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A

A push to reduce dependency on foreign energy and increase the use of renewable 

energy has many gas stations pumping ethanol blended fuels.  Recreational engines 

typically have less complex fuel management systems than that of the automotive sector.  

This prevents the engine from being able to adapt to different ethanol concentrations.  

Using ethanol blended fuels in recreational engines raises several consumer concerns.  

Engine performance and emissions are both affected by ethanol blended fuels. 

bstract 

This research focused on assessing the impact of E22 on two-stroke and four-

stroke snowmobiles.  Three snowmobiles were used for this study.  A 2009 Arctic Cat Z1 

Turbo with a closed-loop fuel injection system, a 2009 Yamaha Apex with an open-loop 

fuel injection system and a 2010 Polaris Rush with an open-loop fuel injection system 

were used to determine the impact of E22 on snowmobile engines.  A five mode 

emissions test was conducted on each of the snowmobiles with E0 and E22 to determine 

the impact of the E22 fuel.  All of the snowmobiles were left in stock form to assess the 

effect of E22 on snowmobiles currently on the trail. 

Brake specific emissions of the snowmobiles running on E22 were compared to 

that of the E0 fuel. Engine parameters such as exhaust gas temperature, fuel flow, and 

relative air to fuel ratio (λ) were also compared on all three snowmobiles.  Combustion 

data using an AVL combustion analysis system was taken on the Polaris Rush.  This was 

done to compare in-cylinder pressures, combustion duration, and location of 50% mass 

fraction burn. 

E22 decreased total hydrocarbons and carbon monoxide for all of the 

snowmobiles and increased carbon dioxide.  Peak power increased for the closed-loop 

fuel injected Arctic Cat.  A smaller increase of peak power was observed for the Polaris 

due to a partial ability of the fuel management system to adapt to ethanol.  A decrease in 

peak power was observed for the open-loop fuel injected Yamaha. 
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Chapter 1 Introduction 

There is a need to understand the impact of ethanol blended fuels on recreational 

engines.  As ethanol concentrations increase at the pump, it is becoming more difficult to 

find non-oxygenated fuel for recreational engines.  This thesis focuses on snowmobile 

engines and the impact from higher ethanol content fuel.  To help keep purchase prices 

low, many snowmobile engines are less complex than automotive fuel management 

systems.  This prevents snowmobile engines from being able to adapt to ethanol blended 

fuels.  This inability to adapt raises two major concerns of running ethanol blended fuels.  

One concern is the effect on emissions.  As ethanol concentration increases, combustion 

tends to go lean.  This leaning effect increases cylinder temperatures which can affect 

emissions and overall engine durability.  The second concern is the impact of ethanol 

blended fuels on engine performance.  Ethanol has a decreased heating value when 

compared to gasoline which results in decreased power output. 

1.1 Renewable Fuel Standard (RFS) 

The Energy Policy Act (EPAct) of 2005 created the RFS program.  The first stage 

of the RFS program was to blend 7.5 billion1 gallons of renewable fuel into gasoline by 

2012.  The second stage of the RFS program was set into place by the Energy 

Independence and Security Act (EISA) of 2007.  This stage required 36 billion1

1.2 Snowmobile statistics 

 gallons 

of renewable fuel to be blended into transportation fuels including diesel.  EISA created 

standards that require that new renewable fuels must emit fewer greenhouse gases than 

the fuel they replace.  The RFS program also reduces the need for importing fuel and 

promotes the development of the renewable fuels sector. 

With over 1.5 million snowmobiles registered nationwide2 in 2011 it is important 

to consider how snowmobiles are affected by ethanol blended fuels.  An estimated 51,796 

new snowmobiles were sold in 2011 alone.  The average rider rides their snowmobile 

1414 miles per season on over 225,000 miles of groomed trails in North America. 
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1.3 Research Goal and Objectives 

The research goal was to assess the impact of E22 (22 % by volume ethanol 78 % 

by volume gasoline) on snowmobile engines.  The considered impacts were emissions, 

engine performance, and combustion parameters.  Three snowmobiles with significantly 

different fuel management strategies were used for testing.  One fuel management 

method was a closed-loop throttle body fuel injected four-stroke engine.  This system was 

similar to modern automotive control systems.  The second system was an open-loop port 

fuel injected four-stroke engine.  The third snowmobile was an open-loop semi-direct 

injected two-stroke engine.  Each of the snowmobiles were instrumented with 

thermocouples for exhaust gas temperatures, coolant temperatures, intake temperatures, 

and oil temperature for the four-stroke snowmobile.  A Land and Sea nine inch water 

brake dynamometer was mounted to the crankshaft to provide load for emissions testing.  

A Re-sol fuel measurement cart was implemented to record fuel flow.  A Horiba MEXA 

1600D emissions analyzer was utilized to record raw emission concentrations.  E0 and 

E22 fuel from Gage Products was used for emissions testing.  An AVL combustion 

analysis package was used on the two-stroke snowmobile to record in-cylinder pressures 

on a crank angle basis. 

A power sweep was conducted on each of the snowmobiles to determine the peak 

power and the engine speed where peak power occurred.  The peak power engine speed 

and peak power torque was used to calculate a five mode emissions test.  Tests were 

conducted in triplicate to assess repeatability of the results. 
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Chapter 2 Background/Literature Review 

A demand for a renewable energy source to supplement or even replace gasoline 

has many fuel stations pumping gasoline-ethanol blends.  In the performance world of 

snowmobiles, ethanol raises several concerns.  These concerns include emissions and 

engine performance, as well as, the effect of ethanol on engines with less complex fuel 

management systems. 

2.1 Literature Description 

Due to limited testing of ethanol on snowmobile engines, this literature review 

focuses on the affects of ethanol-gasoline blends on internal combustion engines.  The 

following sub-sections describe the engines used, ethanol concentrations, and test 

methods of the reviewed literature. 

2.1.1 Ning et. al 2005, SAE 2005-32-0053

For this paper, three different single cylinder, air cooled, carbureted motorcycles 

were used for testing.  Included was a 100 cc four stroke, a 125 cc four stroke and a 100 

cc two-stroke.  There were three motorcycles of each model.  One motorcycle was run 

using E0 while the other two were run with E10.  Each motorcycle was tested at 1,000 

km for emissions, maximum speed and fuel consumption at a constant speed.  This 

process was then repeated after driving the motorcycles for a total of 10,000 km 

3 

2.1.2 Knoll et. al 2009, SAE 2009-01-2723

For this study 16 production vehicles of model years 1999 to 2007 and 10,000 to 

100,000 miles on the odometer were used for testing.  Four fuels were used: E0, E10, E15 

and E20. Emissions were found using the LA92 drive cycle

4 

5

 

.  Some of the vehicles had a 

long term fuel trim (LTFT) which allowed the vehicle to learn the fuel and make 

adjustments for the ethanol content. 
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2.1.3 Nakata et. al 2006, SAE 2006-01-3380

For this study, an automotive application Toyota engine was used.  The engine 

was an inline four cylinder four-stroke with multi port fuel injection and a displacement 

of 1496 cc.  The engine's compression ratio was increased to 13 from the production 

10.5. The fuels used for this test were a 100 research octane number (RON) gasoline, and 

a 92 RON gasoline. Ethanol was then added to the 92 RON gasoline in concentrations of 

E10, E20, E50 and E100.  Thermal efficiency, oxides of nitrogen (NOx), total 

hydrocarbons (THC), carbon dioxide (CO

6 

2)

2.1.4 Czerwinski et. al 2012, SAE 2010-01-0794

 and ignition timing were recorded at 2000 

rpm and a brake mean effective pressure (BMEP) of 200 kPa for the different blends of 

ethanol.  Volumetric efficiency, thermal efficiency, ignition timing, torque and brake 

specific fuel consumption (BSFC) were recorded at 2800 rpm and wide open throttle 

(WOT) for the different blends of ethanol.  Cold start testing was also completed but due 

to the lack of cold start testing for the other studies, is ignored for this review. 

For this paper, a 2004 two-stroke Piaggio Typhoon, a 1976 two-stroke Kreidler 

Florett and a 2004 four-stroke Honda Zoomer were used for testing.  All of the scooters 

were single cylinder, 50 cc, carbureted engines.  The Honda Zoomer was liquid cooled 

while the other two were air cooled.  The fuels used for blending were 95 RON gasoline, 

pure ethanol and hydrous ethanol.  The hydrous ethanol contained 4 % water by volume.  

The fuels were blended into concentrations of E0, E5, E10, E15, E20, EH5, EH10, EH15 

and EH20.  Drive cycles were determined using regulations of the Bundesamt für 

Umwelt, which is Switzerland's environmental protection agency. 

7 

2.2 Effect of Ethanol Blends on Emissions 

Pure ethanol (E100) has a higher flame speed, shorter burn duration, larger latent 

heat of vaporization, smaller heating value, and a smaller stoichiometric air/fuel ratio 

than that of gasoline.  These differences, as well as a different chemical composition 

directly affect emissions. 
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2.2.1 Ning et. al 2005, SAE 2005-32-0053 

The use of E10 reduced carbon monoxide (CO) by 50 %.  THC was reduced by 

20 %.  Figure 2.1 shows a consistent decrease in CO, however there is no trend in NOx.  

NOx varies from a nearly 30 % reduction to a nearly 80 % increase. 

 

Figure 2.13: Percent decrease of CO and NOx

Reprinted with permission from SAE Paper No. 2005-32-0053 © 2005 SAE International 

 for E10 compared to E0 with small 
displacement motorcycles. 

2.2.2 Knoll et. al 2009, SAE 2009-01-2723 

The emissions recorded for this study were:  non-methane organic gas (NMOG), 

non-methane hydrocarbons (NMHC), CO, NOx, ethanol, acetaldehyde and 

formaldehyde.  Fuel economy was also recorded.  As shown in Figure 2.2, CO and 

NMHC were reduced when compared to E0.  As the ethanol concentration increased 

from E10, changes in CO and NMHC are relatively constant.  NOx emissions were 

increased in the vehicles that do not apply LTFT.  The vehicles that do apply LTFT saw a 

decrease in NOx emissions.  The decrease of NOx in vehicles that apply LTFT was due 

to the vehicle's ability to adapt to the ethanol concentration in the fuel.  During WOT and 

near WOT conditions, many automotive engines switch to an open-loop fuel strategy 

where more fuel is injected to reduce engine and exhaust temperatures.  Vehicles that 
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applied LTFT still account for ethanol concentration during the open-loop mode and 

therefore maintained relative air/fuel ratio (λ).  Maintaining λ caused a decrease in in-

cylinder temperatures due to the larger latent heat of vaporization of ethanol.  This 

decrease in temperature, in turn, reduced NOx

 

.  Fuel economy decreased as ethanol 

concentration was increased for all vehicles. 

Figure 2.24

Figure 2.3

: Percent change of emissions relative to E0 with various automobiles. 

 shows that ethanol emissions were higher with the vehicles that did not 

apply LTFT.  However, both types of vehicles observed an increase of ethanol in the 

exhaust.  Acetaldehyde also increased as ethanol concentration increased.  Formaldehyde 

increased statistically significantly for the vehicles that applied LTFT.  The vehicles that 

did not apply LTFT did not have a statistically significant increase in Formaldehyde. 
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Figure 2.34

2.2.3 Nakata et. al 2006, SAE 2006-01-3380 

: Percent change of ethanol and aldehyde emissions relative to E0 with 
various automobiles. 

For each blend of ethanol, the ignition timing was set to the minimum spark 

advance for best torque (MBT). As the ethanol concentration was increased, the ignition 

timing could be retarded and still maintain maximum torque due to ethanol having a 

faster rate of combustion.  As the ethanol concentration was increased, NOx, THC and 

CO2 Figure 2.4 decreased ( ). NOx emissions decreased from 16 g/kWh to 10 g/kWh.  

THC decreased from 7.5 g/kWh at E0 to 2 g/kWh at E100.  CO2 emissions increased 

from 1120 g/kWh to 1130 g/kWh at E0 and E10 respectively.  CO2 then decreased to 

1080 g/kWh at E100.  Thermal efficiency increased from 22.5 % at E0 to 23.3 % at 

E100. 
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Figure 2.46

Reprinted with permission from SAE Paper No. 2006-01-3380 © 2006 SAE International 

: Emissions and performance with different blends of ethanol utilizing a 
Toyota 1.5L engine. 

2.2.4 Czerwinski et. al 2012, SAE 2010-01-0794 

A decrease in CO was observed for all three scooters as ethanol content increased.  

CO emissions also decreased for hydrous ethanol when compared to the same 

concentration of anhydrous ethanol (Figure 2.5).  This was expected due to the increasing 

oxygen content of the fuel as ethanol content increased.  THC emissions decreased for 

the Kreidler and Honda.  The Piaggio experienced an increase in THC emissions with 

rising ethanol content.  This was attributed an increase in cyclic irregularities of 

combustion.  Inversely with THC, NOx emissions increased for the Kreidler and Honda 

while decreasing for the Piaggio. 
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Figure 2.57

Reprinted with permission from SAE Paper No. 2010-01-0794 © 2010 SAE International 

: Emissions comparison of different blends of ethanol for three different 
scooters.  The Honda is a four-stroke engine while the Piaggio and Kreidler are two-
stroke engines. 

2.3 Effects of Ethanol Blends on Engine Performance 

Ethanol has a lower energy content by 39 % compared to gasoline.  Due to the 

less complex fuel management systems of older vehicles and small engines, a reduction 

in power will be seen, as well as an increase in fuel consumption with adding ethanol to a 

base gasoline. 

2.3.1 Ning et. al 2005, SAE 2005-32-0053 

For this test maximum vehicle speed was used as a replacement for engine power.  

A reduction in maximum speed is assumed to correlate to a reduction in maximum 

power.  Maximum speed decreased 2 % at 1,000 km and 5 % at 10,000 km.  This is due 
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to the smaller heating value of ethanol compared to gasoline and the motorcycle's 

inability to adjust the air/fuel ratio to match that required by the E10 mixture.  The larger 

decrease at 10,000 km compared to at 1,000 km also shows an increased degradation of 

the engine due to E10. 

A constant speed of 25 km/h was used to determine fuel consumption with an 

ONOSOKI on board fuel flow meter.  At 1,000 km, the fuel consumption was increased 

by 30 % and at 10,000 km the fuel consumption increased by 10%.  The increase in fuel 

consumption is explained by the smaller heating value of ethanol compared to gasoline.  

One explanation of a smaller increase at 10,000 km than at 1,000 km is that the engines 

may not have been completely broken-in at 1,000 km. This would mean that frictional 

losses would be greater at 1,000 km than at 10,000 km.  The frictional losses would 

require less gasoline than ethanol to balance the vehicle speed. 

2.3.2 Nakata et. al 2006, SAE 2006-01-3380 

The right column of Figure 2.4 shows thermal efficiency, BSFC, torque, ignition 

timing, and volumetric efficiency at 2800 rpm and WOT for different concentrations of 

ethanol.  Volumetric efficiency decreased from 89 % to 87 % at E0 and E100 

respectively with the largest difference between E10 and E20. Ignition timing was limited 

by knock until a concentration of 50 % ethanol was used. Engine torque increased from 

117 Nm at E0 to 140 Nm at E100. The increase of torque was due to the advanced timing 

made possible by the increased octane number of ethanol. BSFC decreased from 260 

g/kWh at E0 to 245 g/kWh at E20.  The decrease in BSFC was due to a larger increase in 

power compared to the increase in fuel flow.  BSFC increased at ethanol concentrations 

of 50 % and 100 % to 265 g/kWh and 340 g/kWh respectively.  This increase in BSFC is 

due to the torque leveling off while fuel flow continued to increase.  Thermal efficiency 

increased from 31 % to 40 % at E0 and E100 respectively. 
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2.3.3 Czerwinski et. al 2012, SAE 2010-01-0794 

EGTs increased with increasing ethanol content for the Piaggio.  The Kreidler 

saw an increase in EGT from E0 to E5 however EGTs decreased as ethanol concentration 

increased further.  An initial decrease in EGT from E0 to E10 occurred on the Honda.  

EGTs then increased with increasing ethanol content.  Maximum speed decreased for the 

Piaggio as ethanol concentration increased.  The Kreidler's maximum speed decreased 

with ethanol content however with hydrous ethanol, maximum speed improved at and 

above EH10.  An increase in maximum speed was observed for the Honda from E0 to 

E10.  Maximum speed then decreased until E20 which had approximately the same 

maximum speed as E0. 

 

Figure 2.67

Reprinted with permission from SAE Paper No. 2010-01-0794 © 2010 SAE International 

: Engine performance comparison of different blends of ethanol for three 
different scooters.  The Honda is a four-stroke engine while the Piaggio and Kreidler are 
two-stroke engines. 
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2.4 Literature Review Summary 

In all four studies, THC decreased significantly with the addition of ethanol with 

the exception of the Piaggio scooter. The Piaggio scooter observed an increase in THC as 

ethanol content increased.  This was due to poor engine performance and increased 

misfiring.  In the first three tests, THC was reduced by nearly 20 % from E0 to E10.  The 

second and third studies showed a further decrease of THC from E0 to E20 at about 25 

%.  The third study shows THC decreasing even further as ethanol concentration 

increases. 

The motorcycles saw a 50 % decrease in CO from E0 to E10 while the 

automobiles in the second study only saw a decrease of 10 % to 15 %.  This is probably 

due to the motorcycles carburetion whereas most of the automobiles had a closed-loop 

fuel injection system.  The scooters also observed a significant decrease in CO. 

There was a lot of variation in NOx emissions for the motorcycles.  The NOx 

levels varied from a 30 % decrease to an 80 % increase.  In the automobile test, the NOx 

tended to increase for the vehicles that did not apply LTFT and decrease for the vehicles 

that did apply LTFT. In the third test, NOx levels decreased as ethanol concentration was 

increased.  This shows that engines that are adapted to ethanol can decrease NOx 

emissions while engines that cannot adapt tend to increase NOx.  Due to the oxygen in 

ethanol, the engines that cannot adjust the air/fuel ratio for ethanol tend to run lean which 

increases combustion temperatures and available oxygen which in turn produces NOx. 

The first two studies showed a 10 % increase in fuel consumption at E10 

compared to E0.  At E10, the third study found a 20 % decrease in specific fuel 

consumption.  This is most likely due to the anti-knock quality of the ethanol.  With 

ethanol, the ignition timing can be advanced which produces more torque and therefore 

power.  The fuel consumption most likely increased slightly but because the fuel is still 

90 % gasoline and therefore the overall heating value of the fuel does not drop 

significantly.  This means that the slight increase in fuel consumption is smaller than the 
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increase in power which would drop specific fuel consumption.  The power increase 

starts to level off at E20.  At this point the fuel consumption continues to increase but the 

power has leveled off and therefore the BSFC starts to increase. 

A decrease in power was observed in the motorcycles, while the third test saw an 

increase in power.  This is due to two reasons.  The first, being the motorcycles inability 

to decrease the air/fuel ratio for ethanol.  This means that there is the same amount of fuel 

in the cylinder but the fuel mixture has less energy than straight gasoline.  The 

motorcycles are also incapable of changing the timing to take advantage or ethanol's anti-

knock quality.  The engine in the third test, however, saw an increase in torque and 

therefore power.  This is because the engine was able to adjust air/fuel ratio as well as 

ignition timing to improve power.  The Piaggio and Kreidler scooters observed a decrease 

in maximum speed with increased ethanol content.  The Kreidler, however, saw an 

increase in maximum speed with increasing hydrous ethanol concentration.  The Honda 

observed an increase in maximum speed from E0 to E10.  Maximum speed then 

decreased and leveled off with the same speed as E0. 
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Chapter 3 Experimental Setup 

The purpose of this research was to determine the impact of E22 on two and four-

stroke snowmobile emissions.  Three snowmobiles were used for this testing and are 

shown in Table 3.2.  These snowmobiles were chosen to represent a variety of current 

and available engine technologies.  The picture of the Yamaha Apex is of a 2011 model 

however is representative of the snowmobile tested.  The closed-loop fuel injection 

system of the Arctic Cat used feedback from an O2 sensor to control relative air/fuel 

ratio.  Relative air/fuel ratio was measured by comparing the partial pressure of O2 in the 

exhaust to that of the ambient air.  When excess O2

Emissions were taken on each of the snowmobiles with E0 and E22 utilizing a 

five mode test matrix.  Each run of the five modes were repeated a total of three times.  

This was done to validate repeatability.  An average of the three runs was then taken and 

a comparison was made between the two fuels. Fuel properties are shown in 

 was present in the exhaust, due to the 

enleanment effect of ethanol, fuel delivery was increased to maintain a consistent relative 

air/fuel ratio between the E0 and E22 fuels.  To obtain the exhaust sample for the 

Yamaha and Polaris snowmobiles, a 0.25 inch stainless steel probe was inserted 

approximately 10 inches into the muffler.  To obtain the exhaust sample for the Arctic 

Cat snowmobile, a 0.25 inch stainless steel probe was mounted in the exhaust pipe 

approximately 5 inches upstream of the muffler. 

Table 3.1.  

Key differences of the E22 fuel are a reduced lower heating value and a numerically 

lower air/fuel ratio (AFR). 
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Table 3.1 
Fuel properties of E0 and E22 used for testing. 

Property Unit E0 E22 
Lower Heating Value MJ/kg 44 40.2 
Stoichiometric AFR - 14.58 13.34 

RVP at 100° F psi 10.98 12.33 
Specific Gravity at 60° F - 0.7527 0.763 

Distillation, IBP ° F 88.5 87.6 
Distillation, DP ° F 400.6 390.6 

Ethanol Concentration Vol % 0 21.4 
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Table 3.2 
Snowmobiles and specifications used for testing. 

Snowmobile Engine 
Fuel Injection 

System 

2009 Arctic Cat Z1 Turbo Touring Liquid Cooled, 

Turbo-Charged, 

Intercooled, 1056 cc, 

Two-Cylinder, Four-

Stroke 8 

Closed-Loop, 

Throttle Body Fuel 

Injection 

2009 Yamaha Apex 

Liquid Cooled, 998 

cc, Four-Cylinder, 

Four-Stroke 

 9 

Open-Loop, Port 

Fuel Injection 

2010 Polaris Rush

Liquid Cooled, 599 

cc, Two-Cylinder, 

Two-Stroke 

10 

Open-Loop, Semi-

Direct Injection 
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3.1 Laboratory Test Setup 

The following sections discuss the equipment and procedures used for this test.  

This includes the water brake dynamometer and engine cooling stand. 

3.1.1 Water Brake Dynamometer Hardware 

A Land and Sea water brake dynamometer (Figure 3.1), as well as, Land and 

Sea's DYNO-MAX software were used to control engine speed and load.  The 

dynamometer was mounted directly to the taper of the crankshaft, the same way the 

primary clutch would be mounted for normal operation.  A hall-effect sensor was used to 

acquire the engine speed.  The torque arm was positioned over the jackshaft and with the 

use of a strain gauge, torque was obtained.  Water flow and therefore load was controlled 

with the use of a stepper motor and load valve as seen in Figure 3.2.  The throttle was 

controlled manually.  The load valve was used to control engine speed.  As the throttle 

was increased, water flow and therefore load would increase to maintain a constant 

engine speed. The throttle was then manipulated to maintain a certain engine torque. 
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Figure 3.1:  Land and Sea water brake dynamometer used to create load.  The 
dynamometer is mounted on the crank of each snowmobile.  The torque arm mounts on 
the jackshaft of each snowmobile. 

 

Figure 3.2: Dynamometer load control valve. 
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3.1.2 Engine Cooling Stand 

To cool the engine, a cooling stand was built (Figure 3.3).  A heavy duty radiator 

from a one-ton truck was used.  A programmable two stage thermostat (Ranco ETC-

211100-000) controlled a two speed, 24 inch Durafan, 7770 CFM fan to draw air across 

the radiator.  On low the fan was capable of flowing 5825 CFM.  These flows are based 

on a zero pressure drop.  As shown in Figure 3.4, coolant was pumped from the radiator 

to a liquid to liquid heat exchanger.  The snowmobile's cooling system was then 

connected to the liquid to liquid heat exchanger in a counter flow configuration.  This 

kept the snowmobile's cooling system as close to production temperatures and pressures 

as possible. 

 

Figure 3.3: Engine cooling stand. 
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Figure 3.4: Coolant flow diagram.  The heat exchanger was setup in a counter flow 
configuration. 

3.2 Laboratory Instrumentation 

The laboratory instrumentation consisted of DYNO-MAX software, Horiba 

emissions analyzer and AVL combustion analysis.  DYNO-MAX was used to record 

engine parameters, such as: torque, engine speed and various temperatures.  The Horiba 

emissions analyzer was used to record four emission gasses: total hydrocarbons (THC), 

carbon dioxide (CO2), carbon monixide (CO), and diatomic oxygen (O2

3.2.1 Dynamometer Software 

).  Combustion 

data was only taken on the Polaris snowmobile. 

DYNO-MAX by Land and Sea was used to record engine parameters.  For better 

visibility in this thesis, the DYNO-MAX screen was divided into a left and right side 

screen shot (Figure 3.5 and Figure 3.6 respectively).  Table 3.3 shows the engine 
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parameters recorded with DYNO-MAX.  K-type thermocouples were used to measure 

temperatures.  Some temperatures utilized varied from snowmobile to snowmobile.  For 

instance, the number of exhaust gas temperatures (EGT(s)) depended on the number of 

cylinders of the snowmobile.  Also, the Polaris was a two-stroke engine and therefore did 

not have an oil temperature.  Power, air flow, brake specific fuel consumption (BSFC), 

fuel conversion efficiency and brake mean effective pressure (BMEP) were all calculated 

and the corresponding equation number is shown in the right column of Table 3.3.  Data 

was recorded at 100 Hz and time averaged to 1 Hz. 

+  

Figure 3.5: Left side of DYNO-MAX screen.  The screen was cut in half for improved 
visibility in this thesis. 
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Figure 3.6: Right side of DYNO-MAX screen.  The screen was cut in half for improved 
visibility in this thesis. 
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Table 3.3 
Engine parameters recorded with DYNO-MAX. 

Directly Measured Calculated 
 Temperatures (C)     Equation 

Intake Torque (ft-lb) Power (horsepower)  Eqn. 1 

Coolant In 
Engine Speed 
(RPM) Air Flow (kg/hr)  Eqn. 2 

Coolant Out 
Fuel Flow 
(kg/hr) BSFC (g/kW-hr)  Eqn. 3 

Oil AFR (-) BMEP (bar)  Eqn. 4 

EGT(s) 

Barometric 
Pressure 
(mbar) 

Fuel Conversion 
Efficiency (%)  Eqn. 5 

Ambient Air 
Relative 
Humidity (%) 

 
  

 

𝑷 = 𝑵∗𝑻
𝟓𝟐𝟓𝟐

…………………………………………………………………………...Eqn. 1 

Where: 

P is power in horsepower 

N is engine speed in RPM 

T is torque in ft-lb 

𝑚̇𝑎 = 𝑚̇𝑓 ∗ 𝐴𝐹𝑅……………………………………………………………………..Eqn. 2 

 Where: 

 𝑚̇𝑎 is mass air flow 

 𝑚̇𝑓 is mass fuel flow 

𝐵𝑆𝐹𝐶 =
𝑚̇𝑓

𝑃(𝑘𝑊)
∗ �1000 𝑔

1 𝑘𝑔
�………………………………………...…………….Eqn. 3 
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𝐵𝑀𝐸𝑃 = 𝑇∗𝑛𝑐∗2∗𝜋
𝑉𝑑

………………………….……………………………………Eqn. 4 

 Where: 

 𝑛𝑐 is the number of revolutions per cycle 

 𝑉𝑑 is the displacement volume 

𝜂𝑓 = 𝑃(𝑘𝑊)
𝑚̇𝑓∗𝐿𝐻𝑉

……………………...…………………………………………….…Eqn. 5 

3.2.2 Emissions Analyzer 

A Horiba MEXA 1600D five-gas emissions analyzer was used to obtain 

emissions data (Figure 3.7).  The Horiba analyzer utilizes a non-dispersive infrared 

sensor (NDIR) to detect CO and CO2 concentrations. THC concentrations are detected 

with the use of a flame ionization detector (FID).  A chemoluminescence detector (CLD) 

is used for NOx detection and a magnetopneumatic detector (MPD) is used for O2

Table 3.4

 

detection.   shows the measurement range and repeatability for the various 

analyzers in the Horiba MEXA 1600D emissions analyzer. 

Table 3.4 
Measurement range and repeatability of Horiba analyzer. 

Analyzer Measurement 
Range Repeatability 

CO 0-16 Vol% 2 
± 1 % of full 

scale 

CO 0-10 Vol % ± 1 % of full 
scale 

THC 0-50,000 ppmC1 ± 1 % of full 
scale 

O 0-25%Vol % 2 
± 1 % of full 

scale 
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Figure 3.7: Horiba MEXA 1600D emissions analyzer. 

3.2.3 Combustion Data Acquisition 

Due to the faster flame speed of ethanol, a decrease in combustion duration, as 

well as, an advance in 50 % mass fraction burn was expected with the E22 fuel compared 

to the E0 fuel.  AVL's IndiCom software and IndiModul 621 hardware were utilized to 

acquire crank angle and cylinder pressure.  The AVL system is capable of a sampling rate 

up to 800 kHz per channel with a 14 bit ADC.  An AVL 365C optical encoder was used 

to record crank angle position.  The encoder had a resolution of 0.025 degrees.  An AVL 

GU13Z-24 pressure transducer mounted in a custom spark plug adapter (Figure 3.8) was 

used to measure in-cylinder pressure.  The GU13Z-24 pressure transducer had a 

sensitivity of 15.3 pC/bar.  The in-cylinder pressure transducer data was utilized to 
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calculate indicated mean effective pressure (IMEP), combustion duration, and mass 

fraction burned (MFB). 

 

Figure 3.8: AVL GU13Z-24 pressure transducer mounted in custom spark plug adapter 

3.2.4 Fuel Supply and Measurement Cart 

The snowmobiles tested for this thesis all have fuel pumps in the fuel tank.  The 

fuel is pressurized either at the pump or with a fuel pressure regulator located after the 

fuel rail.  For the purpose of fuel flow measurement, the production fuel pump was 

disconnected and a Re-Sol fuel cart was used (Figure 3.8).  The Re-Sol fuel cart 

contained a Coriolis flow meter which output a 4 mA to 20 mA signal depending on mass 

flow rate.  A 250 Ohm resistor was used to convert the signal to a 1 V to 5 V signal 

which was then logged by DYNO-MAX.  The fuel supply pressure was set to the 

manufacturer's fuel pressure for emission testing. 
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Figure 3.9: Re-Sol fuel flow cart. 

3.2.5 O2

A NTK O

 Sensor and Mounting Hardware 

2

Figure 3.9

 sensor was used on conjunction with a Powerdex AFX controller 

( ).  For ease of installation and to prevent dilution, a tailpipe clamp mount from 

Pegasus Auto Racing Supplies was used (Figure 3.10). 
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Figure 3.10: Powerdex AFX controller used to monitor relative air/fuel ratio. 

Figure 3.11: Tailpipe clamp mount used to mount the O

11 

2

  

 Sensor. 
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Chapter 4 Results 
4.1 Test Matrix Description 

Emissions were taken using the following test matrix.  The test consisted of five 

steady state modes.  Mode one is wide open throttle at peak power engine speed while 

mode five is idle.  Modes two through four are a percentage of peak power engine speed 

and peak power torque.  Table 4.1 shows the percentage of peak power engine speed and 

torque, as well as time for each mode.  Due to climbing engine temperatures, mode one 

was limited to 1 minute where the rest of the modes were conducted for 2 minutes. 

Peak power engine speed was found by conducting three power sweeps.  The 

mean peak power engine speed was then used to determine each mode's engine speed.  

The engine was then held at mode one for 1 minute to determine a mean engine torque.  

The mean engine torque was then used to determine the other mode's engine torque. 

The test started with E0 fuel.  Mode one was completed first, followed by mode 

two and down to mode five.  This was completed three times to ensure repeatability.  The 

fuel cart was then flushed and filled with E22 fuel.  Three runs of the five modes were 

then run with the E22 fuel. 

Table 4.1 
Test matrix. 

Mode 
Engine 

Speed (%) 
Engine 

Torque (%) 
Time 

(Minutes) 
1 100 100 1 
2 85 51 2 
3 75 33 2 
4 65 19 2 
5 Idle 0 2 
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4.2 Wet to Dry THC Conversion 

In order to calculate specific emissions, first dry THC must be calculated. This is 

done by calculating a correction factor (Eqn. 6).  The correction factor is then multiplied 

by the wet concentration of THC to obtain the dry concentration. 

𝐾𝑤 = 1 +

⎣
⎢
⎢
⎢
⎡
𝛼∗�

𝐶𝑂2 𝑑𝑟𝑦
100 +

𝐶𝑂𝑑𝑟𝑦
106 �+� 2∗𝑃𝑣

𝜙∗(𝑃𝑏−𝑃𝑣
�∗�

𝐶𝑂2 𝑑𝑟𝑦
100 +

𝐶𝑂𝑑𝑟𝑦
106 +𝑇𝐻𝐶𝑤𝑒𝑡106 �∗�1+𝛼4−

𝛽
2�

2∗�1+

𝐶𝑂𝑑𝑟𝑦
106

𝐶𝑂2 𝑑𝑟𝑦
100 ∗3.5

�
⎦
⎥
⎥
⎥
⎤
…..Eqn. 6 

Where: 

Kw

α is the atomic hydrogen/carbon ratio 

 is the THC wet to dry correction factor 

β is the atomic oxygen/carbon ratio 

CO2 dry is the dry volume percent of CO

Φ is the dry equivalence ratio 

2 

Pv

P

 is the vapor pressure of water in kPa 

b

THC

 is the barometric pressure in kPa 

wet

4.3 Brake Specific Emissions Calculation 

 is the wet concentration of THC in ppmC1 

To convert from concentrations to brake specific emissions, equation 7 is used.  

Mode five brake specific emissions are not calculated.  Mode five is at idle and therefore 

the power is zero.  Brake power is in the denominator of equation 7 and therefore brake 

specific values cannot be calculated. 
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𝑋𝐵𝑆 = �𝑋𝑑𝑟𝑦
𝐵𝑃

� ∗ � 𝑚̇𝑓

𝑇𝐻𝐶𝑑𝑟𝑦∗𝐶𝑂𝑑𝑟𝑦∗𝐶𝑂2 𝑑𝑟𝑦
� � 𝑀𝑊𝑎𝑖𝑟

𝑀𝑊𝐶+(𝛼∗𝑀𝑊𝐻)+(𝛽∗𝑀𝑊𝑂)
�……….…Eqn. 7 

Where: 

XBS

X

 is the brake specific value of the desired pollutant in g/kW-hr 

dry

BP is brake power in kW 

 is the volume percent of the desired pollutant 

𝑚̇𝑓 is the mass flow rate of fuel in g/hr 

MWair

MW

 is the molecular weight of air 

C

MW

 is the molecular weight of carbon 

H

MW

 is the molecular weight of hydrogen 

O

4.4 Emissions Repeatability and Stability 

 is the molecular weight of oxygen 

To show the repeatability of the emissions data, the Yamaha Apex E0 CO2

Figure 4.1

 

emissions are shown in the following figures (  through Figure 4.5).  It is 

important to note that the file for mode one run three was corrupted and therefore is not 

shown in the figures or used in the averages.  Table 4.2 shows the standard deviation for 

each run as well as a combined standard deviation for each mode.  The largest standard 

deviation occurred at mode three run three with a standard deviation of 0.151 %. 
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Table 4.2 
Standard deviations of Yamaha CO2

  

 emissions. 

Run 
 Mode 1 2 3 Combined 

1 0.067 0.110 n/a 0.107 
2 0.043 0.025 0.038 0.112 
3 0.105 0.095 0.151 0.144 
4 0.022 0.021 0.022 0.094 
5 0.040 0.053 0.029 0.078 

 

 

Figure 4.1: Mode one CO2 emissions versus time. 
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Figure 4.2: Mode two CO2

 

 emissions versus time. 

Figure 4.3: Mode three CO2 emissions versus time. 
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Figure 4.4: Mode four CO2

 

 emissions versus time. 

Figure 4.5: Mode five CO2 emissions versus time. 
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4.5 E0 Emissions 
4.5.1 Arctic Cat Z1 Turbo 

Table 4.3 shows the averaged raw emissions of the five modes.  The first and 

second run of E0 emissions contained negative O2.  For this reason, only O2

Table 4.4

 from run 

three is shown instead of an average of the three runs.  THC is shown in ppm on a C1 

basis.   shows THC, CO, and CO2

Table 4.3 

 brake specific emissions in g/kW-hr.   

Raw E0 emissions for Arctic Cat. 

Mode THC 
(ppmC1) 

CO Dry 
(%) 

CO2 O Dry 
(%) 

2

1 

 Dry 
(%) 

6470 7.8 11.0 0.2 
2 3484 4.4 12.9 0.3 
3 1068 0.6 14.6 0.7 
4 366 0.5 14.8 0.6 
5 12867 7.3 11.0 0.7 

 

Table 4.4 
Brake specific E0 emissions for Arctic Cat. 

Mode THC CO CO
(g/kW-hr) 

2 

(g/kW-hr) (g/kW-hr) 
1 12.8 271.3 384.5 
2 6.9 154.2 448.9 
3 2.4 22.0 574.9 
4 1.0 24.7 706.6 

 
4.5.2 Yamaha Apex 

Table 4.5 shows the averaged raw emissions for the Yamaha Apex.  Run one had 

negative O2 readings, therefore O2

Table 4.6

 was averaged over runs two and three only.  The 

emissions data file for mode one of run three was corrupted and therefore mode one 

emissions are averaged over runs one and two only.   shows the Yamaha brake 

specific emissions. 
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Table 4.5 
Raw E0 emissions for Yamaha. 

Mode THC 
(ppmC1) 

CO Dry 
(%) 

CO2 O Dry 
(%) 

2

1 

 Dry 
(%) 

5750 4.7 12.5 0.8 
2 6046 2.8 13.4 0.8 
3 5101 2.3 13.7 0.7 
4 3708 3.2 13.5 0.5 
5 5784 4.8 12.6 0.8 

 

Table 4.6 
Brake specific E0 emissions for Yamaha. 

Mode THC CO CO
(g/kW-hr) 

2 

(g/kW-hr) (g/kW-hr) 
1 11.4 164.4 438.1 
2 12.7 105.0 493.9 
3 12.6 101.1 598.2 
4 11.5 177.1 736.7 

 

4.5.3 Polaris Rush 

Table 4.7 shows the averaged raw emissions for the Polaris.  Table 4.8 shows the 

brake specific emissions for the Polaris.  Even though the Polaris is running rich of 

stoichiometric for modes one, two and four (Figure 4.24), the oxygen content is 

significantly higher than the four-stroke snowmobiles.  The high oxygen content is due to 

the short circuiting of a two-stroke engine.  Part of the intake charge escapes from the 

cylinder into the exhaust before the piston moves up high enough to block the exhaust 

port. 
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Table 4.7 
Raw E0 emissions for Polaris. 

Mode THC 
(ppmC1) 

CO Dry 
(%) 

CO2 O Dry 
(%) 

2

1 

 Dry 
(%) 

20719 8.6 7.1 4.4 
2 16013 3.8 10.4 4.2 
3 14221 2.8 11.1 4.2 
4 26965 6.1 8.9 4.6 
5 46058 4.8 3.3 12.1 

 

Table 4.8 
Brake specific E0 emissions for Polaris. 

Mode THC CO CO
(g/kW-hr) 

2 

(g/kW-hr) (g/kW-hr) 
1 55.7 423.9 346.8 
2 38.0 164.3 446.0 
3 36.2 130.0 506.6 
4 91.3 372.0 545.4 

 
4.6 E22 Emissions and Comparison 
4.6.1 Arctic Cat Z1 Turbo 

The Arctic Cat had to be held at mode three for 2 minutes with E22 fuel before 

testing could be conducted.  This allowed the fuel management system to learn the fuel 

and account for the higher ethanol concentration of E22.  Table 4.9 shows the raw 

emissions for the Arctic Cat using E22 as a fuel. Modes two and three contained negative 

O2 Table 4.10 and have been omitted from the raw emissions shown.  shows the brake 

specific emissions while running on E22. 
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Table 4.9 
Raw E22 emissions for Arctic Cat. 

Mode THC 
(ppmC1) 

CO Dry 
(%) 

CO2 O Dry 
(%) 

2

1 

 Dry 
(%) 

4490 7.2 11.0 0.1 
2 2317 3.5 13.0 0.2 
3 766 0.5 14.4 0.5 
4 248 0.5 14.5 0.5 
5 8441 4.5 12.1 0.5 

 

Table 4.10 
Brake specific emissions for Arctic Cat. 

Mode THC CO CO
(g/kW-hr) 

2 

(g/kW-hr) (g/kW-hr) 
1 9.2 262.1 402.7 
2 4.8 129.6 481.0 
3 1.8 20.7 583.9 
4 0.7 25.0 738.7 

 

Table 4.11 
Percent change in brake specific emissions for Arctic Cat.  

Mode THC CO CO
(%) 

2 

(%) (%) 
1 -27.7 -3.4 4.7 
2 -29.8 -16.0 7.2 
3 -26.3 -5.9 1.6 
4 -28.3 1.2 4.5 

Average -28.0 -6.0 4.5 
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Figure 4.6: Difference in brake specific emissions from E0 to E22 for the Arctic Cat. 

Table 4.11 shows the percent change in brake specific emissions from E0 to E22.  

THC dropped for all modes by an average of 28 %.  CO dropped for all modes except for 

mode four which increased by 1.2 %.  The average decrease of CO was still 6 %.  CO2

4.6.2 Yamaha Apex 

 

increased on average by 4.5 % for modes one through four.  When compared to the other 

snowmobile engines, the change in brake specific emissions, due to the change in fuel, 

was much smaller.  This is due to the closed-loop fuel injection system.  The engine was 

able to maintain the same relative air/fuel ratio and therefore did not operate lower than 

the factory calibration. 

Table 4.12 shows the raw emissions for the Yamaha with E22 for fuel.  Table 

4.13 shows the brake specific emissions. 
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Table 4.12 
Raw E22 emissions for Yamaha. 

Mode THC 
(ppmC1) 

CO Dry 
(%) 

CO2 O Dry 
(%) 

2

1 

 Dry 
(%) 

3531 1.6 13.8 0.8 
2 3369 0.9 13.8 1.4 
3 2687 0.3 13.9 1.7 
4 1522 0.6 14.4 0.7 
5 2532 1.6 14.0 0.6 

 

Table 4.13 
Brake specific E22 emissions for Yamaha. 

Mode THC CO CO
(g/kW-hr) 

2 

(g/kW-hr) (g/kW-hr) 
1 7.8 61.4 538.2 
2 7.9 37.6 576.9 
3 7.7 17.8 708.5 
4 5.5 37.9 902.5 

Table 4.14 shows the percent change in brake specific emissions for the Yamaha 

with E22.  THC decreased on average by 40 %.  CO decreased on average by 72 %.  CO2 

increased by 20 %.  The Yamaha fuel injection system was open-loop.  This means that 

the same amount of fuel was injected for E0 and E22 thus the E22 combustion was leaner 

than that of E0.  The increase in oxygen due to leaner combustion contributes to the 

increase of CO2

Table 4.14 

 and decrease of CO and THC. 

Percent change in brake specific emissions for Yamaha. 

Mode THC CO CO
(%) 

2 

(%) (%) 
1 -32.1 -62.7 22.8 
2 -37.7 -64.2 16.8 
3 -39.3 -82.4 18.5 
4 -52.8 -78.6 22.5 

Average -40.5 -72.0 20.2 
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Figure 4.7: Difference in brake specific emissions from E0 to E22 for the Yamaha. 

4.6.3 Polaris Rush 

The Polaris had a resistor that could be changed for different concentrations of 

ethanol.  This allowed the fuel management system to change control parameters to 

account for the ethanol.  The only resistor options were E0 and E10.  The E10 resistor 

was used for testing the E22 fuel.  The fuel management system was therefore only 

partially able to account for the higher ethanol concentration of E22.  Table 4.15 shows 

the raw emissions for the Polaris running on E22.  Table 4.16 shows the brake specific 

emissions for the Polaris running on E22.  The engine speed for mode four of run three 

was set to the wrong speed and this data was omitted from the averages. 
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Table 4.15 
Raw E22 emissions for Polaris. 

Mode THC 
(ppmC1) 

CO Dry 
(%) 

CO2 O Dry 
(%) 

2

1 

 Dry 
(%) 

17897 7.7 7.4 4.1 
2 11607 3.4 10.7 3.6 
3 9602 1.7 11.3 4.4 
4 25511 2.7 10.5 4.8 
5 46136 4.7 3.9 11.5 

 

Table 4.16 
Brake specific E22 emissions for Polaris. 

Mode THC CO CO
(g/kW-hr) 

2 

(g/kW-hr) (g/kW-hr) 
1 52.4 412.4 394.4 
2 29.9 156.9 498.1 
3 26.7 85.4 569.5 
4 89.4 173.1 665.2 

Table 4.17 shows the percent change in brake specific emissions.  THC decreased 

for all four modes.  On average, THC decreased by 13.9 %.  CO decreased by 23.8 % on 

average with a larger decrease at modes three and four.  A smaller decrease was observed 

for modes one and two.  CO2

Table 4.17 

 increased on average by 14.9 %. 

Percent change in brake specific emissions for Polaris. 

Mode THC CO CO
(%) 

2 

(%) (%) 
1 -5.9 -2.7 13.7 
2 -21.2 -4.5 11.7 
3 -26.2 -34.3 12.4 
4 -2.1 -53.5 22.0 

Average -13.9 -23.8 14.9 
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Figure 4.8: Difference in brake specific emissions from E0 to E22 for the Polaris. 

4.6.4 Emissions Comparison Summary 

To summarize the effect of E22 on emissions they were averaged over all modes 

for each snowmobile.  The average for the E0 fuel was then subtracted from the average 

of the E22 fuel.  This averaging shows a net effect of E22 on emissions.  Figure 4.9 

shows the average change in brake specific THC emissions.  The smallest change was 

observed with the closed-loop fuel injected Arctic Cat with a 1.6 g/kW-hr decrease.  All 

three snowmobiles observed an average decrease in brake specific THC emissions for the 

E22 fuel compared to the E0 fuel. 
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Figure 4.9: Average difference in brake specific THC. 

Figure 4.10 shows an average decrease in brake specific CO emissions for all 

three snowmobiles.  The closed-loop fuel injected Arctic Cat had the smallest decrease in 

brake specific CO emissions with an 8.7 g/kW-hr decrease from E0 to E22.  The largest 

decrease was observed with the open-loop Yamaha with a 98.2 g/kW-hr decrease. 
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Figure 4.10: Average difference in brake specific CO emissions. 

Figure 4.11 shows an average increase in brake specific CO2 emissions for all 

three snowmobiles.  An increase in CO2 emissions was expected due to the decrease in 

CO emissions.  The smallest increase was observed with the closed-loop Arctic Cat with 

an increase of 22.9 g/kW-hr. 
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Figure 4.11: Average difference in brake specific CO2

4.7 Peak Power Comparison 

 emissions. 

The Arctic Cat, due to closed-loop fuel injection, had the largest increase of peak 

power at 2.4 % (Table 4.18).  This is attributed to the oxygen content of the ethanol.  The 

oxygen content of the fuel forced the fuel management system to inject more fuel to 

overcome the change in stoichiometric AFR.  A 1.4% increase in power was observed 

with the Polaris.  The increase of power for Polaris was due to the E10 resistor.  The fuel 

management system injected more fuel to account for the change of stoichiometric AFR 

of E10.  The change of stoichiometric AFR from E0 to E10 is 47 % of the change from 

E0 to E22, thus the fuel management system only partially adapted to the change in 

stoichiometric AFR.  The Yamaha had no means to account for increased ethanol content 

in the E22 fuel.  This means that the same amount of fuel was injected regardless of 
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ethanol concentration as a result, a 1.6 % decrease in power is the result of the decreased 

heating value  

Table 4.18 
Comparison of peak observed powers. 

Snowmobile 
Peak Power 

E0 
Peak Power 

E22 
Percent 

Difference 
(kW) (kW) (%) 

Arctic Cat 119.0 121.8 2.4 
Yamaha 95.8 94.2 -1.6 
Polaris 79.1 80.2 1.4 

 

 

Figure 4.12: Comparison of peak observed powers. 

0 

20 

40 

60 

80 

100 

120 

140 

Arctic Cat Yamaha Polaris 

Pe
ak

 P
ow

er
 (k

W
) 

E0 
E22 



61 

 

4.8 Engine Performance Comparison 

The engine parameters discussed within this section are: an average of the exhaust 

gas temperatures, fuel flow, BSFC, and relative air/fuel ratio (λ).  Due to problems with 

fresh air dilution with the NTK O2

4.8.1 Arctic Cat Z1 Turbo 

 sensor, λ was calculated using the Horiba emissions 

analyzer. 

Figure 4.10 shows the power at each mode for the Arctic Cat for both fuels.  

Modes two through four were held at the same torque and engine speed for each fuel and 

therefore there should be no difference between E0 and E22.  The differences observed 

were due to the limits of repeatability of the manual throttle and the engine speed control. 

Mode one is at WOT and torque was allowed to vary between the two fuels. 
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Figure 4.13: Comparison of power at each mode for the Arctic Cat.  Power at each mode 
should be identical for E0 and E22 for modes two through four. 

Only one exhaust gas temperature was recorded for the Arctic Cat at the inlet to 

the turbine and therefore only the average of that exhaust gas temperature is shown.  

Figure 4.11 shows the average exhaust gas temperatures for the five modes of E0 and 

E22.  EGTs decreased for E22 for every mode except mode five.  A 2° C increase was 

observed for mode five.  The decrease in exhaust gas temperature with E22 was due to 

charge cooling caused by the increased latent heat of vaporization of ethanol and the 

ability of the closed-loop fuel injection system to maintain λ.  This is verified by an 

increase in fuel flow shown in Figure 4.12.  On average, exhaust gas temperatures 

dropped by 17.6° C. 
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Figure 4.14: Comparison of Arctic Cat exhaust gas temperature. 

Figure 4.12 shows the fuel flow for the five modes of each fuel.  Fuel flow 

increased for each mode with the exception of mode five.  Fuel flow for mode five 

decreased by 0.07 kg/hr, which is a 6.2% decrease.  The increase in fuel flow is due to the 

closed-loop fuel injection.  In order to maintain λ for the E22 fuel, the fuel management 

system was forced to inject more fuel causing the fuel flow to increase. 
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Figure 4.15: Comparison of Arctic Cat fuel flow. 

To normalize fuel flow differences, Figure 4.13 shows the BSFC comparison for 

modes one through four.  A BSFC increase of less than 1 % was observed for modes one, 

two and three.  Peak power (mode one) increased by 2 % while fuel flow increased by 2.5 

% (Table 4.19).  As seen in Equation 3, if power and fuel flow increase by the same 

percentage then BSFC will remain the same.  In the case of mode one, fuel flow 

increased slightly more than power and therefore a slight increase in BSFC was observed.  

In the case of mode four, power decreased by 1.9 % and fuel flow increased by 3.1 %.  

The decrease of power and increase of fuel flow resulted in a 4.4 % increase in BSFC. 

 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Fu
el

 F
lo

w
 (k

g/
hr

) 

E0 
E22 



65 

 

 

Figure 4.16: Comparison of Arctic Cat brake specific emissions. 

Table 4.19 
Comparison of Arctic Cat power, fuel flow and BSFC differences from E0 to E22. 

Mode 
Power 

Difference 
(%) 

Fuel Flow 
Difference 

(%) 

BSFC 
Difference 

(%) 

1 2.0 2.5 0.1 
2 0.5 1.3 0.4 
3 3.1 4.5 0.8 
4 -1.9 3.1 4.4 

Figure 4.14 shows the average λ for E0 and E22 for each mode of the Arctic Cat.  

An average increase of λ of 2.4 % was observed.  Modes three and four decreased by 1.2 

% and 0.6 % respectively.  The largest increase was observed at mode five with a 9.11 % 

increase.  Small changes in λ were observed due to the Arctic Cat's closed-loop fuel 
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injection system as well as the fuel management system's ability to learn the fuel when 

operating in mode three. 

 

Figure 4.17: Comparison of Arctic Cat relative air/fuel ratio. 

4.8.2 Yamaha Apex 

Figure 4.15 shows the power of each mode for the Yamaha on each fuel.  Again, 

mode one power was allowed to vary while the other modes were held at a constant 

torque and engine speed for both fuels. 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

λ 
(-)

 

E0 
E22 



67 

 

 

Figure 4.18: Comparison of power at each mode for the Yamaha.  Power at each mode 
should be identical for E0 and E22 for modes two through four. 

With the exception of mode two, all of the exhaust gas temperatures increased for 

E22 (Figure 4.16).  Exhaust gas temperatures increased on average by 18° C.  This is due 

to the fuel injection system's inability to adapt to the ethanol concentration which leans 

out the combustion and moves the AFR closer to the stoichiometric ratio.  The leaner 

combustion overcomes the increased latent heat of vaporization of the ethanol and the 

exhaust gas temperature increases. 
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Figure 4.19: Comparison of Yamaha exhaust gas temperature. 

A decrease in fuel flow with E22 for mode one was observed (Figure 4.17).  This 

is most likely due to colder ambient temperatures during E0 testing.  The ambient 

temperature during E0 testing was 15.1° C and 28.1° C during E22 testing.  Colder 

ambient temperatures increase the air density which increases fuel delivery.  Mode one is 

affected the greatest as mode one is at wide open throttle.  The other modes are less 

affected as the throttle is merely increased until the same torque is observed.  Mode two 

fuel flow also decreased slightly.  This decrease is due to a lower average torque setting 

for E22.  This is confirmed by an increase in BSFC shown in Figure 4.18.  Fuel flow for 

modes three and four increased as expected. 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Av
er

ag
e 

E
G

T 
(C

) 

E0 
E22 



69 

 

 

Figure 4.20: Comparison of Yamaha fuel flow. 

An increase in BSFC was observed for modes two, three and four (Figure 4.18).  

Mode one BSFC decreased similarly to the Arctic Cat.  In the case of mode one, power 

and fuel flow decreased by 1.8 % and 2.6 % respectively (Table 4.20).  Due to the fact 

that fuel flow decreased more than power, BSFC decreased. Modes three and four had 

small increases in power (0.3 % and 0.4 % respectively) with larger increases in fuel flow 

(2.7 % and 1.3 % respectively) and therefore an increase in BSFC was observed for both 

modes. 
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Figure 4.21: Comparison of Yamaha brake specific fuel consumption. 

Table 4.20 
Comparison of Yamaha power, fuel flow and BSFC differences from E0 to E22. 

Mode 
Power 

Difference 
(%) 

Fuel Flow 
Difference 

(%) 

BSFC 
Difference 

(%) 
1 -1.8 -2.6 -1.0 
2 -1.7 -0.7 0.8 
3 0.3 2.7 2.2 
4 0.2 1.3 0.8 

Figure 4.19 shows the comparison of λ for E0 and E22 for the Yamaha Apex.  

Relative air/fuel ratio increased for all five modes by an average of 11.8 %.  Modes two, 

three and four went lean of stoichiometric.  The leaner combustion was expected due to 

the increased oxygen content of ethanol. 
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Figure 4.22: Comparison of Yamaha relative air/fuel ratio. 

4.8.3 Polaris Rush 

Figure 4.20 shows the power at each mode for the Polaris running on both fuels.  

Mode one (peak power) increased.  Modes two through four were held at a constant 

torque and engine speed for both fuels.  Slight differences were observed for modes two 

through four due to the limits of repeatability of the manually throttle and engine speed 

control. 
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Figure 4.23: Comparison of power at each mode for the Polaris.  Power at each mode 
should be identical for E0 and E22 for modes two through four. 

The average exhaust gas temperature increased for all five modes, as shown in 

Figure 4.21.  Exhaust gas temperatures increased on average by 21.2° C.  Even though 

the Polaris had a limited ability to accommodate for ethanol blends (resistor change from 

E0 to E10), the air/fuel ratio is leaner than calibrated due to the E22 fuel. 
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Figure 4.24: Comparison of Polaris exhaust gas temperature. 

Figure 4.22 shows an increase in fuel flow for modes one and two as expected.  

Due to the resistor for E10, fuel flow for mode one should increase by the same 

percentage of the decrease in energy of E10.  There is a 4 % decrease in energy when 

comparing E10 to E0.  Mode one fuel flow increased by 4.6 %.  Modes three and five 

saw a 0.9 % and 1.1 % decrease respectively.  A 10.3 % decrease was observed for mode 

four.  This is most likely due to a 3.7 % decrease in torque.  This means that the torque 

was, on average, held low for E22 mode four. The increase in fuel flow at modes one and 

two is due to the E10 resistor.  Fuel delivery is adjusted for E10 at modes one and two to 

prevent power loss and reduce in-cylinder temperatures.  Modes three, four and five are 

not affected by the resistor change as a decrease in power can be compensated for by 

increasing the throttle. 
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Figure 4.25: Comparison of Polaris fuel flow 

Figure 4.23 shows an increase in BSFC for modes one and two, and a decrease for 

modes three and four.  In the case of mode one, the fuel flow increase was larger than the 

power increase and thus the BSFC increased by 3.2 % (Table 4.21). The same 

phenomenon  occurred for mode two.  Modes three and four had a larger decrease of fuel 

flow (0.9 % and 10.3 % respectively) than that of the power (0.5 % and 2.6 % 

respectively) and therefore BSFC decreased for both modes (0.3 % and 7.7 % 

respectively). 
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Figure 4.26: Comparison of Polaris brake specific fuel consumption. 

Table 4.21 
Comparison of Polaris power, fuel flow and BSFC differences from E0 to E22. 

Mode 
Power 

Difference 
(%) 

Fuel Flow 
Difference 

(%) 

BSFC 
Difference 

(%) 
1 1.4 4.6 3.2 
2 0.2 4.1 4.0 
3 -0.5 -0.9 -0.3 
4 -2.6 -10.3 -7.7 
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Figure 4.27: Comparison of Polaris relative air/fuel ratio. 

On average, λ increased by 7.6 % for E22 fuel, as shown in Figure 4.24.  This is a 

greater increase than the closed-loop Arctic Cat (2.4 %) and a smaller increase than the 

open-loop Yamaha (11.8 %).  Modes one and two observed a 7.3 % and 5.7 % increase in 

λ respectively.  A larger increase of 12.1 % and 12.5 % occurred at modes three and four 

respectively.  The smaller increase in λ at higher loads is the result of the E10 resistor.  

The fuel management system compensated for E10 at higher loads to prevent power loss.  

Due to the fuel having higher ethanol content than 10 % by volume, the AFR was less 

fuel rich than that of E0. 

4.8.4 Engine Performance Comparison Summary 

Figure 4.28 shows the average difference of exhaust gas temperature of the E22 

fuel compared to E0 fuel.  The closed-loop fuel injected Arctic Cat had a 17.6° C average 

decrease in exhaust gas temperature.  This decrease in exhaust gas temperature is due to 
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the added fuel delivery to maintain a consistent λ.  Both open-loop snowmobiles 

observed an average increase of exhaust gas temperature due enleanment. 

 

Figure 4.28: Average difference of exhaust gas temperature. 

Figure 4.29 shows the average difference of BSFC.  An increase of average BSFC 

was observed for all three snowmobiles.  The closed-loop Arctic Cat had the largest 

increase of average BSFC with a 5.0 g/kW-hr increase.  Both the Yamaha and Polaris 

observed an increase of average BSFC of 2.6 g/kW-hr and 3.8 g/kW-hr respectively. 
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Figure 4.29: Average difference of brake specific fuel consumption. 

4.9 Combustion Analysis 

Combustion data was only recorded on the Polaris.  Figure 4.25 shows the 

averaged cylinder pressures for all five modes of E0 and E22.  The data was then 

averaged over the two cylinders.  Table 4.22 shows the maximum cylinder pressures and 

the percent change from E0 to E22.  Mode one maximum pressure increased by 2.4 %.  

Mode two peak pressure increased by 1.6 %.  Modes three, four and five all saw a 

decrease in maximum cylinder pressure.  The change in resistor for E22 is believed to 

have caused the increase in peak cylinder pressure.  The largest change in the location of 

the maximum cylinder is a delay of 0.8 CAD at mode four, as shown in Table 4.23. 
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Figure 4.30: Comparison of cylinder pressure traces. 
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Cyl 2, Mode 5, E22 
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Table 4.22 
Comparison of maximum cylinder pressures. 

Mode E0 Pmax 
(bar) 

E22 Pmax 
(bar) 

Difference 
(%) 

1 61.7 63.2 2.4 
2 37.3 37.9 1.6 
3 25.4 24.4 -3.7 
4 15.7 15.3 -2.5 
5 11.0 10.7 -2.3 

 

Table 4.23 
Comparison of the location of maximum cylinder pressure. 

Mode E0 Angle of 
Pmax (CAD) 

E22 Angle of 
Pmax (CAD) 

Difference 
(CAD) 

1 18.5 18.4 -0.1 
2 13.4 13.6 -0.2 
3 15.3 16.0 -0.7 
4 12.0 11.2 0.8 
5 2.3 1.9 0.4 

A delay in 50 % MFB was observed for modes three, four and five with E22 fuel 

(Figure 4.26).  50 % MFB was delayed most significantly for modes three and five by 

17.6 % and 152 % respectively.  The delay in 50 % MFB is due to an increased 

combustion duration shown in Figure 4.27. 
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Figure 4.31:  Comparison of 50 % mass fraction burn. 

Figure 4.27 shows combustion duration from 10 % to 90 % MFB.  Combustion 

duration increased by 7.3 % and 23.7 % for modes three and five, respectively.  Modes 

one, two and four all changed by less than 1 %. 
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 Figure 4.32: Comparison of combustion duration. 

IMEP increased for mode one, on average, by 2.4 % (Figure 4.28).  A 3.8 % 

average increase was observed for mode two.  IMEP for modes three and four decreased 

by 1.3 % and 3.7 % respectively. The change in resistor for E22 lead to higher peak 

cylinder pressures due to additional injection of fuel at modes one and two, as shown in 

Figure 4.22. 
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Figure 4.33: Comparison of indicated mean effective pressure. 
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Chapter 5 Conclusions and Future Work 
5.1 Conclusions 

Emissions, engine performance and combustion analysis were used to compare 

the impact of E22 on two-stroke and four-stroke snowmobiles.  THC emissions decreased 

for all three snowmobiles when operating on E22 fuel.  CO emissions decreased for all 

snowmobiles with the exception of the Arctic Cat at mode four which increased by 1.2 

%.  CO2 emissions increased for all of the snowmobiles when operating on E22 fuel.  

The increase in CO2 and decrease of CO was expected due to the increased oxygen 

content of the E22 fuel.  The oxygenated fuel increases the amount of oxygen available 

for combustion which promotes more fuel carbon to form CO2

The closed-loop fuel injection system of the Arctic Cat was able to increase peak 

brake power by 2.4 %.  To obtain the increased power, an increase in fuel flow was 

observed.  The ability of the engine to learn the fuel prevented the AFR from going lean 

and, as a result, a decrease in exhaust gas temperature was observed.  Due to an increase 

in fuel flow and power, a minimal increase in BSFC was observed for the E22 fuel.  The 

open-loop Polaris engine which was partially able to accommodate the E22 fuel increased 

peak brake power by 1.4 %.  An increase in fuel flow was observed due to the reduced 

heating value of ethanol.  Leaner combustion was also experienced which lead to higher 

EGTs.  A larger increase of fuel flow, compared to the increase in power, occurred at 

higher loads for the two-stroke Polaris and an increase in BSFC was the result.  At lower 

loads, fuel flow increased less than the power and a decrease in BSFC was observed.  The 

open-loop fuel injection system of the Yamaha was unable to adapt to the ethanol 

concentration and had a 1.6 % reduction in peak brake power.  Leaner combustion 

resulted in higher EGTs for this snowmobile as well.  Warmer ambient temperatures 

during E22 testing reduced air density and thus decreased fuel flow during mode one.  At 

high loads, fuel flow decreased more than the power for the Yamaha resulting in a 

 rather than CO.  The 

closed-loop fuel injection system (Arctic Cat) was able to more accurately maintain the 

relative air/fuel ratio which reduced cylinder temperatures due to the higher latent heat of 

vaporization of ethanol. 



85 

 

decrease in BSFC for the E22 fuel.  At middle to lower loads, fuel flow increased and 

BSFC increased for the E22 fuel. 

Combustion analysis of the Polaris revealed an increase in peak cylinder pressures 

during modes one and two.  Peak cylinder pressures decreased for modes three, four, and 

five.  A significant delay in 50 % MFB and increased combustion duration were observed 

for mode three.  IMEP increased during mode one due to an increase in fuel flow. 

5.2 Future Work 

A major concern manufacturers and consumers have when operating on higher 

ethanol content is engine durability.  It is suggested that tests be performed to compare 

both the total life of the engine, as well as, how engine performance and emissions 

degrade over the life of the engine.  Outside of engine performance, maintenance is 

another concern.  The results of this study do not address the effect of ethanol on the 

durability of other parts necessary for the engine to run, such as the fuel pump, fuel lines 

and injectors over the life of the engine. 

It would also be advised that combustion analysis be conducted on the Arctic Cat 

and Yamaha.  This would be advised, particularly, to compare the effect of the closed and 

open-loop fuel injection systems, in addition to four-stroke and two-stroke deifferences. 

The results of this thesis only covered unaltered production vehicles.  It is advised 

to perform a similar study, but with the engines and fuel management systems optimized 

for the particular ethanol concentration in the fuel.  This includes advancing ignition 

timing and increasing the compression ratio to capitalize on the anti-knock qualities of 

ethanol.  Direct injection could also potentially benefit from the higher latent heat of 

vaporization of ethanol.  This study could be expanded to include the effects of higher 

ethanol concentrations and even to determine an optimum concentration for performance 

and emissions.  
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Appendix A  

A.1 Additional Plots For Reference 

A.1.1 Yamaha E0 CO Repeatability Plots 

 

Figure A. 1 
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Figure A. 2 

 

Figure A. 3 
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Figure A. 4 

 

Figure A. 5 
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A.1.2 Yamaha E0 O2

 

 Repeatability Plots 

Figure A. 6 

 

Figure A. 7 
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Figure A. 8 

 

Figure A. 9 
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Figure A. 10 

A.1.3 Yamaha E0 O2
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Figure A. 11 
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Figure A. 12 

 

Figure A. 13 
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Figure A. 14 

 

Figure A. 15 
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A.2 Permissions 

Hi James, 

A.2.1 Arctic Cat 

You have permission to use the Arctic Cat photo providing it does not 

provide a negative impression on Arctic Cat products. 

Thank you, 

Kathy Johnson 

Arctic Cat Sales Inc. 

218-681-9799 ext. 5504 

A.2.2 Pegasus Auto Racing Supplies Inc. 

Hi James, 

Yes, you have our permission to use that photo for the purpose described below. 

Good of luck with your Master’s thesis. 

Best regards, 

Chris Heitman, Co-owner 

Pegasus Auto Racing Supplies, Inc. 

1-800-688-6946 x1203 

Direct: 262-317-1203 

Fax: 262-317-1201 



97 

 

Website: www.PegasusAutoRacing.com 

----- Original Message -----  

From: James Weber  

Subject: Permission to reprint picture from website 

My name is James Weber and I am writing my thesis for a Master's degree in 

mechanical engineering at Michigan Technological University.  For my research I used 

the tailpipe clamp mount for oxygen sensor and would like to use the picture of it from 

your website found at the following link. 

I need written permission in order to do so and was hoping this was possible.  The 

title of my thesis is 'Impact of E22 on Two-Stroke and Four-Stroke Snowmobiles'. 

https://www.pegasusautoracing.com/bigpicture.asp?RecID=4638 

Please let me know if this is possible. 

Thank you for your time, 

James Weber 

A.2.3 Society of Automotive Engineers  

Dear Mr. Weber, 

Thank you for your correspondence requesting permission to reprint figure 4 from 

SAE paper 2005-32-0053, figures 10 & 11 from paper 2009-01-2723, and figures 2, 4 & 

8 from paper 2006-01-3380 to include in your master’s thesis "Impact of E22 On Two-

Stroke and Four-Stroke Snowmobiles" for Michigan Technological University. 

SAE does not hold the copyright on paper 2009-01-2723.  This paper was 

presented under a US government contract and is in the public domain.  You may reprint 
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this figure and no copyright notice is required.  You should reference the authors and 

SAE paper number in which the figure appeared. 

Permission to reprint the figures from papers 2005-32-0053 and 2006-01-3380 is 

hereby granted, and subject to the following conditions:  

Permission is for this one time use only.  New requests are required for further use 

or distribution of the SAE material. 

The following credit statement must appear below the figures:   “Reprinted with 

permission from SAE Paper No.  XXXXXX*  © 200X* SAE International.  Further use 

or distribution is not permitted without permission from SAE.”  *please insert the paper 

number and **year of publication 

·        This permission does not cover any third party copyrighted work which may 

appear in the material requested.  

Please feel free to contact me if you need further assistance. 

Best regards, 

Terri Kelly 

Intellectual Property Rights Administrator 

------------------------------------------- 

SAE International| 400 Commonwealth Drive | Warrendale, PA 15096-0001 | 

USA 

Office: +01 724-772-4095 | Fax: +01 724-776-9765 

terri@sae.org |www.sae.org 
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A.2.4 Society of Automotive Engineers Paper 2012-01-0794 

Dear Mr. Weber, 

Thank you for your correspondence requesting permission to reprint figures 5, 6-

2, 11, 12, 15, and 16 from SAE paper 2010-01-0794  to include in your master’s thesis 

"Impact of E22 On Two-Stroke and Four-Stroke Snowmobiles" for Michigan 

Technological University. 

Permission is hereby granted, and subject to the following conditions:  

Permission is for this one-time single use only.  New requests are required for 

further use or distribution of the SAE material. 

The following credit statement must appear below the figures:   “Reprinted with 

permission from SAE Paper No.  2010-01-0794  © 2010 SAE International.  Further use 

or distributionis not permitted without permission from SAE.”  

·        This permission does not cover any third party copyrighted work which may 

appear in the material requested.  If this material originated from another source, you 

must contact the original copyright holder for this permission.  

Again, thank you for contacting SAE for this permission. 

Best regards, 

Terri Kelly 

Intellectual Property Rights Administrator 

------------------------------------------- 

SAE International| 400 Commonwealth Drive | Warrendale, PA 15096-0001 | 

USA 
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Office: +01 724-772-4095 | Fax: +01 724-776-9765 

terri@sae.org |www.sae.org 
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