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An investigation of phenolic glycoside and condensed tannin homeostasis in Populus 

by salicyl alcohol feeding to cell cultures and by transgenic manipulation of the 

sucrose transporter, PtSUT4, in planta  

 

ABSTRACT 

Secondary metabolites play an important role in plant protection against biotic and 

abiotic stress. In Populus, phenolic glycosides (PGs) and condensed tannins (CTs) are 

two such groups of compounds derived from the common phenylpropanoid pathway. The 

basal levels and the inducibility of PGs and CTs depend on genetic as well as 

environmental factors, such as soil nitrogen (N) level. Carbohydrate allocation, transport 

and sink strength also affect PG and CT levels. A negative correlation between the levels 

of PGs and CTs was observed in several studies. However, the molecular mechanism 

underlying such relation is not known. We used a cell culture system to understand 

negative correlation of PGs and CTs. Under normal culture conditions, neither salicin nor 

higher-order PGs accumulated in cell cultures. Several factors, such as hormones, light, 

organelles and precursors were discussed in the context of aspen suspension cells’ 

inability to synthesize PGs. Salicin and its isomer, isosalicin, were detected in cell 

cultures fed with salicyl alcohol, salicylaldehyde and helicin. At higher levels (5 mM) of 

salicyl alcohol feeding, accumulation of salicins led to reduced CT production in the 

cells. Based on metabolic and gene expression data, the CT reduction in salicin-

accumulating cells is partly a result of regulatory changes at the transcriptional level 

affecting carbon partitioning between growth processes, and phenylpropanoid CT 

biosynthesis. Based on molecular studies, the glycosyltransferases, GT1-2 and GT1-246, 

4

 



may function in glycosylation of simple phenolics, such as salicyl alcohol in cell cultures. 

The uptake of such glycosides into vacuole may be mediated to some extent by tonoplast 

localized multidrug-resistance associated protein transporters, PtMRP1 and PtMRP6.  

 

In Populus, sucrose is the common transported carbohydrate and its transport is possibly 

regulated by sucrose transporters (SUTs). SUTs are also capable of transporting simple 

PGs, such as salicin. Therefore, we characterized the SUT gene family in Populus and 

investigated, by transgenic analysis, the possible role of the most abundantly expressed 

member, PtSUT4, in PG-CT homeostasis using plants grown under varying nitrogen 

regimes. PtSUT4 transgenic plants were phenotypically similar to the wildtype plants 

except that the leaf area-to-stem volume ratio was higher for transgenic plants. In SUT4 

transgenics, levels of non-structural carbohydrates, such as sucrose and starch, were 

altered in mature leaves. The levels of PGs and CTs were lower in green tissues of 

transgenic plants under N-replete, but were higher under N-depleted conditions, 

compared to the levels in wildtype plants. Based on our results, SUT4 partly regulates N-

level dependent PG-CT homeostasis by differential carbohydrate allocation.  
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Chapter 1 Literature review 

 

Plants produce primary metabolites such as nucleic acids, proteins and sugars that are 

common to all species and are vital for survival. They also produce secondary 

metabolites such as phenolics, whose abundance, structure and function differ among 

species (Buchanan et al., 2000; Galeotti et al., 2008; Lewinsohn and Gijzen, 2009; 

Ohkatsu et al., 2008). The secondary compounds were once considered to be byproducts 

as their specific functions were not known. It is now well understood that these 

compounds play a major role in many aspects of plant development and defense 

(reviewed in Seigler, 1998). Many secondary metabolites are derived from the 

phenylpropanoid pathway (Dixon and Paiva, 1995; Petersen, 2007). Chorismic acid, 

formed in the shikimate pathway from erythrose 4-phosphate and phosphoenoylpyruvate, 

is the precursor for synthesis of phenylalanine, the starting compound in the 

phenylpropanoid pathway (Petersen, 2007; Weisshaar and Jenkins, 1998). Phenylalanine 

ammonia-lyase (PAL) catalyzes deamination of phenylalanine to form cinnamate, and 

cinnamate 4-hydroxylase (C4H) catalyses the conversion of cinnamic to para-coumaric 

acid. P-coumaric acid and subsequently formed hydroxycinnamates are utilized by 

different pathways for the formation of salicylic acid, salicin, and salicin-containing 

phenolic glycosides (PGs), flavonoids, condensed tannins (CTs), and lignin (Boerjan et 

al., 2003; Tsai et al., 2006a; Weisshaar and Jenkins, 1998). In some species, salicylic acid 

synthesis can also proceed from chorismic acid upstream of PAL (Gaille et al., 2003; van 

Tegelen et al., 1999; Wildermuth et al., 2001). Since phenolic derivatives are often 
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bioactive, a majority of these compounds occur as glycosylated conjugates and are stored 

in the vacuole (Harborne, 1980). PGs and CTs, the two major phenylpropanoid 

derivatives found in Populus, play a major role in defense and adaptation to biotic and 

abiotic stress (Bryant et al., 1993; Donaldson and Lindroth, 2007; Galeotti et al., 2008; 

Lavola, 1998; Lee et al., 2008).  

 

1.1 Phenolic glycosides 

The structures and abundance of PGs vary among different Populus genotypes (Erwin et 

al., 2001; Harding et al., 2005; Lindroth and Hwang, 1996; Orians et al., 2000; Osier and 

Lindroth, 2006). Salicin, salicortin, tremulacin and tremuloidin are the major PGs in 

Populus tremuloides, while salicortin and HCH (hydroxy cyclohexenone)-salicortin were 

identified from the leaves of Populus fremontii and its F1 hybrids with Populus 

angustifolia (Lindroth and Pajutee, 1987; Rehill et al., 2005). In Populus tremuloides, 

salicortin and tremulacin contribute to more than 90% of the PGs (Lindroth and Pajutee, 

1987). Salicin is composed of a phenol ring and a glucose molecule, whereas higher-

order PGs, such as salicortin, tremulacin and tremuloidin, have an additional benzene 

ring and/or HCH ring (Kammerer et al., 2005). The stability and turnover rate of these 

compounds in plants is debated (Kleiner et al., 1999; Ruuhola and Julkunen-Tiitto, 2000). 

For example, Kleiner et al., (1999) showed that the specific activity of PGs was reduced 

by 38% within 48 h of 14CO2-feeding to soil grown Populus plants. In contrast, studies of 

Ruuhola and Julkunen-Tiitto, (2000) using in vitro cultured Salix plantlets grown on 2-

aminoindan-2-phosphonic acid (AIP), a PAL inhibitor, showed that the total PG turnover 
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was only 0.6% per day. The experimental methods, genotypes and time points might have 

contributed to the observed differences. In leaves, factors such as mechanical damage and 

subsequent exposure to foliar enzymes such as esterases and β-glucosidases, contribute to 

the stability of these compounds (Ruuhola et al., 2003). The stability of these compounds 

at least in in vitro depends on the complexity of the molecule where higher-order PGs are 

very labile and degrade to form salicin, catechol and 6-HCH (Lindroth and Pajutee, 1987; 

Ruuhola et al., 2003). The levels of these compounds and their inducibility depend more 

on the genotype than environmental and nutrient factors (Donaldson and Lindroth, 2007). 

Total PG levels generally vary among genotypes and accumulate up to 20% dry wt 

(Donaldson and Lindroth, 2007; Harding et al., 2005; Osier and Lindroth, 2006). The 

inducibility of these compounds in response to stress was negatively correlated with that 

of the constitutive PG levels as observed in defoliation studies using different Populus 

genotypes (Stevens and Lindroth, 2005).  

 

The biosynthetic pathway to higher-order PGs has been proposed to start with salicin 

and/or salicylic acid, derived from PAL-independent or PAL-dependent pathways (Tsai 

et al., 2006a). Substantial proof for the existence of the PAL-dependent pathway comes 

from the radiolabel studies of Zenk, (1967) where salicin was formed by leaf feeding of 

phenylalanine derivatives such as cinnamic acid and ortho-coumaric acid. Recent 

evidence involving transgenic plants harboring the NahG gene encoding a bacterial 

salicylic acid hydrolase, along with the earlier label feeding studies argue that salicylic 

acid is probably not an intermediate in PG synthesis (Morse et al., 2007; Zenk, 1967). If 

it can be assumed that PGs are derived from the phenylpropanoid pathway, it still 
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must be recognized that glucose also comprises a substantial fraction (34 to 42%) of the 

carbon in higher-order PGs (Lindroth et al., 1987a; Pearl and Darling, 1971). So far, none 

of the genes or enzymes directly responsible for PG biosynthesis or homeostasis has been 

identified. In RNAi-mediated suppression lines of p-coumaroyl-CoA 3′-hydroxylase 

(C3′H) that catalyzes the 3′-hydroxylation of p-coumaroyl shikimate and p-coumaroyl 

quinate, PGs accumulated, but possibly as a secondary effect due to the disruption of 

lignin synthesis (Coleman et al., 2008). A similar increase in PGs as a result of altered 

lignin polymerization was also observed in laccase down-regulated plants (Ranocha et 

al., 2002).  

 

Phenolic glycosides, especially salicortin and tremulacin, are important for poplar 

defense against generalist herbivores, such as gypsy moth (Lymantria dispar, Donaldson 

and Lindroth, 2007). In contrast, specialist herbivores, such as the cottonwood leaf beetle 

(Chrysomela confluens), utilize these compounds as cues for oviposition, and convert 

PGs to salicylaldehyde which is toxic to its predators (Pasteels et al., 1983). PGs are also 

gaining recognition as chemotaxonomic markers in classification of Salicaceae 

(Julkunen-Tiitto, 1985; Rehill et al., 2005). Besides their importance to plants as 

defensive compounds, they also have medicinal properties which humans have exploited. 

An ancient traditional practice to cure aches and pains is to chew willow bark. It wasn`t 

until the last century that the active ingredient in willow bark was found to be salicylic 

acid, a breakdown product of salicin that relieves pain. A brief review of the importance 

of salicylates in medicine and the discovery of acetyl salicylic acid, which we now use in 

the form of aspirin, is discussed elsewhere (Mahdi et al., 2006).  
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1.2 Condensed tannins 

Another important branch from the phenylpropanoid pathway leads to the production of 

flavonoids and condensed tannins. Populus species, like all higher plants, contain 

different classes of flavonoids, such as chalcones, dihydrochalcones, flavanones, 

flavones, flavanonols, flavonols, anthocyanins and proanthocyanidin (CT) precursor 

flavan-3-ols. These compounds have different functions in plants, contributing to 

defense, pigmentation, stress response, signaling, pollen tube growth and root 

development (Donaldson and Lindroth, 2004; Feugey et al., 1999; Fischer et al., 2006; 

Schweitzer et al., 2004; Winkel-Shirley, 2002; Ylstra et al., 1992). The level of these 

foliar secondary compounds, such as CTs, has significant effects on leaf decomposition 

and nutrient cycling in the soil, especially as related to C and N mineralization (Gehring 

et al., 2006; Northup et al., 1998; Schweitzer et al., 2008). Some evidence exists that the 

levels of foliar CTs in Populus correlate with root growth (Fischer et al., 2006). A 

conceptual model has been developed that illustrates the complex roles of genes and 

environmental factors, such as herbivores and nutrient availability, on the synthesis of 

CTs, and the impact on the ecological interactions of above- and below-ground plant 

parts (Schweitzer et al., 2008).  

 

The concentrations of flavonoids and CTs vary among clones of Populus and Salix 

species (Greenaway et al., 1991; Orians et al., 2000; Stevens and Lindroth, 2005). CT 

levels also vary among different vegetative tissues. For example, in the P.tremula × P. 

alba clone 717-1B4, CT concentrations are highest in elongating roots (20% dry wt), 

much lower in leaves and stems (<1% dry wt) and below detection in xylem (R.S. 
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Payyavula, unpublished). In other species of Populus, leaf CT abundance can be as high 

as 20% (Stevens and Lindroth, 2005; Stevens et al., 2007). Of the A, B and C rings of 

CTs, the A and C rings (60% C) are derivatives of phenylpropanoid, while the B ring 

(40% C) originates from malonyl-CoA, via acetyl-CoA synthesized from pyruvate or via 

beta-oxidation of fatty acids (Taiz and Zeiger, 1998). The phylogenetic organization of 

many of the phenylpropanoid and flavonoid pathway genes expressed in Populus tissues 

has been reported (Tsai et al., 2006b). The regulation of genes in this pathway has also 

been discussed in several review papers (Dixon and Paiva, 1995; Lanot et al., 2008; 

Lucheta et al., 2007; Weisshaar and Jenkins, 1998). 

 

Substantial evidence exists for reciprocal levels of PGs and CTs. The tissue levels of CTs 

in Populus hybrids that accumulate both CT and PG often correlate negatively with the 

levels of PGs. PG levels are often higher in leaves collected from young Populus plants 

and the levels decrease during ontogenetic changes in growth of the trees over a several-

year period (Donaldson et al., 2006b). In contrast, CT levels were lower in leaves from 

the younger plants and increased with plant age. Negative correlations of PGs and CTs 

have also been observed in Salix hybrids (Orians and Fritz, 1995; Orians et al., 2000). 

Several reports also presented growth tradeoff in relation to accumulation of secondary 

metabolites. Populus distributes up to 30% of the fixed C to the secondary metabolites, 

such as PGs and CTs that are useful for defense (Donaldson et al., 2006b; Harding et al., 

2005; Kleiner et al., 1999). Besides substantial commitment of Populus for these 

compounds, the levels of these defensive compounds also increase in response to biotic 

(e.g., insect) and abiotic (e.g., nutrient) stress (Harding et al., 2005; Kleiner et al., 
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1998; Osier and Lindroth, 2006; Ruuhola et al., 2001). Accumulation of high levels of 

these compounds especially under low nutrient conditions has a negative effect on growth 

(Donaldson and Lindroth, 2007). Also, a tradeoff between growth and the synthesis of 

salicylates was observed in the in vitro micropropagated Salix plantlets (Ruuhola and 

Julkunen-Tiitto, 2003). The synthesis of growth-compromising levels of these 

compounds may be necessary for defense, although it is an added cost to plant. A better 

understanding of the carbon portioning to the secondary metabolite synthesis and of the 

PG biosynthetic pathway will be necessary for mechanistic investigation on the possible 

tradeoff among growth, PG and CT.  

 

1.3 Sucrose and Sucrose transporters 

There is increasing evidence that the PG and CT accumulation depend on sink strength 

and the transported sucrose upon hydrolysis (Arnold and Schultz, 2002; Kleiner et al., 

1999). In most plant species, sucrose is the major photosynthetic product transported 

from source to sink tissues. The imported sucrose, after hydrolysis by either invertases or 

sucrose synthases (SuSy), is channeled into glycolysis and the tricarboxylic acid cycle, 

through which primary and secondary metabolites are synthesized (Buchanan et al., 

2000; Kleiner et al., 1999). Several studies revealed that sucrose, besides acting as a 

transport molecule, also acts as a signaling molecule in defense and carbohydrate 

synthesis and partitioning (Chiou and Bush, 1998; Gomez-Ariza et al., 2007; Rolland et 

al., 2002; Zhou et al., 2009). Many sucrose-regulated genes were also shown to be 

hexose-regulated, supporting the view that hydrolyzed sucrose delivers hexoses that 
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could act as signal molecules. 

 

In mature leaves, sucrose loading into phloem occurs by either passive symplastic 

connections through plasmodesmata, or by energy-mediated apoplastic loading using 

sucrose transporters, also referred to as sucrose carriers (SUT/SUC). The first functional 

sucrose transporter was reported by Riesmeier et al., (1992) from spinach. In several of 

the model plant systems where sucrose transporters have been investigated, multiple 

proteins have been characterized (Sauer, 2007). For example, nine SUCs in Arabidopsis 

(ArabidopsisGenomeInitiative, 2000), five in rice (Oryza sativa, Yu et al., 2002) and 

three in tomato (Lycopersicum esculentum, Barker et al., 2000) have been reported on. 

SUT/SUCs from different plant species were classified into three groups based on 

phylogenetic analysis (Reinders et al., 2008). Transporters from different groups can also 

be distinguished by their kinetic properties, including affinity (Km) for sucrose and 

capacity (Vmax) for sucrose transport (reviewed in Kuhn, 2003). While Group-1 

transporters are involved in phloem loading of sucrose, the functions of Group-2 and 

Group-3 transporters are less well understood. The expression and activity of SUTs can 

be regulated by sugars such as glucose and sucrose, and by mechanical stimuli such as 

wounding (Chiou and Bush, 1998; Meyer et al., 2004). Besides sucrose, SUTs can also 

transport glycosylated phenolic derivatives such as salicin and helicin (Chandran et al., 

2003; Sivitz et al., 2007). In several plant species, insertional mutants and antisense 

suppressed lines have been used to study the function of SUTs. Both carbohydrate 

transport and the levels of secondary metabolites are altered in Arabidopsis, tomato and 

potato (Solanum tuberosum) plants with suppressed Group-1 SUT expression 
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(Gottwald et al., 2000; Hackel et al., 2006; Riesmeier et al., 1994; Srivastava et al., 

2008). These results support the involvement of SUTs in partitioning of the carbohydrate 

assimilates.  

 

Populus is an ecologically and economically important tree species found throughout 

North America. The availability of the complete genome sequence and the presence of 

genotypic variation in growth rate and foliar abundance of PGs and CTs make Populus a 

commercially relevant model for studying the trade-off between secondary metabolism 

and growth. In this study, two different approaches, whole plant and cell culture, were 

used to understand PG-CT metabolism. In the first chapter, SUT gene family members in 

Populus were identified and characterized. An RNAi-mediated transgenic approach was 

used to investigate the role of the most abundantly expressed SUT, PtSUT4, on sucrose 

transport and PG homeostasis in planta. The effects on carbohydrate concentrations 

throughout the plant, on the expression of genes known to be important for carbohydrate 

utilization, and on PG and CT homeostasis were analyzed. In the second chapter, cell 

cultures were used in feeding experiments to investigate metabolic changes associated 

with glycosylation of phenolic substrates. The substrates used, salicyl alcohol and 

salicylaldehyde, are potential PG precursors in planta. Gene expression changes were 

analyzed using microarrays and QPCR. Gene expression and metabolite data was studied 

on general effects of feeding as well as on the sensitivity of carbon partitioning between 

phenylpropanoid branches to the feeding.  
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Research objectives: 

1. Demonstrate the use of Populus-derived suspension cells for investigating effects 

of phenylpropanoid glycosylation on carbon partitioning relevant to growth, CT 

and PG homeostasis.  

2. Characterize the SUT gene family in Populus and investigate SUT4 function in 

carbohydrate partitioning and PG-CT homeostasis in planta. 
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Chapter 2 Metabolic and gene expression changes associated 

with salicyl alcohol feeding in aspen cell cultures 

 

ABSTRACT 

Phenylpropanoid-derived phenolic glycosides (PGs) and condensed tannins (CTs) are the 

two major groups of secondary metabolites in Populus. PGs and CTs show reciprocity in 

their abundance. Although the biosynthesis of PGs is less well understood than that of 

CTs, certain phenolic derivatives, including salicin, are thought to be precursors for the 

synthesis of higher-order PGs, such as salicortin, tremulacin and tremuloidin. Salicin and 

higher-order PGs are not synthesized in cell cultures grown under standard conditions. 

Feeding with salicyl alcohol, salicylaldehyde and helicin, but not benzoic acid, benzyl 

alcohol, benzylaldehyde, salicylic acid, cinnamic acid and O-coumaric acid, led to 

synthesis of salicin and isosalicin in the cells. The highest levels of salicins were detected 

by salicyl alcohol feeding at the early stages of growth. Accompanying formation of 

salicins from salicyl alcohol was a decrease in CT levels by up to 30% and an increase in 

growth by up to 15%. The expression of genes encoding putative tonoplast localized 

sucrose transporter (PtSUT4), and sucrose hydrolytic enzymes, cytosolic sucrose 

synthases (PtSuSYs 1, 2 and 3) and vacuolar invertase (PtVIN2) was altered in salicyl 

alcohol-fed cultures. This suggests differential compartmentalization of sucrose 

hydrolysis and possibly differential utilization of sugars between carbon demanding 

pathways. Microarray analysis revealed an up-regulation of genes related to glycolysis 

and Kreb cycle pathways which utilize acetyl-CoA, a precursor for fatty acid and 
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malonic acid biosynthesis. As malonic acid contributes 40% of carbon skeleton of CTs, 

the amount of carbon allocated for CT synthesis might be reduced. The reduced 

expression of most phenylpropanoid and flavonoid pathway genes is consistent with 

reduced carbon flux for CT synthesis. Therefore, our data suggest that the reduced CTs in 

salicin-accumulating cells might be a result of competition for the carbon resources 

between growth, CT and salicin synthesis. In salicyl alcohol-fed cultures, two abundant 

glycosyltransferase transcripts, PtGT1-2 and PtGT1-246, were further up-regulated, as 

well as genes encoding vacuolar ATP-binding cassette transporter proteins, PtMRP1, 

PtMRP6. Their possible roles during salicyl alcohol glycosylation and uptake of salicins 

into the vacuole are discussed. 

 

2.1 Introduction 

Populus trees and their close relatives in the family Salicaceae are capable of producing 

large quantities of phenolic glycosides (PGs) and condensed tannins (CTs) in their 

vegetative tissues (Donaldson et al., 2006a; Hwang and Lindroth, 1997; Osier and 

Lindroth, 2006; Ruuhola and Julkunen-Tiitto, 2003). PGs and CTs play a major role in 

defense and protection against biotic (e.g. insects, Bryant et al., 1993; Donaldson and 

Lindroth, 2007) and abiotic (e.g. UV-B radiation, Lavola, 1998) stress. PGs and CTs are 

thought to be derived from common phenylpropanoid precursors (Tsai et al., 2006a). 

Their abundance varies among species, genotypes or individuals (Harding et al., 2005; 

Orians et al., 2000; Ruuhola et al., 2001; Stevens et al., 2007). The biosynthesis of 

phenylpropanoid derivatives, such as flavonoids and CTs, is relatively well characterized 
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at the molecular and biochemical levels in herbaceous species, such as Arabidopsis, and 

in woody plants, such as Populus (Besseau et al., 2007; Matsui et al., 2004; Tsai et al., 

2006a; Weisshaar and Jenkins, 1998). In contrast, the biosynthetic pathway of PGs is 

poorly understood. Salicin (O-hydroxymethyl phenyl β-D-glucoside) from Salix bark was 

the first PG-like substance to be isolated from a higher plant. Salicin is considered both a 

precursor and a degradation product of high-order PGs, such as salicortin and tremulacin 

(Julkunen-Tiitto and Sorsa, 2001; Lindroth and Pajutee, 1987; Pearl and Darling, 1971; 

Pierpoint, 1994; Ruuhola and Julkunen-Tiitto, 2003). At the present time however, salicin 

synthesis itself is also not well understood.  

 

Multiple biosynthetic pathways for salicin have been proposed (Pierpoint, 1994; Pridham 

and Saltmarsh, 1963; Ruuhola and Julkunen-Tiitto, 2003; Zenk, 1967), resulting in a 

number of proposed precursors. Radiolabel studies suggested that, in Salix (Salix 

purpurea) leaves, salicin synthesis proceeds from the phenylpropanoid pathway, via 

intermediates such as O-coumaric acid, benzyl derivatives, salicylaldehyde and helicin 

(Zenk, 1967). Salicin was also synthesized from salicyl alcohol that may itself be derived 

from O-coumaric acid (Zenk, 1967). In contrast, fed salicyl alcohol accumulated only as 

isosalicin (O-hydroxybenzyl-β-D-glucoside) in leaves of sunflower (Helianthus annuus, 

Zenk, 1967) and seedling of broad beans (Vicia faba) and maize (Zea mays, Pridham and 

Saltmarsh, 1963). In cell cultures, salicyl alcohol was converted into salicin and isosalicin 

in Salix, Gardenia (Gardenia jasminoides) and Lithospermum (Lithospermum 

erythrorhizon), and into isosalicin in tobacco (Nicotiana tabacum), Datura (Datura 

innoxia), Duboisia (Duboisia myoporoides) and several other species (Mizukami et 
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al., 1986; Shimoda et al., 2002; Tabata et al., 1976). Salicylaldehyde accumulated as 

salicin and isosalicin in cell cultures of Salix (Dombrowski and Alferman, 1992), but as 

isosalicin in Datura (Tabata et al., 1976). These results suggest that salicyl alcohol- and 

salicylaldehyde-mediated salicin synthesis is species- and tissue-specific. In cell cultures 

of all the above species, neither salicin nor isosalicin has been observed without precursor 

feeding.  

 

The synthesis of phenolics and their subsequent glycosylation demand substantial 

amounts of C which otherwise can be used for growth. For example, growth was 

increased by inhibition of endogenous synthesis of PGs in micropropagated plantlets of 

Salix after feeding 2-aminoindan 2-phosphonic acid (AIP), a specific inhibitor of 

phenylalanine ammonia-lyase (PAL) involved in phenylpropanoid pathway (Ruuhola and 

Julkunen-Tiitto, 2003). A negative correlation was observed in Populus and Salix, where 

fast growing plants accumulated lower levels of defensive compounds than did slow 

growing plants and vice versa (Hwang and Lindroth, 1997; McDonald et al., 1999; 

Nichols-Orians et al., 1993). Besides genetic factors, environmental factors such as soil 

nutrient contents also play a role in growth and defense tradeoff. For example, 

application of N fertilizer increased growth and reduced secondary metabolite levels and 

vice versa (Donaldson et al., 2006a; Hakulinen et al., 1995; Osier and Lindroth, 2006; 

Ruohomaki et al., 1996). A negative correlation was also observed in levels of PGs and 

CTs. For example, F1 hybrids of Salix that accumulate high levels of PGs accumulate low 

levels of CTs (Orians and Fritz, 1995; Orians et al., 2000). Developmental shifts between 

CTs and PGs was observed in Populus (Donaldson et al., 2006b). In spite of several 
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correlative results, the molecular mechanisms underlying the metabolic competition 

between growth and secondary metabolites and within secondary metabolites are not 

known.  

 

In heterotrophic cell cultures, growth and metabolism depends on the sugars, typically 

sucrose, supplied in the media. Sucrose imported into the cells is utilized in different 

metabolic pathways, but only upon its hydrolysis into hexoses (Koch, 2004; Sturm, 

1999). The hexoses are also utilized for glycosylation of the phenolics, which are 

potentially toxic to the cells at high levels. Glycosyl transferases (GT) catalyzes the 

transfer of sugar molecules to the phenolics (Ross et al., 2001). In plants, the GTs that are 

involved in the glycosylation of simple phenolics belong to family 1 (Gachon et al., 

2005). Exogenously fed phenolics are glycosylated in the cytoplasm and are transported 

into vacuoles by class- and plant species-specific mechanisms (Dean et al., 2005; Rea, 

2007; Walczak and Dean, 2000).  

 

Since genes specific to PG biosynthesis have not yet been identified, a transgenic 

approach is not currently feasible. Cell culture provides a convenient, albeit artificial, 

means to manipulate PG accumulation by feeding precursors under relatively uniform 

conditions. A challenge with woody species is their general recalcitrance to cell 

suspension cultures. We have previously identified a single aspen (Populus tremuloides) 

line (L4) that is amenable to suspension culture from a screen of over 300 seeds (Tsai, 

unpublished data). Salicin does not accumulate to detectable levels in Populus cell 

cultures grown under normal culture conditions (preliminary work). Cell cultures 
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were fed with potential salicin precursors in order to address if salicin accumulation and 

sequestration interfere with CT homeostasis. Microarrays were used to determine 

changes in gene expression across broad categories of metabolic pathways, and to help 

understand the metabolic consequences of PG accumulation. Investigation of metabolic 

shifts associated with PG homeostasis in simple cell culture systems may shed light on 

whole plant level investigation of PG regulation.  

 

2.2 Materials and methods 

2.2.1 Cell cultures 

Leaves from greenhouse-grown Populus genotype PtL-4 were disinfected by surface-

sterilizing in 20% bleach for 20 min, rinsed with water and cultured on semi-solid woody 

plant medium (WPM, Lloyd and McCown, 1980) supplemented with 2.2 mg l-1 of 2,4-

dichlorophenoxy acetic acid (2,4-D) and 3% sucrose for callus induction. Calli (~5 gm) 

were used to establish suspension cultures in 30 ml of liquid WPM medium containing 

2.2 mg l-1 of 2,4-D with 3% sucrose in a 125 ml flask covered with aluminum foil, and 

maintained in an orbital shaker at 120 rpm in the dark at 25 oC. Cells were subcultured at 

11-day intervals by inoculating 5 ml culture to 30 ml fresh medium. Cell cultures were 

sieved with a 750 µm mesh at 2-month intervals to select uniform sized cells. 

Experiments were conducted after 2 subcultures of sieved cells to ensure uniformity. Cell 

growth was regularly monitored during the study period by measuring percent settled cell 

volume using a Nephlo flask. When needed, the amount of inoculum was adjusted such 

that the settled cell volume was near 20% at the time of subculture.  
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Phenolic compounds, including salicin, cinnamic acid, O-coumaric acid, benzoic acid, 

benzyl alcohol, benzylaldehyde, salicylic acid, salicyl alcohol and salicylaldehyde, were 

used in the feeding studies. The stocks of these compounds prepared in either ddH2O or 

dimethyl sulfoxide (DMSO) were filter-sterilized (0.45 µm pore size) and administered to 

the cultures in early log phase, typically 5 days after subculture unless otherwise 

mentioned. The concentration of the phenolics used in this study varied between 0.2 to 5 

mM as specified in the results. Cells were harvested at regular intervals by low vacuum 

filtration after three rinses with 25 ml of 50 mM sodium chloride followed by three rinses 

with water, snap frozen in liquid nitrogen and stored at -80 oC.  

 

2.2.2 PG & CT extraction and quantitative estimation 

Freeze-dried cell samples were analyzed for PG and CT as described by Harding et al 

(2005) with slight modifications. Briefly, 5 mg of each sample were extracted in 800 µl 

of cold methanol for 20 min in a cold ultrasonic bath and centrifuged at 15,000 g for 5 

min. The methanol extract was used to estimate glucose-conjugates (salicin, isosalicin, 

cinnamoyl-glucoside, O-coumaroyl-glucoside, salicyloyl-glucoside, benzyl alcohol-

glucoside, and benzoyl-glucoside) by using HPLC-UV/MS (Hewlett-Packard 

1100 Series, Agilent Technologies, Palo Alto, CA) equipped with an Eclipse XBD-C18 

column (5 μm, 2.1 X 150 mm). Methanolic extracts (5 µl) was injected into the column 

and eluted at a flow rate of 0.2 ml/min using solvents A (10 mM formic acid, pH 3.4) and 

B (100% Acetonitrile) according to the following gradient: 0 to 15 min, 0% to 70% B, 15 

to 17 min, 70% to 100% B, 17 to 19 min, 100% to 0% B and 19 to 30 min 0% B. 
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Compounds were identified by UV-absorbance (274 nm) and mass spectral data. 

Concentrations of both salicin and isosalicin were estimated by calibration curves 

developed using authentic salicin (Sigma St. Louis, MO).  

 

Soluble and residue-bound CTs were estimated according to Porter et al., (1986). Briefly, 

a dried aliquot of the methanol extract (125 µl) was used to estimate methanol-extracted 

CTs. Both dried extract aliquot and the pellet were resuspended in 250 µl methanol, 750 

µl butanol:HCl (95:5) and 25 µl 2% ferric-ammonium-sulfate in 2 M HCl, and heated for 

20 min at 95oC. CTs were quantified using a 96-well plate reader (SpectraMax, 

Molecular Devices, Sunnyvale, CA) by comparing their absorbance at 550 nm (Porter et 

al., 1986; Tiarks et al., 1992) with that of purified aspen leaf CT. 

 

2.2.3 RNA extraction and DNase treatment 

RNA was extracted from frozen cells using the CTAB (cetyltrimethylammonium 

bromide) method  (Chang et al., 1993). Briefly, in a Oakridge tube containing 15 ml of 

CTAB buffer (2M NaCl, 25 mM EDTA, 0.1 M Tris-HCl (pH 9.0), 2% w/v PVP (K-30), 

2% w/v CTAB) containing 2% β-mercaptoethanol, the finely ground sample was added, 

vortexed for 1 min and incubated for 15 min at 65 ºC with intermittent mixing. To this 

tube, 10 ml of chloroform:isoamyl alcohol (24:1) was added, vortexed and centrifuged 

for 10 min at 15,000 g to separate the two phases. Chloroform:isoamyl alcohol extraction 

was repeated twice before precipitating RNA from the aqueous phase (~12 ml) with 4 ml 

of 8M LiCl. The samples were incubated on ice for 4 hours and centrifuged at 4 ºC for 15 
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min at 15,000 g. The sample was resuspended in 500 μl of ddH2O and reprecipitated with 

170 μl of 8 M LiCl as above. After the second precipitation, the pellet was dissolved in 

300 μl of ddH2O, with 30 μl of 3M sodium acetate (pH 5.0) and 800 μl of 95% ethanol, 

incubated at -80 ºC for 30 min and centrifuged at 4 ºC for 15 min at 14,000 g. The pellet 

was then washed with 1 ml of 70% ethanol, air dried and dissolved in 50-100 μl of 

ddH2O, depending on the pellet size. RNA quantity was assessed by using a NanoDrop 

ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE) and integrity 

was assessed by running 400 ng RNA on a 1% agarose gel. RNA was treated with Turbo 

DNase, according to the manufacturer’s instructions (Ambion INC, Austin, TX) to 

remove the contaminating genomic DNA. Briefly, 25 μg of RNA were incubated with 5 

μl of DNase buffer (10X) and 1 μl of DNase enzyme (2 U/μl) in a 50 μl reaction for 30 

min at 37 oC. The DNase enzyme was then inactivated by adding 5 μl of DNase 

inactivation reagent. The mixture was incubated for 2 min at room temperature and 

centrifuged at 10,000 g for 1.5 min. The supernatant was collected as DNA-free total 

RNA. 

 

2.2.4 Microarrays  

2.2.4.1 cDNA synthesis and aminoallyl labeling 

For microarray hybridization, cDNA synthesis was carried out with 10 μg of DNA-free 

total RNA, 0.5 μl of RNase inhibitor (40 U/μl, Ambion), 0.5 μl of 5× first strand buffer, 2 

μl of amine-modified random primers (2 μg/μl, Sigma), 3 μl of mRNA spike mix 

(Lucidea Universal ScoreCard, Amersham, Piscataway, NJ), and ddH2O to a final 
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volume of 19 μl. To denature the RNA secondary structure, the reaction mixture was 

incubated for 5 min at 65 oC, and cooled on ice. Remaining reagents, which include 5.5 

μl of 5× first strand buffer, 2.5 μl of 0.1 M DTT, 0.5 μl RNase inhibitor, 0.6 μl of 50× 

nucleotide mix (prepared by mixing 5 μl each of 100 mM dATP, dCTP and dGTP, and 3 

μl of dTTP and 2 μl of aminoallyl-labeled dUTP), and 2.0 μl superscript III RT (200 

U/μl, Invitrogen, Carlsbad, CA), were added and the tube was incubated for 10 min at 

room temperature, followed by 4 hours at 46 oC. Following the reaction, RNA was 

hydrolyzed with 10 μl of 1 M NaOH, and 10 μl of 0.5M EDTA and incubating for 15 min 

at 65 oC. The reaction was neutralized by adding 12 μl of 1 M HCl and 20 μl of 100 mM 

sodium acetate (pH 5.2).  

 

2.2.4.2 cDNA purification 

The cDNA was purified using a QIAquick column (Qiagen, Valencia, CA) as per 

manufacturer’s protocol. Briefly, cDNA was diluted with 425 μl of Quiagen buffer PB, 

and the mixture transferred to a QIAquick column and centrifuged for 1 min at 13,000 g. 

The flow through was passed through the same column twice prior to disposal. The 

column was washed twice with 600 μl of 80% ethanol wash buffer and spun at 13,000 

rpm for 1 min. The flow through was discarded and the column was recentrifuged. cDNA 

was then eluted twice, each with 30 μl of 4 mM phosphate buffer with centrifugation at 

13,000 g for 1 min. After estimating the quantity of cDNA with a NanoDrop, 2 μg of 

cDNA was aliquoted into amber microcentrifuge tubes, vacuum dried and stored at -20oC 

until used.  
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2.2.4.3 cDNA-Cy dye coupling and dye labeled target purification 

Cy3 or Cy5 dye (Amersham, Piscataway, NJ) was dissolved in 10 µl of 0.1 M sodium 

carbonate buffer (pH 9.0), and mixed with 2 µg of dried aminoallyl-labeled cDNA in the 

amber microfuge tube. The labeling reaction was dark-incubated at room temperature on 

a shaker for 20 min, and the reaction was then quenched by adding 35 µl of 100 mM 

sodium acetate (pH 5.2) and 250 µl of the Qiagen PB buffer. The Cy dye-labeled cDNA 

was purified using a QIAquick column (Qiagen), washed and eluted twice, each with 30 

µl of Qiagen EB elution buffer. The Cy dye-labeled cDNA concentration was estimated 

using a NanoDrop and the amount of dye incorporation (pmol) and frequency of 

incorporation (FOI) was calculated. Finally, aliquots of 50 pmol Cy dye-labeled cDNA 

were vacuum dried, and stored at -20 oC until used.  

 

2.2.4.4 Array hybridization 

The experiment consisted of three biological and two technical (dye swap) replicates. The 

microarray slides used for this study contained replicate subarrays of 6705 elements 

representing 6313 previously characterized aspen expressed sequence tags (ESTs, Ranjan 

et al., 2004). The construction of aspen cDNA microarray was described in Harding et 

al., (2005). Briefly, the cloned cDNAs were PCR amplified using M13 forward and 

reverse primers. The dried, ethanol precipitated PCR products were resuspended in 20 μl 

of Corning Pronto! spotting solution (Fisher, Hanover Park, IL) and transferred to 384-

well plates for spotting. cDNAs were spotted onto amino silane glass slides (Corning 

UltraGAPS, Fisher) at the Genomics Technology Support Facility of Michigan State 
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University. To monitor target labeling and hybridization efficiency, various positive and 

negative controls (Lucidea Universal ScoreCard, Amersham) were also included on the 

slide. 

 

The spotted cDNA was immobilized onto the slide by UV cross-linking (150 mJ) and by 

snap baking (1 min at 120 oC). Immediately prior to hybridization, the slide was soaked 

in a petri dish containing prehybridization solution (5× SSC, 0.1% SDS and 1% BSA) for 

15 min on an orbital shaker, rinsed 20 times in a falcon tube containing ddH2O followed 

by rinsing in ethanol for a few seconds, and dried under a heavy stream of Hepa-filtered 

air using a microarray Air Jet. Equal amounts (50 pmole) of Cy3- and Cy5- labeled 

cDNA from control and salicyl alcohol-fed cultures were suspended in 55 μl of 

hybridization buffer (50% formamide, 5× SSC, 0.4% SDS and 0.1% BSA). The mixture 

was denatured at 42 oC for 5 min, centrifuged briefly, applied to the slide and covered 

with a piece of parafilm. Hybridization was carried out for 36 hours in a hybridization 

oven (Boekel Scientific, Feasterville, PA) at 38.5 oC with humidity maintained by wet 

paper towels soaked in the hybridization buffer. The slides were then rinsed three times 

separately in beakers containing 500 ml of 1× SSC and 0.2% SDS (42 oC), followed by 

0.1× SSC and 0.2% SDS, and finally in 0.1× SSC before drying the slides using a 

microarray Air Jet.  

2.2.4.5 GenePix Image acquisition and analysis 

The slides were scanned at 532 and 635 nm for Cy3 and Cy5, respectively, with a 

Genepix 4000B scanner (Axon Instruments, Union City, CA) and the florescence signal 

33

 



intensity was quantified using the GenePix Pro 5.1 software (Axon Instruments). Spots 

with signal intensities in both channels greater than two standard deviations from the 

background signal were flagged as present.  

 

LOWLESS (locally weighted linear regression) normalization (Cleveland and Devlin, 

1988; Yang et al., 2002) of the data was performed using GeneSpring 6.2 software 

(Silicon Genetics, Redwood City, CA). Hybridization signals satisfying the criteria 

mentioned below were used for expression analysis. Spots must be present in four of the 

six replicates (4,149 spots); coefficient of variation (CV) among samples less than 35% 

(3,957 spots); and raw hybridization signal more than 100 in at least four of the six 

replicates (1,812 spots). Among these were 938 differentially expressed genes based on 

the t-test with a false discovery rate for multiple testing correction at P = 0.05 using the 

Benjamini and Hochberg algorithm (Benjamini and Hochberg, 1995). A threshold ratio 

cutoff of 1.3 was used to further narrow the list of differentially expressed genes to 540. 

 

2.2.5 Q-PCR expression analysis 

34

cDNA was synthesized using total RNA (2 µg), anchored oligo(dT)20 primers and 

SuperScript II reverse transcriptase (Invitrogen, Carlsbad, CA). Relative transcript 

abundance was analyzed by Q-PCR in a 12.5 µl reaction volume using cDNA (from 2.5 

ng of total RNA), gene-specific primers and ABsolute QPCR SYBR Green Mix (Abgene, 

Rochester, NY, USA) with ROX as an internal reference. Amplification was carried out 

as follows: 15 min at 95 oC followed by 40 cycles of 15 sec at 95 oC, 1 min at 55 oC, and 

1 min at 72 oC, using the Mx3000P Real-Time PCR system (Stratagene, La Jolla, CA, 

 



USA). Three biological and two technical replicates were used for each determination. A 

zero-template reaction was included as the negative control. Relative expression of the 

genes was calculated by the ΔCT method by normalizing the expression levels of target 

genes to the expression mean of two housekeeping genes, ubiquitin-conjugating enzyme 

E2 and elongation factor 1-β (Tsai et al., 2006a). Specificity of amplification was 

assessed by dissociation curve analysis using the MxPro software (Stratagene). The 

primer sequences are presented in Appendix A (sucrose transporters, sucrose synthases, 

invertases, glucosyl transferases and multi-drug resistance associated proteins) or in Tsai 

et al., 2006a (phenylpropanoid and flavonoid pathways genes).  

 

2.3 Results 

2.3.1 Cell culture system characterization 

The baseline growth pattern of cell cultures established from the aspen L4 genotype is 

presented in Figure 2-1. Growth of the cells was monitored by estimating settled cell 

volume (%) using a Nephlo flask. After subculturing into fresh medium, cells showed a 

characteristic growth curve with a 4-day lag phase, followed by an exponential phase, 

before entering into the stationary phase around day 12 (Figure 2-1). An 11-day interval 

was therefore chosen for routine subcultures, and the cell volume typically increased by 

~400% at the end of the culture cycle. This pattern of cell growth was stable for more 

than 40 passages during the experimental period.  
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To establish the basal levels of CT and PG accumulation during the culture cycle, cells 

were harvested at regular intervals and analyzed for CTs and PGs. At the start of the 

culture, CT concentrations averaged 14.4% dry wt, but decreased gradually through the 

lag and early log phases to a low of 6.5%, and then increased rapidly thereafter, reaching 

15% at the end of the culture cycle (Figure 2-1.). The initially high CT content 

corresponded with the CT level at the end of the culture cycle. As CT turnover is 

considered to be slow (Kleiner et al., 1999), the decrease in CT content during the early 

growth cycle was most likely from dilution, due to rapid cell proliferation with little or no 

new CT synthesis. Under normal culture conditions, the L4 cell line does not accumulate 

salicin or higher-order PGs.  

 

2.3.2 Feeding of potential salicin precursors 

The absence of detectable levels of PGs in the aspen cell cultures may be attributed to the 

absence of possible PG precursors and/or spatiotemporal regulation of metabolic 

activities at the intracellular level. To identify possible lesions in the PG biosynthetic 

pathway, a collection of putative PG precursors, including salicin, the simplest PG, 

salicylic acid, salicyl alcohol, salicylaldehyde, helicin, benzoic acid, benzyl alcohol, 

benzylaldehyde, cinnamic acid and O-coumaric acid (Zenk, 1967) were fed to the cell 

cultures. Phenolic acids were fed at 0.2 mM, since higher feeding levels led to 

discoloration of cells, suggestive of toxicity, in preliminary trials. Alcohols, aldehydes, 

and glucosides were fed at 1 mM. Feeding was conducted 5 days after subculturing, and 

cells were harvested 24 h and 48 h after feeding for chemical analysis. Higher-order PGs 
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Figure 2-1. Growth and secondary metabolite levels in Populus L4 cell 

suspensions grown under normal culture conditions.  

 

Data represents the mean ± SE of three biological replicates. 
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were not detected during any of the feeding experiments. The glucoside salicin was 

readily taken up and detected primarily as unaltered salicin in the cell extracts, although a 

slow conversion to isosalicin continued throughout the 48 hr feeding period (Figure 2-2). 

Feeding of the unglycosylated form of salicin, salicyl alcohol, resulted in the 

accumulation of both salicin and its isomer, isosalicin, in a near one:two ratio. The 

glycosylated aldehyde, helicin, was reduced to salicin and isosalicin, which accumulated 

in a one:one ratio. When the unglycosylated form of helicin, salicylaldehyde, was fed, it 

also was recovered as salicin and isosalicin in a one:one ratio (Figure 2-2). Feeding with 

benzoic acid, salicylic acid, cinnamic acid and O-coumaric acid led to accumulation of 

their respective glucosides (Table 2-1). Benzyl alcohol glucoside was formed when either 

benzyl alcohol or benzaldehyde were fed (Table 2-1).  

 

2.3.3 Dose-dependent effects of salicyl alcohol feeding on accumulation of salicin, 

isosalicin and CTs   

Both PG and CT are derived from the phenylpropanoid pathway (Tsai et al., 2006a) with 

a reported negative correlation in their accumulation (Orians et al., 2000). We therefore 

examined whether accumulation of salicin and isosalicin (hereafter referred to as the 

salicins) in salicyl alcohol-fed cultures affects CT production that would exemplify 

metabolic competition. Cells were fed with varying levels of salicyl alcohol (0, 1, 5 and 

10 mM) and sampled over a 4-day period for salicin, isosalicin and CT analysis. A dose-

dependent accumulation of the salicins was observed following salicyl alcohol feeding 

(Figure 2-3 A). Accumulation of the salicins plateaued 24 h and 48 h after feeding 
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Table 2-1. Feeding precursors (mM) and their corresponding products identified 

based on HPLC-UV/MS analysis using retention time and/or m/z ratio.   

 

Precursors  mM fed Products formed
Salicin  1 Salicin and Isosalicin 
Helicin  1 Salicin and Isosalicin 
Salicyl alcohol  1 Salicin and Isosalicin 
Salicyl aldehyde  1 Salicin and Isosalicin 
Salicylic acid  0.2 Salicyloyl-glucoside 
Benzyl alcohol 1 Benzyl alcohol-glucoside
Benzyl aldehyde  1 Benzyl alcohol-glucoside
Benzoic acid  0.2 Benzoyl-glucoside
Cinnamic acid 0.2 Cinnamoyl-glucoside
O -Coumaric acid  0.2 O -coumaroyl-glucoside
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Figure 2-2. Levels of salicin and isosalicin formed over a 48 h period in 

cultures fed with 1 mM salicin (SAL), helicin (HEL), salicyl alcohol 

(SAC) and salicylaldehyde (SAD).  

 

Solid and dotted lines represent salicin and isosalicin levels, respectively. 

Data represents the mean ± standard deviation of two biological replicates. 
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with 1 mM and 5 mM salicyl alcohol, respectively, but continued to increase with 10 mM 

feeding over the 4-day period. The total salicins detected at the end of the experimental 

period were 3, 17 and 29% in cells fed with 1, 5, and 10 mM salicyl alcohol, respectively. 

The growth of the cell cultures was stimulated by 6-7% with 1mM and 9-15% with 5 

mM, but reduced by 20-28% with 10 mM salicyl alcohol feeding (Figure 2-3 C). At 5 

mM feeding, the efficiency of salicyl alcohol conversion at the end of the 4-day period 

was at least 60%, as 175 μmoles equivalent of 5 mM salicyl alcohol was converted to 100 

μmoles of salicins.  

 

CT levels showed a dose-dependent negative response to salicyl alcohol feeding. At 1 

mM, no difference was observed in CT levels as compared to unfed cultures (Figure 2-3 

B), with the CT levels deceasing at 24 h (corresponding to 6 days after subculture, Figure 

2-1), followed by a steady increase through the end of the 96 h period. In cultures fed 

with 5 mM salicyl alcohol, CT levels did not increase until after 48 h (or 7 days after 

subculture). At 10 mM, cells were no longer able to maintain the basal CT level observed 

at the time of feeding. The reduction in CT levels in the cells accumulating salicins 

supports a metabolic competition of salicins and CTs. 

 

2.3.4 Effect of culture stage on levels of salicin, isosalicin and CT upon salicyl 

alcohol feeding 

As shown in Figure 2-1, active CT synthesis in the aspen cell suspensions typically 

resumed by the mid-exponential phase, i.e. 6 days after subculturing. To examine 
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Figure 2-3. Effect of salicyl alcohol concentration (0, 1, 5, 10 mM) on (A) 

salicin and isosalicin formation, (B) CT levels and growth (C) in aspen 

cell cultures.  

 

Salicyl alcohol was fed to 5-day old cultures and samples were analyzed at 

regular intervals over a 96 h period. In panel A, solid and dotted lines 

represent salicin and isosalicin levels, respectively. Data represents the 

mean ± standard deviation of two biological replicates.  

 



whether growth phase plays a role in cells’ capacity to accumulate the various secondary 

metabolites, cell suspensions were fed with 5 mM salicyl alcohol to 2-, 5-, 8-, or 11-day 

old cultures. Salicin, isosalicin and CT levels were measured over a 96 h period following 

feeding. In general, cells at the lag or early exponential phase, when the CT levels were 

in decline, have a higher capacity to accumulate the salicins than cells at the mid-

exponential or stationary phases with active CT synthesis (Figure 2-4 A). In all cases, the 

salicins increased steadily over the experimental period, and reached ~15% in cells fed at 

the earlier growth phases (2- and 5-day old) and ~8% in cells fed at the later stages (8- 

and 11-day old).  

 

Salicyl alcohol feeding to cells at the lag phase (2-day old) had no effect on basal CT 

accumulation during the 4-day experimental period (Figure 2-4 B), consistent with the 

idea that CT synthesis was not yet active at this stage. Feeding of salicyl alcohol to 5-day 

old cells delayed the onset of CT accumulation (Figure 2-3, Figure 2-4 B). At a later 

stage of cell growth (8- and 11-day) when CT was accumulating, salicyl alcohol feeding 

reduced the rate of accumulation. In sum, CT levels were reduced by 38%, 30% and 10% 

at the end of the 96 h period when salicyl alcohol was fed to 5-, 8- and 11-day old 

cultures, respectively, relative to the unfed controls. The results provide an additional line 

of support for metabolic competition between CTs and salicins in actively growing 

cultures. 
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Figure 2-4. Effects of culture age (2-, 5-, 8-, and 11-day old) on (A) salicin and 

isosalicin formation and (B) CT accumulation following 5 mM salicyl alcohol 

feeding.  

 

In panel A, solid and dotted lines represent salicin and isosalicin levels, 

respectively. In panel B, solid grey line represent background CT levels from 

Figure 2-1, and dotted black line represents CT levels from control cultures of this 

experiment. Data represents the mean ± standard deviation of two biological 

replicates.  
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2.3.5 Microarray analysis 

The observed reciprocal regulation of salicin and CT accumulation in cell cultures 

suggested that salicyl alcohol feeding affected both carbohydrate utilization and carbon 

flux through the phenylpropanoid pathway. To assess the breadth of the metabolic 

response, global gene expression using the 7K aspen EST array was analyzed in 5-day 

old cultures, after 48 h of feeding salicyl alcohol and where growth and CT synthesis are 

more active. Of the 1,812 ESTs that passed a series of quality control measures, 

expression of 938 ESTs representing 884 non-redundant genes was found to be 

significantly altered (with a false discovery rate p <0.05) in salicyl alcohol-fed cells 

relative to the control. However, only 300 and 240 ESTs were up- and down-regulated, 

respectively, by more than 1.3-fold. Stress-related transcripts, such as glutathione S 

transferase (GST), peroxidase, dehydrin, thaumatin-like protein, and germin-like protein, 

were among the most up-regulated genes in the salicyl alcohol-fed cells (Table 2-2). The 

most highly up-regulated EST (MTU6CR.P6.H02) corresponds to a peroxidase. From our 

other analyses, this gene was poorly expressed in vegetative tissues, except cell cultures, 

and was greatly induced in methyl jasmonate-treated cells as well as in gypsy moth-fed 

aspen leaves (Tsai et al., unpublished data). Many of the down-regulated genes were 

associated with phenylpropanoid and flavonoid biosynthesis, including phenylalanine 

ammonia-lyases (PAL1 and PAL2), 4-coumurate:CoA ligase, caffeoyl-CoA O-

methyltransferase, S- adenosylmethionine synthase, cinnamoyl-CoA reductase, and 

chalcone isomerase. These results are in line with the reduced CT accumulation in salicyl 

alcohol-treated cells. 
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Table 2-2. List of representative non-redundant genes differentially regulated in salicyl 

alcohol-fed cultures compared to unfed cultures.  

Putative function JGI Gene Model SAC/C P -value
Cell rescue and defense
Chitinase, glycosyl hydrolase family 18 estExt_Genewise1_v1.C_LG_VI1054 0.67 0.050
Plant disease resistance response protein eugene3.00031873 0.74 0.028
Chitinase putative, class I, glycosyl hydrolase family 19 gw1.XIV.3121.1 1.48 0.001
Thaumatin-like protein, PR-5b precursor estExt_fgenesh4_pg.C_LG_I0902 1.62 0.011
Carbohydrate oxidase, antifungal gw1.I.5965.1 1.81 0.001
Germin-like protein estExt_fgenesh4_pm.C_LG_XIII0003 2.09 0.015
Pollen Ole e 1 allergen and extensin grail3.0046017801 2.62 0.006
Dehydrin, stress-induced estExt_fgenesh4_pg.C_LG_V1612 3.13 < 0.001
Glutathione S-transferase GST 18 grail3.0036009801 4.37 < 0.001
Peroxidase estExt_fgenesh4_pm.C_870009 8.18 < 0.001

Energy metabolism
Light-harvesting complex I protein grail3.0012036701 0.63 0.034
NADP/FAD dependent oxidoreductase gw1.X.6680.1 0.63 0.027
Chlorophyll a/b binding protein 4 eugene3.00110470 0.69 0.017
Photosystem II core complex proteins psbY estExt_Genewise1_v1.C_LG_X5024 0.70 0.018
Photosystem I reaction center subunit V eugene3.00013110 0.73 0.032
NADP-isocitrate dehydrogenase grail3.0038019202 1.30 0.023
Phosphoglycerate kinase estExt_fgenesh4_pm.C_LG_VIII0335 1.36 0.025
Phosphoenolpyruvate carboxylase estExt_Genewise1_v1.C_1460016 1.37 0.005
Transaldolase grail3.0008017101 1.44 0.015
Fructose-1,6-bisphosphatase eugene3.00101874 1.45 0.007
Glyceraldehyde 3-phosphate dehydrogenase estExt_fgenesh4_pg.C_LG_X0484 1.52 0.023
Enolase eugene3.00151093 1.59 0.031
Aldehyde dehydrogenase 1 estExt_fgenesh4_pm.C_LG_II0915 1.72 0.003
Aconitase gw1.XIV.3318.1 1.74 0.005
Quinone oxidoreductase estExt_Genewise1_v1.C_LG_XI2337 1.76 < 0.001
Malic enzyme estExt_Genewise1_v1.C_LG_XVIII25 1.86 < 0.001
Malate dehydrogenase fgenesh4_pg.C_LG_XV000664 2.02 < 0.001

General metabolism
5-methyltetrahydropteroyltriglutamate-homocysteine S-
methyltransferase estExt_fgenesh4_pg.C_LG_XIII0289 0.60 0.002
Glutamate-1-semialdehyde 2,1-aminomutase eugene3.00150799 0.63 0.018
Glutamate decarboxylase 1 grail3.0044016002 0.66 0.018
Serine hydroxymethyltransferase 2 grail3.0003095602 0.71 0.012
UDP-glucuronosyl and UDP-glucosyl transferase eugene3.00060083 1.31 0.028
Sucrose synthase estExt_fgenesh4_pg.C_280066 1.34 0.015
Dehydroquinase shikimate dehydrogenase estExt_Genewise1_v1.C_700420 1.46 0.006
CDP-alcohol phosphatidyltransferase/Phosphatidylglycerol-
phosphate synthase gw1.X.2456.1 1.57 0.002
Asparagine synthase (glutamine-hydrolyzing) eugene3.00110945 1.69 0.001
Vacuolar invertase estExt_fgenesh4_pg.C_LG_III0902 2.22 0.006

Secondary metabolism
Phenylalanine ammonia-lyase 1 estExt_Genewise1_v1.C_280661 0.43 0.010
Caffeoyl-CoA O-methyltransferase grail3.0001059501 0.43 0.002
S-adenosylmethionine synthase grail3.0050014702 0.57 0.001
Cinnamoyl-CoA reductase estExt_fgenesh4_kg.C_LG_III0056 0.60 0.002
Phenylalanine ammonia-lyase 2 fgenesh4_pg.C_LG_X002043 0.67 0.042
Chalcone isomerase, putative estExt_fgenesh4_pg.C_LG_XVI0075 0.71 0.006
Leucoanthocyanidin reductase grail3.0010045601 0.72 0.010
4-coumarate-CoA ligase 1 grail3.0100002702 0.82 0.013
Glucosyltransferase gw1.1772.3.1 1.82 < 0.001
Polyphenol oxidase eugene3.00110271 1.92 0.001
Cytochrome P450 81B1 gw1.40.1024.1 2.23 0.002  

46

 



General metabolism comprised the predominant functional category of the differentially 

expressed genes. The expression of sucrose hydrolyzing genes such as SuSy and a 

vacuolar invertase was up-regulated in salicyl alcohol-fed cultures (Table 2-2). Energy 

metabolism comprised 6% of the differentially expressed genes. Several genes related to 

photosynthesis that could have an unknown function in dark grown cells were down-

regulated. The expression of glycolysis pathway genes, including glyceraldehyde 3-

phosphate dehydrogenase and phosphoglycerate kinase, and of tricarboxylic acid (TCA) 

cycle genes, including malate dehydrogenase, aconitase and NADP-isocitrate 

dehydrogenase, were up-regulated (Table 2-2). 

 

2.3.6 Real-time PCR analysis  

QPCR was used to enable higher resolution analysis of the gene expression changes 

observed in microarrays. Because of the limited coverage of the EST array, we expanded 

the analysis to include many more of the genes associated with the flavonoid biosynthetic 

pathway (Tsai et al., 2006a). We also included gene families associated with sucrose 

transport and hydrolysis (sucrose transporters, invertase and sucrose synthase), and the 

glycosylation (glycosyl transferases) and transport (multidrug-resistance associated 

proteins) of simple phenolics (Bowles et al., 2005; Gachon et al., 2005; Koch, 2004; Lu 

et al., 1998; Reinders et al., 2008). Data for genes with extremely low transcript levels 

were not shown. 
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2.3.6.1 Phenylpropanoid and flavonoid genes 

QPCR analysis confirmed the microarray data in that there was a trend toward down-

regulated expression of most phenylpropanoid and flavonoid pathway genes as a result of 

salicyl alcohol feeding (Figure 2-5). Among the more highly expressed genes, transcript 

levels of PtPAL1, and PtC4H1 and the early flavonoid pathway genes, PtCHI1 and 

PtF3H, decreased (Figure 2-5). Expression of several of the other less abundant genes, 

such as Pt4CL1, Pt4CL2, PtF3H, PtF3`H, PtANS2 and PtANR1 was also reduced. 

Although the degree of reduction was small in some cases (20-30%), the trend towards 

down-regulation was consistent throughout the pathway. Like the microarray results, 

QPCR data suggest that the reduced CTs in the salicyl alcohol-fed cultures could be a 

result of reduced C flux through the phenylpropanoid/flavonoid pathway.  

2.3.6.2 Sugar metabolism genes 

In heterotrophic cell cultures, exogenously supplied sucrose is critical for cellular 

metabolism but only upon its hydrolysis. Hydrolysis of sucrose is carried out by sucrose 

synthases (SuSy) and invertases (Koch, 2004; Sturm, 1999). A number of cytosolic 

SuSys, cell wall invertases (CIN), vacuolar invertases (VIN), and cytosolic, neutral 

invertases (NIN) have been annotated in the poplar genome (Bocock et al., 2008; Tuskan 

et al., 2006). PtSuSy2, PtSuSy3, PtVIN2 and PtNIN8/12 are the isoforms that are most 

strongly expressed in cell cultures (Figure 2-6). The expression of PtSuSy1 and PtSuSy2 

was up-regulated 2-fold, and that of PtSuSy3 by 40% in salicyl alcohol-fed cultures. The 

expression of PtVIN2 was also up-regulated 2-fold, while expression of neutral invertase 

did not change. Transcript levels of the other genes were low in both control and salicyl  
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Figure 2-5. Q-PCR expression analysis of phenylpropanoid and flavonoid pathway genes 

in control (white bars) and salicyl alcohol-fed (gray bars) cultures. 

 

Data represents the mean ± SE of three biological replicates.  
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Figure 2-6. Q-PCR expression analysis of invertase and sucrose synthase gene family 

members in control (white bars) and salicyl alcohol-fed (gray bars) cultures.  

 

Data represents the mean ± SE of three biological replicates. 
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alcohol-fed cultures. The results suggest that when salicyl alcohol was fed to the cultures, 

sucrose hydrolysis increased in the cytosol and in the vacuole.  

 

2.3.6.3 Glycosyltransferase genes 

The glycosylation of small phenolic molecules  is typically catalyzed by members of the 

GT family 1 (Bowles et al., 2006). Of the 326 GT1 family members annotated in the 

Populus genome (Geisler-Lee et al., 2006), 47 genes classified into several sub-families 

are expressed in the aspen cell cultures, based on Affimetrix microarray analysis 

(Harding et al., unpublished data). We further narrowed this list of candidate genes for 

QPCR analysis, focusing on members of the GT1 sub-families B, D, E and L. In 

Arabidopsis, the GT1 members capable of forming glucose esters of phenolics (such as 

salicylates and benzoates) were restricted to sub-family L, while those forming O- 

glucosides of phenolics were dispersed among the five sub-families B, D, E, F and L 

(Lim et al., 2002). Sub-family F is represented by a single Populus gene that is poorly 

expressed in cell culture, and, therefore, it was not included in the QPCR analysis. As 

references, we also included members from sub-families G, J and M that are well-

expressed in leaves and showed a positive relationship between transcript abundance and 

PG concentrations in several Populus clones subjected to various treatments (e.g., N-

stress, wounding, Babst et al., unpublished data).  

 

Altogether, QPCR was performed for 18 GT1 genes. The 10 well-expressed genes were 

from sub-families D, E and L (Figure 2-7). The remaining eight are expressed at very low 
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levels. The expression of the two most abundant GTs, GT1-2 and GT1-246 from sub-

families L and E respectively, was up-regulated 2-3 fold by salicyl alcohol feeding. The 

expression of eight other moderately expressed GTs increased during the feeding, with 

GTs from sub-families D and E up-regulated more than 2-fold. The strong expression of 

sub-family L and E members, GT1-2 and GT1-246, respectively in unfed cultures and 

their inducibility by salicyl alcohol-feeding suggest their involvement in the synthesis of 

salicins. 

 

2.3.6.4 Possible phenolic transporters 

Phenolics and other xenobiotics glycosylated in cytoplasm are commonly transported into 

the vacuole. This is thought to be mediated by ATP-binding cassette (ABC) transporters 

or H+ antiporters, depending on the compound being compartmentalized and the plant 

species (Dean et al., 2005; Dean et al., 2003; Rea, 2007). Microarray expression results 

showed a slight up-regulation of a Mg-ATP-dependent glutathione conjugate pump, 

known as MRP transporter, in salicyl alcohol-fed cultures (supplemental data). Therefore, 

we expanded our studies to the four putative tonoplast-localized and two plasma 

membrane-localized MRP transporters in Populus, based on the orthologs from 

Arabidopsis and maize (Kolukisaoglu et al., 2002; Rea, 2007). PtMRP1 was the most 

abundant transcript and was up-regulated by 70% in salicyl alcohol-fed cultures (Figure 

2-8). The expression of PtMRP4 and PtMRP6 was lower in unfed cultures, but was also 

up-regulated by 2.6 and 1.8 fold, respectively. PtMRP2 and PtMRP5 are poorly 

expressed and showed little change compared to control. 
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SUTs from several plant species are also capable of transporting a wide range of α- and 

β-phenolic glucosides, besides sucrose, across biological membranes (Chandran et al., 

2003; Reinders et al., 2008; Sivitz et al., 2007). LeSUT4, a tonoplast-localized 

transporter, has been suggested to be involved in the export of sucrose and possibly of 

phenolic glucosides from vacuole into cytoplasm (Reinders et al., 2008). Additional 

scenarios for how various SUTs function have been posited in review papers (Lalonde et 

al., 1999; Williams et al., 2000). Therefore, we examined the expression of the six 

Populus SUT gene family members in control and salicyl alcohol-fed cultures. PtSUT4 

was the most abundant transcript and its expression was up-regulated ~1.5-fold in 

cultures fed with salicyl alcohol (Figure 2-8). Expression of PtSUT5 was very low while 

that of the remaining four SUTs was not observed in control or salicyl alcohol-fed cells. 

Together, these results suggest the possible involvement of PtMRP1, PtMRP6 and 

PtSUT4 in the transport of glycosides into and out of vacuole. 

 

 

 

 

 

 

 

 

 

 

53

 



 

 

 

 

 

 

 

0

25

50

75

G
T1

-2

G
T1

-2
46

G
T1

-2
62

G
T1

-2
89

G
T1

-2
21

G
T1

-2
00

G
T1

-2
92

G
T1

-1
09

G
TI

-2
53

G
T1

-3
24

G
T1

-2
58

G
T1

-
27

0/
27

4

G
T1

-2
25

G
T1

-2
93

G
T1

-1
86

G
T1

-3
15

G
T1

-1
88

G
T1

-2
98

L E E E L D D J G G E G B M L L G D

Re
la

tiv
e 

ex
pr

es
si

on

0

3

6

9

0

25

50

75

G
T1

-2

G
T1

-2
46

G
T1

-2
62

G
T1

-2
89

G
T1

-2
21

G
T1

-2
00

G
T1

-2
92

G
T1

-1
09

G
TI

-2
53

G
T1

-3
24

G
T1

-2
58

G
T1

-
27

0/
27

4

G
T1

-2
25

G
T1

-2
93

G
T1

-1
86

G
T1

-3
15

G
T1

-1
88

G
T1

-2
98

L E E E L D D J G G E G B M L L G D

Re
la

tiv
e 

ex
pr

es
si

on

0

3

6

9 

 

 

 

 

 

 

Figure 2-7. Q-PCR expression analysis of GT-1 gene family members in control 

(white bars) and salicyl alcohol-fed (gray bars) cultures.  

 

The arrow at the bottom points to the subgroup of the GTs. Data represents the 

mean ± SE of three biological replicates. Refer to the right-hand side axis for 

dotted bars. 
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Figure 2-8. Q-PCR expression analysis of MRP transporters and SUT genes in 

control (white bars) and salicyl alcohol-fed (gray bars) cultures.  

 

Data represents the mean ± SE of three biological replicates. 
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2.4 Discussion 

2.4.1 Salicin synthesis in cell cultures 

PGs and CTs are the two major phenylpropanoid derivatives detected in abundant 

quantities in Populus plants (Donaldson and Lindroth, 2007; Harding et al., 2005). Here, 

we report that CTs were also abundant in cell cultures, but that salicin and higher-order 

PGs were not detected (Figure 2-1). Since both CT and PG originate from different 

branches of the phenylpropanoid pathway, we conducted a series of experiments in 

search of a lesion in the PG biosynthetic branch.  In general, phenolic precursors were all 

glycosylated upon suspension cell feeding. During the feeding experiments, it was 

evident that PG (salicin) precursor feeding interfered with CT biosynthesis.  Several 

experiments were then conducted to investigate the relationship between PG precursor 

feeding, CT accrual and cell growth.   

 

Several factors can be considered in analyzing the inability of the aspen suspension cells 

to synthesize PG.  In cultured suspension cells of Vanilla, PAL activity and synthesis of 

phenylpropanoid derivatives were severely inhibited when grown in media supplemented 

with 2,4-D, but not with naphthalene acetic acid (NAA, Funk and Brodelius, 1990). In 

our study, the aspen cell cultures were also maintained in 2,4-D-containing media. 

However, high levels of PAL expression (Figure 2-5) and CT accumulation (Figure 2-1) 

were detected, making it unlikely that 2,4-D inhibited the phenylpropanoid pathway. It is 

possible that specific branches of the phenylpropanoid pathway are differentially 

regulated by 2,4-D. In Populus cell cultures, secondary metabolites such as anthocyanins 
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can be induced by feeding auxins (NAA and IAA), vitamins (riboflavin) or high levels of 

sucrose (5%, Matsumoto et al., 1973; Verma et al., 2000). However, in none of these 

experiments were anthocyanins induced without light, suggesting light as a key factor in 

synthesis of certain secondary metabolites (Matsumoto et al., 1973; Verma et al., 2000). 

In the present study, salicin or higher-order PGs were not detected in light-grown calli or 

heterotrophic cell cultures, but were present in the leaves of the aspen L4 line from which 

the cell cultures were initiated. It is possible that other factors needed for PG synthesis 

were not optimal under the callus and cell culture conditions used. Several secondary 

metabolites, such as quinolisidine alkaloid in Lupinus (Wink and Hartmann, 1980) and 

trigonelline (N methyl nicotinc acid) in tobacco (Ikemeyer and Barz, 1989) are 

synthesized only in phototrophic cells but not in heterotrophic cells. The shikimate 

pathway upstream of phenylpropanoid metabolism is localized in the chloroplast 

(Herrmann and Weaver, 1999). We reasoned that lack of plastids may hinder PG 

synthesis in dark-grown cells. Efforts to establish photoautotrophic cells, however, did 

not produce vigorous callus or cell suspension cultures.  

 

Interestingly, salicin and isosalicin were detected in salicyl alcohol-, salicylaldehyde- and 

helicin-fed cultures. In contrast, the feeding of benzoates or phenylpropanoid precursors 

thought to be important for PG synthesis did not result in PG accumulation. Isotope 

feeding of leaf tissues with PG precursors such as cinnamic acid and benzoates resulted 

in salicortin labeling, and competition studies suggested that benzoic acid is an 

intermediate in salicin synthesis in poplar leaves (B. babst, unpublished, Zenk, 1967). 

Feeding of benzoic acid also induced accumulation of higher-order PGs in different 
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tissues of Salix  (Ruuhola and Julkunen-Tiitto, 2003), confirming their importance in PG 

synthesis. It is possible that downstream product formation was not observed in the aspen 

cell cultures we used because the substrates fed to the cells were rapidly glycosylated and 

sequestered. The compartmentalization differs between cultured cells and intact tissue 

could be one of several possible contributing factors to failure of cells to make PGs, thus 

making this system not convenient for higher-order PG biosynthetic pathway elucidation.  

 

2.4.2 Metabolic competition between salicin and CTs in salicyl alcohol-fed cultures  

In cell cultures, feeding of 5 mM salicyl alcohol, especially during the exponential and 

stationary growth phases, led to accumulation of salicins with concomitant reduction of 

CTs by up to 35% at 96 h. The fact that salicins could not accumulate to the maximum 

levels following salicyl alcohol feeding to actively growing and CT-synthesizing cells, 

and that these cells were no longer able to maintain the normal trajectory of CT increases, 

further supports a dynamic mode of competition dictated by cell growth and metabolic 

status. The reduction in CTs is unlikely because of competition for intermediates, as 

salicins and CTs do not share common intermediates in cell cultures. A metabolic 

competition may exist in 5 mM salicyl alcohol-fed cultures for the sugar resources 

required for glycosylation of salicyl alcohol, growth and CT synthesis. The common 

sugar utilized by most GTs for glycosylation is UDP-glucose (Hostel, 1981; Jones and 

Vogt, 2001). In heterotrophic cells, UDP-glucose is derived from sucrose via SuSy-

mediated hydrolysis or via phosphorylation of glucose released from invertase-

hydrolyzed sucrose (Doehlert, 1990; Karnil and Aloni, 2002; Koch, 2004). Up-regulation 
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of PtVIN2 and several PtSuSy genes indicates participation of multiple sub-cellular 

compartments during salicyl alcohol glycosylation. Gene expression for the Group 3 

sucrose transporter PtSUT4 (see Chapter 2) was also up-regulated. Based on the proposed 

model for SUT4 function (Chapter 2), orthologs of SUT4 mediate the efflux of sucrose 

and other phenolic glycosides from the vacuole into the cytosol (Reinders et al., 2008). 

Therefore, increased expression of PtSUT4 supports the increased efflux of sucrose from 

the vacuole for SuSy-mediated hydrolysis in the cytosol. However, it is not clear that this 

is the major route for the provisioning of UDP-glucose in our experiments because 

PtVIN2 expression also was sharply up-regulated (Figure 2-6, Table 2-2). In salicyl 

alcohol-fed cultures, several key genes involved in glycolysis and Kreb cycle pathway 

are up-regulated. However, these genes may have other functions in the cells besides 

involving in Kreb cycle. The hexoses not utilized for salicyl alcohol glycosylation can be 

utilized as intermediates in glycolysis. The conversion of pyruvate, the end product of 

glycolysis into acetyl-CoA, is the starting for Kreb cycle (Fernie et al., 2004). The 

increased Kreb cycle demands increased acetyl-CoA. Acetyl-CoA is also an intermediate 

in the synthesis of fatty acids and malonic acid pathway (Gueguen et al., 2000). Forty 

percents of the C skeleton of CTs is derived from malonic acid (Taiz and Zeiger, 1998). It 

may be possible that the C that otherwise can be used for CT synthesis is driven into 

Kreb cycle, thus possibly resulting in reduced CT in salicyl alcohol-fed cultures.  

 

The differential compartmentalization of the sugar hydrolysis might affect sugar 

utilization for different pathways. The partitioning of sugars to growth is likely higher in 

salicyl alcohol-fed cultures because of the observed stimulated growth at 24 h and 48 
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h after feeding 1 and 5 mM salicyl alcohol. In addition, because the fed salicyl alcohol is 

toxic, substantial amount of C has to be diverted for its glycosylation. Thus, reduction in 

sugars could be a possibility of reduced CTs in salicyl alcohol-fed cultures. The observed 

reduced expression of phenylpropanoid and flavonoid pathway genes (Figure 2-5, Table 

2-2) is also consistent with the reduced CT levels in salicyl alcohol-fed cultures. Thus, 

simple resource competition could have reduced C for CT synthesis supporting the 

observation that PGs and CTs show metabolic reciprocity in their abundance. Here we 

show that such reciprocity is also true in cell cultures. Alternatively, in these cultures, 

substantial amount of C could be diverted for the synthesis of proteins that are required 

for the sequestration of salicin into vacuole as reported in Medicago cells accumulating 

triterpenes after elicitation (Broeckling et al., 2005). 

 

Normally, glycosylation is associated with sequestration or inactivation of toxins, 

reaction intermediates, or hormones etc (Gachon et al., 2005; Kim et al., 2009; Kita et al., 

2000). Several of the characterized GTs show broad substrate specificity, while single 

substrate specific GTs were also reported (Hostel, 1981; Lim et al., 2005; Lim et al., 

2002; Meßner et al., 2003). In this study, two conversions were observed in the feeding 

experiments; glycosylation and isomerization. Glycosylation to yield multiple glucoside 

isomers may be mediated by regio-specific glucosyltransferases as reported (Sato and 

Hasegawa, 1971; Sato and Hasegawa, 1972). In general, the findings from the various 

cell culture systems examined are consistent with our observation that isosalicin 

increased in relation to salicin during the feeding period, and that the process may be 

mediated by glycosyltransferases. As shown in Figure 2-7, most of the well-expressed 
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GTs were up-regulated in salicyl alcohol-fed cultures. The two most abundantly 

expressed genes, GT1-246 and GT1-2, are members of sub-families E and L, 

respectively. Substrate specificity differs within and among sub-family members, as two 

of three sub-family E GTs of Arabidopsis glycosylate sinapyl and coniferyl alcohols 

preferentially, while the third one glycosylates sinapyl and coniferyl aldehydes only (Lim 

et al., 2005). In general, GTs that form esters from aglycones are restricted to sub-family 

L, while those that form O-glucosides are distributed among different families, including 

L and E (Lim et al., 2002). The L-family protein FaGT2 from strawberry (Fragaria X 

ananassa) glycosylates phenol-carboxylic acid aglycones to form glucose esters, but not 

O-glucosides (Lunkenbein et al., 2006). The two abundant and salicyl alcohol-induced 

GTs, GT1-2 and GT1-246 are most likely candidates for salicin and isosalicin formation 

from salicyl alcohol, although we cannot exclude the possible involvement of other 

weakly expressed GTs.  

 

After glycosylation, the glycosides are transported into the vacuole for storage (Dean et 

al., 2005; Dean et al., 2003; Rea, 2007). It has been recently reported that these 

glycosides can be exported from the vacuole in response to defense signals (Farag et al., 

2008; Naoumkina et al., 2007; Rea, 2007). An ABC transporter in cell cultures of 

soybean, and a H+ antiporter in tobacco are involved in the uptake of salicylate 

glucosides (Dean et al., 2005; Dean et al., 2003). A sub-group of tonoplast-localized 

ABC transporters in Arabidopsis, AtMRP1 and AtMRP2 (multidrug resistance proteins), 

are also capable of transporting xenobiotics, herbicides and anthocyanins into the vacuole 

(Lu et al., 1998; Lu et al., 1997). As mentioned earlier, orthologs of PtSUT4 are also 
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capable of transporting salicin (Reinders et al., 2008). The up-regulation of putative 

tonoplast localized MRP transporters, PtMRP1 and PtMRP6 suggests their involvement 

in the uptake of salicins from cytoplasm into vacuole. Salicin uptake was also shown to 

be mediated by SUTs (Reinders et al., 2008). The up-regulation of PtSUT4 in salicyl 

alcohol-fed cultures supported its involvement in the transport of salicins from vacuole 

into cytoplasm, as an alternative function, presumably for transglucosylation i.e. 

conversion of salicin to isosalicin which occur in cytoplasm. However, involvement of 

unidentified H+ transporters cannot be ruled out.  

 

Our cell culture studies provided additional information related to PG-CT metabolic 

reciprocity. Additional work such as gene silencing is needed to confirm the involvement 

of our predicted genes in salicin and isosalicin synthesis and transport. Our gene 

expression studies were limited only to one salicyl alcohol feeding condition. A better 

understanding of the class or classes of GTs involved in salicin formation and of the 

transporters involved in uptake of salicins may be achieved by using different levels of 

salicyl alcohol, alternative time points or other aglycones such as salicylaldehyde.  
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Chapter 3 Sucrose transporter (SUT) gene family in Populus 

and PtSUT4-mediated regulation of non-structural 

carbohydrates and phenylpropanoids 

ABSTRACT 

Sucrose is the most abundant sugar found in the transport stream of Populus. In this and 

several closely related temperate tree taxa, the mechanism of sucrose loading into the 

phloem is thought to be passive symplastic, and to be facilitated by sucrose transporters 

(SUT). In addition to their function in sucrose transport, certain SUT proteins transport 

phenylpropanoid-glycosides, at least one of which comprises an important carbon sink in 

Populus. The objective of this study was to characterize the Populus SUT gene family 

and to investigate the effect of SUT suppression on carbohydrate and secondary 

metabolite homeostasis in transgenic Populus. Six SUTs are found in the Populus 

genome and they can be classified into three groups based on phylogenetic analysis. The 

expression of Group-1 members PtSUT1/2 and PtSUT3 is restricted to vascular tissues in 

leaves and stems. PtSUT4 (Group-3) and PtSUT5 (Group-2) are the most abundantly 

expressed isoforms, and their transcripts were found in all tissues examined. PtSUT3, 

PtSUT4 and PtSUT5 encode functional transporters based on yeast complementation 

experiments. To investigate SUT function in planta, transgenic poplar plants with 

suppressed SUT4 expression were produced and grown under two regimes of N nutrition.  

SUT4 was chosen because of its abundant expression in all the tissues and because of its 

correlation with PGs under N stress in the preliminary studies. Transgenic plants 

exhibited higher ratios of leaf area-to-plant height and leaf area-to-stem mass than 
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wildtype plants whether grown under N-replete or low N nutrient conditions. Sucrose and 

glucose levels were higher in source leaves of SUT4 transgenics, regardless of N 

treatment. Foliar starch accrual was not affected by SUT4 suppression during N-replete 

growth. However, the foliar starch increase caused by N-deficiency in wildtype plants did 

not occur in SUT4 transgenics. Phenolic glycoside (PG) levels were reduced in leaves and 

primary stems of SUT4 plants. Under N deficiency, PGs decreased in wildtype, but not in 

SUT4 plants. Sucrose synthase (SuSy) gene expression was reduced in source leaves of 

SUT4 transformants. Plant-wide, the expression of SuSy and invertase genes was slightly 

elevated in stems and roots, but slightly suppressed in leaves of SUT4 transgenics. The 

plant-wide distribution of phenylalanine ammonia-lyase gene transcripts was also 

affected by SUT4 down-regulation. In Populus it appeared that PtSUT4 at least partly 

regulates N-dependent C partitioning between sugars and phenylpropanoids. 

 

3.1 Introduction 

Sucrose is the predominant transport form of photoassimilate in many herbaceous annual, 

including Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tobaccum), and 

woody perennial (e.g., Populus) species (Haritatos et al., 2000; Konishi et al., 2004). 

Sucrose synthesized in the cytoplasm from Calvin cycle triose phosphates is stored in the 

vacuole or is exported to sink organs via the phloem (Buchanan et al., 2000). Transport 

sucrose is actively loaded into the phloem apoplastically as in Arabidopsis (Gottwald et 

al., 2000), or moves there symplastically via plasmodesmata (Lalonde et al., 1999; 

Turgeon, 2000). In the close Populus relative, Salix, and many other temperate tree taxa, 
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symplastic transfer to phloem is not thought to involve polymer trapping as in the 

cucurbits (Turgeon, 2006; Turgeon and Medville, 1998). In passive symplastic 

transporters, the mechanism regulating sucrose movement into the phloem is not well 

understood but may partly be regulated by the distribution of sucrose between vacuole 

and mesophyll (Turgeon and Medville, 1998). Plasmolytic studies indicated that an 

apoplastic component may contribute to sucrose transport in Populus (Russin and Evert, 

1985), but in Salix at least, there is no evidence for apoplastic phloem loading (Turgeon 

and Medville, 1998). 

 

Sucrose transporter proteins (SUT/SUCs) that facilitate phloem-loading, long-distance 

transport and intracellular compartmentalization have been characterized from a number 

of model plant systems, including Arabidopsis (Sivitz et al., 2007; Srivastava et al., 

2008), rice (Oryza sativa, Aoki et al., 2003) and tomato (Lycopersicum esculentum, 

Hackel et al., 2006). Multiple SUT/SUC genes encoding functional proteins with distinct 

properties are generally expressed in each species (ArabidopsisGenomeInitiative, 2000; 

Turgeon, 2006; Yu et al., 2002). Based on sequence phylogeny, the known SUT/SUCs 

fall into three groups (Kuhn, 2003; Reinders et al., 2008; Sivitz et al., 2007). In general, 

the transporters in Group-1 (e.g., AtSUC1, AtSUC2, AtSUC9) exhibit a high affinity 

(low Km) for sucrose (Chandran et al., 2003; Sivitz et al., 2007). Several Group-1 

proteins (AtSUC2, LeSUT1, NtSUT1, StSUT1) have been localized at the plasma 

membrane of phloem companion cells in leaves and stems (Schmitt et al., 2008; Stadler 

and Sauer, 1996). Group-2 transporters (e.g., AtSUC3, PmSUC3 and HvSUT1) generally 

exhibit a moderate affinity for sucrose (Barth et al., 2003; Schulze et al., 2000; Sivitz 
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et al., 2005). Several Group-2 transporters have been localized at the plasma membrane 

of phloem sieve elements. The Group-3 transporters, e.g., LjSUT4, StSUT4 and AtSUC4, 

also exhibit low affinity for sucrose (Reinders et al., 2008; Weise et al., 2000). Members 

of this group are localized at the tonoplast (AtSUC4, HvSUT2 and LjSUT4) of leaf 

mesophyll cells and roots (Endler et al., 2006; Reinders et al., 2008) or at the plasma 

membrane (StSUT4, Chincinska et al., 2008). An exception to the general patterns of 

sucrose affinity described above was observed in grape (Vitis vinefera), where Group-1 

transporters exhibited a lower affinity (Km 8.0-10.5 mM) for sucrose than Group-2 and 

Group-3 transporters (Km 0.9-1.4 mM, Manning et al., 2001; Zhang et al., 2008). SUTs 

from all three groups exhibit in vitro transport activity for maltose, various α- and β- 

phenyl glucosides, salicin and helicin at rates similar to that of sucrose (Reinders et al., 

2008; Sivitz et al., 2007; Sivitz et al., 2005).  

 

Gene silencing has been used to understand the function of various SUT/SUCs. On the 

basis of high sugar/starch accumulation in source leaves of mutant or SUT-suppressed 

lines, Group-1 transporters (AtSUC2, NtSUT1, LeSUT1 and StSUT1) are confirmed to 

play a central role in active phloem loading of sucrose (Burkle et al., 1998; Gottwald et 

al., 2000; Hackel et al., 2006; Riesmeier et al., 1994; Srivastava et al., 2008). So far, gene 

silencing has been tested on only one Group-3 transporter, a plasma membrane-localized 

StSUT4 in potato (Solanum tuberosum). The diurnal pattern of sugar accumulation and 

export was altered in source leaves of the silenced plants. Those plants also displayed 

early flowering, increased tuber yield, and reduced expression of gibberellic acid and 
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ethylene biosynthetic genes (Chincinska et al., 2008). To date, no mutant or transgenic 

manipulation studies have been reported for the tonoplast-localized SUTs. 

 

In addition to direct effects on sugar metabolism, altered SUT expression has been 

reported to affect phenylpropanoid metabolism. Secondary metabolites such as 

anthocyanins accumulate abnormally in source leaves of AtSUC2 mutants and StSUT1 

antisense lines (Gottwald et al., 2000; Riesmeier et al., 1994; Srivastava et al., 2008). 

Microarray analysis of the AtSUC2 mutants revealed a several-fold up-regulation of 

phenylpropanoid and flavonoid pathway genes, consistent with the increased anthocyanin 

levels (Lloyd and Zakhleniuk, 2004; Riesmeier et al., 1994). Anthocyanins accumulate in 

hypocotyls and cotyledons to higher levels when Arabidopsis is fed sucrose and maltose 

than when the sucrose analog turanose is fed (Solfanelli et al., 2006; Teng et al., 2005). 

Anthocyanins do not accumulate when the sucrose analog palatinose is fed (Solfanelli et 

al., 2006; Teng et al., 2005). In accordance with a role for SUT in the response, SUT 

proteins do not transport palatinose (Chandran et al., 2003; Sivitz et al., 2007).  

Anthocyanins also do not accumulate when AtSUC1 mutants are grown on sucrose media 

which again supports the involvement of SUT for anthocyanin accumulation (Reinders et 

al., 2008). Either sucrose or maltose feeding can induce the expression of defense related 

genes such as hydroxyproline-rich glycoprotein (HRGP) in soybean, and the induction is 

suppressed when p-chloromercuribenzene sulfonate (PCMBS) is used to inhibit transport 

(Ahn and Lee, 2003).  
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SUT/SUC may affect secondary metabolism directly via their affinity for glycosylated 

secondary metabolites such as salicin (Chandran et al., 2003; Reinders et al., 2008), or 

indirectly via participation in sugar transport (Sauer, 2007). Whereas high levels of 

secondary metabolites can be induced in herbaceous model species, they are 

constitutively abundant in leaves of Populus, Salix and other woody perennials (Lindroth 

et al., 1987a; Orians et al., 2000; Ruuhola et al., 2001). The phenolic glycosides (PGs) 

characteristic of these taxa are thought to be derived from salicin, a putative SUT 

substrate (Chandran et al., 2003; Pierpoint, 1994; Reinders et al., 2008; Ruuhola and 

Julkunen-Tiitto, 2003). PG concentrations exceeding 25% leaf dry weight are not 

uncommon in aspen and cottonwood (Donaldson and Lindroth, 2007; Harding et al., 

2005; Lindroth and Hwang, 1996). Based on 14CO2 tracer studies in Populus, 30% of 

photoassimilate are rapidly partitioned into non-structural phenylpropanoids, including 

PGs and anthocyanidin-derived condensed tannins (CTs, Kleiner et al., 1999). 

Concentrations of these non-structural phenylpropanoids are also known to vary 

substantially during the growing season and in response to soil nutrient availability and 

atmospheric CO2 (Hakulinen et al., 1995; Kleiner et al., 1998; Lindroth et al., 1987b; 

McDonald et al., 1999; Stevens et al., 2007). Here we characterize the PtSUT gene family 

and investigate its importance to the interface between carbohydrate and secondary 

metabolism in Populus. 
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3.2 Materials and Methods 

3.2.1 Plant materials 

Populus tremula × Populus alba clone 717-1B4 was used in this study unless otherwise 

mentioned. In vitro micropropagated plants were hardened in a mist chamber and 

transferred to either soil or hydroponics tubs. Pot fertilization and hydroponic nutrient 

composition were as reported previously (Harding et al., 2005). The first fully unfurled 

leaf 2 cm in length was considered leaf plastocron index 0 (LPI-0, Larson and Isebrands, 

1971). The following tissues were analyzed: shoot tip (ST, apical to LPI-0); young leaf 

(YL, LPI-2); mature leaf (ML, LPI5); primary stem (PS, stem internodes 0-3); secondary 

stem (SS, stem internodes 7-9); root (RT, the distal-most 6-8 cm of rapidly elongating 

primary roots excluding the 1-cm tip/cap); developing phloem (PH) and xylem (XY) 

were collected from stem internodes 10-15. Male and female catkins and pollen were 

collected from field grown flowering P. tremuloides trees. Tissues were snap-frozen in 

liquid nitrogen and stored at -80oC until use.  

 

3.2.2 Gene and protein sequence analysis 

SUT gene models were identified from the sequenced Populus trichocarpa genome 

(Tuskan et al., 2006) by BlastP with published SUT proteins. Best predicted models were 

chosen by manually examining all available computational gene model predictions at 

each locus in the JGI Populus trichocarpa genome portal v1.1. The primary structure 

analysis of SUT proteins was carried out using the Expasy proteomic server 

(http://us.expasy.org/). Multiple sequence alignment and similarity calculation were 
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performed using the GCG (Genetics Computer Group, Madison, WI) software. 

Phylogenetic analysis of protein sequences was performed with MEGA package v3.1  

(Kumar et al., 2004) using the minimum-evolution algorithm. Rooted trees were 

generated from the bootstrap test with 1,000 replicates, using the Poisson correction 

(homogenous patterns) and the complete deletion option for handling alignment gaps. 

 

3.2.3 Quantitative dual target PCR 

PtSUT1/2 gene copy number was estimated using QD-PCR (Kihara et al., 2006) in a 10 

µl reaction containing the following: 20 ng of genomic DNA, 0.35 U of RedTaq 

polymerase (Sigma), 100 µM dNTPs, and 0.5 µM primers. The primers used in this study 

were designed using the PrimerQuest online primer design tool (http://www.idtdna.com) 

and are listed in Appendix A. Known single-copy genes in the Populus geneome, 

PtSUT3, PtC4HL1, were chosen as the reference genes. Primers of reference and target 

genes were designed such that the GC content (50%) and Tm (60 oC) values are similar. 

To minimize effects of amplicon size on band intensity estimation, two target gene 

(PtSUT1/2) and reference gene (PtSUT3, PtC4HL) primer sets were used. The target gene 

primers were designed to amplify ~500 bp and the reference gene primers, PtSUT3, 420 

bp, and PtC4HL1, 680 bp.  

 

3.2.4 RNA extraction  

RNA was extracted from frozen tissues using the CTAB (cetyltrimethylammonium 

bromide) method  (Chang et al., 1993). To the finely ground sample, 1 ml of CTAB 
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buffer containing 2% β-mercaptoethanol was added, vortexed for 1 min and incubated for 

15 min at 65 ºC with intermittent mixing. To this tube, 900 μl of chloroform:isoamyl 

alcohol (24:1) were added, vortexed and centrifuged for 10 min at 10,000 g to separate 

the two phases. RNA in the aqueous phase was precipitated using 330 μl of 8M LiCl. The 

samples were incubated on ice for 2 hours and centrifuged at 4 ºC for 15 min at 14,000 g. 

The remaining steps for RNA extraction were performed as described in Chapter 2.  

 

3.2.5 cDNA synthesis and Q-PCR expression analysis 

cDNA synthesis and Q-PCR were performed as described in Chapter 2. 

 

3.2.6 Yeast complementation 

Functional analysis of the Populus SUTs was carried out by yeast complementation 

experiments using the SUSY7/ura3 mutant strain (Riesmeier et al., 1992; Weise et al., 

2000). Full-length coding sequences of PtSUT3, PtSUT4 and PtSUT5 was cloned into the 

yeast shuttle vector PDR196 (Rentsch et al., 1995), between the plasma membrane H+-

ATPase (PMA1) promoter and the alcohol dehydrogenase (ADH) terminator. The 

resultant plasmids were transformed into the SUSY7/ura3 strain using the lithium acetate 

method (Gietz and Woods, 2002). Transformants were selected on uracil-deficient 

medium and screened by PCR using a combination of gene-specific and vector primers. 

The transformed and untransformed mutants were cultured on yeast media (1.7 gm l-1 

yeast nitrogen base without amino acids and 500 mg l-1 ammonium sulfate) supplemented 

with either 2% glucose or 2% sucrose as the sole carbon source for 3 days. 
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3.2.7 RNAi construct development and plant transformation 

A 200 bp SUT4 fragment amplified from the 3`- region of the Populus cDNA was ligated 

to an Xcm1 digested pGFPm-T vector (Luo et al., 2008) and transformed into TOP10 

competent Escherichia coli cells. Subcloning of the SUT4 fragment and development of 

an inverted repeat in the pGSA1285 (www.chromdb.org) binary vector backbone was 

performed as described previously (Luo et al., 2008). The binary vector was transformed 

into Agrobacterium strain C58-pMP90 using the freeze and thaw method (Holsters et al., 

1978). Transformed colonies were selected on LB media supplemented with 

chloramphenicol (170 mg l-1), and were PCR confirmed. Positive Agrobacterium strain 

was used to transform Populus leaf pieces by co-cultivation as previously described (Ma 

et al., 2004). Transformed plants were selected from kanamycin (100 mg l-1) media and 

confirmed by PCR using a combination of gene-specific and pGSA1285 vector primers. 

Fully rooted wildtype and SUT4 transgenic plants were moved from culture boxes to the 

mist chamber in a greenhouse for acclimation. 

 

3.2.8 Hydroponic nitrogen treatment studies 

Hydroponically-grown, untransformed and SUT4 transformed plants (~15 cm in height) 

were distributed into small, 10-L hydroponics tubs 8 days before nutrient treatments 

began. After the 8-day acclimation period, the plants were maintained either with full-

strength (2.5 mM N, referred to as N-replete) or with 5% of full strength N (0.125 mM N, 

referred to as low-N or stressed). For each treatment, 7-10 individual plants were used. 

Nutrient treatments were continued for 2 weeks before the plants were harvested. 
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Nutrients were changed every 2 days to maintain the N treatment levels.  

 

3.2.9 Sugar and starch extraction and quantification 

Sucrose, glucose and fructose were estimated as described (Sherma and Zulick, 1996). 

Briefly, 20 mg of freeze-dried tissue sample was extracted three times in 800 µl of 80% 

methanol at 95oC. The supernatants were combined for fructose, glucose and sucrose 

estimation and the pellet was saved for starch analysis. The three sugars were resolved by 

HPTLC with a Linomat5 applicator (Camag, Muttenz, Switzerland). Methanol extract (2 

µl) was loaded onto HPTLC Merck silica gel 60 F254 plates (Fisher, Hanover Park, IL) 

impregnated with 0.10 M sodium bisulfate and 10 mM citrate buffer (pH 4.8). The plates 

were developed three times with the mobile phase acetonitrile:H2O (85:15) in a 

horizontal TLC plate developing chamber equilibrated for 10 min. After the third 

development, plates were sprayed with 1-naphthol-sulfuric acid reagent (180 mM 1-

napthol dissolved in 75% ethanol containing 10% sulfuric acid) and heated for 10 min at 

100-110°C. The sugars were quantified by scanning the plate at 515 nm using a 

CAMAG™ TLC scanner. Peak areas were integrated using WINCATS™ software 

(Camag) and sucrose, glucose and fructose were quantified using authentic standards.  

 

Starch was estimated by an enzymatic method (Chow and Landhausser, 2004; Fox et al., 

2001). The pellet was dispersed into 720 µl of 0.1 N NaOH and incubated at 50°C for 30 

min with intermittent mixing. The suspension was neutralized with 800 µl of 0.1 N acetic 

acid, and starch was digested by adding 1 U each of α-amylase (from Aspergillus oryzae, 
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Sigma chemicals, St Louis, MO) and amyloglucosidase (from Aspergillus niger, Sigma) 

in 180 µl of 0.05 M sodium acetate buffer (pH 5.1) and incubated for 24 h at 50°C. Equal 

volumes of enzyme digest and 33 mM p-hydroxy benzoic acid hydrazite solution in 

alkaline dilutent (0.5 M trisodium citrate, 0.1 M calcium chloride and 0.5 M sodium 

hydroxide) were combined, boiled for 4 min, cooled on ice for 4 min and absorbance 

measured at 415 nm. Starch was then estimated based on the standard curve developed 

using glucose. 

 

3.2.10  PG and CT extraction and quantification 

Freeze-dried samples were analyzed for PG and CT as described (Harding et al., 2005) 

with slight modifications. Briefly, 5 mg of freeze dried tissue was extracted in 500 µl of 

cold methanol (4oC-10oC) for 20 min in an ultrasonic bath and centrifuged at 15,000 g for 

5 min. For PG quantification, 2 µl  of the methanol extract was loaded onto Merck silica 

gel 60 F254 silica plates (Fisher) and developed in ethyl acetate:methanol:water 

(77:13:10, v/v, Meier et al., 1987). The plates were scanned at a wavelength of 270 nm 

using a CAMAG™ TLC scanner (Camag). Peak areas were integrated using 

WINCATS™ software (Camag) and PGs quantified using authentic salicin, salicortin and 

tremulacin standards (provided by Rick Lindroth, Univ. of Wisconsin, Madison). Soluble 

and insoluble CTs were extracted and quantified as described in Chapter 2. Total CT 

levels were based on estimates of soluble and insoluble CTs.  
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3.3 Results 

3.3.1 The Populus SUT gene family 

Six PtSUT gene sequences were identified in the P. trichocarpa genome (Tuskan et al., 

2006). While PtSUT3, PtSUT4, PtSUT5 and PtSUT6 are located on linkage groups (LG) 

19, 2, 8 and 10, respectively, PtSUT1 and PtSUT2 are located on scaffolds that have not 

been assembled to any chromosome (Table 3-1). There is a large gap in the P. 

trichocarpa SUT2 sequence upstream of the stop codon, but the rest of the coding region 

sequence is nearly identical to that of PtSUT1 (99% identity at the nucleotide and amino 

acid levels). We estimated the copy number of PtSUT1/2 in the Populus genome by 

quantitative dual-target PCR (Kihara et al., 2006). As shown in Figure 3-1, the amplified 

band of the target gene(s), PtSUT1/2, was more intense than those of the single-copy 

reference genes, PtSUT3 and cinnamate 4-hydroxylase-like (PtC4HL, Tsai et al., 2006a). 

To determine whether distinct PtSUT1 and PtSUT2 genes exist, a 1kb genome fragment 

near the 3` region of PtSUT1 and PtSUT2 sequence was amplified from P.tremula × P. 

alba using a primer pair designed to amplify both PtSUT1 and PtSUT2, and the products 

were cloned and sequenced. Figure 3-2 shows sequence alignment of the 1kb-fragments 

for PtSUT1 and PtSUT2 from P. trichocarpa and PtSUT1x and PtSUT1y from P. tremula 

× P. alba. Of the 18 clones sequenced, PtSUT1x was represented in 14 and PtSUT1y in 4 

clones. Because of the observed sequence differences between PtSUT1x and PtSUTy, the 

presence of two highly identical genes, PtSUT1 and PtSUT2 in the Populus genome is 

supported.   
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Sequence and gene structure analyses revealed that the six PtSUT genes belong to three 

distinct groups. PtSUT1/2 and PtSUT3 are highly similar to each other, exhibiting 90% 

identity at the nucleotide level and 92% similarity at the amino acid level (Table 3-2). 

They also share a conserved gene structure, with 3 exons and 4 introns each (Figure 3-3). 

PtSUT4, shares 55-63% similarity with the other SUT isoforms at the coding sequence 

and amino acid levels, and contains 5 exons. PtSUT5 and PtSUT6 are highly similar to 

each other (91% nucleotide identity and 93% amino acid similarity, Table 3-2). They 

each contain 14 exons, and their predicted polypeptides are relatively large, ~65 KDa 

versus 55-57 KDa for the other SUT proteins. In sharp contrast to the other PtSUT 

isoforms which have theoretical pI’s >9.0, PtSUT5 and PtSUT6 have acidic theoretical 

pI’s of 6.0-6.2. The 12 transmembrane domains characteristic of SUT/SUCs (Sauer, 

2007) are predicted for all six PtSUTs.  

 

3.3.2 Phylogenetic analysis of SUT proteins 

Phylogenetic analysis of SUT proteins from several plant species was carried out using 

SpSUT from Schizosaccharomyces pombe (Reinders and Ward, 2001) as the outgroup. 

As shown in Figure 3-4, plant SUTs formed three distinct groups. Group-1 consisted of 

SUTs exclusively from dicots, and included three Populus (PtSUT1-PtSUT3) and seven 

Arabidopsis isoforms. Within Group-1, a sub-clade included SUTs predominantly from 

perennial species, such as Populus, castor bean (Ricinus communis), rubber (Hevea 

brasiliensis), grape (Vitis vinefera) and walnut (Juglans regia). Group-2 and Group-3 

included SUTs from both monocots and dicots. Within Group-2, SUTs from monocots 
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Table 3-1. SUT gene models identified from the P. trichocarpa genome (version 1.1). 

 (http://genome.jgi-psf.org/Poptr1_1/Poptr1_1.home.html). 

 

 

 

 

 

Gene Gene model Location
PtSUT1 eugene3.00410059 Poptr1_1/scaffold_41:677823-681235
PtSUT2 estExt_Genewise1_v1.C_4590006 Poptr1_1/scaffold_459:41195-44407
PtSUT3 estExt_Genewise1Plus.C_LG_XIX2107 Poptr1_1/LG_XIX:9549420-9553188
PtSUT4 estExt_fgenesh4_pm.C_LG_II0488 Poptr1_1/LG_II:7765116-7776023
PtSUT5 fgenesh4_pg.C_LG_VIII001323 Poptr1_1/LG_VIII:9982945-9989473
PtSUT6 fgenesh4_pg.C_LG_X000861 Poptr1_1/LG_X:10053327-10060018
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Figure 3-1. Estimation of PtSUT1/2 gene copy number using QD-PCR.   

 

PtSUT1/2, and single-copy PtSUT3 and PtC4HL gene fragments were amplified 

from 20 ng of genomic DNA. The bands for the respective gene fragments are 

indicated by arrows. 
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Figure 3-2. Sequence alignment of the 1-kb fragment of PtSUT1 and PtSUT2 from the P. 

trichocarpa genome database, and PtSUT1x and PtSUT1y from the clones of P.  tremula 

× P.  alba.   

 

 
Sequence variations are shown in red color letters. The underlined sequence represents 

the last exon of the genes.  
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Figure 3-3. Schematic diagram comparing the Populus SUT gene structures. 

 

Gene structures were predicted using spidey (http://www.ncbi.nlm.nih.gov/IEB/Research 

/Ostell/Spidey/). Group-1, Group-2 and Group-3 members have 3, 4 and 13 introns, 

respectively.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Table 3-2. Properties of Populus SUT proteins as deduced from the coding sequence. 

 

 

 

 

 

pI
a.a kDa PtSUT2 PtSUT3 PtSUT4 PtSUT5 PtSUT6

PtSUT1 535 56.8 9.2 99/99 90/92 55/63 54/57 54/57
PtSUT3 535 57.0 9.0 60/63 54/56 53/57
PtSUT4 510 55.3 9.1 56/58 55/56
PtSUT5 605 65.0 6.0 91/93
PtSUT6 602 64.5 6.2

Size % similarity (coding sequence/amino acid) to

The size and the pI were calculated using the ExPASY proteomic server 

(http://expasy.org/cgi-bin/pi_tool). Amino acid sequence similarity was determined using 

GCG (Genetic computer group, Madison, WI). 
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Figure 3-4. Minimum-evolution tree of 58 SUT protein sequences from several plant 

species. 
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The sucrose transporter SpSUT1 (Schizosaccharomyces pombe, CAB16264) was used as the out-group. 
The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 
replicates) is shown next to the branches. Populus SUTs are indicated by boldface. GenBank accession 
numbers of the sequences included are given below. AbSUT1 (Asarina barclaiana; AAF04294), AmSUT1 
(Alonsoa meridionalis; AAF04295), AtSUC1 (At1g71880), AtSUC2 (At1g22710), AtSUC3 (At2g02860), 
AtSUC4 (At1g09960), AtSUC5 (At1g71890), AtSUC6 (At5g43610), AtSUC7 (At1g66570), AtSUC8 
(At2g14670), AtSUC9 (At5g06170), BoSUC1 (Brassica oleracea; AAL58071), BoSUC2 (AAL58072), 
BoSUT1 (Bambusa oldhamii; AAY43226), CsSUT1 (Citrus sinensis; AAM29150), CsSUT2 
(AAM29153), DcSUT1 (Daucus carota; BAA89458), HbSUT1 (Hevea brasiliensis; ABJ51933), 
HbSUT2a (H. brasiliensis; ABJ51934), HbSUT2b (ABJ51932), HbSUT3 (ABK60190), HbSUT4 
(ABK60191), HbSUT5 (ABK60189), HvSUT2 (Hardium vulgare; CAB75881), JrSUT1 (Juglans regia; 
AAU11810), LeSUT1 (Lycopersicum esculentum; X82275), LeSUT2 (AAG12987), LeSUT4 
(AAG09270), LjSUT4 (Lotus japonicus; CAD61275), MdSUT1 (Malus domestica; AAR17700), MeSUT2 
(Manihot esculenta; ABA08445), MeSUT4 (ABA08443), NtSUT1 (Nicotiana tabacum; X82276), NtSUT3 
(AAD34610), OsSUT1 (Oryza sativa; AAF90181), OsSUT2 (AAN15219), OsSUT3 (BAB68368), 
OsSUT4 (BAC67164), OsSUT5 (BAC67165), PmSUC1 (Plantago major; CAI59556), PmSUC3 
(CAD58887), PsSUT1 (Pisum sativum; AAD41024), RcSCR1 (Ricinus communis; CAA83436), StSUT1 
(Solanum tuberosum; CAA48915), StSUT4 (AAG25923), TaSUT1A (Triticum aestivum; AAM13408), 
TaSUT1B (AAM13409), VvSUCy (Vitis vinifera; AAL32020), VvSUC11 (AAF08329), VvSUC12 
(AAF08330), VvSUC27 (AAF08331), and ZmSUT1 (Zea mays; BAA83501). Protein sequences for 
PtSUTs were deduced from the gene models presented in Table 3.1. 

 



formed a distinct sub-clade. PtSUT5 and PtSUT6 clustered in the dicot sub-clade of 

Group-2, along with AtSUC3. Group-3 contained PtSUT4 and tonoplast localized 

AtSUC4, LjSUT4 and HvSUT4. 

 

3.3.3 Expression of PtSUT genes in Populus  

Plant-wide expression patterns of the six PtSUT genes were compared by quantitative 

RT-PCR. Primers were designed to amplify specific genes or, in the case of PtSUT1/2, 

the gene pair (Table 3-2). The Group-3 transporter PtSUT4 was ubiquitously expressed, 

and its transcripts were more abundant than those of the other SUT genes in all tissues 

examined (Figure 3-5). PtSUT4 expression was strongest in pollen, followed by mature 

leaves and xylem. The Group-2 member PtSUT5 was also expressed in all tissues.  Its 

expression in shoot tips and young leaves was similar to that of PtSUT4, but was 

comparatively low in all other tissues. PtSUT6 transcripts were not detected in any of the 

tissues analyzed (Figure 3-5). In contrast to Groups- 2 and 3, expression of Group-1 

members was more restricted. PtSUT1/2 was weakly expressed in phloem and roots, but 

barely detected in other tissues (Figure 3-5). Transcript levels of PtSUT3 were most 

readily detected in phloem and xylem of shoots, although very weak expression was 

observed in leaves, root and pollen tissues. It appears that, in Populus, transcription of 

Group-1 SUTs was primarily restricted to the vascular system.  
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Figure 3-5. Tissues expression patterns of Populus SUTs.   

 

Expression of SUTs in shoot tips (ST), young leaves (YL), mature leaves (ML), 

primary stems (PS), secondary stems (SS), phloem (PH), xylem (XY), cell 

cultures (CC), roots (RT), male flowers (MF), female flowers (FF) and pollen 

(PO). Values are the means ± SE of three biological replicates for all tissues 

except pollen where only one replicate was used.   
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3.3.4 Yeast complementation 

For functional analysis of the Populus SUTs, yeast complementation experiments were 

conducted using the Saccharomyces cerevisiae SUSY7/ura3 mutant strain (Riesmeier et 

al., 1992; Weise et al., 2000). This mutant lacks the ability to transport and hydrolyze 

exogenously supplied sucrose and does not grow on media supplemented with sucrose as 

the sole carbon source. Transformation of the SUSY7/ura3 yeast mutant strain with a 

functional SUT enables it to grow on sucrose media (Riesmeier et al., 1992). The coding 

sequences of the three most abundantly expressed isoforms, PtSUT3, PtSUT4 and 

PtSUT5, representing Group-1, Group-3 and Group-2, respectively, were tested. Both 

untransformed and SUT-transformed mutants grew on glucose media (Figure 3-6, left), 

but only SUT transformed mutants grew on sucrose media (Figure 3-6, right). These 

results indicate that PtSUT3, PtSUT4 and PtSUT5 encode functional transporters. 

 

3.3.5 Transgenic manipulation of PtSUT4 by RNAi 

The strong expression of PtSUT4 in all tissues analyzed suggests that it plays a major role 

in carbohydrate transport and/or compartmentalization in Populus. To investigate the 

function of PtSUT4 in planta, RNAi-mediated gene silencing was performed. PtSUT4 

expression was suppressed by 50-90% in different tissues of four independent transgenic 

poplar lines (Figure 3-7A). Transcript levels of PtSUT5, also ubiquitously expressed, 

were found to differ little between transgenic and wildtype plants, confirming specificity 

of PtSUT4 targeting by the RNAi construct (Figure 3-7B). Based on these results, 

transgenic line G exhibiting the highest level of PtSUT4 suppression overall was  
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Figure 3-6. Complementation of yeast mutant (SUSY/ura3) with PtSUTs. 

 

Transformed yeast was cultured on minimal media supplemented with either 

glucose (left) or sucrose (right). PtSUT3-, PtSUT4- or PtSUT5-transformed and 

untransformed mutants are arranged clockwise from top-right. 
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propagated for further analysis. 

 

In fast-growing early successional taxa such as Populus, decreases in nutrient availability 

under conditions that otherwise favor photosynthetic carbon fixation result in elevated 

foliar abundance of starch and C-rich defensive compounds, and reduced levels of sugars 

(Bryant et al., 1983; Hemming and Lindroth, 1999; Jones and Hartley, 1999; Osier and 

Lindroth, 2006). Therefore, we used N deficiency to investigate SUT4 function under 

conditions expected to perturb carbohydrate, PG and CT homeostasis in Populus. The 

foliar N content in young and mature leaves of wildtype and transgenics was reduced by 

60-65% under N-depeleted condition. Plant growth was monitored in 3-week-old 

hydroponically-maintained plants. Although leaf and stem growth did not appear to differ 

between wildtype and transgenic plants, the ratio of leaf area to an index of stem volume 

(mid-height diameter x stem length) was significantly greater in transgenic than wildtype 

plants, regardless of N nutritional regime (Figure 3-8, Table 3-3).  

 

3.3.6 Non-structural carbohydrates 

To assess the effects of PtSUT4 down-regulation on carbohydrate metabolism, tissue 

levels of sucrose, glucose, fructose and starch were analyzed. Sucrose concentrations 

were significantly elevated in fully expanded source leaves of transgenic plants compared 

to wildtype controls at both LPI-5 (mature leaves, Figure 3-9) and LPI-8 (AppendixC). In 

other organs, concentrations of all three sugars did not differ between wildtype and 

transgenic plants (Figure 3-9). Glucose and fructose were not detected in shoot tips or 
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Figure 3-7. Transcript levels of PtSUT4 (A) and PtSUT5 (B) in various tissues of 

wildtype (WT) and four transgenic lines (SUT4-B, F, G and H).  

 

Tissue abbreviations are as in Figure 3-5. The data represents the means ± SE of 

2-3 biological replicates.  
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Figure 3-8.  Growth characteristics of SUT4 transgenic and wildtype plants. 

 

A. Plant height of wildtype (WT) and transgenics (TR) measured at 4-day intervals 

during the experimental period. B. Area of leaves at different positions of the stem. C. 

Stem diameter at internode 2, internode 8 and near the base, and D. Ratio of leaf 

area/final stem volume calculated for each LPI. Plants were grown with either full 

strength N (2.5 mM, solid lines) or with 5% of full strength N (0.125 mM, dotted lines). 

The arrow in panel A points to the day at which N stress was started. The data represents 

the means ± standard deviation (n = 4 plants).  
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Table 3-3. Three-way ANOVA for leaf area/stem biomass ratio.  

 So
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urce of Variation df SS MS F P
Genotype 1 21.35 21.35 19.535 <0.001
N-level 1 42.018 42.018 38.445 <0.001
Leaf position 8 901.66 112.707 103.125 <0.001
Genotype x N-level 1 0.518 0.518 0.474 0.492
Genotype x leaf position 8 6.833 0.854 0.781 0.619
N-level x leaf position 8 34.703 4.338 3.969 <0.001
Genotype x N-level x leaf position 8 0.9 0.112 0.103 0.999
Residual 261 285.252 1.093
Total 296 1328.108 4.487

Source of Variation df SS MS F P
Genotype 1 21.35 21.35 19.535 <0.001
N-level 1 42.018 42.018 38.445 <0.001
Leaf position 8 901.66 112.707 103.125 <0.001
Genotype x N-level 1 0.518 0.518 0.474 0.492
Genotype x leaf position 8 6.833 0.854 0.781 0.619
N-level x leaf position 8 34.703 4.338 3.969 <0.001
Genotype x N-level x leaf position 8 0.9 0.112 0.103 0.999
Residual 261 285.252 1.093
Total 296 1328.108 4.487

 

The parameters were genotypes (wildtype and transgenic), N levels (2.5 mM and 0.125 

mM), and leaf positions (LPI-0 through LPI-8). df denotes degrees of freedom, SS for 

sum of squares, MS for mean sum of squares, F for Fisher-test, a ratio of between and 

within treatment variance and P for probability for statistical significance. 

 

 

 

 

 

 

 

 



young leaves, presumably due to the high growth demands of those organs. Total 

(glucose+fructose+sucrose) sugar concentrations were relatively low in shoot tips and 

young leaves (≤2%), but higher in other sink-like organs, ranging between 8.1-12.7% in 

roots and stems of both wildtype and transgenic plants. Starch was more abundant in 

leaves than in stems (Figure 3-9). Starch level increased with leaf age from 0.8% in shoot 

tips, to 1.9% in young leaves and 5.4% in mature leaves. No significant difference in 

starch levels was observed between wildtype and transgenic plants in any of the tissues 

examined.  

 

Low-N nutrition caused soluble sugar concentrations to decrease comparably in wildtype 

and transgenic plants, in all organs analyzed (Figure 3-9). As was the case with N-replete 

plants, sucrose and glucose concentrations were higher in source leaves of N-deficient 

transgenic than of N-deficient wildtype plants (Figure 3-9). The effects of low N feeding 

on starch differed markedly between transgenic and wildtype plants (Figure 3-9). In 

transgenic plants, only young leaves and secondary stem exhibited starch increases under 

N stress, while no increase was observed in mature leaves. By contrast, starch levels 

nearly doubled in young and mature leaves of wildtype plants. 
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Figure 3-9. Non-structural carbohydrate levels in wildtype and transgenics plants. 

 

Percent dry weight of glucose (Glc), fructose (Frc) sucrose (Suc) and starch (Str) in 

tissues of wildtype (WT) and SUT4 transgenic (TR) plants grown in full strength, 2.5 

mM nitrogen (N+) or 0.125 mM nitrogen, (N-) nutrient solution. The data represent 

means ± standard deviation (n = 4 plants). Differences between means were tested for 

significance using the t-test for two samples assuming equal variances. In the graphs, nd 

and nq indicates not-detected and not quantified, respectively. * indicates significant 

difference (p = 0.05) between genotypes or between N treatments. 
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3.3.7 Non-structural phenylpropanoids 

There is evidence that accrual of both PG and CT demands substantial amounts of 

carbohydrates (Arnold et al., 2004; Arnold and Schultz, 2002; Kleiner et al., 1999). 

Therefore, the effect of PtSUT4 down-regulation on the levels of PGs and CTs was 

investigated. The two higher-order PGs salicortin and tremulacin predominated in all 

tissues analyzed (Figure 3-10). Salicortin concentrations increased with leaf maturation, 

and tremulacin concentrations remained constant with leaf maturation in both genotypes. 

Down regulation of SUT4 resulted in the decreased abundance of both salicortin and 

tremulacin in young shoot organs, including shoot tips, young leaves, mature leaves and 

primary stems (Figure 3-10). PG level was typically lower in secondary stem and root 

tissues, and their abundance did not change in the transgenic plants. In general, CT 

abundance was not affected in the transgenics, although small decreases were noted in the 

shoot tips and roots, organs where CTs normally accumulate (Figure 3-10).   

 

Low N feeding resulted in salicortin increases in shoot tips and primary stems of 

transgenic plants and decreases in those organs in wildtype plants (Figure 3-10). 

Salicortin increased in mature leaves of both genotypes, but the increase was larger in the 

transgenics. Tremulacin decreased in nearly all shoot organs of the wildtype plants, but 

was sustained at N-replete levels of leaves and stems in the transgenics. Overall, there 

was a clear trend towards enhanced partitioning into the PG pool in transgenic compared 

to wildtype plants during low N growth. As a result of low N feeding, CT levels 

increased significantly in all shoot tissues in both wildtype and transgenic plants (Figure 

3-10). 

93

 



 

 

 

 

 

 

 

 

 

 

 

 

 

0

4

8
12

0

4

8
12

0
4
8

12

0

4

8

12

0
4

8

12

0
4

8

12

0
4
8

12

0

4

8

12

0

4

8
12

0

4

8
12

0
4
8

12

0

4

8

12

0

2

4
6

0
2
4
6

0
2
4
6

0

2

4

6

0
2
4
6

0
2
4
6

0
2
4
6

0

2

4

6

0
2
4
6

0
10
20
30

0

2

4
6

0

10

20
30

0

2

4
6

0

10

20
30

0
2
4
6

0
10
20
30

Sa Sc Tr CTSa Sc Tr CT Sa Sc Tr CTSa Sc Tr CT Sa Sc Tr CTSa Sc Tr CT Sa Sc Tr CTSa Sc Tr CT

CN-CN- TN-TN- TN-TN-CN-CN-CN+CN+ TN+TN+ TN+TN+CN+CN+

%
 d

ry
 w

t

Apices

YL

ML

PS

SS

Roots
nd nd nd nd

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

Shoot 
tips

Roots

Mature 
leaves

WT N+ TR N+ WT N- TR N- WT N+ WT N- TR N+ TR N-

Young 
leaves

Primary 
stems

Secondary 
stems

0

4

8
12

0

4

8
12

0
4
8

12

0

4

8

12

0
4

8

12

0
4

8

12

0
4
8

12

0

4

8

12

0

4

8
12

0

4

8
12

0
4
8

12

0

4

8

12

0

2

4
6

0
2
4
6

0
2
4
6

0

2

4

6

0
2
4
6

0
2
4
6

0
2
4
6

0

2

4

6

0
2
4
6

0
10
20
30

0

2

4
6

0

10

20
30

0

2

4
6

0

10

20
30

0
2
4
6

0
10
20
30

Sa Sc Tr CTSa Sc Tr CT Sa Sc Tr CTSa Sc Tr CT Sa Sc Tr CTSa Sc Tr CT Sa Sc Tr CTSa Sc Tr CT

CN-CN- TN-TN- TN-TN-CN-CN-CN+CN+ TN+TN+ TN+TN+CN+CN+

%
 d

ry
 w

t

Apices

YL

ML

PS

SS

Roots
nd nd nd nd

0

4

8
12

0

4

8
12

0
4
8

12

0

4

8

12

0
4

8

12

0
4

8

12

0
4
8

12

0

4

8

12

0

4

8
12

0

4

8
12

0
4
8

12

0

4

8

12

0

2

4
6

0
2
4
6

0
2
4
6

0

2

4

6

0
2
4
6

0
2
4
6

0
2
4
6

0

2

4

6

0
2
4
6

0
10
20
30

0

2

4
6

0

10

20
30

0

2

4
6

0

10

20
30

0
2
4
6

0
10
20
30

Sa Sc Tr CTSa Sc Tr CT Sa Sc Tr CTSa Sc Tr CT Sa Sc Tr CTSa Sc Tr CT Sa Sc Tr CTSa Sc Tr CT

CN-CN- TN-TN- TN-TN-CN-CN-CN+CN+ TN+TN+ TN+TN+CN+CN+

%
 d

ry
 w

t

Apices

YL

ML

PS

SS

Roots
nd nd nd nd

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

Shoot 
tips

Roots

Mature 
leaves

WT N+ TR N+ WT N- TR N- WT N+ WT N- TR N+ TR N-WT N+ TR N+WT N+ TR N+ WT N- TR N-WT N- TR N- WT N+ WT N-WT N+WT N+ WT N-WT N- TR N+ TR N-TR N+TR N+ TR N-TR N-

Young 
leaves

Primary 
stems

Secondary 
stems

Figure 3-10. Non-structural phenylpropanoid levels in wildtype and transgenics plants. 

 

Levels (% dry weight) of salicin (Sa), salicortin (Sc) tremulacin (Tr) and condensed 

tannins (CT) in tissues of wildtype (WT) and SUT4 transgenic (TR) plants grown in full 

strength, 2.5 mM nitrogen (N+) or 0.125 mM nitrogen, (N-) nutrient solution. The data 

represent means ± standard deviation (n = 4 plants). Differences between means were 

tested for significance using the t-test for two samples assuming equal variances. In the 

graphs, nd indicates not-detected. Note the use of 2nd y-axis for root CT levels. * 

indicates significant difference (p = 0.05) between genotypes or between N treatments.  
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3.3.8 Gene expression studies 

2.3.8.1 Sucrose synthases and invertases 

The expression of the entire suite of six sucrose synthases and 16 invertases annotated in 

the Populus genome (Bocock et al., 2008; Tuskan et al., 2006) and associated with 

sucrose hydrolysis was analyzed.  As shown in Figure 3-11, expression could be 

quantified for 4 paralogous pairs of neutral invertases (NIN), two vacuolar invertases 

(VIN), one cytosolic invertase (CIN), and three sucrose synthases (SuSy). SuSy1 and 

SuSy2, the predominantly expressed SuSy genes in mature leaves, were significantly 

down-regulated there in transgenic plants (Figure 3-11 B, Figure 3-12 A). There was a 

consistent tendency towards down regulation of the other sucrose hydrolysis-related 

genes in leaves and shoot tips of transgenic compared to wildtype plants. In contrast, a 

consistent tendency toward up regulation of those genes was observed in primary stems. 

That tendency persisted for SuSy and several of the neutral invertase genes in secondary 

stem and roots of the transgenics. 

 

In response to N limitation, PtSUT4 exhibited an upward trend in young and mature 

leaves and primary stems of wildtype plants (Figure 3-12 C), but such response was 

either low (young leaves) or the reverse was true (mature leaves) in the SUT4 transgenic 

plants (Figure 3-12 D). N-limitation resulted in substantially greater up-regulation of 

SuSy in mature leaves of transgenics than of wildtype plants (Figure 3-12 C and D). In 

transgenic plants, in contrast to the trend observed under N-replete where SuSy transcripts 

were lower, SuSy transcript levels were higher under low N condition (Figure 3-12 A and 
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B). In addition, several weakly mature leaf-expressed invertases (NIN2/5 and NIN3/4) 

and SUT3 exhibited a tendency toward up-regulation during N stress in transgenic mature 

leaves (Figure 3-12 B).  In most organs, expression of the relatively strongly expressed 

PtVIN3 was reduced in wildtype but was up-regulated in transgenic plants in response to 

N stress. In shoot tips, most of the SuSy and invertase genes exhibited a trend towards 

down-regulation in N-limited wildtype plants and towards up-regulation in N-limited 

transgenic plants.   

 

2.3.8.2 Phenylalanine ammonia-lyases 

The effects of PtSUT4 down-regulation on PG and CT accumulation were further 

investigated by analyzing expression of phenylalanine ammonia-lyase (PAL). The PAL 

protein regulates the entry of phenylalanine into the phenylpropanoid pathway for 

synthesis of a variety of products, including PG and CT (Dixon and Paiva, 1995; Tsai et 

al., 2006a). PtPAL1 and PtPAL3 were well expressed in all tissues, but expression was 

clearly strongest in mature leaves (Figure 3-11 C). Both PtPAL1 and PtPAL3 were less 

well expressed in shoot organs of transgenic than of wildtype plants (Figure 3-12 A). 

This pattern changed during N-limitation. In general, PAL expression either increased 

more or decreased less in shoot organs of transgenic than of wildtype plants (Figure 3-12 

B). The result, during N-stress, was that PAL expression was much higher in transgenic 

than wildtype plants in mature leaves and in major shoot sink organs like shoot tips and 

secondary stems. At the same time, expression of PAL in roots became lower in 

transgenic than wildtype plants. Generally speaking, the contrasting PAL expression  
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Figure 3-11. Q-PCR expression analysis of sucrose synthase (SuSy), invertase (INV) and 

phenylalanine ammonia-lyase genes (PAL) in various tissues. 

 

Expression patterns of A. neutral (NIN), vacuolar (VIN) and cell wall (CIN) invertases; B. 

sucrose synthases (SuSy); C. phenylalanine ammonia-lyases (PAL) in different tissues of 

Populus. Tissue abbreviations are as in Figure 3-5.  The data represent the means ± 

standard error from three biological replicates. 
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ST YL ML PS SS RT
SUT3 nd 0.86 0.77 1.25 0.72 1.19
SUT4 0.50 0.47 0.32 0.26 0.25 0.13
SUT5 0.68 1.13 0.79 0.94 0.98 0.99
NIN2/5 0.76 0.86 0.96 1.14 1.12 1.09
NIN3/4 0.79 0.89 0.82 1.04 1.09 1.14
NIN8/12 0.91 0.88 0.87 1.43 1.15 1.12
NIN9/11 0.81 0.77 0.92 1.08 0.83 0.85
VIN2 0.93 0.92 0.75 1.04 1.15 0.93
VIN3 0.75 1.07 0.86 1.16 0.81 0.76
CIN4 1.02 0.93 0.97 1.25 0.92 1.04
SuSy1 0.71 0.76 0.61 1.19 1.03 0.96
SuSy2 0.91 0.84 0.55 1.14 1.06 1.20
SuSy3 0.63 0.81 0.81 0.85 1.07 1.00
PAL1 0.59 0.73 0.70 0.43 0.90 1.20
PAL3 0.57 0.83 0.86 0.73 0.88 1.40

A:TR N+/WT N+ B:TR N-/WT N-

ST YL ML PS SS RT
SUT3 nd 0.72 1.23 1.21 1.27 1.35
SUT4 0.76 1.81 1.29 1.18 1.04 1.18
SUT5 0.78 1.22 0.72 1.09 1.03 0.99
NIN2/5 0.87 1.08 1.18 0.73 1.41 1.23
NIN3/4 1.03 1.08 0.94 1.08 1.11 0.85
NIN8/12 0.85 0.89 0.62 1.00 1.11 1.25
NIN9/11 0.71 0.90 0.80 0.80 1.08 1.27
VIN2 1.33 0.17 0.42 0.43 0.14 1.07
VIN3 0.93 0.73 0.21 0.87 0.92 1.08
CIN4 1.58 2.67 0.70 1.51 0.90 1.38
SuSy1 0.45 0.65 2.28 0.86 0.47 1.00
SuSy2 0.54 1.06 1.32 0.93 0.81 0.91
SuSy3 0.66 0.95 0.85 0.82 1.12 1.17
PAL1 0.82 1.01 0.11 0.36 0.51 1.42
PAL3 0.80 1.44 0.44 0.84 0.67 1.67

ST YL ML PS SS RT
nd 0.77 2.98 1.13 1.23 1.08

1.03 1.17 0.86 1.15 1.00 1.44
1.31 1.20 1.07 1.14 1.27 1.22
1.53 1.40 2.10 0.87 1.47 0.95
1.40 1.60 2.37 1.00 1.09 0.79
1.04 1.05 0.88 0.73 0.87 0.98
1.13 0.95 0.92 0.80 1.67 1.63
1.34 0.21 0.56 0.37 0.07 1.05
1.40 1.17 0.26 1.15 1.57 1.31
1.32 2.22 0.87 1.30 0.80 1.51
0.81 0.93 3.37 0.70 0.41 1.16
0.73 1.26 4.19 0.89 0.64 0.87
1.32 1.50 1.96 1.29 0.82 0.60
1.70 1.45 0.23 0.93 1.17 1.06
1.83 2.00 0.75 1.27 1.50 1.07

ST YL ML PS SS RT
nd 0.93 1.87 1.17 0.70 0.95

0.68 0.30 0.21 0.25 0.24 0.16
1.14 1.11 1.17 0.98 1.21 1.22
1.33 1.11 1.71 1.35 1.17 0.84
1.08 1.32 2.06 0.96 1.07 1.07
1.11 1.05 1.24 1.04 0.89 0.87
1.29 0.81 1.06 1.08 1.29 1.09
0.94 1.13 1.00 0.90 0.59 0.91
1.11 1.72 1.06 1.54 1.38 0.92
0.85 0.77 1.21 1.08 0.82 1.14
1.28 1.09 0.91 0.96 0.90 1.12
1.24 0.99 1.75 1.09 0.84 1.15
1.26 1.28 1.87 1.34 0.79 0.51
1.24 1.05 1.46 1.30 2.08 0.89
1.30 1.15 1.45 1.11 1.96 0.89

C:WT N-/WT N+ D:TR N-/TR N+

ST YL ML PS SS RT
SUT3 nd 0.86 0.77 1.25 0.72 1.19
SUT4 0.50 0.47 0.32 0.26 0.25 0.13
SUT5 0.68 1.13 0.79 0.94 0.98 0.99
NIN2/5 0.76 0.86 0.96 1.14 1.12 1.09
NIN3/4 0.79 0.89 0.82 1.04 1.09 1.14
NIN8/12 0.91 0.88 0.87 1.43 1.15 1.12
NIN9/11 0.81 0.77 0.92 1.08 0.83 0.85
VIN2 0.93 0.92 0.75 1.04 1.15 0.93
VIN3 0.75 1.07 0.86 1.16 0.81 0.76
CIN4 1.02 0.93 0.97 1.25 0.92 1.04
SuSy1 0.71 0.76 0.61 1.19 1.03 0.96
SuSy2 0.91 0.84 0.55 1.14 1.06 1.20
SuSy3 0.63 0.81 0.81 0.85 1.07 1.00
PAL1 0.59 0.73 0.70 0.43 0.90 1.20
PAL3 0.57 0.83 0.86 0.73 0.88 1.40

ST YL ML PS SS RT
SUT3 nd 0.86 0.77 1.25 0.72 1.19
SUT4 0.50 0.47 0.32 0.26 0.25 0.13
SUT5 0.68 1.13 0.79 0.94 0.98 0.99
NIN2/5 0.76 0.86 0.96 1.14 1.12 1.09
NIN3/4 0.79 0.89 0.82 1.04 1.09 1.14
NIN8/12 0.91 0.88 0.87 1.43 1.15 1.12
NIN9/11 0.81 0.77

ST YL ML PS SS RT
SUT3 nd 0.86 0.77 1.25 0.72 1.19
SUT4 0.50 0.47 0.32 0.26 0.25 0.13
SUT5 0.68 1.13 0.79 0.94 0.98 0.99
NIN2/5 0.76 0.86 0.96 1.14 1.12 1.09
NIN3/4 0.79 0.89 0.82 1.04 1.09 1.14
NIN8/12 0.91 0.88 0.87 1.43 1.15 1.12
NIN9/11 0.81 0.77 0.92 1.08 0.83 0.85
VIN2 0.93 0.92 0.75 1.04 1.15 0.93
VIN3 0.75 1.07 0.86 1.16 0.81 0.76
CIN4 1.02 0.93 0.97 1.25 0.92 1.04
SuSy1 0.71 0.76 0.61 1.19 1.03 0.96
SuSy2 0.91 0.84 0.55 1.14 1.06 1.20
SuSy3 0.63 0.81 0.81 0.85 1.07 1.00
PAL1 0.59 0.73 0.70 0.43 0.90

0.92 1.08 0.83 0.85
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SuSy1 0.71 0.76 0.61 1.19 1.03 0.96
SuSy2 0.91 0.84 0.55 1.14 1.06 1.20
SuSy3 0.63 0.81 0.81 0.85 1.07 1.00
PAL1 0.59 0.73 0.70 0.43 0.90 1.20
PAL3 0.57 0.83 0.86 0.73 0.88 1.40
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ST YL ML PS SS RT
SUT3 nd 0.72 1.23 1.21 1.27 1.35
SUT4 0.76 1.81 1.29 1.18 1.04 1.18
SUT5 0.78 1.22 0.72 1.09 1.03 0.99
NIN2/5 0.87 1.08 1.18 0.73 1.41 1.23
NIN3/4 1.03 1.08 0.94 1.08 1.11 0.85
NIN8/12 0.85 0.89 0.62 1.00 1.11 1.25
NIN9/11 0.71 0.90 0.80 0.80 1.08 1.27
VIN2 1.33 0.17 0.42 0.43 0.14 1.07
VIN3 0.93 0.73 0.21 0.87 0.92 1.08
CIN4 1.58 2.67 0.70 1.51 0.90 1.38
SuSy1 0.45 0.65 2.28 0.86 0.47 1.00
SuSy2 0.54 1.06 1.32 0.93 0.81 0.91
SuSy3 0.66 0.95 0.85 0.82 1.12 1.17
PAL1 0.82 1.01 0.11 0.36 0.51 1.42
PAL3 0.80 1.44 0.44 0.84 0.67 1.67

ST YL ML PS SS RT
SUT3 nd 0.72 1.23 1.21 1.27 1.35
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NIN8/12 0.85 0.89 0.62 1.00 1.11 1.25
NIN9/11 0.71 0.90 0.80 0.80 1.08 1.27
VIN2 1.33 0.17 0.42 0.43 0.14 1.07
VIN3 0.93 0.73 0.21 0.87 0.92 1.08
CIN4 1.58 2.67 0.70 1.51 0.90 1.38
SuSy1 0.45 0.65 2.28 0.86 0.47 1.00
SuSy2 0.54 1.06 1.32 0.93 0.81 0.91
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ST YL ML PS SS RT
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1.40 1.17 0.26 1.15 1.57 1.31
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0.81 0.93 3.37 0.70 0.41 1.16
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nd 0.93 1.87 1.17 0.70 0.95

0.68 0.30 0.21 0.25 0.24 0.16
1.14 1.11 1.17 0.98 1.21 1.22
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1.08 1.32 2.06 0.96 1.07 1.07
1.11 1.05 1.24 1.04 0.89 0.87
1.29 0.81 1.06 1.08 1.29 1.09
0.94 1.13 1.00 0.90 0.59 0.91
1.11 1.72 1.06 1.54 1.38 0.92
0.85 0.77 1.21 1.08 0.82 1.14
1.28 1.09 0.91 0.96 0.90 1.12
1.24 0.99 1.75 1.09 0.84 1.15
1.26 1.28 1.87 1.34 0.79 0.51
1.24 1.05 1.46 1.30 2.08 0.89
1.30 1.15 1.45 1.11 1.96 0.89

ST YL ML PS SS RT
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1.28 1.09 0.91 0.96 0.90 1.12
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1.24 1.05 1.46 1.30 2.08 0.89
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Figure 3-12. Heatmaps of SUT, INV, SuSy and PAL gene expression in shoot and root 

tissues. 

Data was converted into gene expression ratios, TR/WT at N+ (A),  TR/WT at N- (B), 

WT N-/WT N+ (C), TR N-/ TR N+ (D). Tissue abbreviations are as in Figure 3-5. Data 

were visualized using the heatmapper plus program available at 

http://bar.utoronto.ca/ntools/cgi-bin/ntools_heatmapper_plus.cgi. Yellow color indicates 

no change in gene expression while red and blue indicate up and down-regulation, 

respectively. nd indicates below quantifiable levels. Underline denotes statistical 

significance at P = 0.05 for the differences between numerator and denominator used to 

calculate the ratios in each panel.  
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responses by the two genotypes to N-stress correlated with the observed trends in PG 

abundance (Figure 3-10, Figure 3-12). 

 

3.4 Discussion 

The Populus SUTs were found to cluster into the three phylogenetic groups established 

for higher plant SUT genes. Within Group-1, SUTs from woody perennials, such as 

Populus, cassava (Manihot esculenta), rubber tree, walnut, grape and castor bean form a 

distinct subclade. The most ubiquitous and abundantly expressed SUT gene in Populus 

encodes the Group-3 transporter PtSUT4 (Figure 3-4). Several Group-3 transporters such 

as AtSUC4, HvSUT2 and LjSUT4 are tonoplast localized (Endler et al., 2006; Reinders 

et al., 2008) and, like PtSUT4, are capable of sucrose transport across the plasma 

membrane in yeast complementation experiments (Reinders et al., 2008; Weise et al., 

2000). No conserved peptide signal has been reported for any of the vacuolar targeting 

proteins. 

 

3.4.1 Group-1 members are vascular-localized in Populus 

Group-1 PtSUT1/2 and PtSUT3 exhibited a pattern of stem vascular tissue expression that 

differs from that of other Group-1 members. These include SUTs from apoplastic 

(AtSUC2, LeSUT1, StSUT1, NtSUT1, PsSUT1) or both symplastic and apoplastic 

(AmSUT1) loading herbaceous species (Barker et al., 2000; Knop et al., 2001; Riesmeier 

et al., 1993; Riesmeier et al., 1994; Stadler et al., 1999; Tegeder et al., 1999). In all  
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these species, the Group-1 SUTs are well expressed in source leaves, where phloem 

loading occurs. Similarly, Group-1 transporters of fruit-bearing woody perennials, 

including VvSUC27 from grape (Davies et al., 1999) and CsSUT1 from citrus (Citrus 

sinensis) are well expressed in both leaf and stem tissues (Li et al., 2003).  However, the 

Group-1 VvSUC27 protein has a lower affinity for sucrose than other Group-1 SUTs, and 

is better expressed in expanding than in mature source leaves (Davies et al., 1999). The 

plant-wide distribution of Group-1 PtSUT gene transcripts was similar to that of Group-1 

SUT genes in castor bean and walnut (Bick et al., 1998; Decourteix et al., 2006). The 

walnut Group-1 SUT, JrSUT1 is exclusively stem localized and thought to have a role in 

the distribution of sucrose between xylem vessels and parenchyma cells for osmotic 

pressure regulation during seasonal freeze-thaw cycles (Alves et al., 2004; Decourteix et 

al., 2006). Sucrose enters the xylem sap during freeze-thaw cycles in Populus and Salix 

as well (Sauter, 1983; Sauter, 1988). Therefore, preferential vascular expression of the 

Group-1 PtSUTs, like that of the walnut Group-1 SUT, may be consistent with a 

specialized function during seasonal freeze-thaw cycles.  

 

3.4.2 Group-3 PtSUT4 exhibits an unusual expression pattern in Populus 

So far, a small number of Group-3 SUT/SUC proteins, AtSUC4, StSUT4, LjSUT4, 

LeSUT4, and VvSUC11, have been characterized, with only StSUT4 being subjected to 

transgenic manipulation (Chincinska et al., 2008; Davies et al., 1999; Manning et al., 

2001; Reinders et al., 2008; Weise et al., 2000). While herbaceous Group-3 SUT proteins 

(AtSUC4, LeSUT4 and LjSUT4) exhibit a low affinity for sucrose, VvSUC11 from the 
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woody perennial (grape) exhibits an affinity as high as that of Group-1 transporters from 

the other species (Manning et al., 2001). However, VvSUC11 is not expressed in stems.  

From the limited number of studies, it is unusual for Group-3 transporters that are well 

expressed in leaf tissues to also be well expressed in stem tissues, as appears to be the 

case for PtSUT4.  Whereas the Group-3 grape SUT is not expressed in stems, the low-

sucrose-affinity Group-1 SUT, VvSUC27, is very strongly expressed there (Davies et al., 

1999). In Populus, PtSUT4 is far more strongly expressed in stems than is the Group-1 

PtSUT cluster (Figure 3-5). With the exceptions of grape, and now Populus, Group-3 

SUT transcript levels are higher in sink leaves, where sucrose unloading is likely to 

predominate, than in source tissues, where loading occurs (Chincinska et al., 2008; Weise 

et al., 2000). In short, the expression pattern of PtSUT4 overlays those of the high-affinity 

Group-1 and Group-3 transporters of herbaceous species and grape, respectively (Barker 

et al., 2000; Burkle et al., 1998; Davies et al., 1999; Riesmeier et al., 1993; Truernit and 

Sauer, 1995).  

 

Although mutation or down-regulation of abundantly expressed Group-1 SUTs in other 

species (i.e., AtSUC2, StSUC1, NtSUC1) can result in severe alterations to plant growth 

and carbohydrate utilization (Gottwald et al., 2000; Hackel et al., 2006; Riesmeier et al., 

1994; Srivastava et al., 2008), down-regulation of PtSUT4 in Populus resulted in modest 

growth changes and increased accumulation of sugars and starch in mature leaves, but by 

no more than 25% over the levels in wildtype plants (Figure 3-9). The expression of 

SUT4 was reduced by 68% in mature leaves, whereas similar transcript level reductions 

of StSUT1, NtSUT1 and LeSUT1 in antisense lines severely altered plant growth 
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(Burkle et al., 1998; Hackel et al., 2006; Riesmeier et al., 1994). Thus, the effects of 

PtSUT4 manipulation were comparatively mild. The reduction in PtSUT4 transcripts was 

not compensated by increased expression of other PtSUTs (Figure 3-12 A). In addition, 

the only other SUT gene to exhibit significant transcript levels in mature leaves is 

PtSUT5, which encodes a SUT protein that is highly distinct from PtSUT4 (Figure 3-5, 

Table 3-2). These results, along with the other reports of severe repercussions from SUT 

gene down-regulation, are consistent with the interpretation that PtSUT4 and PtSUT5 

proteins somehow have complementary roles in sucrose export from source leaves. 

 

3.4.3 Carbohydrate and phenylpropanoid metabolism are altered in PtSUT4 

transgenics 

The increased level of sucrose, glucose and starch in source leaves may be attributed to a 

number of factors, including increased photosynthetic rates and carbohydrate synthesis, 

inefficient utilization or inefficient export of the photosynthates. There is not strong 

support for the idea that photosynthesis increased in the transgenics, as photosynthesis 

was reduced in NtSUT1 and StSUT1 down-regulated plants (Burkle et al., 1998; 

Riesmeier et al., 1994). The increased accumulation of sugars in mature leaves coupled 

with the decrease in sink tissues, such as shoot tips and roots, suggests that sucrose export 

from source leaves was less efficient in transgenic than wildtype plants. The increased 

leaf:stem growth ratios in transgenic plants lends support to the idea that sucrose export 

was indeed reduced, and that there were negative consequences to stem growth. An 

alternative point is that the plants may be exporting at higher rates during the dark cycle 
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as observed in StSUT4 silenced lines (Chincinska et al., 2008). However, this 

interpretation is less easily reconciled with the increased leaf-to-stem growth ratio we 

observed. The reduced INV and SuSy gene expression in mature leaves of transgenics is 

consistent with the idea that sucrose hydrolysis decreased. At the same time, mature leaf 

glucose concentrations increased in the transgenic plants (Figure 3-9). This indicates that 

sucrose hydrolysis provided glucose in excess of source-leaf demand, and that SuSy 

expression may have been negatively regulated by the accumulated hexoses as reported 

for maize SuSy, Shrunken1 (Xu et al., 1996). The finding that glucose concentrations 

increased despite evidence for reduced sucrose catabolism suggests that utilization of 

glucose for hexose-demanding activities, including in Populus, glycosylation of 

phenylpropanoid-skeletons for PG synthesis, decreased. Exemplifying the magnitude of 

the demand, glucose comprises 42% and 34% of the mass of the PGs salicortin and 

tremulacin, respectively (Kammerer et al., 2005; Pearl and Darling, 1971). These are the 

two most abundant phenolics found in leaf tissues of the 717 genotype used in the 

experiments. Interestingly, PG content decreased and expression of PAL gene family 

members specifically associated with the synthesis of non-structural phenylpropanoids in 

leaves of Populus (Kao et al., 2002) was down-regulated in the transgenics (Figure 3-10, 

Figure 3-11).   

 

During N-limited growth, the concentration of PGs was similar in wildtype and 

transgenic plants for every organ compared (Figure 3-10). In addition, PG levels were 

comparable to those in N-replete wildtype plants despite conspicuous decreases in the 

mature leaf expression of the relevant PAL genes due to N deficiency. Clearly, PAL 
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gene expression was not a limiting factor, while RNAi down-regulation of PtSUT4 

appeared to constitute a lesion to PG homeostasis during N-replete growth. An important 

observation is that salicin levels were severely depleted in primary and secondary stems 

of all plants during N-stress (Figure 3-10). Although not yet proven unequivocally to be a 

precursor in the biosynthesis of the higher-order PGs salicortin and tremulacin, a salicin 

moiety constitutes the core of those PGs (Lindroth and Pajutee, 1987; Pearl and Darling, 

1971). If the depletion in salicin represents a decrease in the stem contribution to plant 

PG biosynthesis during N stress, it is possible to formulate a hypothesis to rationalize a 

role for PtSUT4 in total plant PG homeostasis.   

 

According to such a hypothesis, PtSUT4 participates in the transport of sucrose to the 

stems which actively synthesize PG during N-replete growth. Functional consequences of 

reduced PtSUT4 gene expression, including plant-wide shifts in the relative 

concentrations of sucrose between source and sink organs, and a reduction in stem 

volume growth relative to leaf area growth, were documented (Figure 3-8 D, Figure 3-9). 

The plant-wide differential in PG concentration between wildtype and transgenic plants 

during N-replete growth can therefore be attributed to limited transport of sucrose to sink 

organs, including stems, to support PG synthesis. In the N-deficient plants, carbohydrate 

reserves in stems probably became limited as lignin accrual increased (Appendix D), 

perhaps at the expense of carbon skeletons for the biosynthesis of non-structural 

phenylpropanoid PGs. Competition for phenylpropanoid substrates by PG and lignin 

biosynthesis has been alluded to in reports on the down-regulation of lignin accrual in 

Populus (Coleman et al., 2008; Ranocha et al., 2002). As a result, the burden of PG 
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synthesis shifted more completely to source organs in closer proximity to the point of 

sucrose biosynthesis and supply. The shift in PG biosynthesis away from stem during low 

N growth removed the dependence of plant PG homeostasis on PtSUT4 transport 

function, and, according to the model hypothesized, removed the basis for the PG 

differential between wildtype and transgenic plants during N-replete growth. 

 

Although a number of Group-3 SUTs are known to be localized in the tonoplast (Endler 

et al., 2006; Reinders et al., 2008), only the LeSUT4 of Lotus japonicus has been 

characterized in some depth (Reinders et al., 2008). It is tonoplast localized and appears 

to function in the export of sucrose from the vacuole into the cytoplasm and possibly for 

long distance transport. Evidence for close association of SuSy with SUT proteins in the 

tonoplast has also been reported (Etxeberria and Gonzalez, 2003). In the present work, 

PtSUT4, SuSy, and NIN gene expression increased in mature leaves during N-stress 

(Figure 3-12). These increases, along with the decrease in expression of PtVIN2 are 

consistent with the idea that cytosolic sucrose hydrolyzing activity increased in relation to 

vacuolar sucrose hydrolyzing activity during N-stress. In addition, based on the emerging 

picture of Group-3 transporter function, PtSUT4 appeared to participate in the export of 

vacuolar sucrose during N-stress. Such a role would be distinct from the regulation of 

cytosolic sucrose concentration to facilitate long-distance symplastic transport of sucrose 

during N-replete conditions. With regard to distinct roles for PtSUT4 in N-replete and N-

limited plants, starch levels increased in mature leaves of wildtype source leaves during 

N stress, and they did not in transgenic mature leaves. Whether the vacuolar sucrose was 

used for starch biosynthesis during N-stress in this case was not determined. 
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However, SuSy involvement in cytosolic starch synthesis has been reported (Munoz et al., 

2005; Munoz et al., 2006). SuSy gene expression was sharply up-regulated in both 

Populus genotypes during N stress, but starch levels only increased in wildtype mature 

leaves (Figure 3-12, Figure 3-9). This is consistent with the idea that compromised 

PtSUT4 function interfered with the utilization of vacuolar sucrose for starch synthesis 

during N stress. Overall, participation of PtSUT4 in mature leaf starch storage is also 

consistent with reduced transport of sucrose from mature leaves during N stress.   

 

It appears that PtSUT4 is functionally integrated with changes in carbohydrate 

partitioning and compartmentalization that contribute to the regulation of long-distance 

sucrose transport in Populus. Alterations in its expression affect both constitutive plant 

defense and growth of Populus. It is less likely that PtSUT4 is the transporter that 

regulates the long-distance movement of salicin, a putative PG precursor, even though 

SUTs are capable of transporting salicin, and despite findings that salicin occurs in 

phloem sap exudates collected from Populus leaves (Chandran et al., 2003; Gould et al., 

2007; Reinders et al., 2008; Sivitz et al., 2007).  
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Appendix A. List of primers used in the study. F and R denote forward and 

reverse primers, respectively. 

 
Gene Sequence
GT1-225 F AGACTGTTGGTGGAGGAATTGGGA

R ATTCCTYGATGAGCCCGTTCAAGT
GT1-200 F TGGTGCCCTGGAATGGTCWAGATA

R CTGCGGATTCTTGCTTGCTTGTC
GT1-292/297 F ACTGCAGGGAARCCMATGRTTACA

R TCCACCTTCTTCRACAGCCTTCCT
GT1-298 F TGAAGATTGGTGTRAGGGTTGGGT

R AGCCCTCTTCTTCCACTGCTTTGT
GT1-246/245/249 F AGTGCTGAACCATCCATCGGTAGG
GT1-246 R CTGTGGTTCGCTCCCTAATCAACT
GT1-258 F GCTCGCAAGTGGAAGAACCACAAA

R TCACGTGGCAGAGAGCACMTTATT
GT1-262 F CTGCCTGAAGGTTTCTTGGAACGA

R ACCTTCTTCTCCACCTCATCAGCA
GT1-289 F TTGCTACATGGCCAATGCATGCTG

R CACACGATSTAACCAAGTGKAYGAGG
GT1-188 F TGMCTATGCTTTGTTGGCCKTCCT

R WTGACAARAGCACTTCCGTCACCA
GT1-255/253 F TTGGTGTCCACAAGAGGAAGTKCT 
GT1-253 R TGAACCATTAGGGACAGTAGCCTC
GT1-270/274 F CCTATGCTTTGTTGGCCATTCGCT

R AAGTTCATGGATGATGAACCACCGGG
GT1-324 F CCCATGATTTGCTGGCCCTTCTTT

R GCAATTCACTGACCAGCTTCTCCA
GT1-109 F CTGTGCCATTCTGCTGTTGGAGGT

R AGCTCTCTTCCGCATTGCTTTCAC
GT1-186 F GGAGMGAAGGGCGAAGAGATGARA

R ACATCRCAGTCCARAGAAGRAAGG
GT1-228/216/2 F AATGCCAAGYTGATTGMAGACGTG
GT1-2 R ACCCRTCCATCATAACAACCAAGC
GT1-221 F AACACTTGAGGCTTTGAGCTTGGG

R AGCTTCCACCTTCATCCATAGCCA
GT1-315/316 F CCTAAGGCAGTGGAAATGAAGSAG
GT1-315 R CCAGTTCADCSACTTYCTCRHTGG
GT1-293 F TGGGTGGAATTCTGTCCTTGAAGC

R CCCTTGACCTTGCTAGCTTTCCTT
MRP1 F ATATCCAGAGATGGGTGGTGGTCA

R CAGGTACTTGCAGTAAGTTGCTACC
MRP2/3 F AGGAAGCGCATTCTCTAGGATGGT
MRP2 R AGCAAGATGCATAAGACACGACA
MRP3 R GAGACTAACAACCAGGGCSAGTT
MRP4 F AGTTGATTCRCAAACTGAYGCTG

R AAACAGYGATGGCCTCTCAAGCAA
MRP5 F GTGCTTGATGAAGCRACRGCATCT

R ATCCRGTAYGCYACTTGACCTTGA
MRP6 F CACAGTAGCTCACMGGATACCRAC

F CTTCAATGYGATTCTGCWRCRTGT
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           Appendix A Continued. 

 

Gene Sequence

Q-PCR
NIN2/5 F TGCTTTGGCYGAGAAGAGACTTMA

R GGCCACTHGTGTTAAGYCCACAAA
NIN3/4 F AACAAGCACRYCTGTTCCAGACAT

R TCTGWCCACGMTTTCTCCTTGGRT
NIN8/12 F TTTATGGTTGCTGACTGCTGCRTG

R CCAGCATCATYTTTGCCACCAAGT
NIN9/11 F GCTTCTCACMGCRGCATGCATMAA

R TCYTCGAGTGCCACCRTRCCCAAA
CIN1/2/3 F AGAAYTGCCATCWCATCYAGGGTT
CIN1/2 R TTCATTGCGTGGATTCTCYCCC
CIN3 R GTACGGGACAATTTCATCATCCATTG
CIN4 F GCTATTCAWGAAGAAGCTCGCCTG

R AGACACTAAAGCAGACTGCAGAGG
CIN5 F TTTCGTAGACATGGATCCTCGCCA

R TGGCTTCCTTCGTTTCGTGGTAGA
VIN1/2 F TTATCCGACGASGGCAATMTATGG
VIN1 R GGTACAGATGGATGCAAATTAGGT
VIN2 R CGAAGGCABTGCTACTGTTKTTCA
VIN3 F AGGCCACACTCAAGATTTGGGA

R TCTCAYGTGGTTGCCTCAAGGT
SUSY1 F GAACCTTGATCGTCTTGAGAGYCG

R GGTTCTGTCTCCMAACYGAAACCA
SUSY2 F CAACCTYGATCAYCGTGAGAGCCG

R ACCATTATTCTGGACCCGGAACCC
SUSY3 F TATCTGATGCTGGGCTKCAACGGA

R TGCCRGTCMTCGATTGACAAAGGT
SUSY4/5 F CAATCAAGGTGGCCCAGCAGAAAT
SUSY4 R GTAGATGCGTTGGAGACCAGTTGC
SUSY5 R ATAGATGCGTTGAAGACCAGCTGC
SUSY6 F TGGATCCCGGACACTGGAATAAGT

R TCTGAGRCTGGTGTTTGASCTTCT
SUT1/2/3 F TGGTKTCTGTAGCRRSTGGACCTT
SUT1/2 R ACCAGTCACCAGTCTTGGAAGGAA 
SUT3 R GGAATGCAKCAGTGACAGYCMTTT
SUT4 F ATCCTTGGGACTTGGACAAGGGTT

R TGATCGAGGAATACYCAAGATGGC
SUT5/6 F ATACCAGCSTTYGTTCTGGCWTCT
SUT5 R TAGCATGCTCCTGTCCTTGACAATYA
SUT6 R TCCTYGACRATTACATGTTGGCTC
EF1B F AAGAGGACAAGAAGGCAGCA

R CTAACCGCCTTCTCCAACAC
UBCc F CTGAAGAAGGAGATGACARCMCCA

R GCATCCCTTCAACACAGTTTCAMG
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Appendix A. Continued. 

 
Gene Sequence

Yeast complementation
SUT1/2/3 F ATGGAGAGTGGAGTTAGAAAAGAA
SUT3 R TCAATGGAATGCAKCAGTGACAGYC
SUT4 F CTAGCTAGCATGTCAGTCGCTAACCCAGAGCC

R CCGCTCGAGTCATGAGAAGACCATGGGCTTTTGAAC
SUT5/6 F GCTCTAGATGGAGTCGGCRCCGATTCGGGTA
SUT5 R CCGCTCGAGTAGCATGCTCCTGTCCTTGACAATCA
PDR196 F CTATCAACCTCGTTGATAAAT

R AGGTAGACAAGCCGACAACCTTG

QD-PCR
SUT1/2 F CACTCCTTGTCAACTTGCCACACA

R GCGGCATAGCCAATGAGAAACACA
SUT1/2 F ACAACAACCTCCTGCAACAAACCC

R GCTGTACGAGTCTTCTTGTGATCCGT 
SUT1/2/3 F TTTCTAACACYTCKGGTGCTGGC
SUT3 R GCTGGGAATAGGATWAACCATGACYG
C4HL F TTCATGGGAGCAGGAAATGGACC

R ACTYCCCTTTAGGACGGCTCTGAT
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Appendix B. Foliar carbon (C), hydrogen (H) and nitrogen (N) levels in wildtype 

and transgenic leaves 

 
Levels of C, H and N in young (A) and mature (B) leaves of wildtype (WT) and 

SUT4 transgenic (TR) plants grown in full-strength, 2.5 mM nitrogen (N+) or 5%, 

0.125 mM nitrogen, (N-). The data represents means ± standard deviation (n = 4 

plants). 
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Appendix C. Sucrose levels on percent dry weight basis in LPI8 of wildtype (WT) and 

transgenic (TR) plants. 
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Appendix D. Structural phenylpropanoid (lignin) content in wildtype and transgenic 

plants. 

 

Lignin content in different tissues of wildtype (WT) and SUT4 transgenic (TR) plants 

grown in full-strength, 2.5 mM nitrogen (N+) or 5%, 0.125 mM nitrogen, (N-). Tissue 

abbreviations are as in Figure 3-5. The data represents means ± standard deviation (n = 4 

plants). 
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