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ABSTRACT 

Vegetation communities affect carbon and nitrogen dynamics in the subsurface 

water of mineral wetlands through the quality of their litter, their uptake of nutrients, root 

exudation and their effects on redox potential.  However, vegetation influence on 

subsurface nutrient dynamics is often overshadowed by the influences of hydrology, soils 

and geology on nutrient dynamics.  The effects of vegetation communities on carbon and 

nitrogen dynamics are important to consider when managing land that may change 

vegetation type or quantity so that wetland ecosystem functions can be retained.  This 

study was established to determine the magnitude of the influences and interaction of 

vegetation cover and hydrology, in the form of water table fluctuations, on carbon and 

nitrogen dynamics in a northern forested riparian wetland.  Dissolved organic carbon 

(DOC), dissolved inorganic carbon (DIC), nitrate (NO3
-) and ammonium (NH4

+) 

concentrations were collected from a piezometer network in four different vegetation 

communities and were found to show complex responses to vegetation cover and water 

table fluctuations.  Dissolved organic carbon, DIC, NO3
- and NH4

+ concentrations were 

influenced by forest vegetation cover.  Both NO3
- and NH4

+ were also influenced by 

water table fluctuations.  However, for DOC and NH4
+ concentrations there appeared to 

be more complex interactions than were measured by this study.  The results of canonical 

correspondence analysis (CCA) and analysis of variance (ANOVA) did not correspond in 

relationship to the significance of vegetation communities.  Dissolved inorganic carbon 

was influenced by an interaction between vegetation cover and water table fluctuations.  

More hydrological information is needed to make stronger conclusions about the 

relationship between vegetation and hydrology in controlling carbon and nitrogen 

dynamics in a forested riparian wetland. 
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INTRODUCTION 

 

Wetlands are important ecosystems in the landscape that have unique hydrology, 

soils and vegetation.  Wetlands are important to landscape hydrochemistry by retaining, 

transforming and transporting nutrients (Groffman et al. 1992, Hill and Devito 1997, 

Naiman and Decamps 1997).  In this way, they influence groundwater and surface water 

by acting as filters to improve water quality as well as reducing flood pulses through their 

ability to retain water.  One important wetland in the landscape is the forested riparian 

wetland, which are wetlands adjacent to lakes and rivers.  Riparian wetlands are 

important because they are ecotones between aquatic and upland environments and 

directly affect the productivity and ecosystem function of stream and lakes systems 

(Stanford and Ward 1988, Valett et al. 1997, Verry et al. 2000).  The individual 

influences of hydrology and vegetation on hydrochemistry of subsurface water within 

forested riparian wetlands have been studied throughout North America and in Europe 

(Peterjohn and Correll 1984, Pinay and Decamps 1988, Ford and Naiman 1989, Phillips 

et al. 1993, Cirmo and McDonnell 1997, Ohrui et al. 1999, Bischoff et al. 2001, Findlay 

et al. 2001, Groffman et al. 2002).  Yet, interactions between hydrology and vegetation 

have not well understood in riparian wetlands. 

Hydrology influences subsurface biogeochemical processes in forested riparian 

areas through water table fluctuations and pulses of water flow from rivers that create 

intermittent aerobic and anaerobic environments where different reactions take place 

(Regina et al. 1996, Blodau and Moore 2003).  Fluctuating water tables and river pulses 

can also physically transport nutrients vertically and horizontally through the soil profile 

(Werner and Höhener 2002).  Although water table fluctuation regimes for wetlands have 

been determined (Roulet 1991),  the effect of those water table fluctuations on carbon and 

nitrogen cycling is not well documented in forested riparian wetlands (Hill 1996). 

Vegetation also influences carbon and nitrogen cycles through litterfall, 

decomposition and nutrient content (Aerts et al. 1999).  Vegetation influences subsurface 

water biogeochemical processes by affecting redox status through its contribution of 

organic matter, oxidizing power, adventitious roots and growth patterns (Havens 1997, 

Tabacchi et al. 1998).  Vegetation can influence nutrient cycling through its control of 
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hydrologic processes and influence water table fluctuations through evapotranspiration 

processes (Williams and Lipscomb 1981, Verry, Riekerk 1989, Lundin, Bent 2001).  The 

interaction between vegetation, hydrology and nutrient cycling is important in 

understanding how forested riparian wetland ecosystems function (Likens et al. 1970, 

Hanson et al. 1994, Stromberg et al. 1996, Bedford et al. 1999, Casey et al. 2004).   

Two elements in subsurface water important to biogeochemical cycling are 

carbon and nitrogen.  Carbon and nitrogen are key elements to riparian ecosystem 

functioning; carbon as a source of energy and nitrogen and a key element to organism 

functioning.  Dissolved inorganic carbon (DIC) can be a source of carbon dioxide (CO2) 

to the atmosphere as well as to the stream aquatic environment (Palmer et al. 2001, Jones 

et al. 2003).  Some work in lakes and streams has reported the importance of DIC in 

surface water and have suggested that groundwater flow influences the amount of DIC in 

these systems (Amiotte-Suchet et al. 1999, Elder et al. 2000, Palmer et al. 2001, Ortega et 

al. 2002).  It is known that wetlands and riparian areas are important in the aquatic 

cycling of DIC because of their high primary productivity and respiration rates which 

influence rivers through subsurface water exchange (Mitsch and Gosselink 2000, Jones et 

al. 2003).  Vegetation can affect DIC by their roots respiring CO2, and also by producing 

organic carbon through the decomposition of litter or root exudation which microbes 

breakdown and thus respire CO2.  However, hydrology can have an effect on DIC by 

water movement and weathering of soils and bedrock material and breaking down 

carbonates into their cation and carbonate molecules and leaving carbonates to contribute 

to subsurface water DIC.   

Dissolved organic carbon (DOC), an important component in ecosystem 

productivity, increases in the subsurface water through microbial break down of organic 

matter and root exudation.  Vegetation influences DOC through the quality and quantity 

of litter it provides as well as root exudation to the subsurface microbes (Aerts et al. 

1999).  Hydrology affects DOC through water table depth and flooding from surface 

waters (McLaughlin et al., Trettin et al. 1996).  Vegetation and hydrology can play a role 

together in controlling DOC concentrations.  Hydrology and vegetation influence redox 

potential which can affect sorption of DOC to iron (Fe) by oxidizing Fe to Fe+3 which 

favors sorption causing DOC to be removed from the subsurface water or creating 
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reduced conditions which reduces Fe+3 to the more soluble form, Fe+2, which limits the 

sorption DOC (Heyes and Moore 1992, Moore et al. 1992, McLaughlin et al. 1994). 

Inorganic nitrogen cycling in forested systems has also been reported to be 

influenced by hydrology (Devito and Dillon 1993, Bechtold et al. 2003) or vegetation 

(Vitousek et al. 1989, Aerts et al. 1999, Kiernan et al. 2003, Westbrook and Devito 

2004).  Riparian forests are known to have different inorganic nitrogen cycling processes 

than upland areas.  In non-Alnus riparian communities, wetland vegetation can take up 

nitrogen in amounts that exceed mineralization rates (Bischoff et al. 2001) exerting a 

significant influence on nitrogen cycling.  It has been found that hemlock riparian forests 

in the northeast have lower net N mineralization and nitrification rates than pine and 

maple upland areas (Hill and Shackleton 1989, Ohrui et al. 1999, Kiernan et al. 2003).  

Non-Alnus riparian forests tend to take up NO3
- whereas uplands tend to produce 

inorganic nitrogen (Ohrui et al. 1999). These studies indicate that non-Alnus riparian 

areas may rely on inorganic nitrogen moving in from other areas of the landscape to meet 

their nitrogen needs, meaning that different vegetation communities in the landscape can 

act as a source or sink for inorganic nitrogen.   

Riparian forests have been determined to remove nitrogen through uptake from 

subsurface waters in large amounts (Peterjohn and Correll 1984, Pinay and Decamps 

1988, Correll and Weller 1989, Cooper 1990).  However, the presence of Alnus in 

riparian forests has also been determined to increase NO3
- and NH4

+ concentrations 

through an association with nitrogen-fixing bacteria (Ohrui et al. 1999, Kiernan et al. 

2003).  Hydrology controls nitrogen cycling by runoff and leaching NO3
- into interstitial 

waters and out of soils (Bechtold et al. 2003) as well as water table depths affecting 

aeration and thus nitrogen transformations (Devito and Dillon 1993). 

While many studies on N and C dynamics in North America and around the world 

have been done the Northern Lakes States is a unique region containing many riparian 

areas where information on the controls and interactions between vegetation, hydrology 

and carbon and nitrogen cycles is not complete.  Much has been done in peatlands (Dalva 

and Moore 1991, Verry and Urban 1992, Blodau 2002) but mineral soils often found in 

riparian wetlands have yet to be studied in terms of the interactions between vegetation 

and hydrology controls on carbon and nitrogen cycling. 
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The Northern Lake States contain many forested mineral and peatland riparian 

areas which are unique to the area.  In northern peatlands carbon mineralization has been 

found to be influenced by interactions between hydrology and vegetation that are 

different with different peatlands studies (Blodau 2002).  Controls of DOC in peatlands 

may include runoff, plant release, temperature and evaporation (Blodau 2002). However, 

the contribution of hydrology and vegetation to the interactive influence on DIC and 

DOC in mineral riparian wetlands of the Northern Lake States is not well understood.   

For nitrogen, vegetation and mineralization have been determined to be the 

controlling influences of nitrogen cycling in a forested Minnesota bog (Urban and 

Eisenreich 1988).  In a forested conifer peatland in Ontario retention of nitrogen is 

controlled by hydrological variables and the interactions between hydrology and 

vegetation (Devito and Dillon 1993).  Studies that have investigated the interaction 

between vegetation, hydrology and nutrient cycling have been focused on peatlands in 

the Northern Lakes States (Devito and Dillon 1993, Blodau 2002) and are not 

representative of the interactions seen in the mineral riparian wetlands of the Northern 

Lakes states because of differences in vegetation, hydrology and geology.   

The objectives of this study were to determine the influence and interactions of 

vegetation and hydrology on DIC, DOC, NO3
- and NH4

+ concentrations across different 

vegetation communities of a Northern Lake States forested wetland complex.  The 

hypotheses were: 1) hydrology, in the form of water table fluctuations and distance from 

a river, significantly influences DOC, DIC, NO3
- and NH4

+ concentrations, 2) vegetation 

communities significantly affect DOC, DIC, NO3
- and NH4

+ concentrations, 3) the 

influences of vegetation, water table fluctuation and  distance from the river interact to 

control differences in DOC, DIC, NO3
- and NH4

+ concentrations. 

 

 

METHODS 

 

Study Site 

The study site is on the West Branch of the Sturgeon River (Figure 1), located in 

Alger county of the Upper Peninsula of Michigan (46°10’ N, 86°43’W).  The 74 km2 
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(28.6 mi2) watershed is part of the Sturgeon River watershed that drains into Lake 

Michigan.  The West Branch subwatershed is a low gradient landscape that ranges from 

240 m to 270 m in elevation from northwest to southeast.  Bedrock geology of the site is 

Trenton Limestone and the glacial geology is classified as a peat and muck system 

(Natural Resources Conservation U.S. Department of Agriculture 1994, Michigan 

Natural Features Resources 1998).  The soil is classified as a Kinross mucky sand which 

is sandy mixed, frigid and Typic Endoaquod (Trettin 1992, McLaughlin et al. 2000).  The 

soil is acidic and poorly drained fine sand overlain by a 5-15 cm organic layer primarily 

made of decomposed Sphagnum (Trettin 1992, McLaughlin et al. 2000). 

The study site is in a managed forested riparian wetland that has three main 

vegetation communities.  The vegetation community closest to the river is a stand 

dominated by Alnus incana.  The next vegetation community moving away from the river 

is a 15 year-old Pinus banksiana plantation intermixed with natural Picea mariana.  The 

third vegetation community is a mature stand of Picea mariana, Larix laricina and Pinus 

banksiana.  The groundcover is dominated by ericaceous shrubs and Sphagnum with 

other bryophytes being common in both the plantation and mature stands. 

The climate of the West Branch subwatershed includes an annual average 

temperature of 5.4°C (minimum in January at -11.8°C and maximum in July and August 

at 23.4°C) and average total precipitation of 885 mm annually, with snowfall averaging 

3,675 mm annually (National Weather Service 2005).  Within the growing season, spring 

and fall are the wet seasons and summer generally has few precipitation events. 

Three transects were established 75 meters apart and perpendicular to the West 

Branch River.  Through all three vegetation communities, seven stations starting in the 

river were systematically established, two in the Alnus incana stand, two in the Pinus 

banksiana plantation and two in the mature Picea-Larix-Pinus stand (Figure 2).  Each 

station (excluding the river station which is surface water) had two piezometers, 3.2 cm 

in diameter, at depths of 0.5 m and 1 m and a ceramic cup lysimeter at 0.25 m.  To test 

the hypotheses in this study data from all three depths were averaged for each station. 
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Sample collection 

 Water samples were collected from each piezometer or lysimeter once a month 

from August – October in 2001 and June – October in 2002, stored on ice and transported 

to the lab.  The water samples were filtered at 0.45µm and analyzed in the lab for carbon 

and nitrogen. Dissolved inorganic carbon and DOC from water samples collected in 2001 

and 2002 were analyzed with a Shimadzu TOC/TIC 5000A Analyzer.  Nitrate and 

ammonium from water samples collected in 2002 were analyzed with a Braan & Luebbe 

Traacs 800.  Nitrate values are the sum of nitrate and nitrite.  However, nitrite 

concentrations were found to be insignificant. 

 

Water table fluctuations and river influences 

 Water table measurements were taken at each station from the 100 cm 

piezometers once a month July through October of 2001 and June through October of 

2002.  The fluctuation was recorded as the difference between the current month and the 

previous month.  Differences for July 2001 and June 2002 were not calculated since there 

was no previous month of that year.  Distance from the river to each station was 

measured using GPS coordinates. 

 

Vegetation survey 

Vegetation was surveyed in the summer of 2002 at each station of the three 

transects.  Vegetation surveys were done using three categories: overstory, understory 

and groundcover.  Overstory vegetation was surveyed in a 10 m x 10 m plot centered at 

each sampling station.  The species and percent cover of all vegetation over 1 m in height 

were recorded.  Understory vegetation was surveyed in two 5 m x 5 m plots, located in 

the upper and lower corners within each 10 x 10 m plot.  The species and percent cover 

of all vegetation less than 1 m in height were recorded.  Groundcover vegetation was 

surveyed using a Daubenmire frame (50.5 cm x 20.5 cm) taking three random samples 

within one of the 5 m x 5 m plots.  The species and percent cover of all groundcover 

within the frame were recorded.  Bryophytes, Carex, Dryopteris, Potamogeton, Solidago 

and Viola were only recorded to genus because of difficulties in keying them to species at 
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the time of the survey.  For statistical analyses, groundcover vegetation was divided 

further into non-bryophytes (further referred to as groundcover) and bryophytes. 

 

Statistics 

The influences of hydrology and vegetation on DIC, DOC, NH4
+, and NO3

- 

concentrations were analyzed individually first, using correlation analysis, detrended 

correspondence analysis (DCA) and analysis of variance (ANOVA).  Then the 

contribution of hydrology and vegetation as an interactive influence on DIC, DOC, NH4
+, 

and NO3
- concentrations was analyzed using canonical correspondence analysis (CCA). 

To determine hydrology influences, correlation analysis was used to look at the 

relationship between DIC, DOC, NH4
+, and NO3

- concentrations versus distance from the 

river and water table fluctuation.  A significant correlation was considered a p-value of 

0.05 or less. 

To first determine if the three vegetation community types were statistically 

different in vegetation composition, vegetation cover values were analyzed using DCA 

(Hill and Gauch 1980).  Vegetation cover values for each vegetation category of 

overstory, understory, groundcover and bryophytes as well as all vegetation cover values 

together were analyzed using DCA.  The vegetation communities determined from DCA 

were then matched up with their corresponding station to create a new variable, 

vegetation community, which indicated the vegetation community each point of data was 

located in. 

Mean DIC, DOC, NH4
+, and NO3

- concentrations as dependent variables were 

each compared using one way ANOVA with the independent variable of vegetation 

community.  Nitrate and NH4
+ dominance in vegetation communities were examined at 

by taking the difference of the NO3
- concentration from NH4

+ concentrations as the 

dependent variable in an ANOVA where vegetation community was the independent 

variable.  Tukey’s multiple comparison test was used for pair-wise comparison of 

treatments.  For analyses, data for corresponding months of 2001 and 2002 were 

combined to look for seasonal differences.  We did not look at annual differences as there 

were only three months of data in 2001.   

 8



To determine the magnitude of vegetation communities and species with 

hydrologic controls on DIC, DOC, NH4
+, and NO3

- concentrations we used CCA (Braak 

1986).  The influence of individual species and vegetation communities as well as water 

table fluctuations were independent variables compared to NO3
-, NH4

+, DOC and DIC as 

dependent variables.  CCA was performed with and without forward selection; both used 

999 permutations for the Monte Carlo permutations test.   

 

 

RESULTS 

 

Differences in nutrient concentrations with distance from the river and water table 

fluctuation 

 Although correlation values (r.) were low and negative, DIC and NO3
- were 

significantly correlated with distance from the river (Table 1).  Dissolved organic carbon 

and NH4
+ were not significantly correlated with distance from the river (Table 1).  

Dissolved inorganic carbon had the strongest relationship with distance from the river 

with an r value of -0.433 (p<0.001).  Water table fluctuations were not significantly 

correlated with any of the concentrations (Table 1). 

 

Differences in nutrients concentrations among vegetation communities 

 Detrended correspondence analysis revealed four vegetation communities: 

riparian (station 1), edge (station 2), plantation (stations 3 and 4) and mature stand 

(stations 5 and 6).  As was expected, the overstory vegetation corresponded to the three 

vegetation communities apparent in the field as well as a fourth intermediate vegetation 

community: the Alnus incana riparian area, the edge between the riparian area and the 

plantation, the Pinus banksiana plantation and the Picea mariana-Larix laricina-Pinus 

banksiana mature stand.   

 ANOVA indicated that DIC, NO3
- and DOC were significantly different among 

vegetation communities (α=0.05, p<0.001), but there was no difference in NH4+ 

concentrations.  Dissolved inorganic carbon and NO3
- concentrations were highest in the 

riparian area (Table 2).  The pattern of DOC was not so easily distinguished, but it was 
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higher in the plantation compared to the edge (Table 2).  The dominant dissolved 

inorganic nitrogen form was different (p<0.001) among the vegetation communities.  

Nitrate concentrations were higher than NH4
+ concentrations in the riparian area (Table 

2).  Ammonium concentrations were higher than NO3
- concentrations in the plantation 

and mature communities.  

  

Vegetation and hydrology influences on nutrient concentrations 

The influence of vegetation cover and water table fluctuations on DIC, DOC, 

NO3
- and NH4

+ were analyzed using CCA.  The eigenvalues for axes 1 and 2 were low at 

0.161 and 0.001, respectively, using forward selection, but axis 1 explained 99.1% and 

axis 2 explained 0.5% of the species-environmental relation variation.  The species-

environmental variables correlation for axis 1 was 0.758 and 0.373 for axis 2.   

Axis 1 represented mainly differences in vegetation communities.  It separated the 

riparian vegetation community from the plantation and mature stand vegetation 

communities.  There seemed to be a separation of forest vegetation species and more 

open and riparian vegetation species.  The vegetation species that were most correlated to 

axis 1 were overstory Acer rubrum and Alnus incana, understory Cornus foemina and 

Alnus incana, groundcover Galium boreale, Spartina pectinata and Onoclea sensibilis 

(Figure 4).  Overstory and understory Alnus incana was highly correlated with axis 1, 

which differentiates vegetation communities, indicating the importance of Alnus incana 

in the riparian wetland.  Axis 2 represented differences in water table fluctuation.  The 

mature community was most strongly related to water table fluctuations followed by the 

plantation community, riparian community and edge community.   

Dissolved inorganic carbon concentrations were positively correlated to riparian 

species and not correlated to water table fluctuations (Figure 4).  Ammonium 

concentrations were positively related to plantation and mature species as well as being 

positively related to water table fluctuations (Figure 4).  Dissolved organic carbon 

concentrations were positively correlated with plantation and mature species not 

correlated to water table fluctuations.  Nitrate concentrations were positively related to 

the riparian vegetation species and negatively related to water table fluctuations.  

Dissolved inorganic carbon concentrations had the strongest relationship with vegetation 
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community.  Both NO3
- and NH4

+ concentrations had strong relationships to water table 

fluctuation, but DIC and DOC concentrations did not have a relationship with water table 

fluctuation (Figure 4).  

 

 

DISCUSSION

 

Carbon 

Dissolved inorganic carbon concentrations were influenced by vegetation 

communities and not the hydrologic factor of water table fluctuation.  Riparian areas have 

been found to have high productivity (Naiman and Decamps 1997, Mitsch and Gosselink 

2000).  A high productivity increases decomposition and microbial respiration which 

increases CO2 being released into the soil matrix and subsurface water.  The CO2 

produced by respiration remains dissolved in the subsurface water and can combine with 

hydrogen ions in the acidic environment to form bicarbonate and other forms of DIC 

depending on the carbonate equilibrium (Stumm and Morgan 1981).  A number of studies 

from North America and Europe have shown plant root and microbial respiration are 

major components of DIC in wetlands and riparian areas (Findlay et al. 1993, Schindler 

and Krabbenhoft 1998, Amiotte-Suchet et al. 1999).  The riparian area in this study 

contains Alnus incana which is known to have a low C:N ratio (Bischoff et al. 2001) 

increasing decomposition rates (Brady and Weil 2002) and respiration rates also 

contributing to the increased CO2 available as a form of DIC.  Elder et al. (2000) found 

DIC concentrations similar to the concentrations in this study in riparian peatlands of 

northern Wisconsin.  However, they did not find a significant decrease in DIC 

concentrations moving away from the stream through different vegetation communities 

as this study found.  This indicates that the mineral riparian wetland is an important 

vegetation community to DIC. 

The peak in DIC concentration in the riparian area could be attributed to CO2 

from respiration not escaping into the atmosphere as fast as in other areas of the wetland 

because of the generally shallower water table in the riparian zone.  This is due to slow 

diffusion of CO2 through water.  Carbon dioxide moves through water slower than air, 
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and the water table is higher in the riparian area than in other vegetation communities of 

the wetland.  This theory is supported by Findlay et al. (1993) who found that in near 

stream flowpaths DIC concentrations increased mainly due to microbial respiration and 

secondarily to weathering of calcium carbonates.   

A peak in calcium (data not shown) was also found in the riparian area which 

indicates that some of the DIC could be coming from weathered materials.  Calcium 

carbonates from the bedrock geology could be disassociating and moving in the 

groundwater towards the surface. The glacial geology and sandy soils make groundwater 

influences likely in the area (Elder et al. 2000). Therefore, the riparian area may have an 

upwelling of groundwater bringing in DIC from the aquifer below.  More information on 

the riparian community, water table fluctuations, and water movement are required to 

determine the amount of water saturation and the presence of groundwater upwelling in 

this area.  In particular, deeper wells and piezometers, stable isotopes, dyes and wells and 

piezometers at different depths are required to determine the DIC movement in 

groundwater. 

Vegetation and not hydrologic influences seem to be affecting DOC (as seen in 

CCA), however there were not significant differences between the riparian and forest 

communities (in ANOVA analyses).  Different things could be contributing to the DOC 

concentrations in different vegetation communities.  The plantation and mature 

communities have lower water tables and thus more aerobic environments than the 

riparian community, which has a consistently high water table.  Aerobic environments 

decompose organic matter more completely (Alexander 1977) leaving less DOC in the 

subsurface water.  However, the DOC left is recalcitrant and not easily broken down.   

Dissolved organic carbon concentrations are also known to be associated with 

metal oxides which bind with DOC and precipitate out of solution (McLaughlin et al. 

1994, Carlyle and Hill 2001, Jacinthe et al. 2003).  Iron (Fe) is known to bond with DOC 

in its oxidized form, Fe+3.  In wetland areas where anoxic conditions form from 

consistent high water tables, Fe+3 is reduced and can be easily leached out of the soil so 

sorption of DOC is not as great, leaving greater concentrations of DOC in solution 

(McLaughlin et al. 1994).  In the sandy soils of the West Branch study site Fe+2 has been 

reduced and leached out of the soil by periodic high water tables and thus there is no 
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sorption of DOC out of the subsurface water.  Thus the recalcitrant DOC stays in the 

subsurface water of the plantation and mature stands causing accumulation of DOC.  The 

plantation has the highest mean concentration of DOC which could be due to the mature 

stand having more Sphagnum (data not shown) which can hold water closer to the surface 

(Halsey et al. 2000) and create less aerobic conditions.  The riparian deciduous 

communities are known to more productive and have higher leaf-litter nutrient 

concentrations than other conifer communities (Tabacchi et al. 1998, Aerts et al. 1999) as 

well as having higher litter quality, which leads to increased carbon turnover and more 

complete decomposition, leaving less carbon in the subsurface water as DOC.  The 

anaerobic conditions of the riparian area create a less complete decomposition than the 

aerobic plantation and mature communities because electron acceptors other than oxygen 

are being used (Alexander 1977).  However, the increased litter quality and production 

overcome anaerobic conditions at this site so that the riparian community, even though it 

had a lower mean DOC concentration, was not significantly different in DOC 

concentration from the plantation or mature communities.   

Dissolved organic carbon concentration was strongly correlated to the first axis in 

CCA which reflects mainly vegetation differences and not correlated to the second axis 

which reflects water table fluctuations differences.  Increased concentrations of DOC 

were found in plantation and mature communities with water table fluctuations having no 

effect.  This indicates that DOC is influenced mainly by vegetation and positively 

influenced by certain types of vegetation communities.   

 

Nitrogen 

 There was a significant peak of NO3
- at the riparian community that corresponded 

to the results in CCA showing a positive relationship to riparian vegetation along with a 

stronger negative relationship to water table fluctuation.  In other studies, Alnus incana in 

New York has been associated with high NO3
- levels in wetlands (Kiernan et al. 2003).  

The wetland in this study showed the same pattern of increased NO3
- concentrations in 

the riparian area where Alnus incana was present.  Alnus incana was significantly related 

to riparian vegetation community, where NO3
- had a peak.  Alnus incana has two 

attributes that could have lead to increased NO3
- concentrations in the subsurface water 
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surrounding it.  Alnus spp. have nitrogen fixing bacteria associated with their roots. 

Coupled with high aeration around their roots, this could lead to high rates of nitrification 

within the rhizosphere soil of the Alnus spp.  roots (Schröder 1989).  Moreover, Alnus 

incana generally has low nitrogen use efficiency, resulting in higher litter nitrogen 

concentrations that can be mineralized and nitrified to NO3
- (Bischoff et al. 2001). 

The riparian vegetation community lives in a consistently high water table that 

intuitively would seem to inhibit nitrification due to low availability of oxygen for 

nitrification (Mitsch and Gosselink 2000).  Yet, Westbrook and Devito (2004) have found 

high gross nitrification rates in saturated soils and Luther and Popp (2002) found that 

nitrification can occur in the absence of oxygen.  These two studies support the 

possibility that you can have high NO3
- concentrations under saturated conditions.  

Another possibility is that NO3
- concentrations are higher in the riparian community 

because the movement of the river water that may aerate the subsurface water enough to 

create conditions for nitrification rates to outweigh denitrification rates.  The higher 

quality of organic matter in the riparian area, due to Alnus incana, than the plantation and 

mature communities could lead to higher nitrification rates in the riparian community 

than the other vegetation communities.  The high NO3
- concentrations in the riparian zone 

could also be from groundwater upwelling.  In their review, Cirmo and McDonnell 

(1997) reported that groundwater is relatively high in NO3
- concentration and may 

contribute to high NO3
- concentrations in riparian areas where conductivity and calcium 

(data not published) indicate the possibility of groundwater influence.  More data on 

hydrologic factors of water table depth and water flow patterns would be needed to make 

a conclusion on the sources of influence of NO3
- in this riparian wetland. 

Ammonium concentrations were positively related to the plantation and mature 

stand vegetation communities, but it had a higher positive relationship to water table 

fluctuations.  Analysis from CCA did not correspond to the above findings; NH4
+ 

concentrations were not significantly different across vegetation communities using 

ANOVA.  However, NH4
+ concentrations did increase from the riparian and edge 

communities to the forest communities.  Mineralization of N into NH4
+ occurs in both 

aerobic and anaerobic conditions but at different rates due to different microbes initiating 
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the reactions (Gale and Gilmour 1988) thus hydrology can have an effect on the rate of 

ammonification due to its influence on creating aerobic and anaerobic conditions.  

Ammonium concentration means and water table fluctuations were most 

positively related to the mature vegetation community followed by the plantation, edge 

and then riparian vegetation communities.  The lack of difference in NH4
+ across 

vegetation communities in ANOVA and only low relationship to the mature and 

plantation communities in CCA could due to a number of factors.  In the riparian 

community Alnus incana is fixing nitrogen but due to the peak in NO3
- concentrations it 

seems that NH4
+ is rapidly nitrifying.  Low NO3

- concentrations in the mature and 

plantation communities indicate low nitrification rates in these communities thus leaving 

more NH4
+ in the subsurface water.  However, without nitrogen fixers like Alnus incana 

the initial NH4
+ concentrations in the plantation and mature communities were lower than 

those of the riparian community.  Nitrate was negatively related to water table depth 

supporting that in the West Branch wetland changes in concentrations of NH4
+ or NO3

- 

are due to microbial processing and influenced mainly by water table fluctuations.  The 

lack of differences across vegetation communities could be due to the high variability in 

NH4
+ and NO3

- concentrations and also due to a small sample size. 

 

 

CONCLUSIONS 

 

In this study, vegetation communities influence DOC, DIC, NO3
- and NH4

+ 

concentrations; however, the magnitude of this influence was strongest in DIC 

concentrations.  Hydrology, in the form of water table fluctuations, interacted, as a 

stronger contributor, with vegetation to influence NO3
- and NH4

+ but did not influence on 

DOC and DIC.  The interaction between hydrology and vegetation would be better 

understood with more detailed hydrological information.  More research should be done 

to determine subsurface flowpaths and groundwater upwelling and downwelling points in 

this wetland and how these hydrological factors affect nitrogen and carbon processes.  

Vegetation is the overriding factor in this study, which may or may not be influenced by 

hydrology.   
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Figure 1. West Branch River subwatershed with the study site indicated by (*). 
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Figure 2. Transect and station layout on the West Branch riparian wetland study site. 
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Figure 3.  Ordination diagram of detrended correspondence analysis of all vegetation species.  Species in the same vegetation community are 

circled.  Species in the four vegetation communities are represented by open symbols: riparian species (star), edge species (X), plantation species 
(∆) and mature stand species (+).  Species occurring in many vegetation communities are indicated with an open square (□).  Stations at the study 

site are indicated in closed symbols: station 1 (circle), station 2 (diamond), stations 3 and 4 (square) and stations 5 and 6 (triangle). 
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Figure 4. Canonical correspondence analysis between water table fluctuation as well as vegetation species and DOC, DIC, NO3

-, NH4
+.  Species 

are divided by vegetation community: riparian vegetation (red), edge vegetation (yellow), plantation vegetation (green), mature stand (blue).  
Water table fluctuations are represented by a dashed purple line.  Vegetation species abbreviation list can be found in Table 4. 
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Table 1.  Distance from the river and water table fluctuation correlation analysis with DIC, DOC, NH4
+ and NO3

-. 
Distance from the river Water table fluctuation  

r p-value  r p-value
DIC     -0.433 <0.001 0.028 NS
DOC     -0.068 NS -0.050 NS
NH4

+ 0.055    NS -0.141 NS
NO3

- -0.214    0.009 -0.184 NS
 
 
 
 

Table 2.  One-way ANOVA and Tukey test results test results for DIC, DOC, NH4
+, NO3

- and NH4
+ - NO3

- as the dependent variables 
and vegetation community.  Letters in parentheses represent significant differences from Tukey tests. 

 vegetation 
community     p-value Riparian area Edge

Pinus banksiana 
plantation 

 Mature  
Picea-Larix-Pinus 

stand 
DIC (mg/L) <0.001 13.31 (a) 6.21 (b) 1.96 (c) 1.69 (c) 
DOC (mg/L) <0.001 27.40 (ab) 23.46 (b) 33.85 (a) 27.61 (ab) 
NH4

+ (ppm) NS 0.11 0.07 0.13 0.14 
NO3

- (ppm) <0.001 0.21 (a) 0.06 (b) 0.05 (b) 0.07 (b) 
NH4

+ - NO3
- <0.001 -0.10 (b) -0.02 (ab) 0.07 (a) 0.07 (a) 
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Table 3.  Canonical correspondence analysis results – bi-plot scores. Vegetation 
abbreviations in Table 4. 
 
 Axis 1 Axis 2 
DIC 1.026 0.003
DOC -0.157 0.000
NH4 -0.195 0.400
NO3 0.245 -0.550
WTF -0.073 0.354
O AR 0.860 0.046
O PB -0.306 0.023
O PM -0.419 0.142
O AI 0.797 0.224
O PG 0.019 -0.216
O LL -0.207 0.234
U AR -0.316 -0.037
U PM -0.318 0.232
U AI 0.754 -0.251
U PG -0.325 -0.169
U LL -0.211 0.022
U CF 0.866 0.033
U PS 0.015 0.007
U RH -0.207 -0.116
U VA -0.073 -0.292
U KP -0.038 -0.165
U VC -0.418 0.166
U AM 0.659 0.165
U BP 0.213 -0.017
U CHC -0.184 0.183
U LG -0.477 0.283
U D -0.170 -0.112
G AI 0.418 -0.291
G AM 0.544 -0.182
G BP 0.462 0.106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  Axis 1 Axis 2 
  G CC     0.161 -0.340 
 G CHC   -0.040 -0.341 

  G C       -0.031 -0.216 
  G CR     -0.243 0.038 
  G CT     -0.514 0.174 
 G COC   -0.397 -0.234 

  G DC     -0.134 0.343 
  G D       -0.228 0.165 
  G FV     -0.222 -0.372 
  G ER     -0.038 -0.165 
  G GB     0.871 0.019 
  G GH     -0.364 -0.033 
  G IV      0.253 -0.369 
  G KP     -0.107 -0.346 
  G LG     -0.153 -0.148 
 G MC     -0.396 -0.428 

  G OS     0.733 0.162 
  G P       -0.098 -0.447 
  G RH     0.643 0.002 
  G S 0.300 0.252 
  G SP     0.706 0.167 
  G TD     0.418 -0.291 
  G VA     -0.565 0.112 
  G VC     -0.038 -0.165 
  G V       0.686 -0.250 
  B DI      -0.396 0.282 
  B PL     -0.116 0.462 
  B PO     -0.248 0.422 
  B SP -0.430 0.107 
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Table 4. Vegetation species abbreviations 
 
Overstory  
O Acer rubrum O AR 
O Alnus incana O AI 
O Larix laricina O LL 
O Pinus banksiana O PB 
O Pinus glauca O PG 
O Pinus mariana O PM 
  
Understory  
U Acer rubrum O AR 
U Alnus incana U AI 
U Aronia melanocarpa U AM 
U Betula pumila O BP 
U Chamaedaphne calyculata U CHC 
U Cornus foemina U CF 
U Dryopteris spp. U D 
U Kalmia polifolia U KP 
U Larix laricina U LL 
U Ledum groenlandicum U LG 
U Pinus glauca U PG 
U Pinus mariana U PM 
U Prunus serotina U PS 
U Rubus hispidus U RH 
U Vaccinium angustifolium U VA 
U Vibernum cassinoides U VC 
  
Bryophytes  
B Dicranum spp. B DI 
B Pleurozium spp. B PL 
B Polytrichum spp. B PO 
B Sphagnum spp. B SP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Groundcover  
G Aronia melanocarpa G AM 
G Alnus incana G AI 
G Betula pumila G BP 
G Calamagrostis canadensis G CC 
G Carex spp. G C 
G Chamaedaphne calyculata G CHC 
G Cladina rangiferina G CR 
G Coptis trifolia G CT 
G Cornus canadensis G COC 
G Deschampsia cespitosa G DC 
G Dryopteris spp. G D 
G Epigaea repens G ER 
G Fragaria virginiana G FV 
G Galium boreale G GB 
G Gaultheria hispidula G GH 
G Iris versicolor G IV 
G Kalmia polifolia G KP 
G Ledum groenlandicum G LG 
G Mianthemum canadensis G MC 
G Onoclea sensibilis G OS 
G Potamogeton spp. G P 
G Rubus hispidus G RH 
G Solidago spp. G S 
G Spartina pectinata G SP 
G Thalictrum dasycarpum G TD 
G Vaccinium angustifolium G VA 
G Vibernum cassinoides G VC 
G Viola spp.  G V 
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APPENDIX 1: Carbon, nitrogen and water table Data

Month Year Transect Station Depth TDC DIC DOC NH4 NO3
Water Table 
Fluctuations

6 2002 1 1 50 31.44 11.89 19.55 0.07195 0.5921
6 2002 1 1 100 23.45 1.54 21.91
6 2002 1 1 25 32.15 5.22 26.93 0.0001 0.0214
6 2002 1 2 50 26.1 6.381 19.719 0.0001 0.0115
6 2002 1 2 100 22.42 2.707 19.713 0.0001 0.0379
6 2002 1 2 25 36.45 9.87 26.58 0.0001 0.0213
6 2002 1 3 50 27.56 1.32 26.24
6 2002 1 3 100 25.66 0.65 25.01
6 2002 1 3 25 28.65 0.24 28.41 0.0001 0.0142
6 2002 1 4 50 29.13 0.218 28.912 0.0001 0.0082
6 2002 1 4 100 20.56 1.175 19.385 0.0001 0.3828
6 2002 1 4 25 32.45 0.22 32.23 0.0001 0.2541
6 2002 1 5 50 12.29 0.59 11.7 0.0001 0.0831
6 2002 1 5 100 11.11 1.021 10.089 0.1545 0.093
6 2002 1 5 25 10.56 0.45 10.11 0.0135 0.5511
6 2002 1 6 50 16.53 1.777 14.753 0.1216 0.0856
6 2002 1 6 100 25.1 1.232 23.868 0.0001 0.0149
6 2002 1 6 25 26.44 0.29 26.15 0.0561 0.0125
6 2002 2 1 50 33.02 12.55 20.47 0.16595 0.0208
6 2002 2 1 100 32.78 12.55 20.23 0.0001 0.0911
6 2002 2 1 25 46.58 18.45 28.13 0.0001 0.0326
6 2002 2 2 50 16.22 1.553 14.667 0.0001 0.0081
6 2002 2 2 100 20.83 4.855 15.975 0.03835 0.1074
6 2002 2 2 25 26.33 7.46 18.87 0.0215 0.0123
6 2002 2 3 50 49.21 1.304 47.906 0.17975 0.0163
6 2002 2 3 100 21.38 2.248 19.132 0.69915 0.0246
6 2002 2 3 25 25.65 1.24 24.41 0.215 0.1241
6 2002 2 4 50 16 0.787 15.213 0.0001 0.0129
6 2002 2 5 50 11.53 0.442 11.088 0.01275 0.0233
6 2002 2 5 100 34.11 1.14 32.97 0.0314 0.012
6 2002 2 5 25 68.54 1.1 67.44 0.0231 0.547
6 2002 2 6 50 21.09 1.659 19.431 0.19525 0.0369
6 2002 2 6 100 16.46 0.69 15.77 0.0001 0.1915
6 2002 2 6 25 38.44 0.55 37.89 0.321 0.0089
6 2002 3 1 50 51.35 11.35 40 0.0001 0.9573
6 2002 3 1 100 32.3 5.738 26.562 0.2963 0.609
6 2002 3 1 25 34.1 3.34 30.76 0.3254 0.871
6 2002 3 3 100 19.77 1 18.77 0.125 0.0354
6 2002 3 3 25 57.35 0.26 57.09 0.0444 0.0129
6 2002 3 4 50 65.82 0.229 65.591 0.02905 0.012
6 2002 3 4 100 48.76 0.53 48.23 0.0098 0.0369
6 2002 3 4 25 61.25 1.29 59.96 0.0001 0.0325
6 2002 3 5 50 23.22 0.156 23.064 0.1658 0.0994
6 2002 3 5 100 51.83 0.517 51.313 0.02425 0.0203
6 2002 3 5 25 51.03 1.05 49.98 0.1243 0.1241
6 2002 3 6 50 32.7 0.766 31.934 0.24375 0.0236
6 2002 3 6 100 37.98 0.154 37.826 0.0124 0.0325
6 2002 3 6 25 44.65 0.248 44.402 0.122 0.0149
7 2002 1 1 50 48.65 29.56 19.09 0.07195 0.5921 20
7 2002 1 1 100 36.45 13.25 23.2 0.0001 0.2354 20
7 2002 1 1 25 84.65 3.45 81.2 0.1678 0.3489 20
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Month Year Transect Station Depth TDC DIC DOC NH4 NO3
Water Table 
Fluctuations

7 2002 1 2 50 22.43 3.21 19.22 0.0001 0.0115 30
7 2002 1 2 100 19.35 1.658 17.692 0.0001 0.0379 30
7 2002 1 2 25 22.89 4.351 18.539 0.0001 0.0264 30
7 2002 1 3 50 48.34 0.659 47.681 0.0235 0.0123 50
7 2002 1 3 100 43.25 0.488 42.762 0.0658 0.0142 50
7 2002 1 3 25 49.65 0.358 49.292 0.0458 0.0245 50
7 2002 1 4 50 29.34 1.375 27.965 0.0001 0.0082 20
7 2002 1 4 100 38.45 0.554 37.896 0.0001 0.3828 20
7 2002 1 4 25 36.45 9.764 26.686 0.0124 0.2415 20
7 2002 1 5 50 16.52 1.004 15.516 0.0001 0.0831 30
7 2002 1 5 100 14.38 2.671 11.709 0.1545 0.093 30
7 2002 1 5 25 12.34 0.356 11.984 0.0248 0.0354 30
7 2002 1 6 50 10.24 1.552 8.688 0.1216 0.0856 25
7 2002 1 6 100 20.64 0.694 19.946 0.0001 0.0149 25
7 2002 1 6 25 35.32 0.287 35.033 0.1687 0.0956 25
7 2002 2 1 50 46.88 23.65 23.23 0.0001 0.1543 27
7 2002 2 1 100 44.66 13.58 31.08 0.0354 0.07458 27
7 2002 2 1 25 70.65 35.66 34.99 0.0001 0.5452 27
7 2002 2 2 50 21.36 5.39 15.97 0.03835 0.1074 20
7 2002 2 2 100 19.87 1.883 17.987 0.0687 0.167 20
7 2002 2 2 25 25.33 4.972 20.358 0.1542 0.0988 20
7 2002 2 3 50 58.64 0.773 57.867 0.7712 0.0354 42
7 2002 2 3 100 28.46 0.348 28.112 0.4591 0.0261 42
7 2002 2 3 25 59.37 1.234 58.136 0.0001 0.02154 42
7 2002 2 4 50 42.63 0.167 42.463 0.6874 0.0351 10
7 2002 2 4 100 40.02 0.394 39.626 0.4581 0.0645 10
7 2002 2 4 25 54.35 0.459 53.891 0.0124 0.0351 10
7 2002 2 5 50 17.38 0.178 17.202 0.4512 0.09871 55
7 2002 2 5 100 15.31 1.591 13.719 0.2354 0.0311 55
7 2002 2 5 25 79.8 1.652 78.148 0.2468 0.0665 55
7 2002 2 6 50 19.87 0.267 19.603 0.0215 0.1354 38
7 2002 2 6 100 18.99 0.189 18.801 0.0874 0.0522 38
7 2002 2 6 25 54.39 1 53.39 0.0111 0.4685 38
7 2002 3 1 50 39.84 5.461 34.379 0.3265 0.1248 50
7 2002 3 1 100 23.67 0.157 23.513 0.3264 0.0325 50
7 2002 3 1 25 53.22 0.502 52.718 0.0321 0.0668 50
7 2002 3 2 50 24.59 3.468 21.122 0.0125 0.3251 31
7 2002 3 2 25 66.45 7.91 58.54 0.1235 0.321 31
7 2002 3 3 50 39.01 0.198 38.812 0.1345 0.2365 25
7 2002 3 3 100 29.68 1.358 28.322 0.0314 0.1292 25
7 2002 3 3 25 55.9 0.975 54.925 0.0325 0.0112 25
7 2002 3 4 50 41.35 0.387 40.963 0.0326 0.0114 20
7 2002 3 4 100 33.41 0.325 33.085 0.0215 0.0214 20
7 2002 3 4 25 72.44 1.384 71.056 0.0356 0.0441 20
7 2002 3 5 50 70.54 0.887 69.653 0.1984 0.1243 43
7 2002 3 5 100 29.78 0.447 29.333 0.0325 0.01 43
7 2002 3 5 25 95.33 0.146 95.184 0.235 0.1132 43
7 2002 3 6 50 39.7 0.11 39.59 0.24375 0.0236 38
7 2002 3 6 100 21.64 0.956 20.684 0.1243 0.0354 38
7 2002 3 6 25 50.65 0.334 50.316 0.3325 0.1246 38
8 2001 1 1 50 29.2 10.29 18.91 5
8 2001 1 1 100 16.22 4.826 11.394 5
8 2002 1 1 50 47.53 26.24 21.29 0.15095 0.2509 0
8 2002 1 1 100 34.86 14.91 19.95 0.0425 0.2923 0
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Month Year Transect Station Depth TDC DIC DOC NH4 NO3
Water Table 
Fluctuations

8 2002 1 1 25 85.71 0.37 85.34 0.0683 0.0229 0
8 2001 1 2 50 30.08 11.65 18.43 10
8 2001 1 2 100 15.29 0.628 14.662 10
8 2002 1 2 50 23.57 2.116 21.454 0.0001 0.0061 10
8 2002 1 2 100 25.22 1.624 23.596 0.0001 0.029 10
8 2002 1 2 25 23.49 2.229 21.261 0.0001 0.0203 10
8 2001 1 3 50 31.55 8.43 23.12 15
8 2001 1 3 100 19.99 1.026 18.964 15
8 2002 1 3 50 53.75 1.442 52.308 0.1884 0.0303 5
8 2002 1 3 100 38.79 0.579 38.211 0.0986 0.0314 5
8 2002 1 3 25 50.62 0.472 50.148 0.0032 0.0282 5
8 2001 1 4 50 35.97 8.769 27.201 0
8 2001 1 4 100 22.99 1.45 21.54 0
8 2002 1 4 50 23.57 2.443 21.127 0.0001 0.0336 5
8 2002 1 4 100 41.52 1.579 39.941 0.10245 0.0217 5
8 2002 1 4 25 30.16 13.33 16.83 0.00235 0.0325 5
8 2001 1 5 50 26.29 6.875 19.415 5
8 2001 1 5 100 5.53 0.134 5.396 5
8 2002 1 5 50 15.55 1.525 14.025 0.0001 0.0034 5
8 2002 1 5 100 14.32 3.611 10.709 0.3674 0.1176 5
8 2002 1 5 25 10.35 1.22 9.13 0.0001 0.0054 5
8 2001 1 6 50 41.15 4.18 36.97 5
8 2001 1 6 100 17.79 6.5 11.29 5
8 2002 1 6 50 15.82 1.834 13.986 0.06535 0.0678 5
8 2002 1 6 100 27.8 1.118 26.682 0.1654 0.0163 5
8 2002 1 6 25 29.87 0.358 29.512 0.0354 0.0234 5
8 2001 2 1 50 54.68 22.45 32.23 15
8 2001 2 1 100 40.3 16.99 23.31 15
8 2002 2 1 50 41.76 22.13 19.63 0.1698 0.0808 22
8 2002 2 1 100 46.16 23.37 22.79 0.1292 0.0911 22
8 2002 2 1 25 74.28 31.23 43.05 0.39095 0.0306 22
8 2001 2 2 50 37.68 13.99 23.69 5
8 2001 2 2 100 29.2 10.29 18.91 5
8 2002 2 2 50 18.61 2.382 16.228 0.1744 0.018 5
8 2002 2 2 100 20.16 1.908 18.252 0.2392 0.0496 5
8 2002 2 2 25 24.41 2.022 22.388 0.1006 0.0243 5
8 2001 2 3 50 16.22 4.826 11.394 25
8 2001 2 3 100 30.08 11.65 18.43 25
8 2002 2 3 50 56.83 0.667 56.163 0.0694 0.0118 63
8 2002 2 3 100 26.92 0.625 26.295 0.22165 0.0189 63
8 2002 2 3 25 52.87 0.993 51.877 0.0124 0.0063 63
8 2001 2 4 50 15.29 0.628 14.662 0
8 2001 2 4 100 31.55 8.43 23.12 0
8 2002 2 4 50 41.45 0.893 40.557 0.05365 0.0178 10
8 2002 2 4 100 61.98 4.44 57.54 0.2918 0.0374 10
8 2002 2 4 25 47.2 0.529 46.671 0.05055 0.0239 10
8 2001 2 5 50 19.99 1.026 18.964 20
8 2001 2 5 100 35.97 8.769 27.201 20
8 2002 2 5 50 10.14 0.493 9.647 0.05545 0.0479 30
8 2002 2 5 100 17.09 1.655 15.435 0.001 0.0042 30
8 2002 2 5 25 78.1 1.283 76.817 0.02075 0.0107 30
8 2001 2 6 50 22.99 1.45 21.54 20
8 2001 2 6 100 26.29 6.875 19.415 20
8 2002 2 6 50 17.44 0.504 16.936 0.0001 0.0118 3
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Month Year Transect Station Depth TDC DIC DOC NH4 NO3
Water Table 
Fluctuations

8 2002 2 6 100 19.65 0.553 19.097 0.1068 0.0557 3
8 2002 2 6 25 49.73 1.031 48.699 0.0001 0.0074 3
8 2001 3 1 50 5.53 0.134 5.396 15
8 2001 3 1 100 41.15 4.18 36.97 15
8 2002 3 1 100 26.01 0.494 25.516 0.29735 0.426 12
8 2002 3 1 25 50.76 0.517 50.243 0.0683 0.0436 12
8 2001 3 2 50 17.79 6.5 11.29 5
8 2001 3 2 100 27.06 10.8 16.26 5
8 2002 3 2 50 26.4 1.357 25.043 0.1094 0.0223 8
8 2002 3 2 25 63.21 0.486 62.724 0.2848 0.0332 8
8 2001 3 3 50 24.91 5.34 19.57 0
8 2001 3 3 100 37.11 10.3 26.81 0
8 2002 3 3 50 32.22 0.764 31.456 0.242 0.0277 15
8 2002 3 3 100 23.79 1.874 21.916 0.1048 0.0349 15
8 2002 3 3 25 51.01 0.374 50.636 0.00675 0.0046 15
8 2001 3 4 50 15.28 0.519 14.761 5
8 2001 3 4 100 27.68 5.264 22.416 5
8 2002 3 4 50 39.38 0.27 39.11 0.004 0.0098 5
8 2002 3 4 100 37.97 0.276 37.694 0.0001 0.0138 5
8 2002 3 4 25 69.24 1.245 67.995 0.0001 0.011 5
8 2001 3 5 50 32.77 14.95 17.82 5
8 2001 3 5 100 5.65 0.21 5.44 5
8 2002 3 5 50 69.53 0.341 69.189 0.1114 0.0164 13
8 2002 3 5 100 31.02 1.288 29.732 0.15055 0.0499 13
8 2002 3 5 25 98.48 0.243 98.237 0.0169 13
8 2001 3 6 50 36.7 16.98 19.72 10
8 2001 3 6 100 19.2 2.76 16.44 10
8 2002 3 6 50 41.69 0.146 41.544 0.06935 0.0153 8
8 2002 3 6 100 22 1.144 20.856 0.67835 0.0196 8
8 2002 3 6 25 49.34 0.238 49.102 0.325 0.1224 8
9 2001 1 1 50 22.14 14.65 7.49 30
9 2001 1 1 50 37.87 26.22 11.65 30
9 2001 1 1 100 14.01 3.13 10.88 30
9 2001 1 1 100 18.74 3.64 15.1 30
9 2002 1 1 50 51.38 33.46 17.92 0.1987 0.3541 15
9 2002 1 1 100 39.88 21.45 18.43 0.114 0.3245 15
9 2002 1 1 25 91.33 8.79 82.54 0.0541 0.0354 15
9 2001 1 2 50 15.12 4.65 10.47 25
9 2001 1 2 50 41.58 22.94 18.64 25
9 2001 1 2 100 19.45 2.44 17.01 25
9 2001 1 2 100 17.45 0.65 16.8 25
9 2002 1 2 50 22.77 6.34 16.43 0.0001 0.045 14
9 2002 1 2 100 20.33 0.642 19.688 0.0001 0.0654 14
9 2002 1 2 25 29.88 6.37 23.51 0.0001 0.0325 14
9 2001 1 3 50 8.23 0.34 7.89 50
9 2001 1 3 50 26.66 1.76 24.9 50
9 2001 1 3 100 7.55 0.21 7.34 50
9 2001 1 3 100 28.17 0.61 27.56 50
9 2002 1 3 50 57.99 1.355 56.635 0.1254 0.0125 14
9 2002 1 3 100 39.55 0.441 39.109 0.1036 0.0321 14
9 2002 1 3 25 54.36 2.115 52.245 0.0213 0.0221 14
9 2001 1 4 50 14.41 0.5 13.91 50
9 2001 1 4 50 14.82 0.68 14.14 50
9 2001 1 4 100 15.45 0.41 15.04 50
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Month Year Transect Station Depth TDC DIC DOC NH4 NO3
Water Table 
Fluctuations

9 2001 1 4 100 11.35 0.99 10.36 50
9 2002 1 4 50 23.88 3.456 20.424 0.0001 0.0321 31
9 2002 1 4 100 34.52 0.687 33.833 0.125 0.0651 31
9 2002 1 4 25 22.46 8.653 13.807 0.0001 0.0213 31
9 2001 1 5 50 27.4 0.46 26.94 55
9 2001 1 5 50 6.69 0.24 6.45 55
9 2001 1 5 100 4.87 0.2 4.67 55
9 2001 1 5 100 16.37 2.07 14.3 55
9 2002 1 5 50 21.55 1.418 20.132 0.0001 0.0024 25
9 2002 1 5 100 13.55 2.538 11.012 0.3251 0.1546 25
9 2002 1 5 25 14.66 2.154 12.506 0.0001 0.0054 25
9 2001 1 6 50 7.92 0.83 7.09 35
9 2001 1 6 50 10.37 0.11 10.26 35
9 2001 1 6 100 6.33 0.13 6.2 35
9 2001 1 6 100 22.7 2.87 19.83 35
9 2002 1 6 50 13.87 1.946 11.924 0.0365 0.0321 15
9 2002 1 6 100 21.34 0.687 20.653 0.2145 0.0651 15
9 2002 1 6 25 32.66 0.554 32.106 0.0211 0.231 15
9 2001 2 1 50 40.48 27.61 12.87 40
9 2001 2 1 100 37.29 24.74 12.55 40
9 2002 2 1 50 29.67 12.45 17.22 0.0351 0.215 35
9 2002 2 1 100 38.22 17.85 20.37 0.1879 0.1254 35
9 2002 2 1 25 51.34 33.64 17.7 0.1223 0.1252 35
9 2001 2 2 50 15.48 3.44 12.04 30
9 2001 2 2 100 20.83 4.7 16.13 30
9 2002 2 2 50 68.91 38.44 30.47 0.3264 0.1236 20
9 2002 2 2 100 19.65 3.334 16.316 0.1587 0.0325 20
9 2002 2 2 25 26.88 5.647 21.233 0.2135 0.0651 20
9 2001 2 3 50 19.62 0.77 18.85 15
9 2001 2 3 100 15.48 0.87 14.61 15
9 2002 2 3 50 22.44 1.364 21.076 0.1235 0.0154 45
9 2002 2 3 100 41.65 0.534 41.116 0.0455 0.0214 45
9 2002 2 3 25 39.11 0.748 38.362 0.2035 0.0355 45
9 2001 2 4 50 27.54 2.66 24.88 45
9 2001 2 4 100 20.45 0.57 19.88 45
9 2002 2 4 50 55.68 1.354 54.326 0.0245 0.0068 23
9 2002 2 4 100 48.64 0.333 48.307 0.3254 0.0981 23
9 2002 2 4 25 46.51 0.689 45.821 0.0325 0.0145 23
9 2001 2 5 50 21.05 0.56 20.49 50
9 2001 2 5 100 18.66 0.88 17.78 50
9 2002 2 5 50 46.37 0.297 46.073 0.0456 0.0325 36
9 2002 2 5 100 9.87 0.385 9.485 0.0598 0.347 36
9 2002 2 5 25 19.87 1.355 18.515 0.0001 0.0001 36
9 2001 2 6 50 12.62 0.59 12.03 40
9 2001 2 6 100 20.07 2.3 17.77 40
9 2002 2 6 50 64.35 2.384 61.966 0.0211 0.0214 11
9 2002 2 6 100 19.62 1.325 18.295 0.0001 0.0112 11
9 2002 2 6 25 24.33 0.159 24.171 0.124 0.0325 11
9 2002 3 1 50 44.35 0.367 43.983 0.0001 0.0074 17
9 2002 3 1 100 32.48 5.982 26.498 0.1654 0.0211 17
9 2002 3 1 25 22.38 1.386 20.994 17
9 2002 3 2 50 51.22 1.39 49.83 21
9 2002 3 2 100 23.55 2.671 20.879 21
9 2002 3 2 25 71.38 1.665 69.715 21
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Month Year Transect Station Depth TDC DIC DOC NH4 NO3
Water Table 
Fluctuations

9 2002 3 3 50 31.88 0.249 31.631 24
9 2002 3 3 100 21.34 0.667 20.673 0.23045 0.0194 24
9 2002 3 3 25 53.28 0.948 52.332 0.01445 0.00855 24
9 2002 3 4 50 41.33 0.198 41.132 0.06545 0.0498 43
9 2002 3 4 100 34.58 0.144 34.436 0.7961 0.03905 43
9 2002 3 4 25 72.64 2.334 70.306 0.20045 43
9 2002 3 5 50 64.25 0.569 63.681 0.83285 0.04995 26
9 2002 3 5 100 35.11 1.652 33.458 0.96635 0.07705 26
9 2002 3 5 25 91.54 0.133 91.407 26
9 2002 3 6 50 40.32 0.548 39.772 0.2315 0.0104 24
9 2002 3 6 100 21.6 1.065 20.535 0.1056 0.0118 24
9 2002 3 6 25 38.44 1.044 37.396 0.7546 0.0325 24

10 2001 1 1 50 27.3 11.77 15.53 40
10 2001 1 1 100 17.33 3.245 14.085 40
10 2002 1 1 50 58.34 39.55 18.79 0.1256 0.2153 25
10 2002 1 1 100 41.23 22.35 18.88 0.0986 0.1986 25
10 2002 1 1 25 87.33 10.65 76.68 0.0354 0.0214 25
10 2001 1 2 50 31.31 9.44 21.87 30
10 2001 1 2 100 14.21 0.294 13.916 30
10 2002 1 2 50 22.67 8.54 14.13 0.0001 0.0124 24
10 2002 1 2 100 19.64 0.225 19.415 0.0001 0.0325 24
10 2002 1 2 25 35.64 14.51 21.13 0.0001 0.0149 24
10 2001 1 3 50 30.67 5.33 25.34 60
10 2001 1 3 100 18.93 0.611 18.319 60
10 2002 1 3 50 55.67 2.65 53.02 0.0215 0.014 26
10 2002 1 3 100 41.36 1.678 39.682 0.0987 0.0369 26
10 2002 1 3 25 50.34 3.335 47.005 0.0125 0.0198 26
10 2001 1 4 50 35.29 6.38 28.91 55
10 2001 1 4 100 24.63 0.55 24.08 55
10 2002 1 4 50 22.68 2.138 20.542 0.0001 0.0001 36
10 2002 1 4 100 30.51 0.157 30.353 0.087 0.0001 36
10 2002 1 4 25 21.65 4.559 17.091 0.0001 0.0123 36
10 2001 1 5 50 24.34 2.11 22.23 50
10 2001 1 5 100 5.61 0.248 5.362 50
10 2002 1 5 50 19.64 0.354 19.286 0.0001 0.0045 35
10 2002 1 5 100 12.59 1.599 10.991 0.1531 0.11 35
10 2002 1 5 25 17.85 1.045 16.805 0.0001 0.0001 35
10 2001 1 6 50 39.21 2.14 37.07 30
10 2001 1 6 100 17.36 4.877 12.483 30
10 2002 1 6 50 15.64 2.254 13.386 0.009 0.0001 20
10 2002 1 6 100 14.65 0.224 14.426 0.1543 0.0452 20
10 2002 1 6 25 30.54 0.458 30.082 0.015 0.1021 20
10 2001 2 1 50 50.13 20.34 29.79 35
10 2001 2 1 100 40.9 13.47 27.43 35
10 2002 2 1 50 31.26 18.64 12.62 0.014 0.188 25
10 2002 2 1 100 44.59 19.65 24.94 0.0897 0.099 25
10 2002 2 1 25 51.33 35.27 16.06 0.114 0.1055 25
10 2001 2 2 50 36.39 10.24 26.15 25
10 2001 2 2 100 27.61 8.539 19.071 25
10 2002 2 2 50 58.98 41.35 17.63 0.235 0.0948 5
10 2002 2 2 100 26.34 6.84 19.5 0.0956 0.0224 5
10 2002 2 2 25 34.55 8.91 25.64 0.2056 0.0455 5
10 2001 2 3 50 15.39 2.14 13.25 40
10 2001 2 3 100 32.53 9.507 23.023 40
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Month Year Transect Station Depth TDC DIC DOC NH4 NO3
Water Table 
Fluctuations

10 2002 2 3 50 25.88 0.352 25.528 0.114 0.0092 30
10 2002 2 3 100 40.28 0.331 39.949 0.0142 0.0211 30
10 2002 2 3 25 44.65 0.372 44.278 0.1546 0.0128 30
10 2001 2 4 50 15.13 0.34 14.79 45
10 2001 2 4 100 29.54 3.28 26.26 45
10 2002 2 4 50 50.88 1.592 49.288 0.0001 0.0001 28
10 2002 2 4 100 45.99 0.446 45.544 0.1598 0.102 28
10 2002 2 4 25 49.87 1.658 48.212 0.0095 0.0078 28
10 2001 2 5 50 21.39 0.21 21.18 45
10 2001 2 5 100 31.39 7.341 24.049 45
10 2002 2 5 50 41.65 1.592 40.058 0.056 0.021 36
10 2002 2 5 100 10.47 0.781 9.689 0.0291 0.1143 36
10 2002 2 5 25 23.34 2.215 21.125 0.0001 0.0001 36
10 2001 2 6 50 22.49 0.55 21.94 30
10 2001 2 6 100 24.87 3.388 21.482 30
10 2002 2 6 50 57.66 1.752 55.908 0.0096 0.0087 16
10 2002 2 6 100 21.05 1.059 19.991 0.0001 0.009 16
10 2002 2 6 25 26.44 0.189 26.251 0.0543 0.0125 16
10 2001 3 1 50 4.36 0.09 4.27 50
10 2001 3 1 100 40.14 3.241 36.899 50
10 2002 3 1 50 42.55 0.116 42.434 0.0001 0.0001 35
10 2002 3 1 100 31.22 4.287 26.933 0.1561 0.0133 35
10 2002 3 1 25 24.59 1.064 23.526 0.0001 0.0098 35
10 2001 3 2 50 17.41 4.33 13.08 30
10 2001 3 2 100 26.35 7.436 18.914 30
10 2002 3 2 50 48.57 1.687 46.883 0.0001 0.0125 24
10 2002 3 2 100 22.39 2.416 19.974 0.0561 0.0244 24
10 2002 3 2 25 68.55 1.285 67.265 0.0652 0.0233 24
10 2001 3 3 50 27.49 5.12 22.37 60
10 2001 3 3 100 40.31 12.46 27.85 60
10 2002 3 3 50 30.27 0.148 30.122 0.2456 0.0125 44
10 2002 3 3 100 19.84 0.558 19.282 0.124 0.0086 44
10 2002 3 3 25 51.88 1.54 50.34 0.0001 0.0001 44
10 2001 3 4 50 13.99 0.324 13.666 50
10 2001 3 4 100 26.51 2.358 24.152 50
10 2002 3 4 50 38.41 1.659 36.751 0.0235 0.4411 38
10 2002 3 4 100 30.26 0.248 30.012 0.5463 0.0218 38
10 2002 3 4 25 68.49 2.555 65.935 0.776 0.0986 38
10 2001 3 5 50 32.04 10.534 21.506 50
10 2001 3 5 100 5.39 0.256 5.134 50
10 2002 3 5 50 60.21 0.238 59.972 0.3265 0.0412 41
10 2002 3 5 100 33.47 0.463 33.007 0.154 0.035 41
10 2002 3 5 25 87.02 0.415 86.605 0.321 0.001 41
10 2001 3 6 50 35.66 13.477 22.183 47
10 2002 3 6 50 22.38 0.287 22.093 0.1 0.009 34
10 2002 3 6 50 38.05 0.263 37.787 0.1251 0.0211 34
10 2002 3 6 25 44.35 1.854 42.496 0.5462 0.009 34
10 2001 3 6 100 21.6 1.388 20.212 47
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APPENDIX 2: Vegetation Data 

Vegetation abbreviations in Table 4. 

Percent cover of the overstory vegetation at the West Branch River Subwatershed study site. 
Transect Station OAR O PB O PM O AI O PG O LL 

1        1 5 0 0 0 0 0
1        

        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        

2 0 100 0 0 0 0
1 3 0 60 30 0 0 0
1 4 0 10 5 0 0 0
1 5 0 0 60 0 0 0
1 6 0 0 60 0 0 0
2 1 30 0 0 70 0 0
2 2 0 0 0 10 25 0
2 3 0 50 0 0 0 0
2 4 0 60 0 0 0 0
2 5 0 0 30 0 0 0
2 6 0 0 30 0 0 0
3 1 0 20 0 0 30 0
3 2 0 20 0 0 30 0
3 3 0 50 0 0 20 0
3 4 0 50 0 0 0 0
3 5 0 0 75 0 0 10
3 6 0 0 50 0 0 0
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Percent cover of the understory vegetation at the West Branch River Subwatershed study site. 
Transect 

 
Station 

 
U AR U PM U AI U PG U LL UCF U PS U RH U VA U KP U VC U AM U BP U CHC 

 
U LG U D 

1 1 0               0 98 0 0 5 0 0 0 0 0 0 0 0 0 0
1                  

                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  

2 0 0 17.5 10 0 0 10 0 0 0 0 0 0 0 0 0
1 3 12.5 0 0 12.5 0 0 0 0 0 0 0 0 0 0 0 0
1 4 0 0 0 0 0 0 0 5 30 0 0 0 0 0 0 0
1 5 2.5 0 0 15 0 0 2.5 0 0 40 12.5 0 0 0 0 0
1 6 0 12.5 0 0 0 0 0 0 15 0 2.5 0 0 0 7.5 0
2 1 0 0 25 0 0 25 0 0 0 0 0 45 0 0 0 0
2 2 0 0 35 0 0 0 0 0 0 0 0 0 25 0 0 0
2 3 0 0 0 7.5 0 0 0 0 0 0 0 0 0 0 0 25.5
2 4 0 0 0 5 0 0 2.5 0 0 0 15 0 0 10 20 0
2 5 10 25 0 0 0 0 0 0 0 0 37.5 0 0 0 2.5 0
2 6 7.5 5 0 0 0 0 0 0 0 0 25 0 0 0 40 0
3 1 0 0 10 10 0 0 0 0 0 0 0 0 5 0 0 20
3 2 0 0 10 10 0 0 0 0 0 0 0 0 5 0 0 20
3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
3 4 0 0 0 5 10 0 0 15 0 0 0 5 0 0 2.5 0
3 5 0 7.5 0 0 0 0 0 0 0 0 22.5 0 0 0 10 0
3 6 5 25 0 0 0 0 0 0 0 0 15 0 0 0 17.5 0
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Percent cover of the non-bryophyte groundcover vegetation at the West Branch River Subwatershed study site. 
Transect Station G AI G AM G BP G CC G CHC G C G CR G CT G COC G DC G D G FV G ER G GB 

1               1 16.67 46.66 3.33 0 0 0 0 0 0 0 0 0 0 6.67
1               

                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                

2 0 10 0 33.33 0 16.67 0 0 0 0 0 5 0 0
1 3 0 0 0 0 0 10 0 5 15 0 10 0 0 0
1 4 0 0 0 0 20 11.67 0 1.67 0 0 0 1.67 0 0
1 5 0 0 0 0 3.33 0 0 6.67 8.33 0 0 0 1.67 0
1 6 0 0 0 0 0 0 0 5 0 0 0 0 0 0
2 1 0 0 0 1.67 0 0 0 0 0 0 0 0 0 26.67
2 2 0 15 21.67 0 0 0 0 0 0 0 0 0 0 0
2 3 0 0 0 0 0 0 0 0 0 15 5 0 0 0
2 4 0 0 0 0 0 0 0 3.33 0 0 0 0 0 0
2 5 0 0 0 0 0 0 0 5 1.67 0 0 0 0 0
2 6 0 0 0 0 0 0 0 5 10 0 0 0 0 0
3 1 0 0 0 20 0 0 0 0 20 0 0 16.67 0 0
3 2 0 0 0 20 0 0 0 0 20 0 0 16.67 0 0
3 3 0 0 0 0 0 0 1.67 3.33 0 0 0 15 0 0
3 4 0 0 0 0 0 0 1.67 3.33 0 0 0 13.33 0 0
3 5 0 0 0 0 0 0 0 40 10 0 0 0 0 0
3 6 0 0 0 0 0 0 0 1.67 6.67 0 0 0 0 0
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Transect Station G GH G IV G KP G LG G MC G OS G P G RH G SU G SP G TD G VA G VC G V 

1                1 0 3.33 0 0 0 0 0 3.33 0 0 15 0 0 5
1                

                
                
                
                
                
               
                
                
                
                
                
                
                
                
                
                

2 0 11.67 0 0 6.67 0 0 5 0 0 0 0 0 5
1 3 1.67 0 0 0 6.67 0 0 0 0 0 0 20 0 0
1 4 0 13.33 6.67 0 3.33 0 0 0 0 0 0 0 0 0
1 5 3.33 0 0 0 1.67 0 0 0 0 0 0 40 5 0
1 6 3.33 0 0 3.33 1.67 0 0 0 0 0 0 6.67 0 0
2 1 0 0 0 0 0 33.33 0 3.33 0 28.33

 
0 0 0 3.33

2 2 0 0 0 0 0 0 0 0 33.33 0 0 0 0 10
2 3 6.67 0 0 0 0 0 0 0 0 0 0 18.33 0 0
2 4 0 0 0 0 3.33 0 0 3.33 0 0 0 16.67 0 0
2 5 5 0 0 1.67 1.67 0 0 0 0 0 0 36.67 0 0
2 6 10 0 3.33 0 1.67 0 0 0 0 0 0 16.67 0 0
3 1 0 0 0 0 6.67 0 23.33 0 0 0 0 0 0 6.67
3 2 0 0 0 0 6.67 0 23.33 0 0 0 0 0 0 6.67
3 3 8.33 0 0 0 0 0 0 0 0 1.67 0 45 0 0
3 4 0 0 0 0 0 0 0 0 0 0 0 43.33 0 0
3 5 0 0 0 0 3.33 0 0 0 0 0 0 0 0 0
3 6 0 0 0 0 0 0 0 0 0 0 0 8.33 0 0

 

 40



Percent cover of the Bryophyte and Sphagnum spp. groundcover vegetation at the West Branch River Subwatershed study site. 
Transect Station B DI B PL B PO B SP 

1      1 0 0 0 0
1      

      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      

2 0 0 0 0
1 3 10 0 0 6.67
1 4 10 0 0 31.67
1 5 0 0 11.67 18.33
1 6 0 0 0 58.33
2 1 0 0 0 0
2 2 0 0 0 0
2 3 55 0 0 0
2 4 63.33 0 0 10
2 5 0 0 0 48.33
2 6 0 0 0 58.33
3 1 0 0 0 0
3 2 0 0 0 0
3 3 3.33 0 0 0
3 4 41.67 0 0 0
3 5 0 0 33.33 26.67
3 6 0 5 26.67 75

 

 41


	Vegetation and hydrologic influences on carbon and nitrogen in subsurface water of a forested riparian wetland
	Recommended Citation

	Title Page
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	INTRODUCTION
	METHODS
	Study Site
	Sample collection
	Water table fluctuations and river influences
	Vegetation survey
	Statistics
	RESULTS
	Differences in nutrient concentrations with distance from the river and water table fluctuation
	Differences in nutrients concentrations among vegetation communities
	Vegetation and hydrology influences on nutrient concentrations
	DISCUSSION
	Carbon
	Nitrogen
	CONCLUSIONS
	REFERENCES
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	APPENDIX 1: Carbon, nitrogen and water table Data
	APPENDIX 2: Vegetation Data

