
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2011 

Plackett and Burman analysis to select effective compiler Plackett and Burman analysis to select effective compiler 

optimizations optimizations 

Dustin Larson 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

Copyright 2011 Dustin Larson 

Recommended Citation Recommended Citation 
Larson, Dustin, "Plackett and Burman analysis to select effective compiler optimizations", Master's report, 
Michigan Technological University, 2011. 
https://digitalcommons.mtu.edu/etds/538 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151507657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages


A PLACKETT AND BURMAN ANALYSIS TO
SELECT EFFECTIVE COMPILER

OPTIMIZATIONS

By

Dustin Larson

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

(Computer Science)

MICHIGAN TECHNOLOGICAL UNIVERSITY

2011

c© Dustin F. Larson

2011



This report, “A Plackett and Burman Analysis to Select Effective Compiler Op-
timizations,” is hereby approved in partial fulfillment of the requirements for the
Degree of MASTER OF SCIENCE IN COMPUTER SCIENCE.

Computer Science

Signatures:

Report Advisor

Report Co-Advisor

Committee Member

Department Chair

Date

Dr. Steven Carr

Dr. Zhenlin Wang

Dr. Martin Thompson

Dr. Steven Carr



2 INTRODUCTION

1 Abstract

Compiler optimizations help to make code run faster at runtime. When the com-
pilation is done before the program is run, compilation time is less of an issue,
but how do on-the-fly compilation and optimization impact the overall runtime? If
the compiler must compete with the running application for resources, the running
application will take more time to complete.

This paper investigates the impact of specific compiler optimizations on the
overall runtime of an application. A foldover Plackett and Burman design is used to
choose compiler optimizations that appear to contribute to shorter overall runtimes.
These selected optimizations are compared with the default optimization levels in
the Jikes RVM. This method selects optimizations that result in a shorter overall
runtime than the default O0, O1, and O2 levels. This shows that careful selection
of compiler optimizations can have a significant, positive impact on overall runtime.

2 Introduction

How is overall runtime affected by virtual machines that compile code on-the-fly?
When code is compiled ahead of time, performing many powerful optimizations on
the code is a logical choice to decrease the running time of the program later on.
However, when code is compiled on-the-fly, this code compilation time adds to the
overall runtime of the application. Thus, performing many optimizations (or perhaps
a few expensive ones) may actually cause the application to run for a longer period
of time. If instead, a few very good optimizations (or maybe even none at all) are
chosen, the overall runtime can decrease and is a better option. The question arises:
which optimizations should be selected to improve overall runtime?

To answer this question, we can ask several more. Which optimizations gener-
ally contribute to a longer overall runtime? Which ones shorten the runtime? Do
particular optimizations significantly increase compilation time while having a rela-
tively small effect on the execution time (resulting in an increase in overall runtime)?
A method for constructing a select group of optimizations that gives better overall
runtime performance would be helpful. This method should eliminate from consid-
eration any optimizations that increase compile time enough to actually increase
overall runtime of the application.

In this report, section 3 contains background information on the foldover Plack-
ett and Burman Design, the Jikes RVM system, and the DaCapo Benchmark suite.

1



3 BACKGROUND

Section 4 describes the Plackett and Burman setup and gives short explanations
for each tested compiler optimization. Section 5 gives the results and compares the
selected optimizations to the default O0, O1, and O2 levels in the Jikes RVM. Sec-
tion 6 provides a brief analysis and a breakdown of compile time phases. Section 7
concludes the paper.

3 Background

3.1 Plackett and Burman

The immediate issue that arises in any problem that measures some effect is the
number of experiments that must be run in order to determine the contribution of
each parameter toward the overall effect. In our case, 23 different optimizations are
tested. Testing every combination of optimizations is infeasible, as 2n experiments
are needed to determine the effects of n parameters, as well as all interactions
between parameters.

The Plackett and Burman (PB) Design [1] is a method of finding which param-
eters have the most significant effect in a system without running 2n experiments.
In fact, only about n experiments are needed. Yi et. al. use a variation on the PB
Design, described shortly, to estimate the effects of different processor components
and their values, such as cache size or ALU latency [2]. We apply the same idea to
compiler optimizations in this experiment. The PB Design assigns each parameter
of interest a “high” value or a “low” value (represented by +1 or -1), then tests
how the parameter assignments change the overall effect. These high and low values
should be “just outside of the ‘normal’ range of values.” [2] Since the compiler op-
timizations tested are selected as either on or off, we consider on to be “high” and
off to be “low”.

The design of the PB experiment must be set up specifically according to [1].
This special setup will make each column vector orthogonal to every other column
vector in the matrix, which is necessary for calculating the effect of each optimiza-
tion. Each experiment is a vector (the set of compiler optimizations) where each
vector component is a parameter (a specific optimization). These experiment vec-
tors are the rows in the PB matrix. If there are n parameters to vary, then it is
necessary to run X tests, where X is the next multiple of four strictly greater than
n. By following the setup in [1], we set each parameter to its high value for half of
the experiments and to its low value for the other half.

2



3.1 Plackett and Burman 3 BACKGROUND

An improvement upon the PB Design, the “foldover” PB design [3], requires
2X tests, where X is defined as above. The matrix is set up as in the PB design
for the first X tests. Table 1 shows the first X = 24 experiments. The first row is
given directly in [1]. The following 22 rows shift the values from the previous row
one position to the right. The 24th row shown is a row of all low (-1) values, as
specified in [1]. The second X = 24 tests simply reverse the high and low values
from X tests given in the table.

Table 1: The PB Experiment

We measure the overall runtime of an application as the effect in this experi-
ment. After the overall runtime of an application is measured for each set of compiler
optimizations, the effect of each parameter is calculated as follows. Let the “effect
column” be a column vector with the same height as the columns in the PB foldover
design (one component per set of compiler optimizations). This effect column is

3



3.2 Jikes RVM 3 BACKGROUND

populated with the overall running time for the corresponding set of compiler op-
timizations. The contribution of a specific optimization towards the total overall
runtime is then calculated by taking the dot product of that optimization’s column
(of +1’s and -1’s) and the effect column. The resulting value gives the insight into
how the optimization is believed to affect overall runtime. Since all the columns in
the matrix are orthogonal, the contribution of other optimizations is assumed to be
negligible when calculating a specific optimization’s effect. If the effect is large and
positive, then in general, when the optimization is turned on, the overall runtime
increases. If the value is large and negative, then in general, when the optimization
is on, the overall runtime decreases.

3.2 Jikes RVM

Jikes RVM is an open source Java virtual machine, initially developed by researchers
at IBM [4]. The optimizing compiler provides an extensive selection of command
line compiler optimization options. This allows the optimizations to easily be turned
on and off for different tests.

Jikes RVM does support adaptive compilation [4]. It works by selectively choos-
ing “hot” methods that are frequently executed and further optimizing those meth-
ods. While this is an interesting feature, it addresses different research questions. In
this experiment, we seek to find optimizations that tend to decrease overall runtime
when used across the entire program. Thus, for these experiments, adaptive recom-
pilation is deactivated. The initial compiler is set to be the optimizing compiler so
that the selected optimizations are performed. Enabling the adaptive compilation
system would introduce inconsistencies in the measurements.

3.3 DaCapo Benchmarks

We use the applications in the DaCapo Benchmark suite [5], version 2006-10-MR2, in
this experiment. Each benchmark is tested individually to determine which compiler
optimizations are best for that particular benchmark.

The DaCapo benchmarks are chosen over other benchmark suites for this exper-
iment because of the ability to easily distinguish whether or not a benchmark passes
or fails. Certain compiler optimization selections actually result in exceptions be-
ing thrown by the Jikes RVM optimizing compiler, causing undesired failures. The
assurance of a one-line pass or fail at the end of each benchmark run increases the
confidence that the results are trustworthy.

4



4 THE PB EXPERIMENT

4 The PB Experiment

4.1 Experiment Setup

The experiment consists of two phases. First, we run the foldover PB Design with
n = 23 (X = 24 > 23) to calculate the estimated effect of individual compiler
optimizations on overall runtime.

Then, compiler optimizations that show a desirable effect (a decrease in over-
all runtime) are enabled, and all other compiler optimizations are disabled. For
each DaCapo benchmark that is tested, specific optimizations are chosen on a per-
benchmark basis. Also tested are the Jikes RVM default settings for O0, O1, and
O2 per benchmark, as well as nearly all optimizations turned off (see the section on
“Testing Decisions” below).

4.2 Compiler Options

4.2.1 Compiler Optimization Descriptions

The documentation for some of the Jikes RVM compiler optimizations are a bit
vague and lack intuitive descriptions as to what they actually do. This section
presents the options that are considered in this experiment, along with the actions
they are believed to perform.

field analysis: Perform field analysis on class fields. See [8]. According to a
comment in the code, only private fields are currently analyzed. [4]

inline: Perform inlining. Note that “trivial, unguarded inlines” are the only
inlines that are done at optimization level 0 (this experiment was run at opti-
mization level 2) [4]

inline guarded: Inline methods with guards when necessary. A guard is typi-
cally a cheaper instruction (cheaper than a call) that can decide whether or not
the inlined code is executed.

inline guarded interfaces: If there is a single implementation of an interface
in the current class hierarchy, then consider inlining the single implementation
of the interface’s method that is being called. [4]

inline preex: If the target of a virtual call currently exists, then the code can
be inlined, and an inline guard is not necessary. [4]

simplify float ops: Simplify operations containing floats.

5



4.2 Compiler Options 4 THE PB EXPERIMENT

simplify tib ops: Simplify operations containing type information blocks (TIBs).
According to a comment in the Jikes RVM source code, “at runtime it is an array
with Object elements.” [4]

simplify field ops: Simplify operations containing fields.

local constant prop: Perform local constant propagation.

local copy prop: Perform local copy propagation.

local cse: Perform local common subexpression elimination.

control static splitting: Statically determine code paths and basic blocks that
will not be frequently used. Then, eliminate the merge point between infrequent
code paths and the frequent code paths by duplicating code. [4]

escape scalar replace aggregates: Perform escape analysis on pointers. If
the pointer does not escape the current procedure (it is not accessible outside
the procedure), then it may not be necessary to keep a particular object as one
contiguous block in memory. Instead, this optimization breaks up the object so
that certain values can be stored in registers instead.

escape monitor removal: Perform escape analysis on pointers. If the pointer
can not escape the current thread of execution (no other threads can access it),
then the code that is meant to perform synchronization related with the pointer
can be safely removed.

reorder code: As the code is executing, the frequency of use of basic blocks
is calculated. Basic blocks that are found to be infrequently used are moved to
the end of the code order. [4]

reorder code ph: Basic blocks are reorganized according to the Pettis and
Hansen Algo2 [4] [7]

h2l inline write barrier: In this context, a write barrier contains code that
performs additional memory operations that are necessary for garbage collection.
This compiler option decides whether or not the code performing the memory
operations will be considered for inlining. [4]

h2l inline primitive write barrier: This option performs the same as the
above, except it deals with primitive types.

l2m handler liveness: A PEI is a “potentially excepting instruction.” Accord-
ing to a comment in the Jikes RVM code, “Performing live analysis may reduce
dependences between PEIs and stores.” This optimization makes modifications
to the dependence graph in order to reduce these dependencies. [4]

6



4.2 Compiler Options 4 THE PB EXPERIMENT

regalloc coalesce moves: When performing register allocation, try coalescing
in order to minimize the number of register moves that are needed. By definition,
this optimization attempts to allocate variables to registers that contain no-
longer-needed values before allocating to registers that contain values that are
still needed.

regalloc coalesce spills: When performing register allocation, attempt to reuse
areas on the stack that have already been allocated before allocating new areas
on the stack to spill registers. [4]

osr guarded inlining: OSR stands for on stack replacement. It is used to
swap different versions of compiled methods on the fly. OSR points can be
placed at guarded inlines in place of a call, in the case of a failed guard. [4] [6]

osr inline policy: According to the documentation, this option will “use OSR
knowledge to drive more aggressive inlining”. However, this does not appear to
be used in the source code at this time. [4]

simplify long ops: Simplify operations containing longs.

simplify double ops: Simplify operations containing doubles.

simplify integer ops: Simplify operations containing integers.

simplify ref ops: Simplify operations containing references. [4]

simplify chase final fields: Since the value of a final field does not change,
eliminate loads of these fields at runtime by getting the value of the final field
at compile time. [4]

h2l inline new: This stage occurs as part of the H2L (high intermediate rep-
resentation to low intermediate representation) conversion process. When acti-
vated, allocation of new scalars and arrays are inlined in the code. According to
a code comment, these instructions are “implemented as calls to runtime service
methods”, so inlining would eliminate a call. [4]

4.2.2 Testing Decisions

Not all of the compiler optimizations available with Jikes RVM are tested. We made
this decision because the Jikes RVM documentation mentions that several compiler
optimizations are believed to be broken. We initially ran larger PB experiments
as attempts to enable these questionable options. However, enabling some of these
options resulted in failed benchmarks, so we decided to just test the optimizations
enabled by default for optimization level O2. All other optimizing compiler options
remain at their default values.

7



4.3 Timing 4 THE PB EXPERIMENT

Of the remaining 29 optimizations, the initial PB experiments still revealed
many failed benchmarks with particular on/off combinations of compiler optimiza-
tions. After analyzing the data, we found that four options seem to cause failures
when they are disabled. These options are simplify long ops, simplify double ops,
simplify integer ops, and simplify ref ops. After fixing these optimizations to al-
ways be on, nearly all failures caused by different selections of optimizations were
eliminated.

An additional observation made in the initial PB experiments is that the compi-
lation time for benchmarks increases significantly whenever simplify chase final fields
is disabled and h2l inline new is enabled. It is clear that these two settings should
never be set as stated, so these two optimizations are removed from the PB experi-
ment. In order to still measure the other three combinations possible for these two
options, they are manually varied. There are three runs of the final X = 24 PB ex-
periment, one for each of the three remaining combinations for simplify chase final fields
and h2l inline new. Following in this paper, references to “FF”, “TF” or “TT” in dif-
ferent experiments correspond to the respective settings of simplify chase final fields
and h2l inline new.

Each row of the X = 24 experiment displayed in Table 1 represents one combi-
nation of on/off settings for the specified compiler optimizations. Each row is run
three times, we use the best overall time in determining the impact of the opti-
mizations. We assume that the best overall time represents the time with minimal
disturbance from background processes running on the system.

4.3 Timing

We have collected our measurements using the “Linux time” command and the
built-in Jikes RVM compilation timing system.

The user mode time spent by the Jikes RVM process, measured by the “time”
command, is our measurement for total runtime. We found that the total process
running time, measured by the “time” command, was significantly greater than the
combined total of user and kernel time. Since the sum of user and kernel time should
be equal to the total running time, this indicated that something else was happening
in the background on the machine, causing the total time spent to increase. Every
DaCapo benchmark has a built in timing mechanism that measures the runtime of
the benchmark. This mechanism is subject to the same issue, which is why it is not
used.

8



5 PB RESULTS

The option “-X:vm:measureCompilation=true” is used to collect compilation
time. This makes it possible to divide the runtime into both compile time and ex-
ecution time. The option “-X:vm:measureCompilationPhases=true” provides data
on what compilation phases take the most time.

5 PB Results

We measure the effect of each compiler optimization on each benchmark. If an opti-
mization shows a negative effect, it means that the overall effect of that optimization
across all the tests is a decrease in runtime. Conversely, the optimizations showing
positive effects contribute to longer runtimes. The final selected optimizations for
each individual benchmark are all optimizations where the PB experiment indicates
a decreased runtime contribution. The optimizations chosen for each benchmark are
listed in Table 2.

5.1 Select Optimization Results

Each benchmark is run three separate times using the selected optimizations, and
the best runtime is taken as the sample. In general, we observed that the selected
optimizations outperform the optimizations for the O0, O1, and O2 optimization
levels. Table 2 shows which options are on and which options are off.

The benchmarks Luindex and Chart were not tested. Luindex is excluded due
to persistent failures, despite the fixed compiler optimizations. The reason for the
failures remains uninvestigated. Chart is not tested because the machine that the
benchmarks are run on does not have the necessary packages installed for the bench-
mark to run.

All other benchmarks in the DaCapo benchmark suite are run with the opti-
mizations in Table 2. Of the remaining rows in the chart, the first three rows are
run to give a baseline before any of the selected optimizations are applied. The next
three rows are the default selected optimizations for the O0, O1, and O2 optimiza-
tion levels in Jikes RVM. Note that O2 turns on all optimizations that are tested, so
it is unnecessary to run a test that turns all optimizations on for comparison. The
next three rows are the average rows. The optimizations for these average tests are
calculated from all three runs of all the benchmarks (not just the best runs).

9



5.1 Select Optimization Results 5 PB RESULTS

Table 2: Selected Optimizations for each Benchmark. Enabled optimizations are
shaded for convenience.

The graphs on the following pages show the total overall time for each benchmark
under different compiler optimizations. The first three bars represent all optimiza-
tions turned off, except for the ones listed in the respective first three rows of Table
2. The second three bars are the optimizations that are selected for that particular
benchmark. The last three bars show the performance of the default Jikes RVM
compiler optimizations for O0, O1, and O2. All the graphs are normalized to the
“All Off Except 4 FF” bar for each benchmark, the setting with the fewest compiler
options. Each bar is split into compilation time and execution time, with compila-
tion time on the bottom. Both of these values are expressed as the percentage of
the overall time that the “All Off Except 4 FF” test spent running.

10



5.1 Select Optimization Results 5 PB RESULTS

Summarizing the results, the selected optimizations outperform the selected
optimizations for O0, O1, and O2 in all cases. The selected optimizations for Antlr
TF result in a 621% improvement over O0, a 688% improvement over O1, and a
716% improvement over O2 optimizations. Fop TT gives a 135% improvement over
O0, a 174% improvement over O1, and a 184% improvement over O2. The least
improvement occurs in Lusearch, yet Lusearch TF still outperforms O0, O1, and O2
by 11.3%, 10.3%, and 12.1% respectively.

In some cases, it turns out that turning nearly all optimizations off outperforms
the selected optimizations in terms of overall runtime, when compared with the
respective FF, TF, and TT tests. This occurs in the following cases: Eclipse FF
and TF, Fop FF and TF, Hsqldb TT, Pmd TF and TT, Xalan TF. The worst relative
performers in this respect were Pmd TT and Pmd TF, but they only perform about
2.65% and 2.48% worse than the corresponding All Off Except Four TT and TF
cases. All the other cases have less than 2% of a difference.

It appears that of the FF, TF, and TT selected options, TF is the preferred
selection. TT results nearly always perform the worst, with the exceptions being
Eclipse and Jython TT. In Eclipse, the TT test outperforms both the FF and TF
tests, and in Jython, the TT test slightly outperforms the FF test. The FF tests
only outperform the TF tests in Pmd and Xalan. As mentioned previously, early ex-
perimentation discovered that the FT combination (simplify chase final fields=false
and h2l inline new=true) incurs a significantly large increase in overall runtime. It
is possible that certain combinations of compiler optimizations that are tested in this
experiment happen to have a significant impact on overall runtime when used in a
particular combination with one another. It should be noted that this experiment
does not necessarily capture all of these interactions. Interdependency among the
different compiler optimizations tested has not been explored in this experiment.

11



5.1 Select Optimization Results 5 PB RESULTS

Figure 1: Normalized values for the Average running times of all benchmarks, and
the best runs of the Antlr, Bloat, and Eclipse benchmarks.

12



5.1 Select Optimization Results 5 PB RESULTS

Figure 2: Normalized values for the Fop, Hsqldb, Jython, and Lusearch
benchmarks.

13



6 DATA AND ANALYSIS

Figure 3: Normalized values for the Pmd and Xalan benchmarks.

6 Data and Analysis

To provide an insight as to why simplify chase final fields turned off and h2l inline new
turned on results in a horrible runtime, we consulted the Jikes RVM documentation.
The former option, when activated, will get the value of final fields at compile time,
eliminate the load operation that is initially needed to get that value, and replace
it with a simpler operation. The latter option inlines the allocation of scalar and
array values. When the first is off and the second is on, this combination would
presumably result in many inlined loads added to the code.

Our PB experiment selects simplify field ops for every single benchmark. This
comes to no surprise, as this optimization targets member variables in objects.
Specifically, it simplifies the code needed to get the length of an array and the code
needed to check if a given index is within the bounds of an array. It also simplifies
call instructions. When simplify chase final fields is activated as well, the compiler
propagates final field values to eliminate the load for the field. These observations
were all made after Jikes RVM source code analysis. [4] There are undoubtedly a
sizable number of applicable instances where this optimization is worthwhile.

14



6 DATA AND ANALYSIS

There are some factors that could lead to a biased analysis either toward or
away from certain optimizations. One factor is the implementation of particular
optimizations. If a simpler but more costly algorithm is used to perform a certain
optimization, it is less likely to result in an improvement in overall running time.
There may be some cases in the Jikes RVM source code where the best algorithms
are not used.

Some optimizations may actually enable or disable other optimizations. For
example, after the running of this experiment, we discovered that reorder code and
reorder code ph have an interesting interaction. By code analysis, it appears that
neither has an effect if reorder code is disabled. However, if both are enabled, then
one particular algorithm is executed, whereas if only reorder code is enabled, a
different algorithm is executed. [4] Thus, two of the four combinations of these two
options have the same effect, which would bias the results in whatever direction the
effect happens to be.

It is questionable whether or not testing osr guarded inlining and osr inline policy
help the experiment. After further code analysis, it appears that the adaptive re-
compilation system needs to be activated in order to take full advantage of these two
optimizations. Since adaptive recompilation is disabled, these optimizations may do
some initial work without using the results.

It should also be noted that some of the optimizations have a dependency on
the optimization level (0, 1, 2, 3) selected. For example, only trivial and unguarded
inlining is performed when the optimization level is set to 0 [4]. When the level is set
higher, the compiler attempts more complex inlines. Thus, varying the optimization
level varies the behavior of the inlineoptimization. To provide greater consistency,
the optimization level is set to level 2 for all experiments (including the experiments
that test the default O0 and O1 optimizations). By fixing the level at 2, it eliminates
variability of specific optimizations based on the current optimization level.

Following are the compile-time breakdowns of the best performing All Off, Se-
lect, O0, O1, and O2 tests for each benchmark. Note that most of the compilation
time, in all cases, is spent in the conversion process from one language to another:
Java bytecode to HIR (high intermediate representation), HIR to LIR (low inter-
mediate representation), LIR to MIR (machine intermediate representation), and
MIR to machine code. A significant portion of time is also spent during the register
mapping phase.

15



6 DATA AND ANALYSIS

Table 3: Antlr compile time percentage breakdowns.

Table 4: Bloat compile time percentage breakdowns.

16



6 DATA AND ANALYSIS

Table 5: Eclipse compile time percentage breakdowns.

Table 6: Fop compile time percentage breakdowns.

17



6 DATA AND ANALYSIS

Table 7: Hsqldb compile time percentage breakdowns.

Table 8: Jython compile time percentage breakdowns.

18



6 DATA AND ANALYSIS

Table 9: Lusearch compile time percentage breakdowns.

Table 10: Pmd compile time percentage breakdowns.

19



7 CONCLUSION

Table 11: Xalan compile time percentage breakdowns.

7 Conclusion

We ran this experiment in the hopes of determining an optimal subset of compiler
optimizations that yields a lower overall runtime. Our results show that by specif-
ically choosing “good” optimizations that are believed to decrease overall runtime,
the runtimes of the benchmarks outperform the runtimes when the default O0, O1,
or O2 optimization levels are selected. The tests with our chosen optimizations
outperform the tests with very few optimizations in many cases.

The method is not perfect. The fact that the minimal compiler option tests
outperform the selected optimization tests on some of the benchmarks shows that
the foldover PB experiment alone is not a guaranteed way to find the best opti-
mizations to perform for a specific application. It is ideal to select an optimal set
of optimizations. However, finding this combination of optimizations may require
running a significant number of additional tests. An alternative option is to group
the optimizations by type and vary all combinations of these groups, turning all op-
tions in a group either on or off. This is more feasible than varying all optimizations
individually.

20



8 REFERENCES

8 References

[1] R. Plackett and J. Burman, “The Design of Optimum Multifactorial Experi-
ments”, Biometrika, Vol. 33, Issue 4, June 1956, Pages 305-325.

[2] Yi, J.J.; Lilja, D.J.; Hawkins, D.M.; , “A statistically rigorous approach for
improving simulation methodology,” High-Performance Computer Architecture,
2003. HPCA-9 2003. Proceedings. The Ninth International Symposium on ,
vol., no., pp. 281- 291, 8-12 Feb. 2003 doi: 10.1109/HPCA.2003.1183546 URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1183546&isnumber=26557

[3] D. C. Montgomery, “Design and Analysis of Experiments”, Third Edition, Wiley
1991.

[4] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A.
Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M.
F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.
Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. 2000. The Jalapeño virtual
machine. IBM Syst. J. 39, 1 (January 2000), 211-238. DOI=10.1147/sj.391.0211
http://dx.doi.org/10.1147/sj.391.0211

[5] Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., McKinley, K. S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss, J. E. B., Phansalkar, A., Stefanovic,
D., VanDrunen, T., von Dincklage, D., and Wiedermann, B. “The DaCapo
Benchmarks: Java Benchmarking Development and Analysis”, OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications, (Portland, OR, USA, Oc-
tober 22-26, 2006)

[6] Stephen J. Fink and Feng Qian. 2003. Design, implementation and evaluation
of adaptive recompilation with on-stack replacement. In Proceedings of the in-
ternational symposium on Code generation and optimization: feedback-directed
and runtime optimization (CGO ’03). IEEE Computer Society, Washington,
DC, USA, 241-252.

[7] Karl Pettis and Robert C. Hansen. 1990. Profile guided code positioning. SIG-
PLAN Not. 25, 6 (June 1990), 16-27. DOI=10.1145/93548.93550
http://doi.acm.org/10.1145/93548.93550

[8] Sanjay Ghemawat, Keith H. Randall, and Daniel J. Scales. 2000. Field analysis:
getting useful and low-cost interprocedural information. In Proceedings of the
ACM SIGPLAN 2000 conference on Programming language design and imple-
mentation (PLDI ’00). ACM, New York, NY, USA, 334-344.
DOI=10.1145/349299.349343 http://doi.acm.org/10.1145/349299.349343

21


	Plackett and Burman analysis to select effective compiler optimizations
	Recommended Citation

	Abstract
	Introduction
	Background
	Plackett and Burman
	Jikes RVM
	DaCapo Benchmarks

	The PB Experiment
	Experiment Setup
	Compiler Options
	Compiler Optimization Descriptions
	Testing Decisions

	Timing

	PB Results
	Select Optimization Results

	Data and Analysis
	Conclusion
	References

