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ABSTRACT 

Today the use of concrete ties is on the rise in North America as they become an economically 

competitive alternative to the historical industry standard wood ties, while providing 

performance which exceeds its competition in terms of durability and capacity. Similarly, in 

response to rising energy costs, there is increased demand for efficient and sustainable 

transportation of people and goods. One source of such transportation is the railroad. To 

accommodate the increased demand, railroads are constructing new track and upgrading 

existing track. This update to the track system will increase its capacity while making it a more 

reliable means of transportation compared to other alternatives. In addition to increasing the 

track system capacity, railroads are considering an increase in the size of the typical freight rail 

car to allow larger tonnage. An increase in rail car loads will in turn affect the performance 

requirements of the track.  

 

Due to the increased loads heavy haul railroads are considering applying to their tracks, current 

designs of prestressed concrete railroad ties for heavy haul applications may be undersized. In 

an effort to maximize tie capacity while maintaining tie geometry, fastening systems and 

installation equipment, a parametric study to optimize the existing designs was completed. The 

optimization focused on maximizing the capacity of an existing tie design through an 

investigation of prestressing quantity, configuration, stress levels and other material properties.  

 

The results of the parametric optimization indicate that the capacity of an existing tie can be 

increased most efficiently by increasing the diameter of the prestressing and concrete strength. 

However, researchers also found that current design specifications and procedures do not 

include consideration of tie behavior beyond the current tie capacity limit of cracking to the first 

layer of prestressing. In addition to limiting analysis to the cracking limit, failure mechanisms 

such as shear in deep beams at the rail seat or pullout failure of the prestressing due to lack of 

development length were absent from specified design procedures, but discussed in this 

project. 
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NOTATION AND DEFINITIONS 

The terms in this list are used in the numerical analysis performed for this research project and 

discussed in the research methodology and results sections of this thesis. Multiple notations 

may exist for the same condition and definition and correspond to the specific code or reference 

from which they were used.  

 

a = maturity factor and depth of equivalent 
stress block, in.

Ab = area of prestressing tendon, in.2

Ac = cross-sectional area of concrete, in.2

AC = area of equivalent stress block, in.2

Aps = area of prestressing in section, in.2

b = curing conditions factor and width of 
compression face of member, in.

c = depth to cracked neutral axis, in.
C = resultant of equivalent stress block, kip

CCU = ultimate creep coefficient
d = depth from extreme compression fiber 

to centroid of presstressing layer, in.

db = diameter of prestressing tendon, in.
dmax = depth from extreme compression fiber 

to furtherest most layer of prestressing, 
in.

e = distance between centroid of 
prestressing and centroidal axis of 
section, in.

Ec = modulus of elasticity of concrete, psi

Eci = modulus of elasticity of concrete at 
time of initial prestress, psi

Eps = specified moulus of elasticity of 
prestressing, psi

f`c = specified compressive strength of 
concrete, psi

f`ci = specified compressive strength of 
concrete at time of initial prestress, psi

fcgpG = stress in concrete at centroid of 
prestressing due to self weight, psi

fcgpF = stress in concrete at centroid of 
prestressing due to prestressing, psi

 

fpe = stress in prestressing at time of 
effective prestress, psi

fpi = stress in prestressing at time of initial 
prestress, psi

fpj = stress in prestressing after jacking, psi

fps = stress in prestressing layer at ultimate, 
psi

fps = stress in prestressing layer at ultimate, 
psi

fpu = stress in prestressing corresponding to 
failure, psi

fse = effective prestressing stress, psi
fu = specified ultimate stregnth of 

prestressing, psi
fy = specified yield stregnth of prestressing, 

psi
Fpj = specified jacking force for prestressing 

tendon, lbf
h = height of concrete section, in.
H = relative humidity, percent
I = moment of inerita of section about 

centrodial  axis of section, in.4

K = steel type relaxation constant
KCA = loading age factor for concrete at 

transfer
KCH = humidity correction factor for creep

KCS = shape and size correction factor for 
creep

KSH = humidity correction factor for 
shrinkage

KSS = shape and size correction factor for 
shrinkage

ld = development length of prestressing, in.

ln = clear span distance, in.  
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Mo = moment due to self weight, in-kip
MG = moment due to self weight, in-kip
Mn = nominal flexural strength at section, in-

kip
ML = live load moment capacity based on 

allowable concrete stresses, in-kip

np = transformed modular ratio at time of 
effective prestress

npi = transformed modular ratio at time of 
initial prestress

V/S = volume-to-surface ratio, in.
t = initial curing period prior to transfer, 

days
tA = age of specimen at time of transfer, 

days
ti = beginning time interval, days
ti = ending time interval, days
T = tonnage factor and resultant of 

prestressing at ultimate, kip
V = velocity factor
wG = self weight of member per unit of 

length, plf
x = distance between face of support and 

concentrated load, in.
yb = distance from centroidal axis to bottom 

face of section, in.
ybar = distance from centroidal axis to bottom 

face of section, in.
yt = distance from centroidal axis to top 

face of section, in.
αt = material constant for FRP 

  β = maturity factor 
β1 = factor relating depth of equivalent 

compressive stress block to neutral axis 
depth

ΔfpC = change in prestress due to concrete 
creep, psi

ΔfpES = change in prestress due to elastic 
shortening, psi

ΔfpR1 = change in prestress due to prestressing 
relaxation between jacking and 
transfer, psi

ΔfpR2 = change in prestress due to prestressing 
relaxation after transfer, psi

 

ΔfpTD = total change in prestress due to losses 
psi

ε1 = strain in prestressing due to effective 
prestress including all losses

ε2 = strain in concrete at each layer of 
prestressing corresponding to 
decompression condition at lowest 
level of prestressing

ε3 = strain in concrete at each layer of 
prestressing corresponding to ultimate

εcu = ultimate concrete compressive strain 

εdmax = strain in concrete at furtherest most 
layer of prestressing from extreme 
compression fiber at decompression 
condition

εps = strain in prestressing layer 

εSU = ultimate shrinkage strain of concrete

σci = allowable concrete compressive stress 
at time of initial prestress, psi

σcs = allowable concrete compressive stress 
at time of effective prestress, psi

σti = allowable concrete tensile stress at 
time of initial prestress, psi

σts = allowable concrete tensile stress at 
time of effective prestress, psi
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1.0 Introduction 

1.1 Project Overview and Scope 

In response to rising energy costs there is increased demand for efficient and sustainable 

transportation for transit and freight. One source of such transportation is the railroad. To 

accommodate the increased demand, railroads are constructing new track and upgrading 

existing track (Freudenstein and Haban 2006). This update to the track system is expected to 

increase capacity while also providing a more reliable means of transportation when compared 

to other alternatives such as trucking. In addition to increasing the track system capacity, 

railroads are considering an increase in the size of the typical freight rail car to allow larger 

tonnage. This potential increase in rail car loads will in turn effect the performance 

requirements of the track structure including the rail, ties, and ballast.  

 

As a result of these potential increases in heavy haul, current designs of prestressed concrete 

railroad ties for heavy haul applications may be undersized. Changes from current designs 

(specifically size) present a number of challenges related to operations and manufacturing such 

as: 

• Equipment (installation and maintenance) incompatibility, 

• Integration of larger ties within existing track, 

• Manufacturer equipment set up for current size ties. 

In an effort to maximize tie capacity while maintaining tie geometry, fastening systems and 

installation equipment, a parametric study to optimize an existing tie design was completed in 

this research program. The optimization focused on maximizing the capacity through an 

investigation of prestressing quantity, configuration, stress level and concrete strength. To 

validate the analysis, experimental results for the existing tie design were used.  

1.2 Project Motivation 

An ongoing research project, “Synthesis of Railroad Engineering Best Practices in Deep Seasonal 

Frost and Permafrost Areas,” provided the foundation for this investigation (ALCAN RaiLink Inc. 

2007). That project relates to the Alaska Canada Rail Link (ACRL), which is a proposed 1,300 mile 

expansion of heavy haul mainline track which will link the mineral deposits of interior portions 
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of Alaska, the Yukon Territory and British Columbia with ports on the Pacific Rim. A secondary 

goal of the ACRL is to connect the Alaska Railroad to the continuous forty eight states (ALCAN 

RaiLink Inc. 2007). A map illustrating the proposed working alignment is shown in Figure 1.  

 

 

Figure 1: Alaska Canada Rail Link (ACRL) route map (ALCAN RaiLink Inc. 2007) 

During the “Synthesis of Railroad Engineering Best Practices in Deep Seasonal Frost and 

Permafrost Areas” research project, two key issues pertaining to concrete railroad ties were 

identified including rail seat abrasion, which is the degradation of the concrete in the rail seat 

region of the tie, and the possible inadequacy of ties for the proposed rail car load increases. 

This research project addresses the later. 



 

3 
 

1.3 Project Objectives 

This research investigates a variety of options for increasing tie capacity while maintaining the 

common tie geometry. The end goal of this project is to produce a final tie design which will be 

capable of withstanding the anticipated loads of heavy haul railways in North America while 

maintaining current tie geometry.  

1.4 Project Work Plan 

To achieve the objectives described in Section 1.3, the following work plan was developed. The 

project is broken into three phases consisting of: 

Phase I: Design/Analysis Validation 

Phase II: Parametric Optimization 

Phase III: Validation of Optimization through Experimental Testing (Future) 

Design/analysis validation and parametric optimization are completed using historical test data 

on an existing tie design performed by the tie manufacturer and varying design parameters. 

Testing of optimized tie designs is beyond the scope of this research, but a template is 

presented as a third phase discussed in the Future Work section of this report (Section 5.3.2).  

1.4.1 Phase I: Design/Analysis Validation 

The first step in this project was to determine a baseline capacity by analyzing the existing tie 

design using the standard design codes (ACI 2008; AREMA 2003). This analysis consisted of hand 

calculations performed using MathCAD mathematical software and Excel. Once a benchmark 

capacity is established, the design optimization took place. To optimize the current design, 

material properties and prestressing characteristics were varied.  

1.4.1.1 Existing (Baseline) Tie Design Analysis 

For the benchmark analysis, a commercially available heavy haul concrete tie was selected for 

comparison. The design drawings for the tie, showing tie geometry, prestressing configuration 

and other design information are located in Appendix A. The baseline tie incorporates features 

such as a necked down cross-section in the center region and scallops (extrusions from the 

longitudinal sides of the tie to increase lateral restraint through increased tie-ballast 

interaction), which increases the material efficiency and performance of the tie. The success of 

these features, combined with the expense associated with new forms and industry familiarity 
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with the baseline tie, are all reasons why it is desired to maintain the existing tie geometry. 

However, to optimize the design a baseline of capacity was required.  

 

To determine the capacity of the baseline tie design, information on material properties of the 

concrete and steel was collected from the tie manufacturer. This information is summarized in  

Appendix B along with the minimum flexural capacity as specified by AREMA acceptance criteria 

(AREMA 2003). For material data not available from the manufacturer, assumptions on material 

properties were selected based on ACI 318-08 (ACI 2008) design code. 

 

The flexural capacity of the baseline tie was then compared with the minimum flexural capacity 

criteria in Table 48 (Appendix B) for validation of the analysis procedure. Results for both the 

cracking capacity and ultimate strength were used for validation. This validation served as both 

an evaluation of the design process and the assumptions used. Assumptions of design 

parameters were then refined based on their agreement with actual capacities. From this 

refined baseline capacity, all other design optimization iterations were compared. 

1.4.1.2 Validation from Previous Experimental Tests 

To evaluate the accuracy of the numerical analyses of the baseline tie design and design 

predictions of optimized tie designs, a comparison between numerical results and experimental 

test results was performed. Experimental results for flexural capacity of the baseline ties were 

provided by the manufacturer. Tests were performed to determine both cracking capacity 

(Section 4.2.8). 

1.4.2 Phase II: Parametric Optimization 

After completion of the design/analysis validation of the baseline tie, the design optimization 

process began using a similar analysis/design process. Because the geometry of the tie is fixed, 

the optimization focused on variations in the prestressing and concrete properties. A variety of 

prestressing configurations, sizes and stress levels were considered to achieve increased 

capacity, along with changes in steel grade/type and concrete compressive strength. An 

advantage of the numerical analyses over experimental testing is that a large number of 

variations (prestressing configurations and material properties) can be analyzed in a short 

period of time, while also considering the various stages of loading.  
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During the design optimization, the two components which were varied were the prestressing 

(location, type) and the concrete strength. The baseline tie uses high strength drawn wire 

whereas the optimization considered variations in the type, size and position of prestressing 

including 7-wire strand and fiber reinforced polymer (FRP). The 7-wire strand is common among 

prestressed ties and was suggested by the baseline tie manufacturer for consideration. FRP for 

prestressing has been used in some recent applications, and has advantages over conventional 

prestressing steel of being corrosion resistant, strong and lightweight. However, FRP has never 

been used in large scale production of prestressed concrete ties. Therefore, it should be 

considered as an alternative to the industry standard of high strength steel. 

 

In addition to prestressing configurations, variations in concrete compressive strength were 

evaluated in this study. The concrete strengths selected were assumed to be feasible for a 

quality prestressed concrete manufacturer. High strength concrete (f`c greater than 10,000 psi) 

is associated with different design standards and material assumptions than conventional 

normal strength concrete (f`c less than 10,000 psi). This adds an additional degree of complexity 

to optimization design calculations as they vary at higher concrete strengths. This additional 

complexity is justified however by the effect an increase of concrete strength has on delaying 

the initiation of cracking, which is one definition of failure for concrete ties.  

 

The arrangement of optimization design iterations with varying prestressing and concrete 

conditions has been organized into an iteration matrix in Appendix C.  The matrix contains the 

various prestressing and concrete properties in each iteration and the file names for the 

corresponding MathCAD and support files. In total there are 48 iterations included; 24 

combinations of prestressing and concrete alternatives and then each alternative has two 

configurations representing the optimized condition for the two critical support conditions 

discussed in Section 2.2.3. 

1.4.2.1 Optimized Tie Design Validation Testing 

The goal of the optimized tie design testing will be similar to that outlined in the existing tie 

design validation testing. Ties will be tested to failure and again compared to the results of the 

numerical analyses. However, the production and testing of optimized tie designs is outside the 

scope of this report and is discussed in the Section 5.2. 
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1.5 Research Significance 

This research was conducted with the intent of increasing the knowledge and utility of 

prestressed concrete railroad ties in the development of the railroad as a sustainable and 

efficient transportation mode. It is anticipated that the suggested methods of increasing 

concrete tie capacity identified in this research, will aid in the proposed transition to higher 

tonnage applications. The knowledge gained through this research will benefit two groups in 

particular; prestressed concrete tie manufacturers and the heavy haul Class I railroads.  

1.6 Thesis Organization 

The following chapters are organized to include background information, the adopted research 

methodology, and results. Chapter 2 provides a thorough overview of prestressed concrete 

railroad ties and the process used for their design with a concentration on the use and design of 

ties for heavy haul applications. Chapter 3 discusses the procedure and method of analysis of 

the baseline tie and specifics of the design optimization. Chapter 4 presents a discussion of the 

results for the baseline tie design analysis and the optimization study. Also included is a 

comparison of the results of the numerical analyses with the available experimental test results. 

Chapter 5 summarizes the research findings and presents the conclusions and future work 

identified through the progression of this project.  
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2.0 Literature Review 

2.1 Overview of Prestressed Concrete Railroad Ties 

2.1.1 Introduction to Concrete Railroad Ties 

Today the use of concrete ties is on the rise in North America as they become an economically 

competitive alternative to the historical industry standard wood ties, while providing 

performance which exceeds its competition in terms of durability and capacity. Problems 

regarding flexural capacity and concrete durability were experienced during the early years of 

concrete tie production in North America. However, with the aid of the Portland Cement 

Association (PCA) suitable designs capable of withstanding the tremendous loads of North 

American railroads were developed during the 1970’s  (Hanna 1979). Since this time, concrete 

ties have developed into an adaptable tie alternative with applications in both transit and heavy 

haul rail lines.  The shape and dimensions of a typical North American concrete tie are illustrated 

in Figure 2.  

LENGTH = 9'-0"

RAIL SEAT 
REGION

TIE CENTER 
REGION

DEPTH = 9"

WIDTH = 11"

RAIL
FASTENER

TIE PAD

 
Figure 2: Generic concrete tie shape and dimensions 

To achieve the performance exhibited by concrete ties, considerable amounts of engineering 

have been employed with respect to materials and design. The composite behavior between the 

concrete and prestressing steel provides the necessary strength to resist the cyclic loading of the 

trains while concrete provides the protection and rigidity to hold the system together. Initially, 

this relationship was not well understood and failures were often the result of inadequate 

development of prestressing steel and insufficient flexural capacity. However, over the last 

several decades tie failures due to flexure and inadequate development have been nearly 
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eliminated (Hanna 1986). Currently, the focus of the rail industry is to improve tie durability and 

service life. Additionally, the application of concrete ties in unique environments such as 

permafrost is of interest. The following sections highlight the materials, failure mechanisms, 

durability, performance, fabrication methods, installation, maintenance and economics related 

to prestressed concrete railroad ties. 

2.1.2 Materials 

Typical to any prestressed concrete member are high early strength concrete and high tensile 

strength steel (Heintz 2000). In addition to the concrete and prestressing steel, tie fasteners and 

pads are integral to the concrete tie.  However, it should be noted that the application of these 

connection devices is dictated by the railroad operators and the connection design is outside of 

the scope of the tie manufacturer responsibilities.  This presents a unique challenge because a 

component failure is often associated with a tie failure (Remennikov and Kaewunruen 2007).  

2.1.2.1 Concrete 

The use of higher strength concrete is necessary in the production of concrete ties due to the 

use of prestressing. It is generally suggested that a minimum compressive strength of 7,000 psi 

at 28 days be used; however, most manufacturers achieve strengths in excess of 10,000 psi 

(AREMA 2003; Hanna 1979). It is common for high early strength concrete to reach 

approximately 80 percent of its 28 day compressive strength in less than 24 hours after casting 

(Naaman 2004). An example of a high early strength concrete maturity chart is provided in 

Figure 3. Typical reasons for the use of high early strength concrete include the following (Hanna 

1979): 

• The prestressing force must be transferred from the stressing bed to the member at an 

early age with the compressive strength required for prestressing load transfer varying 

depending on the design; but 4,500 psi is typically considered satisfactory, 

• Prestressing beds can be turned over more rapidly due to shorter release times arising 

from sufficient or high strength at transfer, 

• Low water/cement ratios are typical of high early strength concrete; resulting in 

decreased shrinkage and cracking, 

• Unlike conventional reinforced concrete, high strength steel is required to resist the 

applied prestressing forces.   
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Other considerations related to concrete composition include admixtures. In order to achieve 

early high strength concrete, manufacturers commonly include accelerator and water reducing 

admixtures. Accelerators increase the rate or cement hydration while water reducers allow for 

workability of the concrete at the low water-cement ratios necessary for higher strength 

concretes. For areas with significant freeze-thaw cycles, air-entraining mixtures should be used. 

This relates to the fact that air voids accommodate the growth of pore water during freezing 

(Hanna 1979). 

 

 

Figure 3: Typical concrete maturity chart for an early high strength mixture used in prestressed concrete fabrication 

2.1.2.2 Prestressing 

Prestressing tendons provide the necessary tensile resistance to support the flexural loads 

imparted by the trains. During the initial days of concrete tie fabrication, when the concrete is 

only at a fraction of its design strength, the most difficult issues to satisfy are prestressing bond 

and allowable stresses of the concrete in tension. However, bond and stress issues related to 

concrete ties are typically satisfied by using smaller tendon diameters and larger numbers of 

tendons set in a uniform pattern to avoid tension stresses induced in the cross-section at 

prestressing transfer. For this project two prestressing material types will be considered. First, 

the industry standard of steel prestressing and second the innovative alternative of fiber 

reinforced polymer (FRP) tendons. 
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2.1.2.2.1 Steel 

Prestressing in concrete ties consist of either the 7-wire strand or steel wire (Figure 4) (AREMA 

2003). Dimensions of 7-wire strand vary, but the most common among North American 

manufacturers is 0.375 in. diameter. The size of wire used over the years in concrete ties has 

varied from 0.19 in. to 0.21 in. (4.80 mm to 5.32 mm). An ultimate strength of 255 ksi is 

common for wire, whereas 7-wire strand typically has an ultimate strength of 270 ksi.  

 

The choice to use either 7-wire strand or individual wire is up to manufacturers and is dictated 

by design and material efficiency. However, wire prestressing offers several advantages over 

conventional twisted multi-wire strand. Using wire provides the ability to change the quantity of 

steel within the tie by smaller increments compared to 7-wire strands, since wire is available in 

smaller diameters than 7-wire strand. Therefore, the ties can be more efficiently designed to 

parameters dictated by predicted service loads, decreasing excess material, and in turn 

decreasing the cost of the tie (Naaman 2004). Wire also requires shorter lengths for transfer and 

development.  

 

  

(a) (b) 

Figure 4: Prestressing steel types (a) 7-wire strand, 0.5 in. diameter, 270 ksi (b) wire, 0.21 in. diameter, 255 ksi 

2.1.2.2.2 Fiber Reinforced Polymer (FRP) 

While steel remains to be the industry standard for prestressed concrete railroad ties, other 

alternatives do exist for prestressing materials. One such alternative which provides increased 

strength and decreased weight in comparison to steel, is fiber reinforced polymer (FRP) 
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prestressing tendons. In addition to being stronger and lighter than steel, FRP is a noncorrosive 

material, which allows it to be utilized in environments which could cause early degradation of 

the concrete, should steel be used. To date however, FRP has not been used in the large scale 

production of prestressed concrete railroad ties. 

 

FRP is composed of two components, fibers which provide the tensile strength of the material 

and resin (polymer) which is used to impregnate and bind the individual fibers together. There 

are three types of FRP fibers which include aramid, glass, and carbon. Generally aramid and 

carbon fiber based FRP materials are used for prestressing applications due to their ability to be 

produced with a wide range of elastic moduli. However, since FRP is relatively new in the 

prestressed concrete industry, little standardization between the prestressing manufacturers 

has been completed. The size, strength, modulus, surface texture and therefore bond of 

individual FRP materials vary greatly from manufacturer to manufacturer. Due to this lack of 

standardization, the utilization of FRP requires substantial engineering effort with respect to the 

particular application and FRP material. 

 

In the past, FRP has been used in bridge applications for both internal and external prestressing 

of girders and as a noncorrosive option for reinforcement in the bridge deck. The application of 

FRP to concrete railroad ties is considered in this study as an alternative to steel prestressing. 

The reason for consideration of FRP as an alternative to steel is the possibility of eliminating 

corrosion of the prestressing should cracking occur. If corrosion is not an issue and fatigue of the 

prestressing can be handled through design, tie capacity may be able to extend beyond the 

current cracking limit, ultimately increasing the capacity of the tie. 

2.1.2.3 Attachment Components 

2.1.2.3.1 Tie Pads 

Tie pads are installed between the rail and concrete ties to reduce electrical conductivity 

between rails, and impact and vibration effects on the track structure leading to quieter 

operation and increased tie life (AREMA 2003). Tie pads come in a variety of materials and 

configurations with steel and polymers being the most common materials. A typical pad 

configuration includes a polymer top pad, a steel plate for added rigidity, and a rubber gasket 
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between the steel plate and concrete tie to decrease sound and vibration. Pads can also be 

made solely of steel or polymeric materials. However, pads have the unfortunate effect of 

trapping water and grit ultimately accelerating the rate of rail seat abrasion beneath them 

(Remennikov et al. 2006). 

2.1.2.3.2 Fasteners 

In addition to the primary tie components of concrete and steel, fasteners are essential to 

attach the steel rail to the tie and protect the tie from rail movement. The fastener type used is 

dictated by the railroad operator and the tie application. Most fasteners are composed of three 

parts; the ductile iron shoulder (or embed with bolt), spring clip, and insulator. The ductile iron 

shoulder or embed is cast into the tie during tie fabrication and varies in terms of size and 

embedment depth depending on the fastening system used and tie application (Figure 5). Spring 

clips attach to the ductile iron shoulder or embed and apply a restraining force to the rail (Figure 

7). Between the spring clip and rail is the insulator to reduce noise, impact forces, vibration, 

abrasion and electrical conductivity (Figure 7). 

 

 

Figure 5: Embedded cast iron shoulder for PANDROL E-CLIP fastening system  

Fasteners are divided into two categories; captive and non-captive. The difference is in how and 

when fastener parts are attached to the tie. Non-captive fasteners include those where only the 

ductile iron shoulder is attached to the tie prior to shipping and tie installation (Figure 6). 

Captive systems have all parts (shoulder, spring clip and insulator) installed prior to shipment 

and installation (Figure 7). Captive systems are at risk of damage to the fastener during 

transportation and installation, whereas non-captive systems require additional labor and time 

for component installation once the tie is placed within the track. 
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Figure 6: Non-captive PANDROL E-CLIP fastening system 

 

Figure 7: Captive PANDROL SAFELOK III fastening system 

2.1.3 Failure Mechanisms 

The three primary failure mechanisms of concrete ties observed by the rail industry in North 

America are rail seat abrasion, flexural cracking from center binding and rail fastener failure 

(Cann 1978; Reinschmidt 1991). Of these three, rail seat abrasion is the most perplexing and 

difficult to prevent. Failures may be related to concrete tie materials, design, or a combination 

of the two. Installation and maintenance practices also contribute to a tie’s resistance to these 

failure mechanisms. A discussion of the three primary failure mechanisms is presented in the 

following sections. 

2.1.3.1 Rail Seat Abrasion 

AREMA defines rail seat abrasion (RSA) as the gradual wearing away of the cement paste from 

the concrete, resulting in an uneven aggregate bearing surface beneath the tie pad (Reinschmidt 

1991). However, RSA may degrade the concrete uniformly across the entire interface depending 

on the mechanism causing the deterioration.  Figure 8 illustrates the surface of a degraded rail 

seat which conforms to the AREMA definition, while Figure 9 demonstrates abrasion on a curved 
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section of track in which the aggregate and cement paste deteriorated at the same rate.  Factors 

contributing to RSA include: the presence of water, high tonnage (static wheel loads larger than 

25,000 lbs), steep track grades, and especially track curves greater than two degrees (Hanna 

1979). Regions with freeze-thaw cycles often experience rail seat abrasion at an accelerated rate 

due to increased cement paste deterioration below the tie pad.  

 

 

Figure 8: Rail seat abrasion where cement paste has been removed leaving an uneven aggregate surface (Peters 
and Mattson 2003) 

  

(a) (b) 

Figure 9: Rail seat abrasion on curve (a) abrasion allowed rail to roll causing derailment due to widening of track 
gage, (b) Side view of rail seat abrasion (NTSB 2005) 

To prevent RSA and prolong tie life, concrete tie manufacturers have investigated methods to 

protect concrete in the rail seat region. Research has focused on the application of abrasion 

resistant materials applied in the rail seat region and some industry techniques used to mitigate 

RSA to date include: 

• Epoxy or polyurethane applied to rail seat shortly after casting (Peters 2007), 

• Cast-in-place steel plates (Peters and Mattson 2003), 

• Abrasion resistant pad assembly (Peters and Mattson 2003). 



 

15 
 

   

(a) (b) (c) 

Figure 10: Industry methods to combat rail seat abrasion (a) epoxy (b) cast-in-place steel plate (Peters and Mattson 
2003)(c) tie pad 

Of these options, epoxy or polyurethane has shown promising short term results and appears to 

have gained acceptance among manufacturers and railroads. However, epoxy and polyurethane 

do wear down over time allowing RSA to take place. For RSA in field repair operations, the 

application of epoxy is common, but requires specific temperature and also results in costly 

track closures (Peters 2007; Reiff 1995). Laboratory testing of cast-in-place steel plates has 

shown no rail seat abrasion at four times the number of cycles required to cause failure of 

current tie designs. However, issues with water intrusion below the plate and the additional cost 

of materials and fabrication have limited the use of the cast-in-place steel plate method (Peters 

and Mattson 2003).  

 

Abrasion resistant pad assemblies remain the industry standard due to lower initial cost and 

ease of replacement. However, some research has show that tie pads in certain cases may 

actually exacerbate the abrasion process by creating a path for water intrusion into the rail-tie 

interface. In addition, the stiffness of the pad material itself has shown correlation to the rate of 

RSA. Increasing the pad stiffness appears to increase the rate of abrasion, while softer pads 

wear out faster, ultimately providing decreased electrical insulation, impact dissipation and 

abrasion resistance. Additional solutions that been explored by tie manufacturers and railroad 

operators with mixed results include (Hanna 1975): 

• Steel fiber reinforced grout applied to the rail seat (Takahashi et al. 2008), 

• Steel plates bonded to the tie using epoxy after casting, 

• Metallic aggregate in the rail seat region (Wu et al. 2001), 

• Variations in strength and porosity of concrete to increase abrasion resistance. 
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To date, numerous methods have proven to delay the onset of rail seat abrasion, but issues of 

cost and repeatability on a high production basis remain a concern.  

2.1.3.2 Flexural Cracking (Center-Binding) 

While inadequate tie flexural capacity is predominantly an issue of the past, cases of ties 

cracking at the top center location due to negative moment have been observed on mainline 

tracks (Figure 11) (Cann 1978; Magee and Ruble 1960; Raymond 1984; Thun et al. 2008). Two 

factors contribute to the ballast support conditions which cause this center bound condition. 

First, as the tie develops uniform ballast support in response to ballast consolidation negative 

moment occurs at the tie center (Freudenstein 2007). Secondly, over time cyclic loading applied 

to the track causes ties to oscillate and deform vertically within the track structure; this 

deformation produces pumping action which ultimately allows ballast to abrade the bottom of 

the tie and pulverize the ballast beneath the tie. The extent of ballast deterioration is unique to 

concrete ties when compared to that observed with wood ties resulting from the difference in 

the tie material strength and hardness. A converse scenario can occur with wood ties, where the 

tie is broken down by the ballast through the same action discussed above (White et al. 1978). 

Investigations have shown that this failure type results from ballast conditions which are beyond 

the scope of tie design. 

Void Beneath Rail 
Seat Region

Ballast Support 
Restricted to 

Center Region

Rail Seat Load Cracking in Top 
Center of Tie

 

Figure 11: Center-binding support and void configuration 

The pulverized ballast is routinely removed from the track and replaced with new ballast during 

undercutting maintenance operations (Riessberger 1984). However, when undercutting and 

replacement is not carried out regularly, depressions in the pulverized ballast beneath the ends 

of the tie may develop, altering the support condition of the tie. The new support condition is a 

center support where ballast bearing still remains. Based on this support condition, the tie 
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cantilevers from the center over the pulverized ballast depression. When loaded, large negative 

moments occur at the tie center, resulting in cracking and tie failure as the flexural capacity is 

exceeded.  This type of failure is referred to as “center binding”. To prevent center binding 

regular maintenance of ballast must be performed to avoid deterioration of the material leading 

to unsuitable tie support conditions (Riessberger 1984). The required regularity of ballast 

maintenance will be dictated by frequency and intensity of loading. 

2.1.3.3 Fastener Failure 

While many rail fastener configurations exist, a commonality between them is their shared 

purpose of providing a restraining force known as toe load to the rail. However, over time due 

to the effect of cyclic loading, fatigue of fastener components such as the spring clip and ductile 

iron shoulder occurs, allowing movement of the rail, deterioration of pads, and a decrease in the 

fastener toe load applied to the rail (Figure 12) (Cann 1978; Reiff 2008; Remennikov et al. 2006). 

In addition to a decreased toe load, polymer insulators located between the rail and spring clip 

are subjected to abrasion from cyclic loading. Over time this abrasion wears away insulating 

material, creating voids and allowing for excess movement between the rail-tie interface in the 

form of rail rocking side-to-side and slip in the longitudinal direction of the rail. This excessive 

movement and space between the tie and rail further exacerbates the issues related to rail seat 

abrasion by providing an abrasive motion and allowing for the intrusion of water and abrasive 

agents such as rail grit or sand (McQueen 2007). 

INSULATOR

DUCTILE IRON 
SHOULDER

 

SPRING CLIP FORCE
(TOE LOAD)

 

(a) (b) 

Figure 12: Rail fastener components effected by fatigue (a) Rail fastener polymer insulator (b) Downward toe load 
applied by fastener spring clip 

To prevent fastener failure or related issues such as rail seat abrasion, regular maintenance of 

fastener components is essential. The replacement of worn insulators and other components 
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can prevent the escalation of related issues before they begin. Fortunately, for maintenance 

operations component wear is typically uniform along a length of track and can be estimated 

based on historic performance for a given location knowing the frequency and intensity of 

loading. Similarly, fastener wear is relatively easy to monitor visually compared to rail seat 

abrasion which is typically hidden by the rail and ballast (Riessberger 1984).  

2.1.4 Durability and Performance 

One reason railroads utilize concrete railroad ties in their tracks is their increased durability and 

life span when compared to timber ties. These increases result primarily from the absence of 

rotting and an increased resistance to climate change (Abbott 1989). Generally, a concrete tie 

has a lifespan longer than the typical treated timber tie with decreased maintenance 

requirements. Historically concrete ties will last two to three times longer than wooden ties 

under the same track, loading and environmental conditions (Zarembski 1999). However, this 

has not always been the case (Jimenez and LoPresti 2004; Qinhua et al. 1997). 

2.1.4.1 Concrete Durability 

Like any other concrete product, concrete railroad ties can be affected by changes in 

temperature and moisture (Sahu and Thaulow 2004; Tourney et al. 2004). Freeze-thaw cycles in 

particular may cause accelerated deterioration of the concrete if air entrainment is not used 

(Stark 1976; Stark 1989).  Additionally, the durability of concrete ties is largely dependent on the 

ballast condition, which provides both support and load transfer of wheel loads and drainage of 

water away from the tie’s surface (Riessberger 1984). Sufficient drainage is critical for 

preventing rail seat abrasion and in regions that experience freeze-thaw cycles. For this reason 

ballast material is often replaced or cleaned when adequate drainage is no longer achieved.  

2.1.4.2 Corrosion 

Corrosion is typically a secondary effect of thermal and flexure cracking of the tie. Within any 

reinforced or prestressed concrete member, the formation of cracking provides a conduit for 

the ingress of moisture and chemicals, which in turn initiate the corrosion process once the 

moisture or chemicals reach the internal reinforcement. To prevent corrosion, adequate 

concrete cover of prestressing steel must be provided in addition to proper drainage around the 

tie by the ballast. In general, corrosion is not often observed in service because ties are typically 

replaced due to another failure mechanism such as flexural failure or rail seat abrasion, which 
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tend to occur well before corrosion becomes a problem. As for corrosion of the prestressing 

steel during the fabrication of the tie, AREMA specifies that surface rusting may occur; however, 

pitting may not (AREMA 2003). Under normal tie manufacturing conditions, prestressing steel is 

typically turned over well before any significant surface rusting occurs. 

2.1.5 Fabrication Methods 

Concrete tie production is similar to other precast, prestressed concrete members except in 

terms of the repetition and quantity of concrete ties which are produced during a single casting. 

Depending on the fabrication method used, hundreds of ties can be cast concurrently. The three 

methods of fabrication historically used in North America are the long-line method, stress-bench 

method, and the individual form method (Hanna 1979). The most common fabrication method 

used today is the long-line method; the other two methods are less common for major 

manufacturing facilities and are typically used for one off castings such as turnout ties, therefore 

those fabrication methods will not be presented (Heintz 2000). 

2.1.5.1 Long-Line Method 

The long-line method describes the process in which ties are produced end to end in a line, with 

continuous strands of prestressing steel running through the ties. Casting beds containing the 

forms are stationary and equipment moves along the length of each bed. A variation of this 

method, in which forms are placed on train cars called lorries, which allows the ties to move 

between the different production steps, is termed the Grinberg method. 

 

The long-line fabrication process can be highly automated, but still requires a labor force with a 

size dependent on the number of casting beds in operation and the number of forms in each 

bed. Workers are typically broken down into crews performing specific tasks which may include 

utility application, steel layout, casting, sawing, stripping, and final preparation. The various 

stages of fabrication are illustrated in Figure 13 through Figure 18. A turnaround time of less 

than 24 hours is typical for this method (Fogarasi et al. 1991).  

 

A typical tie manufacturing facility will consist of a lay down area, casting building occupied by 

several prestressing beds, and a concrete batch plant. The facility is typically serviced by an over 

head gantry cranes and interior rail systems to transport completed ties out of facility (Figure 13 
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(a)). Prestressing beds support tie forms and ties during curing process while prestressing forces 

and jacking equipment is supported by “dead men” anchors at ends of beds. Form sections 

contain several tie cells set side by side, with multiple form sections placed end to end (Figure 

13 (b)). For one tie manufacturer visited, the form sections contained 6 tie cells with 60 form 

sections set in a single prestressing bed; therefore 360 ties could be cast at a single time. Ties 

were cast upside down for the reasons including: 

• Decrease occurrence of air voids and poor concrete consolidation, 

• Cast-in-place fastener components can be set in form prior to casting, 

• The bottom of a tie tends to be the only flat surface which makes it the easiest to have 

as a form free surface to provide an opening for concrete placement and finishing. 

  

(a) (b) 

Figure 13: Plant and prestressing bed layout  

The first step in tie production is the form and casting preparation. Forms must be cleaned to 

remove concrete from previous castings and to apply release agent which aids in the removal of 

ties during de-molding (Figure 14 (a)). Cast-in-place components such as ductile iron shoulders 

or polymer embeds, depending on the fastening system used, are placed at this time. Some 

manufacturers also place information such as the casting date and a serial number using cast–

in-place plastic identification caps (Figure 14 (b)). This information can later be used by the 

railroad customer and manufacturer to track ties and evaluate performance. 
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(a) (b) 

Figure 14: Form and casting preparation  

Once all cast-in-place components have been set within the forms they must be prepared for 

placement of the prestressing steel. To decrease the amount of concrete which must be cut to 

separate the individual ties after curing, steel plates are placed between form sections between 

the horizontal layers of prestressing steel (Figure 15 (a)). Prestressing steel is pulled off rolls set 

at one end of the bed through a template which distributes the steel throughout the cross 

section of the tie (Figure 15 (b)). 

 

  

(a) (b) 

Figure 15: Form and prestressing steel preparation  

Once all prestressing steel for a single line of ties has been run through all the form sections and 

anchored at the jacking end of the prestressing bed, end plates are placed at the free end; 

prestressing steel is cut, and the distribution template shown in Figure 15 moves to the next line 

Identification Cap 
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of ties in the prestressing bed (Figure 16 (a)). Once all the prestressing for the bed is set, the 

steel is stressed (Figure 16 (b)). The level of stressing depends on several factors including: 

• Pre-compression force designated by the tie design, 

• Type of prestressing steel (stress relieved or low relaxation), 

• Elastic elongation of prestressing steel. 

  

(a) (b) 

Figure 16: Prestressing set and jacking configuration  

Concrete is typically produced by the tie manufacturer on site to ensure quality and give them 

control of mix characteristics. Following jacking of prestressing, concrete is batched and placed 

in the tie forms using a hopper and overhead gantry crane. Finishing of the bottom of the ties is 

completed by hand before the concrete sets (Figure 17 (a)). To enhance curing, the prestressing 

beds are capable of controlling the temperature of the ties using heated oil which circulates 

along the beds. Following a curing period of between 12-24 hours or until the concrete obtains 

adequate strength to transfer the prestressing force, the jacks are released transferring the 

prestressing force to the concrete. A saw set over the bed then cuts the prestressing steel at the 

form sections, separating the ties (Figure 17 (b)). 

 



 

23 
 

  

(a) (b) 

Figure 17: Casting and finishing operations  

The final step in the tie production is de-molding and application of rail seat protectant, if 

required. De-molding is performed using the apparatus shown in Figure 18 (a) which lifts each 

form section up from the prestressing bed, allowing access to the tie ends by a hoist equipped 

with hydraulic clamps. Ties are then removed from the form, rotated 180 degrees and set on rail 

cars. Once the ties are right side up on the rail car, polyurethane is applied to the rail seat region 

using a manual sprayer prior to being moved outside for storage or shipment (Figure 18 (b)). 

 

  

(a) (b) 

Figure 18: De-molding and final tie preparation  

The fabrication process shown in Figures 13-18 still requires considerable amounts of manual 

labor when compared to other more recently developed systems, which are also based on the 

long-line method, but incorporate higher levels of mechanization. However, this process is 

efficient and has a high production rate compared to other methods. Other advantages of the 
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long-line method of concrete tie production include uniform tie quality and few labor hours. 

Drawbacks to the long-line method are that it requires a large capital investment for forms and 

space for production. Tie manufacturing facilities vary in size and capacity, but the largest facility 

in North America is capable of producing around 400,000 to 500,000 ties annually. 

2.1.6 Installation and Maintenance 

The rate at which concrete ties are installed depends on the equipment used. Large railroads 

tend to use highly mechanized processes with equipment such as the Track Renewal Train (TRT) 

systems, which are capable of installing 8-9 miles of track in a single day. Whereas smaller 

contractors may use either tie clamps or chain hoist systems mounted on backhoes, which can 

install up to 1000 and 500 ties per day, respectively (Cann 1978).  

 

Maintenance is the responsibility of the operating railroads and procedures vary significantly 

between companies. However, it is generally understood that for concrete ties to last, proper 

care must be taken to maintain the ballast and fastening systems. This is because the tie acts in 

conjunction with the rest of the track components, where if one component fails it tends to 

start a cascade of failures for the remaining components (Abbott 1979; Kramer 1996). 

 

To increase quality control and documentation, some manufacturers have imprinted ties with 

information including its date and place of fabrication and tie design. Using this information, an 

in-service tie can be identified and evaluated based on historical manufacturer records. 

2.1.6.1 Initial Production and Construction Costs 

Concrete ties are an engineered product requiring specialized knowledge, equipment and a 

substantial capital investment in terms of facilities to produce. In addition, more complicated 

and expensive fastening systems are required with concrete ties compared to the steel spike 

used with wood ties. With this in mind, comparing concrete and wood ties in terms of materials 

and manufacturing, wood ties are cheaper to produce in North America by a small margin. In 

other regions of the world where sustainable sources of timber are unavailable, concrete is 

often a cheaper alternative (Gauntt and Zarembski 2000). 
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As for North America, the cost disparity between wood and concrete may change as a projected 

shortage of wood of sufficient size and quality may limit timber tie production (White et al. 

1978). Concrete ties could potentially experience a similar rise in price due to increasing energy 

costs related to cement production and the demand for steel. It can be assumed that the price 

for both timber and concrete ties will rise, but the rates are subject to speculation (Gauntt and 

Zarembski 2000).  

 

Similar to their production, concrete and timber ties have very little in common in terms of 

construction and installation procedures. Crew size and equipment requirements vary 

depending on installation methods, but generally concrete tie track construction is faster and 

simpler due to the track gage being set during production rather than during construction as is 

the case with wood ties (White et al. 1978).  

2.1.6.2 Long Term Maintenance Costs 

The main advantage of concrete ties over other tie materials is their inert nature. Concrete 

unlike wood and steel can neither rot nor rust. Concrete ties also tend to wear uniformly over a 

section of track, whereas the location of timber tie wear is more random. Instead of replacing 

individual ties over an extended period of time like timber track typically requires, concrete tie 

tracks are repaired in sections leading to lower overall maintenance costs (Parker 2002). The 

higher initial capital investment made for concrete ties is typically recouped through the  

extended lifespan of a tie. This is supported by the fact that there are concrete ties still in 

service today that were installed 35 year ago. However, concrete ties have not typically endured 

the originally estimated 50 year service life. In comparison most wooden ties have an estimated 

lifespan of 20 years (Zarembski and Gauntt 2002). It is important to remember that tie lifespan 

is dependent on track, loading, maintenance and environmental conditions which may vary 

widely from location to location, therefore when comparing different tie alternatives, in these 

conditions must be specified.  

2.1.7 Economics 

To analyze the cost of concrete ties in comparison with traditional wood ties, both initial 

production and long term maintenance costs must be considered. The cost estimates however 

are subject to change with respect to the price of steel, portland cement and timber. With rising 
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energy costs as well as increased reservations about the harvest of dimensionally suitable 

timber, the future prices of both concrete and timber ties are uncertain. The following factors 

have been determined to have the most significant impact on the economic benefits of concrete 

ties (White et al. 1978): 

• Annual tonnage carried on track section, as tonnage increases concrete ties benefit 

increases due to higher durability, 

• Life of concrete ties versus wood ties, 

• Savings in train fuel due to more efficient train operation on more rigid concrete tie 

tracks, 

• Future cost of old growth timber, 

• Future cost of labor to replace aging wood ties on a more regular basis than concrete 

ties. 

2.2 Prestressed Concrete Railroad Tie Design 

2.2.1 Design Considerations and Load Development 

The collective body for railroads in North America is the American Railway Engineering and 

Maintenance-of-Way Association (AREMA). Within the AREMA Manual for Railway Engineering 

an entire chapter is dedicated to railroad ties (AREMA 2003). The largest portion of this chapter, 

(Part 4) pertains to concrete railroad ties, which individual companies can use as a foundation 

for their own design standards. Design aspects such as loading, material specification, testing 

requirements and discussion of the relationships between a tie and the surrounding track 

components (ballast, rail, etc.) are considered. However, to provide their customers with a 

reliable product, manufacturers tend to design their ties to surpass the requirements set forth 

by AREMA, usually with additional requirements stipulated by the railroad operators. 

 

The first step in designing a tie begins with discussing the intended service of the tie with its 

consumer, the railroad operator. Conditions unique to a tie application such as: tie spacing, 

loading in million gross tons annually (MGT) and operating train speed must be acquired from 

the railroad operator to indentify the performance requirements of the tie in service (Sikka and 

Singh 1972). With this information, the tie manufacturer can then design for the various limit 

states including flexure and durability.  
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The flexural capacity of a concrete tie is derived from material properties, tie dimensions and 

number and type of prestressing wire used. Depending on the application, industrial, transit or 

heavy haul, cross-section dimensions and quantity of prestressing steel will vary, with heavier 

loading conditions requiring larger ties with more prestressing steel. When designing a tie, an 

evaluation of the loads being transferred and their flow through the track structure is essential. 

Therefore, forces and pressures of interest include the rail seat load, lateral load, and the ballast 

pressure. The required flexural capacity is determined based on the ballast support conditions 

(pressure distributions) encountered during the life of a tie and the applied rail seat loads. 

AREMA has accounted for these various loading and support conditions in the minimum 

specified positive and negative moments located at the critical sections of the rail seat and tie 

center.  

 

Similarly, lateral loads are accounted for in tie and fastener design. Fasteners are designed for 

the transfer of a minimum lateral load to account for those encountered in curved sections of 

track, while ties must be capable of withstanding lateral loads to maintain horizontal track 

geometry (AREMA 2003). A further discussion of load analysis and transfer is presented in the 

following sections. 

2.2.1.1 Rail Seat Load 

As a train moves along the track, the load from an axle is distributed amongst several ties due to 

the rigidity of the track (Figure 19)(Hanna 1979). A single tie typically carries between 45 to 55 

percent of an axle load directly above it. Factors affecting this load distribution are the tie 

spacing, fastening system, rail stiffness, and ballast and sub-grade conditions with tie spacing 

having the largest effect. Typical track design with concrete ties utilize tie spacing between 19 

and 27 inches (AREMA 2003).  
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Wheel Load

Load Distribution
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Tie

 

Figure 19: Distribution of load from single axle along track 

In the past, equations and variables were used to calculate the rail seat load; however, to 

simplify the process of calculating rail seat loads, AREMA collected the factors related to the 

load distribution and created a design aid relating the percentage of a wheel load transferred to 

a single tie as a function of tie spacing (Figure 20). For example, a tie spacing of 24 in. would 

correlate to approximately 50 percent of the applied axle load being carried by an individual tie.  
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Figure 20: Estimated distribution of loads based on tie spacing (AREMA 2003) 

To account for rail irregularities and dynamic wheel load effects, an impact factor is applied. An 

impact factor of 200 percent is recommended by AREMA for design load determination (AREMA 

2003). Research into the effects of impact loads on the ties and fastening components has 

caused some investigators to question the adequacy of current impact factors. In laboratory 

tests, impact loads in excess of 400 percent of the static wheel load have been observed from 

wheel flats and other irregularities (Kaewunruen and Remennikov 2007). However, the 

frequency at which these impacts are observed varies and is unpredictable. It has been 

previously stated that tie manufacturers are often held to higher standards than those set by 

AREMA by the operating railroad consumer who requests a minimum flexural capacity. It is then 
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left to the best judgment of the tie designer whether an increased factor of safety is required in 

regards to impact factors.  

2.2.1.2 Ballast Support 

Once wheel loads are applied to the tie they must be transferred to the ground through the 

ballast and sub-ballast material. Ballast support is crucial to a tie’s ability to support load. Poor 

ballast support results in tie cracking and track misalignment (Namura et al. 2004). Following tie 

placement and tamping operations, ballast support is limited to the areas around the rail seat 

region leaving the center region of the tie with little to no support (Figure 21 and Figure 22 (b)). 

Over time due to train traffic the ballast will consolidate to a uniform support distribution along 

the length of the tie. Figure 22 illustrates the different stages of ballast support (Hanna 1979). 

However, deterioration of the ballast due to improper maintenance can result in a center 

support condition as previously discussed. How these support conditions relate to tie design will 

be discussed in later sections. 

 

 

Figure 21: First round of tamping, consolidation restricted to rail seat region (Peters and Mattson 2003) 

In reality, pressure between the tie and ballast is not uniform across the bottom of the tie, but 

an approximation or average is used to limit bearing pressures and prevent excessive depression 

of the track. This average ballast pressure is a function of the applied axle loads, impact factors, 

and the bearing area of the tie per AREMA section 4.1.2.5 (AREMA 2003). It is essential that the 

ballast and sub-ballast are not over stressed to prevent accelerated deterioration to the track 

and the ballast itself due to excessive depression of the track (Namura et al. 2004). 
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Rail Seat Load (R)
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Outside Wheel Load (P)

Lateral Load (Q)

Inside Wheel Load (P’)

 

Figure 22: Ballast support distribution configurations (a) ballast support restricted to rail seat region following 
installation due to tamping only around rail (b) train traffic consolidating ballast, engaging center region (c) 
extensive train traffic, uniform support condition (d) on curved sections of track non-uniform support 
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2.2.1.3 Lateral Load 

Along with vertical loads applied from the wheels and ballast, ties are subjected to lateral loads 

especially on curved sections of track (Figure 23). The ability of a tie to restrict lateral movement 

is important for maintaining track geometry. To support these lateral loads, ties rely on bearing 

of their ends against ballast material, friction between tie surfaces and ballast, and gravity. A 

recent design innovation to increase this resistance to lateral movement has been the addition 

of scallops to the sides of ties (Figure 24). The scallops are wedges which extend from the sides 

of the tie to increase the interaction between the tie and ballast; historically tie designs 

maintained a smooth surface (Peters and Mattson 2003). In addition to the lateral load 

requirement for ties, AREMA suggests fastener systems have a minimum capacity of 14 kips per 

linear foot of track to resist lateral wheel to rail loads. This load is then used for the tie fastener 

anchorage design of the ductile iron shoulder or embed (AREMA 2003). 

 

STATIC WHEEL LOAD

LATERAL 
 FORCE

 

Figure 23: Lateral force applied to rail which tie must transfer to ballast as train navigates curves 

 

Figure 24: View of scallops during tie installation (Peters and Mattson 2003) 

Scallop 
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2.2.2 Design Load and Moment 

In the previous sections, the forces which are exerted on the tie by train traffic were analyzed 

and load flow path and distribution were considered. Now that a basic understanding of applied 

loads on tie has been developed, these loads must be transitioned into design loads and 

moments which incorporate the effects of train speed and tonnage. 

 

Concrete tie design is based on the rail seat load which is transferred from a single train wheel 

to the rail seat through the rail, as this load will eventually dictate the applied moment at the 

critical sections of the tie. The first step in determining the magnitude of the rail seat load is 

considering the maximum load to be found in service. In the case of heavy haul track this will be 

the 315 kip car. This is an increase from the industry standard 286 kip car which is being 

replaced in response to an increased demand for freight rail transportation (Freudenstein 2007).  

 

The 315 kip car is broken down into the axle configuration know as the Cooper E 80 load. This is 

a common load configuration based on four axles spaced at 60 inches. The 315 kip load is then 

uniformly distributed between the axles, resulting in each axle transferring a 78 kip static 

vertical load. Figure 25 displays the loads and axle spacing of the Cooper E 80 load configuration 

(Freudenstein 2007).  

 

78 kips 78 kips 78 kips 78 kips

60 in 60 in 60 in

 

Figure 25: Cooper E 80 load configuration corresponding to a 315 kip car 

Assuming symmetry in railcar loading, the maximum single axle load of 78 kip is divided evenly 

between the two rail seats. Currently the AREMA specification does not include provisions for 

uneven wheel load conditions which occur in curves or unbalanced loads (AREMA 2003). At slow 

speeds this simplifying assumption may be inconsequential. However, at higher speeds the 
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outside rail on a curved section will observe increased loads. Possible reasons for this absence of 

provision maybe that the effect of track super elevation and train motion in curved sections of 

track is negligible when compared to the overall vertical loading. For now, it is common practice 

to use the same ties designed for tangent sections of track in curved sections. Since no 

consistent flexural failures have been associated with increased load on outside rail seats of 

curves there appears to be sufficient additional capacity incorporated into the tie designs. 

Should train speeds increase substantially, consideration should be given to including uneven 

load effects in design load determination. 

 

Once the axle load is separated between the individual wheels it must be divided further 

between the individual ties due to the rigid effects of the track structure as discussed in 

previous sections. Based on a typical spacing of 24 inches for concrete ties, a single tie will carry 

approximately 50 percent of the axle load. Finally, incorporating the 200 percent impact factor 

dictated by AREMA, a rail seat load of 58 kips is calculated as shown below (AREMA 2003). 

 

 
 
 

 
 
 

Rail Seat

Rail Seat

Axle Load Impact Factor
P  =  × Distribution Factor × 1.0 + 

2 100

78 kips 200
P = × 0.5 × 1.0 + = 58 kips

2 100
   

 

2.2.2.1 Load Factors 

In addition to the distribution and impact factors, AREMA accounts for the effects of train speed 

and tonnage when determining the design load for a tie. Operating speed and tonnage 

contribute to the cyclical loading effects which are applied to the tie. In an effort to predict 

these effects long term, AREMA has the additional load factors for train speed (V) and tonnage 

(T) displayed in load factor charts (Figure 26) (AREMA 2003; Freudenstein 2007). Load factors 

were derived from testing which studied the correlation between train speed, tonnage and 

railseat load. For example, using typical values for operating speed and tonnage characteristic of 

heavy haul freight railroad such as 60 mph with an annual tonnage of 75 MGT the following rail 

seat design load was determined: 
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≈
Factored Rail Seat

Factored

P  = P  × V × T

P  = 58 kips × 0.9 × 1.1  58 kips
 

 

 

 

Figure 26: AREMA load factor charts for speed and tonnage (AREMA 2003) 

2.2.3 Load Cases and Critical Sections 

The design rail seat load determined above is used to calculate the design moments. The design 

moments are a function of the ballast support which varies over the life of the tie. Two load 

cases characterized by their ballast support conditions are of primary importance.  

 

The first load case occurs immediately after tamping whether it is following tie installation or 

ballast maintenance procedures. During tamping operations only the ballast near the rail seat is 

consolidated causing support to be limited to the rail seat. In this case ballast support extends 

from the rail seat to the end of the tie shoulder and equal distance towards the center of the tie 

(Figure 27). In most instances the center section has little to no interaction. This support 
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configuration causes the maximum moment to occur in the positive direction at the rail seat 

while the center section experiences only slight positive bending. 

 

Figure 27: Load Case 1: After installation and tamping, ballast support limited to rail seat region producing positive 
moment in rail seat section (AREMA 2003; Freudenstein 2007) 

The second load case is characteristic of a well trafficked section of track which has received 

little ballast maintenance. Over time, loading from trains causes movement of the tie along with 

vibration. This motion consolidates the ballast into more uniform support distribution (Figure 

28).This uniform loading produces a decreased positive rail seat moment compared to the first 

case, but transitions the center of the tie into negative bending. This configuration can lead to 

the previously discussed failure known as center-binding. 

 

Figure 28: Load Case 2: Over time settlement and ballast degradation lead to uniform ballast support inducing 
negative moment at center section and continued positive moment at railseat (AREMA 2003; Freudenstein 2007) 

The locations of maximum moment from the two load cases are the rail seat and center. When 

designing the ties for flexure, the rail seat and center critical sections are evaluated for capacity. 

Typical cross sections at the rail seat and center can are shown in Figure 29. Generally the rail 

seat section has the largest height and cross-sectional area since it has the largest applied 

moment, while the center section slims down from the rail seat due to lower applied moment 

(AREMA 2003). This slimming of the center cross-section also allows for a shift of the 

eccentricity of the prestressing about the tie’s axis of bending, accounting for the variation of 

positive and negative bending between the two sections, leading to a more efficient design 

(Freudenstein 2007). 
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(a)

(a)

(b)

(b)
 

  

                         (a) (b) 

Figure 29: Flexural critical sections for generic concrete tie (a) rail seat section (b) center section 

2.2.4 Limit States 

The limit state of flexural failure as defined by AREMA for concrete railroad ties is unique 

compared to the typical prestressed concrete member. For this reason the following section will 

discuss flexural failure as defined by common prestressed concrete design and then highlight 

how it differs for prestressed concrete railroad ties. 

2.2.4.1 Prestressed Concrete Limit States 

In structural concrete design whether it is prestressed or reinforced, it is generally understood 

that concrete cracks whether it be from loading or temperature change or shrinkage. However 

cracking does not constitute structural failure. Unlike other structural building materials such as 

steel and wood, concrete has remaining capacity after cracking that occurs due to the 

interaction between the prestressing or reinforcement and the concrete (ACI 2005; Naaman 

2004). This can be observed by plot of load versus deflection of a prestressed concrete beam 

designed and tested by Michigan Tech students for the Precast/Prestressed Concrete Institute’s 

Student Engineering Competition: Big Beam, shown in Figure 30. The plot shows the transition 

from linear to non-linear behavior as the section begins to crack. Following the transition from 
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an uncracked to cracked section, load can continue to be applied until the maximum applied 

load is reached. At this point two conditions may occur, rupture of the steel or crushing of the 

extreme compression fiber. Whether rupture or crushing occurs first depends on factors such as 

the quantity of steel and the strength of the concrete (Naaman 2004).  

 

 

Figure 30: Load/deflection curve for flexural prestressed concrete member showing cracking and maximum loads  

Figure 31 is an example of a prestressed concrete beam which has been tested to failure. In this 

case the beam was over-reinforced causing the extreme fiber to crush prior to rupture of the 

prestressing steel. Flexural cracking can be observed stretching from the extreme tension fiber 

into the web of the beam.  
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Figure 31: Prestressed concrete beam failure corresponding to Figure 30, showing flexural cracking and crushing of 
the compression zone  

2.2.4.2 Limit States of Prestressed Concrete Railroad Ties  

In prestressed concrete tie design the primary limit state is flexural failure. However, unlike 

typical prestressed concrete design flexural failure in ties is not defined by steel rupture or 

concrete crushing. Instead failure as defined by AREMA (Section 4.9.1) is the propagation of 

cracks from the extreme tension fiber of the tie to the first layer of prestressing (AREMA 2003). 

Even though the tie may have considerable amounts of flexural capacity remaining, for all 

intensive purposes the tie has failed and requires replacement.  

 

Cracking constitutes flexural failure in prestressed concrete railroad ties for several reasons. 

Since ties are in direct contact with the ground, sources of water are readily available to cause 

corrosion of the prestressing steel should a crack allow the infiltration of moisture to the level of 

prestressing. However, corrosion is actually a secondary consideration in the decision to limit 

failure to cracking. Cyclic loading is actually the driving motivation for the cracking limit. The 

application of prestressed concrete to the railroad ties creates unique loading conditions which 

exacerbate fatigue susceptibility of the prestressed concrete. Since the concrete is repeatedly 

loaded to high percentages of its design load, a large margin of additional capacity must be left 

untapped to provide for the effect of fatigue on the steel and concrete components of the tie 

(Kaewunruen and Remennikov 2008; Remennikov et al. 2007).  

 

If concrete ties were allowed to reach their ultimate capacity as defined by typical prestressed 

design the expected service life would be miniscule. In order extend their service life and 
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provide for the cyclic loading encountered by railroads, ties must be limited to only a fraction of 

their flexural capacity or service capacity. 

  

In addition to the flexure, ties must be designed for the following limit states (AREMA 2003): 

• Bearing failure of the concrete at the rail seat surface (this condition typically controls 

the minimum top width dimension)  

• Shear failure (typically negligible due to the continuous support provided by the ballast) 

• Bearing failure of the ballast (dictates the bottom dimensions of the tie)  

Serviceability requirements such deflection and vibration of ties are largely absent from typical 

designs for one of two reasons. Either the serviceability criteria such as vibrations is irrelevant 

since concrete ties are not utilized like the typical prestressed member (vibration is a limit state 

in most prestressed design for human comfort rather than safety, not applicable to heavy haul 

railroad tie design) or it is accounted for by other conditions. In the case of deflections, the 

ballast bearing capacity will dictate whether or not appropriate deformations have been 

designed for (AREMA 2003). 

2.2.5 Material Properties 

The material properties of concrete and steel undoubtedly play an important role in the design 

of a prestressed concrete tie. The strength and stiffness of the materials which comprise the ties 

dictate their capacity as well as portions of the fabrication process. Therefore, a thorough 

understanding of their properties is required. 

2.2.5.1 Concrete 

The purpose of the concrete within the tie is to offer rigidity and resist the prestressing force. To 

perform these tasks material properties such as allowable stresses and elastic modulus are of 

importance. For prestressed concrete tie design AREMA references the American Concrete 

Institute (ACI) Building Code Requirements for Structural Concrete and Commentary ACI 318 to 

obtain specifications on concrete material properties as well as design procedures (ACI 4.4.2) 

(AREMA 2003).  
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The allowable tensile and compressive stresses outlined by ACI 318 have been summarized in 

Table 1. However, some precaution must be taken when using the material property 

approximations provided in ACI 318, especially for allowable concrete stresses. These 

approximations are valid for standard structural concrete and are not necessarily applicable for 

high strength concrete (10,000 psi and greater) such as that used in the production of 

prestressed concrete ties (AREMA 2003). For the design of concrete with compressive strengths 

greater than 10,000 psi, ACI 363R-92 is referenced (ACI 1997). However, ACI 363R-92 does not 

present complete allowable stress limits and therefore, for this project ACI 318 will be used for 

all concrete strengths considered, above and below 10,000 psi. For allowable concrete stresses 

tie manufacturers will either use laboratory material test results or other approximations which 

(Table 48 in Appendix B). 

 

While ACI 318 specifies the allowable concrete stresses for steel prestressing, ACI 440.4R-04 

specifies the allowable concrete stresses for FRP prestressing (Table 2). The only difference 

between the two specifications is the allowable tensile stress in the concrete at service. Instead 

of 7.5f`c
0.5 for the allowable tension stress with steel prestressing, FRP has a slightly lower limit 

of 6f`c
0.5. Unlike the allowable concrete stresses, the approximation for elastic modulus of the 

concrete does not change depending on the prestressing type used. The approximation relates 

concrete strength to the elastic modulus (Table 3). 

Table 1: Allowable concrete stresses from ACI 318-08 

Allowable Concrete 
Stresses

Stress Case Description
ACI Code 

Specification (psi)

σcs1
Extreme fiber stress in compression at service (P/S 
and SDL), ACI 318-08 18.4.2 (a)

0.45f`c

σci

σcs2
Extreme fiber stress in compression at serivce (P/S 
and total load, ACI 318-08 18.4.2 (b)

0.6f`c

σts
Extreme fiber stress in tension at service, ACI 318-
08  18.3.3 Class U

7.5f`c
0.5

σti
Extreme fiber stress in tension at prestress 
transfer, ACI 318-08 18.4.1 (b)

3f`c
0.5

Allowable stress at transfer of prestress (before losses)

Allowable stresses under service loads (after losses)

Extreme fiber stress in compression at prestress 
transfer, ACI 318-08 18.4.1 (a)

0.6f`ci
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Table 2: Allowable concrete stresses in conjunction with FRP prestressing (ACI Committee 440 2004) 

Stress Case Description
ACI Code 

Specification (psi)

Allowable stresses under service loads (after losses)

Allowable stress at transfer of prestress (before losses)

σci
Extreme fiber stress in compression at prestress 
transfer ACI 440.4R-04 Table 3.2 (a)

0.6f`ci

σti
Extreme fiber stress in tension at prestress transfer, 
ACI 440.4R-04 Table 3.2 (b)

3f`c
0.5

σts
Extreme fiber stress in tension at service ACI 440.4R-
04 Table 3.2 (c)

6f`c
0.5

σcs1
Extreme fiber stress in compression at service (P/S 
and SDL) ACI 440.4R-04 Table 3.2 (a)

0.45f`c

σcs2
Extreme fiber stress in compression at serivce (P/S 
and total load) ACI 440.4R-04 Table 3.2 (b)

0.6f`c

Allowable Concrete 
Stresses

 

Table 3: Static elastic modulus from ACI 318-08 

Concrete Modulus Case Description
ACI Code 

Specification (ksi)

Eci Concrete modulus at  transfer, ACI 18.4.1 57000f`ci
0.5

Ec Concrete modulus at  service, ACI 18.4.1 57000f`c
0.5

 

2.2.5.2 Prestressing 

Similar to the specifications for concrete material properties, AREMA references ACI 318 as well 

for the prestressing properties. Properties such as allowable prestressing stress from jacking 

through service are presented in Table 4. For design of prestressed concrete ties utilizing FRP 

the use of ACI 440.4R-04 (Table 5) is recommended (ACI Committee 440 2004).  

Table 4: Allowable prestressing stresses from ACI 318-08  

fpj Due to prestressing steel jacking 0.94fpy

fpj Due to prestressing steel jacking 0.80fpu

fpi Immediately after prestress transfer 0.82fpy

fpi Immediately after prestress transfer 0.74fpu

Allowable Prestressing 
Stresses

Stress Case Description
ACI Code 

Specification (ksi)
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Table 5: Permissible prestressing stresses for carbon FRP (ACI Committee 440 2004) 

Stress Case Description ACI Code Specification

Allowable jacking stress, fpj 0.65fpu

Due to prestressing steel jacking, fpi 0.60fpu  

2.2.5.3 Losses 

Over time the stress in prestressing will decrease, imparting progressively less prestressing force 

on the tie. However this loss of prestressing occurs at a decreasing rate until it eventually levels 

off. It is necessary to predict total loss of prestressing to determine the long term capacity of a 

member. The total prestressing loss is a combination of sources including the fabrication 

process and material characteristics such as the following (ACI 2005; Naaman 2004): 

• Elastic Shortening: As prestressing force is transferred to concrete it is compressed, 

simultaneously shortening the prestressing steel which has bonded to it. This process 

occurs immediately following prestressing transfer. 

• Relaxation: This process may be considered the equivalent of creep. This is the loss of 

tension force of time while constant length and temperature are maintained. 

• Shrinkage: Occurs over a longer period of time as the free water within the concrete is 

used during hydration and evaporated allowing shortening of the concrete.  

• Creep: In response to long term applied compressive stresses concrete undergoes 

plastic shortening strain in addition to the elastic strain. Simultaneously, the 

prestressing steel which had bonded shortens. 

• Anchorage Set: In prestressed fabrication, chucks placed around the prestressing steel 

to maintain tension endure mechanical losses when they “set in”. 

These sources listed above will each produce losses and are summed together produce the total 

prestressing loss. Some many occur instantaneously (elastic shortening and anchorage) or over 

the life of the prestressed member (creep, shrinkage, etc.). Computation of the losses can be 

performed individually then summed giving the most accurate solution or a lump sum estimate 

of the losses may be computed.  

2.2.5.4 Transfer and Development Lengths 

To achieve the nominal moment capacity of a section, the prestressing tendons must maintain 

the bond between the concrete prestressing tendons up to the stress level associated with 
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ultimate capacity. If the tendons are unable to attain the necessary level of stress with the 

provided anchorage, the tendon will slip or pull out of the concrete before reaching the ultimate 

capacity of the section. The distance required to obtain the necessary bond or anchorage 

between the concrete and the prestressing tendons is called the development length and is a 

function of the maximum applied stress in the tendon and the diameter of the tendon.  

 

In addition to the development length, prestressing requires a length of bond to transfer the 

prestressing force into the concrete referred to as the transfer length. At the free end of the tie 

the stress in the concrete due to the prestressing is zero and increases linearly along the length 

of the tendon up to the effective prestressing stress. In order to have full efficiency of the 

prestressing the transfer length must be met before the critical section of flexure. In the case of 

the prestressed concrete railroad tie, the transfer length must be met in the shoulder length to 

have the full capacity based on the effective prestress by the rail seat section.  

2.2.6 Anchorage of Prestressing in End Zone (Bursting) 

In the end zones of pretensioned and posttensioned concrete members, special consideration is 

given to the transfer of the prestressing force to the concrete due to the possible development 

of excessive tensile stresses, known as bursting stresses. The bursting stresses which develop in 

the concrete due to the prestressing may cause horizontal cracking or spalling. To prevent 

cracking and spalling due to high tensile stresses, confining steel in the form of spirals or hoops 

is typically placed in the anchorage zone (region of prestressing force transfer). Other methods 

of reducing the tensile stresses include, changing the cutting patterns used during the release of 

the prestressing force or changing the prestressing configuration to reduce areas of stress 

concentration (ACI 2008; Naaman 2004). 

 

SpallingHorizontal 
Cracking

Anchorage 
Zone

 

Figure 32: Failures due to excessive tensile force in anchorage zone 
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For the design of prestressed concrete railroad ties, bursting stresses are not addressed by 

AREMA, however ACI 318 is referenced for concrete related design issues (AREMA 2003). ACI 

318-08 recommends the following methods for analyzing a prestressed member for bursting 

stresses (ACI 2008): 

• Strut-and-tie models, 

• Linear stress analysis using finite element analysis, 

• Simplified equations where applicable. 

Analysis of bursting stresses was not included in this study (see future work Section 5.3) 

2.2.7 Testing  

To gauge tie performance, laboratory testing is performed by tie manufactures to check that ties 

meet the minimum specified requirements set forth by AREMA and are adequate for the 

anticipated loads and load frequency. Testing includes both static and dynamic loadings to 

simulate in service conditions of the ties. Flexural testing includes the rail seat moment test 

(Figure 33 and Figure 34), center moment test (Figure 35 and Figure 36), bond development test 

and fatigue testing (AREMA 2003). For the equations shown in Figure 33 through Figure 36, the 

variables P and M represent the unfactored static wheel load and moment, respectively. 
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Figure 33: Positive rail seat moment test configuration as outlined in AREMA 4.9.1 Design Test of Monoblock Ties 
(AREMA 2003) 



 

46 
 

x
X/3  2X/3 2X/3

30" TO CENTERLINE OF TRACK

2M
P = 

2X
 - 3"

3

3" 3"

P

 

Figure 34: Negative rail seat moment test configuration as outlined in AREMA 4.9.1 Design Test of Monoblock Ties 
(AREMA 2003) 
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Figure 35: Positive center moment test configuration as outlined in AREMA 4.9.1 Design Test of Monoblock Ties 
(AREMA 2003) 
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Figure 36: Negative center moment test configuration as outlined in AREMA 4.9.1 Design Test of Monoblock Ties 
(AREMA 2003) 
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Along with flexural testing, simulated track testing performed by railroads is also utilized to 

determine effects of ballast support and dynamic wheel loading during different stages of tie 

life. Such testing is often carried out at the Transportation Technology Center, Inc., a jointly 

operated research facility by the Class 1 railroads of North America or on test sections of track 

owned by individual railroads (Jimenez and LoPresti 2004). 

2.2.8 Performance Requirements and Tolerances 

To maintain high quality while producing large numbers of ties simultaneously, stringent 

performance requirements and dimensional tolerances have been set by AREMA, tie 

manufacturers and the railroad consumers themselves (AREMA 2003). However, the standards 

set by the manufacturer and railroad consumer supersede those set by AREMA. These 

requirements and tolerances are checked regularly by the tie manufacturer by selecting ties at 

random from each casting to ensure quality. Geometric tolerances such as rail cant (slope of tie 

surface at rail seat) and gauge (distance between rails) are checked regularly to ensure that 

proper track geometry is achieved once ties are installed.  

 

 

Figure 37: Workers checking rail cant and gauge of tie form using jig equipped with dial gauges 

Performance requirements pertain primarily to flexure and are a function of tie length and 

spacing. The minimum moment capacity performance requirements set by AREMA are derived 

using the same process described in Section 2.2.2, where design loads based on the Cooper E 80 

load configuration and the corresponding applied moments were determined. To simplify the 

process of determining performance requirements the impact factor and load distribution 

percent have been condensed and the design load calculation altered to directly calculate the 

applied moment. Therefore the only variables required to determine a minimum applied 
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moment are the tie spacing and length. Given the tie length and spacing, the unfactored positive 

rail seat moment can be obtain from Figure 38 which is constructed from the simplified applied 

moment calculation including the impact factor and load distribution percentage. Using Table 6 

the remaining moments are determined as a function of the positive bending moment, restoring 

continuity. Finally, to achieve a factored design moment, the speed and tonnage factors 

discussed in Section 2.2.2.1 are applied (AREMA 2003; Freudenstein 2007).  

 

 

Figure 38: AREMA unfactored positive bending moment at centerline of railseat based on 315 kip car and Cooper 
E80 load configuration (AREMA 2003) 
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Table 6: AREMA unfactored bending moments for tie critical sections based on positive bending moment at 
centerline of rail seat from Figure 38 (AREMA 2003) 

7'-9" 0.72M 1.13M 0.61M

8'-0" 0.64M 0.92M 0.56M

8'-6" 0.53M 0.67M 0.47M

9'-0" 0.46M 0.57M 0.40M

Tie Length
Rail Seat 
Negative

Center 
Negative

Center 
Positive

 

2.2.9 Existing Prestressed Concrete and Railroad Specifications  

In previous sections codes and specifications have been referenced for material properties and 

design processes related to prestressed concrete railroad ties. However, depending on the 

country which the tie will be in service consideration must be given to the codes of that nation 

and its governing bodies whether they be prestressed concrete or railroad related. The following 

sections will discuss the importance and governance of codes and specifications within the 

United States which have been used for a majority of this review then briefly discuss those 

found in other areas of the world. 

2.2.9.1 Prestressed Concrete  

In the United States the governing bodies of prestressed concrete design include the American 

Concrete Institute (ACI) and the Precast/Prestressed Concrete Institute (PCI). A large majority of 

the code and specifications for materials and designs are dictated by ACI and adopted by PCI. 

The collective body of railroads in North America reference ACI for prestressed concrete design 

as well. In other countries similar relationships have been drawn between railroad and concrete 

organizations (Freudenstein 2007).  

2.2.9.2 Railroad Specifications 

Railroad organizations are numerous across the world, but their size and authority vary widely. 

One of the largest is the American Railway Engineering and Maintenance-of-Way Association 

(AREMA); this organization is responsible for the rail standards of North America. However, the 

term standards must be used loosely since they are recommendations for best engineering 

practice, not absolute guidelines or code. In the North America the ultimate authority lies with 

the tie manufacturers and the railroads themselves.   
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In comparison, the European Union has standards set specifically for prestressed concrete ties 

(EN 13230) created by the European Committee for Standardization with the aid of its governed 

railroads. In addition to the standard, the International Union of Railways distributes a design 

supplement (UIC 713) which offers an example tie design using the European standard 

(Freudenstein 2007). The European standard and the AREMA recommendations serve as two of 

the most comprehensive specifications for concrete ties in the world. While other smaller 

organizations produce standards they are infrequently used and are often derived from either of 

the previously stated specifications. 

 

Several differences do exist between the two codes which deserve mention. The calculation of 

design loads is where the largest disparities can be found. In the European code, factors for 

damping, support flaws, and track position flaws are incorporated above and beyond the typical 

dynamic impact factor which both standards contain.  The effects of train speed are considered 

differently as well. Rather than having a progressive factor system which varies linearly with 

train speed like AREMA, in accordance with EN 13230 the factors only change for speeds above 

and below 124 mph (200 km/h). The effect of tonnage are absent entirely from EN 13230 as well 

(Freudenstein 2007). 

 

Finally, the calculation process of the design moment as stipulated by AREMA is far more 

stringent than that of EN 13230. The European standard allows for a reduction caused by the 

spreading of the rail seat load across the rail seat surface rather than a point load as in the 

AREMA specification (Figure 39) (Freudenstein 2007). The effects of this reduction can be seen 

in Figure 40; given the same design load far different moments are achieved. 
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Figure 39: Positive rail seat bending moment reduction according to EN 13230 (Freudenstein 2007) 
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Figure 40: Computed positive rail seat design moment based on same design load from AREMA and European 
specifications (Freudenstein 2007) 

In this review only the standards available in English have been considered. A more complete 

analysis would require the consideration of the Chinese, Japanese and individual European 

countries railroad standards.  
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3.0 Research Methodology 

As stated in the work plan (Section 1.4), this project is divided into three phases consisting of a 

design/analysis validation, parametric optimization and validation of optimization (future). The 

design/analysis validation consists of the development of a numerical analysis procedure and 

validation using capacity results of an existing tie design. The same analysis procedure was then 

extended to perform a parametric optimization study.   

3.1 Baseline Tie Analysis 

To increase the capacity of the baseline tie, the capacity provided by the baseline tie must be 

determined. This can be done by two methods, numerical analysis and experimental testing. 

While experimental testing will yield the most accurate results, it is beneficial to have the 

capability of accurately predicting the capacity using numerical analysis methods since they are 

inexpensive and easily repeatable.  

 

In addition to determining a baseline capacity, performing an analysis on the baseline tie 

provides one other incentive. Existing tie designs typically have experimental flexural capacity 

results which can be used for comparison of predicted capacities determined from the 

numerical analysis. Through this comparison the accuracy of the approximations and 

assumptions made during the numerical analysis can be accessed. The procedures and 

assumptions used in the baseline tie analysis are discussed in the following sections. 

3.1.1 Critical Sections 

In Section 2.2.1.2, the various ballast support conditions that exist during the service life of a tie 

were identified. Based on these support conditions, two moment distributions along the length 

of tie are described in Section 2.2.3. The two critical sections that result from these distributions 

and the corresponding directions of maximum bending are: 

• Section at centerline of rail seat with positive bending (top of tie in compression and 

bottom in tension), 

• Section at center of longitudinal tie dimension with negative bending (bottom of tie in 

compression and top in tension). 
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While the directions of maximum bending are positive and negative for the rail seat and center 

sections respectively, the opposite bending directions will be considered as well. The inclusion 

of both bending directions in the numerical analysis relates to the reversal of bending direction 

in the center section depending on the ballast support conditions.  

3.1.2 Cross-Sectional Properties 

3.1.2.1 Concrete Cross-Sections 

All necessary cross-sectional properties and dimensions of the baseline tie were provided by the 

tie manufacturer and summarized in Table 48 (Appendix B), with the exception of the section 

modulus or moment of inertia. Since these cross-sectional properties are necessary for stress 

analysis, the moment inertia of the rail seat and center sections have been calculated using the 

parallel axis theorem; the cross-section was broken up into standard square and triangle 

components to simplify calculations (Figure 41). Once sectioned into standard shapes the 

dimensions are placed into a spreadsheet, since this process will be repeated for each section 

and design iteration. An example of the spreadsheet used for the calculation of cross-sectional 

properties is shown in Table 7. When calculating the cross sectional properties, the base 

dimensions provided on the ties drawings (Appendix A) were used without consideration of the 

casting tolerances associated with each dimension. 

 

y

 

Figure 41: Division of tie cross sections into standard shape components for use in parallel axis theorem  
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Table 7: Cross-sectional geometry for rail seat and center sections using parallel axis theorem 

A 9.10 8.59 78.12 4.29 479.82 0.26 485.12

B 0.39 8.59 1.65 2.86 6.77 1.69 11.49

C 0.39 8.59 1.65 2.86 6.77 1.69 11.49

D 7.69 0.71 5.42 8.94 0.22 -4.38 104.46

E 0.71 0.71 0.25 8.82 0.01 -4.27 4.60

F 0.71 0.71 0.25 8.82 0.01 -4.27 4.60

Sum 87.35 621.76

ybar 4.55

Rail Seat Section

Moment of 
Inertia       

Ibar (in
4)

 Centroid 
Difference          

d (in)

 Parallel Axis 
Theorem      

Ibar + Ad2 (in4)Component
Width              
b (in)

 Height          
h (in)

Area                 

A (in2)

Centroid 
Distance            

y (in)

 

A 7.75 6.88 53.28 3.44 209.86 0.28 214.14

B 0.31 6.88 0.11 2.29 2.80 1.43 3.02

C 0.31 6.88 0.11 2.29 2.80 1.43 3.02

D 6.50 0.63 4.06 7.19 0.13 -3.47 48.96

E 0.63 0.63 0.20 7.08 0.00 -3.36 2.21

F 0.63 0.63 0.20 7.08 0.00 -3.36 2.21

Sum 57.95 273.55

ybar 3.72

Center Section

Width              
b (in)

 Height          
h (in)

Area                 

A (in2)

Centroid 
Distance            

y (in)

Moment of 
Inertia       

Ibar (in
4)

 Centroid 
Difference          

d (in)

 Parallel Axis 
Theorem      

Ibar + Ad2 (in4)Component

 

3.1.2.2 Prestressing Centroids and Eccentricities 

The concept of variable eccentricity of prestressing along the length of a prestressed concrete 

member is not uncommon in prestressed design. Altering the depth of the prestressing and 

therefore the magnitude of the eccentricity with respect to the moment along the member 

using harped tendons is common practice for prestressed bridge girders and other flexural 

members. The baseline tie design takes this concept of variable eccentricity further by 

accounting for the reversal in bending which occurs in railroad ties due to changing ballast 

support distribution.  

 

The baseline tie design has eccentricities both above and below the uncracked neutral axis of 

the cross-sections of the tie. In the rail seat region where positive bending governs, the 
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prestressing is below the neutral axis of the tie cross-section. While in the tie center, where 

negative bending governs, the prestressing is above the uncracked neutral axis of the cross-

section. This transition of prestressing from below the neutral axis at the rail seat to above at 

the center is not achieved by harped tendons. Instead, the cross sectional dimensions of the tie 

center change to move the neutral axis downward while the prestressing tendons maintain the 

same distance from the bottom of the tie.  

 

To account for the transition of prestressing eccentricity from below to above the neutral axis, a 

definition of positive and negative directions with respect to the uncracked neutral axis was 

developed. By applying a sign convention to the prestressing eccentricity the calculation of 

stresses within the tie cross section can be simplified by using the same equations regardless of 

the section of interest. For this project, the sign convention for prestressing eccentricity is as 

follows and is demonstrated in Figure 42: 

• An eccentricity which references a prestressing centroid below the uncracked neutral 

axis of the concrete cross-section will be referred to as positive, 

• An eccentricity which references a prestressing centroid above the uncracked neutral 

axis of the concrete cross-section will be referred to as negative. 

 

(-) e

(+) e

Uncracked 
Neutral Axis

 

Figure 42: Sign convention for prestressing eccentricity 

3.1.3 Material Properties 

The following sections focus on the assumptions and approximations made for material 

allowable stresses and behavior for the numerical analysis of the baseline tie. While some 

information about material properties was available from the tie manufacturer for the concrete 
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mixture and prestressing steel, most material properties have been approximated based on 

existing literature and design specifications. The reasoning behind the assumptions and the 

sources of approximations will be discussed in the following sections for concrete and 

prestressing steel. 

3.1.3.1 Concrete Properties 

3.1.3.1.1 Compressive Strength 

The concrete mix used in the production of the baseline tie is a high early strength design which 

is a common characteristic of most prestressed concrete manufacturing facilities. The 

compressive design strength of the baseline tie is 7,000 psi at 28 days with a minimum required 

strength at transfer of 4,500 psi. Actual 28 day compressive strengths range from 9,000 to 

11,000 psi. Though concrete strengths at service are considerably higher than the design 

strength, for the purpose of continuity, the baseline tie will be performed with the stated design 

strength rather than the actual.  

3.1.3.1.2 Modulus of Elasticity 

The modulus of elasticity was not available from the tie manufacturer, therefore an 

approximation was made. From the literature review it was determined that for concrete with a 

compressive strength less than 10,000 psi, ACI 318 governs material approximations (ACI 2008). 

ACI 318 is also referenced by AREMA as the source for all concrete related specifications. From 

ACI 318 the modulus of elasticity for concrete is a function of unit weight. Assuming normal 

weight concrete the equation is simplified to a relationship between compressive strength and 

modulus of elasticity (Eqn. 1 and Eqn. 2). 

 

`

ci ci

`

c c

`

ci

`

c

E  = 57,000 f  (psi)

E  = 57,000 f  (psi)

f  = concrete compressive strength at transfer (psi)

f  = 28-day concrete design compressive strength (psi)

 

Eqn. 1 
 

Eqn. 2 

 

Two values of modulus of elasticity were determined, the modulus at transfer (Eqn. 5) and 

modulus at service (Eqn. 6) using the ACI approximation. The initial value corresponds to the 

modulus of elasticity of the concrete prior to achieving full design compressive strength and was 
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based on the minimum specified transfer strength of 4,500 psi. The initial value was used for 

determining stresses and strains of the concrete at transfer and the prestressing losses during 

the initial time periods of less than 7 days. The final modulus of elasticity was based on the 28-

day design strength and used for all capacity analysis and prestressing loss calculations with 

time intervals greater than 7 days. 

3.1.3.1.3 Allowable Stresses 

For the baseline tie design the allowable concrete stress specified by the manufacturer is the 

allowable tensile stress set at 800 psi. The method by which this value was determined was 

unknown and no other allowable concrete stresses derived from experimental results or 

approximations were available from the manufacturer. Therefore, the stress limits from ACI 318 

were used (Table 8).  

Table 8: Allowable concrete stresses from ACI 318-08 

Extreme fiber stress in compression at prestress 
transfer, ACI 318-08 18.4.1 (a)

0.6f`ci

σti
Extreme fiber stress in tension at prestress transfer, 
ACI 318-08 18.4.1 (b)

3f`c
0.5

Allowable stress at transfer of prestress (before losses)

Allowable stresses under service loads (after losses)

σcs2
Extreme fiber stress in compression at serivce (P/S 
and total load, ACI 318-08 18.4.2 (b)

0.6f`c

σts
Extreme fiber stress in tension at service, ACI 318-
08  18.3.3 Class U

7.5f`c
0.5

Allowable Concrete 
Stresses

Stress Case Description
ACI Code 

Specification (psi)

σcs1
Extreme fiber stress in compression at service (P/S 
and SDL), ACI 318-08 18.4.2 (a)

0.45f`c

σci

 

3.1.3.2 Prestressing Properties 

For the baseline tie design, a drawn wire with a diameter of 0.21 in. and an ultimate strength of 

250 ksi was used. The 0.21 in. diameter drawn wire was assumed to have minimum ultimate and 

yield strengths of 255 and 230 ksi, respectively. For calculations of the prestressing strain above 

0.0076 (this corresponds roughly to the yield strain) the approximation provided in the PCI 

handbook 6th Edition Design Aid 11.2.5 for 250 ksi strand was used (Eqn. 3 and Eqn. 4) 
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(Prestressed/Precast Concrete Institute 2004). The modulus of elasticity for the drawn wire used 

in the baseline tie was 28,500 ksi and was provided by the tie manufacturer.  

≤
ps ps ps

ps ps

ps

ps

ps

ε  0.0076 : f  = 28500 ε  (ksi)

0.04
ε > 0.0076 : f  = 250 -  (ksi)

ε - 0.0064

ε  = total strain in prestressing steel

f  = total stress in prestressing steel corresponding to total strain

 

Eqn. 3 
 

Eqn. 4 
 

3.1.4 Prestressing Forces and Losses 

Since this is an existing tie design, the jacking force has already been set and measured values 

are available for the initial and final prestressing forces which include the measured losses of the 

prestressing force over time. These measured prestressing forces were used for comparison 

with those obtained from theoretical methods (ACI 2008) in order to select an appropriate 

prestressing loss calculation process for analysis of the optimization iterations.  

3.1.4.1 Permissible Stresses in Prestressing Steel 

3.1.4.1.1 Jacking Force 

From the tie manufacturer, the jacking force of each tendon is set at 7,000 lbf, which 

corresponds to a stress of approximately 203 ksi per wire. This jacking force was determined to 

optimize the tendon efficiency by applying the largest amount of force based on the permissible 

stresses in the prestressing steel set by either the steel manufacturer or the code limits. For the 

analysis of the baseline tie the jacking force provided was used, and compared to the 

permissible stresses described in ACI 318. 

3.1.4.1.2 ACI Allowable Stresses 

To avoid permanent plastic deformation and for other reasons related to safety during the 

fabrication process, the amount of stress imparted on prestressing tendons is limited by either 

the steel producer or the relevant code. In the case of the baseline tie no limits on permissible 

stresses of prestressing by the steel producer were available, therefore the limits presented in 

ACI 318-08 Section 18.5 were assumed to govern. The ACI 318-08 permissible stress limits have 

been summarized in Table 4. The limits for the jacking stress and the initial prestress are based 

on percentages of the ultimate and yield strengths of the steel. 
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Table 9: Allowable prestressing stresses from ACI 318-08 

fpj Due to prestressing steel jacking 0.94fpy

fpj Due to prestressing steel jacking 0.80fpu

fpi Immediately after prestress transfer 0.82fpy

fpi Immediately after prestress transfer 0.74fpu

Allowable Prestressing 
Stresses

Stress Case Description
ACI Code 

Specification (ksi)

 

3.1.4.2 Prestressing Losses Estimation (Tie Manufacturer) 

As discussed in Section 2.2.3.2, over the life of a prestressed member the prestressing force 

applied to the concrete from the prestressed tendons decreases as a result of several sources 

including; steel relaxation, elastic shortening, concrete creep and shrinkage. For the baseline tie, 

the tie manufacturer approximated the losses for each source and presented them as a 

percentage of the initial prestressing force. Since several of these loss sources are dependent on 

the member geometry the losses have been calculated for both the rail seat and center sections. 

The prestressing loss estimations provided by the tie manufacturer are given in Table 48 

(Appendix B). The total prestressing losses for the rail seat and center sections were estimated 

by the tie manufacturer to be: 

Total Losses at Rail Seat (1000 hrs) = 15.2 %

Total Losses at Center (1000 hrs) = 18.5 %
 

One important detail of the loss estimation performed by the tie manufacturer is the time 

interval for which the calculations extend, since creep and shrinkage losses are time-dependent. 

The tie manufacturer loss estimates are for a time interval of 1000 hrs (approximately 40 days) 

after transfer of prestressing force. However, prestressing losses tend to require significantly 

longer durations before they level off and a relatively constant prestressing force is achieved 

(Naaman 2004). Depending on the concrete mixture and the stress imposed by the prestressing, 

the losses may require in excess of 5 years to reach their maximum due to creep and shrinkage. 

Using a time interval less than the one required for full losses yields an overestimation of the 

prestressing force and therefore inaccurate predictions of service load behavior such as 

deflections and cracking moment (ACI 318-08 R18.6.1). This is especially important for 

prestressed concrete ties since the limit of their flexural capacity is based on cracking.  
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For the numerical analysis of the baseline tie completed for this project, the same time interval 

(1000 hrs) was used for the purpose of comparing computed losses and capacities. However, all 

other design iterations and analyses used a prestressing loss time interval of 50 years. Using a 

time interval of this length allows prestressing losses to reach equilibrium and provides the 

smallest prestressing force which will be imposed on the tie during its service life (estimates of 

prestressed concrete railroad tie life range from 35-50 years).  

3.1.4.3 Theoretical Losses 

In addition to the experimental prestressing losses estimates provided by the tie manufacturer, 

losses were calculated using theoretical methods. Reasons for the additional prestressing loss 

calculations include: 

• Prestressing loss results provided were for a time interval of only 1000 hrs and most 

likely overestimate the final prestressing force, 

• Once prestressing configuration and steel size and type change the provided losses will 

no longer be valid, 

• The more accurate time-step method of loss calculation will be employed versus the 

lump sum method  

For the calculation of prestressing losses ACI 318, does not provide a specific process or set of 

equations, but rather references several other sources (ACI-ASCE Committee 423 1958 (1); ACI 

Committee 435 1963 (2); PCI Committee on Prestress Losses 1975 (4); Zia et al. 1979 (4)). For 

this project, the time-step method of prestressing loss calculation was selected (4). The time-

step method offers several advantages over the other methods of estimating prestressing 

losses. Unlike the lump sum method which calculates the total prestressing loss regardless of 

time, the time-step method can be used to determine the rate at which prestressing loss occurs 

and how much time is required for the losses to stabilize. In the time-step method, the 

individual loss sources are calculated separately, at specified time intervals, so greater control 

over material assumptions and load conditions is provided as well.  

 

While the time-step method was chosen for this study due to its accuracy and ability to predict 

prestressing losses at specific intervals of time, it has yet to be validated. Other methods of 

prestressing loss estimation could have been used and provided acceptable agreement with 
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actual loss values, but the inherent qualities of the time-step method discussed above made it 

an excellent choice given the requirements of this study.  A discussion of each of the 

prestressing loss sources, their contribution using the time-step method, and the necessary 

assumptions made are discussed in the following sections. 

3.1.4.3.1 Steel Relaxation 

Unlike the other sources of prestressing loss, steel relaxation occurs both before and after 

transfer. Therefore, the stresses within the steel for calculation of the relaxation loss are based 

on the condition (before or after transfer) and the additional loss sources associated with the 

condition, i.e. anchorage and elastic shortening. For instance, the applied stress within the 

prestressing prior to transfer is the jacking stress minus the losses from anchorage seating (Eqn. 

5). However, after transfer the stress within steel includes the loss due to steel relaxation 

between jacking and transfer as well as the loss from elastic shortening. This prestressing stress 

condition is known as the initial prestressing stress (fpi). For the time step method the initial 

stress in the prestressing steel at the beginning of each time interval is used (Eqn. 6). The 

assumption of low-relaxation steel was made for the baseline tie analysis since steel wire is 

typically low relaxation steel (ACI 2008).  
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Eqn. 5 
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3.1.4.3.2 Elastic Shortening 

As the transfer of force from the prestressing bed to the concrete occurs, it is assumed that the 

concrete is instantaneously compressed, changing the strain in the concrete and therefore the 

strain in the steel since the two materials have bonded during the curing time interval. This 

change in strain is due to a combination of the prestressing force and the self weight of the tie 

(Eqn. 7). While the effect of the prestressing is known, the stress induced in the concrete by the 

self weight moment is debatable. It has been assumed that the self weight moment of the tie 

follows a simply supported condition with a uniformly distributed load to represent the self 

weight. This would reflect an upward camber of the tie in the form due to the prestressing force 

as well as the support condition of the tie during the storage on cribbing shortly after transfer. 

 

In addition to the assumption of self weight moment effects, the change in strain is also related 

to the respective modulus of the concrete and steel. This relationship is accounted for using the 

transformed modular ratio of steel over concrete modulus. While the steel has a constant 

modulus, the modulus of the concrete changes as a function of the concrete’s compressive 

strength and therefore increases over time as the compressive strength increases. For the 

calculation of elastic shortening, the assumed modulus is based on the concrete compressive 

strength at transfer which is 4,500 psi.  
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f  = f + f

f  = stress in the concrete at the centroid of the prestressing 

              tendons due to the initial prestressing force (F), (ksi)

f  = stress in the concrete at the centroid of the prestressing

              tendons due to the self-weight of the tie (ksi)

 

Eqn. 7 
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3.1.4.3.3 Creep and Shrinkage 

The remaining prestressing loss sources are creep and shrinkage and will be discussed together 

since they share several parameters. Of all the loss sources they also required the largest 

number of assumptions about curing procedures, environmental conditions and material 

properties.  For the curing procedure it has been assumed that the method employed by the tie 

manufacturer is most accurately represented by a steam-cured operation rather than a 

moisture-cured. The long-term relative humidity has been set at 50 percent. The assumption of 

a relative humidity is one of the most difficult since prestressed concrete ties are produced and 

used in a wide range of climates and environments. For this analysis an average value of relative 

humidity was used. Considering the curing conditions and relative humidity assumptions, the 

following creep and shrinkage coefficients and constants have been determined for the baseline 

tie and presented with the their source: 

• Ultimate shrinkage strain (εSU), is based on water content within the concrete mix. Since 

a value for water content was unknown and will change for future iterations using 

higher concrete compressive stresses (different mixes), a common value of 0.005 was 

used for all iterations. This common value was obtained from average values presented 

in Naaman (2004), 

• Humidity correction factor for shrinkage (KSH), from Table 10: 

SH

SH

H = 50%     Relative Humidity

K  = 1.40 - 0.01 H

K  = 0.9  

• Shape and size correction factor for shrinkage (KSS), based on volume-to-surface ratio, 
use linear interpolation to obtain value from Table 11: 

SS

SS

K  = 0.9826       Center Section

K  = 0.9352       Rail Seat Section
 

• Ultimate creep coefficient (CCU), based upon concrete compressive strength, equal to 

2.2 from Table 12, 
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• Humidity correction factor for creep (KCH), from Table 10: 

CH

CH

K  = 1.27 - 0.0067 H

K  = 0.935

 

• Shape and size correction factor for creep (KCS), based on volume-to-surface ratio, use 

linear interpolation to obtain value from Table 11: 

CS

CS

K  = 0.9855       Center Section

K  = 0.9377       Rail Seat Section  

• Loading age factor (KCA), accounts for age of concrete at transfer, from Table 10: 

A

0.095
CA A

CA

t  = 1 day     age of concrete at transfer

K  = 1.13 t

K  = 1.13

−  

Table 10: Recommended relationships for time-dependent properties of concrete, adopted from  (Naaman 2004) 

Property Relationship

Equation Constants

Moist-cured concrete Steam-cured concrete

For t ≥ 1 day                                                     
f' c (t) = (tf` c (28))/(b+ct)                                           
Same for normal weight and lightweight 
concrete

Compressive 
strength

Creep 
coefficient

40% ≤ H ≤ 80%                                       
b = 35                                           
t ≥ 7 days                                        
KSH = 1.40-0.01H                             
KSS = see Table 2.10         
80% ≤ H ≤ 100%                                       
b = 35                                           
t ≥ 7 days                                        
KSH = 3-0.03H                             
KSS = see Table 2.10 
(Naaman)                                                                                                     

40% ≤ H ≤ 80%                                       
b = 55                                                           
t ≥ 1 to 3 days                                                   
KSH = 1.40-0.01H                                             
KSS = see Table 2.10                                                                                                                       
80% ≤ H ≤ 100%                                                   
b = 55                                                                      
t ≥ 1 to 3 days                                                               
KSH = 3-0.03H                                             
KSS = see Table 2.10              
(Naaman)

ε s (t) = (tε SU K SH K SS )/(b+t)                    Same 
for normal weight and lightweight 
concretes using Type I or Type III cements.                                                                                                        
KSH humidity correction factor                                                                             
KSS shape and size factor

Shrinkage strain

Type I cement:                     
b = 4                                           
c = 0.85                                  
Type III cement:                                
b = 2.30                                         
c = 0.92

Type I cement:                                  
b = 1                                                           
c = 0.95                                             
Type III cement:                                            
b = 0.70                                                        
c = 0.98

 C C (t) =( t 0.60 /(10+t 0.60 ))C CU K CH K CA K CS                                                       

KCH humidity correction factor                      
KCA age at loading factor                                                                            
KCS shape and size factor                                 
tA age at loading

t, tA ≥ 7 days and H ≥ 40%                                        

KCA = 1.25tA
-0.118                  

KCH = 1.27-0.0067H                             
KCS = see Table 2.10 
(Naaman)                                                                             

t, tA ≥ 1 to 3 days and H ≥ 40%                                                            

KCA = 1.13tA
-0.095                                          

KCH = 1.27-0.0067H                                              
KCS = see Table 2.10                  
(Naaman)                                                                   
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Table 11: Size and shape factors for creep and shrinkage, adopted from (Naaman 2004) 

(in) (cm) Creep KCS Shrinkage KSS

1 2.54 1.05 1.04
2 5.1 0.96 0.96
3 7.6 0.87 0.86
4 10.2 0.77 0.77
5 12.7 0.68 0.69
6 15.2 0.68 0.6

Volume-to-surface 
ratio Size and shape factor

 

Table 12: Typical values of ultimate creep coefficients, adopted from (Naaman 2004) 

(psi) (Mpa)

3,000 20.7
4,000 27.6
5,000 34.5
6,000 41.4
7,000 48.3
8,000 55.2

10,000 69
12,000 83

2.20
2.00
1.60
1.40

Compressive strength Ultimate creep 
coefficient CCU

3.10
2.90
2.65
2.40

 

 

In addition to the coefficients listed above, the effects of induced strain from long term applied 

loads such as prestressing and self weight affect creep. Similar to elastic shortening the effects 

of self weight are uncertain since numerous support distributions occur over the service life of 

the tie. For the calculation of creep, the same self weight moment as that determined for elastic 

shortening was used. Using the values discussed above the incremental shrinkage (Eqn. 8) and 

creep (Eqn. 9) losses for each time interval were obtained. 
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( )( )

i j

pS i j ps SU SH SS

i j
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b t  - t
Δf (t ,t ) = E ε K K

b + t b + t

Δf (t ,t ) = shrinkage loss during time interval (ksi)

ε  = ultimate shrinkage strain (in/in)

K  = humidity correction factor

K  = size and shape correction factor

b = curing conditions factor

 

 
 

Eqn. 8 
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K  = size and shape correction factor

K  = age at loading factor

f (t ) = stress in concrete at the centroid of the prestressing 

               tendons due to prestressing force and self-weight

 

 
Eqn. 9 

 
 

 

3.1.4.4 Time Intervals Considered 

Considering the sources of prestressing loss, some occur instantaneously such as anchorage or 

elastic shortening while others are time-dependent such as relaxation, creep, and shrinkage. 

Typically, time-dependent losses follow an exponentially decreasing trend to a maximum loss at 

which the final prestressing force is achieved (Naaman 2004). Performing the time-step method 

requires the determination of time intervals to which calculation of the losses for each source 

are determined. Considering the trends of time-dependent losses, shorter time intervals should 

be used at the early stages of member life while longer intervals should be used as the age of 

the member increases.  For losses which occur instantaneously, such as elastic shortening, the 

instant of loss application (i.e. transfer) should constitute a time interval boundary.  

 

Considering the criteria for interval determination and the interval of experimental losses from 

the tie manufacturer, the time intervals used for the computation of prestressing losses are; 1, 

3, 7, 28, 40, 365, 1,825 (5 years), and 18,250 days (50 years). The time begins at zero 

corresponding to jacking of prestressing and the initiation of steel relaxation. Day one served as 

the assumed time of transfer while 3, 7, and 28 days served as intermediate points for the 

purpose of plotting final prestressing force versus time. Forty days served as the point at which 

theoretical estimates for losses from this study and the tie manufacturer were compared. The 

interval of 5 years corresponds the time required for creep and shrinkage effects to typically 

reach their maximum (ACI 318-08 R9.5.2.5). The 50 year time interval corresponds to the 

estimated service life of a prestressed concrete tie.  
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3.1.4.5 Prestressing Losses Spreadsheet Organization 

A spreadsheet was developed to document the prestressing losses for the different critical 

sections. While the time-step method is accurate, one disadvantage is that it is computationally 

intensive; computation of losses must be repeated for each interval of time. Organization of the 

prestressing losses spreadsheet is based on the individual sources of loss. Constants for the 

cross-section geometry and material properties of each critical section are defined while the 

calculation of each loss source is done separately then summarized in a general table presenting 

the losses due to individual sources and the sum of those sources with respect to time. From 

this table the stress in the prestressing steel at each interval of time is shown. The final prestress 

can then be plotted on semi-log plot to show the relationship between prestressing force and 

time. Examples of the prestressing loss spreadsheets and plot of prestressing versus time for the 

baseline tie design are shown in Table 13 and Figure 41. 

Table 13: Summary of prestressing losses at the rail seat and center sections of baseline tie  

1 2.34 12.45 188.37 0.00 0.00 0.00 188.37 0.00 14.79 188.37

3 2.34 12.45 188.37 0.61 0.41 1.81 185.55 2.82 17.61 185.55

7 2.34 12.45 188.37 1.07 1.14 3.86 182.31 6.06 20.85 182.31

28 2.34 12.45 188.37 1.81 3.83 7.48 175.24 13.13 27.92 175.24

40 2.34 12.45 188.37 2.00 4.84 8.52 173.01 15.36 30.15 173.01

365 2.34 12.45 188.37 3.17 10.21 14.31 160.68 27.69 42.48 160.68

1,825 2.34 12.45 188.37 4.00 11.43 16.68 156.26 32.10 46.90 156.26

18,250 2.34 12.45 188.37 5.16 11.74 18.03 153.44 34.93 49.72 153.44

fpe       

(ksi)
ΔfpTD      

(ksi)
ΔfpES     

(ksi)
fpi         

(ksi) ΔfpR2 (ksi)
ΔfpS    

(ksi)
ΔfpC       

(ksi)
Total  Loss  

(ksi)
Time 

(days) ΔfpR1 (ksi)
Actual Prestress 

(ksi)

Prestessing Losses Based on Rail Seat Section Properties

 

1 2.34 17.89 182.96 0.00 0.00 0.00 182.96 0.00 20.23 182.96

3 2.34 17.89 182.96 0.54 0.43 2.65 179.35 3.62 23.85 179.35

7 2.34 17.89 182.96 0.95 1.20 5.64 175.18 7.78 28.02 175.18

28 2.34 17.89 182.96 1.61 4.03 10.90 166.42 16.54 36.77 166.42

40 2.34 17.89 182.96 1.78 5.08 12.39 163.71 19.25 39.48 163.71

365 2.34 17.89 182.96 2.81 10.73 20.69 148.73 34.23 54.46 148.73

1,825 2.34 17.89 182.96 3.55 12.01 24.02 143.39 39.57 59.80 143.39

18,250 2.34 17.89 182.96 4.58 12.34 25.90 140.14 42.82 63.05 140.14

Prestessing Losses Based on Center Section Properties

Time      
(days)

ΔfpR1        

(ksi)
ΔfpES       

(ksi)
fpi         

(ksi)
ΔfpR2      

(ksi)
ΔfpS    

(ksi)
ΔfpC       

(ksi)
fpe       

(ksi)
ΔfpTD      

(ksi)
Total  Loss  

(ksi)
Actual Prestress 

(ksi)
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Figure 43: Plot of effective prestressing with respect to time for baseline tie design 

3.1.5 Limit States  

3.1.5.1 Limit State I: Stresses at Transfer  

At transfer the prestressing is released and the force transferred to the concrete. Losses 

included at transfer are anchorage seating, initial steel relaxation and elastic shortening. Once 

the prestressing force including these losses was determined, the induced stresses in the 

concrete from the prestressing and the self weight of the tie were computed. During the process 

of calculating the theoretical prestressing losses it was determined that the self weight would be 

analyzed as a uniformly distributed load in a simply supported condition at transfer. The applied 

stresses were then compared to allowable concrete stresses from ACI 318-08. 

 

Concrete ties produced using the long-line method are cast upside down. Therefore, at transfer 

the tie will be upside down, but quickly rotated to right side up after de-molding (Figure 44). 

Since this rotation occurs almost immediately after transfer both load configurations were 

checked against allowable stresses.  
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Transfer Case I

Transfer Case II

 

Figure 44: Load configurations corresponding to the transfer limit state 

3.1.5.2 Limit State II: Stresses at Service (AREMA Defined Flexural Capacity) 

At the service load limit state the tie is subjected to the prestressing force minus all losses, both 

instantaneous and time-dependent which have occurred up to that time and the applied loads 

from the train and ballast. Prestressed concrete railroad ties do not follow the conventional 

definition of failure for prestressed concrete, since their capacity is limited to the load which 

produces the first structural crack to reach the outermost layer of steel. However, for the 

prediction of flexural capacity using theoretical methods the applied moment which 

corresponds to the first crack to the outer most layer of prestressing will not be determined. 

Instead, once the stress in the extreme tension or compression fiber reaches either of the 

allowable concrete stresses as specified in ACI 318 for service, the tie will be considered failed.  

 

Experimental test results were provided by the tie manufacturer in the form of applied loads 

corresponding to failure as defined by AREMA. The testing configurations corresponding to the 

load values are illustrated in Figure 33 through Figure 36. Using the equations relating the 

applied point load for the test to the applied moment in Figure 33 through Figure 36, the 

experimental moment capacities for the critical sections in the positive and negative directions 

were determined. It was assumed that the prestressing force applied to the tie corresponds to 

that including losses at 1000 hrs (40 days). 

 

Since the experimental results appear to correspond to a prestressing force including the losses 

at 1000 hrs, the prestressing force used in the theoretical capacity prediction were based on the 
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comparable theoretical losses at 1000 hrs (40 days) as well. However, for all further analyses 

and designs the prestressing force included all theoretical prestressing losses at a time duration 

of 50 year. The moment due to self weight were calculated using the boundary conditions 

corresponding to the test configurations in Figure 33 through Figure 36. If the difference 

between the applied moment causing failure and self weight moment is many orders of 

magnitude, the self weight may be considered negligible.  

3.1.5.3 Transfer Length 

Transfer length is the distance of bond between the prestressing and concrete required to 

transfer the force in the prestressing to the surrounding concrete. The distance required for the 

force transfer is a function of the effective prestress and the diameter of the prestressing 

tendon. For the drawn wire steel prestressing used in the baseline tie, the equation for transfer 

from ACI 318-08 was used (Eqn. 10). 

 

se

t b

t

f
l  =  d  

3

l  = transfer length (in)

 
 
   

 
Eqn. 10 

 
 

3.1.6 Nominal Flexural Capacity Using Strain Compatibility 

While the flexural capacity as defined by AREMA is governed by cracking, the ultimate load 

capacity of the tie design will be determined for comparative purposes. The nominal moment 

capacity will also demonstrate the actual capacity of the section or potential reserve capacity 

should the section be allowed to crack. The process of strain compatibility with respect to the 

baseline tie is described in the following sections. 

3.1.6.1 Division of Prestressing Layers 

Typical prestressed flexural members only have prestressing steel located in the tension zone of 

the member during service. However, prestressed concrete railroad ties have prestressing 

throughout their entire cross-section which can actually reduce their capacity. The initial 

compressive stress imparted by the prestressing in the compression region of the tie during 

bending may lead to the allowable concrete compressive stress to be reached at lower levels of 

externally applied loads. The main reason for this possibly detrimental uniformly prestressed 

section is the reversal in bending direction which occurs in the center of the tie in response to 
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changes in the ballast support distribution. To account for bending in both directions, 

prestressing must be provided both above and below the neutral axis of the cross-section. 

 

With respect to strain compatibility, the calculation process is made slightly more complicated 

by having prestressing in the compression region. Rather than being able to calculate strains of 

the prestressing tendons as a whole at the centroid of the steel, each prestressing layer must 

have their strains calculated separately. This is due to the effect of bending on the strain in the 

prestressing steel. If the prestressing layer is located in the compression zone the strain in the 

steel will decrease as the applied moment increases. Inversely, the strain in prestressing located 

in the tension zone will increase. An advantage to calculating the strain in each level of 

prestressing is the ability to then plot the strain in each layer producing strain diagrams for 

verification purposes.  

3.1.6.2 Strain Components 

To determine the flexural capacity of the tie, the stress in the prestressing steel must be 

determined. During casting, the concrete is bonded to the steel, therefore as the concrete is 

loaded and strained, the prestressing steel will encounter the same change in strain. By 

determining the increments of strain which correspond to each loading condition and summing 

them, the total strain in the steel at failure is determined. The three increments of strain are; 

strain due to effective prestress (ε1), strain in the concrete surrounding the prestressing layer 

corresponding to the decompression load condition (ε2), and the strain in the concrete 

surrounding the prestressing layer corresponding to failure of the compression fiber (ε3). Figure 

45 illustrates the strain increments as they appear in the strain diagram for the rail seat section. 
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Figure 45: Strain diagram at rail seat section showing three strain increments 

3.1.6.2.1 Strain due to Effective Prestress (ε1) 

The first increment of strain in the prestressing steel is that due to the effective prestress (i.e. 

the prestress including all losses). Assuming that the effective prestress is the same in all 

tendons and therefore the strain due to the effective prestress is the same for all tendons. It is 

possible that the strain due to effective prestress varies from tendon to tendon due to camber 

of the tie, but for sake for simplifying the calculations it will be assume that the effective 

prestressing force is constant across the cross-section.  However, the strain due to effective 

prestress does vary depending on the section since prestressing losses vary depending on the 

section. 

3.1.6.2.2 Decompression Strain (ε2) 

The second strain increment is the change in strain corresponding to decompression. 

Decompression is the condition in which external load is applied causing the concrete 

surrounding the bottom layer of prestressing to reach zero strain. Based on decompression 

condition the determination of the strain change in the bottom layer or prestressing is simplified 

since the strain the concrete surrounding the tendons is zero. For the remaining prestressing 

layers the change is strain is determined using the assumption of constant curvature, with the 

neutral axis based on uncracked elastic section properties. Assuming constant curvature the 

strain in the remaining levels of prestressing corresponding to decompression can be 

determined using similar triangles. 
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3.1.6.2.3 Strain Corresponding to Failure (ε3) 

The third and final strain increment is the strain corresponding to failure. Assuming a maximum 

concrete compressive strain of 0.003, the strain in the concrete at the level of each prestressing 

layer can be determined based on similar triangles once again. However, at this point it is 

assumed that section is cracked and the neutral axis has shifted towards the extreme 

compression fiber. This will require a guess of the new distance to the neutral axis, (c). Steel that 

was previously located in the compression zone may transition into the tension zone. 

3.1.6.2.4 Strain Component Summation 

Even though ε2 and ε3 are increments of strain in the concrete at the level of the prestressing 

layer, based on the assumption of fully bonded tendons, the changes in strain for the steel are 

the same as those calculated in the concrete. Summing the individual components will provide 

the strain in the prestressing steel at each layer corresponding to failure. When summing the 

strain components special attention must be paid to the location of the prestressing layer with 

respect to the neutral axis during the specific load case (i.e. decompression or failure). If the 

prestressing layer is above the neutral axis, ε2 and ε3 are subtracted from ε1. If the prestressing 

layer is located below the neutral axis, ε2 and ε3 are added to ε1. 

3.1.6.2.5 Resultant Force Determination 

Once the summation of the stain increments is completed the total strain in each layer of 

prestressing is available. Using the stress-strain relationship presented in Section 3.1.3.2.1, the 

corresponding total stress is determined. Based on the area of steel in each layer the 

prestressing force and applied moment about the uncracked neutral axis is determined for each 

layer. Similarly the resultant compressive force for the compression block is determined based 

on the approximate depth of the compression block. For equilibrium to be achieved the sum of 

all the tensile prestressing forces must equal the resultant compressive force. If this is true the 

correct depth to the cracked neutral axis is found. If the two resultant forces are not equal, a 

new depth to the cracked neutral axis must be assumed and the process above repeated. If the 

resultant compression force is larger than the resultant tension force, the assumed depth to the 

cracked neutral axis is too large and if the resultant tension force is larger the assumed depth is 

to shallow. 
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3.1.6.3 Strain Compatibility Spreadsheet Organization 

Since strain compatibility is inherently a trial and error process the analysis procedure was 

organized into a spreadsheet dependent on a single variable, the depth to the cracked neutral 

axis, (c). Then a solver was used to perform the iterative process until the resultant compressive 

and tension forces converge. All other variables are set as constants which are specific to the 

specific section and load condition of interest. An example of the full analysis is presented in 

Appendix D in the form of a MathCAD file; however, all analyses were performed in Excel. 

3.1.6.4 Development Length  

To achieve the nominal moment capacity calculated using strain compatibility the prestressing 

tendon must be securely anchored in the concrete. The anchorage is developed by the bond 

between the concrete and the prestressing. The bond must be capable of supporting the stress 

in the prestressing at ultimate capacity. Equation 11 from ACI 318 is used for calculating the 

required length of bond to develop the stress at ultimate in the drawn wire of the baseline tie. 

 

( )se

d b ps se b

d

se

ps

b

f
l  =  d  + f - f  d

3

l  = develpment length (in)

f  = effective prestressing (ksi)

f  = stress in prestressing corresponding to failure (ksi)

d  = diameter of prestressing tendon (in)

 
 
 

 

 
Eqn. 11 

 
 

3.2 Parametric Optimization Study  

The purpose of the parametric optimization study was to determine which design variables such 

as concrete strength, prestressing type and configuration offer the most efficient and largest                                                                                                              

gains in flexural capacity over the baseline tie while maintaining the current concrete geometry. 

Since the concrete tie geometry remains constant a large majority of the calculations and 

assumptions made for the baseline tie analysis will remain the same. However, one portion of 

the process which will change dramatically is the determination of prestressing configuration 

and eccentricity. Similarly the prestressing type and concrete strength used in the design 

iterations will vary. The following sections will summarize the characteristics unique to the 

optimization process and identify those similar to the baseline analysis. 
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3.2.1 Optimization Variables 

The following sections will outline the optimization parameters of concrete compressive 

strength and prestressing type and size.  

3.2.1.1 Concrete Compressive Strength 

The concrete compressive strength is the controlling factor for allowable concrete stresses at 

transfer and service. Therefore increasing the compressive design strength will increase the 

allowable stresses for the two stress related limit states. This will in turn allow for an increase in 

eccentricity or the applied prestressing force, ultimately increasing the capacity of the tie. The 

four concrete compressive strengths which will be used for the optimization study are; the 

current design strength of 7,000 psi, the actual average strength of 9,500 psi which is currently 

achieved by the manufacturer and 12,000 and 15,000 psi, which a precast manufacturer can 

typically achieve. The means of determining the mechanical properties corresponding to these 

four compressive design strengths will be discussed in later sections. 

3.2.1.2 Prestressing Type and Size 

With increases in compressive strength it was expected that the maximum applied prestressing 

force or eccentricity could be increased. In addition to these properties pertaining to 

configuration and jacking of the prestressing, different types and sizes of prestressing were of 

interest as well. While the current prestressing type, 0.21 in. diameter drawn wire, will continue 

to be evaluated. Various sizes of 7-wire strand and fiber reinforced plastic (FRP) strand will be 

considered as well. At the request of the industry partner, the use of 0.375 in. 7-wire strand will 

be evaluated since it is the predominate prestressing choice in the North American prestressed 

concrete tie industry. Smaller diameters of 7-wire strand, 0.25 and 0.3125 in. were used as well.  

 

As for FRP, this is an idea which originated from the research team. One of the factors limiting 

concrete capacity to the onset of cracking is the fear of corrosion of the prestressing, should 

cracking occur, allowing water to migrate into the section. If a material such as FRP which does 

not corrode were used, the flexural capacity may then exceed the cracking limit ultimately 

increasing the capacity of the tie. The material properties of the 7-wire strand and FRP will be 

discussed in later sections. 
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3.2.2 Iteration Matrix 

To organize the various design iterations composed of the different combinations of concrete 

compressive strength and prestressing type, an optimization iteration matrix was developed and 

presented in Appendix C. The material properties corresponding to each design iteration are 

included for quick reference as well as the base file names for the calculation support files in 

MathCAD and Excel. The iteration matrix also serves a summary table for the limit state values 

of the design iterations. To organize the design iteration calculations a file naming system was 

developed based on the optimization parameters; prestressing type (PT), prestressing tendon 

diameter (PD) and concrete strength (CS). Table 14 shows the abbreviations and their placement 

within the base file name used for all calculation support files. 

Table 14: Optimization study file name abbreviations of iteration parameters 

Drawn Wire W W(PT)-XX(PD)-XX(CS)

7-Wire Strand S S(PT)-XX(PD)-XX(CS)

FRP FRP FRP(PT)-XX(PD)-XX(CS)

0.21 in. 0.21 XX(PT)-0.21(PD)-XX(CS)

0.25 in. 0.25 XX(PT)-0.25(PD)-XX(CS)

0.3125 in. 0.3125 XX(PT)-0.3125(PD)-XX(CS)

0.375 in. 0.375 XX(PT)-0.375(PD)-XX(CS)

7,000 psi 7 XX(PT)-XX(PD)-7(CS)

9,500 psi 95 XX(PT)-XX(PD)-95(CS)

12,000 psi 12 XX(PT)-XX(PD)-12(CS)

15,000 psi 15 XX(PT)-XX(PD)-15(CS)

Prestressing Type (PT)

Presstressing Diameter (PD)

Concrete Strength (CS)

Optimization Parameter
File Name 

Abbreviation
Abbreviation Location in 

File Name

 

3.2.3 Prestressing Placement 

The placement of prestressing within the geometric envelope was based on permissible cover 

and spacing. The position of tendons was selected to achieve the maximum eccentricity while 

remaining within the allowable prestressing and concrete stresses. The following sections 

outline the detailing constraints for prestressing placement and the design aid created using 

drafting software for determining dimensions to prestressing layers. 



 

77 
 

3.2.3.1 Detailing Constraints 

Detailing constraints for the optimization study were from ACI 318 (ACI 2008). AREMA has a 

minimum cover specification of 0.75 in., however it was decided to use the minimum cover 

specified in ACI 318-08 (AREMA 2003). For cover, the prestressed concrete tie is a precast 

member which is exposed to earth and weather with prestressing 0.625 in. diameter or less. Per 

ACI 318-08 Section 7.7.3 (a) the minimum cover is 1.25 in. Spacing requirements for the 

prestressing from ACI 318 Section 7.6.7 are the following: 

≥`

ci

b

b

Wire Spacing: 5d

Strand Spacing: 4d

Unless f   4,000 psi, then minimum center-to-center spacing is 1.75 in.  

The third criteria based on concrete compressive stress will control for all iterations. The 

minimum value of concrete compressive stress at transfer for all iterations is 4,500 psi. In 

addition to the ACI 318 detailing criteria, it was decided that no more than three tendons may 

be placed in the same layer. The restriction on the number of tendons per layer is done in an 

effort to reduce the availability of failure planes within the section and stagger the prestressing 

tendons. 

3.2.3.2 Prestressing Placement Design Aid 

To aid in the process of prestressing placement the envelope of allowable placement area set 

using the cover constraints discussed above was illustrated in a CAD program. Prestressing was 

placed within the drawing with their own envelopes modeling the required spacing. A snap grid 

was situated over the drawing with a spacing of 0.125 in. to provide a consisted spacing and 

avoid obscure dimensions. An example of the prestressing placement aid illustrating the 

baseline tie can be seen in Figure 46.  

 

Detailing constraints were modeled as dashed lines shown in Figure 46. The straight dashed line 

shows the minimum cover envelope, while the dashed circles around the prestressing (solid 

circles) designate the minimum spacing. If no prestressing is outside the dashed line, cover 

requirements have been met. If no dashed circles overlap, spacing requirements have been met. 

This design aid offered quick visual verification of whether or not the detailing requirements 

according to ACI 318 have been satisfied. In addition to detailing constraint envelops, the aid 
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provided dimensions to the centerline of prestressing layers which were used for eccentricity 

calculations. 

 

 

Figure 46: Screen capture of prestressing placement design aid used to evaluate baseline tie  

3.2.4 Baseline and Optimized Tie Analysis Similarities 

Since this optimization study was based on an existing tie design whose external dimensions will 

remain unchanged, several aspects of the design process will be the same for the optimization 

study when compared to the process described in the previous section 3.1. Tie characteristics 

that remained the same for the optimized study include: 

• External tie geometry (i.e. the concrete section), 

• Fabrication process (i.e. un-harped prestressing tendons, same load conditions), 

• Self weight effects, 

• Limit states of allowable stresses at transfer, allowable stresses at service (AREMA 

defined failure), and nominal capacity (corresponds to crushing of concrete or rupture 

of prestressing) still apply. 
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Any changes to limit state conditions with respect to the analysis process will be discussed in 

later sections of this chapter. 

3.2.5 Material Properties 

3.2.5.1 Concrete Properties 

3.2.5.1.1 Compressive Strength 

The design compressive strengths used in the optimization study were 7,000, 9,500, 12,000, and 

15,000 psi. To determine the corresponding compressive strengths at transfer the maturity 

relationship (Eqn. 12) presented in ACI 209R-92 (ACI Committee 209 1992) was used for all 

design compressive strengths unless specified otherwise (for 7,000 psi iterations used the 

currently specified 4,500 psi). This equation relates the 28-day compressive strength with 

respect to time and was used to determine the compressive strength at a specified time. The 

use of this equation requires assumptions about the curing procedures to determine constants 

contained within Table 2.2.1 of ACI 209R. For this project it was assumed that transfer occurs 

after 24 hours and the concrete is maintained under a steam cured condition. An example of the 

maturity relationship for a 28-day design compressive strength of 9,500 psi to determine the 

compressive strength at transfer is shown below. 

 

` `

ci c

t 1
f  =  f  =  9,500 psi = 5,655 psi

a + βt (0.70) + (0.98) 1

t = 1          initial curing period (days) prior to transfer

a = 0.70   constant from ACI 209R Table 2.2.1 (steam cured & Type III Cement)

β = 0.98   constant from ACI 209R Table 2.2.1 (steam cured & Type III Cement)

 

 
Eqn. 12 

 
 

 

 ACI 363R-92, the design specification for concrete with compressive strengths greater than 

10,000 psi does not have a maturity equation to approximate concrete strength based on 28-

day design strength. Therefore, the approximation described in ACI 209R-92 was used for all 

iterations excluding those for 7,000 psi concrete. The effect of specifying transfer at a specific 

time (24hours) rather than the minimum allowable concrete strength at transfer of 4,500 psi by 

AREMA, is higher concrete strengths at transfer and therefore higher stresses can be applied by 

the prestressing (ACI 2008; AREMA 2003). 
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3.2.5.1.2 Modulus of Elasticity 

When calculating the modulus of elasticity for all iterations the relationship described in Section 

3.1.3.1.2 was used (Eqn. 1 and Eqn. 2). This relationship between design compressive strength 

and elastic modulus is from ACI 318-08 which is limited to concrete with a compressive strength 

less than 10,000 psi; however, ACI 363R which covers concrete with compressive strengths 

greater than 10,000 psi does not have a specification for elastic modulus which differs 

considerably from that found in ACI 318-08. Additionally, the approximation found in ACI 318-08 

is more up-to-date with current material behavior assumptions. 

3.2.5.1.3 Allowable Stresses 

For allowable concrete stresses, the limits presented in ACI 318-08 will continue to govern 

regardless of the compressive design strength. However, for FRP the allowable concrete stresses 

at service conditions for tension was slightly less than those corresponding to conventional steel 

(Table 15).   

Table 15: Allowable concrete stresses in conjunction with FRP prestressing (ACI Committee 440 2004) 

Stress Case Description
ACI Code 

Specification (psi)

Allowable stresses under service loads (after losses)

Allowable stress at transfer of prestress (before losses)

σci
Extreme fiber stress in compression at prestress 
transfer ACI 440.4R-04 Table 3.2 (a)

0.6f`ci

σti
Extreme fiber stress in tension at prestress transfer, 
ACI 440.4R-04 Table 3.2 (b)

3f`c
0.5

σts
Extreme fiber stress in tension at service ACI 440.4R-
04 Table 3.2 (c)

6f`c
0.5

σcs1
Extreme fiber stress in compression at service (P/S 
and SDL) ACI 440.4R-04 Table 3.2 (a)

0.45f`c

σcs2
Extreme fiber stress in compression at serivce (P/S 
and total load) ACI 440.4R-04 Table 3.2 (b)

0.6f`c

Allowable Concrete 
Stresses

 

3.2.5.2 Prestressing Properties 

Prestressing properties will change depending on the design parameters relevant to the specific 

iteration. For 0.21 in. diameter drawn wire the material properties described in Section 3.1.3.2 

still govern. For 7-wire strand material properties such as ultimate and yield strengths as well as 

elastic modulus will be specified by ASTM A 416/A416M-06 (Table 16) (ASTM International 
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2006). Material properties for carbon FRP have been collected from ACI 440.4R-04 (Table 16) 

(ACI Committee 440 2004). FRP does not have a defined yield strength because the stress-strain 

curve remains linear up to failure. 

Table 16: Prestressing sectional and material properties 

Drawn Wire (W) (Baseline) 0.21 0.03445 255 230 28,500

7-Wire Strand (S) 0.25 0.036 250 225 28,500

7-Wire Strand (S) 0.3125 0.058 250 225 28,500

7-Wire Strand (S) 0.375 0.085 270 243 28,500

Carbon FRP (FRP) 0.25 0.049 425 NA 18,000

Carbon FRP (FRP) 0.375 0.11 425 NA 18,000

Yield 
Strength 

(ksi)

Elastic 
Modulus 

(ksi)Prestressing Type

Tendon 
Diameter 

(in)

Tendon 
Area        

(in2)

Ultimate 
Strength 

(ksi)

 

3.2.6 Prestressing Forces and Losses 

The permissible prestressing stresses presented in Section 3.1.4.1.2 still govern for steel wire 

and strand while the permissible stresses for FRP were obtained from ACI 440.4R-04 (ACI 

Committee 440 2004). To avoid creep-rupture, a prestressing failure unique to FRP, a maximum 

limit well below the creep-rupture value is placed on the FRP prestressing force. For this project 

it has been assumed that carbon FRP tendons will be used. The permissible stresses for carbon 

FRP are given in Table 17. 

Table 17: Permissible prestressing stresses for carbon FRP (ACI Committee 440 2004) 

Stress Case Description ACI Code Specification

Allowable jacking stress, fpj 0.65fpu

Due to prestressing steel jacking, fpi 0.60fpu  

The process of calculating prestressing losses for the optimization study will depend on the 

prestressing type. The properties of the prestressing change from wire to strand to FRP. For 7-

wire strand the process was exactly the same as that described in Section 3.1.4.3 with the only 

changes being the material property constants. The process of calculating theoretical losses of 

FRP vary in terms of the relaxation component of losses. In general, carbon FRP strands have 

smaller relaxation losses than normal steel strands exposed to the same loading (ACI Committee 

440 2004). ACI 440 recommends an approximation of the prestressing loss for carbon FRP due 
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to relaxation to be approximately 1.5 percent of the jacking stress during the initial curing 

period and another 1.5 percent after transfer (ACI Committee 440 2004).   

3.2.7 Limit States 

All processes related to the previously defined limit states will be the same during the 

optimization study as those presented in Sections 3.1.5 and 3.1.6 with the following exceptions: 

• The limit states of allowable stresses at service and nominal capacity will be derived 

using the effective prestressing value taken at a time of 50 years to include all 

prestressing losses calculated using the theoretical time-step method, 

• Changes related to the variation in concrete or prestressing materials 

3.2.8 Transfer and Development Lengths 

For the design iterations utilizing steel prestressing, Equations 10 and 11 from Section 3.1 were 

used to determine the required transfer and development length. However, for iterations using 

FRP, the equations from ACI 318 no longer apply. Since FRP does not bond to concrete the same 

as steel due to variations in the surface texture and material properties, different equations for 

transfer and development lengths were required. The transfer length for FRP is defined by 

Equation 13 from ACI 440.4R-04. The development length for FRP is defined by Equation 14 

from ACI 440.4R-04. 

 

pe b

t ` 0.67

t c

t

pe

b

t

f d
l  = 

α f

l  = transfer length of FRP prestressing (in)

f  = effective prestressing (psi)

d  = diameter of prestressing tendon (in)

α = material constant for FRP, use 11.2 for carbon FRP (in)

f `

c
 = 28-day concrete design strength (psi)

 

 
Eqn. 13 
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l  = f d  + f -f d

3 4

l  = development length of FRP prestressing (in)

f  = effective prestressing (ksi)

 

 
Eqn. 14 
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4.0 Results and Discussion 

4.1 Overview 

This section summarizes the results of the baseline tie analysis and the parametric optimization 

study. The capacity predictions for the baseline tie obtained from the numerical analysis process 

developed in the first phase of the project are compared to actual values collected during 

experimental testing. Based on the comparison of predicted to actual values, improvements to 

the analysis procedure and assumptions are suggested. The results of the parametric 

optimization are presented, demonstrating the effects of various prestressing and concrete 

combinations on the flexural capacity of prestressed concrete railroad ties. 

4.2 Numerical Analysis: Baseline Tie Design Results (Phase I) 

Performing a numerical analysis on a baseline tie has several functions with respect to this 

optimization study. First, the predicted capacities obtained from the analysis will serve as a 

baseline for the remaining design iterations performed in the optimization process. Secondly, an 

advantage of the existing tie design is the experimental results which are available to be used in 

comparison with the predicted values. This comparison offers the opportunity to evaluate the 

accuracy of assumptions, material approximations and the numerical analysis process as a 

whole. In the following sections the numerical process developed to analyze an baseline tie will 

be presented and the accuracy evaluated in a comparison with actual values obtained from 

experimental testing performed by the tie manufacturer. 

4.2.1 Analysis Procedure 

With respect to the computation processes completed during the course of this project, the 

most critical component was the development of the baseline tie numerical analysis due to the 

impact it would have on the remainder of the optimization design iterations. The capacity 

predictions developed during the baseline tie numerical analysis served as the benchmark for 

the study, so it was essential that a high level of accuracy be achieved. In addition to being 

accurate, a goal of the numerical analysis was to make the process universally applicable to a 

variety of tie designs. Since this was an optimization study, a compilation of tie designs utilizing 

a variety of concrete strengths, prestressing types and configurations were developed. 
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Therefore, the process must be capable of adapting to a wide range conditions whether they be 

material or process based.  

4.2.2 Analysis Organization 

To achieve an adaptive capacity analysis procedure which could be used for the baseline tie 

analysis and later optimization iterations, it was important to develop a process which was 

capable of remaining effective after changes in material properties and other design parameters 

such as prestressing configuration. Assembling the analysis method with the material properties 

of the prestressing and concrete, along with the prestressing configuration as variables, the 

desired versatility was accomplished. For example, the sign conventions for stresses and 

prestressing eccentricities discussed in Chapter 3 were chosen so that the analysis procedure 

would be applicable regardless of changes to the inputs. The consideration of the analysis inputs 

prior to the development of the procedure produced a system which can efficiently evaluate a 

design in terms of time and reduce the possibility of errors, since the analysis method was 

independent of the inputs. 

 

To perform the procedure effectively in terms of accuracy and time, careful consideration was 

given to the computer software used to complete the analyses. To document and clearly convey 

the methodology behind processes and assumptions, the first analysis of the baseline tie was 

completed using the math computation software MathCAD (Appendix D). An advantage of 

MathCAD is the ability to complete the necessary computations while documenting the process 

using the word processor application of the software. Therefore, the analysis is presented in a 

step-by-step manner with supporting discussion of the procedure and assumptions used. The 

goal of this first analysis completed using MathCAD was to develop a guide for the remaining 

iterations as well as perform the preliminary analysis of the baseline tie design.  

 

However, MathCAD does have some disadvantages which make it unsuitable for the 

optimization phase of this project. For repetitious analysis such as the optimization study, 

MathCAD is bulky and difficult to evaluate quickly, since all text and equations are displayed, 

rather than simply the outputs of the desired information. To reduce the bulk of text and 

equations to a digestible level in the design iterations and decrease the time required for 

evaluation of results, the analysis procedure developed in MathCAD was transferred to a 
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spreadsheet format for all other analyses. To verify the conversion of the analysis procedure 

between the two applications, the baseline tie analysis was completed using both systems. One 

advantage of the spreadsheet computation method is the ability to quickly evaluate the results 

of the analysis and make changes accordingly. This became especially important during the 

optimization phase of the project. A disadvantage of the spreadsheet computation method was 

the lack of discussion compared to the MathCAD system. However, since the procedure did not 

change between the two systems, the original MathCAD analysis of the baseline tie served as a 

guide to the remaining iterations completed using Excel. 

4.2.3 Tie Cross-Section Properties 

The first step in developing the numerical analysis method was identifying the cross-sectional 

properties of the baseline tie. One simplifying condition of this project was that the concrete tie 

geometry remained constant for all design iterations and analyses. For the baseline tie, as-built 

drawings and material data sheets were furnished by the tie manufacturer (Appendix A). 

However, several properties required calculation or approximation, such as the moment of 

inertia of the rail seat and center critical sections. Using the parallel axis theorem, values for the 

moment of inertia of the sections were obtained (Figure 47 and Table 18). The cross-sectional 

properties for the rail seat and center sections are summarized in Table 19. 

 

y

 

Figure 47: Division of tie cross sections into standard shape components for use in parallel axis theorem  
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Table 18: Cross-sectional geometry for rail seat and center sections using parallel axis theorem 

A 9.10 8.59 78.12 4.29 479.82 0.26 485.12

B 0.39 8.59 1.65 2.86 6.77 1.69 11.49

C 0.39 8.59 1.65 2.86 6.77 1.69 11.49

D 7.69 0.71 5.42 8.94 0.22 -4.38 104.46

E 0.71 0.71 0.25 8.82 0.01 -4.27 4.60

F 0.71 0.71 0.25 8.82 0.01 -4.27 4.60

Sum 87.35 621.76

ybar 4.55

Rail Seat Section

Moment of 
Inertia       

Ibar (in
4)

 Centroid 
Difference          

d (in)

 Parallel Axis 
Theorem      

Ibar + Ad2 (in4)Component
Width              
b (in)

 Height          
h (in)

Area                 

A (in2)

Centroid 
Distance            

y (in)

 

A 7.75 6.88 53.28 3.44 209.86 0.28 214.14

B 0.31 6.88 0.11 2.29 2.80 1.43 3.02

C 0.31 6.88 0.11 2.29 2.80 1.43 3.02

D 6.50 0.63 4.06 7.19 0.13 -3.47 48.96

E 0.63 0.63 0.20 7.08 0.00 -3.36 2.21

F 0.63 0.63 0.20 7.08 0.00 -3.36 2.21

Sum 57.95 273.55

ybar 3.72

Center Section

Width              
b (in)

 Height          
h (in)

Area                 

A (in2)

Centroid 
Distance            

y (in)

Moment of 
Inertia       

Ibar (in
4)

 Centroid 
Difference          

d (in)

 Parallel Axis 
Theorem      

Ibar + Ad2 (in4)Component

 

Table 19: Cross-sectional properties of rail seat and center critical sections  

Geometry Constant Rail Seat Center

Area, A (in2) 87.35 57.95

Moment of Inertia, I (in4) 621.76 273.55

Bottom disatnce to CG, yb (in) 4.55 3.72
Top distance to CG, yt (in) 4.74 3.78

Section Properties Summary

 

4.2.4 Prestressing Eccentricity 

Once the cross-sectional properties of the concrete section had been defined, the prestressing 

configuration was input into a spreadsheet to calculate the prestressing eccentricities. The 

spreadsheet is arranged based on the layers of prestressing in the section. Assuming the same 

size prestressing tendons were used throughout the tie, the number of tendons per layer and 
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the distance of each  layer from the bottom of the tie were input into the spreadsheet. The layer 

was referenced from the bottom of the tie because this was the only dimension which remained 

constant along the length of the tie (Figure 48). The output for the spreadsheet was the distance 

from the bottom of the tie to the centroid of the prestressing steel (Table 20). 

 

yn

ysteel centroid
y3

y2
y1

 

Figure 48: Prestressing configuration schematic 

Table 20: Summary of prestressing centroid calculations 

1 2 0.07 1.3125 0.09

2 2 0.07 1.5625 0.11

3 2 0.07 2.5 0.17

4 2 0.07 2.75 0.19

5 2 0.07 3.6875 0.25

6 2 0.07 3.9375 0.27

7 2 0.07 5.125 0.35

8 2 0.07 5.375 0.37

9 2 0.07 6.3125 0.43

10 2 0.07 6.5625 0.45

11 0 0.00 0 0.00

12 0 0.00 0 0.00

13 0 0.00 0 0.00

14 0 0.00 0 0.00

15 0 0.00 0 0.00

Totals 20 0.69 2.70

ysteel centroid (in.) 3.91

Prestressing Centroid Calculator

Layer Number
Number of 

Tendons in Layer

Area of Tendons 
in Layer                    

(A) (in2)

Distance of Layer 
From Bottom           

(y) (in.) Ay
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Given the distance between the bottom of the tie and the prestressing centroid the eccentricity 

at any section along the length of the tie could be determined. The sign convention used was 

positive for a prestressing centroid below the uncracked neutral axis and negative for above the 

uncracked neutral axis (Section 3.1.2.2) (Figure 49). For the rail seat and center sections the 

eccentricities for the baseline tie designs are given in Table 21.  

 

(-) e

(+) e

Uncracked 
Neutral Axis

 

Figure 49: Sign convention for prestressing eccentricity 

Table 21: Prestressing eccentricities for rail seat and center sections of baseline tie 

Rail Seat (eRS) 4.55 0.64
Center (eC) 3.72 -0.19

Eccentricity 
Location yconcrete centroid         (in.)

Eccentricity          
(in.)

Eccentricity Calculator

 

The baseline tie design experiences a shift in the prestressing eccentricity with respect to the 

uncracked neutral axis along the length of the tie. This shift in prestressing eccentricity is not 

due to harped tendons, but rather a change in tie geometry which lowers the center of gravity 

of the concrete section at the center section compared to the rail seat. At the rail seat section 

and the surrounding shoulder and necked down regions, the prestressing eccentricity is below 

the uncracked neutral axis, while the eccentricity shifts to above the uncracked neutral axis in 

the center region (Figure 50). This shift in prestressing eccentricity is a design feature in 

response to the maximum applied moments experience by the tie over its service life. Due to 

the consolidation of the ballast, support conditions change over time, altering the maximum 

moments applied to the tie. At the tie center, a reversal in bending direction from positive to 

negative occurs, which requires a negative prestressing eccentricity to resist the induced 

negative bending. 
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(+) e
2' to 3'

(-) e
2' to 3'

(+) e
2' to 3'  

Figure 50: Regions of prestressing eccentricity along the length of the tie 

Another design aspect which relates to the placement of the prestressing and eccentricities of 

the baseline tie design is the detailing requirements of cover and spacing. The cover 

requirement of 0.75 in. specified by AREMA has been met at every section of the baseline tie, 

but the larger cover specification of 1.25 in. by ACI 318-08, which will be used for the 

optimization study, has not been satisfied by the center section (Figure 51). The spacing of 

prestressing provided in the baseline tie design was however, adequate for the ACI 318-08 limits 

(minimum of 5db). 
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Figure 51: Cross-section of baseline design prestressing configuration 

4.2.5 Prestressing Forces and Losses 

The jacking force per prestressing tendon (Fpj) and the initial prestressing force (Fpi), which 

include losses from anchorage set, steel relaxation, and elastic shortening, were provided by the 

manufacturer (Table 48). The stresses in each wire are summarized in Table 22. Comparing the 

stresses in each tendon to the permissible stresses specified in ACI 318-08, it was determined 

that the applied stresses were within the acceptable limits (Table 23). However, it was observed 

that the stresses in the tendons were close to the limits and careful consideration must be given 
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to the jacking stress in future iterations utilizing the drawn wire as not to exceed the permissible 

stress limits. The initial prestressing stress at the rail seat has been calculated to be less than a 

quarter of a percent higher than the permissible value from ACI 318-08.  

Table 22: Stress in prestressing at jacking and after transfer for baseline tie 

Applied Prestressing 
Stress Case

Stress Case Description
Calculated Stress 

(ksi)

fpj = Fpj/Ab Due to prestressing steel jacking 203

fpi RS = Fpi/Ab
Immediately after prestress transfer @ Rail 

Seat Section
189

fpi C = Fpi/Ab
Immediately after prestress transfer @ 

Center Section
188

 

Table 23: Comparison of applied stresses in prestressing to permissible stresses from ACI 318-08  

203

189

189

Allowable 
Prestressing 

Stresses

Stress Case 
Description

ACI Code 
Specification 

(ksi)

Permissible 
Stress      
(ksi)

Maximum 
Calculated 

Stress      
(ksi)

fpi
Immediately after 
prestress transfer

189

fpj
Due to prestressing 

steel jacking
0.80fpu

fpi
Immediately after 
prestress transfer

fpj
Due to prestressing 

steel jacking
0.94fpy

Percent Difference    
100(Calculated - Allowable) 

/Allowable

Applied     
vs. 

Allowable

6.06% OK203216

OK

-0.26% NG

0.01% OK

0.82fpy

0.66%

0.74fpu

204

189

 
While estimates for prestressing losses of the baseline tie have been provided by the 

manufacturer, the loss estimates calculated in this investigation were used instead. The reason 

for using the estimates calculated in this study was continuity. Since the optimization study 

varied prestressing and concrete parameters, the estimates determined by the tie manufacturer 

would not apply. To maintain continuity between the analysis procedure of the baseline tie 

design and the optimization iterations, the loss estimation conducted during this investigation 

was used for both analyses. Furthermore, the estimation of prestressing losses conducted by 

the tie manufacturer only covered a time period of 40 days. Limiting the prestressing losses to 

40 days overestimated the effective prestressing force and therefore the tie capacity, since time 

dependent losses, such as prestressing relaxation, creep and shrinkage continue to cause losses 

long after 40 days.  
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The time-step method outlined in Section 3.1.4.3 was used to determine losses. Prestressing 

losses are dependent on cross-sectional properties; as a result the losses vary between the rail 

seat and center critical sections. The time-dependent prestressing losses for the critical sections 

are summarized in Table 24 and Table 25 and illustrated in Figure 52. From Figure 52 it is 

observed that a majority of the prestressing losses occur during the first year and then level off 

as time increases out to 50 years.  

 

A comparison of the prestressing loss estimations conducted in this analysis and by the tie 

manufacturer is provided in Section 4.2.8.1. When comparing the two loss estimations, the 

comparison was made at 40 days since this was the time interval which corresponds to the 

estimation made by the tie manufacturer. However, the baseline tie capacity was evaluated at 

50 years, which corresponds to the estimated service life of the tie and the time required for the 

total prestressing losses to approach a constant value. The initial and effective prestressing 

stresses at 40 days and 18,250 days (50 years) for the rail seat and center critical sections are 

shown in Table 26. Using the effective prestressing stress at 50 years will provide the lowest 

capacity for the baseline tie over the service life; whereas the effective prestressing at 40 days 

would overestimate the capacity long term. The percent difference between the effective 

prestressing at 40 days and 50 years is given in Table 26. 

 

The total time-dependent prestressing losses between jacking and the effective prestressing at 

40 days and 50 years at the rail seat and center sections are summarized in Table 27. As 

expected the losses accrued at the center section are larger than those at the rail seat due to 

the decreased cross-sectional area to resist the same prestressing force. The smaller cross-

sectional area of the center section increases the stress in the concrete due to the prestressing 

and in turn increases elastic shortening, creep and shrinkage losses which are a function of the 

stress in the concrete.  
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Table 24: Time-dependent prestress losses at rail seat for baseline tie 

1 2.34 12.43 188.42 0.00 0.00 0.00 188.42 0.00 14.78 188.42

3 2.34 12.43 188.42 0.61 0.41 1.81 185.60 2.82 17.59 185.60

7 2.34 12.43 188.42 1.07 1.14 3.85 182.36 6.06 20.83 182.36

28 2.34 12.43 188.42 1.81 3.83 7.48 175.30 13.12 27.90 175.30

40 2.34 12.43 188.42 2.00 4.84 8.51 173.07 15.35 30.13 173.07

365 2.34 12.43 188.42 3.17 10.21 14.30 160.74 27.68 42.45 160.74

1825 2.34 12.43 188.42 4.00 11.43 16.66 156.33 32.09 46.86 156.33

18250 2.34 12.43 188.42 5.16 11.74 18.00 153.51 34.91 49.68 153.51

fpe       

(ksi)
ΔfpTD      

(ksi)
ΔfpES     

(ksi) fpi         (ksi)
ΔfpR2 

(ksi)
ΔfpS    

(ksi)
ΔfpC       

(ksi)
Total  Loss  

(ksi)
Time     

(days)
ΔfpR1        

(ksi)
Actual Prestress 

(ksi)

Prestessing Losses Based on Rail Seat Section Properties

 

Table 25: Time-dependent prestress losses at center for baseline tie 

1 2.34 17.89 182.96 0.00 0.00 0.00 182.96 0.00 20.23 182.96

3 2.34 17.89 182.96 0.54 0.43 2.65 179.35 3.62 23.85 179.35

7 2.34 17.89 182.96 0.95 1.20 5.64 175.18 7.78 28.02 175.18

28 2.34 17.89 182.96 1.61 4.03 10.90 166.42 16.54 36.77 166.42

40 2.34 17.89 182.96 1.78 5.08 12.39 163.71 19.25 39.48 163.71

365 2.34 17.89 182.96 2.81 10.73 20.69 148.73 34.23 54.46 148.73

1825 2.34 17.89 182.96 3.55 12.01 24.02 143.39 39.57 59.80 143.39

18250 2.34 17.89 182.96 4.58 12.34 25.90 140.14 42.82 63.05 140.14

Prestessing Losses Based on Center Section Properties

Time      
(days)

ΔfpR1        

(ksi)
ΔfpES       

(ksi) fpi         (ksi)
ΔfpR2      

(ksi)
ΔfpS    

(ksi) ΔfpC       (ksi)
fpe       

(ksi)
ΔfpTD      

(ksi)
Total  Loss  

(ksi)
Actual Prestress 

(ksi)

 

 

Figure 52: Effective prestressing stress with respect to time for rail seat and center section of baseline tie 
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Table 26: Calculated initial and effective prestressing stresses 

Rail Seat 188 173 154 11%

Center 183 164 140 14%

Critical 
Section

Initial 
Prestressing 

Stress, fpi                    

(ksi)

Effective 
Prestressing Stress 

@ 40 days, fpe                              

(ksi)

Effective 
Prestressing Stress 

@ 50 years , fpe (ksi)

Percent Difference    
100(40 days - 50 years) / 

40 days

 

Table 27: Prestressing lump sum losses at 40 days and 50 years 

Rail Seat 30.13 14.83 49.68 24.45

Center 39.48 19.43 63.05 31.03

Lump Sum Losses 
at 50 years                              

(%)
Critical 
Section

Total Prestressing 
Losses at 40 days                  

(ksi)

Lump Sum Losses 
at 40 days                              

(%)

Total Prestressing 
Losses at 50 years                  

(ksi)

 

4.2.6 Limit States 

Using the values for initial and effective prestressing in Table 26, the baseline tie was evaluated 

for the limit states of concrete stresses at transfer (Limit State I Section 3.1.5.1) and concrete 

stresses at service (Limit State II Section 3.1.5.2). ACI 318-08 allowable concrete stress limits 

served as the boundaries for these limit states (Section 3.1.3.1.3).  

4.2.6.1 Limit State I: Concrete Stress at Transfer 

For the concrete stress at transfer, two load configurations were evaluated which relate to the 

orientation of the tie during the fabrication process (Figure 53). In the first configuration the tie 

is upside down in the form at the instance of prestressing transfer. The second configuration 

takes place almost immediately after transfer when the tie is de-molded and rotated right side 

up. The reason for considering both loading configurations is the short time frame following 

transfer in which they both occur. Since prestressing transfer takes place between 12 and 24 

hours after casting, the concrete has only had time to obtain a fraction of its design strength. In 

the case of the baseline tie design, 4,500 psi was considered to be the minimum allowable 

compressive concrete strength to permit prestressing transfer. Based on the concrete strength 

of 4,500 psi the allowable concrete stresses at transfer per ACI 318-08 were 201 psi in tension 

and 2,700 psi in compression. At transfer the only forces acting on the tie are the prestressing 

and self weight. The applied stresses from these forces for the two load configurations are 

summarized in Table 28. 
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Transfer Case I

Transfer Case II

Bottom

Top

Bottom

Top

 

Figure 53: Loading configurations for stresses in concrete at transfer 

Table 28: Stresses in concrete at transfer due to prestressing and self weight 

Top 2165 OK

Bottom 834 OK

Top 903 OK

Bottom 2046 OK

Top 1970 OK

Bottom 2378 OK

Top 2640 OK

Bottom 1718 OK

Load Condition Location
Concrete Stress                       

(psi)

Transfer Case 2

Center

Load Condition Location
Concrete Stress                       

(psi)
Allowable 

Check

Transfer Case 1

Transfer Case 1

Transfer Case 2

Allowable 
Check

Rail Seat

 

Due to the relatively small eccentricities of the baseline design, the entire tie remains in 

compression at transfer with the largest stresses in the bottom of the tie at the rail seat section 

and in the top at the center section. The stresses in the concrete at transfer due to prestressing 

and self weight for both loading conditions were within allowable concrete stresses specified by 

ACI 318-08 for a minimum concrete strength of 4,500 psi. While the applied stresses are within 

allowable limits, the stress in the top center of the tie does approach the compressive limit in 

loading configuration 2 (right side up), when the self weight and prestressing cause bending in 

the same direction.  
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4.2.6.2 Limit State II: Concrete Stress at Service 

For this project, Limit State II corresponds to the flexural capacity of the tie as specified by 

AREMA. The stresses in the concrete at service are a function of the prestressing, self weight 

and the live load applied by the train. In this case the known forces are the prestressing and the 

self weight. The live load caused by the train an unknown and was solved for by setting the 

applied stress equal to the allowable concrete stresses specified in ACI 318-08. Rearranging the 

equation for concrete stress at the extreme fibers, the maximum applied live load moment can 

be determined. The maximum moment corresponds to the flexural capacity.  At service the 

allowable tensile and compressive stresses specified by ACI 318-08 are 627 and 4,200 psi, 

respectively for the baseline tie with 28-day strength of 7,000 psi.  

 

The boundary conditions for the calculation of service stresses correspond to the flexural testing 

configurations from AREMA are presented in Figure 33 through Figure 36. The self weight 

moments at the rail seat and center critical sections based on the boundary conditions of test 

configurations are given in Table 29. The representation of the self weight has been simplified as 

a uniformly distributed load (total weight divided by member length), neglecting the variable 

cross-section. Comparing the minimum calculated live load moments to the self weight 

moments it was determined that the moments due to self weight were negligible and were 

omitted from the flexural capacity calculation. 

Table 29: Self weight moments at critical sections corresponding to AREMA flexural test configurations 

Rail Seat 0.33

Center 1.65

Critical 
Section

Self Weight Moment, Mo 

(in-kip)

 

To determine the live load moment based on the ACI 318-08 allowable stresses required 

consideration of both the compressive and tensile stresses. Even though the AREMA definition 

of tie failure focuses on the tension stress and the subsequent cracking, the compressive stress 

limit at service is considered as well in this project. Therefore, for each bending condition (i.e. 

positive and negative) at the rail seat and center critical sections, two live load moment 

capacities corresponding to the allowable tension and compression stresses were determined. 

The capacity of the tie for the specific bending condition will be the lower of the two calculated 
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live load moments. For the baseline tie, Table 30 shows the live load moment capacities based 

on the allowable tension and compression stresses for positive and negative bending at the rail 

seat and center sections. The governing live load moment and the corresponding stress 

condition are given as well. The live load moment capacities in Table 30 are determined using 

the effective prestressing at 40 days and were used in the comparison between predicted and 

actual capacities. 

Table 30: Predicted flexural capacity of baseline tie at 40 days, corresponding to Limit State II 

Top 448

Bottom 348

Top 186

Bottom 311

Top 141

Bottom 168

Top 208

Bottom 187

LocationLoad Condition

Load Condition Location

Live Load 
Moment      
(kip-in)

(+) Bending

(-) Bending

(-) Bending

(+) Bending Compression

Compression

141

187

Rail Seat

Center

Governing 
Moment 
(in-kip)

Governing 
Stress 

Condition

Governing 
Moment 
(in-kip)

Governing 
Stress 

Condition

348 Tension 

186 Tension

Live Load 
Moment 
(kip-in)

 

The flexural capacity of the baseline tie with an effective prestress at 40 days was limited by 

allowable concrete tension stress at the rail seat for both positive and negative bending. 

Conversely, the allowable concrete compressive stress governs for both positive and negative 

bending in the center section. The reason for the tension governance in the rail seat section and 

compression in the center is the eccentricity of the prestressing in the respective sections. In the 

rail seat section there is a larger eccentricity than the center, which in the case of positive 

bending (top of tie in compression and bottom in tension), produces a larger pre-compression 

stress in the tension zone of the tie. As live load from the train is applied, the tension zone 

previously in compression due to the prestressing, transitions to tension. Due to the large pre-

compression stress, a larger force is required to reach the allowable tension stress limit. 
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Inversely, the compression zone experiences a smaller pre-compression stress due to the 

eccentricity and requires a larger force to reach the allowable compression stress (Figure 54). 

 

(+) e

Uncracked 
Neutral Axis

(-) 
Tension

(+) 
Compression

Transfer

 Service

Stress Due to 
Live Load

Stress Due to 
Prestressing

Prestressing 
Centroid

 

Figure 54: Concrete stress distributions at transfer and service for rail seat section corresponding to large positive 
prestressing eccentricity 

Unlike the rail seat section, the center section has very little prestressing  eccentricity and 

therefore a more uniform pre-compression stress distribution across the concrete section. The 

effect of a uniform compression stress distribution is increased pre-compression stress in the 

compression region of the tie during loading, compared to a section with larger eccentricity. The 

increased compression stress prior to applying live load decreases the amount of live load 

required to cause the compression zone to reach the stress limit and in turn decreases the 

capacity of the section (Figure 55).  

 

(-) e
Uncracked 

Neutral Axis

(-) 
Tension

(+) 
Compression

Transfer

Service

Stress Due to 
Live Load

Stress Due to 
Prestressing

Prestressing 
Centroid

 

Figure 55: Concrete stress distributions at transfer and service for center section corresponding to small negative 
prestressing eccentricity 
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For the baseline tie live load moment capacity, the same process of solving for moments based 

on allowable concrete stresses was repeated, but with the effective prestress at 50 years, to 

include total prestressing losses and determine the long term capacity of the tie (Table 31). 

Comparing the flexural capacities at 40 days and 50 years, several notable changes were 

observed. Due to the decreased pre-compression stress, both positive and negative bending for 

the rail seat and center sections are governed by the allowable tension stress of the concrete, 

where as the shorter duration was controlled by compression at the center section.  

 

The change from compression to tension control as the age of the tie increases is associated 

with the decreasing pre-compression stress as a result of the increasing prestressing losses. The 

decrease in pre-compression stress allows for a larger live load stresses to be applied and the 

allowable tension stress to be reached before the allowable compressive stress. In addition to 

the change in the governing stress condition in the center section, the transition from 

compression control to tension control actually increases the baseline flexural capacity in the 

positive bending direction of the center section, even though the pre-compression stress has 

decreased. While the concept of increasing the flexural capacity while decreasing the 

prestressing force appears to be a paradox; for the positive bending center section condition, 

the eccentricity of the prestressing works additively with the live load moment to reach the 

allowable compression limit. Therefore, by decreasing the pre-compressive force a larger 

quantity of stress may be applied by the live load prior to reaching the allowable compressive 

stress limit of the concrete. 
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Table 31: Flexural capacity of baseline tie at 50 years, corresponding to Limit State II 

Top 460

Bottom 318

Top 174

Bottom 341

Top 165

Bottom 150

Top 185

Bottom 205

LocationLoad Condition

Load Condition Location

Live Load 
Moment      
(kip-in)

(+) Bending

(-) Bending

Rail Seat

Governing 
Moment 
(in-kip)

Governing 
Stress 

Condition

318
Tension @ 

Bottom

174
Tension @ 

Top 

150
Tension @ 

Bottom

185
Tension @ 

Top 

Center

Live Load 
Moment 
(kip-in)

Governing 
Moment 
(in-kip)

Governing 
Stress 

Condition

(-) Bending

(+) Bending

 

4.2.7 Nominal Moment Capacity 

The nominal moment capacity of a prestressed member is defined as the maximum load which a 

member can support. This is typically controlled by either crushing of the extreme compression 

fiber or rupture of the prestressing. While these types of failure do not define prestressed 

concrete tie failure, the nominal moment capacity was determined in this project for several 

reasons including the following: 

• Allows for the determination of development length, which is based on the stress in the 

prestressing at ultimate capacity, 

• Provides capacity data for prestressed concrete ties should their failure limits ever be 

extended past cracking. 

To calculate the nominal moment capacity of the baseline tie and all other optimization 

iterations, strain compatibility was used. Compared to other methods for calculating the 

nominal moment capacity of prestressed members such as the ACI approximation method (ACI 

2008), strain compatibility provides increased accuracy and the ability to evaluate the nominal 

moment capacity of prestressed members with prestressing located in the compression zone of 

the section. However, this procedure is not applicable for sections that behave as deep beams. 
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4.2.7.1 Deep Beam Effect 

A unique situation which exists for flexural members with short spans and comparatively large 

beam depths is the condition known as deep beams. Due to short spans and the height of the 

member, deep beams are capable of producing compression struts between the point of loading 

and the support (Figure 56). The effect of the compression strut is a decrease in stress due to 

bending as the differential stress is transferred to the support through compression in the strut, 

similar to a column. The decrease in bending stress corresponds to a decrease in stress of the 

prestressing, and the delay of flexural cracking and crushing of the extreme compression fiber.  

The end result of the deep beam condition is an increase in capacity over the calculated nominal 

moment capacity based on the properties of the beam section for pure flexure (ACI 2008). 

 

Compression 
Strut

Concentrated 
Load

Supports
 

Figure 56: Deep beam effect at rail seat region in AREMA test configuration 

The importance of assessing the baseline tie for the deep beam conditions relates to the 

accuracy of nominal moment capacity predictions. If the concrete tie is categorized as a deep 

beam, it is expected that the actual capacity of the tie would be larger than the predicted value 

assuming pure flexure. To calculate the capacity of a deep beam, ACI 318-08 suggests either 

using the strut-and-tie model approach presented in Appendix A of ACI 318-08 or a nonlinear 

distribution of strain. While either of these methods could be used to calculate the nominal 

capacity of the baseline tie if the deep beam condition applies, they will not be considered in 
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this project. However, the nominal moment capacity will be determined assuming pure flexure 

for all critical sections regardless of the deep beam criteria.  

 

It is also important to note that the deep beam condition does not only affect the nominal 

moment capacity of the tie. The deep beam condition may also explain a portion of the 

underestimation of the capacity of the tie under AREMA defined failure based on allowable 

concrete stresses at service calculated in Section 4.2.6. Again however, the application of the 

deep beam condition to the determination of the tie capacity is outside the scope of this project 

and will be discussed during the future work section of this paper should the tie design meet the 

criteria of a deep beam. To determine whether or not the baseline tie is considered a deep 

beam, the span-to-depth ratio is used. Criteria for the deep beam condition are defined in 

Section 10.7 of ACI 318-08. To be considered a deep beam a flexural member must meet either 

of the two following conditions: 

(a) The clear span (ln), of the member must be equal to or less than four times the 

overall depth of the member (Table 32), 

(b) The member must support regions of concentrated load within twice the member 

depth from the face of the nearest support (Table 32). 

Table 32: Deep beam criteria variables and definitions 

x
distance between face of support and concentrated 

loading (in.)

Deep Beam 
Parameter Parameter Discription

ln clear span distance (in.)

h height of section in direction of bending (in.)

 

For this project the clear spans are from the AREMA flexural test configurations in Figure 33 

through Figure 36. Since the cross-sectional geometry and support conditions for flexural testing 

of the baseline tie is not constant, the tie was compared against the deep beam criteria at both 

rail seat and center sections. The first section to be evaluated for the deep beam condition was 

the rail seat section. The height of the rail seat region is not constant therefore the height is 

taken at the centerline of the rail seat which corresponds to the center of the clear span 
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according to the testing configuration. The clear span of the testing configuration is a function of 

the shoulder length of the baseline tie (shoulder length is the distance from the centerline of the 

rail seat to the end of the tie). Below, the rail seat section height and span parameters have 

been compared against the deep beam criteria. 

 

n

Shoulder Length = 21.17 in

2
l  = 2  21.17 = 28.23 in

3

h = 9.5 in

2
x =  21.17 = 14.11 in

3

 
 
 

 
 
 

 

n

Deep Beam Criteria Check:

l  < 4h  28.23 in < 4 (9.5 in) = 38 in (Deep Beam)

x  < 2h  14.14 in < 2 (9.5 in) = 19 in (Deep Beam)

→

→

 

 

The rail seat section meets both provisions of a deep beam and therefore it was assumed that 

the calculated nominal moment capacity derived using strain compatibility will underestimate 

the actual capacity of the rail section for both positive and negative bending. The additional 

capacity related to the deep beam condition will be achieved due to the development of 

compression struts between the concentrated load at the rail seat load and the supports. Even 

though it has been shown that the rail seat section and the corresponding bending conditions 

are a deep beam, the nominal moment capacity were still be calculated using strain 

compatibility to provide a gauge on the nominal capacity. For further discussion of the 

implications of the deep beam condition on the capacity of the rail seat section see Section 5.3.  

 

The parameters of the center section are different than the railseat due to the changes in 

geometry and testing configuration. The height of the center section is smaller than the railseat, 

which reduces the chances for a compression strut to form. The clear span of the testing 

configuration is not dependent on tie geometry like the rail seat, but the geometry of the track, 

specifically the distance between load application points of the rail seats (distance between rail 
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seat centerlines). Below the center section height and span parameters have been compared 

against the deep beam criteria. 

 

 
 
 

n

Clear Span = 60 in

l  = Clear Span = 60 in

h = 7.5 in

Clear Span
x =  = 30 in

2

 

n

Deep Beam Criteria Check:

l  < 4h  60 in < 4 (7.5 in) = 30 in ( Not Deep Beam)

x  < 2h  30 in < 2 (7.5 in) = 15 in (Not Deep Beam)

→

→

 

 

The center section does not meet either of the deep beam provisions and therefore pure flexure 

applies. The nominal moment capacity calculated using strain compatibility should offer 

adequate predictions of capacity.  

4.2.7.2 Strain Compatibility Results 

In the previous section the rail seat and center sections were evaluated for the flexural member 

categorization of deep beam. The results of the evaluation revealed that the rail section 

demonstrates the behavior of a deep beam while the center section exhibits pure flexure 

behavior. Considering these categorizations it was decided to continue with evaluating both 

sections under pure flexure conditions, using strain compatibility to determine the nominal 

moment capacities. Consideration was given to the assumption of pure flexure for the rail seat 

section when comparing the predicted nominal moment capacity against the actual value from 

experimental results. Using the strain compatibility method of nominal moment capacity 

analysis presented in Section 3.1.6, the predictions of nominal moment capacity with the 

assumption of pure bending behavior were determined for the baseline tie with effective 

prestress at 40 days and 50 years (Table 33).  
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Table 33: Nominal moment capacities of baseline tie with effective prestressing at 40 days and 50 years 

Positive Bending/Rail Seat 610 598

Negaitive Bending/Rail Seat 412 405

Positive Bending/Center 334 327

Negaitive Bending/Center 385 376

Load Case/Critical Section
Nominal Moment Capacity w/ 

Effective Prestressing @ 40 Days     
Mn (kip-in)

Nominal Moment Capacity w/ 
Effective Prestressing @ 50 Years     

Mn (kip-in)

 

Comparing the nominal moment capacities corresponding to effective prestressing at 40 days 

and 50 years, the nominal moment capacity at 50 years decreases slightly. The source of the 

decrease in capacity between 40 days and 50 years is the additional prestressing losses which 

occur over the time period. The decreased effective prestressing causes a lower initial strain in 

the concrete and steel due to effective prestress (ε1). However, the remaining strain 

components associated to the conditions of decompression (ε2) and failure (ε3), experience a 

change in value, but the summations of all three strain components are fairly similar over time, 

since the same limit of ultimate concrete strain, (εc) governs the capacity. Summarizing the 

relationship between nominal moment capacity and effective prestressing, the capacity will 

decrease over time as the total prestressing loss increases.  

4.2.7.3 Transfer and Development Lengths 

To achieve the nominal moment capacities presented in the previous section, the prestressing 

tendons must maintain the bond between the concrete prestressing tendons up to the stress 

level associated with ultimate capacity. If the tendons are unable to attain the necessary level of 

stress with the provided anchorage, the tendon will slip or pull out of the concrete before 

reaching the ultimate capacity. The distance required to obtain the necessary bond or 

anchorage between the concrete and the prestressing tendons is called the development length 

and is a function of the maximum applied stress in the tendon and the diameter of the tendon.  

 

In addition to the development length, prestressing requires a length of bond to transfer the 

prestressing force into the concrete referred to as the transfer length. The transfer length is the 

length of bond required to transfer the full effective prestressing force from the tendon to the 

surrounding concrete. At the free end of the tie the stress in the concrete due to the 

prestressing is zero and increases linearly along the length of the tendon up to the effective 
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prestress. To have full efficiency of the prestressing, the transfer length must be met before the 

critical section. In the case of prestressed concrete railroad ties, the transfer length must be met 

in the shoulder length to have the full capacity at the rail seat section. Similar to development 

length, the transfer length is a function of the effective prestressing force and the diameter of 

the tendon. 

 

Once the nominal moment capacity has been calculated the development and transfer lengths 

can be checked based on the prestress found using strain compatibility. The required 

development and transfer lengths for the baseline tie were calculated for effective prestressing 

at 40 days and 50 years (Table 34). 

Table 34: The transfer and development lengths for effective prestressing at 40 days and 50 years 

40 Days 0.21 173.07 244.2 12.11 27.05

50 Years 0.21 153.51 238.1 10.75 28.51

(1) The stress in the prestressing at nominal moment is the maximum stress computed of all the 
layers in a cross-section determined using strain compatibility.                                                                                                                                                                                                          
(2) The transfer length of the prestressing is determined using the first component of the method 

described in ACI 318-08 Section 12.9 Development of prestressing strand Equation (12-4).                                                                                                                                                                                                                                                                                 
(3) The development length of the prestressing is determined using the method described in ACI 
318-08 Section 12.9 Development of prestressing strand Equation (12-4). 

Required 
Transfer 

Length(2)     

(in) 

Stress in Prestressing 

@ Nominal Strength(1)              

(ksi)

Required 
Development 

Length(3)              

(in)
Time 

Interval

Tendon 
Diameter 

(in)

Maximum 
Effective 
Prestress               

(ksi)

 

The maximum transfer length for the baseline tie is 12.11 in. and corresponds to the effective 

prestressing at 40 days. Since transfer length is a function of effective prestressing, theoretically, 

the transfer length will be the largest after casting and decrease as the effective prestressing 

decreases due to prestressing losses. The computed maximum transfer length in Table 34 is less 

than the shoulder length; therefore full transfer of prestressing force can be achieved by the rail 

seat section and subsequently the center. The maximum development length is 28.51 inches 

and corresponds to the effective prestressing at 50 years. Since development length is a 

function of the difference between the effective prestressing and the maximum stress in the 

prestressing at failure, the maximum development length will occur at the lowest value effective 
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prestress. Comparing the maximum development length computed in Table 34 to the available 

distance to the first critical section (i.e. shoulder length) the development length exceeds the 

distance provided to the rail seat section, while full development is achieved at the center 

section. Since the prestressing does not achieve development by the rail seat section, the actual 

nominal moment capacity will be lower than the capacity presented in Table 33. However, in 

Section 4.2.7.1 it was determined that the rail seat section is considered to be a deep beam and 

nominal moment capacity calculated using strain compatibility will not predict flexural capacity, 

but rather provide a lower bound estimate of the ultimate capacity. 

4.2.8 Comparison of Calculated to Manufacturer Results 

One advantage to working with an existing tie design is the availability of experimental results 

and other design data. The experimental results include flexural capacities as defined by AREMA 

and nominal moment capacities. The comparison of theoretical and experimental values is 

presented in the following sections. 

4.2.8.1 Prestressing Losses 

To determine whether the assumptions used during the process of calculating the theoretical 

losses were accurate, the predicted effective prestressing at 1000 hrs (40 days) for the rail seat 

and center sections were compared to those provided by the tie manufacturer (Table 35). The 

percent difference between the two loss estimations was used an indicator of the correlation of 

the two values.  

Table 35: Comparison of time-step and lump sum effective prestressing losses at 1000 hrs 

Time-Step Lump Sum

Rail Seat 14.8% 15.2% 2.4%

Center 19.4% 18.5% -5.0%

 Effective Prestressing Losses at 1000 
hrs

Percent Difference                                         
100 (Lump Sum - Time-Step)               

/ Lump Sum
Critical 
Section

 

The prestressing loss estimate completed in this study for the rail seat and center sections were 

within 5 percent of the values provided by the tie manufacturer and therefore show adequate 

similarity to demonstrate the accuracy of the theoretical prestressing loss computation 

procedure. However, the rail seat estimation from this study is less than the value provided by 

the manufacturer which could lead to an overestimation of the effective prestressing stress. It 

should be noted that neither estimation method has been validated with experimental results. 
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4.2.8.2 AREMA Defined Flexural Capacity 

Similar to the process described above for the comparison of prestressing losses, the predicted 

flexural capacities corresponding to the second limit state of concrete stresses at service were 

compared to actual values provided by the baseline tie manufacturer. Percent difference was 

again used as the method of comparison. Table 36 presents a comparison between predicted 

values of flexural capacity and the experimental results provided by the tie manufacturer. The 

experimental results provided by the manufacturer only include load capacities for the 

governing bending conditions (positive bending at rail seat and negative bending at center). For 

the remaining bending conditions (negative bending at rail seat and positive bending at center) 

flexural testing is completed on purely a pass/fail basis with no values recorded. For a tie to 

pass, it must withstand the minimum moment provided by the AREMA performance 

specification (Section 2.2.8). For the experimental capacities provided, the values presented 

corresponds to the minimum values recorded for the flexure testing of the baseline tie 

completed in June 2009. 

Table 36: Theoretical capacities vs. experimental test results for baseline (f`c = 7,000 psi at 40 days)  

Positive/Rail Seat 348 397 12.44%

Negative/Rail Seat 186 NA NA

Positive/Center 141 NA NA

Negative/Center 187 230 18.52%

Moment 
Direction/Location

Theoretical 
Moment Capacity           

(kip-in)

Experimental 
Moment Capacity                                                  

(kip-in)

Percent Difference               
100 (Exp. - Theo.)                

/ Exp.

 

Comparing the predicted flexural capacity values to the actual in Table 36, it appears there was 

considerable underestimation of the flexural capacity. The percent difference for the two critical 

sections and their bending cases varies from approximately 12-19 percent. The source of this 

difference can likely be attributed to the following: 

• The design compressive strength of 7,000 psi for the baseline tie numerical analysis is 

lower than the actual concrete compressive strength during service and at the time of 

the experimental testing (more likely between 9,500 and 12,000 psi) (Figure 57), 
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• The theoretical prestressing loss for the center section was calculated to be larger than 

the estimate of the manufacturer, therefore the effective prestressing stress used in 

analysis may be smaller than the actual value, decreasing the predicted capacity, 

• The rail seat section was classified as a deep beam and therefore theoretical predictions 

based on pure flexure are no longer applicable and likely underestimate the capacity of 

the section, 

• The theoretical procedure limits the capacity of the tie to the moment which causes the 

stress in the extreme tension fiber of the section to reach the allowable value based on 

ACI 318-08; therefore no cracking is accounted for in the tension stress condition unlike 

the AREMA definition of failure which allows cracking to the outermost layer of 

prestressing,  

• AREMA test procedures do not consider an allowable concrete compressive stress limit 

in the failure definition, only cracking the limit corresponding to tension stress is 

defined. The ACI 318-08 allowable concrete compressive limit, which was considered in 

the theoretical capacity prediction, may be exceeded  and the test continued until 

cracking failure is achieved, causing an increase in the experimental capacity result 

compared to the theoretical capacity. This would affect the center section theoretical 

capacity comparison since it was predicted that compressive stress would govern. 

While a majority of the suspected causes of the difference between the predicted and actual 

moment capacities discussed above would require changes to the numerical procedure, the 

effects of the design compressive strength would not and the impact was evaluated by 

repeating the analysis procedure at various compressive strengths while maintaining all other 

variables. Completing this process for same concrete strengths which were used in the 

optimization study of 9,500, 12,000 and 15,000 psi, the flexural capacities of the baseline tie was 

determined. Figure 58 through Figure 61 compare the actual flexural capacities of the baseline 

design versus the predicted capacities at concrete strengths of 7,000 (baseline case), 9,500, 

12,000, and 15,000 psi for the bending conditions of the critical sections. The percent difference 

between the actual capacity and the predicted for the various concrete strengths is provided in 

Table 37 through Table 38. 
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Figure 57: Concrete maturity chart for baseline tie (provided by baseline tie manufacturer) 

 

Figure 58: Predicted positive rail seat capacities at various concrete strengths compared to actual  
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Figure 59: Predicted negative rail seat capacities at various concrete strengths compared to actual  

 

Figure 60: Predicted positive center capacities at various concrete strengths compared to actual  
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Figure 61: Predicted negative center capacities at various concrete strengths compared to actual  

Table 37: Predicted vs. actual capacities for positive bending rail seat condition (f`c = 7,000 psi at 40 days) 

Actual 397 -

7,000 psi (Baseline) 348 12.34%

9,500 psi 368 7.30%

12,000 psi 385 3.02%

15,000 psi 400 -0.76%
(1) The percent diffence is: 100 (compared value - Actual) / Actual

Moment Case
Live Load Moment            

(in-kip) Percent Difference (1)

Positive Bending Rail Seat Condition

 

Table 38: Predicted vs. actual capacities for negative bending center condition (f`c = 7,000 psi at 40 days) 

Actual 230 -

7,000 psi (Baseline) 187 18.70%

9,500 psi 221 3.91%

12,000 psi 232 -0.87%

15,000 psi 241 -4.78%
(1) The percent diffence is: 100 (compared value - Actual) / Actual

Percent Difference (1)

Negative Bending Center Condition

Moment Case
Live Load Moment             

(in-kip)
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As expected, increasing the concrete strength (f`c) in the numerical analysis to values closer to 

the concrete strength at service and testing causes the predicted capacity values to increase.  

For both the controlling load cases, the predicted capacity matches the actual for a concrete 

strength between 9,500 and 12,000 psi. Therefore, it can be reasoned that a large portion of the 

error in the numerical analysis capacity predictions is due to the underestimation of the design 

concrete strength. It must be noted that the capacities presented in this section were all based 

on effective prestressing at 40 days. The capacities, both predicted and actual, would be lower 

than the values presented once all prestressing losses have been incorporated.  

4.2.8.3 Baseline Capacity  

Based on the comparison between the predicted and actual values of the baseline tie capacity, 

the numerical analysis procedure developed adequately predicts the capacity of the prestressed 

concrete tie. However, up to this point a majority of the analysis was performed at an effective 

prestress corresponding to the losses at 40 days after casting. If the baseline capacity of this 

study were calculated using an effective prestress at 40 days, the long term capacity of the 

baseline tie would be overestimated since only a fraction of the total prestressing losses would 

be incorporated. To avoid the overestimation of tie capacity, the baseline tie was evaluated at a 

time interval of 50 years to include all applicable prestressing losses which would occur over the 

service life of the tie. The baseline live load moment capacities for the four flexure cases of; 

positive bending rail seat section, negative bending rail seat section, positive bending center 

section and negative bending center section, at a time interval of 50 years to include all 

prestressing losses,  are presented in Table 39. 

Table 39: Live load moment capacity for baseline tie at 50 years (after all losses) 

Positive/Rail Seat 318

Negative/Rail Seat 174

Positive/Center 150

Negative/Center 185

Baseline Capacity 

Moment 
Direction/Location

Live Load Moment  
(in-kip)
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4.3 Numerical Analysis: Parametric Optimization Results (Phase II) 

The purpose of the parametric optimization study was to determine which prestressed concrete 

design components such as concrete strength, prestressing type and configuration offer the 

most efficient use of materials and largest gains in flexural capacity while maintaining the 

current concrete geometry. The following sections summarize the outcome of the optimization 

study, while presenting the steps in the numerical analysis project and discussing the effect of 

changing various design parameters on the flexural capacity of the tie design. 

4.3.1 Analysis Procedure 

The numerical analysis procedure developed for the baseline tie was done so with the intent of 

transitioning the procedure over to the optimization study. Therefore, the material and cross-

sectional properties of the tie were organized as inputs independent from the rest of the 

analysis procedure. At the beginning of each design iteration the material properties of the 

prestressing and concrete were set while the remainder of the process remains the same for all 

iterations unless specific changes were required for a parameter such as prestressing losses 

dependent on material type (i.e. steel or fiber reinforced polymer). Besides changes related to 

the design parameters, the overall procedure developed during the numerical analysis of the 

baseline tie remained the same for the design iterations completed during optimization study.  

 

Due to the large quantity of data collected during the study an iteration matrix was constructed 

to organize the input parameters for the design iterations and the corresponding results of each 

numerical analysis. The iteration matrix containing the results of the optimization study and the 

baseline tie design analysis is included in Appendix C.  

4.3.2 Analysis Organization 

The first step in organizing the optimization study was the development of a nomenclature 

system based on the design parameters which was used for both naming of the calculation files 

as well as presentation of the results for the remainder of this section. The system was based on 

abbreviations of the optimization parameters themselves. The three basic categories of 

abbreviations are prestressing type (PT), prestressing diameter (PD), and concrete strength (CS); 

contained within each abbreviation category are the individual component options. For 

example, the baseline tie contains the following parameter components; drawn wire (W), 0.21 
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in. diameter (0.21), and 7,000 psi concrete (7). Assembling these components into the 

nomenclature system the base name for the baseline tie is W(PT)-0.21(PD)-7(CS). The 

nomenclature for the remaining parameter options is presented in Table 40. 

 

In addition to the design parameter components, additional detail could be added to identify a 

specific age of the tie. For instance if the capacity result under consideration occurred at 40 days 

after casting, the additional abbreviation of (40) to the end of the base name would designate a 

time after casting in days. The two time designations which will be used in the following sections 

are (40) and (18,250) which correspond to 40 days (time at which manufacturer data is available 

for baseline tie) and 50 years (estimated service life of tie and time required to achieve to total 

prestressing losses). 

Table 40: Optimization study iteration name nomenclature  

Drawn Wire (baseline) W W(PT)-XX(PD)-XX(CS)

7-Wire Strand S S(PT)-XX(PD)-XX(CS)

FRP FRP FRP(PT)-XX(PD)-XX(CS)

0.21 in. (baseline) 0.21 XX(PT)-0.21(PD)-XX(CS)

0.25 in. 0.25 XX(PT)-0.25(PD)-XX(CS)

0.3125 in. 0.3125 XX(PT)-0.3125(PD)-XX(CS)

0.375 in. 0.375 XX(PT)-0.375(PD)-XX(CS)

7,000 psi (baseline) 7 XX(PT)-XX(PD)-7(CS)

9,500 psi 95 XX(PT)-XX(PD)-95(CS)

12,000 psi 12 XX(PT)-XX(PD)-12(CS)

15,000 psi 15 XX(PT)-XX(PD)-15(CS)

Optimization Parameter
Optimization Parameter 

Abbreviation
Parameter Location in  

Name System

Prestressing Type (PT)

Presstressing Diameter (PD)

Concrete Strength (CS)

 

As with the baseline tie, the numerical analysis for the optimization study was completed using 

the analysis procedure developed in a spreadsheet form. The spreadsheet was developed from 

the baseline tie analysis and augmented accordingly to accept the changes of various design 

parameters during the optimization study. 



 

115 
 

4.3.3 Tie Cross-Section Properties 

One aspect of this project that significantly simplified the optimization process was the concrete 

cross-sectional properties remaining constant for all design iterations. This provided the ability 

to single out one design parameter per iteration for manipulation. By only altering a single 

design parameter, comparisons of iterations became more manageable and made trends more 

apparent.  

4.3.4 Concrete Material Properties 

The first tie parameter under consideration was the 28-day concrete design strength. Currently, 

the baseline tie has specified concrete design strength of 7,000 psi. However, the manufacturer 

routinely achieves concrete compressive strengths between 9,000 and 11,000 psi within 28 

days. This was cited as one of the reasons for error in the comparison between the predicted 

and actual moment capacities of the baseline tie in the previous section. Since the manufacturer 

is already capable of achieving concrete strengths in excess of the 7,000 psi design strength, it 

was of interest to see the effect of concrete strength on the capacity of the tie. 

 

Increasing the compressive strength of the concrete affects two components of the design 

procedure in particular. First, increasing the compressive strength will cause an increase in the 

allowable concrete stresses as specified by ACI 318-08 (Figure 62 and Figure 63). Increased 

allowable stresses in the concrete directly affect both limit states at transfer and service. 

Increased allowable stresses at transfer, allows increases in both the applied prestressing force 

and eccentricity and therefore the flexural capacity. Similarly, increased allowable stresses at 

service, allows the application of larger live loads prior to meeting the compression and tension 

limits which define failure. The second effect of higher concrete strengths is decreased 

prestressing losses. The prestressing losses of creep shrinkage and elastic shortening all have 

components which are a function of the concrete design strength. Increasing the design 

strength has the inverse effect of decreasing the total prestressing losses over time.  
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Figure 62: Allowable concrete compressive stresses at transfer and service based on design concrete strengths  

 

Figure 63: Allowable concrete tensile stresses at transfer and service based on design concrete strengths 
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As a measure of the increase in concrete compressive strength and the associated allowable 

stresses, Table 41 and Table 42 present the percent increases in the related design parameters 

for the four concrete strength levels of 7,000 and 9,500, 12,000, and 15,000 psi used in the 

optimization study. A comparison between the flexural capacities related to the individual 

concrete strengths is presented in the limit states section of this chapter.  

Table 41: Comparison of concrete optimization parameters to baseline  

7,000 (Baseline) 7,000 - 4,500 -

9,500 9,500 35.7% 5,655 25.7%

12,000 12,000 71.4% 7,143 58.7%

15,000 15,000 114.3% 8,929 98.4%
(1) The percent diffence is: 100 (compared value - Baseline) / Baseline

Concrete Design 
Strength                             

(psi)

28-Day Concrete 
Design  Strength,              

f`c (psi)

Percent 
Difference 

Design (1)  

Concrete 
Strength @ 

Transfer,                 
f`ci (psi)

Percent 
Difference 

Transfer (1)

 

Table 42: Comparison of concrete allowable stresses to baseline 

7,000 4,500 201 - 627 - 2,700 - 4,200 -

9,500 5,655 226 12.1% 731 16.5% 3,393 25.7% 5,700 35.7%

12,000 7,143 254 26.0% 822 30.9% 4,286 58.7% 7,200 71.4%

15,000 8,929 283 40.9% 919 46.4% 5,357 98.4% 9,000 114.3%
(1) The percent diffence is: 100 (compared value - value corresponding to 7,000 psi) / value corresponding to 7,000 psi

Service

Percent 
Difference 

Service (1)

28-Day Concrete 
Design  Strength,              

f`c (psi)

Concrete 
Strength at 

Transfer,                 
f`ci (psi)

Allowable Concrete Tensile Strengths (psi) Allowable Concrete Compressive Strengths (psi)

Transfer

Percent 
Difference 

Transfer (1) Service

Percent 
Difference 

Service (1) Transfer

Percent 
Difference 

Transfer (1)

 

4.3.5 Prestressing Properties and Placement 

In addition to altering the material properties of the concrete, the prestressing is also a viable 

source for increasing the flexural capacity of the tie. However, the prestressing offers multiple 

means of increasing the tie capacity such as higher strength materials, increased diameter of 

tendons, and the ability to optimize prestressing placement and eccentricity with respect to the 

constant concrete cross-section. The effects of altering the prestressing material and cross-

sectional properties are discussed in the following sections. The cross-sections of the optimized 

designs are included in Appendix E. 

4.3.5.1 Comparison of Prestressing Properties 

Unlike concrete, which has a single variable for manipulation for this project, the design 

compressive strength, prestressing offers considerably more diversity and freedom in terms of 
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parameter variation. Not only can the strength of the prestressing be changed, but the size and 

type as well. For this project three different prestressing types were selected for evaluation; 

drawn wire, 7-wire strand, and carbon fiber reinforced polymer (FRP). All three prestressing 

types have their own advantages and disadvantages, but in general all three prestressing types 

are capable of achieving increased flexural capacities over the baseline case. The properties of 

the prestressing which were under evaluation were the diameter and the strength. The 

comparisons of the prestressing properties for the various design iterations to the baseline tie of 

255 ksi steel 0.21 inch diameter drawn wire are summarized in Table 43.  

Table 43: Comparison of prestressing optimization parameters to baseline prestressing  

Drawn Wire (W) (Baseline) 0.21 - 0.03445 - 255 - 230 -

7-Wire Strand (S) 0.25 19.0% 0.03600 4.5% 250 -2.0% 225 -2.2%

7-Wire Strand (S) 0.3125 48.8% 0.05800 68.4% 250 -2.0% 225 -2.2%

7-Wire Strand (S) 0.375 78.6% 0.08500 146.7% 270 5.9% 243 5.7%

Carbon FRP (FRP) 0.25 19.0% 0.04900 42.2% 425 66.7% NA(1) NA

Carbon FRP (FRP) 0.375 78.6% 0.11000 219.3% 425 66.7% NA NA
(1) FRP does not have a defined yield strength since the stress-strain curve remains linear up to failure
(2) The percent diffence is: 100 (compared value - value corresponding to baseline) / value corresponding to baseline)

Percent 
Difference 

Yield (2) Prestressing Type

Tendon 
Diameter 

(in)

Tendon 
Area        

(in2)

Ultimate 
Strength 

(ksi)

Yield 
Strength 

(ksi)

Percent 
Difference 

Diameter (2) 

Percent 
Difference 

Area (2) 

Percent 
Difference 

Ultimate (2) 

 
A relationship which became apparent during the optimization study was the connection 

between concrete design strength and the area of prestressing within the section. As concrete 

design strength increased, the area of prestressing tendons in the section increased to enable 

the application of a larger prestressing force. With the prestressing tendons in the tie already 

tensioned to their permissible stress limits, the only means of increasing the prestressing force 

was to add more tendons to the section. However, the number of tendons which could be fit 

within the cross-section was limited by the detailing requirements of cover and spacing. The 

detailing limitations on the prestressing within the section act in conjunction with the allowable 

concrete stresses from ACI 318-08 to dictate the prestressing quantity and configuration. Figure 

64 and Figure 65 illustrate the relationship between area of prestressing and concrete design 

strength. 
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Figure 64: Area of prestressing for positive rail seat moment governing design iterations 

 

Figure 65: Area of prestressing for negative center moment governing design iterations 
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Figure 64 and Figure 65 shows the area of prestressing for each iteration, given the specific 

prestressing type and diameter versus the concrete design strength for that particular iteration. 

The following summarizes the trends observed in Figure 64 and Figure 65 between the increase 

of concrete strength and the area of prestressing in each optimized design iteration: 

• The “Baseline” case had a constant area of prestressing for all concrete strengths 

because the configuration remained unchanged for the parametric optimization study, 

• W(PT)-0.21(PD) and S(PT)-0.25(PD) cases had a small increase in area of prestressing 

corresponding to an increase in concrete design strength (f`c) from 7,000 psi to 9,500 

psi. For the rest of the concrete strength increases the area of prestressing remained 

constant, 

• S(PT)-0.3125(PD) had an increase in prestressing from 7,000 psi to 12,000 psi, but 

leveled off from 12,000 psi to 15,000 psi, 

• The three remaining prestressing combinations, S(PT)-0.375(PD), FRP(PT)-0.25(PD), and 

FRP(PT)-0.375(PD) experienced increases in the area of prestressing throughout the 

entire range of concrete strengths considered. 

The reason why the area of prestressing levels off for W(PT)-0.21(PD) and S(PT)-0.25(PD) at 

9,500 psi is because of a transition in the governing criteria for the design. Below 9,500 psi the 

number of prestressing tendons and the corresponding prestressing force applied to the tie was 

governed by the allowable concrete stresses defined by ACI 318-08. However, as the concrete 

strength increased, the number of prestressing tendons and therefore the magnitude of the 

prestressing force was able to increase. This increase in area of prestressing continues until the 

section cannot accommodate anymore tendons based on the detailing restrictions of cover and 

spacing. For the prestressing cases of W(PT)-0.21(PD) and S(PT)-0.25(PD) the sections were 

unable to hold more prestressing at the concrete strength level of 9,500 psi. For the S(PT)-

0.3125(PD) prestressing case, the detailing limitation was encountered at a concrete strength of 

12,000 psi.  

Unlike the smaller diameter prestressing cases such as W(PT)-0.21(PD), S(PT)-0.25(PD) and 

S(PT)-0.3125(PD), the larger diameter and stronger prestressing cases of S(PT)-0.375(PD), 

FRP(PT)-0.25(PD), and FRP(PT)-0.375(PD) are capable of increasing the area of prestressing 

throughout the range of concrete strengths considered. Larger diameter and stronger 
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prestressing materials provided the ability to apply the same prestressing force to the tie while 

using fewer tendons. Therefore, the detailing limitations which affected the smaller prestressing 

diameter combinations did not apply to the larger cases, which continued to be governed by the 

allowable concrete stresses throughout the range of concrete strengths considered. 

Summarizing this relationship, the two smallest diameter prestressing iterations, consisting of 

W(PT)-0.21(PD) and S(PT)-0.25(PD), reach the detailing limit at a concrete strength of 9,500 psi. 

The remaining iterations based on larger prestressing diameters and higher strengths continue 

to allow for increased areas of prestressing throughout the range of concrete strengths 

evaluated. Except for S(PT)-0.3125(PD) which reaches the detailing limit at a concrete strength 

of 12,000 psi. From this relationship it can be concluded that in order to maintain full material 

efficiency at higher concrete strengths larger diameter prestressing tendons must be used to 

achieve the necessary area of prestressing to continue the governance of allowable concrete 

stresses rather than detailing. 

4.3.5.2 Prestressing Placement and Eccentricity 

Similar to increasing the area of prestressing, increasing the eccentricity of the prestressing can 

also increase the pre-compression force. However, increasing the eccentricity while maintaining 

the same area of prestressing simply reorganizes the applied stress into a different distribution, 

which may cause in an increase in capacity in one flexure condition while decreasing another. 

Figure 66 and Figure 67 illustrate the effect of variations in the concrete strength on the 

eccentricities for the governing load cases of positive bending at the rail seat section and 

negative bending at the center section, respectively. The objective of this variable optimization 

wass to increase the eccentricity of the prestressing while maintaining the applied stresses on 

the concrete within the acceptable limits. The effect of this variation is more apparent at the rail 

seat section than the center section, because the center section has smaller eccentricities due to 

the reduced cross-section compared to the rail seat section. 
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Figure 66: Eccentricity at rail seat section for positive rail seat moment governing design iterations 

 

Figure 67: Eccentricity at center section for negative center moment governing design iterations  
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Similar to the area of prestressing and concrete strength relationship, eccentricity generally 

increases as concrete strength increases. The increase in eccentricity is in response to the 

increased allowable concrete stresses. The exception to this observation seen in Figure 66, are 

the FRP cases which experience a decrease in eccentricity with respect to concrete strengths 

greater than 9,500 psi. The reason for the decrease in FRP eccentricities is the jacking stress 

which is applied to the tendons. At a concrete strength of 9,500 psi or less, the FRP tendons 

could not be stresses to their full potential due to the allowable concrete strengths. As the 

concrete strength increased above 9,500 psi the FRP tendons were jacked to a higher initial 

stress and the eccentricity was reduced. 

 

To summarize the remainder of the prestressing cases, the eccentricities in the rail seat region 

increase as concrete strengths increase. In contrast, the eccentricity in the center region 

remains essentially constant as concrete strength increases, with the exception of slight 

variations which are result to changes in the area of prestressing (to change the amount of 

prestressing in a section, the configuration typically must change, changing the eccentricity). 

4.3.6 Limit States 

The same limits states discussed for the baseline tie apply for the optimization study. However, 

Limit State I, concrete stresses at transfer is somewhat inconsequential since all iterations were 

designed with the intention of achieving the maximum allowable stress in the concrete at 

transfer in order to have full efficiency in terms of the materials used and the largest possible 

moment capacities for the governing load case of the iteration. 

4.3.6.1 Limit State II: Stresses at Service (AREMA Defined Capacity) 

For Limit State II, concrete stress at service, Figure 68 and Figure 69 illustrate the moment 

capacities for the design governing conditions of positive bending at the rail seat section and 

negative bending at the center section. All capacities presented in the figures correspond to 

effective prestressing including all losses at 50 years. In addition to the optimization iterations, 

the capacity of the baseline tie is included as well. 
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Figure 68: Positive rail seat moment capacity defined by AREMA for positive rail seat governed design at 50 years 
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Figure 69: Negative center moment capacity defined by AREMA for negative center governed design at 50 years 
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The goal of this research project was to increase the capacity of an existing tie design by varying 

parameters related to the prestressing and concrete components. Once the designs using the 

various combinations of design parameters were completed, they were compared to one 

another to determine which yields the largest gains in capacity. The comparison is based on the 

tie capacity defined by the service cracking limit not nominal capacity. The tie designs were 

completed with the intention of increasing the capacity defined by the service cracking limit 

regardless of what the nominal capacity was. Since multiple variables such as prestressing type, 

size and concrete strength were varied simultaneously the comparison of optimization iterations 

was conducted by comparing iterations using the same concrete strength while prestressing 

parameters varied. These comparisons are illustrated in Figure 70 and Figure 71, which 

correspond to the capacities of the optimized designs for the positive rail seat and negative 

center bending conditions.  
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Figure 70: Comparison of optimized capacity vs. baseline capacity for positive rail seat governed designs 
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Figure 71: Comparison of capacity of optimized designs vs. baseline capacity for negative center governed designs 
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Evaluating the results of the flexural capacity optimization study, the following conclusions can 

be made about the effects of specific iteration parameters on the AREMA defined flexural 

capacity of prestressed concrete railroad ties: 

• For lower levels of concrete strength, capacity is governed by the allowable concrete 

stresses, 

• As concrete strength increases, the governing factor of the tie capacity transitions from 

concrete stress to the quantity of prestressing which can be placed in the tie, while 

maintaining adequate spacing and cover, 

• Smaller diameter prestressing tendons reach the governing limit of detailing before the 

larger tendon diameters, due to the larger number of tendons required to achieve the 

same prestressing force, 

• The order of prestressing types and diameters in terms of tie capacity from lowest to 

highest is generally: W(PT)-0.21(PD), S(PT)-0.25(PD), S(PT)-0.3125(PD), S(PT)-0.375(PD), 

FRP(PT)-0.375(PD), FRP(PT)-0.25(PD), 

• Tie capacity increases as concrete design strength increases. 

Selecting which optimized design is the best and offers the greatest gain in capacity is difficult 

since no clear plateau or limit in capacity appears to exist for the material parameter values 

considered. However, for the same concrete strength, larger diameter steel prestressing 

tendons have larger strength gains than smaller diameter tendons. This becomes particularly 

evident when detailing becomes the limiting factor in design rather than allowable stresses at 

transfer at higher concrete strengths. Based on this observation, the prestressing case S(PT)-

0.375(PD) appears to provide the largest gains for steel prestressing, while FRP prestressing 

appears to be unaffected by changes in diameter. This is a result of the higher strength 

associated with FRP which allows concrete stresses at transfer to remain the governing factor in 

design. 

4.3.6.2 Transfer Lengths 

Based on Equation 10 in Section 3.1.5.3 the transfer length for all steel prestressing has been 

calculated. For FRP, the transfer length was found using Equation 13 from Section 3.2.8. The 

reason for multiple equations for calculating transfer length with respect to the prestressing 

material type, is the differences in bond between the two materials. However, the basis of the 
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transfer length equations is the same. For both the steel and FRP prestressing, transfer length is 

a function of tendon diameter. Therefore, as the diameter of the tendon increases so does the 

required transfer length. The required transfer lengths for the steel and FRP prestressing 

optimization iterations were calculated and are presented in Table 44. The required transfer 

lengths from Table 44 are plotted in Figure 72 with respect to concrete design strength.  

Table 44: Transfer lengths for maximum effective prestress from each design iteration  

7,000 173.1 12.1

9,500 177.1 12.4

12,000 179.7 12.6

15,000 181.2 12.7

7,000 149.2 12.4

9,500 151.4 12.6

12,000 156.4 13.0

15,000 157.6 13.1

7,000 147.9 15.4

9,500 146.3 15.2

12,000 150.5 15.7

15,000 153.5 16.0

7,000 163.1 20.4

9,500 165.8 20.7

12,000 164.7 20.6

15,000 163.7 20.5

7,000 232.2 13.8

9,500 231.2 11.2

12,000 233.8 9.7

15,000 232.6 8.3

7,000 180.1 16.0

9,500 231.7 16.8

12,000 222.0 13.7

15,000 227.7 12.1

0.25

Prestressing Type

Tendon 
Diameter 

(in)

Concrete 
Strength, f`c 

(psi)

Drawn Wire (W) (Baseline)      
W(PT)-0.21(PD)

0.21

7-Wire Strand (S)                                
S(PT)-0.25(PD)

0.25

Carbon FRP (FRP)                            
FRP(PT)-0.375(PD)

0.375

Maximum Effective 

Prestress (1)              

(ksi)

Transfer 

Length(2)     

(in) 

(1) Use the maximum effective prestress from the rail seat and center governed designs and 
critical sections.                                                                                                                                                                       
(2) For calculation of transfer length for steel prestressing use method described in PCI 
Handbook 6th Edition Section 4.2.3 Prestress Transfer and Strand Development. For FRP 
used method described in ACI 440.4R-04 Section 6.2 Transfer Length Equation (6-1).

7-Wire Strand (S)                                
S(PT)-0.3125(PD)

0.3125

7-Wire Strand (S)                                
S(PT)-0.375(PD)

0.375

Carbon FRP (FRP)                            
FRP(PT)-0.25(PD)
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Figure 72: Transfer lengths of prestressing for optimization iterations with limiting end distance to rail seat section 

It appears that FRP and steel react differently to changes in concrete strength as transfer lengths 

increase for steel and decrease for FRP as the concrete strength is increased (Figure 72). The 

difference is a result of the inclusion of concrete strength in the calculation of FRP transfer 

lengths; FRP has an inverse relationship with concrete strength for transfer, causing transfer 

length to decrease as concrete strength increases. Comparing the required transfer lengths to 

the available distance (shoulder length) full transfer of the effective prestress is achieve by the 

rail seat section for all prestressing types and sizes. 

4.3.7 Nominal Moment Capacity 

The nominal moment capacity results of the optimization study follow similar trends to those 

observed in the AREMA defined flexural capacity. However, the consideration of the deep beam 

condition and development length has a significant impact on the nominal moment capacity of 

the optimized design iterations. The results for the nominal capacity of the optimized tie designs 

are presented in the following sections, along with discussion of the effects of the deep beam 

condition and the development length of the prestressing. 
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4.3.7.1 Deep Beam Effect 

Since the overall tie geometry remained constant throughout the optimization study, the rail 

seat section still qualifies as a deep beam. For continuity, the nominal moment capacity 

assuming pure flexure for the rail seat section, is presented along with the nominal moment 

capacity of the center section, which does not qualify as a deep beam.  

4.3.7.2 Strain Compatibility Results 

The nominal moment capacity results using strain compatibility, assuming pure flexure and full 

development of the prestressing for both the rail seat and center governed design iterations are 

presented in Figure 73 and Figure 74. The design configurations were not optimized for the 

nominal moment capacity, but maintained from the optimization which was performed based 

on Limit State II. Should the failure definition for prestressed concrete railroad ties ever change 

to extend the capacity to ultimate, optimization based on the nominal capacity would have be 

completed. 

 

The nominal moment capacities presented in Figure 73 for the rail seat section are lower-bound 

estimates of the actual capacities since the deep beam condition governs; they are shown only 

for comparison reasons and continuity with the rest of the numerical process. Even though the 

rail seat would not exhibit pure bending behavior, the maximum stress in the prestressing 

derived using strain compatibility was used to determine the required development length. This 

value served as a prediction of what the actual required development length may be.  

 

The nominal moment capacities presented in Figure 74 for the center section are the predicted 

ultimate capacities since the center section does not qualify as a deep beam. The calculated 

effective and maximum prestressing stresses are used in the next section to calculate the 

required development lengths for the design iterations and determine whether or not the 

provided distance is adequate.  
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Figure 73: Positive rail seat nominal moment capacity for positive rail seat governed design at 50 years 
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Figure 74: Negative center nominal moment capacity for negative center governed design at 50 years 
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Evaluating the results of the nominal moment capacity the following conclusions can be made 

about the effects of iteration parameters on the nominal moment capacity of prestressed 

concrete railroad ties: 

• Sections with larger diameter and stronger prestressing tendons achieve higher nominal 

moment capacities, 

• The order of prestressing types and diameters in terms of nominal moment capacity 

from lowest to highest, follow the same trends as the tie capacity as defined by AREMA 

(limit state II),  

• Nominal moment capacity increases as concrete strength increases. 

4.3.7.3 Development Length 

Similar to the transfer length, development length is a function of the prestressing diameter and 

applied stress in the prestressing. To determine the required development lengths of the steel 

prestressing cases, Equation 11 from Section 3.1.6.4 was used. For the FRP prestressing cases 

Equation 14 from Section 3.2.8 was used. Table 45 summarizes the required development 

lengths which correspond to the optimization design iterations. The required development 

lengths are then plotted with respect to the available distances for development in Figure 75. 

Table 45: Development length for each prestressing type and comparison to available development distance 

Drawn Wire (W) (Baseline) 0.21 25.92 83.72% Development Obtained

7-Wire Strand (S) 0.25 34.34 63.20% Development Obtained

7-Wire Strand (S) 0.3125 42.83 50.66% Development Obtained

7-Wire Strand (S) 0.375 48.33 44.90% Development Obtained

Carbon FRP (FRP) 0.25 55.33 39.22% 92.17%

Carbon FRP (FRP) 0.375 83.33 26.04% 61.20%

(1) The stress in the steel prestressing at nominal moment is the maximum stress computed of all the layers in a 
cross-section determined using strain compatibility.                                                                                                                                                                                                          
(2) The development length of steel prestressing is determined using the method discribed in ACI 318-08 
Section 12.9 Development of prestressing strand Equation (12-4). The development length of carbon FRP 
prestressing is determined using the method in ACI 440.4R-04 Section 6.3 Flexural bond length Equation (6-2).

Required 
Development 

Length(2)              

(in)

Percentage of 
Development Length 
Obtained by Rail Seat 

Section

Percentage of 
Development Length 
Obtained by Center 

SectionPrestressing Type

Tendon 
Diameter 

(in)
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Figure 75: Development lengths of prestressing for optimization iterations with distances to critical sections 

For the rail seat section none of the prestressing combinations are capable of achieving full 

development. However, at the center section all steel prestressing combinations obtain full 

development while, FRP does not. For the prestressing combinations which did not achieve full 

development in the provided distance, the percentage of development obtained has been 

provided in Table 45. For the rail seat section the calculated required development length serves 

as an estimate since the calculated nominal moment capacity is a lower bound of the actual due 

to the deep beam condition. As for the center section, prestressing combinations which result in 

required development lengths larger than those available, require recalculation of the nominal 

moment capacity based on the maximum stress which can be developed given the provided 

distance. The only prestressing cases which did not achieve full development in the provided 

distance were the FRP iterations. 

 

When development is not achieved by a critical section the stress in prestressing steel must be 

limited to the stress which can be achieved given the available development distance. To 
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determine the allowable stress corresponding to the available development length, Equation 14 

from Section 3.2.8 was rewritten to solve for the stress in the FRP prestressing at failure based 

on the distance between the section and the end of the tie (Eqn. 15). The bilinear relationship 

between prestressing stress and development length is illustrated in Figure 76. For the FRP 

prestressing combinations which did not achieve full development, using Equation 15, the 

maximum prestressing stress corresponding to the available development distance with 

effective prestressing at 50 years is given in Table 46. The maximum stress in the FRP tendons at 

ultimate capacity assuming full development for each design iteration is summarized in Table 47 

and compared to the allowable prestressing stress based on the available development 

distance.  

 

d se

ps se

b

ps

d

b

se

l f4
f  =  -  + f

3 d 3

f  = stress in prestressing corresponding to failure (ksi)

l  = available length for develpment of prestressing (in)

d  = diameter of prestressing tendon (in)

f  = 

  
    

effective prestressing (ksi)
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Figure 76: Bilinear relationship between prestressing stress and distance from free end of tendon 
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Table 46: Allowable prestressing stresses corresponding to provided development length 

FRP(PT)-0.25(PD) 0.25 233.8 51.0 401.9

FRP(PT)-0.375(PD) 0.375 231.7 51.0 310.0

Prestressing Case

Tendon 
Diameter 

(in)

Maximum Effective 
Prestress, fpe                           

(ksi)

Available 
Development Length                                  

(in)

Allowable Stress in 
Prestressing, fps                      

(ksi)

 

Table 47: Maximum stress in prestressing at ultimate and allowable stress in prestressing based on development 

FRP(PT)-0.25(PD) 401.9 280.6

FRP(PT)-0.375(PD) 310.0 280.8

Prestressing Case

Allowable Stress in 
Prestressing, fps                     

(ksi)

Maximum Stress in 
Prestressing at Ultimate                   

(ksi)

 

 

Comparing the allowable stress in the FRP prestressing corresponding to the provided 

development length, to the stress calculated from strain compatibility based on full 

development at ultimate, it appears that the development provided is capable of achieving the 

required stress limits. Even though the prestressing will not be fully developed given the 

available development distance, the section can still achieve nominal capacity. This is because 

the nominal capacity is based on the maximum concrete strain of 0.003 not rupture of the 

prestressing.  
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5.0 Summary, Conclusions and Recommendations 

5.1 Summary  

In response to the proposed increase in the applied loads to the railroad track structure in North 

America, this research project has been completed to evaluate and identify the design 

parameters of prestressed concrete railroad ties which offer the largest increases in flexural 

capacity while maintaining the baseline tie geometry. Design parameters which were considered 

include concrete compressive strength, prestressing type, strength, size and configuration. The 

investigation began with the design/analysis of an existing tie design which was considered to 

be the baseline capacity for the study. Following the validation of the analysis procedure 

developed during the baseline study with experimental results provided by the baseline tie 

manufacturer, a parametric optimization of concrete tie parameters was completed. The results 

of the parametric optimization suggest that an increase in concrete compressive strength, in 

combination with an increase in the diameter of prestressing tendons would provide 

considerable increases in the tie capacity.  

5.2 Conclusions 

Conclusions which were developed during the execution of the research project, about the 

design/analysis procedure of a prestressed concrete railroad ties and the design parameters 

which offer the greatest possibility of capacity increase include the following: 

• The design compressive strength of 7,000 psi for the baseline tie numerical analysis 

underestimates the actual concrete compressive strength during service and at the time 

of the experimental testing which is likely between 9,500 and 12,000 psi, 

• The theoretical prestressing loss for the center section was calculated to be larger than 

the experimental values, therefore the effective prestressing stress used in capacity 

calculation may be smaller than the actual value, decreasing the predicted capacity, 

• The rail seat section has been determined to be a deep beam and therefore theoretical 

predictions based on pure flexure are no longer applicable and will likely underestimate 

the capacity of the section, 
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• For lower levels of concrete strength, flexural capacity is governed by the allowable 

concrete stresses, 

• As concrete strength increases, the governing factor of the tie capacity transitions from 

concrete stress to the quantity of prestressing which can be placed in the tie, while 

maintaining adequate spacing and cover, 

• Smaller diameter prestressing tendons reach the governing limit of detailing before the 

larger tendon diameters due to the increase in the number of tendons required to 

achieve the same prestressing force, 

• The order of prestressing types and diameters in terms of tie capacity from lowest to 

highest is: W(PT)-0.21(PD), S(PT)-0.25(PD), S(PT)-0.3125(PD), S(PT)-0.375(PD), FRP(PT)-

0.375(PD), FRP(PT)-0.25(PD), 

• The anticipated tie capacity increases as concrete design strength increases, 

• The first optimized tie design that should be tested is the S(PT)-0.375(PD)-7(CS), since 

the 0.375 in. diameter 7-wire strand is common prestressing type and size among other 

tie manufacturers and provides the largest increase in flexural capacity for all steel 

prestressing types considered by this study. This maintains the existing concrete mix 

design. 

5.3 Recommendations for Future Research 

Considering the work completed during this research project and the direction of future related 

work. A few topics of particular interest to the evaluation of prestressed concrete railroad ties 

which warrant further investigation include: 

1) Finite element analysis of prestressed concrete tie behavior, 

2) The construction and testing of the tie designs completed during the parametric 

optimization study, 

3) Deep beam analysis of the rail seat region, 

4) Capacity optimization including shape refinement of the cross-section, 

5) Bursting stresses analysis of tie anchorage zone, 

6) ASTM testing for creep and shrinkage values. 
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5.3.1 Numerical Analysis-FEA Modeling 

During the early stages of this research project the scope included the modeling of the baseline 

tie design and the designs developed during the parametric optimization using finite element 

analysis (FEA). The purpose of using FEA to model the ties was, first to have a second numerical 

method for comparison with experimental results for the baseline tie design and second, to 

provide a means of analyzing the nonlinear behavior of the tie designs. However, it quickly 

became apparent during the initial model development that the creation of a prestressed 

concrete tie model is remarkably complicated due to the following: 

• The model must be capable of differentiating when the concrete elements have reached 

the allowable concrete stress conditions which correspond to failure. 

• The model must be capable of operating within the nonlinear range of behavior to 

capture the ultimate capacity of the tie. 

• The connection between the concrete and prestressing elements should be able to 

account for bond slip, transfer and development. 

• Concrete railroad ties have variable boundary conditions due to the changing ballast 

support distributions. 

Considering the above criteria the development of a prestressed concrete tie FEA is a project in 

itself and could simply not be completed during this project time frame. The initial findings of 

literature review related to modeling of prestressed concrete members using finite element 

analysis is presented in Appendix E. 

5.3.2 Validation Testing-Optimized Tie Designs 

The next logical step in this project would be to construct the designs competed during the 

parametric optimization study and test them for validation of the analysis/design. The reason 

for the exemption of this phase from the scope of this project is cost of construction and testing 

and the lack of facilities to fabricate the ties. The testing of optimized tie designs should 

evaluate the following parameters: 

• Losses, 

• Transfer length, 

• Development length, 

• Allowable stresses (transfer and service-cracking), 
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• Ultimate capacity. 

In addition to testing of the various design parameters above, testing the capacities of ties at 

different ages is of interest, since the capacity of concrete ties changes as they age. The change 

in capacity is a result of concrete strength gain and prestressing losses over time. Therefore, 

testing of ties with ages ranging from days after castings to years later will provide an idea of the 

variation in capacity during the service life of the tie. This concept of capacity versus time could 

be made even more fascinating if ties exposed to service loads and fatigue effects were tested.  

The testing of the ties exposed to service would offer insight into the effect of loadings on long 

term capacity of a tie. 

5.3.3 Deep Beam Analysis 

During the evaluation of the rail seat section to determine the flexural capacity it was identified 

that the section is classified as a deep beam. The deep beam condition is a unique flexural 

member requiring a specific calculation procedure in order to determine the flexural capacity. In 

this project it was assumed that pure flexure governed all capacity analysis, however for the rail 

seat section this resulted in inaccurate results. To properly determine the flexural capacities 

both at service and ultimate for the rail seat section this portion of the project must be 

repeated, accounting for the deep beam condition. 

5.3.4 Shape Refinement 

This project focused on the optimization of only the prestressing properties and concrete 

strength of the prestressed concrete railroad tie while maintaining constant tie geometry. To 

provide a complete optimization of the prestressed concrete railroad tie however, variations in 

the shape of the tie should be considered as well. Shape optimization will focus on the length of 

the tie as well as the cross-sectional dimensions along the length of the tie. Optimizing the tie 

shape may lead to a more efficient design in terms of material placement and weight. 

5.3.5 Bursting Analysis 

The analysis completed in this study for the baseline tie and the optimized tie designs did not 

include consideration of bursting stresses in the anchorage zone of the tie ends. Future work 

should consider the effect of bursting stresses on prestressed concrete railroad ties. If bursting 

stresses due to the pre-compression forces appear to exceed allowable tensile stresses, 

solutions such as confining steel in the anchorage zone or possible cutting patterns at release 
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should be analyzed. It should be noted however, that the baseline tie design does not include 

confining transverse reinforcement. Transverse reinforcement is impractical in the design of 

prestressed concrete ties due to the long-line fabrication method which is common among tie 

manufacturers. Therefore, it is of interest what changes to design or the fabrication process, 

other than confining reinforcement, can be made to reduce or cope with bursting stresses. 

5.3.6 ASTM Material Testing for Creep and Shrinkage 

For the development of theoretical prestressing loss predictions in this study, assumptions and 

approximations based on code specifications were made for the material properties of the 

prestressing and concrete (ACI 2008; ACI Committee 440 2004; ASTM International 2006). A 

majority of such assumptions and approximations deal with the losses due to creep and 

shrinkage of the concrete. In an effort to achieve higher accuracy in the predictions of 

prestressing losses related to concrete creep and shrinkage; it is suggested that the results of 

experimental testing of the actual concrete mixes used in the fabrication of the ties be used to 

determine the material properties. Using ASTM tests for concrete creep and shrinkage, the 

material properties related to prestressing losses will be determined. 
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Appendix A: Baseline Tie Drawings 
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Appendix B: Baseline Tie Design Summary Sheet  
 

Table 48: Baseline tie design summary sheet 
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Appendix C: Optimization Iteration Matrix
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505S-(40)-(7000)
505S-(18250)-(7000)

505S-(40)-(9500)
505S-(18250)-(9500)

505S-(40)-(12000)
505S-(18250)-(12000)

505S-(40)-(15000)
505S-(18250)-(15000)

 1 (a)(1)

1 (b)
2 (a)
2 (b)
3 (a)
3 (b)
4 (a)
4 (b)
5 (a)
5 (b)
6 (a)
6 (b)
7 (a)
7 (b)
8 (a)
8 (b)
9 (a)
9 (b)

10 (a)
10 (b)
11 (a)
11 (b)
12 (a)
12 (b)
13 (a)
13 (b)
14 (a)
14 (b)
15 (a)
15 (b)
16 (a)
16 (b)
17 (a)
17 (b)
18 (a)
18 (b)
19 (a)
19 (b)
20 (a)
20 (b)
21 (a)
21 (b)
22 (a)
22 (b)
23 (a)
23 (b)
24 (a)
24 (b)

(1) (a) configuration which produces the largest (+) rail seat moment capacity (cracking moment), (b) configuration which produces the largest (-) center moment capacity (cracking moment) 
(2) To determine the concrete compressive strength at transfer the Equation (2-1) for concrete compressive strength versus time from ACI 209R has been used
(3) ACI 318-08 Section 18.4 for serviceability requirements (allowable stresses)
(4) Compression is assumed to be positive for stresses
(5) Moments which cause compression in the top of the tie are assumed to be positive
(6) NA (not applicable) pertains to FRP which has no defined yield point

255 230

505S-W(PT)-0.21(PD)-95(CS) 505S-W(PT)-0.21(PD)-95(CS)

505S-W(PT)-0.21(PD)-12(CS) 505S-W(PT)-0.21(PD)-12(CS)

505S-W(PT)-0.21(PD)-15(CS) 505S-W(PT)-0.21(PD)-15(CS)204.35 216.10 189.03 188.52

255 230 204.35 216.10 189.03 188.52

255 230 204.35 216.10 189.03 188.52-731
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-919

5700

7200

9000
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-254

-283

3393

4286

5357

9500

12000

15000

5655

7143

8929

Wire 0.21"

Wire 0.21"

Wire 0.21"

189.03 188.524769 3824 505S-W(PT)-0.21(PD)-7(CS) 505S-W(PT)-0.21(PD)-7(CS)28500-627 4200 255 230 204.35 216.10Wire 0.21" 7000 4500 -201 2700

-283

-201

-226

-254

-283

-201
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-254

-226

-226

-254

-283

-254 -657

-735

Compressive Stress 
@ Service            σcs 

(3)

-226
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-822

-201

-283

-201
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-731
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-731

FRP(PT)-0.25(PD)-12(CS)

FRP(PT)-0.25(PD)-95(CS)
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0.375"
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9500

12000
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S(PT)-0.25(PD)-7(CS)

S(PT)-0.25(PD)-95(CS)

S(PT)-0.25(PD)-12(CS)

S(PT)-0.25(PD)-15(CS)
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-226

-254

-283

250 225

8929

S(PT)-0.25(PD)-7(CS)

S(PT)-0.25(PD)-95(CS)

S(PT)-0.25(PD)-12(CS)

S(PT)-0.25(PD)-15(CS)
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9000

5700
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4500

5655
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15000

7143 W(PT)-0.21(PD)-12(CS) W(PT)-0.21(PD)-12(CS)

W(PT)-0.21(PD)-15(CS) W(PT)-0.21(PD)-15(CS)

-822

-919

189.03 188.52

Strand 0.25"

0.25"

W(PT)-0.21(PD)-95(CS) W(PT)-0.21(PD)-95(CS)

Wire

Wire

0.21"

0.21"

12000

Prestressing 
Type

Prestressing 
Diameter

Concrete Strength (psi)

Spreadsheet Notes

Wire 0.21" 9500 5655

8929

Strand

Run

Tensile Stress @ 
Transfer               

σti 
(3) MathCAD File Name EXCEL Base File Name

Prestressing 
Ultimate 
Strength                

fpu

Wire 0.21" 7000 4500 -627-201 W(PT)-0.21(PD)-7(CS) W(PT)-0.21(PD)-7(CS)

Modulus @ 
Serivce                     

Ec

Modulus @ 
Serivce                     

Eci

Concrete Modulus (psi)

4769

5556 4286

6244 4817

6981 5386

5556

6244

6981

3824

4286

4817

5386

4769 3824

5556 4286

6244 4817

6981 5386

5386

4769 3824

5556 4286

4769 3824

5556

4769 3824

5556 4286

6244 4817

6981 5386

6981 5386

4769

6981 5386

6244 4817

4286

4286

6244 4817

6244 4817

-735

-657

-502

-585

3393

3824

5556 4286

Allowable Stresses
Compressive Stress 

@ Transfer                  

σci
(3)

Tensile Stress @ 
Service            σts 

(3)

2700

3393 -731

4286

5357

2700

4286

5357

2700

3393

4286

5357

2700

2700

5700

7200

90005357

4286

5357

2700

3393

3393

3393

4286

5357
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5700
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9000

4200

9000

4200

4200

5700

7200

9000

4200

4200

5700

5700

7200

9000

7200

Prestressing Strength (ksi)

Prestressing 
Yield Strength              

fpy

Allowable Stresses
Design 

Compressive 
Strength, f`c

Compressive 
Strength @ 

Transfer, f`ci 
(2)

204.35

Jacking Limit  
Ultimate 
Strength

Jacking Limit  
Yield Strength

Initial Limit 
Ultimate 
Strength

Initial Limit 
Yield 

Strength

255

255

255

255

230

230

230

230

204.35

204.35

204.35

216.10 189.03 188.52

216.10 189.03 188.52

216.10

216.10 189.03 188.52

250 225 200.00 211.50 185.00 184.50

185.00 184.50

250 225 200.00 211.50 185.00 184.50

200.00 211.50

250 225 200.00 211.50 185.00 184.50

250 225 200.00 211.50 185.00 184.50

250 225 200.00 211.50 185.00 184.50

250 225 200.00 211.50 185.00 184.50

250 225 200.00 211.50 185.00 184.50

270 243 216.00 228.42 199.80 199.26

270 243 216.00 228.42 199.80 199.26

270 243 216.00 228.42 199.80 199.26

270 243 216.00 228.42 199.80 199.26

425 NA (6) 276.25 NA 255.00 NA

425 NA 276.25 NA 255.00 NA

425 NA 276.25 NA 255.00 NA

425 NA 276.25 NA 255.00 NA

425 NA 276.25 NA 255.00 NA

425 NA 276.25 NA 255.00 NA

425 NA 276.25 NA 255.00 NA

425 NA 276.25 NA 255.00 NA

28500

28500

28500

Prestressing 
Modulus (ksi)

28500

28500

28500

28500

28500

28500

28500

28500

28500

28500

28500

28500

28500

28500

18000

18000

18000

18000

28500

28500

18000

18000

18000

18000
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Moment Point Load Moment Point Load Moment Point Load Moment Point Load

505S-(40)-(7000) 0.69 0.638 -0.193 203.19 188.42 182.96 173.07 163.71 903 2165 2640 1970 348 58.67 186 33.47 141 10.44 187 13.85 610 412 334 385
505S-(18250)-(7000) 0.69 0.638 -0.193 203.19 188.42 182.96 153.64 140.14 903 2165 2640 1970 318 53.61 174 31.31 150 11.11 185 13.70 598 405 327 376

505S-(40)-(9500) 0.69 0.638 -0.193 203.19 189.76 184.89 177.05 169.44 910 2180 2667 1989 368 62.04 201 36.17 179 13.26 221 16.37 677 462 382 436
505S-(18250)-(9500) 0.69 0.638 -0.193 203.19 189.76 184.89 160.42 149.91 910 2180 2667 1989 343 57.83 192 34.55 165 12.22 202 14.96 668 456 376 429

505S-(40)-(12000) 0.69 0.638 -0.193 203.19 190.98 186.65 179.73 173.31 915 2193 2691 2007 385 64.91 215 38.69 189 14.00 232 17.19 725 500 419 475
505S-(18250)-(12000) 0.69 0.638 -0.193 203.19 190.98 186.65 164.67 155.99 915 2193 2691 2007 362 61.03 206 37.07 176 13.04 214 15.85 718 495 414 469

505S-(40)-(15000) 0.69 0.638 -0.193 203.19 192.02 188.15 181.16 175.36 920 2205 2711 2022 400 67.43 229 41.21 198 14.67 241 17.85 764 530 450 508
505S-(18250)-(15000) 0.69 0.638 -0.193 203.19 192.02 188.15 166.50 158.60 920 2205 2711 2022 378 63.73 220 39.59 185 13.70 224 16.59 759 527 446 504

 1 (a)(1) 0.76 0.755 -0.075 203.19 186.87 181.30 150.16 136.66 855 2483 2644 2357 349 58.84 167 30.05 167 12.37 183 13.56 643 406 349 375
1 (b) 0.72 0.657 -0.173 201.74 186.45 180.83 151.02 137.37 917 2267 2700 2075 328 55.30 175 31.49 155 11.48 187 13.85 607 403 321 370
2 (a) 0.79 0.751 -0.079 203.19 187.82 182.61 156.76 145.69 900 2603 2784 2469 387 65.24 189 34.01 191 14.15 206 15.26 742 475 411 442
2 (b) 0.76 0.658 -0.172 202.47 187.95 182.69 157.69 146.49 964 2393 2848 2190 365 61.53 197 35.45 176 13.04 211 15.63 705 475 385 442
3 (a) 0.79 0.833 0.003 202.47 188.41 184.00 160.79 152.01 810 2704 2640 2651 417 70.30 193 34.73 214 15.85 210 15.56 826 504 473 475
3 (b) 0.76 0.658 -0.172 201.45 188.38 183.71 161.55 152.32 967 2398 2863 2201 384 64.74 211 37.97 187 13.85 224 16.59 767 521 428 490
4 (a) 0.79 0.833 0.003 201.16 188.46 184.55 161.94 153.99 810 2705 2648 2658 433 73.00 207 37.25 223 16.52 219 16.22 880 544 515 515
4 (b) 0.76 0.63 -0.2 200.29 188.50 184.28 162.73 154.23 998 2369 2926 2153 396 66.76 228 41.03 192 14.22 236 17.48 812 565 460 538
5 (a) 0.79 0.755 -0.075 199.72 183.04 177.31 145.98 132.25 874 2541 2699 2406 354 59.68 169 30.41 165 12.22 184 13.63 642 392 330 356
5 (b) 0.72 0.637 -0.193 199.44 184.37 178.78 149.20 135.61 923 2212 2693 2008 322 54.28 175 31.49 151 11.19 186 13.78 598 400 312 365
6 (a) 0.9 0.95 0.12 199.86 182.32 177.11 149.47 138.51 739 3114 2616 3144 438 73.84 170 30.59 227 16.81 194 14.37 827 451 444 413
6 (b) 0.9 0.605 -0.225 199.86 183.34 176.95 151.35 138.23 1176 2697 3373 2383 395 66.59 218 39.23 184 13.63 236 17.48 761 518 397 476
7 (a) 0.9 1.075 0.245 199.86 183.57 179.19 154.36 145.67 586 3292 2367 3458 476 80.25 167 30.05 259 19.19 191 14.15 943 485 529 449
7 (b) 0.9 0.525 -0.305 199.17 184.44 178.46 156.38 144.98 1284 2612 3578 2224 406 68.45 245 44.09 186 13.78 262 19.41 824 590 432 547
8 (a) 0.9 1.075 0.245 199.17 184.42 180.51 156.35 148.45 588 3307 2383 3483 497 83.79 181 32.57 270 20.00 201 14.89 1017 532 585 498
8 (b) 0.9 0.525 -0.305 197.78 184.49 179.18 157.59 147.27 1284 2613 3592 2233 422 71.14 259 46.61 195 14.44 272 20.15 891 644 481 603
9 (a) 0.75 0.704 -0.126 199.91 184.03 178.40 147.88 134.28 892 2380 2685 2216 338 56.98 171 30.77 162 12.00 185 13.70 628 405 334 370
9 (b) 0.75 0.685 -0.145 198.28 182.62 176.96 146.83 133.18 906 2342 2700 2164 335 56.48 173 31.13 159 11.78 185 13.70 620 405 329 370

10 (a) 1.04 0.821 -0.009 199.91 180.43 173.95 145.99 132.89 1026 3382 3286 3240 463 78.06 200 35.99 228 16.89 227 16.81 868 513 461 469
10 (b) 1.04 0.779 -0.051 199.91 180.58 173.94 146.25 132.87 1087 3325 3391 3136 458 77.21 206 37.07 223 16.52 233 17.26 860 520 454 476
11 (a) 1.16 1.025 0.195 199.91 179.80 174.03 148.02 137.16 807 4064 3069 4157 557 93.90 190 34.19 293 21.70 227 16.81 1078 559 586 512
11 (b) 1.16 0.6 -0.23 199.91 181.31 173.96 150.52 137.04 1494 3417 4253 2971 490 82.61 265 47.69 226 16.74 295 21.85 968 657 503 604
12 (a) 1.16 1.025 0.195 199.91 181.68 176.52 151.14 141.20 815 4106 3111 4215 579 97.61 204 36.71 307 22.74 239 17.70 1184 624 658 578
12 (b) 1.16 0.575 -0.255 199.91 183.08 176.40 153.50 141.01 1549 3409 4381 2940 506 85.30 286 51.47 233 17.26 313 23.19 1060 735 559 679
13 (a) 0.68 0.706 -0.124 214.71 199.11 193.66 162.90 149.49 869 2326 2627 2177 337 56.81 171 30.77 163 12.07 185 13.70 612 411 352 385
13 (b) 0.68 0.675 -0.155 214.71 199.18 193.63 163.06 149.42 902 2295 2684 2120 334 56.31 174 31.31 159 11.78 188 13.93 601 401 327 370
14 (a) 0.85 0.8 -0.03 215.88 198.36 192.59 165.01 152.92 950 3006 3022 2887 431 72.66 194 34.91 215 15.93 219 16.22 802 511 469 482
14 (b) 0.85 0.65 -0.18 215.88 198.78 192.45 165.80 152.66 1145 2819 3359 2546 412 69.46 216 38.87 195 14.44 238 17.63 769 532 433 498
15 (a) 1.11 0.915 0.085 215.88 195.55 189.29 163.08 151.31 1014 4029 3492 3986 559 94.24 214 38.51 287 21.26 254 18.81 1059 603 600 564
15 (b) 1.11 0.646 -0.184 215.88 196.50 189.16 164.66 151.09 1464 3602 4267 3206 514 86.65 264 47.51 242 17.93 299 22.15 978 668 536 621
16 (a) 1.28 0.95 0.12 215.88 194.83 188.48 161.88 149.99 1093 4689 3878 4675 644 108.57 235 42.29 333 24.67 282 20.89 1253 693 639 642
16 (b) 1.28 0.65 -0.18 215.88 195.94 188.38 163.72 149.83 1670 4145 4872 3677 587 98.96 299 53.81 276 20.44 340 25.19 1163 771 622 714
17 (a) 0.54 0.652 -0.178 256.12 244.54 241.19 221.65 212.40 902 2212 2692 2054 333 56.14 167 30.05 141 10.44 184 13.63 578 373 292 341
17 (b) 0.49 0.625 -0.205 265.82 254.57 251.34 232.18 223.24 882 2070 2604 1906 318 53.61 166 29.87 145 10.74 192 14.22 559 370 285 339
18 (a) 0.69 0.952 0.122 267.35 253.57 250.23 231.23 223.32 778 3301 2803 3381 479 80.75 164 29.51 240 17.78 206 15.26 832 447 448 410
18 (b) 0.69 0.693 -0.137 265.31 252.15 248.31 230.47 221.53 1115 2941 3392 2746 437 73.67 205 36.89 202 14.96 247 18.30 772 488 398 448
19 (a) 0.88 0.953 0.123 267.35 252.16 248.34 230.52 222.42 979 4208 3538 4281 601 101.32 198 35.63 300 22.22 256 18.96 1067 574 577 529
19 (b) 0.83 0.638 -0.192 268.37 254.41 250.06 233.83 224.74 1443 3504 4276 3172 519 87.50 255 45.89 250 18.52 317 23.48 949 623 489 574
20 (a) 1.23 0.825 -0.005 261.22 244.12 239.15 220.87 210.69 1591 5351 5205 5165 747 125.93 280 50.39 328 24.30 336 24.89 1340 778 703 716
20 (b) 1.08 0.675 -0.155 270.41 254.69 249.73 232.57 222.36 1779 4603 5352 4199 662 111.60 304 54.71 315 23.33 390 28.89 1229 788 639 727
21 (a) 0.66 0.675 -0.155 213.64 202.50 199.12 180.07 170.92 890 2265 2679 2116 335 56.48 164 29.51 146 10.81 183 13.56 610 396 321 363
21 (b) 0.66 0.633 -0.197 209.09 198.25 194.85 176.22 167.04 914 2177 2698 1999 324 54.62 167 30.05 145 10.74 191 14.15 598 400 314 366
22 (a) 0.66 1.008 0.178 267.27 253.74 250.61 231.66 224.19 678 3252 2576 3391 473 79.74 152 27.35 254 18.81 201 14.89 839 445 465 410
22 (b) 0.66 0.633 -0.197 263.27 251.01 247.19 229.88 220.99 1145 2744 3388 2502 413 69.63 209 37.61 199 14.74 253 18.74 759 508 401 469
23 (a) 0.99 0.939 0.109 242.27 227.31 223.39 205.97 197.76 1014 4234 3613 4279 600 101.15 201 36.17 298 22.07 260 19.26 1089 598 595 552
23 (b) 0.88 0.644 -0.186 256.36 242.48 238.11 222.02 212.91 1444 3537 4285 3206 521 87.83 254 45.71 251 18.59 317 23.48 971 641 510 592
24 (a) 1.21 0.8 -0.03 266.36 249.15 244.08 225.80 215.40 1661 5337 5348 5104 746 125.77 288 51.83 318 23.56 339 25.11 1336 784 698 721
24 (b) 1.1 0.675 -0.155 265.45 249.79 244.82 227.74 217.53 1780 4606 5354 4200 661 111.44 304 54.71 315 23.33 389 28.81 1231 789 640 728
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Wire 0.21" 7000

Applied Stresses in Prestressing Steel w/ Losses (ksi)
Stress @ 
Jacking            

fpj

Initial Prestress 
Center                        

fpi

Effective Prestress 
Rail Seat                         

fpe

Effective Prestress 
Center                        

fpe

Design 
Compressive 
Strength, f`c
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Appendix D: Baseline Tie Analysis 

D 1.0 Baseline Tie Analysis (MathCAD Guide) 
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D 2.0 Baseline Tie Analysis (Spreadsheet) 
 

Component b h A y Ay Ibar d Ibar + Ad2

A 7.75 6.88 53.28 3.44 183.15 209.86 0.28 214.14

B 0.31 6.88 0.11 2.29 0.24 2.80 1.43 3.02

C 0.31 6.88 0.11 2.29 0.24 2.80 1.43 3.02

D 6.50 0.63 4.06 7.19 29.20 0.13 -3.47 48.96

E 0.63 0.63 0.20 7.08 1.38 0.00 -3.36 2.21

F 0.63 0.63 0.20 7.08 1.38 0.00 -3.36 2.21

Sum 57.95 215.61 273.55

ybar 3.72

Component b h A y Ay Ibar d Ibar + Ad2

A 9.10 8.59 78.12 4.29 335.35 479.82 0.26 485.12

B 0.39 8.59 1.65 2.86 4.73 6.77 1.69 11.49

C 0.39 8.59 1.65 2.86 4.73 6.77 1.69 11.49

D 7.69 0.71 5.42 8.94 48.45 0.22 -4.38 104.46

E 0.71 0.71 0.25 8.82 2.22 0.01 -4.27 4.60

F 0.71 0.71 0.25 8.82 2.22 0.01 -4.27 4.60

Sum 87.35 397.70 621.76

ybar 4.55

Geometry Constant Rail  Seat Center

A (in2) 87.35 57.95

I (in4) 621.76 273.55

yb (in) 4.55 3.72

yt (in) 4.74 3.78

Ix Center Section

Ix Rail Seat Section

Section Properties Summary
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f`c (psi) 7000

Ec (ksi) 4769

f`ci (psi) 4500

Eci (ksi) 3824

σti (psi) -201

σci (psi) 2700

σts (psi) -627

σcs (psi) 4200

fpu (ksi) 255.44

fpy (ksi) 229.90

Jacking Force (lbs) 7000

fpj2 (ksi) 203.19

Eps (ksi) 28500

fpj_u (ksi) 204.35

fpj_y (ksi) 216.10

fpi_u (ksi) 189.03

fpi_y (ksi) 188.52

npi 7.45

np 5.98

Steel Properties

Concrete Properties

 



 

190 
 

dtendon (in) 0.21
Atendon (in

2) 0.03445

1 2 0.07 1.3125 0.090

2 2 0.07 1.5625 0.108

3 2 0.07 2.5 0.172

4 2 0.07 2.75 0.189

5 2 0.07 3.6875 0.254

6 2 0.07 3.9375 0.271

7 2 0.07 5.125 0.353

8 2 0.07 5.375 0.370

9 2 0.07 6.3125 0.435

10 2 0.07 6.5625 0.452

11 0 0.00 0 0.000

12 0 0.00 0 0.000

13 0 0.00 0 0.000

14 0 0.00 0 0.000

15 0 0.00 0 0.000

Totals 20 0.69 2.696

ysteel centroid (in.) 3.913

Rail  Seat (eRS) 4.55 0.638

Center (eC) 3.72 -0.193

Prestressing Size

Prestressing Centroid Calculator

Layer Number
Number of 

Tendons in Layer

Area of Tendons 
in Layer                    

(A) (in2)

Distance of Layer 
From Bottom           

(y) (in.) Ay

Eccentricity 
Location

yconcrete centroid         

(in.)
Eccentricity          

(in.)

Eccentricity Calculator
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1 2.34 12.43 188.42 0.00 0.00 0.00 188.42 0.00 14.78 188.42

3 2.34 12.43 188.42 0.61 0.41 1.81 185.60 2.82 17.59 185.60

7 2.34 12.43 188.42 1.07 1.14 3.85 182.36 6.06 20.83 182.36

28 2.34 12.43 188.42 1.81 3.83 7.48 175.30 13.12 27.90 175.30

40 2.34 12.43 188.42 2.00 4.84 8.51 173.07 15.35 30.13 173.07

365 2.34 12.43 188.42 3.17 10.21 14.30 160.74 27.68 42.45 160.74

1825 2.34 12.43 188.42 4.00 11.43 16.66 156.33 32.09 46.86 156.33

18250 2.34 12.43 188.42 5.16 11.74 18.00 153.51 34.91 49.68 153.51

A (in2) Pi

b (in) (fcgp)G

h (in) (fcgp)Fi

I (in4) (fcgp)G+Fi

yb (in)

yt (in)

Zb (in3) fpi/fpy 

Zt (in
3) K

f`c (psi)

f`ci (psi) 1 188.42 0.00 188.42 0.00

Eci (ksi) 3 188.42 0.605847 187.81 0.61

Ec (ksi) 7 187.81 0.4612 187.35 1.07

CCU 28 187.35 0.747076 186.60 1.81

H 40 186.60 0.189098 186.41 2.00

εSU 365 186.41 1.167344 185.25 3.17

1825 185.25 0.827972 184.42 4.00

No. Strand 18250 184.42 1.162661 183.26 5.16

Aps (in
2)

fpu (ksi)

fpy (ksi)

fpj2 (ksi)

Eps (ksi)

npi

np

eRS (in)

eC (in)

V/S KCA

KSH KCH

KSS KCS

1 0.00 0.00 1 188.42 1.564587 0 188.42 0.00

3 0.406199 0.41 3 188.42 1.564587 1.807 186.61 1.81

7 0.733778 1.14 7 186.61 1.549521 2.04486 184.57 3.85

28 2.691994 3.83 28 184.57 1.532471 3.62354 180.94 7.48

40 1.003932 4.84 40 180.94 1.502259 1.03593 179.91 8.51

365 5.373225 10.21 365 179.91 1.493622 5.78606 174.12 14.30

1825 1.219748 11.43 1825 174.12 1.445379 2.36122 171.76 16.66

18250 0.314849 11.74 18250 171.76 1.425691 1.346 170.41 18.00

fpe       

(ksi)
ΔfpTD      

(ksi)
ΔfpES     

(ksi)
fpi         

(ksi)
ΔfpR2 

(ksi)
ΔfpS    

(ksi)
ΔfpC       

(ksi)

4.74 Relaxation Calcs

Total  Loss  
(ksi)

Section Properties ES Calcs

87.35 138.39

10 0.0064

9.29 1.674663232

621.76 1.668263232

4.55

Time     
(days)

ΔfpR1        

(ksi)

136.57 0.819570349

131.25 40

Concrete Properties Time 
(days)

fp(ti )                         
(ksi)

ΔfpR(ti, tj)                         
(ksi)

229.90

fps(tj)                         
(ksi)

ΣΔfpR(ti, tj)                         
(ksi)7000

4500

2.2

50

0.0005

Prestressing Properties

20

0.69

255.44

ΔfpS(ti, tj)                         
(ksi)

pS( i, 

tj)                         
(ksi)

Time 
(days)

fp(ti )                         
(ksi)

203.19

28500

7.45

5.98

Shrinkage Calcs

0.6375

-0.1925

Actual Prestress 
(ksi)

Prestessing Losses Based on Rail Seat Section Properties

ΔfpC(ti, tj)                         
(ksi)

fp(tj )                         
(ksi)

ΣΔfpC(ti, tj)                         
(ksi)

3824

4769

fcgp(ti )                         
(ksi)

2.26 1.13

0.9 0.935

0.9352 0.9377

Creep Calcs

Time (days)
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1 2.34 17.89 182.96 0.00 0.00 0.00 182.96 0.00 20.23 182.96

3 2.34 17.89 182.96 0.54 0.43 2.65 179.35 3.62 23.85 179.35

7 2.34 17.89 182.96 0.95 1.20 5.64 175.18 7.78 28.02 175.18

28 2.34 17.89 182.96 1.61 4.03 10.90 166.42 16.54 36.77 166.42

40 2.34 17.89 182.96 1.78 5.08 12.39 163.71 19.25 39.48 163.71

365 2.34 17.89 182.96 2.81 10.73 20.69 148.73 34.23 54.46 148.73

1,825 2.34 17.89 182.96 3.55 12.01 24.02 143.39 39.57 59.80 143.39

18,250 2.34 17.89 182.96 4.58 12.34 25.90 140.14 42.82 63.05 140.14

A (in2) Pi

b (in) (fcgp)G

h (in) (fcgp)Fi

I (in4) (fcgp)G+Fi

yb (in)

yt (in)

Zb (in3) fpi/fpy 

Zt (in
3) K

f`c (psi)

f`ci (psi) 1 182.96 0.00 182.96 0.00

Eci (ksi) 3 182.96 0.53651 182.43 0.54

Ec (ksi) 7 182.43 0.40865 182.02 0.95

CCU 28 182.02 0.66224 181.35 1.61

H 40 181.35 0.16774 181.19 1.78

εSU 365 181.19 1.03569 180.15 2.81

1825 180.15 0.73541 179.42 3.55

No. Strand 18250 179.42 1.03349 178.38 4.58

Aps (in
2)

fpu (ksi)

fpy (ksi)

fpj2 (ksi)

Eps (ksi)

npi

np

eRS (in)

eC (in)

V/S KCA

KSH KCH

KSS KCS

1 0.00 0.00 1 182.96 2.1859 0 182.96 0.00

3 0.426787 0.43 3 182.96 2.1859 2.65327 180.31 2.65

7 0.770969 1.20 7 180.31 2.15411 2.98763 177.32 5.64

28 2.828436 4.03 28 177.32 2.11831 5.26408 172.06 10.90

40 1.054815 5.08 40 172.06 2.05523 1.48948 170.57 12.39

365 5.645563 10.73 365 170.57 2.03738 8.29481 162.27 20.69

1825 1.281571 12.01 1825 162.27 1.93798 3.32733 158.95 24.02

18250 0.330807 12.34 18250 158.95 1.8981 1.88335 157.06 25.90

ΔfpC(ti, tj)                         
(ksi)

fp(tj )                         
(ksi)

ΣΔfpC(ti, tj)                         
(ksi)

Time 
(days)

ΔfpS(ti, tj)                         
(ksi)

ΣΔfpS(ti, tj)                         
(ksi)

Time 
(days)

fp(ti )                         
(ksi)

fcgp(ti )                         
(ksi)

20

Creep Calcs

1.72 1.13

0.9 0.935

50

0.0005

0.9826 0.9855

4769

7.45

5.98

0.6375

-0.1925

Shrinkage Calcs

0.69

255.44

229.90

203.19

28500

Prestressing Properties

ΔfpR(ti, tj)                         
(ksi)

fps(tj)                         
(ksi)

3824

4500

2.2

7.5 2.4068962

273.55 2.4002962

pR( i, 

tj)                         
(ksi)7000

3.72

3.78 Relaxation Calcs

73.52 0.795837033

72.38 40

Concrete Properties Time 
(days)

fp(ti )                         
(ksi)

Section Properties ES Calcs

57.95 138.39

7.75 0.0066

Prestessing Losses Based on Center Section Properties

Time      
(days)

ΔfpR1        

(ksi)
ΔfpES       

(ksi)
fpi         

(ksi)
ΔfpR2      

(ksi)
ΔfpS    

(ksi)
ΔfpC       

(ksi)
fpe       

(ksi)
ΔfpTD      

(ksi)
Total  Loss  

(ksi)
Actual Prestress 

(ksi)
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Tie Weight (lb) 735

Tie Length (ft) 102

wG (lb/in) 7.21

Rail  Seat 21.7 6.28

Center 51 9.37

Fi_RS (kip) 129.82

Fi_C (kip) 126.06

Top 2165 OK
Bottom 834 OK

Top 903 OK
Bottom 2046 OK

Top 1970 OK
Bottom 2378 OK

Top 2640 OK
Bottom 1718 OK

Load Condition Location
Concrete Stress                       

(psi)

Self Weight Calculator

Distance 
From End (in)Location

Mo                       

(kip-in)

2

Initial Prestressing Force 

Center

Load Condition Location
Concrete Stress                       

(psi)
Allowable 

Check

1

1

2

Allowable 
Check

Rail Seat
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FRS (kip) 119.24

FC (kip) 112.80

Top 448

Bottom 348

Top 186

Bottom 311

Top 141

Bottom 168

Top 208

Bottom 187

Effective Prestressing Force

LocationLoad Condition

Load Condition Location

Live Load 
Moment      
(kip-in)

(+) Bending

(-) Bending

(-) Bending

(+) Bending
Compression 

Top

Compression 
Bottom

141

187

Rail Seat

Center

Governing 
Moment 
(in-kip)

Governing 
Stress 

Condition

Governing 
Moment 
(in-kip)

Governing 
Stress 

Condition

348
Tension 
Bottom

186
Tension 
Bottom

Live Load 
Moment 
(kip-in)
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Positive Bending/Rail  Seat 610 348
Negaitive Bending/Rail  Seat 412 186

Positive Bending/Center 334 141
Negaitive Bending/Center 385 187

Load Case/Critical Section Prestressing Stress (ksi) Allowable Stress Check

Jacking 203.19 OK

Initial/Rail  Seat 188.42 OK

Initial/Center 182.96 OK

Final/Rail  Seat 173.07 N/A

Final/Center 163.71 N/A

Location/Critical Section Concrete Stress (psi) Allowable Stress Check

Tie Top/Rail  Seat 903 OK
Tie Bottom/Rail  Seat 2165 OK

Tie Top/Center 2640 OK
Tie Bottom/Rail  Seat 1970 OK

Concrete Stresses @ TransferSummary/Check

Load Case/Critical Section
Nominal Moment Capacity 

Mn (kip-in)
Service Moment Capacity ML 

(kip-in)

Flexural Capacity

Prestressing Stresses Summary/Check
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Appendix E: Cross-sections of Optimized Designs 
 

W(PT)-0.21(PD)-7(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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W(PT)-0.21(PD)-95(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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W(PT)-0.21(PD)-12(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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W(PT)-0.21(PD)-15(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.25(PD)-7(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.25(PD)-95(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.25(PD)-12(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.25(PD)-15(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.3125(PD)-7(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.3125(PD)-95(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.3125(PD)-12(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.3125(PD)-15(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.375(PD)-7(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.375(PD)-95(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.375(PD)-12(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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S(PT)-0.375(PD)-15(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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FRP(PT)-0.25(PD)-7(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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FRP(PT)-0.25(PD)-95(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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FRP(PT)-0.25(PD)-12(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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FRP(PT)-0.25(PD)-15(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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FRP(PT)-0.375(PD)-7(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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FRP(PT)-0.375(PD)-95(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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FRP(PT)-0.25(PD)-12(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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FRP(PT)-0.25(PD)-15(CS) 
 

Positive Rail Seat Moment Governed Design 

 
Negative Center Moment Governed Design 
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Appendix F: FEA Modeling 

F 1.0 Finite Element Analysis Modeling Work Plan 

Finite element analysis (FEA) is a powerful tool which can be applied to the design of irregular 

shaped members, whose geometry causes standard analysis to be difficult or more importantly 

inaccurate. For flexural members that are exposed to regions of high stress concentration or 

exhibit varying cross-sectional dimensions along their length, the application of FEA modeling 

techniques is a valued addition to the analysis process. It allows for the addition of sophisticated 

geometry which would have previously been simplified or neglected (Logan 2007). For the 

reasons discussed above, prestressed concrete railroad ties are an excellent candidate for 

analysis using FEA modeling methods. Using the FEA modeling techniques, an evaluation of the 

baseline tie and optimized tie designs can be completed. Reasons for modeling the tie designs 

include: 

• Having a second numerical analysis technique to compare with experimental results, 

• There are currently few examples of FEA analysis on prestressed concrete railroad ties, 

• FEA analysis offers the ability to evaluate member behavior through the entire loading 

range to ultimate capacity, 

• FEA analysis allows for the evaluation of many iterations with relatively little 

computational expense on the part of the user compared to other numerical methods 

such as those described in Chapter 4. 

The following sections outline the application of FEA modeling to prestressed concrete railroad 

tie design. As stated in the future work section of this report, applying the methods of FEA to 

this analysis is the next logical step in the progression of this research.  

F 1.1 Baseline Tie Model 

To validate the application of FEA modeling to the analysis of prestressed concrete ties, a model 

of an existing tie design can be completed and compared to experimental results. Experimental 

results for the baseline tie design are available from the tie manufacturer and summarized on 

the design sheet included in Appendix B. The validation model would consist of the overall 

member geometry and the associated concrete and prestressing materials. Factors to be 
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considered in the FEA model are material properties, prestressing force itself, transfer lengths, 

bond slip, loading stages and boundary conditions.  

F 1.2 Optimized Tie Design Model 

Similar to the modeling of the baseline tie, the optimized tie designs could be modeled to 

evaluate their behavior across the range of loading which ties are exposed to.  

F 2.0 Modeling Prestressed Concrete Ties Using Finite Element Analysis 

Due to the intricacies or irregularities present in a structure’s design, analysis using a two-

dimensional model may be impossible or may simplify the actual structure to the point that it is 

no longer an accurate representation. In such cases finite element analysis (FEA) utilizing three 

dimensional modeling may be beneficial. However, three-dimensional FEA is tedious and 

impractical to perform by hand. This issue is further exacerbated by the incorporation of 

material properties and flow of loads throughout a structure. Computer software aids in 

resolving calculation problems but in order to produce a useful model proper procedures and 

modeling methods must be employed (Logan 2007).  

 

FEA software has become a useful tool in the world of engineering, specifically structural 

engineering. However, FEA and its application to certain building methods such as reinforced 

and prestressed concrete can be substantially more difficult than say steel. The primary reason 

for the increased complexity is composite behavior which occurs in prestressed concrete 

between the concrete and steel (Nasreddin and Ergin 1991). Since structural concrete is one of 

the most widely utilized building materials in the world and with the structures it creates 

becoming more complex, the use of FEA is vital to the analysis and design of such structures.  

 

This literature review will provide an introduction to the unique characteristics associated with 

modeling prestressed concrete such as nonlinear material behavior, heterogeneous materials, 

two stage behavior (cracked versus un-cracked) and bond slip between the steel and concrete 

elements. In addition, current modeling techniques will be presented.  

F 2.1 Introduction to the Application of FEA to Prestressed Concrete 

Over the last several decades the methods to analyze prestressed concrete using finite element 

analysis has advanced with respect to modeling and material behavior. This has occurred 
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through the uses of innovative modeling techniques which utilize specialized elements and 

varying degrees of freedom. Considering these innovations three approaches are used in the 

modeling of a prestressed concrete members; discrete model, embedded model, and smeared 

model. Modeling prestressed concrete railroad ties would utilize one of these methods or a 

combination of them depending on the desired complexity and capability of the model 

(Nasreddin and Ergin 1991). 

 

The first method and most straightforward in theory is the discrete model. The discrete model 

uses individual elements to construct the concrete and steel meshes separately. Typically solid 

elements and bar elements are used for the concrete and steel respectively (Figure 77). 

Fictitious spring elements model bond between the concrete and steel by connecting the 

separate nodes of the meshes. The various bond conditions existing between the limits of no 

bond and perfect bond can be applied by changing the spring stiffness. Large spring stiffness 

corresponds to perfect bond while low spring stiffness signifies a post-tensioned member 

absent of bond (Nasreddin and Ergin 1991).  An advantage of the discrete model is that it allows 

for precise definition of material properties since two independent element types are used for 

the concrete and steel.  

 

Solid Element 
Concrete Mesh

Bar Element 
Prestressing

Fictitious 
Spring Element

Joint Node

 

Figure 77: Two-dimensional demonstration of discrete model showing individual components 

The only disadvantage to the discrete model is that meshing is restricted to the placement of 

prestressing. In order to have transfer of strain from the concrete to the steel and vice versa the 
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individual nodes of the meshes must coincide to have the fictitious nodal connections 

representing bond. Therefore the equilibrium point between a uniformly very fine mesh and 

irregular mesh constrained to the position of reinforcement must be found (Nasreddin and Ergin 

1991). 

To surmount the issue of mesh dependency inherent in the discrete model, the embedded 

model formulation has been developed. The modeling process begins with setting the concrete 

mesh independent of the steel layout, refining as necessary. Once the steel and concrete 

elements have been placed the edge nodes of the concrete elements mid-side are moved to the 

intersections of the steel and concrete (Figure 78). Physically shifting the placement of the 

concrete edge nodes causes node mapping distortions (NMD) characterized by the change in 

the polynomials defining the parent element. To account for NMD the parent element must be 

augmented to allow for edge node movement. This is typically done automatically by most FEA 

software or alternate element types such as isoparametric elements with movable nodes may 

be used (Nasreddin and Ergin 1991).  

 

Concrete 
Mesh

Prestressing 

 (a) 

Movable 
Edge Nodes

 (b) 

Figure 78: Steel elements in concrete mesh: (a) regular mesh (b) mesh with shifted edge nodes (Nasreddin and 
Ergin 1991) 

Comparing discrete and embedded models, both allow for the use of separate steel and 

concrete elements, precision in terms of material property definition, while embedded models 

eliminate the mesh dependency characteristic of discrete models.  

 

The final method called the smeared model is restricted to uniformly distributed reinforcement. 

In order to model prestressing or any other main reinforcement a discrete model is required. 

For the reinforcement modeled by the smear model perfect bond is assumed. For the 
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aforementioned reasons the smear model is typically used in conjunction with discrete models 

to achieve the necessary material parameter options. 

F 2.2 Stress-Strain Relationships 

Similar to topics previously discussed simplifying assumptions about materials in terms of stress-

strain behavior are made to perform standard prestressed concrete analysis. Typically it is 

assumed that stress-strain are linear relationships for both concrete and steel materials in the 

lower stress ranges  and simplifying assumptions are made for their behavior in the upper 

regions of their stress-strain curves where the relationship become nonlinear (ACI 2005). 

However, with FEA software nonlinear analysis can be performed.  

F 2.2.1 Concrete 

The stress-strain curve for concrete contains both linear and non-linear portions. In order to 

model its behavior using FEA methods two alternative approaches are available. First the 

nonlinear curve portion can be approximated as a series of linear curves with set limits. 

Secondly, more complicated algorithms can be determined to match the curve. In either case 

the true nonlinear curve should be determined through laboratory testing. Approximations for 

concrete material properties do exist in the ACI code references previously discussed but for 

accurate model behavior laboratory data representative of the specific concrete mix is preferred 

(Lykidis and Spiliopoulos 2008). 

F 2.2.2 Steel 

Similar to concrete, high tensile steel, which is a characteristic of prestressed concrete, exhibits 

nonlinear behavior in the upper regions of its stress-strain curve near failure. To model the steel 

behavior the most common method is to use a multi-linear curve algorithm with set limits for 

the boundaries of the transitions. Steel manufacturers are typically able to provide the 

necessary information on the boundaries of the multi-linear curve (Mario et al. 1999). 

F 2.3 Two Stage Behavior  

Cracking is typically a term associated with failure, but in prestressed concrete this is not the 

case. Concrete members are unique in that they are permitted to crack under service design 

loads while remaining structurally sound and safe. In other words these members will crack 

prior to reaching their ultimate load. Therefore the model a designer uses must be capable of 
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identifying when stresses in a member reach a specified cracking limit and adjust the model 

accordingly to continue being able to accurately simulate of the actual member behavior. A 

model may account for cracking by changing the section properties of the member and the flow 

of stresses within the model. Figure 79 illustrates a prestressed concrete beam which has 

cracked in the tension zone of the bottom flange, but is still capable of supporting load.  

 

 

Figure 79: Cracking in bottom flange of beam outlined in black marker occurs prior to complete failure of beam  

F 2.4 Prestressing Transfer 

The mechanical relationship between steel and concrete is what generates the carrying capacity 

of the structural members which they compose. However, this relationship can be further 

complicated by stressing the steel in tension prior to service. The tensioned steel will in turn 

compress the surrounding concrete, ultimately making a more efficient design in terms of 

material.  Through the use of prestressing longer spans and delayed crack initiation of the 

concrete can be achieved. When modeling a prestressed concrete member the transfer of the 

stress from the steel to the surrounding concrete element mesh is an issue which must be 

addressed.  

 

Transfer of the prestressing stress begins from the free end of the prestressing steel where the 

initial strain is zero. As the prestressing moves inward from the ends of the member the initial 

strain and force are transferred into the surrounding concrete until the concrete has equivalent 

strain as the steel (Naaman 2004). The distance that is required for this equilibrium to take place 

is known as the transfer length. The distance required depends on the diameter of the 

prestressing steel, steel surface roughness, and the concrete mix design.  
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F 2.5 Prestressing Bond Slip 

For the mechanical relationship of prestressed concrete members to take place a bond between 

the steel and concrete occurs at the interface of the two materials. The bond consists of a 

mechanical interaction between concrete components and deformations along the surfaces of 

the prestressing.  The strength of the bond depends on the strength of the concrete and the size 

and pattern of steel deformations. When the strength of this bond is exceeded slippage at the 

interface may occur. Cracking of the concrete to a depth of the steel at higher loads may 

increase slippage until yielding allows steel strains to more closely match those of the concrete 

(Figure 80) (Lykidis and Spiliopoulos 2008).  

(a)

(b)

(c)

Element 2 Element 3Element 1

Nodes Before 
Slipping

Nodes After 
Slipping

S after cracking

S before cracking
S after cracking

S before cracking

 

Figure 80: Effect of cracking at interface between steel and concrete (a) reinforcement slipping inside concrete prior 
to cracking (b) residual forces resulting from cracking act on un-cracked concrete to expand cracked region (c) steel 
elements deform from residual forces and bar slipping (Lykidis and Spiliopoulos 2008) 
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Bond is typically ignored in design as compatibility is assumed. FEA provides the opportunity to 

account for the movement of steel and concrete elements with respect to one another. For 

models which intend on operating in the higher load regions of member failure, the inclusion of 

bond slip is essential for creating an accurate model. Modeling techniques for prestressing bond 

and slippage incorporation are discussed in the following sections.  

F 2.5.1 Perfect Bond Assumption 

The assumption of perfect bond is made for many models due to the added complexity which is 

associated with bond slip. Perfect bond is the assumption that the connection between the 

prestressing and concrete is infinitely strong. Therefore no movement will occur between the 

two elements throughout the loading sequence. The accuracy of this assumption depends on 

magnitude of the loading which the model is expected to perform through. If the model will 

operate within the initial linear region of the steel and during the uncracked section conditions 

then perfect bond assumptions are reasonable. However, if the prestressing is expected to yield 

and the concrete crack, this assumption will be unconservative in terms of ultimate capacity. 

Therefore it is generally suggested that models include bond slip parameters to accurately 

predict member behavior in the upper ranges of loading. 

F 2.5.2 Method I: Spring & Concentrated Link Elements 

The first method of modeling bond at the interface and the most common in practice is the use 

of additional fictitious elements such as springs or concentrated links to connect the steel and 

concrete. Such connecting elements link the nodes of the respective steel bar elements and 

concrete matrix. Using this method the bond stresses are typically distributed linearly along the 

element length. Connecting elements are also responsible for the transfer of prestressing force 

from steel element to concrete “host” element (Figure 77). Stiffness of the connecting elements 

is determined from experimental testing of bond. This process was discussed earlier and is often 

associated with the discrete model method (Lykidis and Spiliopoulos 2008). 

F 2.5.3 Method II: Element Subdivision 

To minimize the number of elements a method of subdividing the existing steel elements into 

sub-elements has been proposed. Each sub-element describes a single effect, such as inelastic 

behavior due to bending, shear behavior at the interface and bond slip behavior at higher loads. 



 

228 
 

The interaction of the individual effects is achieved through the combination of the sub-

elements (Lykidis and Spiliopoulos 2008).  

F 2.5.4 Method III: Additional Degrees of Freedom 

Similar to previous methods, steel modeling is done using bar elements. However, an additional 

degree of freedom is incorporated at each node expressing the relative slip between the steel 

and concrete. In this case the element represents both the steel and the bond at the interface. 

This additional degree of freedom is the relative slip displacement is defined as the difference 

between the steel and concrete displacements (Lykidis and Spiliopoulos 2008). 

F 2.6 Element Selection 

A variety of element types exists for both steel and concrete materials because the purpose and 

desired output may vary from model to model. The following section summarizes suggested 

elements for use in modeling prestressed concrete members. These recommendations are 

based on the commercially available software ANSYS. 

F 2.6.1 Solid Elements 

Characteristics of solid elements which are necessary for modeling concrete of concrete 

included; the ability to model the cracking and crushing of the solid matrix, user defined 

inelastic response. It is recommended that the user start with the SOLID65 three-dimensional 

reinforced concrete solid element which is defined by eight nodes with each having three 

degrees of freedom (Figure 81). This element must be used in association with the discrete 

model since edge nodes are not available. To obtain non planar surfaces associated with the tie 

geometry prism and tetrahedral options are available. The SOLID65 is capable of cracking 

tension and crushing in compression due to built in algorithms which are dependent on user 

input of material parameters. 

x

y

z
 

Figure 81: SOLID65 three-dimensional element 
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F 2.6.2 Bar Elements 

To model prestressing the two necessary element characteristics are the ability to perform 

inelastic behavior and define an initial strain. It is recommended starting with the LINK8 element 

(Figure 82). This is a truss element which is capable of compression and tension with three 

degrees of freedom at each node. Each end node is modeled as a pin connection so no bending 

of the element is considered. An advantage of the LINK8 element is the ability to specify an 

initial strain. This is useful for defining the initial prestressing force. In addition, prestressing 

transfer can be completed by simply varying the initial strain along the length of the steel mesh. 
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Figure 82: LINK8 bar element displayed with local and global axis  

F 3.0 Summary of FEA Related to Concrete Ties 

The three most important aspects of FEA modeling of a prestressed concrete railroad tie are the 

following: 

• The model must be capable of differentiating when the elements have reached the 

allowable concrete stress conditions which correspond to failure. 

• The model must be capable of operating within the nonlinear range of behavior to 

capture the ultimate capacity of the tie. 

• The connection between the concrete and prestressing elements should be able to 

account for bond slip, transfer and development. 

• Concrete railroad ties have variable boundary conditions due to the changing ballast 

support distributions. 
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Appendix G: Copyright Permissions 
From:  Nigel.Peters@cn.ca 

To:  rhlutch@mtu.edu 

Russell,  
 
Thank you contacting me regarding the use of material from one of my papers. I have no 
objection to you using the photos or any other material in the paper as long as you acknowledge 
and cite the source.  
 
Good luck with your paper and your seminar.  
 
Nigel W. Peters, Ph.D., P.Eng  
Assistant Chief Engineer  
Bridges and Structures  
CN Rail  
Homewood, IL.  
----- Original Message -----  
From: Russell Lutch [rhlutch@mtu.edu]  
Sent: 29/01/2009 05:15 PM EST  
To: Nigel Peters  
Subject: Permission for use of photographs, Russell Lutch-Michigan Tech University  
 
Dr. Nigel Peters,  
 
Hello, my name is Russell Lutch and I am a graduate student at Michigan Technological 
University. I am writing a conference paper called "Causes and Preventative Methods for 
Railseat Abrasion in North American Railroads" for the ASCE Cold Regions Engineering 
Conference. I am citing a report you wrote in collaboration with a Steven Mattson several years 
ago titled "CN 60E Concrete Tie Development". In the paper there are several excellent 
photographs depicting rail seat abrasion and the cast-in steel plates used in the CN 60E design. I 
would like your permission to use those photographs in my conference paper merely as 
examples. Please feel free to contact me with any questions, and I look forward to hearing your 
response.  
 
Thank you,  
Russell H. Lutch  
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