a solution of (1.1). Their method is based

on minimizing F numerically over suitable finite-dimensional spaces with u replaced

by a measurement um. The weights γ1 and γ2 are chosen so that each term of sum

has the same order of magnitude. The resulting optimization problem takes the

form

min
σ∈U(0)

h

a∈K(1)
h

‖σ − a∇um‖2L2(Ω) + h2‖∇ · σ + fm
N ‖2L2(Ω) + h‖σ · n− gmN‖2L2(∂Ω), (2.16)

where fm
N and gmN are measurements for fN and gN .

In the case fN and gN are known exactly, Kohn and Lowe’s main result reads as:

Theorem 2.2.3. Suppose that uN ∈ H3(Ω), ΔuN ∈ C(Ω), and aN ∈ H2(Ω) with

0 < c0 ≤ aN ≤ c1. If ah solves (2.16) then

‖ah − aN‖L2(Ω) ≤ C

(
h+

‖uN − um‖H1(Ω)

h

)
. (2.17)

The error bound in (2.17) was derived under the following assumption

inf
Ω

max {|∇uN | ,ΔuN} > 0, (2.18)

which is less restrictive a condition than the nondegeneracy condition (2.10). Ac-

tually, Richter [25] proved that (1.1) is uniquely solvable for aN provided that uN

satisfies (2.18) and aN is prescribed along the inflow portion of ∂Ω, that is, the

portion for which ∇uN · n < 0.

Notice that if ∇uN vanishes on an open subset of Ω, then condition (2.18) is

violated and so the error bound (2.17) is not valid in this case. Even more, when

∇uN vanishes on a set of positive measure (say an open set contained in Ω), then
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(1.1) provides no information about the parameter aN on this set. Kohn and Lowe

tackled this case by considering the following regularized version of (2.16)

min
σ∈U(0)

h

a∈L(1)
h

‖σ−a∇um‖2L2(Ω)+h2‖∇·σ+fm
N ‖2L2(Ω)+h‖σ·n−gmN‖2L2(∂Ω)+α‖∇a‖2L2(Ω), (2.19)

where α > 0 is a regularization parameter. If ‖uN − um‖H1(Ω) ≤ ε and α is chosen

such that α ∼ (h2 + ε)2, Kohn and Lowe showed that9∫
Ω

|ah,α − aN | |∇uN |2 ≤ C
(
h+ εh−1

)
, (2.20)

for any optimizer ah,α of (2.19). The term |∇uN |2 in (2.20) indicates that no in-

formation about the quality of the recovered coefficient can be obtained on those

parts10 of the domain where ∇uN = 0. However, if |∇uN |2 ≥ c > 0, then the above

estimate is valid for the whole domain, and actually the term |∇uN |2 can be removed

totally from the estimate:∫
Ω

|ah,α − aN | ≤ c−1

∫
Ω

|ah,α − aN | |∇uN |2 ≤ C̃
(
h+ εh−1

)
.

Chen and Gockenbach [9] have extended the variational method of Kohn and

Lowe to the problem of estimating the Lamé moduli in (1.3) in the case fE = 0.

They considered the following optimization problem

min
μ,ρ∈K(1)

h

σij ,∈L(1)
h ,i,j=1,2

J(σ, ρ, μ), (2.21)

where

J(σ, ρ, μ) = ‖σ11 − (εm11 + εm22) ρ− (εm11 − εm22)μ‖2L2(Ω) + ‖σ12 − 2εm12 μ‖2L2(Ω)

+ ‖σ22 − (εm11 + εm22) ρ+ (εm11 − εm22)μ‖2L2(Ω) + h2‖∇σ‖2L2(Ω)

+ h‖σn− gm‖2L2(∂Ω).

(2.22)

9To be precise, this result is obtained by specializing Kohn and Lowe’s result to the case in
which fN and gN are known exactly.

10More precisely, those parts of positive measure.
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Here εm is some measurement of ε(uE). Suppose that μ∗, ρ∗ ∈ H2(Ω), uE ∈ H3(Ω)2

and satisfies (2.11) and

∇ ((ε(u)11 − ε(u)22)/ε(u)12) ∈ L∞(Ω)2×2,

Chen and Gockenbach proved the following result.

Theorem 2.2.4. Suppose that σh ∈ (L
(1)
h )2×2 and μh, ρh ∈ K

(1)
h satisfy

J(σh, ρh, μh) = min
μ,ρ∈K(1)

h

σij ,∈L(1)
h ,i,j=1,2

J(σ, ρ, μ),

and that um ∈ L
(k)
h × L

(k)
h for some fixed integer k ≥ 2, ‖uE − um‖H1(Ω) ≤ η, and

‖gE − gm‖L2(∂Ω) ≤ δ. Then

‖ρ∗ − ρh‖L2(Ω) + ‖μ∗ − μh‖L2(Ω) ≤ C
(
h+ ηh−1 + h−1/2δ

)
,

where C is independent of h, η, and δ.

2.2.3 Modified output-least squares (MOLS)

The MOLS method can be viewed as an OLS method with a coefficient dependent

energy norm. To the best of our knowledge, it first appeared in the work of Zou [26],

and then was independently proposed by Knowles [3]. Recently, Hào and Quyen [27]

investigated MOLS subjected to Tikhonov regularization. We will briefly comment

on the above works.

In the context of the BVP (1.2), the MOLS functional takes the form

JzD(a) =

∫
Ω

a |∇(u(a)− zD)|2

where zD is a measurement of uD, and u(a) is the solution of the forward problem

with the true coefficient aD replaced by a.

In [26], Zou added a regularization term to the MOLS objective function to

stabilize the method since the underlying inverse problem is known to be ill-posed.
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In the finite element settings, he considered the following optimization problem

min
a∈K(1)

h

1

2

∫
Ω

a |∇uh(a)−∇zD|2 + γNh(a), (2.23)

where γ > 0 is a regularization parameter, and Nh(a) is a regularization term defined

by

Nh(a) =

∫
Ω

|∇a|2 or Nh(a) =

∫
Ω

√
|∇a|2 + δ(h),

where δ(h) is a positive function satisfying limh→0 δ(h) = 0. Zou proved the exis-

tence of a minimizer of the optimization problem (2.23), and explained how to solve

it (numerically) by Armijo-type of algorithms. However, he did not provide any

stability or convergence results regarding the inverse problem.

Knowles [3] considered slightly different problem. He assumes that the true

coefficient aD is known on the boundary of Ω, and he defined the set

DG = {a ∈ L∞(Ω) | a ≥ ν > 0, and a = aD on Γ ⊂ ∂Ω}

assuming sufficient regularity on a for the trace on Γ makes sense. He examined the

following continuous (non-discretized) optimization problem

min
a∈DG

G(a) =

∫
Ω

{
a
(
|∇uD|2 − |∇u(a)|2

)
− 2(uD − u(a))fD

}
.

In [3, Theorem 2.1] Knowles proved that G(a) = JuD
(a) and it is strictly convex on

the convex set DG, and further that aD is the only zero for the gradient ∇G. Hence

under the above assumptions, aD is the unique global minimum for G. He analyzed

a numerical implementation using a preconditioned conjugate gradient approach.

Note that Knowles assumes exact observation, i.e. uD is known exactly, which is

little bit impractical, since usually only noisy data is given.

Similar to Zou’s work, Hào and Quyen [27] applied Tikhonov regularization to

stabilize the MOLS, considering the optimization problem

min
a∈A

Jzδ(a)

∫
Ω

a
∣∣∇(u(a)− zδ)

∣∣2 + ρ‖a− a∗‖2L2(Ω), (2.24)

where ρ > 0 is the regularization parameter, a∗ is an a priori estimate for the true
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coefficient aD, and zδ is a measurement for uD. Here the set A is defined by

A = {a ∈ L∞(Ω) | 0 < c0 ≤ a(x) ≤ c1 a.e. on Ω} ,

and it is assumed that aD ∈ A. They proved that the functional Jzδ(a) is convex on

the convex set A, and that there exists a unique solution aδρ of the problem (2.24).

Further, they established the following continuity result for the solution aδρ with

respect to the data zδ.

Theorem 2.2.5. For a fixed ρ > 0, let zn → zδ in H1
0 (Ω) and {an} be minimizers

of Jzn(a). Then an → aδρ in L2(Ω).

Hào and Quyen defined the set

Π = {a ∈ A | u(a) = uD} ,

and they showed that Π is nonempty, bounded, and closed in the L2(Ω)-norm, and

that there is a unique solution a† of the problem

min
a∈Π

‖a− a∗‖2L2(Ω)

which is called the a∗-minimum norm solution of the identification problem. Hào

and Quyen proved the following stability result.

Theorem 2.2.6.

‖aδρ − a†‖L2(Ω) = O(
√
δ) and ‖u(aδρ)− zδ‖L2(Ω) = O(δ)

as ρ → 0 and ρ ∼ δ.
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Chapter 3

Preliminaries

In this chapter, we recall some definitions and results from functional analysis and

Sobolev space theory. We study the forward problems and prove results regarding

existence, uniqueness, and stability.

3.1 Functional analysis

In this section we review some definitions and results from functional analysis which

we shall need throughout this work. The reader may refer to [28–31] for more detailed

discussions.

Let X and Y be normed spaces and L : X → Y be a linear operator. We say L

is bounded if there exists a real number C such that

‖Lx‖Y ≤ C‖x‖ ∀x ∈ X.

If L is bounded, the smallest such C is denoted by ‖L‖; thus

‖L‖ = sup
x∈X
x �=0

‖Tx‖Y
‖x‖X

.

A standard functional analysis result states that L is bounded if and only if it is

continuous. Let L (X;Y ) be the set of all bounded linear operators from X into Y .

L (X;Y ) becomes a vector space with usual way operators are added and scaled,

which also can be made into a normed space with the norm defined above.
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A scalar-valued function on a vector space X is called functional. Let H be a

Hilbert space (that is, a complete inner product space). The dual space ofH, denoted

by H∗, is the space of all bounded linear functionals defined on H. Sometimes, the

evaluation of an � ∈ H∗ at a v ∈ H will be written as 〈l, v〉. In some literature,

the mapping 〈·, ·〉 is called the duality pairing on H∗ × H (or, the duality pairing

between H∗ and H).

Let us also recall the following fundamental results in Hilbert space theory.

Theorem 3.1.1 (The Riesz Representation Theorem). Every bounded linear func-

tional � on a Hilbert space H can be represented uniquely as

�(v) = (u, v)H ∀v ∈ H

where u ∈ H depends on � with ‖u‖H = ‖�‖H∗.

Conversely, for u ∈ H, the functional � defined by

�(v) = (u, v)H ∀v ∈ H

belongs to H∗ with ‖�‖H∗ = ‖u‖H .

Theorem 3.1.2 (The Projection Theorem). Let H be a Hilbert space, and U be a

closed subspace of H. Then for any v ∈ H, there is a unique u ∈ U such that

‖u− v‖ = inf
w∈U

‖w − v‖.

We call u the projection of v onto U ; for short we write u = projUv. Further, u is

characterized by

(u− v, w)H = 0 ∀w ∈ U.

If X is an inner product space, the Cauchy-Schwarz inequality states that

| (u, v)X | ≤ ‖u‖X‖v‖X ∀u, v ∈ X,

where ‖u‖X =
√

(u, u)X . Using the Riesz representation theorem and the Cauchy-

Schwarz inequality, one can conclude the following theorem, which we will be needed

in later chapters.
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Theorem 3.1.3. Let H be a real Hilbert space, and H∗ be its dual space. Then the

mapping P : H → H∗ given by

〈Pv, w〉 = (v, w)H ∀v, w ∈ H,

is an isometric isomorphism from H onto H∗. Moreover, we have

‖ψ‖2H∗ =
〈
ψ, P−1ψ

〉
= ‖P−1ψ‖2H ∀ψ ∈ H∗. (3.1)

We also recall the definition of compact (linear) operators and some of their

properties.

Definition 3.1.1. A linear operator K from a normed space X into a normed space

Y is called compact if and only if it maps bounded sets in X to precompact sets

in Y , i.e., if M ⊂ X is bounded, then K(M) is compact in Y . Equivalently, K

is compact if and and only if for every bounded sequence {xn} ⊂ X the sequence

{Kxn} has a convergent subsequence in Y .

Remark 3.1.1. It can be shown that every compact operator is continuous (bounded).

The converse need not be true.

The proof of the following theorem can be found in Kreyszig [29, Theorem 8.1-7].

Theorem 3.1.4. Let X and Y be normed spaces and K : X → Y a compact linear

operator. Suppose that {xn} in X is weakly convergent, say, xn ⇀ x. Then {Kxn}
is strongly convergent in Y and has the limit y = Kx.

We shall also need the following definitions and results from convex analysis; see

for example [28] and references therein.

Definition 3.1.2. Let V be a normed space, K ⊂ V . A function f : K → R is

called lower semicontinuous if {vn} ⊂ K and vn → v ∈ K imply

f(v) ≤ lim
n→∞

f(vn).

The function f is called weakly lower semicontinuous if the above inequality is

valid for any sequence {vn} ⊂ K with vn ⇀ v ∈ K. Here the notation vn ⇀ v means
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vn converges to v weakly; that is

�(vn) → �(v) ∀� ∈ L (V ;R) .

Theorem 3.1.5. A norm ‖ · ‖ on a normed space is weakly lower semicontinuous.

Definition 3.1.3. Let V be a real or complex linear space, K ⊂ V .

• The set K is said to be convex if

u, v ∈ K =⇒ λu+ (1− λ)v ∈ K ∀λ ∈ [0, 1].

Clearly, if K is a subspace of V , then K is convex.

• Assume K is convex. A function f : K → R is said to be convex if

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v) ∀u, v ∈ K, ∀λ ∈ [0, 1].

The function f is strictly convex if the above inequality is strict for u �= v

and λ ∈ (0, 1).

• Assume V is a normed space. A real-valued function f on V is said to be

coercive over K if

f(v) → ∞ as ‖v‖ → ∞, v ∈ K.

Theorem 3.1.6. (a) If V is an inner product space, then the function f(v) =

‖v‖2V = (v, v)V is strictly convex.

(b) If fc is convex on V and fs is strictly convex on V , then the function f = fc+fs

is strictly convex on V .

Theorem 3.1.7. Assume V is a normed space, K ⊂ V is a convex and closed

finite-dimensional subset, and f : K → R is convex and lower semi-continuous. If

either

(a) K is bounded

or
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(b) f is coercive on K,

then the minimization problem

inf
v∈K

f(v)

has a solution. Furthermore, if f is strictly convex, then a solution to this problem

is unique.

3.2 Sobolev spaces

In this section we recall some definitions and results from the theory of Sobolev

spaces. The reader may refer to [5,28,32–37] for more detailed discussions. Through-

out this section, Ω is a nonempty open subset of RN .

For any extended real number 1 ≤ p ≤ ∞, the space Lp(Ω) consists of equivalence

classes of measurable functions f : Ω → R such that∫
Ω

|f |p < ∞, if 1 ≤ p < ∞,

ess supx∈Ω |f(x)| < ∞, if p = ∞,

(3.2)

where two measurable functions are equivalent if they are equal almost everywhere

(a.e.) in Ω. Here the integral is to be understood in the Lebesgue sense, and1

ess supx∈Ω |f(x)| = inf {a ∈ R |μ (x : |f(x)| > a) = 0} .

For convenience, it is customary not to make any distinction between a function and

its equivalence class (except when the precise pointwise values of a representative

function are significant). Thus, for a measurable function f , we will write f ∈ Lp(Ω)

if f satisfies (3.2), and f = 0 in Lp(Ω) if f(x) = 0 a.e. in Ω.

The space Lp(Ω) is a Banach space with the norm defined by

‖f‖Lp(Ω) =

(∫
Ω

|f |p
)1/p

, when 1 ≤ p < ∞,

‖f‖L∞(Ω) = ess supx∈Ω |f(x)| < ∞, when p = ∞.

1Here, μ(·) denotes the Lebesgue measure in R
N ; occasionally the notation | · | will also be used.
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In particular, the space L2(Ω) is a Hilbert space with inner product given by

(u, v)L2(Ω) =

∫
Ω

u(x)v(x)dx.

The definitions of the spaces Lp(Ω)m and Lp(Ω)m×n are very similar. For example,

Lp(Ω)m = {f | fi ∈ Lp(Ω), i = 1, 2, . . . ,m} ,

and the norm becomes

‖f‖Lp(Ω) =

(
m∑
i=1

‖fi‖Lp(Ω)

)1/p

, 1 ≤ p < ∞,

‖f‖L∞(Ω) = max
{
‖f1‖L∞(Ω), ‖f2‖L∞(Ω), . . . , ‖fn‖L∞(Ω)

}
.

We shall need the following definition to introduce the concept of (weak) deriva-

tives of ‘functions’ in the space Lp(Ω).

Definition 3.2.1 (Locally integrable). A function f : Ω → R is said to be locally

integrable on Ω if f ∈ L1(U) for every compact U ⊂ Ω. In this case we write

f ∈ L1
loc(Ω).

For a multi-index α = (α1, α2, . . . , αN) ∈ N
N
0 and a function u : Ω → R, the

notation ∂αu will be used to denote the αth partial derivative of u, that is,

∂αu =
∂|α|u

∂xα1
1 ∂xα2

2 . . . ∂xαN
N

,

where N0 = N ∪ {0}, and |α| = α1 + α2 + · · ·+ αN .

Let Ω0 be a nonempty subset of RN , and let φ be any function defined on Ω0.

The support of φ is defined to be the set

supp(φ) = {x ∈ Ω0 |φ(x) �= 0},

where the closure is taken in R
N . If φ is also defined on Ω and supp(φ) is a compact

subset of RN (that is, closed and bounded subset of RN) with supp(φ) ⊂ Ω, then φ

is said to be compactly supported in Ω. The space C∞
0 (Ω) is defined to be the set of

all functions that are infinitely differentiable on Ω and compactly supported in Ω.
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Now we are ready to introduce the concept of a weak derivative, one of the

fundamental building blocks of Sobolev spaces.

Definition 3.2.2 (Weak derivative). A function u ∈ L1
loc(Ω) is said to have a week

derivative of an order α if there exists a function v ∈ L1
loc(Ω) satisfying∫

Ω

vφ = (−1)|α|
∫
Ω

u∂αφ ∀φ ∈ C∞
0 (Ω).

In this case we write v = ∂αu.

It can be shown that weak derivatives are unique (at least, up to a set of measure

zero). Moreover, if u ∈ Cm(Ω), then for all |α| ≤ m, the classical partial derivative

∂αu coincides with αth weak derivative of u. Of course, ∂αu may exist in the weak

sense without existing in the classical sense. See [28] for proofs and examples. Unless

otherwise stated, from now on, all derivatives should be understood in the weak

sense.

The Sobolev space Wm,p(Ω) is defined by

Wm,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) ∀|α| ≤ m} ,

This is a Banach space under the norm

‖u‖Wm,p(Ω) =

⎛
⎝∑

|α|≤m

‖∂αu‖pLp(Ω)

⎞
⎠1/p

,

with the appropriate modification for p = ∞. When p = 2, Wm,2(Ω) is usually

denoted by Hm(Ω), which is a Hilbert space with inner product

(u, v)Hm(Ω) =
∑
|α|≤m

∫
Ω

∂αu ∂αv.

Also we mention following semi-norm on Hm(Ω)

|u|Hm(Ω) =

√∑
|α|=m

‖∂αu‖2L2(Ω).

The space H1
0 (Ω) is defined to be the closure of C∞

0 (Ω) in H1(Ω). Hence H1
0 (Ω)
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is a closed subspace of H1(Ω), and so it is also a Hilbert space under the H1-inner

product. We denote by H−1(Ω) the dual space of H1
0 (Ω). The norm on H−1(Ω) is

given by

‖�‖H−1(Ω) = sup
v∈H1(Ω)

〈�, v〉−1

‖v‖H1
0 (Ω)

,

where 〈·, ·〉−1 denotes the duality pairing on H−1(Ω)×H1
0 (Ω).

We denote by H1(Ω)∗ the dual space of H1(Ω); the norm on H1(Ω)∗ is

‖�‖H1(Ω)∗ = sup
v∈H1(Ω)

〈�, v〉∗
‖v‖H1(Ω)

where 〈·, ·〉∗ denotes the duality pairing on H1(Ω)∗ ×H1(Ω).

The following theorem shows how to interpret boundary values for functions from

W 1,p(Ω); see for example [5, 28, 35–37].

Theorem 3.2.1 (Trace Theorem). Let Ω be an open, bounded, connected subset of

R
d with Lipschitz-continuous boundary ∂Ω, and 1 < p < ∞. Then there exists a

unique continuous linear operator γ : W 1,p(Ω) → Lp(∂Ω) such that γv = v|∂Ω for all

v ∈ C∞(Ω̄). The operator γ is called the trace operator.

We point out that γ is neither injective nor surjective. In the case p = 2, R(γ)

is denoted by H1/2(∂Ω), which is a Hilbert space with the norm defined by

‖u‖H1/2(∂Ω) = inf
v∈H1(Ω)

{
‖v‖H1(Ω) | γv = u

}
.

From this definition one can conclude the inequality (better-known as the trace

inequality)

‖γu‖H1/2(∂Ω) ≤ ‖u‖H1(Ω) ∀u ∈ H1(Ω).

We denote by H−1/2(∂Ω) the dual space of H1/2(∂Ω), and we will write 〈·, ·〉∂Ω
to denote the duality pairing between H−1/2(∂Ω) and H1/2(∂Ω). The norm on

H−1/2(∂Ω) is given by

‖g‖H−1/2(∂Ω) = sup
v∈H1/2(∂Ω)

〈g, v〉∂Ω
‖v‖H1/2(∂Ω)

.
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Using the concept of traces, the space H1
0 (Ω) can be characterized as

H1
0 (Ω) = ker(γ) =

{
u ∈ H1(Ω) | γu = 0

}
.

For u ∈ H1(Ω), it is accustomed to write γu simply as u, which we will follow

this convention throughout.

The divergence of a 2-tensor σ and the gradient of a vector-valued function v are

defined respectively as

∇ · σ =

[
∂σ11

∂x
+ ∂σ12

∂y
∂σ21

∂x
+ ∂σ22

∂y

]
, ∇v =

[
∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y

]
.

The dot product of two 2-tensors σ and ε is defined by

σ · ε = σ11ε11 + σ12ε12 + σ21ε21 + σ22ε22.

In the special case that σ is symmetric and ε = 1
2

(
∇v +∇vT

)
, for some vector-

valued function v, we have the identity

σ · ∇v = σ · ∇vT = σ · ε. (3.3)

We shall need the following Green’s formulas (the multidimensional analogue of

integration by parts); see for example [36, 38].

Theorem 3.2.2 (Green’s Formulas). Let Ω be a bounded open subset of R2 with

Lipschitz-continuous boundary ∂Ω, and n = (n1, n2) denote the outer unit normal

to ∂Ω.

(a) For u, v ∈ H1(Ω) and for i = 1, 2, we have∫
Ω

u∂xi
v = −

∫
Ω

v∂xi
u+

∫
∂Ω

uvni. (3.4)

(b) For u ∈ H2(Ω) and v ∈ H1(Ω), we have

−
∫
Ω

∇ · (a∇u) v =

∫
Ω

a∇u · ∇v −
∫
∂Ω

a
∂u

∂n
v, (3.5)
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provided the function a is smooth enough, e.g., in the space C1(Ω̄), so that the

function a∇u belongs to the space H1(Ω)2.

(c) If σ ∈ H1(Ω)2×2 is a symmetric tensor and v ∈ H1(Ω)2, we have

−
∫
Ω

(∇ · σ) · v =

∫
Ω

σ · εv −
∫
∂Ω

v · (σn), (3.6)

where εv =
1
2

(
∇v +∇vT

)
.

For scalar-valued function f ∈ H1(Ω) and vector valued function �f ∈ H1(Ω)2

the operators curl and rot are defined by

curl f = (∂yf,−∂xf) , rot �f = ∂xf2 − ∂yf1.

Notice then using Green’s formula (3.4), for all �f ∈ H1(Ω)2 and v ∈ H1
0 (Ω) we have(

rot �f, v
)
L2(Ω)

=

∫
Ω

(∂xf2 − ∂yf1) v

=

∫
Ω

�f · (∂yv,−∂xv)

=
(
�f, curl v

)
L2(Ω)

.

(3.7)

The right-hand side of (3.7) makes sense even if �f is only in L2(Ω)2. Thus for
�f ∈ L2(Ω)2 we regard rot �f as an element of H−1(Ω) via the duality〈

rot �f, v
〉
H−1(Ω)×H1

0 (Ω)
=
(
�f, curl v

)
L2(Ω)

∀v ∈ H1
0 (Ω).

Notice that rot �f ∈ H−1(Ω) since

‖rot �f ‖H−1(Ω) = sup
v∈H1

0 (Ω)

(
�f, curl v

)
L2(Ω)

‖v‖H1(Ω)

≤ ‖�f ‖L2(Ω),

which follows from the Cauchy-Schwarz inequality and the fact that, in R
2,

‖curl v‖L2(Ω) = ‖∇v‖L2(Ω) ≤ ‖v‖H1(Ω).
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Moreover, it can easily be shown that the operator rot : L2(Ω)2 → H−1(Ω) is linear,

and it is bounded since

‖rot‖L (H−1(Ω);H1
0 (Ω)) = sup

�f∈L2(Ω)2

‖rot �f ‖H−1(Ω)

‖�f ‖L2(Ω)

≤ 1.

We shall also need the following fundamental theorem, which is a special case of

the so-called Sobolev embedding theorems; see for example [5, 32, 37].

Theorem 3.2.3 (Rellich’s). Let Ω be a bounded open subset of R2 with Lipschitz-

continuous boundary. Then H1(Ω) is compactly embedded in L2(Ω), that is, the

identity operator I : H1(Ω) → L2(Ω) is compact.

Let {un} be any bounded sequence in H1(Ω). From functional analysis, every

bounded sequence in a Hilbert space has a weakly convergent subsequence. Thus,

there exists a subsequence {un′} of {un} and u ∈ H1(Ω) such that un′ ⇀ u in

H1(Ω). By Rellich’s theorem, there exists a subsequence {un′
k
} of {un′} and a vector

w ∈ L2(Ω) such that un′
k
→ w in L2(Ω). Since L2(Ω)∗ ⊂ H1(Ω)∗, it follows that

�(un′
k
) → �(u) for all � ∈ L2(Ω), and so, un′

k
⇀ u in L2(Ω). Since the weak limit is

unique, it follows that w = u ∈ H1(Ω). We summarize this and another result in

the following corollary.

Corollary 3.2.1. Let Ω be a bounded open subset of R2 with Lipschitz-continuous

boundary, and let {un} be any bounded sequence in H1(Ω).

(a) There exists a subsequence {unk
} of {un} and a vector u ∈ H1(Ω) such that

unk
⇀ u in H1(Ω) and unk

→ u in L2(Ω).

(b) If further un ⇀ u in H1(Ω), then by Theorem 3.1.4 we have un → u in

L2(Ω).

3.3 Weak formulations of the forward problems

One popular approach to the study of partial differential equations is to transform the

original problem, which is typically given in a strong form, into another form called

the weak or variational form of the PDE. It turns out that most of the questions

related to well-posedness can then be answered more satisfactorily, and to some
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extent, in a more unified framework. For introductory texts in the subject, we

recommend the books [28,39]. A more comprehensive treatment can be found in the

monographs [36, 37].

In this section, we will derive and prove the well-posedness of the weak formula-

tions corresponding to the boundary value problems (1.1), (1.2), and (1.3).

From now on, we assume Ω is a bounded, simply-connected domain in R
2 with

Lipschitz-continuous boundary ∂Ω, and n denotes the outer unit normal to ∂Ω. All

the smoothness assumptions regarding the functions involved will be given in the

appropriate places.

3.3.1 Abstract variational problems

We will develop a functional analysis framework for studying abstract variational

problems in Hilbert space settings. We start with some definitions and results.

Definition 3.3.1. A bilinear form a(·, ·) on a linear vector space V is a mapping

a : V × V → R that satisfies the properties

1. a(αu+ βv, w) = αa(u, w) + βa(v, w),

2. a(w, αu+ βv) = αa(w, u) + βa(w, v),

for all u, v, w ∈ V and all α, β ∈ R. If in addition, a(u, v) = a(v, u) for all u, v ∈ V ,

then a(·, ·) is called symmetric.

Clearly any real inner product defines a symmetric bilinear form.

Definition 3.3.2. Assume V is a normed space. A bilinear form a(·, ·) on V is

called

(a) V -elliptic, or for short elliptic or coercive, if there exists a constant

α > 0 such that

a(v, v) ≥ α‖v‖2V ∀v ∈ V.

(b) bounded, if there exists a constant β > 0 such that

a(u, v) ≤ β‖u‖U‖v‖U ∀u, v ∈ U.
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Let H be a Hilbert space, and suppose that a(·, ·) is a symmetric bilinear form on

H which is bounded and H-elliptic. Let � ∈ H∗, and consider the abstract problem

u ∈ H, a(u, v) = �(v) ∀v ∈ H. (3.8)

We will now explain how the Riesz representation theorem can be used to answer

questions about existence, uniqueness, and stability of the abstract problem (3.8).

Since the bilinear form a(·, ·) is symmetric and H-elliptic, it is easy to show that

it defines an alternate inner product on H. Let ‖ · ‖a denotes the norm induced by

this new inner product, that is

‖v‖a =
√

a(v, v) ∀v ∈ H.

In some contexts, the norm ‖ · ‖a is called the energy norm. From the boundedness

and ellipticity of a(·, ·), it follows that ‖ · ‖H is a norm equivalent to the norm ‖ · ‖a.
In fact √

α‖v‖H ≤ ‖v‖a ≤
√

β‖v‖H ∀v ∈ H, (3.9)

where α and β are the constants appearing in the definitions of H-ellipticity and

boundedness of a(·, ·), respectively. Thus, H is also complete under the energy norm,

and hence it is a Hilbert space with respect to the inner product a(·, ·).
Since by assumption � is bounded with respect to the original norm on H, we

have

|�(v)| ≤ ‖�‖H∗‖v‖H ≤ α−1/2 ‖�‖H∗‖v‖a ∀v ∈ H,

and so � is also bounded with respect to the energy norm with

‖�‖a∗ ≤ α−1/2 ‖�‖H∗ , (3.10)

where ‖�‖a∗ denotes the norm of � with respect to the energy norm ‖ · ‖a.
Thus, by Riesz representation theorem, there exists a unique vector u ∈ H

satisfying the abstract problem (3.8). Further, ‖u‖a = ‖�‖a∗ , and so in view of (3.9)

and (3.10) we see that

‖u‖H ≤ α−1‖�‖H∗ ,

which expresses the stability or continuous dependence of the solution u with respect

41



to the data, �.

We summarize what we have established in the following lemma.

Lemma 3.3.1. Let H be a Hilbert space. Suppose that a(·, ·) is a symmetric bilinear

form on H that is bounded and H-elliptic, and that � ∈ H∗. Then there exists a

unique u ∈ H such that

a(u, v) = �(v) ∀v ∈ H.

Furthermore, the solution u depends continuously on the data � in the sense that

‖u‖H ≤ C‖�‖H∗

for some constant C independent of u and �.

3.3.2 The Neumann BVP

To derive the weak formulation corresponding to BVP (1.1), we temporarily assume

that u ∈ C2(Ω) ∩ C1(Ω̄) is a classical solution of the BVP (1.1). Further, let us

also assume that aN ∈ C1(Ω̄), fN ∈ C(Ω̄), and gN ∈ C(∂Ω), so that the following

computations are valid. Multiplying both sides of the PDE in (1.1) by a function

v ∈ C1(Ω̄) (the so-called test function) then integrating the resulted equation over

Ω yields ∫
Ω

−∇ · (aN∇u)v =

∫
Ω

fNv.

Next apply Green’s identity (3.5) to left-hand side of this relation and use the fact

that aN
∂u
∂n

= gN on ∂Ω to obtain

∫
Ω

aN∇u · ∇v =

∫
Ω

fNv +

∫
∂Ω

gNv. (3.11)

By taking v = 1 in equation (3.11), we see that∫
Ω

fN +

∫
∂Ω

gN = 0,

which gives a compatibility condition on the data fN and gN ; no solution exists

unless fN and gN satisfy this condition. Moreover, if c ∈ R, then u + c is another

solution, and hence, the BVP (1.1) has no unique solution.
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Equation (3.11) was derived under the assumption that u ∈ C2(Ω) ∩ C1(Ω̄),

provided that aN ∈ C1(Ω̄), fN ∈ C(Ω̄), and gN ∈ C(∂Ω). However, in order for

equation (3.11) to make sense, we only need to assume u, v ∈ H1(Ω), aN ∈ L∞(Ω),

fN ∈ L2(Ω), and gN ∈ L2(∂Ω). Actually, we can still weaken the smoothness

assumption on gN . It is sufficient to assume gN ∈ H−1/2(∂Ω), as long as we inter-

pret the integral
∫
∂Ω

gNv as the duality pairing 〈gN , v〉∂Ω between H−1/2(∂Ω) and

H1/2(∂Ω). Therefore the weak formulation of the BVP (1.1) can be posed as

u ∈ H1(Ω), (aN∇u,∇v)L2(Ω) = (fN , v)L2(Ω) + 〈gN , v〉∂Ω ∀v ∈ H1(Ω). (3.12)

Notice the weak formulation has the same properties as the strong formulation

(1.1). If u solves (3.12), then adding a constant to u produces another solution, and

hence (3.12) has no unique solution. Further, by taking v = 1 in (3.12), we get the

following compatibility condition on the data fN and gN

(fN , 1)L2(Ω) + 〈gN , 1〉∂Ω = 0. (3.13)

Clearly this condition is necessary for a solution to exist. Indeed, later we will show

that this condition is also sufficient.

We start with some auxiliary results. Let us define the subspace V ⊂ H1(Ω) by

V =
{
v ∈ H1(Ω)

∣∣ (v, 1)L2(Ω) = 0
}
.

We will show that V is closed. Define the operator L : H1(Ω) → R by

L(v) = (v, 1)L2(Ω) ∀v ∈ H1(Ω).

Clearly L is linear, and further it is bounded since by the Cauchy-Schwarz inequality

|L(v)| ≤ ‖1‖L2(Ω)‖v‖L2(Ω) ≤ |Ω|1/2‖v‖H1(Ω)∀v ∈ H1(Ω),

where |Ω| denotes the (Lebesgue) measure of Ω in R
2. Since V = N (L), and L is

linear and bounded, it follows from a standard result that V is a closed subspace of

H1(Ω), and hence it is also a Hilbert space. Now consider the variational problem

u ∈ V, a(u, v) = �(v) ∀v ∈ V, (3.14)

43



where

a(u, v) = (aN∇u,∇v)L2(Ω) ∀u, v ∈ V,

�(v) = (fN , v)L2(Ω) + 〈gN , v〉∂Ω ∀v ∈ V.

It can be easily seen that a(·, ·) defines a symmetric bilinear form on V . It is also

bounded since

a(u, v) ≤
∫
Ω

|aN∇u · ∇v|

≤ ‖aN‖L∞(Ω)

∫
Ω

|∇u · ∇v| (Hölder’s inequality)

≤ ‖aN‖L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω) (Cauchy-Schwarz inequality)

≤ ‖aN‖L∞(Ω)‖u‖H1(Ω)‖v‖H1(Ω) ∀u, v ∈ V.

To show that a(·, ·) is V -elliptic, we need the following result which can be concluded

from [28, Theorem 7.3.12] (see also, [40, Theorem 2.6]).

Lemma 3.3.2. Let Ω be an open, bounded, connected subset of Rd with Lipschitz-

continuous boundary. The function ‖ · ‖ : H1(Ω) → R given by

‖v‖ = |∇v|L2(Ω) +
∣∣ (v, 1)L2(Ω)

∣∣
defines a norm on H1(Ω), which is equivalent to the norm ‖v‖H1(Ω). More precisely,

there exist constants M ≥ m > 0 depending only on Ω such that

m‖v‖ ≤ ‖v‖H1(Ω) ≤ M‖v‖ ∀v ∈ H1(Ω).

As a corollary, we cite2:

Corollary 3.3.1. Over the space V , the semi-norm |·|H1(Ω) is a norm equivalent to

the norm ‖ · ‖H1(Ω).

Thus for all u ∈ V we have

a(u, u) ≥ k‖∇u‖2L2(Ω) = k |u|2H1(Ω) ≥ α‖u‖2H1(Ω),

2We point out that the same result can be concluded from Friedrich’s inequality (see for example,
[33, 41]), but we need different (and stronger) assumptions on Ω.
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where α = kM−2, and so a(·, ·) is V -elliptic. Notice, however, that a(·, ·) is not

H1(Ω)-elliptic (take v = 1; then a(v, v) = 0 but ‖v‖H1(Ω) �= 0). This is one of the

reasons of introducing the space V .

Clearly � is linear. Moreover, using the Cauchy-Schwarz and trace inequalities

|�(v)| ≤ ‖fN‖L2(Ω)‖v‖L2(Ω) + ‖gN‖H−1/2(∂Ω)‖v‖H1/2(∂Ω)

≤
(
‖fN‖L2(Ω) + ‖gN‖H−1/2(∂Ω)

)
‖v‖H1(Ω) ∀v ∈ V,

showing that � is bounded with

‖�‖V ∗ ≤ ‖fN‖L2(Ω) + ‖gN‖H−1/2(∂Ω).

Now we can apply Lemma 3.3.1, to conclude that the variational problem (3.14)

has a unique solution u ∈ V , provided that aN ∈ L∞(Ω) and is strictly positive over

Ω. Moreover, we have the stability result

‖u‖H1(Ω) ≤ α−1
(
‖fN‖L2(Ω) + ‖gN‖H−1/2(∂Ω)

)
. (3.15)

Finally, we show that if u is the solution to the variational problem (3.14), then

u also solves the variational problem (3.12) provided the compatibility condition

(3.13) is satisfied. Write any v ∈ H1(Ω) as v = v� + v⊥ where

v� = v − |Ω|−1(v, 1)L2(Ω),

v⊥ = |Ω|−1(v, 1)L2(Ω).

Obviously v⊥ ∈ R, it can be easily shown that v� ∈ V and (and that (v�, v⊥)H1(Ω) = 0,

and so we have the orthogonal decomposition H1(Ω) = V ⊕ R). Consequently,

(aN∇u,∇v)L2(Ω) = (aN∇u,∇v�)L2(Ω) = a(u, v�)

= �(v�) = (fN , v�)L2(Ω) + 〈gN , v�〉∂Ω
= (fN , v)L2(Ω) + 〈gN , v〉∂Ω + v⊥

(
(fN , 1)L2(Ω) + 〈gN , 1〉∂Ω

)
= (fN , v)L2(Ω) + 〈gN , v〉∂Ω ∀v ∈ H1(Ω)

showing that u is a solution to the variational problem (3.12), and further, it is the

only solution to (3.12) that lies in the space V . The continuous dependence of u on
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the data is shown in (3.15).

3.3.3 The Dirichlet BVP

Now we derive the weak formulation of the BVP (1.2). Let us assume that u satisfies

(1.2). Multiply both sides of the PDE in (1.2) by a test function v ∈ H1
0 (Ω), then

integrate over Ω to get

−
∫
Ω

∇(aD∇uD)v =

∫
Ω

fDv.

Now apply Green’s identity (3.5) to left-hand side then rearrange to get∫
Ω

aD∇uD · ∇v =

∫
Ω

fDv +

∫
∂Ω

aD
∂uD

∂n
v. (3.16)

Since v ∈ H1
0 (Ω), v vanishes on ∂Ω and so the second integral in the right-hand side

of (3.16) is zero. Thus the weak formulation of the BVP (1.2) can be posed as

u ∈ H1
0 (Ω),

∫
Ω

aD∇u · ∇v =

∫
Ω

fDv ∀v ∈ H1
0 (Ω). (3.17)

Notice how the homogeneous Dirichlet boundary conditions are explicitly imposed

in the weak form. For this reason, Dirichlet conditions are often called essential

boundary conditions.

Now we show that (3.17) is a well-posed variational problem. We shall assume

aD ∈ L∞(Ω) and is strictly positive over Ω, say aD ≥ k > 0, and that fD ∈ L2(Ω).

Define the auxiliary functions a(·, ·) and �(·) by

a(u, v) =

∫
Ω

aD∇u · ∇v ∀u, v ∈ H1
0 (Ω),

�(v) =

∫
Ω

fDv ∀v ∈ H1
0 (Ω).

So the weak formulation (3.17) can be written more concisely as

u ∈ H1
0 (Ω), a(u, v) = �(v) ∀v ∈ H1

0 (Ω).

Clearly a(·, ·) defines a symmetric bilinear form on H1
0 (Ω). We show it is also

H1
0 (Ω)-elliptic. We need the following result, see for example [33, 41].
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Theorem 3.3.1 (Poincaré Inequality). Suppose Ω is a bounded set in R
N . Then

there exists a positive constant C, depending only on the domain Ω, such that

‖v‖H1(Ω) ≤ C |v|H1(Ω) ∀v ∈ H1
0 (Ω).

Using the Poincaré inequality and the fact that aD ≥ k > 0 a.e. on Ω, we see

that

a(v, v) ≥ k |v|2H1(Ω) ≥ α‖v‖2H1(Ω) ∀v ∈ H1
0 (Ω),

where α = k C−2, and thus, a(·, ·) is H1
0 (Ω)-elliptic. It is a straightforward argument

to show that a(·, ·) and � are both bounded, with

‖�‖H−1(Ω) ≤ ‖f‖L2(Ω).

By Lemma 3.3.1, it follows that the variational problem (3.17) has unique solution

u ∈ H1
0 (Ω), which also depends continuously on the data f .

3.3.4 The equations of isotropic elasticity

Assume u satisfies the equations of linear, isotropic elasticity (1.3). Multiplying both

sides of the PDE in (1.3) by a smooth test function v, integrating the relation over

Ω, then applying Green’s formula (3.6), yields∫
Ω

σ(m∗, u) · ε(v) =
∫
Ω

fE · v +
∫
∂Ω

gE · v. (3.18)

In order for every term in (3.18) to make sense, we only need to assume u, v ∈
H1(Ω)2, provided m∗ = (λ∗, ρ∗) ∈ L∞(Ω)2, fE ∈ H1(Ω)2, and3 gE ∈ H−1/2(∂Ω)2.

Thus the weak formulation of (1.3) can be posed as

u ∈ H1(Ω),

∫
Ω

σ(m∗, u) · ε(v) =
∫
Ω

fE · v +
∫
∂Ω

gE · v ∀v ∈ H1(Ω)2. (3.19)

Notice that for a solution to exist, the load fE and the traction gE must satisfy

compatibility condition ∫
Ω

fE +

∫
∂Ω

gE = 0. (3.20)

3Provided the proper interpretation of the integral.
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Furthermore, since ε(v) = 0 if and only if v ∈ N , where

N = {(c1y + c2,−c1x+ c3) | c1, c2, c3 ∈ R} ,

we see that the BVP cannot have a unique solution. If we define the space U by

U =

{
v ∈ H1(Ω)2

∣∣∣∣
∫
Ω

v1 =

∫
Ω

v2 = 0,

∫
Ω

rotv = 0

}
,

then we have the (not necessarily orthogonal) decomposition H1(Ω)2 = U ⊕N .

Consider the variational problem:

u ∈ U, a(u, v) =

∫
Ω

σ(m∗, u) · ε(v) =
∫
Ω

fE · v +
∫
∂Ω

gE · v = �(v) ∀v ∈ U.

By [7, Chapter 3], one can conclude the following version of what is known as Korn’s

inequality

‖ε(v)‖2L2(Ω) ≥ c‖v‖2H1(Ω) ∀v ∈ U,

where c > 0 depends only on Ω. If k = 2minΩ {μ∗, ρ∗}, then a straightforward

calculation shows that

(2μ∗ε+ λ∗tr(ε)I) · ε ≥ kε · ε ∀ε.

Assuming k > 0, which is reasonable since μ∗ is the shear modulus of the elastic

material and ρ∗ = μ∗ + λ∗ is the bulk modulus, we have

a(v, v) ≥ k

∫
Ω

ε(v) · ε(v) ≥ ck‖v‖2H1(Ω) ∀v ∈ U.

Moreover, it is straightforward to verify that there exists c1, c2 > 0 such that

‖σ(m,w)‖L2(Ω) ≤ c1‖m‖L2(Ω)‖w‖W 1,∞(Ω) ∀m ∈ L2(Ω)2, w ∈ W 1,∞(Ω)2, (3.21)

‖σ(m,w)‖L2(Ω) ≤ c2‖m‖L∞(Ω)‖w‖H1(Ω) ∀m ∈ L∞(Ω)2, w ∈ H1(Ω)2. (3.22)

Thus, provided m∗ ∈ L∞(Ω)2, there exists β > 0 such that

|a(u, v)| ≤ β‖m∗‖L∞(Ω)‖u‖H1(Ω)‖v‖H1(Ω) ∀m∗ ∈ L∞(Ω)2, u, v ∈ H1(Ω)2.
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Thus for any m∗ = (μ∗, ρ∗) ∈ L∞(Ω)2 satisfying minΩ {μ∗, ρ∗} > 0 in Ω, the

symmetric bilinear form a(·, ·) is bounded and U -elliptic. Further, it is easy to see

that � is bounded. Hence, by Lemma 3.3.1 it follows that

u ∈ U, a(u, v) = �(v) ∀v ∈ U

is a well-posed variational problem. As in the case of the Neumann BVP, it can be

established that (3.19) has a unique solution that belongs to U .
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Chapter 4

The equation error method

In this chapter, we give the precise formulation of the equation error method. We

prove existence and uniqueness results. We then describe how to implement the

equation error method in a practical algorithm.

Throughout the rest of this work we assume:

• zN ∈ W 1,∞(Ω), uN ∈ H1(Ω), and fN ∈ L2(Ω), gN ∈ H−1/2(∂Ω) satisfy the

compatibility condition (3.13);

• zD ∈ W 1,∞(Ω), uD ∈ H1
0 (Ω), and fD ∈ L2(Ω);

• zE ∈ W 1,∞(Ω)2, uE ∈ H1(Ω)2, and fE ∈ L2(Ω), gE ∈ H−1/2(∂Ω)2 satisfy the

compatibility condition (3.20).

4.1 Motivation

First we will explain the equation error method in context of the BVP (1.1). Since

the exact values a = aN and u = uN make

∇ · (a∇u) + fN = 0 inΩ,

we wish to choose a to make

∇ · (a∇zN) + fN
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as small as possible, i.e. minimize the error in the equation. If we include the

boundary condition, we want to make both

∇ · (a∇zN) + fN and a
∂zN
∂n

− gN

small. In this strong form it is not clear how to combine these two terms in a

single objective function to minimize. However, the weak form (3.12) combines the

PDE and the boundary condition in a single equation. Notice that the left-hand

side of (3.12) makes sense for aN∇uN ∈ L2(Ω)2 (for instance, if aN ∈ L2(Ω) and

uN ∈ W 1,∞(Ω) or if aN ∈ L∞(Ω) and uN ∈ H1(Ω)). Define the functional �N by

〈
�N , v

〉
∗ = (fN , v)L2(Ω) + 〈gN , v〉∂Ω ∀v ∈ H1(Ω)

and, for functions a and u such that a∇u ∈ L2(Ω)2, define the functional �Na (u) by

〈
�Na (u), v

〉
∗ = (a∇u,∇v)L2(Ω) ∀v ∈ H1(Ω).

Clearly �Na (u) and �N are linear. Further, it follows then from the Cauchy-Schwarz

and trace inequalities that

∣∣〈�N , v〉∗∣∣ ≤ (
‖fN‖L2(Ω) + ‖gN‖∂Ω

)
‖v‖H1(Ω) ∀v ∈ H1(Ω),

and ∣∣〈�Na (u), v〉∗∣∣ ≤ ‖a∇u‖L2(Ω)‖v‖H1(Ω) ∀v ∈ H1(Ω),

and so �Na (u), �
N ∈ H1(Ω)∗. If we set a = aN and u = uN , then from (3.12) we see

that 〈
�NaN (uN), v

〉
∗ =

〈
�N , v

〉
∗ ∀v ∈ H1(Ω),

and hence ‖�NaN (uN) − �N‖H1(Ω)∗ = 0. This motivates us to find an a such that the

residual ‖�Na (zN) − �N‖2H1(Ω)∗ is minimum. However, since the inverse problem is

known to be ill-posed, we instead consider the regularized problem

min
a∈H1(Ω)

JN(a) =
1

2
‖�Na (z)− �N‖2H1(Ω)∗ +

β

2
‖a‖2H1(Ω), (4.1)

where β > 0 is a regularization parameter.
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We proceed in a similar fashion for the other two inverse problems: let us define

the operators �D and �E by

〈
�D, v

〉
−1

= (fD, v)L2(Ω) ∀v ∈ H1
0 (Ω),〈

�E, v
〉
∗ = (fE, v)L2(Ω) + 〈gE, v〉∂Ω ∀v ∈ H1(Ω)2,

and notice that �D ∈ H−1(Ω), and that �E ∈ (H1(Ω)2)
∗
. Further, define the opera-

tors �Da (u) and �Dm(w) by

〈
�Da (u), v

〉
−1

= (a∇u,∇v)L2(Ω) ∀v ∈ H1
0 (Ω),

〈
�Em(w), v

〉
∗ = (σ(m,w), ε(v))L2(Ω) ∀v ∈ H1(Ω)2,

for sufficiently smooth functions a, u, m, and w, so that �Da (u) ∈ H−1(Ω) and

�Em(w) ∈ (H1(Ω)2)
∗
. From (3.17) we see that

〈
�DaD(uD), v

〉
−1

=
〈
�D, v

〉
−1

∀v ∈ H1
0 (Ω),

and from (3.19) 〈
�EmE

(uE), v
〉
∗ =

〈
�E, v

〉
∗ ∀v ∈ H1(Ω)2,

and so ‖�DmD
(uD)− �D‖H−1(Ω) = 0, and ‖�EmE

(uE)− �E‖(H1(Ω)2)∗ = 0. Therefore, the

equation error approach corresponding to the inverse problems related to the BVP

(1.2) and (1.3) can be posed as

min
a∈H1(Ω)

JD(a) =
1

2
‖�Da (zD)− �D‖2H−1(Ω) +

α

2
‖a‖2H1(Ω), (4.2)

and

min
m∈H1(Ω)2

JE(m) =
1

2
‖�Em(zE)− �E‖2(H1(Ω)2)∗ +

γ

2
‖m‖2H1(Ω), (4.3)

respectively, where α, γ > 0 are regularization parameters.

4.2 Existence and uniqueness analysis

In this section, we prove existence and uniqueness results concerning the optimiza-

tion problems (4.1), (4.2), and (4.3).
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First we shall need the following auxiliary results which we cite here. For all

functions a and u such that a∇u ∈ L2(Ω)2 we have

‖�Na (u)‖H1(Ω)∗ = sup
u∈H1(Ω)

(a∇u,∇v)L2(Ω)

‖v‖H1(Ω)

≤ ‖a∇u‖L2(Ω),

from which we conclude that1

‖�Na (u)‖H1(Ω)∗ ≤ ‖a‖L2(Ω)‖∇u‖L∞(Ω) ∀a ∈ L2(Ω), u ∈ W 1,∞(Ω) (4.4)

‖�Da (u)‖H−1(Ω) ≤ ‖a‖L2(Ω)‖∇u‖L∞(Ω) ∀a ∈ L2(Ω), u ∈ W 1,∞(Ω), (4.5)

and

‖�Na (u)‖H1(Ω)∗ ≤ ‖a‖L∞(Ω)‖∇u‖L2(Ω) ∀a ∈ L∞(Ω), u ∈ H1(Ω) (4.6)

‖�Da (u)‖H−1(Ω) ≤ ‖a‖L∞(Ω)‖∇u‖L2(Ω) ∀a ∈ L∞(Ω), u ∈ H1(Ω). (4.7)

Further, in view of (3.21) and (3.22), we have

‖�Em(u)‖(H1(Ω)2)∗ ≤ c1‖m‖L2(Ω)‖u‖W 1,∞(Ω), ∀m ∈ L2(Ω)2, u ∈ W 1,∞(Ω)2, (4.8)

‖�Em(u)‖(H1(Ω)2)∗ ≤ c2‖m‖L∞(Ω)‖u‖H1(Ω), ∀m ∈ L∞(Ω)2, u ∈ H1(Ω)2, (4.9)

where c1, c2 > 0 and independent of m and u.

We shall also need the following theorems.

Theorem 4.2.1. Suppose that {an} ⊂ L2(Ω) with an → a in L2(Ω). Then for any

u ∈ W 1,∞(Ω) we have

�Nan(u) → �Na (u), (4.10)

�Dan(u) → �Da (u). (4.11)

Further, if {mn} ⊂ L2(Ω)2 with mn → m in L2(Ω)2 and u ∈ W 1,∞(Ω)2, then

�Emn
(u) → �Em(u). (4.12)

1Since H1
0 (Ω) ⊂ H1(Ω) we also have ‖�Da (u)‖H−1(Ω) ≤ ‖�Na (u)‖H1(Ω)∗ .
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Proof. Notice that �N(·)(w) is linear, and so by (4.4) we have

‖�Nan(u)− �Na (u)‖H1(Ω)∗ = ‖�N(an−a)(u)‖H1(Ω)∗ ≤ ‖an − a‖L2(Ω)‖∇u‖W 1,∞(Ω),

which proves (4.10). With a similar argument, we conclude (4.11) and (4.12).

Theorem 4.2.2. Assume zN , zD ∈ W 1,∞(Ω) and that zE ∈ W 1,∞(Ω)2. Then the

functionals JN(·), JD(·), and JE(·) are strictly convex and weakly lower semicontin-

uous.

Proof. We prove the theorem for JN , the other two functionals can be treated in the

same way.

First, we will show that JN(·) is strictly convex. In view of Theorem 3.1.6, it

suffices to show that the functional Jc(a) = ‖�Na (u) − �N‖2H1(Ω)∗ is convex. For all

λ ∈ [0, 1] and a, b ∈ H1(Ω) we have

Jc (λa+ (1− λ)b) = ‖λ�Na (zN) + (1− λ)�Nb (zN)− �N‖2H1(Ω)∗

= ‖λ(�Na (zN)− �N) + (1− λ)(�Nb (zN)− �N)‖2H1(Ω)∗

≤
(
λ‖�Na (zN)− �N‖H1(Ω)∗ + (1− λ)‖�Nb (zN)− �N‖H1(Ω)∗

)2
≤ λJc(a) + (1− λ)Jc(b) (since | · |2 is convex)

showing Jc is convex, and thus, JN is strictly convex.

Next we show JN is weakly lower semicontinuous. Let a ∈ H1(Ω), and let {an}
be any sequence in H1(Ω) with an ⇀ a in H1(Ω). As a consequence of Corollary

3.2.1, it follows that an → a in L2(Ω). Therefore, in view of (4.10) and the fact that

‖ · ‖ is weakly lower semicontinuous, we have

JN(a) =
1

2
‖�Na (zN)− �N‖2H1(Ω)∗ +

β

2
‖a‖2H1(Ω)

≤ lim
n→∞

1

2
‖�Nan(z)− �N‖2H1(Ω)∗ + lim

n→∞

β

2
‖an‖2H1(Ω)

≤ lim
n→∞

(
1

2
‖�Nan(zN)− �N‖2H1(Ω)∗ +

β

2
‖an‖2H1(Ω)

)
= lim

n→∞
JN(an).

Thus JN is weakly lower semicontinuous.
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Now we are ready to prove the existence and uniqueness results for the optimiza-

tion problems given in (4.1), (4.2), and (4.3).

Theorem 4.2.3. (a) Assuming zN ∈ W 1,∞(Ω), then the optimization problem (4.1)

has a unique solution aβ ∈ H1(Ω).

(b) Assuming zD ∈ W 1,∞(Ω), then the optimization problem (4.2) has a unique

solution aα ∈ H1(Ω).

(c) Assuming zE ∈ W 1,∞(Ω)2, then the optimization problem (4.3) has a unique

solution mγ ∈ H1(Ω)2.

Proof. The proof of (a) can be found in [8, Theorem 3.1]. We prove (b); part (c)

can be proved by a similar argument.

Let

ε = inf
a∈H1(Ω)

‖�Da (zD)− �D‖2H−1(Ω) +
α

2
‖a‖2H1(Ω).

Clearly ε > 0. By the definition of infimum, there exists a sequence {an} ⊂ H1(Ω)

(usually called a minimizing sequence) such that

JD(an) → ε.

Since ‖an‖2H1(Ω) ≤ 2α−1JD(an), {an} is bounded. From Corollary 3.2.1, there exists

a subsequence of {an}, which we still denote by {an}, and an ã ∈ H1(Ω) such that

an ⇀ ã in H1(Ω) and an → ã in L2(Ω). Since by assumption zD ∈ W 1,∞(Ω), it

follows from Theorem 4.2.2 that JD is weakly lower semicontinuous, and so

JD(ã) ≤ lim
n→∞

JD(an) = ε.

Therefore, JD(ã) = ε, showing ã is a solution of the optimization problem (4.1).

Next we show ã is unique. Assume, by the way of contradiction, that ā �= ã

is another minimizer of JD. But then a = (ā + ã)/2 ∈ H1(Ω), and so the strict

convexity of JD implies

JD(a) <
1

2
(JD(ā) + JD(ã)) = ε,
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which contradicts the assumption that ã is a minimizer. Thus ã is unique, and we

re-label ã by aα.

4.3 The discretized problems

In the actual computations we compute the minimizer from a finite-dimensional

subspace ofH1(Ω); when analyzing the results, we will assume that Ω has a polygonal

boundary. For this purpose, we shall recall a few definitions from finite element

theory. Let {Th} be a family of shape regular triangulations of Ω̄, where h denotes

the maximum diameter for any triangle in Th. This means there exists a number

κ > 0 such that, for all h > 0, every T in Th contains a circle of radius ρT with

ρT ≥ hT

κ
,

where hT is diameter of T . Define

V k
h =

{
v ∈ C0(Ω̄)

∣∣ v|T ∈ Pk ∀T ∈ Th

}
,

where Pk is the space of polynomials of degree at most k. It is known [38] that V k
h

is a finite-dimensional subspace of H1(Ω), and hence it is convex and closed. From

now on, let {ϕ1, . . . , ϕn} be a basis for V k
h .

Since JN , JD, and JN are weakly lower semicontinuous, strictly convex, and

coercive, it follows from Theorem 3.1.7 that the optimization problems (4.1), (4.2),

and (4.3) admit unique solutions over V k
h . Hence, in what follows let ah,β, ah,α, and

mh,γ denote the (unique) solutions of the optimization problems

min
a∈V k

h

1

2
‖�Na (zN)− �N‖2H1(Ω)∗ +

β

2
‖a‖2H1(Ω), (4.13)

min
a∈V k

h

1

2
‖�Da (zD)− �D‖2H−1(Ω) +

α

2
‖a‖2H1(Ω), (4.14)

and

min
m∈V k

h ×V k
h

1

2
‖�Em(zE)− �E‖2H1(Ω)∗ +

γ

2
‖m‖2H1(Ω), (4.15)

respectively.
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In Chapter 5, we will develop stability results and error estimates for both the

continuous problems (4.1), (4.2), and (4.3), and the discretized problems (4.13),

(4.14), and (4.15).

4.4 Implementation

In this section we will explain how one can implement the equation error method in

a practical algorithm. We shall use (4.1) as a model problem, problems (4.2) and

(4.3) can be treated in the same fashion.

In practice, the optimization problem posed in (4.1) is replaced by the finite

dimensional optimization problem (4.13), which in view of Theorem 3.1 can be

written as

min
a∈Vh

1

2

〈
�Na (zN)− �N , P−1(�Na (zN)− �N)

〉
+

β

2
‖a‖2H1(Ω),

where Vh is some finite-dimensional subspace of H1(Ω), and the mapping P :

H1(Ω) → H1(Ω)∗ is given by

〈Pu, v〉 =
∫
Ω

{uv +∇u · ∇v} ∀v ∈ H1(Ω).

Computing the objective function above is problematic because we cannot compute

the action of P−1, that is, we cannot solve Pu = φ for u given φ ∈ H1(Ω)∗. We thus

must discretize the operator P as well. In place of P : H1(Ω) → H1(Ω)∗, we will

use Ph : Vh → V ∗
h . The definition of Ph is the same as that of P :

〈Phu, v〉 =
∫
Ω

{uv +∇u · ∇v} ∀v ∈ Vh.

Note that elements of V ∗
h are simply elements of H1(Ω)∗ restricted to Vh. That is,

given φ ∈ H1(Ω)∗, we can define φh ∈ V ∗
h by

〈φh, v〉 = 〈φ, v〉 ∀v ∈ Vh.

We write 〈·, ·〉 for the pairing between Vh and V ∗
h as well as for the pairing between

H1(Ω) and H1(Ω)∗. Any φ ∈ H1(Ω)∗ defines, by restriction, an element of V ∗
h , which

we also denote by φ (thus we don’t distinguish between �Na (zN) and its restriction
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to Vh, and similarly for �N).

We now pose the discretized optimization problem as

min
a∈Vh

Jh(a) =
1

2

〈
�Na (zN)− �N , P−1

h (�Na (zN)− �N)
〉
+

β

2
‖a‖2H1(Ω).

To compute the discretized objective function above, we must compute

u = P−1
h (�Na (zN)− �N).

By definition, u ∈ Vh satisfies∫
Ω

{uϕi +∇u · ∇ϕi} =

∫
Ω

a∇z ·∇ϕi−
∫
Ω

fϕi−
∫
∂Ω

gϕi ∀i = 1, 2, . . . , n, (4.16)

where {ϕi} is a basis for Vh. Now write a and u as2

a =
n∑

j=1

Ajϕj, u =
n∑

j=1

Ujϕj,

then (4.16) reduces to a system of equations PU = KA − F , where the matrices

P,K ∈ R
n×n and the vector F ∈ R

n are given by

(P )i,j =

∫
Ω

{ϕjϕi +∇ϕj · ∇ϕi}

(K)i,j =

∫
Ω

ϕj∇z · ∇ϕi

(F )i =

∫
Ω

fϕi +

∫
∂Ω

gϕi.

Finally, since u = P−1
h (�a(z)− �) and U = P−1(KA− F ), we have

Jh(a) =
1

2
〈Phu, u〉+

β

2
〈Pha, a〉

=
1

2
UTPU +

1

2
ATPA

=
1

2
(KA− F )TP−1(KA− F ) +

β

2
ATPA.

2For the Dirichlet problem, one uses different bases to represent a and u.
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Since Jh is convex, the optimality condition then implies

∇Jh(a) = KTP−1(KA− F ) + βPA = 0,

and hence, A is obtained by solving the linear system of equations

(KTP−1K + βP )A = KTP−1F.

Numerical examples will be presented in Chapter 5 and 6.
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Chapter 5

Stability and error estimates

In this chapter we prove stability and convergence results regarding the equation

error approach. Numerical examples are also presented.

5.1 The Neumann BVP

For convenience, let SN be the set of all a ∈ H1(Ω) satisfying (3.12), that is

SN =
{
a ∈ H1(Ω)

∣∣ �Na (uN) = �N in H1(Ω)∗
}
.

We shall make the assumption that SN is nonempty.

The results of this section are proved in [42]. We start with the following result

regarding the stability of the equation error method applied to BVP (1.1).

Theorem 5.1.1. Suppose that uN ∈ W 1,∞(Ω). Let {zn} ⊂ W 1,∞(Ω) be a sequence

of observations of uN , and let {εn} and {βn} be two sequences of real numbers such

that

1. ε2n ≤ βn ≤ εn ∀n ∈ N, and ε2n/βn → 0 as n → ∞,

2. ‖uN − zn‖W 1,∞(Ω) ≤ εn ∀n ∈ N,

3. εn → 0 as n → ∞.

For each n ∈ N, let an ∈ H1(Ω) be the unique solution (guaranteed by Theorem

4.2.3) of the optimization problem

min
b∈H1(Ω)

1

2
‖�Nb (zn)− �N‖2H1(Ω)∗ +

βn

2
‖b‖2H1(Ω).
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Then there is an ã ∈ SN such that ‖an− ã‖H1(Ω) → 0. Further, ‖ã‖H1(Ω) ≤ ‖a∗‖H1(Ω)

for all a∗ ∈ SN .

Proof. Using (4.4) and the fact that �Na∗(uN) = �N in H1(Ω)∗ for all a∗ ∈ SN , we

have
βn‖an‖2H1(Ω) ≤ ‖�Na∗(zn)− �N‖2H1(Ω)∗ + βn‖a∗‖2H1(Ω)

= ‖�Na∗(zn − uN)‖2H1(Ω)∗ + βn‖a∗‖2H1(Ω)

≤ ‖a∗‖2L2(Ω)‖∇(zn − uN)‖2L∞(Ω) + βn‖a∗‖2H1(Ω)

≤ ‖a∗‖2L2(Ω)ε
2
n + βn‖a∗‖2H1(Ω)

≤ βn‖a∗‖2L2(Ω) + βn‖a∗‖2H1(Ω),

(5.1)

and consequently

‖an‖2H1(Ω) ≤ ‖a∗‖2L2(Ω) + ‖a∗‖2H1(Ω) ∀n ∈ N, a∗ ∈ SN .

Therefore {an} is bounded in H1(Ω), and by Corollary 3.2.1, there exists a subse-

quence of {an}, which we still denote by {an}, and a vector ã ∈ H1(Ω) such that

an ⇀ ã in H1(Ω) and an → ã in L2(Ω). Now from (4.4) we have

‖�Nan(uN)− �Nan(zn)‖2H1(Ω)∗ = ‖�Nan(uN − zn)‖2H1(Ω)∗

≤ ‖an‖2L2(Ω)‖∇(uN − zn)‖2L∞(Ω)

≤ ‖an‖2L2(Ω)ε
2
n,

(5.2)

and by the definition of an we also have

‖�Nan(zn)− �N‖2H1(Ω)∗ ≤ ‖�Na∗(zn)− �N‖2H1(Ω)∗ + βn‖a∗‖2H1(Ω)

= ‖�Na∗(zn − uN)‖2H1(Ω)∗ + βn‖a∗‖2H1(Ω)

≤ ‖a∗‖2L2(Ω)ε
2
n + εn‖a∗‖2H1(Ω).

(5.3)

Combine (5.2), (5.3) and the fact that a convergent sequence is necessarily bounded

to see that

‖�Nan(uN)− �N‖2H1(Ω)∗ ≤ 2‖�Nan(uN)− �Nan(zn)‖2H1(Ω)∗ + 2‖�Nan(zn)− �N‖2H1(Ω)∗

≤ 2‖an‖2L2(Ω)ε
2
n + 2

(
‖a∗‖2L2(Ω)ε

2
n + εn‖a∗‖2H1(Ω)

)
≤ C(ε2n + εn).
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Consequently, in view of (4.10), we conclude that

‖�Nã (uN)− �N‖H1(Ω)∗ = lim
n→∞

‖�Nan(uN)− �N‖H1(Ω)∗ = 0,

showing ã ∈ SN . Since an ⇀ ã in H1(Ω), by Theorem 3.1.5 we have

‖ã‖H1(Ω) ≤ lim
n→∞

‖an‖H1(Ω),

and by the fourth inequality in (5.1) and the fact that ã ∈ SN we have

lim
n→∞

‖an‖2H1(Ω) ≤ lim
n→∞

(
ε2n
βn

‖ã‖2L2(Ω) + ‖ã‖2H1(Ω)

)
= ‖ã‖2H1(Ω).

Hence ‖an‖H1(Ω) → ‖ã‖H1(Ω), and by a standard functional analysis result1, we

conclude that an → ã in H1(Ω). Further, in view of (5.1), we conclude

‖ã‖2H1(Ω) = lim
n→∞

‖an‖2H1(Ω) ≤ lim
n→∞

(
ε2n
βn

‖a∗‖2L2(Ω) + ‖a∗‖2H1(Ω)

)
= ‖a∗‖2H1(Ω),

for all a∗ ∈ SN , which completes the proof.

Remark 5.1.1. Acar [17] has also proved a convergence result for the equation error

method applied to (1.1). However, he assumes that aN is found in H2(Ω) and his

regularization term uses the H2 norm, instead of the H1 norm, as in our analysis.

He assumes that the error in the data goes to zero in H1, and shows that the error

in the estimated parameter goes to zero in L∞; in this regard, his result cannot be

directly compared to ours.

We believe that few workers in this field are interested in using H2 regularization

because it forces too much smoothness on the solution; the trend is towards H1 or

even BV regularization. Our result above succeeds in proving the convergence of the

equation error method under H1 regularization, and ours is (we believe) the only

such proof.

Remark 5.1.2. There are several results in the literature concerning the unique-

ness of the unknown coefficient aN in the BVP (1.1). For instance, under the non-

degeneracy condition (2.10), Falk [24] proved that there is at most one coefficient

1Precisely: in an inner product space, vn → v if and only if vn ⇀ v and ‖vn‖ → ‖v‖. See for
example [28, 30].
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aN ∈ H1(Ω) satisfying (1.1). Richter [25] also proved the uniqueness but under the

more general and less restrictive nondegeneracy condition (2.18). See Section 2.2

for more details.

In our derivations below, we will not assume any nondegeneracy condition com-

parable to (2.10) and (2.18). Rather, we will include ∇zN in the expression for the

error, which implies that the error estimate provides no information about the error

in any region in which ∇zN is zero. In what follows we let aN be any function

satisfying (3.12).

To derive an upper bound on the error, we measure the error in a certain quotient

norm. To this end, we need the following result (see [35, Theorem 3.2] for the proof).

Theorem 5.1.2. Assume Ω is a bounded, simply-connected domain in R
2 with

Lipschitz-continuous boundary ∂Ω. Every function �v of L2(Ω)2 has the following

orthogonal decomposition:

�v = ∇q + curlφ,

where q ∈ V is the only solution of

(∇q,∇μ)L2(Ω) = (�v,∇μ)L2(Ω) ∀μ ∈ H1(Ω), (5.4)

and φ ∈ H1
0 (Ω) is the only solution of

(curlφ, curlχ)L2(Ω) = (�v, curlχ)L2(Ω) ∀χ ∈ H1
0 (Ω).

Recall that:

V =

{
v ∈ H1(Ω)

∣∣∣∣
∫
Ω

v = 0

}
.

We also need the following definition and results concerning quotient spaces, see

for example [28, 31].

Definition 5.1.1. Let M be a subspace of a vector space X. For each x ∈ X, let

ẋ = x+M = {x+m : m ∈ M}, and define the set X/M by

X/M = {ẋ : x ∈ X}.

Theorem 5.1.3. Let M and X be defined as in Definition 5.1.1.
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(a) The set X/M is a vector space with the vector space operations

(x+M) + (y +M) = (x+ y) +M

and

α(x+M) = (αx) +M.

Equipped with these two operations, X/M is called a quotient space.

(b) If X is a normed space and M is a closed subspace of X, then the function

‖ · ‖X/M given by

‖ẋ‖X/M = inf
m∈M

‖x−m‖X

is a norm on X/M called the quotient norm. If, in addition, X is a Banach

space, then X/M is also a Banach space.

Now we can define the spaces and norms we use to give the stability results for

the equation error approach. To this end, observe that the space

R = ker(rot) = {�v ∈ L2(Ω)2 : rot�v = 0}

is a closed subspace of L2(Ω)2 since it is the kernel of the bounded linear operator

rot : L2(Ω)2 → H−1(Ω), and hence we have the orthogonal decomposition

L2(Ω)2 = R⊕R⊥.

Further, in view of Theorem 5.1.3, the following quotient space and norm are well

defined:

Q = L2(Ω)2/R⊥ =
{
v̇ = �v +R⊥ : �v ∈ L2(Ω)2

}
,

‖v̇‖Q = inf
�p∈R⊥

‖�v − �p‖L2(Ω)2 .

Note that by the projection theorem, we have the alternative formula

‖v̇‖Q = ‖�v − projR⊥�v‖L2(Ω)2 .

Finally, before stating the first error estimate, we shall also need the following

theorem.
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Theorem 5.1.4. If q ∈ H1(Ω), then ∇q ∈ ker(rot), i.e., rot∇q = 0 in H−1(Ω).

Proof. By Green’s formula (3.4), for any φ ∈ C∞
0 (Ω) we have

〈rot∇q, φ〉−1 =

∫
Ω

∇q · curlφ

=

∫
Ω

{
∂q

∂x

∂φ

∂y
− ∂q

∂y

∂φ

∂x

}

=

∫
Ω

{
q
∂2φ

∂x∂y
− q

∂2φ

∂y∂x

}
= 0.

We finish the proof by a density argument. Let v ∈ H1
0 (Ω). Since C∞

0 (Ω) is dense

in H1
0 (Ω), there exists a sequence {ψn} ⊂ C∞

0 (Ω) such that ψn → v in the H1 norm.

But since rot∇q ∈ H−1(Ω), it is continuous, and so

〈rot∇q, v〉−1 = lim
n→∞

〈rot∇q, ψn〉−1 = 0.

Since v ∈ H1
0 (Ω) was arbitrary, the result follows.

Now we are ready to state our first error estimate for the equation error approach.

Theorem 5.1.5. Assume that aN ∈ H1(Ω) and uN , zN ∈ W 1,∞(Ω), and let aβ be

the solution of the optimization problem (4.1). If ‖uN − zN‖W 1,∞(Ω) ≤ ε, then for

the error vector �e = (aβ − aN)∇zN we have

‖ė‖Q ≤ C(ε+
√

β),

where C depends on ‖aN‖H1(Ω) but is independent of β and ε.

Proof. Obviously �e ∈ L2(Ω)2 and so by Theorem 5.1.2 we have the decomposition

�e = ∇q + curlφ.

By Theorem 5.1.4, ∇q ∈ R, and so projR⊥�e = curlφ. Consequently it follows that

‖ė‖Q = ‖�e− curlφ‖L2(Ω) = ‖∇q‖L2(Ω).
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Now by (5.4) and the fact that �NaN (uN) = �N , we see that

(∇q,∇μ)L2(Ω) = (�e,∇μ)L2(Ω)

= (aβ∇zN ,∇μ)L2(Ω) − (aN∇zN ,∇μ)L2(Ω)

= (aβ∇zN ,∇μ)L2(Ω) − (aN∇uN ,∇μ)L2(Ω)

+ (aN∇uN ,∇μ)L2(Ω) − (aN∇zN ,∇μ)L2(Ω)

=
〈
�Naβ(zN)− �N , μ

〉
∗
+ (aN∇(uN − zN),∇μ)L2(Ω) ∀μ ∈ H1(Ω).

Since q ∈ V , by Corollary 3.3.1, we have ‖q‖H1(Ω) ≤ C1‖∇q‖L2(Ω) for some constant

C1 independent of q. Thus, taking μ = q in the inequality above, we obtain

‖∇q‖2L2(Ω) ≤ ‖�Naβ(zN)− �N‖H1(Ω)∗‖q‖H1(Ω) + ‖aN‖L2(Ω)‖∇(uN − zN)‖L∞(Ω)‖∇q‖L2(Ω)

≤ C
(
‖�Naβ(zN)− �N‖H1(Ω)∗‖∇q‖L2(Ω) + ε‖∇q‖L2(Ω)

)
.

Consequently, we have

‖∇q‖2L2(Ω) ≤ C
(
‖�Naβ(zN)− �N‖2H1(Ω)∗ + ε2

)
. (5.5)

Using (4.4) and noting that �NaN (uN) = �N in H1(Ω)∗, we obtain

‖�NaN (zN)− �N‖H1(Ω)∗ = ‖�NaN (zN − uN)‖H1(Ω)∗ ≤ ε‖aN‖L2(Ω). (5.6)

Finally, combine (5.5), (5.6) and the fact that aβ solves (4.1) to see that

‖∇q‖2L2(Ω) ≤ C
(
‖�NaN (zN)− �N‖2H1(Ω)∗ + β‖aN‖2H1(Ω) + ε2

)
≤ C

(
ε2 + β

)
,

which completes the proof.

Using (4.6) instead of (4.4) in the proof above, it is easy to prove the following

result, which allows the error in the data to be measured in the weaker H1 norm

instead of the W 1,∞ norm, and eliminates the requirement that u ∈ W 1,∞(Ω).

Theorem 5.1.6. Assume that aN ∈ L∞(Ω)∩H1(Ω) and zN ∈ W 1,∞(Ω), and let aβ

be the solution of the optimization problem (4.1). If ‖uN − zN‖H1(Ω) ≤ ε, then for
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the error vector �e = (aβ − aN)∇zN we have

‖ė‖Q ≤ C(ε+
√

β),

where C depends on ‖aN‖L∞(Ω) and ‖aN‖H1(Ω) but is independent of β and ε.

Remark 5.1.3. The same conclusion of Theorem 5.1.5 is valid if the error vector

is defined as �e = (aβ − aN)∇uN provided β ≥ Cε2; the analysis changes little.

Now we give an error estimate for the finite element solution of the equation

error method.

Theorem 5.1.7. Assume that aN ∈ Hr(Ω) for some 1 ≤ r ≤ k + 1, and that

uN , zN ∈ W 1,∞(Ω). Let ah,β be the solution of the optimization problem (4.13). If

‖uN − zN‖W 1,∞(Ω) ≤ ε, then for the error vector �eh = (ah,β − aN)∇zN we have

‖ėh‖Q ≤ C
(
hr + ε+

√
β
)
,

where C depends on ‖aN‖Hr(Ω) and ‖zN‖W 1,∞(Ω) but is independent of β, ε, and h.

Proof. Let ãh be the H1-projection of aN into V k
h (which exists and is unique since

V k
h is a closed subspace of H1(Ω)), that is

(ãh, bh)H1(Ω) = (aN , bh)H1(Ω) ∀bh ∈ V k
h .

Notice that ‖ãh‖2H1(Ω) ≤ ‖aN‖2H1(Ω). Using the same method as in the proof of

Theorem 5.1.5, we obtain

‖ėh‖2Q ≤ C
(
‖�Nah,β(zN)− �N‖2H1(Ω)∗ + ε2

)
≤ C

(
‖�Nãh(zN)− �N‖2H1(Ω)∗ + β‖ãh‖2H1(Ω) + ε2

)
≤ C

(
‖�N(ãh−aN )(zN)‖2H1(Ω)∗ + ‖�NaN (zN)− �N‖2H1(Ω)∗ + β‖aN‖2H1(Ω) + ε2

)
≤ C

(
‖�N(ãh−aN )(zN)‖2H1(Ω)∗ + ε2 + β

)
.

We need to bound the first term on the right hand side of the above inequality.

From [41] (Corollary 7.8 and its proof) one can conclude the inequality

‖ãh − aN‖L2(Ω) ≤ Ch‖ãh − aN‖H1(Ω) ≤ Ch‖aN‖H1(Ω). (5.7)
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Thus, in the case that r = 1, it follows directly that

‖ãh − aN‖L2(Ω) ≤ Ch‖aN‖H1(Ω). (5.8)

Now for r ≥ 2, let ar−1
I be the piecewise interpolant of degree (r−1) of aN from V r−1

h .

Then it follows from the definition of ãh and a standard approximation result [33,

Theorem 4.4.20 ] that

‖ãh − aN‖H1(Ω) ≤ inf
bh∈V k

h

‖aN − bh‖H1(Ω)

≤ inf
bh∈V r−1

h

‖aN − bh‖H1(Ω)

≤ ‖aN − ar−1
I ‖H1(Ω)

≤ Chr−1‖aN‖Hr(Ω).

Combining the last inequality with (5.7) and (5.8) we conclude that

‖ãh − aN‖L2(Ω) ≤ Chr, for 1 ≤ r ≤ k + 1. (5.9)

Finally, using (4.4) we have

‖�N(ãh−aN )(zN)‖H1(Ω)∗ ≤ ‖∇zN‖L∞(Ω)‖ãh − aN‖L2(Ω) ≤ Chr,

which completes the proof.

With a minor modification of the proof above, one can easily conclude the fol-

lowing result.

Theorem 5.1.8. Assume that aN ∈ L∞(Ω) ∩Hr(Ω) for some 1 ≤ r ≤ k + 1, and

that zN ∈ W 1,∞(Ω). Let ah,β be the solution of the optimization problem (4.13). If

‖uN − zN‖H1(Ω) ≤ ε, then for the error vector �eh = (ah,β − aN)∇zN we have

‖ėh‖Q ≤ C
(
hr + ε+

√
β
)
,

where C depends on ‖aN‖L∞(Ω), ‖aN‖Hr(Ω), and ‖zN‖W 1,∞(Ω) but is independent of

β, ε, and h.

Remark 5.1.4. If zN is the exact piecewise quadratic interpolant of uN , then from a
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standard approximation result we have ‖zN−uN‖L2(Ω) = O(h3) and ‖zN−uN‖H1(Ω) =

O(h2). Consequently if β ∼ h2 and r = 1, we see that the error bounds given in (2.9),

(2.17), and Theorem 5.1.8 are of O(h). Notice however, if zN is the exact piecewise

linear interpolant of uN , then ‖zN − uN‖L2(Ω) = O(h2) and ‖zN − uN‖H1(Ω) = O(h),

and so the error estimates given in (2.9) and (2.17) provide no information about

the convergence rate in this case, but Theorem 5.1.8 still yields O(h) convergence.

Remark 5.1.5. Kärkkäinen [8] introduced the use of the quotient norm ‖ · ‖Q,
and proved a result equivalent to Theorem 5.1.7 (the bound for the error in the

discretized problem). He treated a slightly more general problem (allowing a lower-

order term in the PDE); on the other hand, he did not prove any result comparable

to Theorem 5.1.5, treating the original infinite-dimensional problem. Our analysis

is considerably simpler than his, as we avoid integration by parts and the consequent

(difficult) estimates of the error in the boundary terms. This allows us to extend the

analysis to the other two inverse problems, which seems difficult or impossible using

his approach.

5.1.1 Numerical examples

We consider the finite element solution using the space of continuous piecewise linear

polynomials over the unit square [0, 1]2 with a uniform triangulation similar to the

one shown in Figure 5.1.

Figure 5.1: Triangulation of Ω.

At every node xi in the triangulation, the synthetic data zN is computed accord-

ing to the formula

zN(xi) = uN(xi) + δ̂ηi, (5.10)
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where ηi is a uniformly distributed random number in [−1, 1] and δ̂ determines the

noise level. So when δ̂ = 0, zN is the interpolant of uN from V 1
h defined by the nodal

values given in (5.10). In what follows, let δ denote the relative error in the data in

the H1 norm, that is,

δ =
‖zN − uN‖H1(Ω)

‖uN‖H1(Ω)

.

Example 5.1.1. We consider the problem with uN(x, y) = 2 cos(πx) cos(πy), where

fN and gN are chosen so that the exact parameter is

aN(x, y) = exp[−10(x− 0.5)2 − 10(y − 0.5)2].

First we consider the case in which δ = 0, so that zN represents the interpolant of

uN . The computed errors are presented in Table 5.1. Next, we plot the exact and

the recovered parameter with the presence of noise, results for various noise levels

are shown in Figure 5.2.

Example 5.1.2. We consider the problem with uN(x, y) = 8x2 + ey, where fN and

gN are chosen so that the exact parameter is

aN(x, y) = 2 + x+ y.

First we consider the case in which δ = 0. The computed errors are presented in

Table 5.2. Next, we plot the exact and the recovered parameter with the presence of

noise, results for various noise levels are shown in Figure 5.3.

Table 5.1
Results of Example 5.1.1 with δ = 0 and regularization parameter β = h2.

h ‖ah,β − aN‖L2(Ω) L2 Relative Error ‖ėh‖Q
1/4 1.624 · 10−1 4.104 · 10−1 2.204 · 10−1

1/8 7.980 · 10−2 2.016 · 10−1 9.140 · 10−2

1/16 3.780 · 10−2 9.550 · 10−2 3.190 · 10−2

1/32 1.770 · 10−2 4.470 · 10−2 1.060 · 10−2

1/64 8.300 · 10−3 2.090 · 10−2 3.500 · 10−3
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(a) Exact solution (b) δ = 0, β = 10−4

(c) δ = 0.01, β = 10−4 (d) δ = 0.1, β = 3 · 10−3

Figure 5.2: Recovered parameter aN in Example 5.1.1 with different noise and
regularization parameters β.

Table 5.2
Results of Example 5.1.2 with δ = 0 and regularization parameter β = h2.

h ‖ah,β − aN‖L2(Ω) L2 Relative Error ‖ėh‖Q
1/4 8.820 · 10−2 2.910 · 10−2 4.229 · 10−1

1/8 3.570 · 10−2 1.180 · 10−2 1.458 · 10−1

1/16 1.470 · 10−2 4.800 · 10−3 5.060 · 10−2

1/32 6.500 · 10−3 2.200 · 10−3 1.780 · 10−2

1/64 3.200 · 10−3 1.100 · 10−3 6.300 · 10−3
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(a) Exact solution (b) δ = 0, β = 5.5 · 10−3

(c) δ = 0.01, β = 2 · 10−2 (d) δ = 0.1, β = 5 · 10−1

Figure 5.3: Recovered parameter in Example 5.1.2 with different noise and regu-
larization parameters β.

When δ = 0, the above examples suggest a convergence rate of O(h) in the L2

norm, and of O(h1.5) in the quotient norm. Since the given data zN is the exact

continuous piecewise linear interpolant of uN , we know that ‖zN −uN‖H1(Ω) = O(h),

and hence the theoretic order given in Theorem 5.1.8 would be of O(h), which is

less than the actual order as the above examples reveal. Notice further, the error

estimates (2.9) and (2.17) provide no information regarding the convergence rate in

this case.

The effect of noise is very apparent as one can see from the plots in Figures

5.2 and 5.3. So the quality of the recovered coefficient relies heavily on the quality

of the observation, zN . The choice of the regularization parameter β was chosen

to be optimal, using the knowledge of the exact solution, but obviously without
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any a priori information about the exact coefficient, a good choice of regularization

parameter β is vital in this type of analysis. Moreover, the need to differentiate

the data makes the equation error approach very sensitive especially if the data is

noisy. Therefore one should consider some sort of data-smoothing techniques to

stabilize the method. Automatic data smoothing and robust methods for choosing

the regularization parameter β will be the subject of Chapter 6.

5.2 Equations of isotropic elasticity

Following [11], we will express the inverse problem in terms of the shear modulus

μ∗ and the bulk modulus ρ∗ = μ∗ + λ∗ instead of in terms of μ∗ and λ∗. Using this

convention, we can rewrite the stress tensor σ = σ(m,u) = 2με(u) + λtr(ε(u))I as

σ(m,u) =

[
m2tr(ε(u)) +m1 (ε(u)11 − ε(u)22) 2m1ε(u)12

2m1ε(u)12 m2tr(ε(u))−m1 (ε(u)11 − ε(u)22)

]

where m = (m1,m2) = (μ, ρ), ρ = λ+ μ, and ε(u) = 1
2
(∇u+∇uT ).

Let SE denote the set of all m = (μ, ρ) ∈ H1(Ω)2 satisfying the weak form (3.19),

that is

SE =
{
m = (μ, ρ) ∈ H1(Ω)2 | �Em(uE) = �E in

(
H1(Ω)2

)∗}
.

We shall assume SE is nonempty. Further, let m∗ = (μ∗, ρ∗) be any element in SE.

We start with the following stability result regarding the equation error method

applied to the elasticity problem.

Theorem 5.2.1. Suppose that uE ∈ W 1,∞(Ω)2. Let {zn} ⊂ W 1,∞(Ω)2 be a sequence

of observations of uE, and let {εn} and {γn} be two sequences of real numbers such

that

1. ε2n ≤ γn ≤ εn ∀n ∈ N, and ε2n/γn → 0 as n → ∞,

2. ‖uE − zn‖W 1,∞(Ω) ≤ εn ∀n ∈ N,

3. εn → 0 as n → ∞.

For each n ∈ N, let mn ∈ H1(Ω)2 be the unique solution of the optimization problem

min
m∈H1(Ω)2

1

2
‖�Em(zE)− �E‖2H1(Ω)∗ +

γn
2
‖m‖2H1(Ω).
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Then there is an m̃ ∈ SE such that ‖mn − m̃‖H1(Ω) → 0. Further, ‖m̃‖H1(Ω) ≤
‖m∗‖H1(Ω) for all m∗ ∈ SE.

Proof. Using (3.21) and the fact that �Em∗(uE) = �E in (H1(Ω)2)∗ for all m∗ ∈ SE,

we have

γn‖mn‖2H1(Ω) ≤ ‖�Em∗(zn)− �E‖2H1(Ω)∗ + γn‖m∗‖2H1(Ω)

= ‖�Em∗(zn − uE)‖2H1(Ω)∗ + γn‖m∗‖2H1(Ω)

≤ ‖m∗‖2L2(Ω)‖∇(zn − uE)‖2L∞(Ω) + γn‖m∗‖2H1(Ω)

≤ ‖m∗‖2L2(Ω)ε
2
n + γn‖m∗‖2H1(Ω)

≤ γn‖m∗‖2L2(Ω) + γn‖m∗‖2H1(Ω),

(5.11)

and consequently

‖mn‖2H1(Ω) ≤ ‖m∗‖2L2(Ω) + ‖m∗‖2H1(Ω) ∀n ∈ N,m∗ ∈ SE.

Therefore {mn} is bounded in H1(Ω), and by Corollary 3.2.1, there exists a subse-

quence of {mn}, which we still denote by {mn}, and a vector m̃ ∈ H1(Ω) such that

mn ⇀ m̃ in H1(Ω)2 and mn → ã in L2(Ω)2. Now from (3.21) we have

‖�Emn
(uE)− �Emn

(zn)‖2H1(Ω)∗ = ‖�Emn
(uE − zn)‖2H1(Ω)∗

≤ ‖mn‖2L2(Ω)‖∇(uE − zn)‖2L∞(Ω)

≤ ‖mn‖2L2(Ω)ε
2
n,

(5.12)

and by the definition of mn we also have

‖�Emn
(zn)− �E‖2H1(Ω)∗ ≤ ‖�Em∗(zn)− �E‖2H1(Ω)∗ + γn‖m∗‖2H1(Ω)

= ‖�Em∗(zn − uE)‖2H1(Ω)∗ + γn‖m∗‖2H1(Ω)

≤ ‖m∗‖2L2(Ω)ε
2
n + εn‖m∗‖2H1(Ω).

(5.13)

Combine (5.12), (5.13) and the fact that a convergent sequence is necessarily bounded
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to see that

‖�Emn
(uE)− �E‖2H1(Ω)∗ ≤ 2‖�Ean(uE)− �Emn

(zn)‖2H1(Ω)∗ + 2‖�Emn
(zn)− �E‖2H1(Ω)∗

≤ 2‖mn‖2L2(Ω)ε
2
n + 2

(
‖m∗‖2L2(Ω)ε

2
n + εn‖m∗‖2H1(Ω)

)
≤ C(ε2n + εn).

Consequently, in view of (4.12), we conclude that

‖�Em̃(uE)− �E‖H1(Ω)∗ = lim
n→∞

‖�Emn
(uE)− �E‖H1(Ω)∗ = 0,

showing m̃ ∈ SE. Since mn ⇀ m̃ in H1(Ω), by Theorem 3.1.5 we have

‖m̃‖H1(Ω) ≤ lim
n→∞

‖mn‖H1(Ω),

and by the fourth inequality in (5.11) and the fact that m̃ ∈ SE we have

lim
n→∞

‖mn‖2H1(Ω) ≤ lim
n→∞

(
ε2n
γn

‖m̃‖2L2(Ω) + ‖m̃‖2H1(Ω)

)
= ‖m̃‖2H1(Ω).

Hence ‖mn‖H1(Ω) → ‖m̃‖H1(Ω), and by a standard functional analysis result, we

conclude that mn → m̃ in H1(Ω). Further, in view of (5.11), we conclude

‖m̃‖2H1(Ω) = lim
n→∞

‖mn‖2H1(Ω) ≤ lim
n→∞

(
ε2n
γn

‖m∗‖2L2(Ω) + ‖m∗‖2H1(Ω)

)
= ‖m∗‖2H1(Ω),

for all m∗ ∈ SE, which completes the proof.

Now we will derive an error bound on the residual R(zE) = σ(mγ, zE)−σ(m∗, zE),

where mγ = (μγ, ργ) is the solution of the optimization problem (4.3). With a little

algebra, the 2-tensor R(zE) can be written more concisely as

R(zE) =

[
R11 R12

R21 R22

]
,
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where

R11 = (ργ − ρ∗)tr(ε(zE)) + (μγ − μ∗)(ε(zE)11 − ε(zE)22),

R12 = R21 = 2(μγ − μ∗)ε(zE)12,

R22 = (ργ − ρ∗)tr(ε(zE))− (μγ − μ∗) (ε(zE)11 − ε(zE)22) .

Let us assume zE ∈ W 1,∞(Ω) so that R(zE) ∈ L2(Ω)2×2. Let R1 and R2 be the

first and second rows of R(zE), respectively. Then, by Theorem 5.1.2 we have the

decomposition

R1 = ∇q1 + curlφ1,

R2 = ∇q2 + curlφ2.

Therefore, we see that R(zE) has the decomposition R(zE) = ∇q + curlφ where

q = (q1, q2) and φ = (φ1, φ2). Similarly, for the finite-dimensional case, we decompose

the first and second rows of residual Rh(zE) = σ(mh,γ, zE)− σ(m∗, zE) as

Rh,1 = ∇qh,1 + curlφh,1,

Rh,2 = ∇qh,2 + curlφh,2.

Then we have the decomposition Rh(zE) = ∇qh + curlφh where qh = (qh,1, qh,2) and

φh = (φh,1, φh,2). In Theorem 5.2.4, we derive an upper bound on ‖∇qh‖L2(Ω), where

mh,γ is the solution of the optimization problem (4.15).

The following theorem gives an error error bound on the rotation-free part of the

residual R(zE), i.e. ∇q.

Theorem 5.2.2. Assume that m∗ ∈ H1(Ω)2 and uE, zE ∈ W 1,∞(Ω)2, and let mγ

be the solution of the optimization problem (4.3). If ‖uE − zE‖W 1,∞(Ω) ≤ ε, then we

have the error estimate

‖∇q‖L2(Ω) ≤ C(ε+
√
γ),

where C depends on ‖m∗‖H1(Ω) but is independent of γ and ε.
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Proof. By Theorem 5.1.2, for all v ∈ H1(Ω)2 we have

(∇q,∇v)L2(Ω) = (R,∇v)L2(Ω)

= (σ(mγ, zE),∇v)L2(Ω) − (σ(m∗, uE),∇v)L2(Ω)

+ (σ(m∗, uE − zE),∇v)L2(Ω)

=
〈
�Emγ

(zE)− �E, v
〉
∗
+ (σ(m∗, uE − zE),∇v)L2(Ω) ,

In particular, taking v = q then applying Corollary 3.3.1, yields

‖∇q‖2L2(Ω) ≤ ‖�Emγ
(zE)− �E‖H1(Ω)∗‖q‖H1(Ω) + ‖σ(m∗, uE − zE)‖L2(Ω)‖∇q‖L2(Ω)

≤
(
‖�Emγ

(zE)− �E‖H1(Ω)∗ + ‖σ(m∗, uE − zE)‖L2(Ω)

)
‖q‖H1(Ω)

≤ C
(
‖�Emγ

(zE)− �E‖H1(Ω)∗ + ‖σ(m∗, uE − zE)‖L2(Ω)

)
‖∇q‖L2(Ω).

Consequently, we have

‖∇q‖2L2(Ω) ≤ C
(
‖�Emγ

(zE)− �E‖2H1(Ω)∗ + ‖σ(m∗, uE − zE)‖2L2(Ω)

)
. (5.14)

First, we have the bound

‖σ(m∗, uE − zE)‖2L2(Ω) ≤ C‖m∗‖2L2(Ω)‖uE − zE‖2W 1,∞(Ω) ≤ Cε2. (5.15)

Using (4.8) and noting the facts that �Em∗(uE) = �E in H1(Ω)∗ and that mγ solves

(4.3), we obtain

‖�Emγ
(zE)− �E‖2H1(Ω)∗ ≤ ‖�Em∗(zE − uE)‖2H1(Ω)∗ + γ‖m∗‖2H1(Ω) (5.16)

≤ C‖m∗‖2L2(Ω)‖zE − uE‖2W 1,∞(Ω) + γ‖m∗‖2H1(Ω)

≤ C
(
ε2 + γ

)
.

Combine (5.14), (5.15), and (5.16), and the result follows.

Using (4.9) instead of (4.8) in the proof above, it is easy to prove the following

result, which allows the error in the data to be measured in the weaker H1 norm

instead of the W 1,∞ norm, and eliminates the requirement that uE ∈ W 1,∞(Ω)2.

Theorem 5.2.3. Assume that m∗ ∈ L∞(Ω) ∩ H1(Ω) and zE ∈ W 1,∞(Ω), and let
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mγ be the solution of the optimization problem (4.3). If ‖uE − zE‖H1(Ω) ≤ ε, then

we have the error estimate

‖∇q‖L2(Ω) ≤ C(ε+
√
γ),

where C depends on ‖m∗‖L∞(Ω) and ‖m∗‖H1(Ω) but is independent of γ and ε.

Remark 5.2.1. If desired, in Theorem 5.2.2 ∇q can be defined as the rotation-free

part of the residual R(uE) = σ(mγ, uE)−σ(m∗, uE); the same result can be concluded

provided γ ≥ Cε2.

Now we give an error estimate for the finite element solution of the equation

error approach for estimating the Lamé moduli.

Theorem 5.2.4. Assume that m∗ ∈ Hr(Ω)2 for some 1 ≤ r ≤ k + 1, and that

uE, zE ∈ W 1,∞(Ω)2. Let mh,γ be the solution of the optimization problem (4.15). If

‖uE − zE‖W 1,∞(Ω) ≤ ε, then we have the estimate

‖∇qh‖L2(Ω) ≤ C (hr + ε+
√
γ) ,

where C depends on ‖m∗‖Hr(Ω) and ‖zE‖W 1,∞(Ω) but is independent of γ, ε, and h.

Proof. Let m̃h be the H1-projection of m∗ into V k
h ×V k

h . Using the same method as

in the proof of Theorem 5.2.2, we obtain

‖∇qh‖2L2(Ω) ≤ C
(
‖�Emh,γ

(zE)− �E‖2H1(Ω)∗ + ε2
)

≤ C
(
‖�Em̃h

(zE)− �E‖2H1(Ω)∗ + γ‖m̃h‖2H1(Ω) + ε2
)

≤ C
(
‖�E(m̃h−m∗)(zE)‖2H1(Ω)∗ + ‖�Em∗(zE)− �E‖2H1(Ω)∗ + γ‖m∗‖2H1(Ω) + ε2

)
≤ C

(
‖�E(m̃h−m∗)(zE)‖2H1(Ω)∗ + ε2 + γ

)
.

We need to bound the first term on right-hand side of the above inequality. Using

the same reasoning that led to (5.9), we conclude that

‖m̃h −m∗‖L2(Ω) ≤ Chr, for 1 ≤ r ≤ k + 1. (5.17)
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Finally, using (5.17) and (4.4) we have

‖�E(m̃h−m∗)(zE)‖H1(Ω)∗ ≤ ‖∇zE‖L∞(Ω)‖m̃h −m∗‖L2(Ω) ≤ Chr,

which completes the proof.

With a minor modification of the proof above, one can easily conclude the fol-

lowing result, which allows the error in the data to be measured in the H1 norm

instead of the W 1,∞ norm, and eliminates the requirement that uE ∈ W 1,∞(Ω).

Theorem 5.2.5. Assume that m∗ ∈ L∞(Ω)2 ∩Hr(Ω)2 for some 1 ≤ r ≤ k+1, and

that zE ∈ W 1,∞(Ω)2. Let mh,γ be the solution of the optimization problem (4.15). If

‖uE − zE‖H1(Ω) ≤ ε, then

‖∇qh‖L2(Ω) ≤ C (hr + ε+
√
γ) ,

where C depends on ‖m∗‖L∞(Ω), ‖m∗‖Hr(Ω), and ‖zE‖W 1,∞(Ω) but is independent of

γ, ε, and h.

5.2.1 Numerical examples

We consider the finite element solution using the space of continuous piecewise linear

polynomials over the unit square [0, 1]2 with a uniform triangulation similar to the

one shown in Figure 5.1. The observation zE of uE is generated using a formula

similar to (5.10). Further, let δ denote the relative error (measured in the H1 norm)

in the data zE.

Example 5.2.1. We consider the problem of recovering the Lamé moduli μ∗ and λ∗

from the displacement uE given by

uE(x, y) =

[
5x+ y

x2 + 4y3

]
.

Here the body fE and the traction gE are chosen so that the exact parameters are

μ∗(x, y) = cos (5(x+ exp(y))) + 2,

λ∗(x, y) = x+ y + 1.
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Table 5.3
Error results in estimating μ∗ in Example 5.2.1, the noise level δ = 0 and

regularization parameter γ = h2.

h ‖μh,γ − μ∗‖L2(Ω) L2 Relative Error ‖μh,γ − μ∗‖L∞(Ω)

1/4 3.857 · 10−1 1.855 · 10−1 1.1167

1/8 1.603 · 10−1 7.710 · 10−2 5.413 · 10−1

1/16 7.240 · 10−2 3.480 · 10−2 2.337 · 10−1

1/32 2.730 · 10−2 1.310 · 10−2 1.143 · 10−1

1/55 1.130 · 10−2 5.400 · 10−3 7.300 · 10−2

Table 5.4
Error results in estimating λ∗ in Example 5.2.1, the noise level δ = 0 and

regularization parameter γ = h2.

h ‖λh,γ − λ∗‖L2(Ω) L2 Relative Error ‖λh,γ − λ∗‖L∞(Ω)

1/4 3.047 · 10−1 1.493 · 10−1 1.1452

1/8 1.589 · 10−1 7.790 · 10−2 5.253 · 10−1

1/16 7.860 · 10−2 3.850 · 10−2 2.875 · 10−1

1/32 3.030 · 10−2 1.490 · 10−2 1.539 · 10−1

1/55 1.260 · 10−2 6.200 · 10−3 9.850 · 10−2

First we consider the case in which δ = 0, and so zE represents the interpolant of

uE. The computed errors are presented in Tables 5.3 and 5.4. Next, we plot the

exact and the recovered parameters with the presence of noise, results for various

noise levels are shown in Figures 5.4 and 5.5.

From the results in Table 5.3, we notice an O(h1.3) convergence in the L2 norm

and of O(h) in the L∞ norm in estimating the μ∗. Table 5.4 shows that the conver-

gence in estimating λ∗ is of O(h1.2) in the L2 norm and of O(h0.9) in the L∞ norm.

The effect of the noise is clear as the plots in Figures 5.4 and 5.5 show. However,

when using exact data, the recovered parameters are in a good match with the exact
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(a) Exact modulus μ∗. (b) δ = 0, α = 5.5 · 10−4

(c) δ = 0.005, α = 7.5 · 10−4 (d) δ = 0.01, α = 10−3

Figure 5.4: Recovered μ∗ in Example 5.2.1 with different noise and regularization
parameters α.

parameters. We point out that the regularization parameter γ was chosen by trial

and error using the knowledge of the exact solutions, and it is nearly optimal.

5.3 The Dirichlet problem

In this section, let SD be the set of all a ∈ H1(Ω) satisfying (3.17), that is

SD =
{
a ∈ H1(Ω)

∣∣ �Da (uD) = �D in H−1(Ω)
}
.

We shall make the assumption that SD is nonempty. Throughout this section, let

aD be any element in SD.
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(a) Exact modulus λ∗. (b) δ = 0, α = 5.5 · 10−4

(c) δ = 0.005, α = 7.5 · 10−4 (d) δ = 0.01, α = 10−3

Figure 5.5: Recovered λ∗ in Example 5.2.1 with different noise and regularization
parameters α.

First we prove the convergence of equation error method applied to the inverse

problem related to the BVP (1.2).

Theorem 5.3.1. Suppose that uD ∈ W 1,∞(Ω). Let {zn} ⊂ W 1,∞(Ω) be a sequence

of observations of uD, and let {εn} and {αn} be two sequences of real numbers such

that

1. ε2n ≤ αn ≤ εn ∀n ∈ N, and ε2n/αn → 0 as n → ∞,

2. ‖uD − zn‖W 1,∞(Ω) ≤ εn ∀n ∈ N,

3. εn → 0 as n → ∞.

For each n ∈ N, let an ∈ H1(Ω) be the unique solution (guaranteed by Theorem
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4.2.3) of the optimization problem

min
b∈H1(Ω)

1

2
‖�Db (zn)− �D‖2H−1(Ω) +

αn

2
‖b‖2H1(Ω).

Then there is an ã ∈ SD such that ‖an− ã‖H1(Ω) → 0. Further, ‖ã‖H1(Ω) ≤ ‖a∗‖H1(Ω)

for all a∗ ∈ SD.

Proof. Using (4.5) and the fact that �Da∗(uD) = �D in H−1(Ω) for all a∗ ∈ SD, we

have
αn‖an‖2H1(Ω) ≤ ‖�Da∗(zn)− �D‖2H−1(Ω) + αn‖a∗‖2H1(Ω)

= ‖�Da∗(zn − uD)‖2H−1(Ω) + αn‖a∗‖2H1(Ω)

≤ ‖a∗‖2L2(Ω)‖∇(zn − uD)‖2L∞(Ω) + αn‖a∗‖2H1(Ω)

≤ ‖a∗‖2L2(Ω)ε
2
n + αn‖a∗‖2H1(Ω)

≤ αn‖a∗‖2L2(Ω) + αn‖a∗‖2H1(Ω),

(5.18)

and consequently

‖an‖2H1(Ω) ≤ ‖a∗‖2L2(Ω) + ‖a∗‖2H1(Ω) ∀n ∈ N, a∗ ∈ SD.

Therefore {an} is bounded in H1(Ω), and by Corollary 3.2.1, there exists a subse-

quence of {an}, which we still denote by {an}, and a vector ã ∈ H1(Ω) such that

an ⇀ ã in H1(Ω) and an → ã in L2(Ω). Now from (4.5) we have

‖�Dan(uD)− �Dan(zn)‖2H−1(Ω) = ‖�Dan(uD − zn)‖2H−1(Ω)

≤ ‖an‖2L2(Ω)‖∇(uD − zn)‖2L∞(Ω)

≤ ‖an‖2L2(Ω)ε
2
n,

(5.19)

and by the definition of an we also have

‖�Dan(zn)− �D‖2H−1(Ω) ≤ ‖�Da∗(zn)− �D‖2H−1(Ω) + αn‖a∗‖2H1(Ω)

= ‖�Da∗(zn − uD)‖2H−1(Ω) + αn‖a∗‖2H1(Ω)

≤ ‖a∗‖2L2(Ω)ε
2
n + εn‖a∗‖2H1(Ω).

(5.20)

Combine (5.19), (5.20) and the fact that a convergent sequence is necessarily bounded
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to see that

‖�Dan(uD)− �D‖2H−1(Ω) ≤ 2‖�Dan(uD)− �Dan(zn)‖2H−1(Ω) + 2‖�Dan(zn)− �D‖2H−1(Ω)

≤ 2‖an‖2L2(Ω)ε
2
n + 2

(
‖a∗‖2L2(Ω)ε

2
n + εn‖a∗‖2H1(Ω)

)
≤ C(ε2n + εn).

Consequently, in view of (4.11), we conclude that

‖�Dã (uD)− �D‖H−1(Ω) = lim
n→∞

‖�Dan(uD)− �D‖H−1(Ω) = 0,

showing ã ∈ SD. Since an ⇀ ã in H1(Ω), by Theorem 3.1.5 we have

‖ã‖H1(Ω) ≤ lim
n→∞

‖an‖H1(Ω),

and by the fourth inequality in (5.18) and the fact that ã ∈ SD we have

lim
n→∞

‖an‖2H1(Ω) ≤ lim
n→∞

(
ε2n
αn

‖ã‖2L2(Ω) + ‖ã‖2H1(Ω)

)
= ‖ã‖2H1(Ω).

Hence ‖an‖H1(Ω) → ‖ã‖H1(Ω), and by a standard functional analysis result, we con-

clude that an → ã in H1(Ω). Further, in view of (5.18), we conclude

‖ã‖2H1(Ω) = lim
n→∞

‖an‖2H1(Ω) ≤ lim
n→∞

(
ε2n
αn

‖a∗‖2L2(Ω) + ‖a∗‖2H1(Ω)

)
= ‖a∗‖2H1(Ω),

for all a∗ ∈ SD, which completes the proof.

To derive an upper bound on the error, we measure the error in the quotient

norm ‖ · ‖Q introduced in Section 4.1. To this end, we need the following result

(see [34, Proposition 1, p. 215] and [35, Theorem 3.2]).

Theorem 5.3.2. Let Ω be a connected open set in R
2, with Lipschitz-continuous

boundary ∂Ω. Then every function �u of L2(Ω)2 admits the following orthogonal

decomposition:

�u = ∇q + �v,

84



where q ∈ H1
0 (Ω) is the only solution of

(∇q,∇μ)L2(Ω) = (�u,∇μ)L2(Ω) ∀μ ∈ H1
0 (Ω), (5.21)

and �v ∈ L2(Ω)2 with div�v = 0.

Now we are ready to state our first error estimate for the equation error method

applied to BVP (1.2).

Theorem 5.3.3. Assume that aD ∈ H1(Ω) and uD, zD ∈ W 1,∞(Ω), and let aα be

the solution of the optimization problem (4.2). If ‖uD− zD‖W 1,∞(Ω) ≤ ε, then for the

error vector �e = (aα − aD)∇zD we have

‖ė‖Q ≤ C(ε+
√
α),

where C depends on ‖aD‖H1(Ω) but is independent of α and ε.

Proof. Obviously �e ∈ L2(Ω)2 and so by Theorem 5.3.2 we have the decomposition

�e = ∇q + �v.

Since by Theorem 5.1.4 ∇q ∈ R, we have projR⊥�e = �v, and consequently

‖ė‖Q = ‖�e− �v‖L2(Ω) = ‖∇q‖L2(Ω).

Now by (5.21) and the fact that �DaD(uD) = �D in H−1(Ω), we have

(∇q,∇μ)L2(Ω) = (�e,∇μ)L2(Ω)

= (aα∇zD,∇μ)L2(Ω) − (aD∇zD,∇μ)L2(Ω)

= (aα∇zD,∇μ)L2(Ω) − (aD∇uD,∇μ)L2(Ω)

+ (aD∇uD,∇μ)L2(Ω) − (aD∇zD,∇μ)L2(Ω)

=
〈
�Daα(zD)− �D, μ

〉
−1

+ (aD∇(uD − zD),∇μ)L2(Ω) ∀μ ∈ H1
0 (Ω).
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If we take μ = q and apply Poincaré inequality (Theorem 3.3.1), we get

‖∇q‖2L2(Ω) ≤ ‖�Daα(zD)− �D‖H−1(Ω)‖q‖H1(Ω)

+ ‖aD‖L2(Ω)‖∇(uD − zD)‖L∞(Ω)‖∇q‖L2(Ω)

≤ C
(
‖�Daα(zD)− �D‖H−1(Ω)‖∇q‖L2(Ω) + ε‖∇q‖L2(Ω)

)
.

Consequently, we have

‖∇q‖2L2(Ω) ≤ C
(
‖�Daα(zD)− �D‖2H−1(Ω) + ε2

)
. (5.22)

Using (4.5) and noting that �DaD(uD) = �D in H−1(Ω), we obtain

‖�DaD(zD)− �D‖H−1(Ω) = ‖�DaD(zD − uD)‖H−1(Ω) ≤ ε‖aD‖L2(Ω). (5.23)

Combine (5.22), (5.23) and the fact that aα is the minimizer of (4.2) to see that

‖∇q‖2L2(Ω) ≤ C
(
‖�DaD(zD)− �D‖2H−1(Ω) + α‖aD‖2H1(Ω) + ε2

)
≤ C

(
ε2 + α

)
,

and the result follows.

Using (4.7) instead of (4.5) in the proof above, it is easy to prove the following

result, which allows the error in the data to be measured in the weaker H1 norm

instead of the W 1,∞ norm, and eliminates the requirement that uD ∈ W 1,∞(Ω).

Theorem 5.3.4. Assume that aD ∈ L∞(Ω)∩H1(Ω) and zD ∈ W 1,∞(Ω), and let aα

be the solution of the optimization problem (4.2). If ‖uD − zD‖H1(Ω) ≤ ε, then for

the error vector �e = (aα − aD)∇zD we have

‖ė‖Q ≤ C(ε+
√
α),

where C depends on ‖aD‖L∞(Ω) and ‖aD‖H1(Ω) but is independent of α and ε.

Remark 5.3.1. If desired, the error vector in Theorem 5.3.3 can be defined as

�e = (aα − aD)∇uD provided α ≥ Cε2; the analysis changes little.

Now we give an error estimate for the finite element solution of the equation

error method applied to the inverse problem associated with the BVP (1.2).
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Theorem 5.3.5. Assume that aD ∈ Hr(Ω) for some 1 ≤ r ≤ k + 1, and that

uD, zD ∈ W 1,∞(Ω). Let ah,α be the solution of the optimization problem (4.14).

Suppose that ‖uD − zD‖W 1,∞(Ω) ≤ ε, then for the error vector �eh = (ah,α − aD)∇zD

we have

‖ėh‖Q ≤ C
(
hr + ε+

√
α
)
,

where C depends on ‖aD‖Hr(Ω) and ‖zD‖W 1,∞(Ω) but is independent of α, ε, and h.

Proof. Let ãh be the H1-projection of aD into V k
h . Following the same outlines in

the proof of Theorem 5.3.3, we see that

‖ėh‖2Q ≤ C
(
‖�Dah,α(zD)− �D‖2H−1(Ω) + ε2

)
≤ C

(
‖�Dãh(zD)− �D‖2H−1(Ω) + α‖ãh‖2H1(Ω) + ε2

)
≤ C

(
‖�D(ãh−aD)(zD)‖2H−1(Ω) + ‖�DaD(zD)− �D‖2H−1(Ω) + α‖aD‖2H1(Ω) + ε2

)
≤ C

(
‖�D(ãh−aD)(zD)‖2H−1(Ω) + ε2 + α

)
.

The first term on the right-hand side of the above inequality can bounded using

(4.5) and (5.9) as follows

‖�D(ãh−aD)(zD)‖H−1(Ω) ≤ ‖∇zD‖L∞(Ω)‖ãh − aD‖L2(Ω) ≤ Chr,

which completes the proof.

With minor adjustments to the proof above, one can easily conclude the following

result.

Theorem 5.3.6. Assume that aD ∈ L∞(Ω) ∩Hr(Ω) for some 1 ≤ r ≤ k + 1, and

that zD ∈ W 1,∞(Ω). Let ah,α be the solution of the optimization problem (4.14). If

‖uD − zD‖H1(Ω) ≤ ε, then for the error vector �eh = (ah,α − aD)∇zD we have

‖ėh‖Q ≤ C
(
hr + ε+

√
α
)
,

where C depends on ‖aD‖L∞(Ω), ‖aD‖Hr(Ω), and ‖zD‖W 1,∞(Ω) but is independent of

α, ε, and h.
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Table 5.5
Results of Example 5.3.1 with δ = 0 and regularization parameter α = h2.

h ‖ah,α − aD‖L2(Ω) L2 Relative Error ‖ėh‖Q
1/8 2.557 · 10−1 1.202 · 10−1 2.223 · 10−1

1/16 1.412 · 10−1 6.640 · 10−2 1.094 · 10−1

1/32 7.080 · 10−2 3.330 · 10−2 4.250 · 10−2

1/64 3.500 · 10−2 1.640 · 10−2 1.510 · 10−2

5.3.1 Numerical examples

We consider the finite element solution using the space of continuous piecewise linear

polynomials over the unit square [0, 1]2 with a uniform triangulation similar to the

one shown in Figure 5.1. The observation zD of uD is generated using a formula

similar to (5.10). Let δ denotes the relative error (measured in the H1 norm) in the

measured data zD.

Example 5.3.1. We consider the problem with uD(x, y) = sin(πx) sin(πy), where

fD is chosen so that the exact parameter is

aD(x, y) = 2 + y sin(10x).

First we consider the case in which δ = 0, so that zD represents the interpolant of

uD. The computed errors are presented in Table 5.5. Next, we plot the exact and

the recovered parameter with the presence of noise, results for various noise levels δ

are shown in Figure 5.6.

Table 5.5 shows a convergence rate of O(h0.96) in the L2 norm and of O(h1.3)

in the quotient norm. The plots in Figure 5.6 indicate how critical the noise on

the quality of the recovered solution. However, even with noisy data, the recovered

solution still resembles the exact parameter as it can be seen from the plots. In

practice, the data should be smoothed or ‘denoised’ by an appropriate method then

the equation error method might be used after. We shall consider some heuristic

methods in Chapter 6.
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(a) Exact coefficient (b) δ = 0, α = 5 · 10−5

(c) δ = 0.01, α = 10−4 (d) δ = 0.05, α = 5 · 10−4

Figure 5.6: Recovered parameter in Example 5.3.1 with different noise and regu-
larization parameters α.
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Chapter 6

Heuristic results

The examples presented in Chapter 5 indicate a strong relationship between the

noise level in the data and the quality of the computed solution by the equation

error method. Because the equation error method is sensitive to noisy data (due to

the term ∇z), one should consider smoothing before the equation error is applied.

Moreover, in all the examples of Chapter 5, the values of regularization parameters

were chosen to be nearly optimal (by trial and error), using the knowledge of the

exact solution. But obviously without any a priori information about the exact

coefficient, a good choice of the regularization parameter is vital in this type of

analysis.

The purpose of this chapter is to give some heuristic results concerning data

smoothing and parameter choice strategies. We present some numerical experiments

to assess the proposed methods.

6.1 Parameter choice methods

In this section we present a popular heuristic method for choosing the regulariza-

tion parameter in the equation error method, namely the L-curve method. This

method is purely a posteriori or error-free parameter choice rule in the sense that it

does not require a knowledge of the level of the noise in the data.

For simplicity, we will present this method in the context of Tikhonov regular-

ization. We will adopt the notation of Section 2.1. Let xα,yδ denote the solution

obtained by Tikhonov regularization; that is, xα,yδ is the solution of the minimization
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problem

min
x∈X

‖Tx− yδ‖2Y + α‖x‖2X .

Intuitively, a desired value of α is the one that make a good compromise between

the minimization of ‖Txα,yδ − yδ‖Y (data fitting) and keeping ‖xα,yδ‖X small at the

same time (enforcing stability).

The L-curve method is motivated by the following observation [18]. For small

enough values of α, the residual ‖Txα,yδ − yδ‖Y varies a little while ‖xα,yδ‖X blows

up as α decreases. On the other hand, for moderate to large values of α, ‖xα,yδ‖X
varies by not too much as α decreases, but ‖Txα,yδ − yδ‖Y changes at a relatively

faster rate. Thus, for a large range of values of α, the graph of ‖xα,yδ‖2X versus

‖Txα,yδ − yδ‖2Y tends to exhibit an ‘L’ shaped curve, especially when plotted in a

log-log scale. The L-curve method is to choose the value of α that corresponds to the

corner of the L-curve. Here the corner is defined as the point of maximum curvature.

If we set

f(α) = log ‖Txα,yδ − yδ‖2Y , g(α) = log ‖xα,yδ‖2X ,

then the curvature is

κ(α) =
f ′′(α)g′(α)− f ′(α)g′′(α)

(f ′(α)2 + g′(α)2)3/2
. (6.1)

We refer to [18] and references therein for more justifications and discussions.

6.1.1 Numerical experiments

In this section we consider two experiments to assess L-curve for the equation error

approach. The corner of the L-curve was determined visually (by trial and error)

and using the curvature formula (6.1). We use eh = (aβ,h − aN)∇u instead of

eh = (aβ,h − aN)∇zN in the quotient norm defined in Chapter 5, similarly for the

Dirichlet case.

Example 6.1.1. In this experiment, we are trying to recover the coefficient aN from

noisy data zN . The exact data is given by

uN(x, y) = x(1− y), Ω = [0, 1]× [0, 1].
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The functions gN and fN are chosen so that the exact coefficient is

aN(x, y) =
9 exp [−(6x− 3)2 − (6y − 2)2] (4− 6x)2 − exp [−(6x− 2)2 − (6y − 3)2]

3

− exp
[
−(6x− 3)2 − (6y − 3)2

] (
2(6x− 3)− 10(6x− 3)3 − 10(6y − 3)5

)
.

Table 6.1 shows the error results using optimal values of the regularization parameter.

Here and throughout, optimal means the value of the parameter that gives least L2

error. We repeat the experiment but the regularization parameter is chosen by the

L-curve; error results are presented in Table 6.2. Figure 6.1 shows plots for the exact

and recovered parameters for several noise levels. Plots for the L-curves are given

in Figure 6.2.

(a) Exact coefficient (b) δ = 0.001

(c) δ = 0.01 (d) δ = 0.05

Figure 6.1: Recovered parameter in Example 6.1.1 using optimal β.
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Table 6.1
Results of Example 6.1.1 for several noise levels using optimal choice of

regularization parameter β.

δ β ‖ah,β − aN‖L2(Ω) L2 Relative Error ‖ėh‖Q
0.001 7 · 10−6 9.429 · 10−2 6.091 · 10−3 2.236 · 10−2

0.005 1 · 10−5 1.266 · 10−1 8.179 · 10−3 3.954 · 10−2

0.010 2 · 10−5 1.658 · 10−1 1.017 · 10−2 6.103 · 10−2

0.050 2 · 10−4 4.685 · 10−1 3.026 · 10−2 1.905 · 10−1

0.100 3 · 10−4 1.042 6.733 · 10−2 3.531 · 10−1

Table 6.2
Results of Example 6.1.1 for several noise levels, regularization parameter β is

computed using the L-curve method.

δ β ‖ah,β − aN‖L2(Ω) L2 Relative Error ‖ėh‖Q
0.001 3 · 10−7 1.531 · 10−1 9.891 · 10−3 2.595 · 10−2

0.005 6 · 10−6 1.379 · 10−1 8.911 · 10−3 4.312 · 10−2

0.010 1 · 10−5 1.886 · 10−1 1.218 · 10−2 7.058 · 10−2

0.050 2 · 10−3 1.138 7.357 · 10−2 4.723 · 10−1

0.100 5 · 10−3 1.549 1.000 · 10−1 6.949 · 10−1

Example 6.1.2. In this experiment, we are trying to recover the coefficient aD from

noisy data zD. The exact data is given by

uD(x, y) = x(x− 1) sin(πy), Ω = [0, 1]× [0, 1].

The function fD are chosen so that the exact coefficient is

aD(x, y) =

⎧⎪⎨
⎪⎩

1, 0 ≤ x < 0.4,

10x− 3, 0.4 ≤ x < 0.6,

3, 0.6 ≤ x ≤ 1.

Table 6.3 shows the error results using optimal values of the regularization parameter.
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(d) δ = 0.05

Figure 6.2: L-curves for Example 6.1.1 with different noise levels.

We repeat the experiment but the regularization parameter is chosen by the L-curve;

error results are presented in Table 6.4. Figure 6.4 shows plots for the exact and

recovered parameters for several noise levels. Plots for the L-curves are given in

Figure 6.3.

Remark 6.1.1. Although Figure 6.3 (a) does not exhibit the characteristic L shape,

there is a local maximum of the curvature in the region indicated by the circle. We

choose the corresponding value of α as the regularization parameter.

The above experiments indicates that L-curve method gives reasonable results as

a parameter choice strategy. However, there are still unanswered questions about the

L-curve; for example, does always the L-curve have a ‘corner’? We quote “In spite

of its use in several applications, there still lacks a sound mathematical foundation

of the L-curve method.” [18, page 111].
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Table 6.3
Results of Example 6.1.2 for several noise levels using optimal choice of

regularization parameter α.

δ α ‖ah,α − aD‖L2(Ω) L2 Relative Error ‖ėh‖Q
0.001 4 · 10−7 1.415 · 10−2 6.417 · 10−3 4.241 · 10−3

0.005 3 · 10−6 2.567 · 10−2 1.163 · 10−2 7.011 · 10−3

0.010 6 · 10−6 3.536 · 10−2 1.603 · 10−2 1.006 · 10−2

0.050 3 · 10−5 8.979 · 10−2 4.070 · 10−2 2.890 · 10−2

0.100 7 · 10−5 1.585 · 10−1 7.184 · 10−2 5.211 · 10−2
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1
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)

(a) δ = 0.001

log ‖�aα (z) − �‖2H−1(Ω)

lo
g
‖a

α
‖2 H

1
(Ω

)

(b) δ = 0.005

log ‖�aα (z) − �‖2H−1(Ω)

lo
g
‖a

α
‖2 H

1
(Ω

)

(c) δ = 0.01

log ‖�aα (z) − �‖2H−1(Ω)

lo
g
‖a

α
‖2 H

1
(Ω

)

(d) δ = 0.05

Figure 6.3: L-curves for Example 6.1.2 with different noise levels.
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Table 6.4
Results of Example 6.1.2 for several noise levels. The regularization parameter α is

chosen using the L-curve method.

δ α ‖ah,α − aD‖L2(Ω) L2 Relative Error ‖ėh‖Q
0.001 2 · 10−7 1.451 · 10−2 6.577 · 10−3 4.130 · 10−3

0.005 2 · 10−6 2.608 · 10−2 1.182 · 10−2 6.715 · 10−3

0.010 8 · 10−6 3.648 · 10−2 1.653 · 10−2 1.065 · 10−2

0.050 2 · 10−4 1.491 · 10−1 6.761 · 10−2 5.041 · 10−2

0.100 7 · 10−4 1.782 · 10−1 8.079 · 10−2 6.150 · 10−2

(a) Exact coefficient (b) δ = 0.001

(c) δ = 0.01 (d) δ = 0.1

Figure 6.4: Recovered parameter in Example 6.1.2 using optimal α.
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6.2 Data smoothing

The aim of data smoothing is to remove or reduce the noise from a data set to

get a better estimate to the true (exact) data. One hopes that the smoothed data

still captures important patterns and features in the true data, so the data is not

over-smoothed, but unwanted rapidly changing points and fine scale structures are

ignored, so that the data is not under-smoothed. Consequently, by appropriately

smoothing the data, we stabilize algorithms that are sensitive to noise, such as the

equation error method.

The sensitivity of the equation error method comes from the need to differentiate

the noisy data. Differentiation is actually an ill-posed process as one can demonstrate

easily. Consider a function y ∈ C[0, 1], and let

yn(t) = y(t) + 1/
√
n sin(nπt).

Then

‖yn − y‖C[0,1] = 1/
√
n → 0 as n → ∞.

Thus yn converges to y uniformly on [0, 1]. However, this is not the case for the

derivatives:

‖y′n − y′‖C[0,1] = π
√
n → ∞ as n → ∞.

The above results still hold even if we use the L2 norm instead:

‖yn − y‖L2(0,1) = 1/
√
2n → 0 as n → ∞,

‖y′n − y′‖L2(0,1) = π
√

n/2 → ∞ as n → ∞.

Since in practice only noisy data is available, we expect numerical instability in

the equation error method due to the need to differentiate the data in its computa-

tions. Thus, the aim of data smoothing here is to reduce harmful variations in the

given noisy data but at the same time keeping most important information relevant

to the true data.

In this section we present two data smoothing techniques which can be used

in conjunction with the equation error method. The first of which is the cubic

smoothing spline, and the second is smoothing by the Laplacian operator.
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We start with smoothing by the Laplace operator (SLO). The motivation of this

technique comes from the fact that any solution w of the Laplace equation

−Δw = f

is usually much smoother than the function f . Suppose u is a given function that

vanishes on the boundary of Ω and z is a given (possibly noisy) observation of u.

Then, the SLO method is to solve the BVP

−νΔus + us = z in Ω,

us = 0 on ∂Ω,
(6.2)

for us, where ν ≥ 0. Now, if ν = 0, then us = z and we have done nothing regarding

smoothing. However, if we choose ν > 0, then we hope that us is smoother than

z. Now the question is how to choose a good value of ν? On the one hand, if ν is

too large, then ‖us‖H1(Ω) is too small relative to ‖z‖H1(Ω) (this can be shown using

Fourier analysis), and so us is very smooth compared to z. Thus, in this case, us

may fail to capture important features such as the curvature and pointwise values

of u. On the other hand, if ν is too small, then ‖us‖H1(Ω) ∼ ‖z‖H1(Ω), and so us

is probably still as rough as z. From this discussion, we are motivated to choose

largest ν > 0 such that

‖us − z‖H1(Ω) ∼ ‖u− z‖H1(Ω).

In practice, we usually do not know ‖u− z‖H1(Ω) but an upper bound, say ε. Thus,

the SLO is method is to choose us that corresponds to the largest value of ν such

that

‖us − z‖H1(Ω) ∼ ε.

It is not clear how to generalize the SLO for data that satisfies Neumman bound-

ary conditions. However, we expect to have good smoothing properties at least inside

Ω but poor estimates near the boundary.

We consider the following numerical experiment.
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Example 6.2.1. Suppose the exact data is given by the function

u(t) = t(1− t), 0 ≤ t ≤ 1,

and the noisy data is given by

z(t) = u(t) +
1

70
sin(30πt) u(t).

Figure 6.5 shows a plot for u and z on the same axes. We smooth the noisy data z

using the SLO; plot for smoothed data us versus the exact data u is shown in Figure

6.6. Next we plot derivatives u′, z′, and u′
s; see Figure 6.7. Finally, quantitatively

we have the following errors in both the L2 and H1 norms:

‖u− z‖L2(0,1) = 0.001844, ‖u− us‖L2(0,1) = 0.005485,

‖u− z‖H1(0,1) = 0.173927, ‖u− us‖H1(0,1) = 0.0269627.

From these statistics, we see that slight increase in the relative L2 error is compen-

sated with a noticeable reduction in the H1 relative error. This is important especially

when a good approximation of the derivative is desired as in the case of the equation

error method.

Figure 6.5: Exact data u (solid), noisy data z (dashed).
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Figure 6.6: Exact data u (solid), smoothed data us by the SLO (dashed).

�

�

Figure 6.7: u′ (solid), u′
s (dashed), and z′ (dotted).

Another strategy to smooth noisy data is using smoothing splines. In particular,

we will consider the cubic smoothing spline. For a given data set

{(x0, y0), (x1, y1) . . . , (xn, yn)}

with x0 < x1 < · · · < xn, and a specified tolerance Tol, the method of smoothing

spline can be formulated as: find a cubic spline function1 f that minimizes

∫ xn

x0

|f ′′(x)|2dx subject to
n∑

i=0

|f(xi)− yi|2 ≤ Tol.

Thus for small Tol, f resembles the spline interpolant of the data set. However, for

large Tol, then f is a very smooth spline function and so is almost flat. Therefore,

1That is, a twice continuously differentiable piecewise polynomial of degree three.
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choosing the appropriate value of Tol for a given problem is critical, as we discussed

for the case of choosing ν in the SLO method. We point out that the above formula-

tion of the smoothing spline can be written in several alternative variations, but we

shall not discuss them here. Furthermore, cubic smoothing spline can be general-

ized for multivariable functions. There are some routines included in Matlab Curve

Fitting Toolbox which we will use in the numerical examples in the next subsection.

6.2.1 Numerical experiments

In this section, we apply the smoothing techniques presented in the last section to

assess their performance when they are used in conjunction with the equation error

method.

Example 6.2.2. In the first test, we revisit Example 6.1.2. We use the SLO method

to smooth out the data before applying the equation error method. The smoothing

parameter ν is chosen such that

‖us − zD‖H1(Ω) ∼ ‖uD − zD‖H1(Ω),

where here us is the smoothed data using the SLO method. Figure 6.8 shows the

plots for the exact data, noisy data, and the denoised data when the noise level in

the data is δ = 0.5. Next we use the denoised data to recover the parameter aD using

the equation error method; results are presented in Table 6.5.

Table 6.5
Results of Example 6.2.2 using denoised by the SLO method.

δ α ‖ah,α − aD‖L2(Ω) L2 Relative Error ‖ėh‖Q
0.001 2 · 10−7 1.284 · 10−2 5.824 · 10−3 3.740 · 10−3

0.005 1 · 10−6 1.903 · 10−2 8.629 · 10−3 6.139 · 10−3

0.010 2 · 10−6 2.469 · 10−2 1.119 · 10−2 9.292 · 10−3

0.050 6 · 10−6 5.591 · 10−2 2.534 · 10−2 2.808 · 10−2

0.100 1 · 10−4 7.482 · 10−2 3.391 · 10−2 3.592 · 10−2
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(a) Exact data uD (b) Noisy data zD

(c) Smoothed data us (d) Error before smoothing

(e) Error after smoothing (f) Error after smoothing (zoomed)

Figure 6.8: Smoothing the data of Example 6.2.2 with noise level δ = 0.5.
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The results in Table 6.3 and Table 6.5 reveal a noticeable improvement in recov-

ering the parameter aD before and after smoothing the data by the SLO method.

We point out that the regularization parameter is chosen to be optimal, as in the

case of nonsmoothed data.

In the next example we revisit Example 6.1.1; here we smooth the data using the

cubic smoothing spline. We should point out that the noisy data is first generated by

adding uniformly distributed noise, and then the experiment is repeated by adding

Gaussian noise of mean zero and standard deviation one; the results are almost

identical in both tests (under the same noise level).

Example 6.2.3. In this test, we revisit Example 6.1.1. We use the cubic smooth-

ing spline to smooth out the data before applying the equation error method. The

parameter Tol is chosen so that

n∑
i=1

|u(xi)− zN(xi)|2 ∼ Tol

where {xi} are the nodes in the finite element triangulation of the domain [0, 1]2.

Figure 6.10 shows the plots for the exact data, noisy data, and the denoised data

when the noise level in the data is δ = 0.5. Next, we use the denoised data to recover

the parameter aN using the equation error method; results are presented in Table

6.6. In Figure 6.9 we plot the recovered parameter before and after smoothing the

data for relatively large noise levels.

Table 6.6
Results of Example 6.2.3 using denoised data by cubic smoothing spline.

δ β ‖ah,β − aN‖L2(Ω) L2 Relative Error ‖ėh‖Q
0.001 3 · 10−6 4.561 · 10−2 2.946 · 10−3 1.058 · 10−2

0.005 3 · 10−6 4.564 · 10−2 2.948 · 10−3 1.056 · 10−2

0.010 3 · 10−6 4.568 · 10−2 2.951 · 10−3 1.054 · 10−2

0.050 3 · 10−6 4.603 · 10−2 2.973 · 10−3 1.041 · 10−2

0.100 3 · 10−6 4.651 · 10−2 3.004 · 10−3 1.032 · 10−2

The error results in Table 6.6 shows a remarkable improvement in the quality of
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the recovered parameter after denoising the data (Table 6.6 should be compared with

Table 6.1). Similarly, the plots in Figure 6.9 indicates a better stability behavior

for the equation error method even with relatively large noise levels in the original

data.

(a) Before, δ = 0.1 (b) Before, δ = 0.5

(c) After, δ = 0.5 (d) After, δ = 0.75

Figure 6.9: Recovered parameter in Example 6.2.3 before smoothing the data (a)
and (b), and after smoothing the data using cubic smoothing spline (c) and (d).

From the last examples, we see that smoothing can significantly improve the

quality of the recovered parameter by the equation error method. These observations

are heuristic but worth pursuing in a more rigorous mathematical analysis.

Some numerical and theoretical results, especially in the case of the recovery of

constant coefficients, indicates that the OLS (output least squares) method is more

stable and robust with respect to noisy data than the equation error method; see [43].

104



(a) Exact data uN (b) Noisy data zN

(c) Smoothed data us (d) Error before smoothing

(e) Error after smoothing (f) Error after smoothing (zoomed)

Figure 6.10: Smoothing the data of Example 6.2.3 with noise level δ = 0.5 using
cubic smoothing spline.

However, the OLS is computationally expensive since it requires numerically solving

nonlinear and nonconvex optimization problem. As in most nonlinear optimization

problems, a good initial estimate of the minimizer is vital. It can improve the speed

and might prevent the algorithm from getting stuck at a local minimum or at a
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‘flat valley’ (due to small change in the gradient that may cause the optimization

algorithm to terminate at such point). Since the OLS is expected to perform better,

it may be a good idea to use the equation error method to provide an initial guess

for OLS iterations. We investigate this in the following experiment.

Example 6.2.4. In this numerical experiment, we consider the recovery of the co-

efficient aD where

uD(x, y) = (1− x)x sin(2πy), Ω = [0, 1]2.

The load function fD is chosen so that the true coefficient is

aD(x, y) = 2 + x(1 + y2).

The purpose in this experiment is to compare the speed of the OLS with and with-

out initialization by the equation error method. We use a line search with descent

directions obtained by a quasi-Newton method. The results in Table 6.7 compare

the time and number of iterations until the OLS converges to a possible minimum.

For the equation error method, the value of the regularization parameter is fixed to

α = 0.001. When the equation error is not used, the initial guess for the line search

is taken to be the vector with all entries one. We use uniform triangulation as in

Figure 6.11 consisting of (n+ 1)2 nodes. The following notations will be used:

• TE: time (in seconds) until the convergence of the OLS when initialized using

the equation error method. This time also includes the time needed by the

equation error method to produce the initial guess;

• TO: time (in seconds) until the convergence of the OLS without using the

equation error method;

• NIE: Number of quasi-Newton iterations until convergence using the equation

error method;

• NIO: Number of quasi-Newton iterations until convergence without using the

equation error method.

It is evident form the results in the Table 6.7 that the equation error method can

dramatically enhance the robustness and speed of the OLS method. Furthermore,
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Table 6.7
Comparing the times and number of iterations for the OLS with and without

initialization from the equation error method. Asterisked numbers indicate failure
to converge to the true parameter.

n δ TE TO NIE NIO

10 0.001 3.308 6.24 4 10

0.010 3.354 6.24 4 10

20 0.001 22.074 48.656 4 11

0.010 22.339 49.203 4 11

30 0.001 95.238 412.870∗ 3 16

0.010 118.310 440.568∗ 4 17

initializing the OLS using the equation error may prevent the OLS from the conver-

gence to a false (nonstationary) minimizer as the one in Figure 6.12. For large-scale

problems, it becomes critical to initialize the OLS by a good starting point; the

equation error method is an excellent option since it is fast and produces reasonable

estimates.

Figure 6.11: Triangulation of Ω.
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Figure 6.12: Recovered coeffiecient by the OLS, noise level δ = 0.001.
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Chapter 7

Conclusion

The last few decades have witnessed a remarkable growth in the number of pu-

plications on the theory of inverse and ill-posed problems. This is mainly due to

the increasing number of applications in science and engineering, including physi-

cal, biomedical, and geophysical applications. In particular, parameter identification

problems have gained extra attention, especially inverse elasticity problems, due to

a promising biomedical applications.

The methods of output least-squares and equation error (and their variants)

are among the most prominent methods in solving elliptic inverse problems. The

output least-squares is very natural and its theoretical develpment is noticably more

advanced than that of the equation error method. However, thus far, there is a lack

of theoretical results regarding convergence and error estimates for the equation

error method.

In this work, we proved the convergence of the equation error method and de-

rived error bounds on the computed solutions. We presented the existing theory

in a way that is both more understandable and more amenable to generalizations.

Though the equation error method looks less natural the other methods, it is simple

to implement in a practical algorithm, which is also less expensive than most of the

existing algorithms. However, this simplicity comes with some flaws as our numerical

experiments reveal. The main drawback in the equation error method is its sensitiv-

ity to noisy data. We proposed a partial remedy to these pitfalls by data smoothing

using the Laplace operator or cubic smoothing splines, and the L-curve method as a

parameter choice strategy. Our numerical experiments indicate noteworthy results.
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However these methods are still heuristic and lack a sound mathematical founda-

tion. For large-scale problems and when the results of the equation error method

become in doubt, the output least-squares may serve as an alternative method due

its better robustness properties (though, for nonconstant coefficients, this might be

just heuristic). In this case, the equation error method can be used to initialize the

output least-squares; our numerical experiments show a significant increase in the

speed.

We hope to generalize our results for higher-dimensional problems (3D, in par-

ticular), and to other elliptic inverse problems such as the general linear elasticity

equations (not necessarily isotropic). Furthermore, we hope to come up with a pos-

teriori parameter choice rule that is appropriate for the equation error method. The

proposed data smoothing techniques are worth pursuing and they will be the subject

of the sequel to this work.
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Appendix A

A.1 Spectral theory of compact operators

In this appendix, we give a brief introduction to the spectral theory of compact

operators. Compact operators enjoy interesting features and studying their spectral

properties is fairly easy. The emphasis of this discussion will be on topics relevant to

the theory of ill-posed and inverse problems. Most of the results in this presentation

can be found in [18, 19,21,29,44].

We start with following result and definition from the functional analysis.

Theorem A.1.1. Let T : X → Y be a bounded linear operator, where X and Y are

Hilbert spaces. Then there exists a unique operator T ∗ : Y → X such that

(Tx, y)Y = (x, T ∗y)X ∀x ∈ X, y ∈ Y.

The operator T ∗ is called the (Hilbert) adjoint of T . Further, T ∗ is linear and

bounded with ‖T ∗‖ = ‖T‖. Moreover, T ∗∗ = (T ∗)∗ = T .

Definition A.1.1. Let X be a Hilbert space. A bounded linear operator T : X → X

is called self-adjoint if T ∗ = T .

One can define eigenvalues and eigenvectors for operators exactly in the same

way they are defined for matrices.

Definition A.1.2. Let X be a complex Hilbert space, and let L : X → X be a

bounded linear operator. A complex number λ is called an eigenvalue of L if there

is a nonzero vector x ∈ X such that

Lx = λx.
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Any such vector x is called an eigenvector of L associated with the eigenvalue λ.

The set of all eigenvalues of L is called the point spectrum of L.

From now on we assume X and Y are Hilbert spaces.

Theorem A.1.2. Let L : X → X be a bounded linear operator.

(a) If λ is an eigenvalue of L, then |λ| ≤ ‖L‖.

(b) If L is compact, then

(i) The point spectrum of L is countable (perhaps finite or even empty).

(ii) The eigenspace Eλ(L) of a nonzero eigenvalue λ is finite-dimensional,

that is, the set Eλ(L) = {x ∈ X |Lx = λx} is finite-dimensional. The

dimension of Eλ(L) will be called the multiplicity of the eigenvalue λ.

(c) If L is self-adjoint, then all eigenvalues of L are real, and eigenvectors

corresponding to distinct eigenvalues are orthogonal.

(d) If L is self-adjoint and compact, then −‖L‖ or ‖L‖ is an eigenvalue of L.

Suppose that T : X → X is a self-adjoint compact operator. Then in view of The-

orem A.1.2, we can arrange the nonzero eigenvalues of T in a sequence λ1, λ2, λ3, . . .

such that |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . and each eigenvalue is repeated according to its

multiplicity. Let φ1, φ2, φ3, . . . be a corresponding sequence of orthonormal eigen-

vectors. The set {(λn, φn)} is called an eigensystem of K.

Now we state the spectral theorem for self-adjoint compact operators.

Theorem A.1.3. Let {(λn, φn)} be an eigensystem of a compact self-adjoint oper-

ator T : X → X. Then

(a) T has the spectral expansion

Tx =
∑
n

λn (φn, x)X φn ∀x ∈ X.

(b) The set {φ1, φ2, . . . } form a basis for N (T )⊥ = R(T ).

(c) If {λn} is infinite, then λn → 0 as n → ∞.
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Let K : X → Y be a compact operator (but not necessarily self-adjoint). It

can be shown that the operators K∗K : X → X and KK∗ : Y → Y are self-

adjoint, compact, and they have the same eigenvalues and these eigenvalues are

nonnegative. Let λ1 ≥ λ2 ≥ λ3 ≥ . . . be an enumeration of the nonzero eigenvalues

of K∗K, and let {φn} be a sequence of associated orthonormal eigenvectors of K∗K.

Define σn =
√
λn , and set

ψn = σ−1
n Kφn.

The set {(σn, φn, ψn)} is called a singular system for the compact operator K, and

the numbers {σn} are called the singular values of K. We state the following fun-

damental theorem.

Theorem A.1.4. Let K : X → Y be a compact operator, and let {(σn, φn, ψn)} be

a singular system for K. Then

Kx =
∑
n

σn (φn, x)X ψn ∀x ∈ X.

This representation is called the singular value expansion of K.

We also mention the following important characterization.

Theorem A.1.5. K has only finitely many singular values if and only if K is of

finite-rank, i.e. R(K) is finite-dimensional.

Theorem A.1.6. Let {(σn, φn, ψn)} be a singular system for the compact operator

K, y ∈ Y . Then

(a) y ∈ D(K†) if and only if

∑
n

|(ψn, y)Y |2
σ2
n

< ∞.

This condition is called Picard criterion.

(b) For y ∈ D(K†),

K†y =
∑
n

(ψn, y)Y
σn

φn.

The following theorem introduces the notion of functions of compact self-adjoint

operators. The general framework in known as functional calculus.
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Theorem A.1.7. Let T : X → X be a compact self-adjoint operator with spectral

expansion

Tx =
∑
n

λn(φn, x)Xφn ∀x ∈ X.

If f : [−‖T‖2, ‖T‖2] → R is piecewise continuous, then the operator Tf : X → X

given by

Tfx =
∑
n

f(λn)(φn, x)Xφn ∀x ∈ X

is a self-adjoint bounded linear operator.

Let X and Y be Hilbert spaces, and let K : X → Y be compact with singular

value expansion

Kx =
∑
n

σn (φn, x)X ψn ∀x ∈ X.

For μ > 0, the operator (K∗K)μ : X → X is defined by

(K∗K)μx =
∑
n

(σ2
n)

μ (φn, x)X φn ∀x ∈ X.

In particular, it can be shown that R((K∗K)1/2) = R(K∗).

Most of the convergence results presented in Section 2.1, require a priori assump-

tions on the exact solution of Tx = y. Precisely, T †y should satisfy the abstract

smoothness assumption T †y ∈ R((T ∗T )μ) for some μ > 0. In the case T is compact,

this condition has the following realization:

Theorem A.1.8. Let K be compact with singular system {(σn, φn, ψn)}. Then, for
μ > 0,

K†y ∈ R((K∗K)μ) ⇐⇒
∑
n

| (ψn, y)Y |2
σ2+4μ
n

< ∞.

Notice that when K is compact but not of finite-rank, then K has infinitely many

singular values {σn} and further σn → 0 as n → ∞. Now, Picard criterion states

y ∈ D(K†) if only if the ‘Fourier coefficients’ (ψn, y)Y decay faster than the singular

values of σn. In Fourier series analysis, the rate at which the Fourier coefficients decay

indicates how smooth the function is; the smoother the function the faster the Fourier

coefficients converge to 0. Thus, in comparison, the requirement K†y ∈ R((K∗K)μ)

expresses a smoothness assumption on the exact data y (at least in the abstract
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sense), and hence the name ‘abstract smoothness assumption’. Moreover, in view of

Theorem A.1.8, we see that the larger the μ, the ‘smoother’ the ‘function’ y is. For

concrete examples and more explanations we recommend the book [18].
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