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Abstract

Intermediaries permeate modern economic exchange. Most classical models on
intermediated exchange are driven by information asymmetry and inventory man-
agement. These two factors are of reduced significance in modern economies.
This makes it necessary to develop models that correspond more closely to mod-
ern financial marketplaces. The goal of this dissertation is to propose and examine
such models in a game theoretical context.

The proposed models are driven by asymmetries in the goals of different mar-
ket participants. Hedging pressure as one of the most critical aspects in the be-
haviour of commercial entities plays a crucial role.

The first market model shows that no equilibrium solution can exist in a mar-
ket consisting of a commercial buyer, a commercial seller and a non-commercial
intermediary. This indicates a clear economic need for non-commercial trading
intermediaries: a direct trade from seller to buyer does not result in an equilib-
rium solution.

The second market model has two distinct intermediaries between buyer and
seller: a spread trader/market maker and a risk-neutral intermediary. In this model
a unique, natural equilibrium solution is identified in which the supply-demand
surplus is traded by the risk-neutral intermediary, whilst the market maker trades
the remainder from seller to buyer. Since the market maker’s payoff for trading
at the identified equilibrium price is zero, this second model does not provide any
motivation for the market maker to enter the market.

The third market model introduces an explicit transaction fee that enables the
market maker to secure a positive payoff. Under certain assumptions on this trans-
action fee the equilibrium solution of the previous model applies and now also
provides a financial motivation for the market maker to enter the market. If the
transaction fee violates an upper bound that depends on supply, demand and risk-
aversity of buyer and seller, the market will be in disequilibrium.
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Preface

Activity of intermediaries permeates the modern economics. Market makers, out-
sourcing companies, headhunters, real estate agents, mortgage brokers are among
the most familiar examples.

One might wonder why people on different sides of the transactions would
need intermediaries. It turns out that there are a number of critical advantages
of intermediated exchange versus direct exchange. Among the gains from inter-
mediated exchange are the centralization of exchange, facilitation of information
transfer, reduction of search and bargaining costs, alleviation effects of adverse
selection, management of inventory, etc.

A substantial amount of literature deals with these different aspects of an inter-
mediary’s activity. An excellent treatment and review of various existing equi-
librium theories on intermediation activity can be found in the book by Spulber
[Spu99]. The main thesis was summarized by Spulber [Spu99] as follows: “Firms
are formed when the gains from intermediated exchange exceed the gains from di-
rect exchange”.

The classic theoretical framework for understanding intermediated exchange
is based on two major components: information asymmetry, and inventory man-
agement. There are many (equilibrium) models of intermediation activity that aim
to describe, first of all, the trading of a risky asset in the structural framework of
exchanges. In such models, the market is usually assumed to consist of market
makers (intermediaries), informed and uninformed traders (often referred to as in-
siders and liquidity traders respectively). Various models and aspects of exchange
trading, based on the distribution of knowledge or information about an asset’s
true value, are considered by many of authors; for examples, see Dennert [Den93]
and Kyle [Kyl85] who describe market makers as uninformed participants. On
the other hand, Laffont and Maskin [LM90] presents a model where the market
maker is the informed trader whereas other traders are uninformed. Copeland and
Galai [CG83] proposes a model in which the bid-ask price spread of market mak-
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PREFACE 2

ers depends on the proportion of insiders and liquidity traders. An extension of
this demonstrating the effect of adverse selection can be found in Glosten and Mil-
grom [GM85]. For a detailed review of many other models and aspects of trading
at exchanges see Spulber [Spu99].

Realistically speaking, those classical models are applicable to the relatively slow,
pit-oriented or specialists’ markets/trading before the Internet revolution. Nowa-
days, however, electronic environments have radically changed the structure of
financial trading. The Bloomberg terminal became the standard of information
dissemination. Decimalization of prices led to fierce competition between market
makers and the elimination of many inefficiencies.

Volumes of trading grew very substantially. Pit trading disappeared on many
exchanges in favor of electronic trading, with an ever increasing fraction of algo-
rithmic trading, development of statistical arbitrage models, and 24 hours trading
on ECNs. A dramatic increase of professionally managed capital led to the faster
movement of “hot money”, while the global nature of financial markets made
movements of capital across industries/borders much easier.

At the same time, it seems that in the modern economy, the storage and
“buffering” functions of intermediaries are declining. Market makers try not to
carry a substantial inventory, headhunters do not act themselves on the main area
of their customers’ activity, real estate agents do not own sizeable properties for
their businesses sake, mortgage brokers do not underwrite mortgages, and out-
sourcing hi-tech companies do not write software.

Overall, nowadays’ companies try to carry only the minimally necessary level
of inventory, and often, intermediaries do not carry any inventory at all: they serve
as pure conduits in the transfer of goods or services.

While the traditional functions of intermediaries are on the decline, intermediation
itself increases (see for example Allen and Santomero [AS98]). This makes it nec-
essary to develop a new generation of models that would more closely correspond
to the modern structure of the financial marketplace, and to a more information-
efficient technological environment. The goal of the present work is to propose
such models in a game-theoretical context.

In the proposed models, no information asymmetries between the various par-
ties in the trade will be assumed. Instead, the models will be driven by asym-
metries in the goals of the different market participants, and by the “fundamen-
tal” differences between various market players. In the considered market mod-
els a commercial buyer, a commercial seller and non-commercial intermediaries
will trade a certain amount of one commodity. Loosely speaking, this corre-



PREFACE 3

sponds to the classification of so-called commercials and non-commercials by
the Commodity Futures and Trading Commission (CFTC), and to the closely
watched long/short commercials/non-commercials numbers released weekly by
CFTC (http://www.cftc.gov). As a result the us of the more inflammatory
“speculator” term will be avoided.

Hedging pressure as one of the most critical aspects in the behaviour of com-
mercial entities will play a crucial role in the proposed models. it is assumed that
trading in the cash market is completely frictionless, and for the sake of simplicity
and concise presentation, the models will be presented in the context of financial
markets only. However, the general conclusions obtained below are equally appli-
cable to all types of intermediated exchange.

A first model will assume that one intermediary will fulfil a dual function: he will
trade price spreads and take risk. The main result of this first model is that, un-
der certain broad assumptions, a naive approach in which buyer and seller fulfil
as much of their hedging needs as possible in a direct trade, hence avoiding the
costs that would arise by including the intermediary in their trades, will not result
in an equilibrium solution. This result shows that there is a clear economic need
for non-commercial trading intermediaries. At the same time, the presence of in-
termediaries does not yet result in establishing an equilibrium price. This total
lack of an equilibrium even in such a simple model may provide an additional
interpretation of the intrinsic random nature of asset prices.

Since participants in modern day markets tend to specialize their tasks, an
extended model will split up the different tasks of the previous intermediary: two
separate intermediaries will now be considered, one trading spreads and the other
one taking risk. As a main effect, this economic specialization will result in a
rather stable market situation. A unique equilibrium price will be identified, a
price that will allow for an insightful interpretation on how price negotiations
depend on the goals and needs of the different sides in a trade.

This second model will however not sufficiently explain why an intermediary
trading spreads will enter the market in the first place. To resolve this issue, a third
model will be considered in which the commercial seller and buyer have to pay
a fixed transaction fee if they plan to enter a trade with the spread trader. It will
be shown that in such a model the equilibrium solution of the previous model will
apply as long as the transaction fee satisfies a certain bound. It will be shown that
this bound has rather natural properties, and that it agrees with observations that
can be made in existing financial markets.

http://www.cftc.gov
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Introductory remarks
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The purpose of this work is to develop a new generation of models describing
the modern structure of the financial marketplace. Several models will be ex-
amined, based on different assumptions and allowing for different interpretation.
However, all models that are to be analysed share one common feature: they are
based on a game-theoretic framework. Each model will be presented as a game
in strategic form, and the analysis of each of the models will focus on the most
prominent of game-theoretic concepts, the so-called Nash equilibrium.
This introductory part will therefore be used to lay the theoretical foundation for
the work to come: basic game-theoretic concepts and ideas will be defined and
reviewed.



Chapter 1

Basic game-theoretic concepts

The following chapter reviews some of the most prominent game-theoretic con-
cepts: the reader will find definitions of concepts such as games in strategic forms,
pure strategies, mixed strategies or Nash equilibria. Furthermore - since the pur-
pose of most of this work is to prove existence or non-existence of a Nash equi-
librium solution in the different market models - the most important existence
theorems for Nash equilibria will be mentioned and proven.

1.1 Strategic games
In game-theoretic frameworks different types of games can occur. One of the
most important types and also the type that will be used in the subsequent market
models are games in strategic form:

Definition 1.1.1 (Games in strategic form)
A game in strategic form is a triple

Γ = (I, S ,U), (1.1)

where I denotes the set of players, S =
∏

i∈I S i the set of all possible strategy
combinations s and S i the set of strategies si of player i. U denotes the payoff
function

U : S → E (1.2)

that assigns a result u ∈ E to each strategy combination s.1

1see [Wie02] pg. 110 and [Sch04] pg. 9f.

6



1.1. STRATEGIC GAMES 7

A game will be played as follows:
Every player i will choose a strategy si ∈ S i and once all strategies are set, the
relevant payoffs will be determined.

Note that one player i can have finitely or infinitely many strategies, i.e. S i can
be a finite set as well as an infinite set. In the finite case with ni = |S i| different
strategies, player i’s strategies will be denoted as

S i =
{
si

1, ..., s
i
n

}
.

The outcome of a single realization of a game is determined by the individual
strategy choices of the different players. For m = |I| players, such a combination
of individual strategic decisions, short a strategy combination, can be written as:

s =
(
s1, s2, . . . , sm

)
. (1.3)

Very often it is necessary to discuss how one single player can effect the outcome
of a game given that the other players do not change their strategies. To simplify
notation, a strategy combination that does not include player i’s strategy will be
denoted as s−i. This yields the following simplified notations:

s =
(
si, s−i

)
(1.4)

and

S = S i × S −i (1.5)

where S −i denotes accordingly the set of all strategies of all players except for
those of player i. In the above definition, the payoff function U can represent a
win, loss, benefit, damage or even something non quantifiable. For the sake of
simplicity, it will be assumed that a payoff function is quantifiable, i.e. U will be
defined as a map from S to Rm:

U : S → Rm. (1.6)

Using the above short hand notation U can be written as:2

U =
(
U1,U2, . . . ,Um

)
(1.7)

U i(s) = U i
(
s1, s2, . . . , sn

)
= U i

(
si, s−i

)
for i ∈ I. (1.8)

2see [Sch04] pg. 10f.



1.2. THE NASH EQUILIBRIUM 8

1.2 The Nash equilibrium
The purpose of a game-theoretic analysis is not just the formulation of a problem
in form of a game, but also its analysis. It is of specific interest to know whether
certain strategy combinations will be played more often than others.

1.2.1 Definition
Nash suggests the following equilibrium condition:

Definition 1.2.1 (Nash equilibrium)
In a game Γ = (I, S ,U) a strategy combination s∗ = (s1

∗, ..., s
m
∗ ) is called a Nash

equilibrium, if:3

U i
(
si
∗, s
−i
∗

)
≥ U i

(
si, s−i

∗

)
∀i ∈ I, si ∈ S i. (1.9)

In other words, a Nash equilibrium is a strategy combination s∗, such that no
player can singlehandedly improve his payoff. In more detail: no player i is able
to obtain a higher payoff just by changing his own strategy si

∗ to a strategy si, as
long as his opponents keep their strategy combination s−i

∗ fixed. This means that
no player has a reason, to choose a strategy other than his equilibrium strategy.

1.2.2 Famous examples: Prisoner’s Dilemma and Rock, Paper,
Scissors

The idea of a Nash equilibrium will be demonstrated on two very famous exam-
ples: the so called “Prisoner’s Dilemma” and the popular game “paper-scissor-
stone”.
Example 1.2.1 (Prisoner’s Dilemma)
After a bank robbery two suspects are interrogated by the police. If both decide
not to confess, they remain on remand, but will be set free for lack of evidence af-
ter one year. If both of them decide to confess, they will be sentenced to six years
in prison. If just one of the two suspects confesses, he will be set free, whilst the
other suspect will be sentenced to ten years in prison. A schematic representation
of this game may look as follows:
It can easily be seen, that the Nash equilibrium of this game is the strategy com-
bination (confess, confess).4.

3see [Gib92] pg. 8
4for a more detailed discussion of this result see [Bit81] pg.250ff.
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s2
1: not confess s2

2: confess
s1

1: not confess (−1,−1) (−10, 0)
s1

2: confess (0,−10) (−6,−6)

Table 1.1: payoff matrix of Prisoner’s Dilemma

Example 1.2.2 (Rock, Paper, Scissors)
A very popular game is the “Rock, Paper, Scissors” game5. In this game the payoff
function can be represented as follows:

s2
1: rock s2

2: paper s2
3: scissors

s1
1: rock (0, 0) (1,−1) (−1, 1)

s1
2: paper (−1, 1) (0, 0) (1,−1)

s1
3: scissors (1,−1) (−1, 1) (0, 0)

Table 1.2: payoff matrix for Rock, Paper, Scissors

It can be seen, that no matter which strategy combination is played, one player
will always be able to improve his payoff by simply changing his own strategy.
This means that this game has no Nash equilibrium in pure strategies.

1.2.3 Nash equilibria as fixed points problems
Identifying Nash equilibria reduces to a fixed point problem if the so called best-
response correspondence is considered.

The principle of the best response is based on the following idea6:
If a player i wants to play a game with the greatest possible success, he has to build
up expectations on which strategies s−i will be chosen by his contestants. Based
on these expectation he can formulate his best possible response strategy. This
best response might not be unique: sometimes several possible responses will fit
equally well to a strategy combination s−i. It follows that a mapping assigning to
each s−i player i’s best responses will be a set-valued correspondence:

5for more details on this game see [Sch04] pg.17f.
6see for this principle also [Sch04] pg. 20f.
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Definition 1.2.2 (Best-response correspondence for the player i)
Let ri be the mapping, that yields for any given strategy combination s−i the set of
all best responses, i.e. a mapping of the form

ri : S −i → 2S i

ri
(
s−i

)
=

{
si
∗ ∈ S i | U i

(
si
∗, s
−i
)
≥ U i

(
si, s−i

)
∀si ∈ S i

}
. (1.10)

Such a mapping ri is called best-response correspondence of the player i.

Combining the best-response correspondences for all players i, yields the follow-
ing mapping:
Definition 1.2.3 (Best-response correspondence)
Let ri : S −i → 2S i

be defined as above. Then

r : S → 2S

r(s) =
m∏

i=1

ri(s−i) (1.11)

is called the best-response correspondence of a game Γ.

It is now rather easy to see, that Nash equilibria are in fact nothing else than fixed
points of the best-response correspondence.
Theorem 1.2.4 (Nash equilibria as fixed points)
Let Γ = (I, S ,U) be a game in pure strategies and let r be the best-response
correspondence. Then:

s∗ is a Nash equilibrium⇔ s∗ ∈ r (s∗) . (1.12)

Proof. Every player i has certain expectations on which strategies s−i the other
contestants will play. Since the players are supposed to be rational, these expecta-
tions will come true if and only if the expected strategies s−i are best answers on
the strategy combination of the other contestants. Therefore if a strategy combi-
nation s∗ is to be played, it should satisfy

s∗ ∈ r (s∗)

This means, that there are mutual best responses if and only if the above relation
holds. Hence no player will have an impetus, to change his equilibrium strategy,
if and only if s∗ ∈ r (s∗). But this is just the characterization of a Nash equilibrium
and therefore:

s∗ is a Nash equilibrium⇔ s∗ ∈ r (s∗) .
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1.2.4 Occurrence of a Nash equilibrium
By the very definition of a Nash equilibrium, no individual player will have an
incentive to play anything else than his Nash equilibrium strategy as long as all
other players decide to play their equilibrium strategies. In other words: once all
players have agreed to adopt the Nash equilibrium strategy combination, no single
player will have an incentive to break this agreement.

However, it is not clear whether or not all players would have adopted such a
Nash equilibrium strategy combination in the first place. Only under some rather
strict conditions the occurence of a Nash equilibrium strategy combination can be
guaranteed. The following Lemma will be stated without further proof:

Lemma 1.2.5 (Occurrence of a Nash equilibrium)
If a game has a unique Nash equilibrium solution, the Nash equilibrium strategy
set will be adopted by the players if all players act in a perfectly rational fashion,
i.e. if

• all players try to maximize their expected payoff.

• all players pursue their goal without committing mistakes.

• all players are intelligent enough to identify the Nash equilibrium solution.

• all players know that all other players are perfectly rational.

It is of course close to impossible to find a perfectly rational player in the real
world. However, in the context of an application of game theory to economics,
one should expect that all players are at least somewhat close to perfect rationality.
Otherwise they would simply be competed out of the market.

1.3 Mixed strategy games
In the above example “Rock, Paper, Scissors” it was not possible to locate a Nash
equilibrium. However, it will be possible to identify a Nash equilibrium if only
some different kind of strategy concept is considered, the so-called mixed strate-
gies.
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1.3.1 Definition of a game in mixed strategies
So far just pure strategies were considered, i.e. the focus of the analysis was just
one single realization of a game. But what, if the same game is played over and
over again? This leads to the idea of mixed strategies.

Definition 1.3.1 (Mixed strategy)
Let S i =

{
si

1, ...s
i
ni

}
be the strategy set of player i. Then a vector ŝi =

(
ŝi

1, ŝ
i
2, ..., ŝ

i
ni

)T

is called a mixed strategy of i, if:7

ni∑
j=1

ŝi
j = 1, ŝi

j ≥ 0. (1.13)

Ŝ i is called the set of all mixed strategies of player i, if:

Ŝ i =

(ŝi
1, . . . , ŝ

i
ni

)
|

ni∑
j=1

ŝi
j = 1, ŝi

j ≥ 0, j = 1, . . . , ni

 . (1.14)

The set of all mixed strategies Ŝ will then be defined by

Ŝ =
∏
i∈I

Ŝ i (1.15)

An interpretation of the concept of mixed strategies can be given as follows: the i-
th player chooses the k-th pure strategy si

k with probability ŝi
k. The strategy “I play

rock, paper and scissors equally often” could therefore be denoted as the mixed
strategy

(
1
3 ,

1
3 ,

1
3

)
.

This interpretation shows, that the set of all pure strategies is a subset of the set
of all mixed strategies. Vectors ŝi =

(
ŝi

1, ŝ
i
2, ..., ŝ

i
ni

)T
where ŝi

k = 1 for one k can
therefore be identified with the k-th pure strategy si

k. Since ŝi
j can be understood

as the probability of playing the strategy si
j, the payoff in mixed strategies can be

interpreted as an expected value:

Definition 1.3.2 (Payoff in mixed strategies)
If each player i is playing a mixed strategy, then the payoff Û i to player i is given
by:8

Û i := U i(ŝ) =
n1∑

j1=1

. . .

nm∑
jm=1

U i
(
s1

j1 , . . . , s
m
jm

) m∏
k=1

ŝk
jk . (1.16)

7see [Sch04] pg. 30
8see [Sch04] pg. 30
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Having defined strategies and payoffs for a game in mixed strategies, it is now
possible to define a game in mixed strategies:

Definition 1.3.3 (Game in mixed strategies)
Let Ŝ und Û be as defined above. Then Γ̂ = (I, Ŝ , Û) is called a game in mixed
strategies Γ = (I, S ,U).

A mapping similar to the best-response correspondence in pure strategies can also
be defined in mixed strategies:

Definition 1.3.4 (Best-response correspondence in mixed strategies)
For the player i the best-response correspondence in mixed strategies is defined to
be the mapping

r̂i : Ŝ −i → 2Ŝ i

r̂i
(
ŝ−i

)
=

{
ŝi
∗ ∈ Ŝ i | Û i

(
ŝi
∗, ŝ
−i
)
≥ Û i

(
ŝi, ŝ−i

)
∀ŝi ∈ Ŝ i

}
. (1.17)

Combining these correspondence gives the best-response correspondence for the
game Γ̂:

r̂ : Ŝ → 2Ŝ

r̂(ŝ) =
m∏

i=1

r̂i
(
ŝ−i

)
(1.18)

1.3.2 Nash equilibrium in mixed strategies
Based on the definition of a Nash equilibrium in pure strategies9 a Nash equlib-
rium in mixed strategies can be described as follows:

Theorem 1.3.5 (Nash equlibrium in mixed strategies)
A strategy combination ŝ∗ =

(
ŝi
∗, ŝ
−i
∗

)
∈ Ŝ is a Nash equilibrium if and only if for

all pure strategies si
j of the i-th player:10

Û i
(
si

j, ŝ
−i
∗

)
≤ Û i (ŝ∗) , j = 1, . . . , ni, i = 1, . . . ,m. (1.19)

Proof. The implication

ŝ∗ is a Nash equilibrium⇒ Û i
(
si

j, ŝ
−i
∗

)
≤ Û i (ŝ∗) ,∀ j,∀ i

9see definition 1.2.1
10see for this theorem [Sch04] pg. 38
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follows directly from definition 1.2.1.

Suppose now Û i
(
si

j, ŝ
−i
∗

)
≤ Û i (ŝ∗) for all pure strategies si

j of the i-th player. Then
for all mixed strategies:

Û i
(
ŝi, ŝ−i

∗

)
=

ni∑
j=1

Û i
(
si

j, ŝ
−i
∗

)
ŝi

j

≤

ni∑
j=1

Û i (ŝ∗) ŝi
j = Û i (ŝ∗)

Similar to the pure case, Nash equilibria are also fixed points in the case of mixed
strategies.

Lemma 1.3.6
Given a game Γ̂ =

(
I, Ŝ , Û

)
and the best-response correspondence r̂ the following

holds:

ŝ∗ is a Nash equilibrium⇔ ŝ∗ ∈ r̂(ŝ∗). (1.20)

Proof. See the proof of theorem 1.2.4. �

1.3.3 Properties of mixed strategy games
Mixed strategy games have several key properties that will turn out to be useful
when proving the existence of a Nash equilibrium solution.
A first such property is the convexity of the set of mixed strategies Ŝ :

Proposition 1.3.7 (Convexity of Ŝ)
The set of all mixed strategies Ŝ is convex11.

Proof. Let ŝi, t̂i ∈ Ŝ i, i ∈ I. Consider now for 0 ≤ λ ≤ 1:

q̂i = λŝi + (1 − λ)t̂i.

11see [Sch04] pg. 30



1.3. MIXED STRATEGY GAMES 15

Then:
ni∑
j=1

q̂i
j =

ni∑
j=1

(
λŝi

j + (1 − λ)t̂i
j

)
=

ni∑
j=1

λŝi
j +

ni∑
j=1

(1 − λ)t̂i
j

= λ

ni∑
j=1

ŝi
j + (1 − λ)

ni∑
j=1

t̂i
j

= λ + (1 − λ)
= 1.

This yields q̂i ∈ Ŝ i and therefore the convexity of Ŝ i ∀ i ∈ I.
Since Ŝ =

∏
i∈I Ŝ i, also Ŝ is convex. �

Another important feature of Ŝ is its compactness:

Proposition 1.3.8 (Compactness of Ŝ)
The set of all mixed strategies Ŝ ist compact12.

Proof. To prove that Ŝ is compact, it is enough to show, that for all i ∈ I:

1. Ŝ i is bounded.

2. Ŝ i is closed.

The boundedness of Ŝ i is trivial (simply by definition 1.3.1).
Consider now a sequence ŝi

m ∈ Ŝ i, that converges to a ŝi
0 for m→ ∞.

Then this ŝi
0 satisfies:

ni∑
j=1

ŝi
0, j = lim

m→∞

ni∑
j=1

ŝi
m, j

= lim
m→∞

1

= 1.

Therefore also ŝi
0 ∈ Ŝ i. This yields, that Ŝ i is closed.

This shows that all Ŝ i, i ∈ I are compact. For this reason also Ŝ is compact. �

12see [Sch04] pg. 30
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Without proof the following remark on the payoff function U will be stated:

Remark 1.3.9
The functions Û i are multi-linear, continuous, real-valued functions on the set of
all mixed strategy combinations

∏m
i=1 Ŝ i.13

An important property of games in mixed strategies follows directly from the
definition of mixed strategies and of the payoff in mixed strategies:

Proposition 1.3.10
For every mixed strategy combination ŝ0 every player i can choose at least one
pure strategy si

k such that:14

1. ŝi
0,k > 0

2. Û i
(
si

k, ŝ
−i
0

)
≤ Û i (ŝ0)

Proof. Suppose, there exists a player i such that for all k with ŝi
0,k > 0:

Û i
(
si

k, ŝ
−i
0

)
> Û i (ŝ0)

Then for all k there holds exactly one of the following relations:

Û i
(
si

k, ŝ
−i
0

)
ŝi

0,k > Û i (ŝ0) ŝi
0,k

Û i
(
si

k, ŝ
−i
0

)
ŝi

0,k = Û i (ŝ0) ŝi
0,k = 0

Summing up over k yields

ni∑
j=1

Û i
(
si

j, ŝ
−i
0

)
ŝi

0, j >

ni∑
j=1

Û i (ŝ0) ŝi
0, j.

Together with the definition 1.16 this gives

Û i (ŝ0) > Û i (ŝ0) .

This is a contradiction. Therefore the above assumption is wrong and the propo-
sition is proven. �

13see [Sch04] pg. 30
14see [Sch04] pg. 37f.



1.4. FIXED POINT THEOREMS OF BROUWER AND KAKUTANI 17

1.4 Fixed point theorems of Brouwer and Kakutani
As was shown in the previous section, Nash equilibria and fixed points of a game
are essentially the same. Hence, proving the existence of a Nash equilibrium in a
game Γ is nothing else than proving the existence of a fixed point for the relevant
best-response correspondence.

Two of the most famous theorems dealing with the existence of fixed points are
Brouwer’s and Kakutani’s fixed point theorems.

The first one of these theorems, Brouwer’s fixed point theorem, was developed in
191015 and used by John von Neumann in 1928 to prove the existence of a “mini-
max” solution in two-agent games.16

Brouwer’s Fixed Point Theorem states the existence of a fixed point for a contin-
uous function r under certain conditions on the domain S :

Theorem 1.4.1 (Brouwer’s Fixed Point Theorem)
Let S ⊂ Rn convex, compact and non-empty and let r : S → S be a continuous
function. Then there exists an s∗ ∈ S such that r(s∗) = s∗.17

Proof. The proof of this general form of Brouwer’s fixed point theorem is rather
long and will hence be omitted. See [Bor85], pg. 28. �

Closely related to Brouwer’s fixed point theorem is Kakutani’s fixed point the-
orem. The main difference is that Kakutani’s fixed point theorem considers set
valued functions, in particular upper semi-continuous multifunctions18:

Definition 1.4.2 (Upper Semi-Continuous Multifunction)
A set-valued function (or multifunction) F : X → Y is called upper semi-continuous
at a point x ∈ X, if for each open set V ∈ Y with V ⊆ Y there is an open set U ⊂ X
containing x such that F(U) ⊆ V.

Kakutani’s Fixed Point Theorem then states the following:19

15It is interesting to note, that Brouwer, one of the proponents of intuitonist philosophy, a math-
ematical approach that disagrees with the classical idea of proving the existence of an object by
showing the impossibility of its non-existence, became most famous for this theorem, a theorem,
which just proves the existence of a fixed point, but does not tell anything about how to construct
this said fixed point.

16see [vN28], pg. 295-300 for the original proof
17the original version can be found in [Bro11], pg. 161 ff.
18for this definition see [Eki03], pg. 229
19see for the original version [Kak41], pg. 457-459
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Theorem 1.4.3 (Kakutani’s Fixed Point Theorem)
Let S ⊂ Rn be nonempty, compact and convex. Let r : S → 2S be an upper semi-
continuous multifunction that assigns to each s ∈ S a nonempty, closed, convex
subset r(s) of S . Then there is a s∗ ∈ S , such that s∗ ∈ r(s∗).

Proof. For sake of a concise presentation also this proof will be omitted. For a
classical proof of this theorem consult [Bor85], pg. 72.

A very elegant proof of this theorem has just recently been suggested by McLen-
nan and Tourky20. The reader may recall, that Kakutani’s fixed point theorem
was introduced in order to prove the existence of Nash equilibria under certain
conditions. McLennan and Tourky however constructed games for which the
existence of Nash equlibria follows directly out of the games’ setup (using the
Lemke-Howson algorithm21). Using the fact, that equilibrium points exist for this
game and the fact, that equilibrium points are nothing else than fixed points for
the so called best answer correspondence, McLennan and Tourky were able to
conclude that Kakutani’s fixed point theorem must hold. �

Kakutani’s fixed point theorem is one of the most important theorems in math-
ematical economics: the noble prize winning works of John Nash, who proved
the existence of Nash equilibria, and of Kenneth Arrow and Gerard Debreu, who
proved, that the existence of prices that balance supply and demand in a complex
economy, both strongly rely on the use of Kakutani’s fixed point theorem.

A generalization of Kakutani’s fixed point theorem to infinite dimensional normed
spaces is due to Fan:22

Theorem 1.4.4 (Fan’s Fixed Point Theorem)
Let S ⊂ X be a nonempty, compact and convex subset of a normed linear space
X. Let r : S → 2S be an upper semi-continuous multifunction that assigns to each
s ∈ S a nonempty, closed, convex subset r(s) of S . Then there is a s∗ ∈ S , such
that s∗ ∈ r(s∗).

1.5 Existence of a Nash equilibrium
Using the fixed point theorems outlined in the previous section, two important
theorems about the existence of Nash equilibria can be proven: one, unfortunately

20see [MT05]
21see for this algorithm [LH64], pg. 413-423
22see [Fan60], pg. 265 ff.



1.5. EXISTENCE OF A NASH EQUILIBRIUM 19

quite restrictive, existence theorem for pure strategy games, and one surprisingly
general theorem for games in mixed strategies.

The existence theorem for pure strategies will be valid for quasi-concave utility
functions only:

Definition 1.5.1 (Strictly quasi-concave utility function)
Let the strategy set S i of the player i be convex. A utility function U i(si, s−i) is said
to be strictly quasi-concave23, if for all si

1, si
2 ∈ S i, 0 ≤ λ ≤ 1

U
(
si

1, s
−i
)
> U

(
si

2, s
−i
)
⇒ U i

(
λsi

1 + (1 − λ)si
2, s
−i
)
≥ U

(
si

2, s
−i
)
. (1.21)

The first existence theorem for Nash equilibria can then be stated as follows:

Theorem 1.5.2 (Existence of a Nash equilibrium in pure strategies)
Let Γ = (I, S ,U) be a game with the following properties24:

1. the strategy set S i ⊆ Rdi is compact and convex for all players i ∈ I.

2. the payoff function U i : S i × S −i → R is continuous and bounded. For fixed
s−i ∈ S −i it is strictly quasi-concave in si ∈ S i.

Then the game Γ has at least one Nash equilibrium.

Proof. The proof of this existence theorem is based on Brouwer’s fixed point the-
orem. Since Nash equilibria and fixed points of the best-response correspondence
r are equivalent it is enough to show, that all assumptions of Brouwer’s fixed point
theorem are met by r and S .

Since by assumption the strategy sets S i ⊂ Rdi
are convex and compact, also

S =
∏

i∈I S i is convex and compact.

Moreover, it is easy to see, that every player has at least one strategy in his strategy
set. Otherwise, a game would be impossible. This means nothing else than that
the sets S i and therefore also S are non-empty.

Consider now the best-response correspondence r(s). r would be defined on the
whole strategy set S , if each player i could find a best answer ri(s−i) to each strat-
egy combination s−i. Consider for this purpose that for a fixed s−i, U i

(
si, s−i

)
is a

real-valued, continuous and bounded function on the compact set S i. Hence the

23see [Sch04] pg. 190
24see [Sch04] pg. 33ff.
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Weierstrass extreme value theorem25 implies that U i(si, s−i) takes its maximum for
a strategy si ∈ S i.

The reader might have noted that there is one major problem in applying Brouwer’s
fixed point theorem to the best-response correspondence r: Brouwer’s fixed point
theorem holds for single valued functions, but r is by definition vector-valued
This problem is resolved by considering that the payoff functions U i are strictly
quasi-concave, continuous utility functions. This means nothing else than that
for all s−i there is a unique best response si

0 = ri(s−i), that maximizes the payoff
U i(si, s−i). Therefore for each player i:

ri
(
s−i

)
= si

0 ∈ S i

and for the whole game

r(s) =
(
r1(s−1), . . . , rm(s−m)

)
=

(
s1

0, . . . , s
m
0

)
∈ S .

Therefore r is in fact a single valued mapping from S to S .

It remains to be shown, that r is continuous. Continuity and quasi-concavity of U i

imply that the best response to a strategy combination s−i is just slightly changed
by a continuous variation of s−i. Considering the definition of ri(s−i), it is clear
that also r(s) has to be continuous.

This shows that all assumptions of Brouwer’s fixed point theorem hold for the
best answer correspondence r. Therefore there is a fixed point s∗ ∈ S with r(s∗) =
s∗ and together with theorem 1.2.4 this is equivalent to the existence of a Nash
equilibrium s∗. �

A more powerful existence theorem exists for mixed strategy games26

Theorem 1.5.3 (Existence of a Nash equilibrium in mixed strategies)
Every finite game in strategic form has a Nash equilibrium in mixed strategies.

Proof. The proof of this theorem will be an application of Kakutani’s fixed point
theorem. As in the pure strategy case, the claim can be proven by simply showing
that all assumptions of Kakutani’s theorem are met by Ŝ and r̂.

25Weierstrass extreme value theorem: a continuous function from a compact space to a subset
of real numbers attains its global maximum and minimum on that set.

26This theorem has been originally proven by John Nash. See: [Nas51], pg. 288
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1. The definition of Ŝ i (see definition 1.3.1) implies

Ŝ i ⊂ Rni .

It was already shown that the sets Ŝ i are convex and compact27. It is also
clear that a strategy set has to be non-empty.

2. r̂i(ŝ−i) is clearly non-empty, since there is always a strategy that can be cho-
sen by player i. Therefore also r̂(ŝ) is non-empty.

3. Let p̂, q̂ ∈ r̂(ŝ) be best answers to a strategy combination ŝ. Then for all
i ∈ I:

Û i
(
p̂i, ŝ−i

)
= Û i

(
q̂i, ŝ−i

)
and therefore

Û i
(
λ p̂i + (1 − λ)q̂i, ŝ−i

)
≤ Û i

(
p̂i, ŝ−i

)
,

where 0 ≤ λ ≤ 1.
Multilinearity of Û i implies:

Û i
(
λ p̂i + (1 − λ)q̂i, ŝ−i

)
≥ min

{
Û i

(
p̂i, ŝ−i

)
, Û i

(
q̂i, ŝ−i

)}
= Û i

(
p̂i, ŝ−i

)
= Û i

(
q̂i, ŝ−i

)
Therefore also t̂i := λ p̂i + (1 − λ)q̂i ∈ r̂i

(
ŝ−i

)
and t̂ =

(
t̂1, ..., t̂m

)
∈ r̂ (ŝ). This

means that r̂ (ŝ) is convex.

4. Let ŝm be a sequence of strategy combinations and t̂m ∈ r̂ (ŝm), where for
m→ ∞

ŝm → ŝ∗,
t̂m → t̂∗.

Then for all q̂i ∈ Ŝ i:

Û i
(
t̂i
m, ŝ

−i
m

)
≥ Û i

(
q̂i, ŝ−i

m

)
. (1.22)

27see propositions 1.3.7 and 1.3.8
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Continuity of Û i implies for all q̂i ∈ Ŝ i:

Û i
(
t̂i
∗, ŝ
−i
∗

)
≥ Û i

(
q̂i, ŝ−i

∗

)
.

This yields for the limit of t̂m:

lim
m→∞

t̂m ∈ r̂
(
ŝ−i
∗

)
.

Therefore r̂ (ŝ) is closed.

5. Since Û is continuous, it is clearly upper semi-continuous.

This shows, that all assumptions of Kakutani’s fixed point theorem hold. This
implies the existence of a fixed point ŝ∗ ∈ r̂ (ŝ∗), or equivalently the existence of a
Nash equilibrium at ŝ∗. �



Part II

Hedging pressure and the need for
intermediaries

23
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A first model of intermediated exchange will consider a market in which a
commercial buyer/consumer, a commercial seller/producer and a non-commercial
intermediary trade a certain commodity. While buyer and seller are entering the
market in order to minimize the possible variation in their returns, the interme-
diary’s involvement is based on his goal of earning profit by trading spreads and
taking risk. These are key features of an intermediary’s activitiy

This fundamental difference between the goals of buyer and seller on the one,
and intermediary on the other side will be enough to explain the vital role inter-
mediaries are playing in nowadays markets. A naive expectation on the model
might suggest that seller and buyer are trading directly as much as possible, hence
avoiding the costs that would arise by including the intermediary. Using a game-
theoretic framework, it will however be shown that the intermediary will trade
more than just the demand-supply surplus. This corresponds to observations made
in daily life where usually almost the complete supply and demand is subject to
intermediated exchange.



Chapter 2

Model I: A basic market model

In a two-period model of a market M a commercial consumer, or buyer B, a
commercial producer, or seller S and a non-commercial intermediary I will trade
a certain commodity/good G with delivery at time t = T . The market participants
can either agree on direct trades at t = 0 or access the cash market C at time t = T .

The assumptions made on the players and the market structure will be described
in the following.

2.1 Basic assumptions on the market
1. Accessing the cash market C as well as trading directly with any of the

players will be free of transaction costs.

2. There will be no cost of carry and no convenience yield.

3. Trading will take place on a continuous price scale. This means that there is
no minimal price step and hence that there is a price p3 for every two prices
p1 < p2 such that p1 < p3 < p2.

4. There will be no bid/ask spread on the cash market.

5. No participant in the cash market C can affect the cash market price P(t) by
his trading. Therefore P(t) can be seen as an exogenous parameter: it is a
random variable1.

1It might for example be assumed to be lognormal, with µ and σ being the expected mean, and
volatility of the corresponding log-return of the prices P(t) respectively.

25
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6. All players know that P(t) is a random variable. Furthermore the expected
value of P(t) at time t = T ,

Λ = E [P(T )]

is known to all players.

7. The riskless rate of return is known to be r.

8. Supply, or production2 α of player S and demand, or consumption ν of
player B will be deterministic and known to all players at time t = 0.

Note that no restrictions on the nature of G have been made: the reader may think
of G as being soy beans, stocks, human work force or any other tradeable product.

Comment 2.1.1
Supply α and demand ν are assumed to be deterministic, while the cash market
price is assumed to be random. These assumptions might contradict themselves
at first glance. However, the considered model depicts only a small part of the
complete market action: note that for example none of the three players is able to
affect the cash market price by his own trading. Other sellers, buyers and inter-
mediaries act in the market and only a complete knowledge about their combined
action will explain the behaviour of the cash market price.

2.2 The roles of the players
The players, seller S , buyer B and intermediary I, enter the market M playing
the roles of a commercial seller and buyer, and a non-commercial intermediary
respectively. In more detail, the roles of the players can be described as follows:

• At time t = 0

– B is aware that at time t = T he will need to buy quantity ν of the
commodity G.

– S is aware that at time t = T he will need to sell quantity α of the same
commodity G.

2Note that the choice of variables for supply and demand relates to the corresponding German
expressions “Angebot” (α) and “Nachfrage” (ν)
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• The only motivation for both S and B to trade at t = 0 is their goal to
minimize the possible variation in their returns. It may be described as
hedging pressure.

• I entersM as a risk-neutral intermediary and spread-trader with the goal of
gaining an expected profit higher than the risk-free return.

2.3 The possible trades
The supply or demand needs of S and B respectively can be fulfilled in the fol-
lowing ways:

• at time t = 0

– B and S can agree on a direct trade with delivery at t = T .

– B and S can approach a non-commercial intermediary I who will in
case of a mutual agreement guarantee that G will be delivered to B or
that S ’s delivery will be taken at t = T .

• at time t = T , both B and S have access to the cash market C to fulfil their
buying or selling needs.

• The non-commercial intermediary I himself will be allowed to enter the
cash market C as a drop-off place to transfer his delivery or purchase obli-
gations at t = T to participants of C.

2.4 The goals of the players
Clearly, there are two types of goals that have to be quantified: the goal of I to
make profit and the goals of S and B to minimize the variation of their individual
returns.

2.4.1 The goals of S and B

By assumption, both S and B, although on opposite sides of the trade, have the
same goal, namely minimizing their operatory risk: since the cash market price
P(T ) is not known in advance, both S and B face some risk concerning their future
payment streams. In order to avoid this risk, S and B are willing to pay a certain
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risk premium at t = 0 in exchange for getting an acceptable price for selling or
buying G at t = T .

Notice that all the players, buyer B, seller S , and intermediary I know Λ, the
expected value of P(t) at time t = T . In other words, this means that all players
have identical information about the marketplace, and hence identical expecta-
tions about future prospects.

To be able to define their “acceptable price” at time t = 0, both S and B at first
need to formulate a goal of what they want to have reached at time t = T . One
way in which this can be done is the following:

1. S quantifies a minimum price for G that he wants to realize for every single
unit of G he sells. A bit more formalized, this means the following:

at time t = T , S wants to have sold all α units of G such that the minimal
price pmin he realized satisfies

pS
min ≥ (1 − RS )Λ,

where RS ∈ [0, 1) denotes the risk premium S is willing to pay for eliminat-
ing the price risk.

2. Similarly B quantifies a maximum price for G signalling that he is not will-
ing to pay more than some maximum price for any single unit of G he
buys. This can be formalized a follows:

at time t = T , B wants to have bought all needed ν units of G such that the
maximal price pmax satisfies

pB
max ≤ (1 + RB)Λ,

where RB ∈ [0,∞).

Notice that RB and RS may have different interpretations. They may depend on
risk aversion of the players, explicitly depend on the price volatility, or incorporate
various and different utility functions of the players B and S .

It is now necessary to relate the goals of B and S at t = T with what they need
to do at t = 0. This can be done by usual discounting arguments; for the sake of
clarity of presentation, we omit standard reasoning. The result is that the maximal
price for which B can enter into a forward agreement for a unit of G at t = 0 is

p̂B
max = (1 + RB)Λe−rT ,
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and that the minimal price for which S can enter into a forward agreement for a
unit of G at t = 0 is

p̂S
min = (1 − RS )Λe−rT .

This leads to the concept of an acceptable forward offer at time t = 0:

Definition 2.4.1 (Acceptable offer)
Under the assumption that goals are formulated as described above

1. a price p̂S offered to S at time t = 0 is acceptable for S if

p̂S ≥ p̂S
min = (1 − RS )Λe−rT , (2.1)

2. Similarly a price p̂B offered to B at time t = 0 is acceptable for B if

p̂B ≤ p̂B
max = (1 + RB)Λe−rT . (2.2)

At time t = 0, both S and B will only agree to offers that are acceptable in the
sense defined above. If they are not able to fulfil their supply and demand needs
at t = 0 then they will buy or sell the remaining units on the cash market C at time
t = T.

2.4.2 The goal of the non-commercial intermediary I

I is a player whose goal is to make profit by trading spreads, or by taking the risk
that B and S face concerning price uncertainty. For simplicity, it is assumed that
B and S are fully risk-averse, while I is risk-neutral.

Suppose that at time t = 0, I is willing to buy mS units from S for a price PS and
to sell mB units of G to B for a price of PB per unit. Since mB may not be equal to
mS , the size of the immediate round trade is

mmin = min{mB,mS }.

The immediate profit of I, clear of all obligations, at t = 0 equals

mmin

(
PB − PS

)
.
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Furthermore, at time t = T the intermediary I has to sell the (mS − mmin) or buy
the (mB − mmin) remaining units of G on the cash market for a price P(T ). Since
E [P(T )] = Λ, I’s expected profit/loss E[U I] from this transaction is

(mS − mmin)
(
Λ − PS

)
+ (mB − mmin)

(
PB − Λ

)
.

Note that this profit/loss will be realized at time t = T . On the other hand, at time
t = 0, I’s capital changes by

mBPB − mS PS .

The riskless interest on this capital change that I can receive during the period
from t = 0 to t = T is (

mBPB − mS PS
) (

erT − 1
)
.

The overall change of capital for I consists of three parts: immediate profit/loss
without further obligations at t = 0, the expected profit/loss at t = T and the
change in interest payments during the period from t = 0 to t = T . This means
that by entering the market as described, I’s capital at time t = T changes by

mmin

(
PB − PS

)︸            ︷︷            ︸
immediate profit

+ (mS − mmin)
(
Λ − PS

)
+ (mB − mmin)

(
PB − Λ

)︸                                                      ︷︷                                                      ︸
expected profit at t = T

+
(
mBPB − mS PS

) (
erT − 1

)︸                           ︷︷                           ︸
change in interest payments

=
(
mBPB − mS PS

)
erT + (mS − mB)Λ.

In other words, the total profit/loss of the trade is equal to the grown initial value
of the trade less the cash value of the merchandise dropped on the free market.
Hence, I is willing to enter the trade if(

mBPB − mS PS
)

erT + (mS − mB)Λ > 0.

Using a standard discounting argument this goal can be transferred to time t = 0.
With Λ̂ = Λe−rT it follows that I will have satisfied his goal if at time t = 0(

mBPB − mS PS
)
+ (mS − mB)Λ̂ > 0.

In the special case of mS = mB this implies that if only the spread PB − PS is pos-
itive I is guaranteed a positive immediate payoff without carrying any inventory.
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This shows that I is in principle willing to trade G at any price as long as the com-
bination of trading spreads and taking risks promises to generate profit. Hence
I might even be willing to trade a negative spread if just the overall revenue
promises to be positive.

2.4.3 The quantified goals: rule or strategy?
There are two ways to interpret the goals of the players B and S in the context of
a trade.

1. On the one hand these goals can be interpreted as a rule in the game. This
means that the players have no influence in actually quantifying their goals
and therefore RS and RB have to be understood as exogenous parameters.

2. On the other hand these goals can be seen as part of the players’ strategies,
i.e. when deciding over which strategy to play, a player also has to decide
about the relevant parameter in the formalization of his goal.

Both interpretations have their justification. The second alternative for example
may describe a situation, in which players B and S constantly revise their goals,
and have the freedom to decide on their corresponding risk premia RB and RS .

On the other hand, S might for instance represent the sales department of a com-
pany producing G. If then the management of the company decides to set a price
range for G, the sales department represented by S has to deal with this price
range without having had any influence on its formulation and without having the
chance of independently revising this price range at a later time.

While this shows that theoretically RS and RB can be either a rule or a strategy, the
practical interpretation of both possibilities should be rather similar. Consider for
this that risk premia are based on mainly two factors:

• the risk that S and B face in a certain situation

• and the risk aversity of the respective player in general.

Hence, a reevaluation of RS or RB should correspond to either a substantial change
of the risk scenario the respective player is facing or to a change of the player’s
character. However, on a short time horizon, both factors can be assumed to be
rather constant. Since neither the objective riskiness of a trade nor the subjective
risk aversity of a player can be changed by a strategic decision, it follows that even
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when B and S are allowed to decide over RS and RB as part of their strategy, their
decision will not be strategic. It will simply be a completely predictable response
on how much risk they are facing and on how risk-averse they are. Hence, even if
S and B are allowed to set RS and RB as part of their strategic decision, RS and RB

can be assumed to be constant external parameters.

2.5 The matchmaking process in a trade
The matchmaking process in a trade will depend on two main assumptions con-
cerning the role of the intermediary I:

• I will make binding price offers PI→S and PI→B to S and B. Note that the
arrow in the notation shows the direction of the offer, not the direction of
goods transfer.

• I is willing to accept practically any price, as long as his overall revenue
turns out to be positive. This willingness will be reflected in the chance for
S and B to enter price negotiations with I with the goal of realizing a price
that from their point of view is better than the binding offer made by I.

These two key assumptions can be portrayed in the following matchmaking pro-
cess3:

1. The intermediary I makes a binding offer of an ask price PI→S and a bid
price PI→B to S and B, respectively.

2. S and B enter negotiations with I by making binding price offers PS→I and
PB→I .

3. I decides whether or not he will accept PS→I and PB→I . If he accepts a price,
all α or ν units respectively will be traded at that price.

4. (a) If both S and B have not fulfilled their supply or demand needs yet,
they will trade the maximal amount min{α, ν} directly for a price PS ,B =

Λe−rT .

(b) If either S or B still has open supply or demand needs (because of
α , ν), the respective player will trade the remaining units with I for

3for a similarly structured model see [Spu99] pg. XV
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the posted price PI→S or PI→B respectively, if this price is acceptable.
Otherwise this player will take the risk himself and realize his supply
or demand needs at time t = T on the cash market.

It is reasonable to assume, that, if trading G directly, B and S agree on a price
of Λe−rT , since both S and B are at the time of the direct negotiation in the same
situation: they both can exchange at most N units of G directly and they both are
aware that if they cannot agree on a direct trade, they would have to trade all their
units with I for (1 − RS )Λ̂ or (1 + RB)Λ̂ respectively, where

Λ̂ = Λe−rT .

2.6 The strategies of the players
The possible strategies of the players follow directly out of the matchmaking pro-
cess described above.

Consider first that the steps (4a) and (4b) of the matchmaking process were just
a consequence of what had happened in the previous steps. Therefore strategic
behaviour can only occur in the first three steps of the matchmaking process.

Furthermore, although setting prices PI→S and PI→B appears to be a part of I’s
strategy, in a market with perfect information it is not: I knows that S will only
accept a price better than or equal to (1− RS )Λ̂ and that B will only accept a price
better than or equal to (1 + RB)Λ̂. So clearly (1 − RS )Λ̂ and (1 + RB)Λ̂ are the best
prices I can realize and hence there is no reason to make offers PI→S < (1 − RS )Λ̂
or PI→B > (1 + RB)Λ̂.

On the other hand, I wants to capture a maximal profit, and, if possible, I will
not improve his offers to B and S . Hence the only possible binding price offers of
I are PI→S = (1 − RS )Λ̂ and PI→B = (1 + RB)Λ̂.

This argument shows that the above model sufficiently describes the concept of
hedging pressure:

Intermediary I is under no pressure to enter a trade, since if he does not, all
that can happen to him is that he would make no profit. Contrary to that, S and
B face the risk of price uncertainty at t = T . Hence they have a strong incentive
of hedging their positions at time t = 0. This results in the fact that they might be
forced to accept prices as bad as (1 − RS )Λ̂ and (1 + RB)Λ̂.

The intermediary I can use this advantage to an extent where one of the players
has to trade his whole amount with I for the binding price offer made by I. If I for
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example wants to buy all α units for PI→S , he only needs to accept B’s and decline
S ’s offer in step (3) of the matchmaking process. B would then have already
satisfied all his hedging needs with I, and hence only two trading scenarios are
left for S : he can either go to the cash market and trade there for an uncertain
price or accept I’s binding offer. Since S is completely risk-averse, he will accept
I’s offer as long as it is acceptable for him. But since I will offer an acceptable
price, as shown earlier, this implies that S will trade all α units of G for a price of
PI→S per unit, which is exactly what I wanted to achieve.

The above reasoning shows that the only strategic decisions take place in step (2)
and (3) of the matchmaking process. Hence the strategies of each player can be
defined as follows:

• The strategy of S is well defined by his price offer PS→I .

• The strategy of B is well defined by his price offer PB→I .

• The strategy of I is defined as the set of his responses to PS→I and PB→I .
Each response will either be a price acceptance or rejection.The following
scenarios are possible:

– sI
B: I accepts B’s offer and rejects S ’s offer. I will therefore sell ν units

to B for a price of PB→I and buy α units from S for a price of PI→S per
unit.

– sI
S : I accepts S ’s offer and rejects B’s offer. In this case I will sell ν

units to B for a price of PI→B and buy α units from S for a price of
PS→I per unit.

– sI
−: I rejects both offers. S and B will trade m = min{α, ν} units di-

rectly. The remaining α −m or ν −m units will be bought or sold by I
for PI→S or PI→B respectively.

– Theoretically, I could also accept both offers. However, this would
only make sense if S and B would offer prices to I that are from his
point of view better than his own standing offers PI→S and PI→B. But
clearly, S and B have no motivation to offer such prices. Hence this
scenario can be neglected.

Notice that according to the matchmaking process, I decides his strategy after the
strategies of S and B are known. Hence I will always be able to formulate the best
answer to their strategies. In a “generic case” scenario, where no two options for



2.7. THE PAYOFF FUNCTIONS 35

I result in the same payoff, I’s decision will therefore be completely predictable
as soon as S and B have submitted their price offer.

Hence, the game will effectively reduce to a two-person game, where I’s decisions
are reflected in the respective payoff functions only. For the theoretical analysis
this implies that a strategy combination will be a Nash equilibrium solution if the
strategies of S and B are best responses to each other. I’s strategy will by its very
nature be a best response.

2.7 The payoff functions
To construct the payoff functions of the different players consider that - depending
on I’s decision - in principle three outcome scenarios are possible:

• sB =
(
PS→I , PB→I , sI

B

)
:

I accepts B’s and rejects S ’s offer. It follows that S will sell his complete
supply α for a price of PI→S to I and that B will buy all ν units he demands
for a price of PB→I from I.

• sS =
(
PS→I , PB→I , sI

S

)
:

I accepts S ’s and rejects B’s offer. S will then sell α units for a price of
PS→I to I and B will buy ν units for a price of PI→S from I.

• sDT =
(
PS→I , PB→I , sI

−

)
:

I rejects both offers. It follows that S and B will trade m = min{α, ν} directly
for a price of Λ̂ = Λe−rT per unit. I will buy/sell the remaining (α − m) or
(ν − m) units for PI→S or PI→B respectively.

Notice now that the intermediary is a risk-neutral market participant. His payoff
function will therefore not need to take into consideration how much risk I takes
on by buying or selling G. It is simply enough to consider I’s expected monetary
profit at time t = T or equivalently the expected monetary profit at time t = T
discounted to time t = 0. Suppose a trade results in I buying mS units from
S for PS and selling mB units to B for PB. Then I’s monetary, expected payoff
(discounted to t = 0) is (

mBPB − mS PS
)
+ (mS − mB)Λ̂
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and I’s discounted payoff is

E
[
Û I (sB)

]
= νPB→I − αPI→S + (α − ν)Λ̂

= ν
(
PB→I − Λ̂

)
+ α

(
Λ̂ − PI→S

)
E

[
Û I (sS )

]
= νPI→B − αPS→I + (α − ν)Λ̂

= ν
(
PI→B − Λ̂

)
+ α

(
Λ̂ − PS→I

)
E

[
Û I (sDT )

]
= (ν − m) PI→B − (α − m) PS→I + (α − ν)Λ̂

= (ν − m)
(
PI→B − Λ̂

)
+ (α − m)

(
Λ̂ − PS→I

)
,

where m = min{α, ν}.

The main goal of S and B is to avoid risk. Both players B and S will transfer
all their risk completely at time t = 0 no matter which strategy they play: no
matter what happened in any of the negotiation steps they will fill all their supply
or demand needs for (1−RS )Λe−rT and (1+RB)Λe−rT respectively in the last step
of the matchmaking process.
Therefore it is also in the case of S and B enough to consider only their monetary
reward as their payoff function.

Note that if S sells a unit of G for a certain price at time t = 0 he will give up a
commodity with fair value Λ̂. He will therefore have generated a revenue equal
to the difference between the price he realized and Λ̂. It follows that S ’s payoff
functions for the relevant outcome scenarios are:

E
[
ÛS (sB)

]
= α

(
PI→S − Λ̂

)
E

[
ÛS (sS )

]
= α

(
PS→I − Λ̂

)
E

[
ÛS (sDT )

]
= (α − m)

(
PI→S − Λ̂

)
.

Similarly if B buys G, he receives a commodity worth Λ̂ in return for his monetary
expense. His payoff functions for each of the possible outcome scenarios are:

E
[
ÛB (sB)

]
= ν

(
Λ̂ − PB→I

)
E

[
ÛB (sS )

]
= ν

(
Λ̂ − PI→B

)
E

[
ÛB (sDT )

]
= (ν − m)

(
Λ̂ − PI→B

)
.
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Comment 2.7.1
The intermediary I is assumed to be a risk-neutral market participant. Since his
payoff function is linearly dependent on α and ν he will always trade the maximal
possible amount.

This corresponds with observations made in actual markets: most commod-
ity futures exchanges have established position limits for non-commercial entities
such as market makers. Large well-capitalized players, e.g. many hedge funds, of-
ten take maximally permissible positions in “hot” commodities4. When exchanges
alter the position limits, these large players who are often fully leveraged, have to
rebalance their investment. This causes price shifts and an extensive capital move-
ment.

4see for example Fung and Hsieh [FH99]



Chapter 3

Non-existence of a Nash equilibrium
solution in Model I

After describing the setup of Model I, it can now be analyzed what results can be
expected given that all players act in a rational fashion.

3.1 Impossibility of an equilibrium solution involv-
ing direct trade

A naive observer of this market might expect, that S and B would try to mini-
mize the influence of the intermediary I by trading directly, hence trade only the
remaining supply-demand surplus with I. However it will be shown that such a
behaviour is not a Nash equilibrium solution.

Theorem 3.1.1 (Model I: Impossibility of a direct trade)
Consider a marketM with α, ν,RS ,RB > 0, i.e. consider a market with nonzero
supply in demand in which both S and B are willing to pay for a risk transfer.
Then the intuitive expectation that

1. S and B trade the maximal possible amount min{α, ν} units directly for a
fair price PS ,B = Λ̂ per unit.

2. S sells the production surplus max{α − ν, 0} units to I for I’s standing offer
PI→S = (1 − RS )Λ̂ per unit.

3. B buys the consumption deficit max{ν − α, 0} units from I for PI→B = (1 +
RB)Λ̂ per unit.

38
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is not a Nash equilibrium.

Proof. Suppose
(
PS→I

0 , PB→I
0

)
is a combination of price offers that results in the

above naive solution. In other words: PS→I
0 and PB→I

0 are set such that IR’s best
answer is the strategy sI

−, I’s only strategy that allows for such a direct trade sce-
nario.

Assume first that the supply exceeds the demand, i.e. that α > ν. Realization of
this naive solution

s0,DT =
(
PS→I

0 , PB→I
0 , sI

−

)
would then mean the following:

• S and B trade ν units directly for a price of Λ̂ per unit.

• I buys the remaining (α − ν) units from S for (1 − RS )Λ̂ per unit.

Hence I’s expected payoff would equal

E
[
Û I (s0,DT

)]
= (α − ν)

(
Λ̂ − (1 − RS )Λ̂

)
= (α − ν)RS Λ̂.

The fact that I agreed to such a solution means that he denied both price offers
PS→I

0 and PB→I
0 in step 3 of the matchmaking process. He would deny the men-

tioned offers if his other strategies

• sI
S : I buys α units from S for PS→I

0 per unit and sells ν units to B for (1+RB)Λ̂
per unit

• sI
B: I sells ν units to B for PB→I

0 per unit and buys α units from S for (1−RS )Λ̂
per unit

and, hence, the corresponding strategy combinations

s0,S =
(
PS→I

0 , PB→I
0 , sI

S

)
s0,B =

(
PS→I

0 , PB→I
0 , sI

B

)
would not result in a higher expected payoff than

(α − ν)RS Λ̂.
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In other words, this implies simultaneously

E
[
Û I (s0,S

)]
≤ E

[
Û I (s0,DT

)]
,

E
[
Û I (s0,B

)]
≤ E

[
Û I (s0,DT

)]
.

Consider the first equation. Then the expected payoff is

E
[
Û I (s0,S

)]
= ν

(
(1 + RB)Λ̂ − PS→I

0

)
+ (α − ν)

(
Λ̂ − PS→I

0

)
= νRBΛ̂ + α

(
Λ̂ − PS→I

0

)
.

If this option is declined by I then

νRBΛ̂ + α
(
Λ̂ − PS→I

0

)
≤ (α − ν)RS Λ̂

and solving for PS→I
0 yields

PS→I
0 ≥ Λ̂

(
(1 − RS ) +

ν

α
(RB + RS )

)
.

Suppose now that s0,DT is a Nash equilibrium. This implies that PS→I
0 and PB→I

0 are
best responses to each other and hence S would not be able to generate a higher
payoff by singlehandedly changing his strategy.
Suppose now that S is trying to single-handedly improve his payoff. Consider
first that since PB→I

0 is fixed, S can at least single-handedly change I’s decision.
Clearly if I stays at his current choice of declining both offers or switches to the
option sI

B where he accepts B’s offer but declines S ’s offer, the payoff of S cannot
increase.
Hence S needs to choose his strategy so that I will change his decision to accept
S ’s offer, i.e. to the strategy sI

S . But this means nothing else than that S ’s new
strategy PS→I

1 satisfies

PS→I
1 < Λ̂

(
(1 − RS ) +

ν

α
(RB + RS )

)
.

Playing PS→I
1 only makes sense if S can also improve his own payoff. Consider

that S ’s previous payoff under the strategy combination s0,DT is given as

E
[
ÛS (

s0,DT
)]
= −(α − ν)RS Λ̂.
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On the other hand the new strategy combination s1,S =
(
PS→I

1 , PB→I
0 , sI

S

)
results in

a payoff of

E
[
ÛS (

s1,S
)]
= α

(
PS→I

1 − Λ̂
)
.

Since S chooses PS→I
1 only if E

[
ÛS (

s1,S
)]
> E

[
ÛS (

s0,DT
)]

this yields

α
(
PS→I

1 − Λ̂
)
> −(α − ν)RS Λ̂

and therefore

PS→I
1 > Λ̂

(
(1 − RS ) +

ν

α
RS

)
.

Hence PS→I
1 satisfies

Λ̂

(
(1 − RS ) +

ν

α
RS

)
< PS→I

1 < Λ̂
(
(1 − RS ) +

ν

α
(RB + RS )

)
.

A sufficient condition for the existence of such a price PS→I
1 is that

Λ̂

(
(1 − RS ) +

ν

α
RS

)
< Λ̂

(
(1 − RS ) +

ν

α
(RB + RS )

)
.

Therefore the existence of such a price is guaranteed if the condition

ν

α
RB > 0 (3.1)

holds. But this is trivially true as long as RB > 0, i.e. as long as B is willing to pay
a price for transferring risk.

This argument shows that S can single-handedly change his strategy so that he can
guarantee himself a higher payoff. Hence the strategy combination s0,DT cannot
be a Nash equilibrium.
Similarly it can be shown that if ν > α the naive solution with S and B trading as
much as possible directly and B selling the remaining units to I cannot be a Nash
equilibrium as long as

α

ν
RS > 0. (3.2)

and hence as long as RS > 0.
Even in the case of α = ν the direct trade of all α units of G between S and B will



3.2. NON-EXISTENCE OF A NASH EQUILIBRIUM 42

not be a Nash equilibrium: the seller S for instance could singlehandedly improve
his payoff by offering I a price PS→I that satisfies

Λ̂ < PS→I < (1 + RB)Λ̂.

Although this price would be more than the fair discounted value of G, the inter-
mediary I would - given that B’s strategy remains unchanged - accept this offer
and sell all units for a price of (1 + RB)Λ̂ per unit to B. This would result both
in a higher payoff for S and I and hence S would have increased his own payoff
by single-handedly changing his strategy. Hence the direct exchange cannot be a
Nash equilibrium. �

Comment 3.1.2
The existence of an intermediary I results in the fact that a direct trade between S
and B will not be an equilibrium solution. The reason for this is that the chance
of receiving a higher payoff by trading with I will incline both players to diverge
from that strategy. This means that the intermediary will trade more than just the
minimal volume |α−ν|. This agrees with observations made in daily life: wherever
intermediaries occur, they are not just there for trading the supply-demand surplus,
but usually for trading almost the complete supply and demand 1. Hence the
observed phenomenon explains why intermediaries play a vital part in almost all
economic activity.

Comment 3.1.3
The described dynamics show that intermediaries often act as a conduits of eco-
nomic change. Nowadays, “fundamentals” are very often interpreted through the
perception of hedge fund managers, who act in the direction of the perceived
change of “fundamentals”. In this respect, intermediaries are critically important
for economic and financial functioning. It is well-known that a successful intro-
duction of new financial products critically depends on attracting the attention of
financial intermediaries.

3.2 Non-existence of a Nash equilibrium
The key question that needs to be answered now, is whether or not a Nash equilib-
rium can be identified at all in this market. In fact, it can be shown, that one such
Nash equilibrium exists. However this equilibrium will turn out to be a paradox

1see for example Allen and Santomero [AS98], pg. 1470
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and a minor change in the rules of the game will prevent this equilibrium from
being a legal strategy combination:

Theorem 3.2.1 (Model I: Non-existence of Nash equilibria in the market)
Consider a marketM where α, ν,RS ,RB > 0.
Then the only existing Nash equilibrium is a strategy combination where PS→I =

(1 − RS )Λ̂ and PB→I = (1 + RB)Λ̂.

If the prices offered by S and B to I satisfy

PS→I > (1 − RS )Λ̂

and

PB→I > (1 + RB)Λ̂

(since S and B want to improve their position by bargaining and the prices (1 −
RS )Λ̂ and (1+ RB)Λ̂ are already standing offers from I), no Nash equilibrium can
exist.

Proof. Consider first a combination of offers
(
PS→I

0 , PB→I
0

)
, where PS→I

0 = (1 −
RS )Λ̂ and PB→I

0 = (1 + RB)Λ̂. Then I clearly will accept both offers (strictly
speaking he is indifferent between sI

S and sI
B, but both strategies will result in the

same outcome scenario) and hence the payoffs of S and B will turn out to be

E
[
ÛS

(
s0, sI

)]
= −αRS Λ̂

E
[
ÛB

(
s0, sI

)]
= −νRBΛ̂.

Suppose now that S changes his strategy to PS→I
1 while B remains at PB→I

0 . Then
I will accept B’s offer and therefore force S to sell for (1−RS )Λ̂. This means that
the change in S ’s strategy did not influence the outcome of the game.
The same can be shown for a change in B’s strategy. But since no player can
single-handedly improve his strategy it follows that s0 actually is a Nash equilib-
rium.

Suppose now that PS→I
0 > (1 − RS )Λ̂ and PB→I

0 < (1 + RB)Λ̂. Suppose further-
more that supply exceeds demand, α > ν, and suppose a combination of offers(
PS→I

0 , PB→I
0

)
results in the following trades:

• I sells ν units to B for a price of PB→I
0 per unit.
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• I buys α units from S for a price of (1 − RS )Λ̂ per unit.

In other words: suppose that I’s best answer to the strategy combination s0 is the
strategy sI

B, i.e. suppose that the strategy combination

s0,B =
(
PS→I

0 , PB→I
0 , sI

B

)
is played.

Assume now that s0,B is a Nash equilibrium. Then no player would be able to
single-handedly improve his payoff. In particular this would imply that there is
no price PS→I

1 such that a combination of offers
(
PS→I

1 , PB→I
0

)
promises a payoff

satisfying

E
[
ÛS

(
s1, sI

)]
> E

[
ÛS (

s0,B
)]
,

where sI is assumed to be I’s best answer to the combination s1.
Assume now there is such a strategy PS→I

1 . Then an increase in S ’s payoff implies
that I must have changed his strategy as well. Otherwise, S would still sell all
α units for the cheapest possible price PI→S = (1 − RB) Λ̂. Hence S ’s new offer
PS→I

1 convinced I to change his strategy: he will now either accept S ’s offer and
hence play the strategy sI

S or reject both offers and therefore opt for a strategy sI
−

leading to a direct trade scenario sDT .

In order for I to agree to a strategy other than sI
B it follows that at least one of the

following inequalities needs to hold:

E
[
Û I

(
s1, sI

S

)]
> E

[
Û I

(
s1, sI

B

)]
(3.3)

or

E
[
Û I

(
s1, sI

−

)]
> E

[
Û I

(
s1, sI

B

)]
(3.4)

As will be shown, S can always find a price such that inequality (3.3) holds no
matter how S and B have set their initial offers PS→I

0 and PB→I
0 . Hence there is no

need to discuss inequality (3.4) as well.

Consider now that

E
[
Û I

(
s1, sI

B

)]
= ν

(
PB→I

0 − Λ̂
)
+ (α − ν)

(
Λ̂ − (1 − RS )Λ̂

)
= ν

(
PB→I

0 − Λ̂
)
+ αRS Λ̂
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and that

E
[
Û I

(
s1, sI

S

)]
= ν

(
(1 + RB)Λ̂ − PS→I

1

)
+ (α − ν)

(
Λ̂ − PS→I

1

)
= νRBΛ̂ + α

(
Λ̂ − PS→I

1

)
.

Inequality (3.3) is satisfied if

νRBΛ̂ + α
(
Λ̂ − PS→I

1

)
> ν

(
PB→I

0 − Λ̂
)
+ αRS Λ̂.

It follows that if

PS→I
1 <

ν

α
(1 + RB)Λ̂ + (1 − RS )Λ̂ −

ν

α
PB→I

0 ,

I will prefer the strategy sI
S over his previous choice sI

B. It is of course at this point
not clear which of the remaining options sI

S and sI
− the intermediary I will prefer.

However, since S realized a price of (1 − RS )Λ̂ per unit under the old strategy
combination s0, his payoff will improve as soon as he sells a part of his supply for
a price higher than (1 − RS )Λ̂.

• If I opts for sI
−, S and B will enter a direct trade, i.e. S will sell ν units

to B for a price of Λ̂ > (1 − RS )Λ̂ and the remaining (α − ν) units to I for
(1 − RS )Λ̂ per unit. His overall payoff will therefore have increased.

• If I opts for sI
S , I will sell all α units for a price of PS→I

1 to S . His payoff
will therefore have increased as long as PS→I

1 > (1 − RS )Λ̂.

S ’s payoff will therefore have increased no matter which of the strategies sI
S and

sI
− the intermediary I decides to play if only PS→I

1 > (1 − RS )Λ̂.

This yields

(1 − RS )Λ̂ <
ν

α
(1 + RB)Λ̂ + (1 − RS )Λ̂ −

ν

α
PB→I

0

and therefore
ν

α
(1 + RB)Λ̂ −

ν

α
PB→I

0 > 0.

But this implies (as long as min{α, ν} > 0)

PB→I
0 < (1 + RB)Λ̂.

It follows that as long as B is offering a price better than (1 + RB)Λ̂ to I, S will
always find a price PS→I

1 that I will prefer over PB→I
0 . But by assumption B will

offer such a price and hence s0 cannot be a Nash equilibrium.
Similarly, if a combination of price offers

(
PS→I

0 , PB→I
0

)
results in
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• I selling ν units to B for a price of (1 + RB)Λ̂ per unit

• and I buying α units from S for a price of PS→I
0 per unit

it can be shown that as long as PS→I
0 > (1 − RS )Λ̂ is satisfied, B can always find

a strategy PB→I
1 such that I prefers selling for PB→I

1 over buying for PS→I
0 and

such that B’s payoff increases. Therefore also in this case s0 cannot be a Nash
equilibrium.
Equivalent results can be shown for the case ν > α.
Since it has already been shown that no Nash equilibrium can involve a direct
trade given that RS and RB > 0, this shows that no Nash equilibrium can exist at
all in this game as long as the rules of the game are restricted to allow only offers
made by S and B that satisfy PS→I > (1 − RS )Λ̂ and PB→I < (1 + RB)Λ̂. �



Part III

Market makers and their effect on
market behaviour
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Market Model I was based on a market with only three participants: a com-
mercial buyer, a commercial seller and a non-commercial intermediary. The in-
termediary thereby acted both as market maker and risk taker. In modern day
markets however, participants tend to specialize their tasks. We will therefore in
the following investigate a market model in which the roles of the old intermedi-
ary are split between two distinct players: a market maker IM and a risk-neutral
intermediary IR.

The market maker or spread trader IM will be an intermediary hoping to make
profit on the turn by trading the bid/offer spread between seller and buyer at time
t = 0. He will enter the trade as soon as the offers made from buyer and seller
promise him a nonnegative payoff.

Most financial exchanges are structured in a similar fashion: matchmaking in a
trade takes place on a matched bargain basis. If offers from sellers and buyers
match up, the exchange’s trading system executes the trade. The New York Stock
Exchange (NYSE) for example has a single exchange member, the “specialist”,
as market maker.

In the following market model a market maker will trade every nonnegative price
spread, i.e. every price spread that satisfies

PB→I − PS→I ≥ 0,

without charging a transaction fee. The existence of this market maker stabilizes
the unpredictable market behaviour of the prior model: an equilibrium price exists
at which buyer and seller trade the maximal round volume min{α, ν} with the
market maker.



Chapter 4

Model II: A market with market
maker

The considered model will be very similar to the one examined in the previous
part.
The market participants will now be a commercial buyer B, a commercial seller
S and two non-commercial intermediaries: a risk-neutral intermediary IR and a
market maker/spread trader IM.

The participants will trade a certain commodity/good G with delivery at time t =
T . This can be done either in form of a direct trade at time t = 0 or by accessing
the cash market C at time t = T .

The assumptions made on the players and the market structure will be described
in the following.

4.1 Basic market structure
The same basic assumptions as in Model I will also apply for Model II:

1. Accessing the cash market C as well as trading directly with any of the
players will be free of transaction costs.

2. There will be no cost of carry and no convenience yield.

3. Trading will take place on a continuous price scale.

4. There will be no bid/ask spread on the cash market.
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5. No participant in the cash market C can affect the cash market price P(t) by
his trading. Therefore P(t) can be seen as an exogenous parameter: it is a
random variable.

6. All players know that P(t) is a random variable. Furthermore the expected
value of P(t) at time t = T ,

Λ = E [P(T )]

is known to all players.

7. The rate of return of riskless investments is known to be r.

8. Supply, or production, α and demand, or consumption, ν of G will be deter-
ministic and known to all players at time t = 0.

Again no restrictions on the nature of G have been made: it can be any tradeable
product.

Furthermore the motives of the market participants will be in analogy to the pre-
vious model:

1. S and B are under hedging pressure and want to minimize the possible vari-
ation in their returns.

2. IM enters the market as a market maker trying to realize an immediate, non-
negative profit at time t = 0 by trading the bid/offer spread.

3. IR enters the market as a risk trader with the goal of having gained an ex-
pected profit at time t = T higher than the risk-free return.

Note that it is assumed that IR is only interested in a trade if his expected profit is
higher than the risk-free return. On the other hand, IM is assumed to be interested
in trades with immediate, nonnegative profit, i.e. in particular also in trades that
promise zero profit. This asymmetry in their motives is due to the fact that IM’s
trade is completely riskless (since everything takes place at time t = 0) while IR’s
trade involves taking risk and might very well result in a loss (even though the
expected payoff is positive).

These motives translate directly into quantified goals pursued by S , B and the
intermediaries.
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1. S wants to realize a price of at least (1 − RS )Λ per unit at t = T , where
RS > 0. At time t = 0 he is only interested in trades with realized price P
satisfying

P ≥ (1 − RS )Λ̂,

where Λ̂ = Λe−rT .

2. B wants to have paid at most (1 + RB)Λ per unit at t = T , where RB > 0. At
time t = 0 he is only interested in trades in with realized price P satisfying

P ≤ (1 + RB)Λ̂.

3. IM wants to realize a nonnegative payoff by trading spreads at time t = 0.

4. IR’s goal is to realize a profit that - at time t = T - is higher than the risk-free
return. But since this cannot be assured at t = 0 (he is a risk taker after all)
his goal at t = 0 is to involve in trades such that his expected payoff at t = T
discounted to t = 0 is positive.

4.2 The matchmaking process in a trade
In this market model the matchmaking process in a trade will be structured in
analogy to the previous model. The only diffference will be that IM will enter the
trading procedure if the commercial buyer offers to pay at least as much as the
commercial seller demands, i.e. as long as he can realize a nonnegative payoff. In
more detail this means that the trade will be structured as follows:

1. The risk-neutral intermediary IR makes a binding offer of an ask price PI→S

and a bid price PI→B.

2. S and B enter the market by making binding price offers PS→I and PB→I , for
which either one of the two intermediaries can enter a trade with them.

3. If PS→I ≤ PB→I , IM will execute the biggest possible trade for these prices,
i.e. he will buy min{α, ν} for PS→I from the commercial seller and sell the
same amount to the buyer B for PB→I .

4. IR decides whether or not he will accept PS→I and PB→I . If he accepts a
price, all still available units will be traded at that price.
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5. (a) If both S and B have not fulfilled their supply or demand needs yet,
they will trade the maximal amount min{α, ν} directly for a price PS ,B =

Λ̂.

(b) If either S or B still has open supply or demand needs (because of α ,
ν), the respective player will trade the remaining units with IR for the
posted price PI→S or PI→B respectively, if these prices are acceptable.
Otherwise this player will take the risk himself and realize his supply
or demand needs at time t = T on the cash market.

Note that PS ,B = Λ̂ was again assumed to be the natural price for a direct trade
between S and B.

4.3 The strategies of the players
Note first that the market maker IM acts in a completely deterministic fashion once
S ’s and B’s price offers are known: if PS→I ≤ PB→I he will execute as many trades
as possible with this nonnegative spread, and if PS→I > PB→I he will not interfere
at all. This means that IM’s decision on whether or not he will enter a trade will
automatically be a best response.

Furthermore - as in the previous model - IR has no incentive to make binding of-
fers other than PI→S = (1 − RS )Λ̂ and PI→B = (1 + RB)Λ̂ to S and B respectively.
These are the best prices he can realize and any other offer would just be purely
disadvantageous for him as discussed previously. The only other active interfer-
ence of IR takes place in step (4) of the matchmaking process when he decides on
whether or not to accept the offers made by the other players.

Steps (5a) and (5b) are simply a consequence of what had happened in the previ-
ous steps: at this point S and B have no choice but to trade the remaining units of
G in the described fashion.

This reasoning shows that the only decisions that can be subject to a game-theoretic
analysis take place in steps (2)-(4) of the matchmaking process. Hence - in anal-
ogy to the previous model - the strategies of each player can be defined as follows:

• The strategy of S is well defined by his price offer PS→I .

• The strategy of B is well defined by his price offer PB→I .

• IM has two possible strategy choices:



4.4. POSSIBLE OUTCOME SCENARIOS 53

– sM
+ : IM will buy m = min{α, ν} units for PS→I from S and sell them to

B for PB→I .

– sM
− : IM will not enter the market.

• The strategy of IR is defined as the set of his responses to PS→I and PB→I ,
where each response will either be a price acceptance or rejection. The
possible strategic action can be

– sR
B: IR accepts B’s offer and rejects S ’s offer.

– sR
S : IR accepts S ’s offer and rejects B’s offer.

– sR
−: IR rejects both offers.

– Another theoretical possibility could be seen in IR accepting both of-
fers. However,as in the previous model, such an action would be com-
pletely disadvantageous for IR and can therefore be neglected.

Note that IM and IR will already know PB→I and PS→I at the time when they
have to decide on whether or not to accept these offers. Their strategy choices
will therefore automatically be best answers to PB→I and PS→I . Since all model
parameters are known to all market participants, this furthermore implies that IM’s
and IR’s action will be predictable once B and S have set their price offers. This
means that IM’s and IR’s strategic action can be interpreted as part of the market
mechanism, effectively reducing the set of active players to S and B only. In the
context of a game-theoretic analysis this implies that a Nash equilibrium solution
is identified if B’s and S ’s price offers are best answers to each other.

4.4 Possible outcome scenarios
The introduction of a fourth player allows more variety in outcome scenarios than
the previous three-person game.

Consider first the case in which the market maker IM opts for his strategy sM
− in

order not enter the trade, i.e. the case when PS→I > PB→I . In such a case the game
gets reduced to one resembling the three-person game investigated in the previous
part. As discussed earlier the possible outcome scenarios then are as follows:

1. sB =
(
PS→I , PB→I , sM

− , s
R
B

)
:

IR accepts B’s offer and sells ν units for PB→I . S then sells α units to IR for
a price of PI→S . IR sells the remaining |α − ν| units on the cash market for
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P(T ).
In this case the resulting payoffs are as follows:

E
[
ÛS (sB)

]
= α

(
PI→S − Λ̂

)
E

[
ÛB (sB)

]
= ν

(
Λ̂ − PB→I

)
E

[
Û IM (sB)

]
= 0

E
[
Û IR (sB)

]
= m

(
PB→I − PI→S

)
+ (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PB→I − Λ̂

)
= νPB→I − αPI→S + (α − ν) Λ̂,

where m = min{α, ν}.

2. sS =
(
PS→I , PB→I , sM

− , s
R
S

)
:

IR accepts S ’s offer and buys α units for PS→I . B buys ν units from IR for a
price of PI→B. IR sells/buys the remaining |α − ν| units on the cash market
for P(T ).
This results in the following expected payoffs:

E
[
ÛS (sS )

]
= α

(
PS→I − Λ̂

)
E

[
ÛB (sS )

]
= ν

(
Λ̂ − PI→B

)
E

[
Û IM (sS )

]
= 0

E
[
Û IR (sS )

]
= m

(
PI→B − PS→I

)
+ (α − m)

(
Λ̂ − PS→I

)
+ (ν − m)

(
PI→B − Λ̂

)
= νPI→B − αPS→I + (α − ν) Λ̂.

3. sDT =
(
PS→I , PB→I , sM

− , s
R
−

)
:

IR declines both offers. S and B trade min{α, ν} units directly for Λ̂ per
unit. The remaining |α− ν| units will be bought/sold by IR for PI→S or PI→B

respectively, who in turn will sell/buy them on the cash market for P(T ) per
unit.
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The expected payoffs for this scenario can be computed as

E
[
ÛS (sDT )

]
= (α − m)

(
PI→S − Λ̂

)
E

[
ÛB (sDT )

]
= (ν − m)

(
Λ̂ − PI→B

)
E

[
Û IM (sDT )

]
= 0

E
[
Û IR (sDT )

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
.

Consider now an outcome scenario sM in which the market maker IM trades the
spread, i.e. a strategy combination in which IM’s strategy is given by sM

+ . This
happens if PS→I ≤ PB→I . The market maker will use this nonnegative price spread
to buy m = min{α, ν} units from S for a price of PS→I and sell the same amount
for a price of PB→I to B.

Depending on whether α > ν or α < ν either player S or player B will have
satisfied all his needs with this deal. IR now has the choice to accept or decline the
remaining player’s offer for the last |α − ν| units.
Suppose first that α > ν. Then - after IM has traded ν units from S to B - S will still
be offering α − ν units of G. Since it can safely be assumed that S ’s offer satisfies
PS→I > PI→S (since otherwise S would have offered to sell G for less or at best
the same than what IR had already offered to S ), IR will certainly decline this offer
to use hedging pressure and hence force S into accepting IR’s offer of PI→S . This
strategic choice corresponds to either playing sR

B or sR
−. Note that the outcome of

the game will be exactly the same no matter which of those two strategies IR opts
for.
Similarly, if α < ν, IR will decline B’s offer in order to force B into accepting IR’s
standing offer PI→B. This can be done by either playing sR

S or sR
−, where again both

strategy choices result in exactly the same outcome for all participants. Since in
both cases α > ν and ν > α the strategy sR

− is a viable option for IR, it will without
loss of generality be assumed that IR’s response to IM’s strategy sM

+ will always be
sR
−.

The resulting payoffs of a strategy combination sM =
(
PS→I , PS→I , sM

+ , s
R
−

)
can
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hence be determined as follows:

E
[
ÛS (sM)

]
= m

(
PS→I − Λ̂

)
+ (α − m)

(
PI→S − Λ̂

)
E

[
ÛB (sM)

]
= m

(
Λ̂ − PB→I

)
+ (ν − m)

(
Λ̂ − PI→B

)
E

[
Û IM (sM)

]
= m

(
PB→I − PS→I

)
E

[
Û IR (sM)

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
.



Chapter 5

The existence of a Nash equilibrium
solution in Model II

The analysis of the previous, simpler Model I yielded two main results:

1. An outcome scenario in which B and S trade the maximum possible amount
of G directly will not be a Nash equilibrium solution. In other words: the
intermediary I will not just trade the supply-demand surplus, and will there-
fore play a vital role in the trade.

2. It was furthermore shown that no Nash equilibrium at all could exist in such
a market. This can be understood as the major weakness of the previous
result: it provided no insight in how the trades will actually occur.

Splitting up the old intermediary into one trading spreads, IM, and one trading
risk, IR, will resolve this shortcoming:

1. It will again be shown that the intermediaries do not just trade the supply-
demand surplus, hence confirming the result of the simpler model.

2. It will be shown that Model II exhibits exactly one Nash equilibrium so-
lution. This solution will allow for an insightful interpretation on how the
considered good will be priced.

To prove these results it will at first be shown that two price offers
(
PS→I , PB→I

)
will not be part of a Nash equilibrium solution if they exhibit a negative price
spread. In other words, if s =

(
PS→I , PB→I , sM, sR

)
is to be a Nash equilibrium
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then

PB→I − PS→I ≥ 0.

It will then be shown that of all possible strategy combinations with a nonnegative
price spread only one will be a Nash equilibrium solution.

5.1 Non-existence of a Nash equilibrium with nega-
tive price spread

Consider a market as described above with S supplying α units, B demanding ν
units and with a market maker IM and a risk trader IR facilitating the trades. Let

m = min{α, ν}.

Suppose that S and B have set their offers PS→I and PB→I such that

PB→I < PS→I .

Since the spread PB→I − PS→I will be negative, IM will not enter the trade and
opt for strategy sM

− . Hence, depending on IR’s decision, the following outcome
scenarios are possible:

• sB =
(
PS→I , PB→I , sM

− , s
R
B

)
:

IR sells ν units to B for PB→I per unit and buys α units from S for PI→S per
unit

• sS =
(
PS→I , PB→I , sM

− , s
R
S

)
:

IR buys α units from S for PS→I per unit and sells ν units to B for PI→B per
unit

• sDT =
(
PS→I , PB→I , sM

− , s
R
−

)
:

IR declines both offers. S and B therefore trade m units directly and IR buys
the remaining (α − m) units from S for PI→S or sells the remaining (ν − m)
units to B for PI→B.

Since none of these scenarios involves a trade with the market maker IM, this
appears to be a very similiar setup than the one discussed in the previous model.
In fact, it can be shown that also in this model a trade without active interference
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of the market maker cannot be a Nash equilibrium.

Consider first a scenario in which S and B set their offers PS→I and PB→I such
that IR’s decision will result in a strategy combination of the sB-type. As it will be
shown, no such strategy combination can be a Nash equilibrium:

Lemma 5.1.1 (Model II: no Nash equilibrium of the form sB)
Consider a market as described above with α, ν,RS ,RB > 0 and with PB→I <
PS→I .
Then a strategy combination sB =

(
PS→I , PB→I , sM

− , s
R
B

)
where B buys all ν units

from IR for a price of PB→I is not a Nash equilibrium.

Proof. Suppose a strategy combination s0,B =
(
PS→I

0 , PB→I
0 , sM

− , s
R
B

)
is a Nash equi-

librium and consider that under such a strategy combination S would have to sell
all α units he supplies for the worst possible price PI→S .

Since the strategy combination is assumed to be a Nash equilibrium, none of the
players should be able to singlehandedly improve his payoff. This implies in par-
ticular that also S cannot improve his payoff.

Suppose now that PB→I
0 > PI→S . This means nothing else than that there is ε > 0

such that

PI→S < PB→I
0 − ε < PB→I

0 .

Suppose now that S changes his offer from PS→I
0 to an offer

PS→I
1 = PB→I

0 − ε.

Note that such a price PS→I is a legal price, since a continuous price scale is
assumed. It follows that the spread is positive since

PB→I
0 − PS→I

1 = PB→I
0 −

(
PB→I

0 − ε
)

= ε > 0

and hence that the market maker IM will enter the trade by playing his strategy
sM
+ . IM will buy m = min{α, ν} units from S for the suggested price PS→I

1 . S
will then sell the remaining α − m units to IR for PI→S . It follows that S ’s payoff
has improved: m units are now sold for a higher price. But this contradicts the
assumption of S not being able to singlehandedly improve his payoff. Hence a
strategy combination s0,B with PB→I

0 > PI→S cannot be a Nash equilibrium.
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Assume now that PB→I
0 ≤ PI→S . In this case, a change to a strategy combination

involving the market maker IM will not increase S ’s payoff: for IM to participate
in the trade, the spread PB→I

0 − PS→I
1 would need to be nonnegative, i.e.

PS→I
1 ≤ PB→I

0 ≤ PI→S .

But this means that S would sell m = min{α, ν} units for a price less than or
at most equal to PI→S , his payoff would therefore have decreased or at least not
increased.

It follows that S can only improve his payoff if he can initiate a change to one of
the strategy combinations involving IR, i.e. if a change from PS→I

0 to PS→I
1 would

result in either the strategy combination s1,S or s1,DT .

Suppose that S is trying to initiate a change from s0,B to the strategy combination
s1,S by changing his offer from PS→I

0 to PS→I
1 . IR would agree to such a change, if

s1,S would promise a higher expected payoff than s1,B and s1,DT , i.e. if

E
[
Û IR(s1,S )

]
> E

[
Û IR(s1,B)

]
(5.1)

and if

E
[
Û IR(s1,S )

]
> E

[
Û IR(s1,DT )

]
. (5.2)

Note that

E
[
Û IR(s1,B)

]
= νPB→I

0 − αPI→S + (α − ν) Λ̂

and

E
[
Û IR(s1,DT )

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
do not depend on S ’s changed price offer PS→I

1 . Hence

E
[
Û IR(s1,B)

]
= E

[
Û IR(s0,B)

]
and

E
[
Û IR(s1,DT )

]
= E

[
Û IR(s0,DT )

]
.

Since the original strategy combination s0,B would have only been played if

E
[
Û IR(s0,B)

]
≥ E

[
Û IR(s0,DT )

]
.
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it follows that inequality (5.2) will be satisfied as soon as inequality (5.1) holds.
With

E
[
Û IR(s1,S )

]
= νPI→B − αPS→I

1 + (α − ν) Λ̂

inequality (5.1) implies that

PS→I
1 < PI→S +

ν

α

(
PI→B − PB→I

0

)
. (5.3)

Consider now that S would have only changed his strategy in such a way if this
would have increased his own payoff. A change from sB,0 to s1,S would increase
S ’s payoff if

E
[
ÛS (s1,S )

]
> E

[
ÛS (s0,B)

]
, (5.4)

i.e. if

α
(
PS→I

1 − Λ̂
)
> α

(
PI→S − Λ̂

)
It follows that inequality (5.4) holds if

PS→I
1 > PI→S . (5.5)

Note that this condition also assures that the price spread is negative (and hence
that a strategy combination s1,S not involving the market maker IM is possible),
since

PB→I
0 − PS→I

1 < PB→I
0 − PI→S

≤ 0.

Combining the above bounds (5.3) and (5.5) yields that

PI→S < PS→I
1 < PI→S +

m
α

(
PI→B − PI→S

)
.

But - since pricing is assumed to take place on a continuous price scale - such a
price PS→I

1 exists if

PI→S < PI→S +
m
α

(
PI→B − PI→S

)
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and therefore if

0 <
m
α

(
PI→B − PI→S

)
.

Since by assumption PI→B > PI→S and m > 0 this inequality holds. It follows
that S can improve his payoff by changing his offer from PS→I

0 to an offer PS→I
1

satisfying the above inequalities.
But this contradicts the assumption of S not being able to singlehandedly improve
his payoff. Hence a strategy combination s0,B cannot be a Nash equilibrium. �

Consider now a scenario in which PS→I and PB→I are set such that IM’s and IR’s
decisions will result in a strategy combination of the form sS . Also in such a case
it can be shown that no Nash equilibrium can exist:

Lemma 5.1.2 (Model II: no Nash equilibrium of the form sS)
Consider a market as described above with α, ν,RS ,RB > 0 and with PB→I <
PS→I .
Then a strategy combination sS =

(
PS→I , PB→I , sM

− , s
R
+

)
where S sells all α units

to IR for a price of PS→I is not a Nash equilibrium.

Proof. Consider that in the case of a strategy combination

s0,S =
(
PS→I

0 , PB→I
0 , sM

− , s
R
+

)
,

B would have to buy all ν units he needs for the highest possible price PI→B.
Similarly as in the previous case of Lemma 5.1.1, it can be shown, that such a
strategy combination cannot be Nash equilibrium:

1. If PS→I
0 < PI→B, B could offer a price

PB→I
1 = PS→I

0 + ε < PI→B,

where ε > 0.
Then IM would enter the trade since the spread satisfies

PB→I
1 − PS→I

0 = ε > 0.

It follows that B would now buy m = min{α, ν} for a price cheaper than
PI→B and hence that B would have improved his payoff.
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2. Suppose now that PS→I
0 ≥ PI→B and suppose B wants to induce a switch to

a strategy combination s1,B. IR would agree to such a change if

E
[
Û IR(s1,B)

]
> E

[
Û IR(s1,S )

]
(5.6)

and if

E
[
Û IR(s1,B)

]
> E

[
Û IR(s1,DT )

]
. (5.7)

With E
[
Û IR(s1,S )

]
= E

[
Û IR(s0,S )

]
and E

[
Û IR(s1,DT )

]
= E

[
Û IR(s0,DT )

]
it

follows that

E
[
Û IR(s1,S )

]
≥ E

[
Û IR(s1,DT )

]
.

Hence inequality (5.7) will be satisfied as soon as inequality (5.6) holds.
Using

E
[
Û IR(s1,S )

]
= νPI→B − αPS→I

0 + (α − ν) Λ̂

E
[
Û IR(s1,B)

]
= νPB→I

1 − αPI→S + (α − ν) Λ̂

inequality (5.6) implies that

PB→I
1 > PI→B −

α

ν

(
PS→I

0 − PI→S
)
. (5.8)

Consider now that B would only agree to a change from s0,S to s1,B if

E
[
ÛB(s1,B)

]
> E

[
ÛB(s0,S )

]
, (5.9)

i.e. if

ν
(
Λ̂ − PB→I

1

)
> ν

(
Λ̂ − PI→B

)
.

It follows that inequality (5.9) holds if

PB→I
1 < PI→B. (5.10)

Combining the inequalities (5.8) and (5.10) yields that B can increase his
payoff by inducing a switch to a strategy combination s1,B if his offer satis-
fies

PI→B > PB→I
1 > PI→B −

m
ν

(
PI→B − PI→S

)
.
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It follows that such an offer exists if

PI→B > PI→B −
m
ν

(
PI→B − PI→S

)
,

i.e. if

0 > −
m
ν

(
PI→B − PI→S

)
.

But since PI→B − PI→S > 0 and m > 0 this inequality is satisfied. It follows
that such a price PB→I

1 exists and therefore B would be able to singlehand-
edly increase his payoff. �

The final case to consider is an outcome scenario sDT in which S and B are trading
m = min{α, ν} units directly for a price of Λ̂ per unit. But also in this case it can
be shown that no Nash equilibrium can exist:

Lemma 5.1.3 (Model II: no Nash equilibrium of the form sDT)
Consider a market as described above with α, ν,RS ,RB > 0 and with PB→I <
PS→I .
Then a strategy combination sDT =

(
PS→I , PB→I , sM

− , s
R
−

)
where B and S trade

m = min{α, ν} directly cannot be a Nash equilibrium.

Proof. For a scenario of the form s0,DT to be possible, the initial offers need to be
set such that

E
[
Û IR(s0,DT )

]
≥ E

[
Û IR(s0,B)

]
(5.11)

and

E
[
Û IR(s0,DT )

]
≥ E

[
Û IR(s0,S )

]
. (5.12)

With

E
[
Û IR(s0,DT )

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
= (m − α) PI→S + (ν − m) PI→B + (α − ν) Λ̂

and

E
[
Û IR(s0,B)

]
= νPB→I

0 − αPI→S + (α − ν) Λ̂
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inequality (5.11) implies that

(m − α) PI→S + (ν − m) PI→B ≥ νPB→I
0 − αPI→S

and hence that

PB→I
0 ≤ PI→B −

m
ν

(
PI→B − PI→S

)
. (5.13)

Similarly, using

E
[
Û IR(s0,S )

]
= νPI→I

B − αPS→I
0 + (α − ν) Λ̂

inequality (5.12) yields

PS→I
0 ≥ PI→S +

m
α

(
PI→B − PI→S

)
. (5.14)

1. Suppose that m = α and that B set his initial offer such that

PB→I
0 > Λ̂.

and that S changes his offer to a price PS→I
1 satisfying

Λ̂ < PS→I
1 ≤ PB→I

0 .

But since the spread PB→I
0 −PS→I

1 is now nonnegative, IM will enter the trade
and buy all m = α units S supplies for a price of PS→I

1 > Λ̂ per unit. Under
the old strategy combination s0,DT , S would have sold all α units directly
to B for a price of only Λ̂. It follows that S has singlehandedly improved
his payoff. Hence a strategy combination s0,DT with m = α and PB→I

0 > Λ̂
cannot be a Nash equilibrium.

2. Suppose now that m = α and that

PB→I
0 ≤ Λ̂.

Suppose furthermore that S wants to change from the strategy combination
s0,DT to a strategy combination s1,S , in which he sells all m = α units to the
risk trader IR for a price of PS→I

1 . In order for such a change to be possible
the following conditions need to hold:
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(a) In order for IR to play such a strategy the respective payoffs need to
satisfy

E
[
Û IR(s1,S )

]
> E

[
Û IR(s1,B)

]
(5.15)

and

E
[
Û IR(s1,S )

]
> E

[
Û IR(s1,DT )

]
. (5.16)

Note that E
[
Û IR(s1,B)

]
and E

[
Û IR(s1,DT )

]
do not depend on S ’s changed

offer. Since IR previously opted for a strategy s0,DT it follows that

E
[
Û IR(s1,DT )

]
= E

[
Û IR(s0,DT )

]
≥ E

[
Û IR(s0,B)

]
= E

[
Û IR(s1,B)

]
.

This implies that inequality (5.15) will be satisfied as soon as inequal-
ity (5.16) holds. Using a version of inequality (5.12) it follows that

PS→I
1 < PI→S +

m
α

(
PI→B − PI→S

)
= PI→B (5.17)

(b) On the other hand, in order for S to offer such a change in strategy the
resulting outcome s1,S also needs to be profitable for S himself, i.e.

E
[
ÛS (s1,S )

]
> E

[
ÛS (s0,DT )

]
.

With

E
[
ÛS (s0,DT )

]
= (α − m)

(
PI→S − Λ̂

)
= 0

and

E
[
ÛS (s1,S )

]
= α

(
PS→I

1 − Λ̂
)

it follows that

PS→I
1 > Λ̂. (5.18)

(c) Finally, the strategy combination s1,S is only possible if IM is not in-
volved in the trade. This can be assured if the spread PB→I

0 − PS→I
1 is

negative, i.e. if PB→I
0 < PS→I

1 . But since by assumption

PB→I
0 ≤ Λ̂

the above condition (5.18) already guarantees that

PB→I
0 ≤ Λ̂ < PS→I

1 .
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This shows that S can profitably switch to a strategy combination s1,S if his
new offer PS→I

1 satisifies the bounds (5.17) and (5.18), i.e. if

Λ̂ < PS→I
1 < PI→B.

Such a price exists if

Λ̂ < PI→B,

but since B is willing to pay a premium RB > 0 for transferring his risk to
IR, it follows that this condition holds:

PI→B = (1 + RB)Λ̂ > Λ̂.

It follows that S can singlehandedly induce a profitable change from the
strategy combination s0,DT to a strategy combination s1,S if m = α and
PB→I

0 ≤ Λ̂. The old outcome s0,DT can therefore not be a Nash equilibrium
under these assumptions.

Combining the results for PB→I
0 > Λ̂ and for PB→I

0 ≤ Λ̂ it follows that a strategy
combination s0,DT cannot be a Nash equilibrium if m = α.

Similiarly it can be shown that if m = ν, B can always find a way to singlehandedly
increase his payoff. Hence, also in this case a strategy combination s0,DT cannot
be a Nash equilibrium. �

The previous three Lemmata imply that no strategy combination that does not
involve the market maker IM can be a Nash equilibrium:
Theorem 5.1.4 (Model II: non-existence of Nash equilibria without IM)
Consider a market as described above with α, ν,RS ,RB > 0 and with PB→I <
PS→I .
Then a strategy combination s =

(
PS→I , PB→I , sM

− , s
R
)

with PB→I < PS→I , i.e. a
strategy combination not involving the market maker IM is not a Nash equilibrium.

Proof. Consider a strategy combination s =
(
PS→I , PB→I , sM

− , s
R
)

with

PB→I < PS→I .

Since

PB→I − PS→I < 0,

the market maker IM will not enter the trader and opt for strategy sM
− . The trade

will therefore be either of the form sB, sS or sDT depending on IR’s decision.
But by Lemmata 5.1.1, 5.1.2 and 5.1.3 no such outcome scenario can be a Nash
equilibrium. This proves the claim. �



5.2. A NASH EQUILIBRIUM INVOLVING THE MARKET MAKER 68

5.2 A Nash equilibrium involving the market maker
Consider a market as described above with S supplying α units, B demanding ν
units and a market maker IM and a risk trader IR facilitating the trades. Let

m = min{α, ν}

and let (
PS→I

0 , PB→I
0

)
be a combination of price offers with

PI→S < PS→I
0 ≤ PB→I

0 < PI→B.

Since IM can generate profit by trading the spread, he will opt for his strategy sM
+ .

With IR’s response being the strategy sR
−, the resulting strategy combination will

be

s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
.

The trades will then occur in the following fashion:

1. IM buys m units from S for PS→I
0 and sells m units to B for PB→I

0 .

2. IR buys α − m units from S for PI→B or sells m − ν units to B for PI→B.

3. IR evens out his position at t = T for P(T ).

The expected payoffs of this strategy combination can hence be found as:

E
[
ÛB(s0,M)

]
= m

(
Λ̂ − PB→I

0

)
+ (ν − m)

(
Λ̂ − PI→B

)
E

[
ÛS (s0,M)

]
= m

(
PS→I

0 − Λ̂
)
+ (α − m)

(
PI→S − Λ̂

)
E

[
Û IR(s0,M)

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
= α

(
Λ̂ − PI→S

)
+ ν

(
PI→B − Λ̂

)
+ m

(
PI→S − PI→B

)
E

[
Û IM (s0,M)

]
= m

(
PB→I

0 − PS→I
0

)
.

Suppose now that this strategy combination is a Nash equilibrium. This means
that neither S nor B can improve their payoff by singlehandedly changing their
strategy.



5.2. A NASH EQUILIBRIUM INVOLVING THE MARKET MAKER 69

5.2.1 An upper bound on S ’s price offer
Assuming that the above strategy combination is a Nash equilibrium implies in
particular that the prices PS→I

0 and PB→I
0 are set in a way such that the commercial

buyer B cannot singlehandedly change his strategy in a profitable way.

Note first that B cannot improve his payoff with an offer PB→I
1 > PB→I

0 . Since
PS→I

0 ≤ PB→I
0 < PB→I

1 , B would still buy m units from the market maker IM and
ν − m units from the risk trader IR with the only difference that the trades with IM

occur at a higher price PB→I
1 > PB→I

0 .

A potentially profitable change can therefore ccur in only two ways:
If PS→I

0 < PB→I
0 , B could set a new offer PB→I

1 < PB→I
0 that still satisfies a non-

negative price spread PS→I
0 ≤ PB→I

1 . IM would still be involved and since B would
now buy m units for a lower price PB→I

1 he would certainly have singlehandedly
improved his payoff. This case will be discussed in more detail later. For now the
focus will be put on the second possible case:

Suppose B changes his strategy from PB→I
0 to PB→I

1 where PB→I
1 < PS→I

0 ≤ PB→I
0 .

This means that IM cannot trade a nonnegative spread anymore and hence that
the nature of the trade will depend on how IR sets his strategy. IR has the choice
between the following strategies:

• sR
B: IR sells ν units to B for PB→I

1 per unit and buys α units from S for PI→S

per unit

• sR
S : IR buys α units from S for PS→I

0 per unit and sells ν units to B for PI→B

per unit

• sR
DT : IR declines both offers. S and B therefore trade m units directly and

IR buys the remaining (α − m) units from S for PI→S or sells the remaining
(ν − m) units to B for PI→B.

Depending on IR’s behaviour the new strategy combination

s1 =
(
PS→I

0 , PB→I
1 , sM

− , s
R
)

can lead to three outcomes:

1. a strategy combination s1,B =
(
PS→I

0 , PB→I , sM
− , s

R
B

)
, i.e. a scenario where IR

accepts B’s offer.
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The relevant payoffs of B and IR are

E
[
ÛB(s1,B)

]
= ν

(
Λ̂ − PB→I

1

)
E

[
Û IR(s1,B)

]
= ν

(
PB→I

1 − Λ̂
)
+ α

(
Λ̂ − PI→S

)
.

2. a strategy combination s1,S =
(
PS→I

0 , PB→I , sM
− , s

R
S

)
, i.e. a scenario where IR

accepts S ’s offer.
The relevant payoffs of B and IR are

E
[
ÛB(s1,S )

]
= ν

(
Λ̂ − PI→B

)
E

[
Û IR(s1,S )

]
= ν

(
PI→B − Λ̂

)
+ α

(
Λ̂ − PS→I

0

)
.

3. a strategy combination sDT =
(
PS→I

0 , PB→I , sM
− , s

R
−

)
, i.e. a scenario where IR

declines both offers.
The relevant payoffs of B and IR are in this case

E
[
ÛB(s1,DT )

]
= (ν − m)

(
Λ̂ − PI→B

)
E

[
Û IR(s1,DT )

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
.

Consider now that B would only change his strategy in such a way if the resulting
scenario appears to be more profitable than the previous strategy combination s0,M.
However - as will be shown below - a clever choice of PS→I

0 will prevent B from
changing his strategy.

Suppose first that B’s change in strategy results in the strategy combination s1,B,
i.e. in a strategy combination in which IR would accept B’s offer. Such a change in
strategy is profitable for B if the strategy combination s1,B promises him a higher
payoff than the strategy combination s0,M, i.e. if

E
[
ÛB(s1,B)

]
> E

[
ÛB(s0,M)

]
.

With

E
[
ÛB(s0,M)

]
= m

(
Λ̂ − PB→I

0

)
+ (ν − m)

(
Λ̂ − PI→B

)
= m

(
PI→B − PB→I

0

)
+ ν

(
Λ̂ − PI→B

)
it follows that

ν
(
Λ̂ − PB→I

1

)
> m

(
PI→B − PB→I

0

)
+ ν

(
Λ̂ − PI→B

)
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and hence that

PB→I
1 <

m
ν

PB→I
0 +

(
1 −

m
ν

)
PI→B.

Consider now that with PB→I
0 < PI→B and m ≤ ν it follows that

m
ν

PB→I
0 +

(
1 −

m
ν

)
PI→B ≥

m
ν

PB→I
0 +

(
1 −

m
ν

)
PB→I

0

= PB→I
0 .

But since PB→I
1 < PB→I

0 ≤ m
ν

PB→I
0 +

(
1 − m

ν

)
PI→B the inequality

PB→I
1 <

m
ν

PB→I
0 +

(
1 −

m
ν

)
PI→B.

is automatically satisfied. The commercial buyer B would therefore certainly pre-
fer such an outcome over the original strategy combination s0,M.

Suppose now that B’s change in strategy results in a strategy combination s1,DT

involving direct trade between B and S . Such an outcome would be profitable for
B if

E
[
ÛB(s1,DT )

]
> E

[
ÛB(s0,M)

]
,

i.e. if

(ν − m)
(
Λ̂ − PI→B

)
> m

(
Λ̂ − PB→I

0

)
+ (ν − m)

(
Λ̂ − PI→B

)
.

This implies that

0 > m
(
Λ̂ − PB→I

0

)
and hence that PB→I

0 > Λ̂. This means that such a change is profitable for B, if his
initial offer was higher than the discounted expected value of P(T ). Hence, under
the proper circumstances, also this outcome scenario might be advantageous for
B.

The remaining possibility is that B’s change in strategy leads to an outcome sce-
nario in which the intermediary IR decides to accept S ’s offer. Since this forces B
to accept IR’s offer of PI→B this appears to be the worst possible case for B and in
fact it is. Such a scenario would increase B’s payoff if

E
[
ÛB(s1,S )

]
> E

[
ÛB(s0,M)

]
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and therefore if

ν
(
Λ̂ − PI→B

)
> m

(
Λ̂ − PB→I

0

)
+ (ν − m)

(
Λ̂ − PI→B

)
.

It follows that

m
(
Λ̂ − PI→B

)
> m

(
Λ̂ − PB→I

0

)
and therefore that PB→I

0 > PI→B. In other words this means that such an outcome
would only be more favourable than s0 if B would have initially offered a price
PB→I

0 that was higer (and therefore from his point of view worse) than IR’s offer
PI→B. But offering such a price is purely disadvantageous since IR had already
offered a better price. Hence, B will never be interested in a change from s0,M to
s1,S .

The previous results can be summarized as follows:
Lemma 5.2.1 (Model II: B’s view on different outcome scenarios)
Consider a combination of price offers

(
PS→I

0 , PB→I
0

)
with

PI→S < PS→I
0 ≤ PB→I

0 < PI→B,

i.e. a strategy combination s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
in which the market maker

IM actively takes part in the trade.

If B is then changing his offer to an offer satisfying PB→I
1 < PS→I

0 ≤ PB→I
0 , the

following can be said about whether or not B will prefer the resulting strategy
combination s1,S , s1,B or s1,DT over the original strategy combination s0,M:

1. No matter how B’s original offer PB→I
0 was set, B will always prefer s0,M

over s1,S .

2. If PB→I
0 satisfies PB→I

0 > Λ̂, a change from s0,M to s1,DT will be profitable for
B. Otherwise such a change will be disadvantageous for B.

3. A change from s0,M to s1,B will always be profitable for B.

It follows that if it could be made sure that IR does not opt for the strategy sR
B and

in the case of PB→I
0 > Λ̂ also not for the strategy sR

−, then B will not be able to
increase his profit by setting an offer PB→I

1 < PS→I
0 ≤ PB→I

0 . This means that B
would certainly decide not to change his offer in such a way and rather stick to his
old offer PB→I

0 .

As it will be shown, S is able to guarantee such a behaviour if he only sets his
initial offer PS→I

0 in a clever way:
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Proposition 5.2.2 (Model II: An upper bound on PS→I)
Suppose that α, ν,RS ,RB > 0.
Consider a combination of offers

(
PS→I

0 , PB→I
0

)
with

PI→S < PS→I
0 ≤ PB→I

0 < PI→B,

i.e. a strategy combination

s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
that results in the market maker IM being involved in the trade.

If S ’s offer PS→I
0 satisfies

PS→I
0 ≤

αPI→S + νPI→B

α + ν
, (5.19)

B will not be able to singlehandedly generate a higher payoff by changing his
offer PB→I

0 to an offer PB→I
1 satisfying PB→I

1 < PS→I
0 ≤ PB→I

0 . This means that B
will not be able to profitably switch to an outcome scenario that does not involve
the market maker IM.

Proof. Consider first the case PB→I
0 ≤ Λ̂. By Lemma 5.2.1 only a switch to the

strategy combination s1,B appears to be profitable for B in this case. This implies
that just one of the following inequalities has to hold in order to assure that a
strategy change PB→I

1 < PS→I
0 ≤ PB→I

0 cannot be profitable for B:

E
[
Û IR(s1,S )

]
> E

[
Û IR(s1,B)

]
(5.20)

or

E
[
Û IR(s1,DT )

]
> E

[
Û IR(s1,B)

]
. (5.21)

Inequality (5.20) implies the following:

ν
(
PI→B − Λ̂

)
+ α

(
Λ̂ − PS→I

0

)
> ν

(
PB→I

1 − Λ̂
)
+ α

(
Λ̂ − PI→S

)
.

Simplifying yields

νPI→B − αPS→I
0 > νPB→I

1 − αPI→S .
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It follows that

PB→I
1 < PI→B −

α

ν

(
PS→I

0 − PI→S
)
.

Since by assumption PB→I
1 < PS→I

0 , S can make sure that the above inequality
holds by simply setting his primary offer in the following way:

PS→I
0 ≤ PI→B −

α

ν

(
PS→I

0 − PI→S
)
.

It follows that

PS→I
0 ≤

PI→B + α
ν
PI→S

1 + α
ν

and hence that

PS→I
0 ≤

αPI→S + νPI→B

α + ν
. (5.22)

Consider now that

E
[
Û IR(s1,DT )

]
= α

(
Λ̂ − PI→S

)
+ ν

(
PI→B − Λ̂

)
+ m

(
PI→S − PI→B

)
and that

E
[
Û IR(s1,B)

]
= ν

(
PB→I

1 − Λ̂
)
+ α

(
Λ̂ − PI→S

)
.

Inequality (5.21) will therefore hold if

ν
(
PI→B − Λ̂

)
+ m

(
PI→S − PI→B

)
> ν

(
PB→I

1 − Λ̂
)
.

This yields

m
(
PI→S − PI→B

)
> ν

(
PB→I

1 − PI→B
)
.

It follows that IR will prefer s1,DT over s1,B if B’s offer PB→I
1 satisfies

PB→I
1 < PI→B +

m
ν

(
PI→S − PI→B

)
.

Since by assumption PB→I
1 < PS→I

0 S could assure that this inequality holds by
offering a price PS→I

0 satisfying

PS→I
0 ≤ PI→B +

m
ν

(
PI→S − PI→B

)
. (5.23)
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The results (5.22) and (5.23) suggest that S can make sure that one of the inequal-
ities (5.20) and (5.21) holds by setting

PS→I
0 ≤ max

{
αPI→S + νPI→B

α + ν
, PI→B +

m
ν

(
PI→S − PI→B

)}
.

Note that if m = ν

PI→B +
m
ν

(
PI→S − PI→B

)
= PI→S .

The assumption PI→S < PI→B then trivially implies

PI→B +
m
ν

(
PI→S − PI→B

)
= PI→S <

αPI→S + νPI→B

α + ν
.

If on the other hand m = α, it follows that

PI→B +
m
ν

(
PI→S − PI→B

)
= PI→B +

α

ν

(
PI→S − PI→B

)
=

(α + ν) PI→B +
(
α2

ν
+ α

) (
PI→S − PI→B

)
α + ν

=
νPI→B + αPI→S − α

2

ν

(
PI→B − PI→S

)
α + ν

<
αPI→S + νPI→B

α + ν
.

Since for both the case m = ν and the case m = α it was shown that

PI→B +
m
ν

(
PI→S − PI→B

)
<
αPI→S + νPI→B

α + ν
.

it follows that

max
{
αPI→S + νPI→B

α + ν
, PI→B +

m
ν

(
PI→S − PI→B

)}
=
αPI→S + νPI→B

α + ν
.

This means that one of the inequalities (5.20) and (5.21) will hold if S sets his
initial offer such that

PS→I
0 ≤

αPI→S + νPI→B

α + ν
(5.24)
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is satisfied. Such a choice of PS→I
0 will then prevent B from profitably changing

his strategy to a scenario not involving the market maker in the case PB→I
0 ≤ Λ̂.

Suppose now that B’s original offer satisfied PB→I
0 > Λ̂. In this case, Lemma 5.2.1

implies that both s1,B and s1,DT appear to be profitable scenarios for B. This means
that a change of the form PB→I

1 < PS→I
0 ≤ PB→I

0 can only be avoided, if IR would
opt for s1,S no matter how B sets his offer. This means that the following two
inequalities have to hold simultaneously:

E
[
Û IR(s1,S )

]
> E

[
Û IR(s1,B)

]
(5.25)

and

E
[
Û IR(s1,S )

]
> E

[
Û IR(s1,DT )

]
. (5.26)

Consider first that inequality (5.25) is the same as inequality (5.20) which has
already been discussed earlier. By the previous result, it can therefore be assured
that inequality (5.25) holds if S ’s original offer is set according to

PS→I
0 ≤

αPI→S + νPI→B

α + ν
. (5.27)

Considering that

E
[
Û IR(s1,S )

]
= ν

(
PI→B − Λ̂

)
+ α

(
Λ̂ − PS→I

0

)
and that

E
[
Û IR(s1,DT )

]
= α

(
Λ̂ − PI→S

)
+ ν

(
PI→B − Λ̂

)
+ m

(
PI→S − PI→B

)
the second inequality (5.26) yields that

α
(
Λ̂ − PS→I

0

)
> α

(
Λ̂ − PI→S

)
+ m

(
PI→S − PI→B

)
.

Simplifying yields

α
(
PI→S − PS→I

0

)
> m

(
PI→S − PI→B

)
and it follows that

PS→I
0 < PI→S +

m
α

(
PI→B − PI→S

)
. (5.28)
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In order for both inequalities (5.27) and (5.28) to be satisfied, S needs to set PS→I
0

such that

PS→I
0 ≤ min

{
αPI→S + νPI→B

α + ν
, PI→S +

m
α

(
PI→B − PI→S

)}
,

with equality only possible if

min
{
αPI→S + νPI→B

α + ν
, PI→S +

m
α

(
PI→B − PI→S

)}
=
αPI→S + νPI→B

α + ν
.

Consider now that if m = α

PI→S +
m
α

(
PI→B − PI→S

)
= PI→B.

The assumption PI→S < PI→B then trivially implies

αPI→S + νPI→B

α + ν
< PI→B = PI→S +

m
α

(
PI→B − PI→S

)
.

If on the other hand m = ν then PI→B − PI→S > 0 implies

PI→S +
m
α

(
PI→B − PI→S

)
= PI→S +

ν

α

(
PI→B − PI→S

)
=

(α + ν)
(
PI→S + ν

α

(
PI→B − PI→S

))
α + ν

=
αPI→S + νPI→B + ν

2

α

(
PI→B − PI→S

)
α + ν

>
αPI→S + νPI→B

α + ν
.

Hence it has been shown that for m = ν and m = α

min
{
αPI→S + νPI→B

α + ν
, PI→S +

m
α

(
PI→B − PI→S

)}
=
αPI→S + νPI→B

α + ν
.

It follows that in the case PB→I
0 > Λ̂ the commercial seller S can prevent B from

switching from a scenario involving the market maker IM into one not involving
IM by choosing any price satisfying

PS→I
0 ≤

αPI→S + νPI→B

α + ν
. (5.29)

Note that (5.29) is the same bound as the bound (5.24) that was derived for the
case PB→I

0 ≤ Λ̂. It follows that - no matter how PB→I
0 was set - if PS→I

0 satisfies the
above inequality, an offer PB→I

1 < PS→I
0 ≤ PB→I

0 will not improve B’s payoff. �
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The following corollary shows that if PS→I
0 does not satisfy the bound (5.19), B

will in fact be able to profitably switch to a scenario not involving IM:

Corollary 5.2.3
Suppose that α, ν,RS ,RB > 0.
Consider a strategy combination s0,M =

(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
with

PS→I
0 >

αPI→S + νPI→B

α + ν
.

Then B will be able to singlehandedly initiate a profitable change to a scenario
not involving IM.

Proof. Suppose αPI→S+νPI→B

α+ν
< PS→I

0 ≤ PB→I
0 , i.e. suppose there is a d > 0 such that

PS→I
0 =

αPI→S + νPI→B + d
α + ν

.

Suppose furthermore that B changes his offer PB→I
0 to an offer PB→I

1 satisfying

PB→I
1 =

αPI→S + νPI→B

α + ν
.

Then since PB→I
1 < PS→I

0 , the spread PB→I
1 − PS→I

0 will be negative. This implies
that the market maker IM will not enter the trade. The resulting outcome scenario
will therefore depend on the decision of IR. IR’s payoff for a strategy combination
s1,B can be found as

E
[
Û IR(s1,B)

]
= ν

(
PB→I

1 − Λ̂
)
+ α

(
Λ̂ − PI→S

)
= ν

(
αPI→S + νPI→B

α + ν
− Λ̂

)
+ α

(
Λ̂ − PI→S

)
=

(
αν − α2 − αν

)
PI→S + ν2PI→B +

(
α2 − ν2

)
Λ̂

α + ν

=
ν2PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S

α + ν
.
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For a strategy combination s1,S it follows that

E
[
Û IR(s1,S )

]
= ν

(
PI→B − Λ̂

)
+ α

(
Λ̂ − PS→I

0

)
= ν

(
PI→B − Λ̂

)
+ α

(
Λ̂ −
αPI→S + νPI→B + d

α + ν

)
=

(
αν + ν2 − αν

)
PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S − αd

α + ν

=
ν2PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S − αd

α + ν

= E
[
Û IR(s1,B)

]
−
αd
α + ν

< E
[
Û IR(s1,B)

]
.

A case distinction for the strategy combination s1,DT yields

E
[
Û IR(s1,DT )

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
=

(α − ν)
(
Λ̂ − PI→S

)
if m = ν

(ν − α)
(
PI→B − Λ̂

)
if m = α

=


ν2PI→S+(α2−ν2)Λ̂−α2PI→S

α+ν
if m = ν

ν2PI→B+(α2−ν2)Λ̂−α2PI→B

α+ν
if m = α

<
ν2PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S

α + ν

= E
[
Û IR(s1,B)

]
.

This shows that IR can expect the highest payoff if the strategy combination s1,B is
played. He will therefore play the strategy sR

B. This means that B’s changed price
offer has induced a switch from the strategy combination s0,M to the combination
s1,B. But by Lemma 5.2.1 a switch from s0,M to s1,B will be profitable for B. It
follows that B has singlehandedly improved his payoff by setting the offer

PB→I
1 =

αPI→S + νPI→B

α + ν
.

5.2.2 A lower bound on B’s price offer

The above result shows that if a combination of offers
(
PS→I

0 , PB→I
0

)
induces the

market maker IM to enter the trade (i.e. if PS→I
0 ≤ PB→I

0 ), the commercial buyer
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B will not be able to profitably change to an outcome scenario not involving IM if
only PS→I

0 is set in a clever way. The purpose of this section is to show that also
S will not be able to make such a strategy change if PB→I

0 satisfies a very similar
condition.

Consider first that S cannot increase his payoff by lowering his offer to PS→I
1 <

PS→I
0 . Since PS→I

1 < PS→I
0 ≤ PB→I

0 , the market maker would still be involved and
would this time buy m units from S for a lower price. The remaining α − m units
would still be sold to IR for PI→S . The overall payoff of S would therefore have
decreased.

This means that as in the previous case there are two possibilities how such a
profitable change could occur:

1. If PS→I
0 < PB→I

0 , S could offer a price PS→I
1 such that PS→I

0 < PS→I
1 ≤ PB→I

0 .
IM would still be involved and S would sell to IM for a higher price. This
would certainly increase S ’s payoff.

2. S could offer a price PS→I
1 satisfying PS→I

0 ≤ PB→I
0 < PS→I

1 . Now the spread
is negative and hence IM would not take part in the trade. Depending on IR’s
decision such a choice of strategy might prove to be profitable for S .

As in the previous discussion the focus will be put on the second possibility. The
first case will be discussed later.

Suppose now that S changed his strategy to a price offer PS→I
1 satisfying PS→I

0 ≤

PB→I
0 < PS→I

1 . Since the spread is negative, IM will not take part in the trade and
the outcome will depend on IR’s decision.

Depending on IR’s behaviour the new strategy combination

s1 =
(
PS→I

1 , PB→I
0 , sM

− , s
R
)

can lead to three outcome scenarios:

1. a strategy combination s1,S =
(
PS→I

1 , PB→I
0 , sM

− , s
R
S

)
, i.e. a scenario where IR

accepts S ’s offer.
The relevant payoffs of S and IR are

E
[
ÛS (s1,S )

]
= α

(
PS→I

1 − Λ̂
)

E
[
Û IR(s1,S )

]
= ν

(
PI→B − Λ̂

)
+ α

(
Λ̂ − PS→I

1

)
.
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2. a strategy combination s1,B =
(
PS→I

1 , PB→I
0 , sM

− , s
R
B

)
, i.e. a scenario where IR

accepts B’s offer.
The relevant payoffs of S and IR are

E
[
ÛS (s1,B)

]
= α

(
PI→S − Λ̂

)
E

[
Û IR(s1,B)

]
= ν

(
PB→I

0 − Λ̂
)
+ α

(
Λ̂ − PI→S

)
.

3. a strategy combination s1,DT =
(
PS→I

1 , PB→I
0 , sM

− , s
R
−

)
, i.e. a scenario where

IR declines both offers.
The relevant payoffs of S and IR are in this case

E
[
ÛS (s1,DT )

]
= (α − m)

(
PI→S − Λ̂

)
E

[
Û IR(s1,DT )

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
.

Consider now that for S a switch from s0,M to s1,S would be profitable if

E
[
ÛS (s1,S )

]
> E

[
ÛS (s0,M)

]
and hence if

α
(
PS→I

1 − Λ̂
)
> m

(
PS→I

0 − Λ̂
)
+ (α − m)

(
PI→S − Λ̂

)
.

It follows that

PS→I
1 > PI→S +

m
α

(
PS→I

0 − PI→S
)

or by rearranging terms that

PS→I >
m
α

PS→I
0 +

(
1 −

m
α

)
PI→S .

With PS→I
0 > PI→S and m ≤ α it follows that

m
α

PS→I
0 +

(
1 −

m
α

)
PI→S ≤

m
α

PS→I
0 +

(
1 −

m
α

)
PS→I

0

= PS→I
0 .

This implies

PS→I
1 > PS→I

0 ≥
m
α

PS→I
0 +

(
1 −

m
α

)
PI→S .
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It would therefore always be advantageous for the commercial seller to switch to
the strategy combination s1,S .

Suppose now that S ’s change in strategy results in a scenario S and B trade m
units directly. Such an outcome would improve S ’s payoff if

E
[
ÛS (s1,DT )

]
> E

[
ÛS (s0,M)

]
,

i.e. if

(α − m)
(
PI→S − Λ̂

)
> m

(
PS→I

0 − Λ̂
)
+ (α − m)

(
PI→S − Λ̂

)
.

It follows that

0 > m
(
PS→I

0 − Λ̂
)
.

This implies that S would show interest into changing into a direct trade scenario
if PS→I

0 < Λ̂, i.e. if his initial offer was to sell the good G for less than the dis-
counted expected value.

The last alternative, the strategy combination s1,B appears to be purely disadvan-
tageous for S : with PS→I

0 > PI→S it follows that

E
[
ÛS (s1,B)

]
= α

(
PI→S − Λ̂

)
= m

(
PI→S − Λ̂

)
+ (α − m)

(
PI→S − Λ̂

)
< m

(
PS→I − Λ̂

)
+ (α − m)

(
PI→S − Λ̂

)
= E

[
ÛS (s0,M)

]
.

This shows that S would always prefer an outcome s0,M over an outcome s1,B.

The previous results can be summarized as follows:

Lemma 5.2.4 (Model II: S’s view on different outcome scenarios)
Consider a strategy combination s0,M =

(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
with

PI→S < PS→I
0 ≤ PB→I

0 < PI→B,

i.e. a strategy combination that results in the market maker IM being involved in
the trade. If S is changing his offer to an offer satisfying PS→I

0 ≤ PB→I
0 < PS→I

1 ,
the following can be said about possible outcome scenarios:
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1. S will always prefer s0,M over s1,B.

2. A change from s0,M to s1,S will always be profitable for S .

3. If PS→I
0 < Λ̂, a change from s0,M to s1,DT will be profitable. Otherwise such

a change will not increase S ’s payoff.

This means in other words that S would not opt to change his old offer PS→I
0 to an

offer PS→I
1 satisfying PS→I

0 ≤ PB→I
0 < PS→I

1 if such a change would result in the
outcome scenario s1,B (or, if PS→I

0 ≥ Λ̂ also s1,DT ), i.e. if IR would prefer s1,B (or
s1,DT ) no matter what S is offering.

IR will behave in such a way if B is setting his initial offer such that it satisfies a
similar bound than the one derived in the previous section:

Proposition 5.2.5 (Model II: A lower bound on PB→I)
Suppose that α, ν,RS ,RB > 0.
Consider a strategy combination s0,M =

(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
with

PI→S < PS→I
0 ≤ PB→I

0 < PI→B,

i.e. a strategy combination that results in the market maker IM being involved in
the trade.

If B’s offer PB→I
0 satisfies

PB→I
0 ≥

αPI→S + νPI→B

α + ν
, (5.30)

then S will not be able to singlehandedly generate a higher payoff by changing
his offer PS→I

0 to an offer PS→I
1 satisfying PS→I

0 ≤ PB→I
0 < PS→I

1 . This means that S
will not be able to profitably switch to an outcome scenario that does not involve
the market maker IM.

Proof. Suppose first that PS→I
0 ≥ Λ̂. In this case, Lemma 5.2.4 implies that only a

change from s0,M to s1,S would be profitable for S . Such a change can be prevented
if IR would prefer s1,B or s1,DT no matter what price S is offering. This means that
one of the following inequalities has to hold:

E
[
Û IR(s1,B)

]
> E

[
Û IR(s1,S )

]
(5.31)
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or

E
[
Û IR(s1,DT )

]
> E

[
Û IR(s1,S )

]
. (5.32)

Using that

E
[
Û IR(s1,B)

]
= ν

(
PB→I

0 − Λ̂
)
+ α

(
Λ̂ − PI→S

)
= νPB→I

0 − αPI→S + (α − ν) Λ̂

and

E
[
Û IR(s1,S )

]
= ν

(
PI→B − Λ̂

)
+ α

(
Λ̂ − PS→I

1

)
= νPI→B − αPS→I

1 + (α − ν) Λ̂,

inequality (5.31) implies that

νPB→I
0 − αPI→S > νPI→B − αPS→I

1 .

This yields that

PS→I
1 > PI→S +

ν

α

(
PI→B − PB→I

0

)
.

Since by assumption PS→I
1 > PB→I

0 , B can make sure that this inequality holds by
setting PB→I

0 such that it satisfies

PB→I
0 ≥ PI→S +

ν

α

(
PI→B − PB→I

0

)
.

It follows that

PB→I
0 ≥

PI→S + ν
α

PI→B

1 + ν
α

and hence that

PB→I
0 ≥

αPI→S + νPI→B

α + ν
. (5.33)

With

E
[
Û IR(s1,DT )

]
= α

(
Λ̂ − PI→S

)
+ ν

(
PI→B − Λ̂

)
+ m

(
PI→S − PI→B

)
= νPI→B − αPI→S + (α − ν) Λ̂ + m

(
PI→S − PI→B

)
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it follows that inequality (5.32)

E
[
Û IR(s1,DT )

]
> E

[
Û IR(s1,S )

]
holds if

m
(
PI→S − PI→B

)
> α

(
PI→S − PS→I

1

)
.

This implies

PS→I
1 > PI→S −

m
α

(
PI→S − PI→B

)
.

Since by assumption PS→I
1 > PB→I

0 , B could assure that this inequality holds by
offering a price PB→I

0 satisfying

PB→I
0 ≥ PI→S −

m
α

(
PI→S − PI→B

)
. (5.34)

The results (5.33) and (5.34) imply that B can make sure that one of the inequali-
ties (5.31) and (5.32) holds by setting

PB→I
0 ≥ min

{
αPI→S + νPI→B

α + ν
, PI→S −

m
α

(
PI→S − PI→B

)}
.

Note that if m = α

PI→S −
m
α

(
PI→S − PI→B

)
= PI→B.

Since α, ν > 0 and PI→S < PI→B it follows that

PI→S −
m
ν

(
PI→S − PI→B

)
= PI→B ≥

αPI→S + νPI→B

α + ν
.

If on the other hand m = ν, it follows that

PI→S −
m
α

(
PI→S − PI→B

)
= PI→S −

ν

α

(
PI→S − PI→B

)
=

(α + ν) PI→S −
(
ν2

α
+ ν

) (
PI→S − PI→B

)
α + ν

=
νPI→B + αPI→S + ν

2

α

(
PI→B − PI→S

)
α + ν

>
αPI→S + νPI→B

α + ν
.
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Since for both the case m = ν and the case m = α it was shown that

PI→S −
m
α

(
PI→S − PI→B

)
>
αPI→S + νPI→B

α + ν
.

it follows that

min
{
αPI→S + νPI→B

α + ν
, PI→S −

m
α

(
PI→S − PI→B

)}
=
αPI→S + νPI→B

α + ν
.

This means that at least one of the inequalities (5.31) and (5.32) will hold if B sets
his initial offer such that

PB→I
0 ≥

αPI→S + νPI→B

α + ν
(5.35)

is satisfied. Such a choice of PB→I
0 will then prevent S from profitably changing

his strategy to a scenario not involving the market maker in the case PS→I
0 ≥ Λ̂.

Suppose now that PS→I
0 < Λ̂. In this case both a change to s1,S and to s1,DT will be

of interest for S . A change in strategy can therefore only be avoided, if IR would
prefer s1,B over both s1,S and s1,DT . This means that the inequalities

E
[
Û IR(s1,B)

]
> E

[
Û IR(s1,S )

]
(5.36)

and

E
[
Û IR(s1,B)

]
> E

[
Û IR(s1,DT )

]
. (5.37)

have to hold simultaneously.

Note that the discussion of the case PS→I
0 ≥ Λ̂ implies that inequality (5.36) is

satisfied if

PB→I
0 ≥

αPI→S + νPI→B

α + ν
. (5.38)

Inequality (5.36) will be satisfied if

ν
(
PB→I

0 − Λ̂
)
+ α

(
Λ̂ − PI→S

)
> α

(
Λ̂ − PI→S

)
+ ν

(
PI→B − Λ̂

)
+ m

(
PI→S − PI→B

)
.

It follows that

ν
(
PB→I

0 − Λ̂
)
> ν

(
PI→B − Λ̂

)
+ m

(
PI→S − PI→B

)
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and hence that

ν
(
PB→I

0 − PI→B
)
> m

(
PI→S − PI→B

)
This yields that

PB→I
0 > PI→B −

m
ν

(
PI→B − PI→S

)
. (5.39)

In order for both inequalities (5.38) and (5.39) to be satisfied at the same time, B
needs to set PB→I

0 such that

PB→I
0 ≥ max

{
αPI→S + νPI→B

α + ν
, PI→B −

m
ν

(
PI→B − PI→S

)}
,

with equality only possible if

max
{
αPI→S + νPI→B

α + ν
, PI→B −

m
α

(
PI→B − PI→S

)}
=
αPI→S + νPI→B

α + ν
.

Consider now that if m = ν

PI→B −
m
ν

(
PI→B − PI→S

)
= PI→S .

Since by assumption α, ν > 0 and PI→S < PI→B it follows that

αPI→S + νPI→B

α + ν
> PI→S = PI→B −

m
ν

(
PI→B − PI→S

)
.

If on the other hand m = α then PI→B − PI→S > 0 implies

PI→B −
m
ν

(
PI→B − PI→S

)
= PI→B −

α

ν

(
PI→B − PI→S

)
=

(α + ν)
(
PI→B − α

ν

(
PI→B − PI→S

))
α + ν

=
αPI→S + νPI→B − α

2

ν

(
PI→B − PI→S

)
α + ν

<
αPI→S + νPI→B

α + ν
.

Hence it follows that for both m = ν and m = α

max
{
αPI→S + νPI→B

α + ν
, PI→B −

m
ν

(
PI→B − PI→S

)}
=
αPI→S + νPI→B

α + ν
.
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This implies that in the case PS→I
0 < Λ̂ the commercial buyer B can prevent S from

switching from a scenario involving the market maker IM into one not involving
IM by choosing any price satisfying

PB→I
0 ≥

αPI→S + νPI→B

α + ν
. (5.40)

Note that the bound (5.40) derived for the case PS→I
0 < Λ̂ and the bound (5.35)

derived for the case PS→I
0 ≥ Λ̂ are the same. It follows that - no matter how PS→I

0
was set - if PB→I

0 satisfies the above inequality, an offer PS→I
1 with PS→I

0 ≤ PB→I
0 <

PS→I
1 will not improve S ’s payoff. �

Similarly as with the bound for PS→I
0 it can also be shown for this bound that - as

soon as inequality (5.30) is not satisfied - S will be able to profitably switch to a
scenario not involving IM:

Corollary 5.2.6
Suppose that α, ν,RS ,RB > 0.
Consider a strategy combination s0,M =

(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
with

PB→I
0 <

αPI→S + νPI→B

α + ν
.

Then S will be able to singlehandedly initiate a profitable change to a scenario
not involving IM.

Proof. Suppose PS→I
0 ≤ PB→I

0 < αPI→S+νPI→B

α+ν
, i.e. suppose there is a d > 0 such that

PB→I
0 =

αPI→S + νPI→B − d
α + ν

.

Suppose furthermore that S changes his offer PS→I
0 to an offer PS→I

1 satisfying

PS→I
1 =

αPI→S + νPI→B

α + ν
.

Then the spread PB→I
0 −PS→I

1 = − d
α+ν

will be negative. This implies that the market
maker IM will not enter the trade. The resulting outcome scenario will therefore
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depend on the decision of IR. If IR opts for the strategy sS his payoff will be

E
[
Û IR(s1,S )

]
= ν

(
PI→B − Λ̂

)
+ α

(
Λ̂ − PS→I

1

)
= ν

(
PI→B − Λ̂

)
+ α

(
Λ̂ −
αPI→S + νPI→B

α + ν

)
=

(
αν + ν2 − αν

)
PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S

α + ν

=
ν2PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S

α + ν
.

If the strategy combination s1,B is played, IR’s payoff turns out to be

E
[
Û IR(s1,B)

]
= ν

(
PB→I

0 − Λ̂
)
+ α

(
Λ̂ − PI→S

)
= ν

(
αPI→S + νPI→B − d

α + ν
− Λ̂

)
+ α

(
Λ̂ − PI→S

)
=

(
αν − α2 + αν

)
PI→S + ν2PI→B +

(
α2 − ν2

)
Λ̂ − νd

α + ν

=
ν2PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S

α + ν
−
νd
α + ν

= E
[
Û IR(s1,S )

]
−
νd
α + ν

< E
[
Û IR(s1,S )

]
.

Finally, if the strategy combination s1,DT will be played, IR’s payoff can be com-
puted as

E
[
Û IR(sDT )

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
=

(α − ν)
(
Λ̂ − PI→S

)
if m = ν

(ν − α)
(
PI→B − Λ̂

)
if m = α

=


ν2PI→S+(α2−ν2)Λ̂−α2PI→S

α+ν
if m = ν

ν2PI→B+(α2−ν2)Λ̂−α2PI→B

α+ν
if m = α

<
ν2PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S

α + ν

= E
[
Û IR(s1,S )

]
.
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This shows that IR will play the strategy sR
S since the strategy combination s1,S is

promising him the highest expected payoff. But by Lemma 5.2.4 a switch from
s0,M to s1,S will be profitable for S . It follows that S has singlehandedly improved
his payoff by setting the offer

PS→I
1 =

αPI→S + νPI→B

α + ν
.

5.2.3 A Nash equilibrium solution
In the previous two sections it has been shown that if

PI→S < PS→I
0 ≤ PB→I

0 < PI→B,

a clever choice of PS→I
0 and PB→I

0 can prevent B and S from profitably changing
to a scenario that does not involve the market maker. What has not been discussed
yet is whether or not S and B can still profitably change their strategy as long
as the resulting strategy combination does still involve the market maker IM. If
for offers

(
PS→I

0 , PB→I
0

)
no such change is possible, a Nash equilibrium has been

found. In fact, it can be shown that one such combination of offers exists:

Theorem 5.2.7 (Model II: A Nash equilibrium solution involving IM)
Suppose that α, ν,RS ,RB > 0.
Consider a strategy combination s0,M =

(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
with

PI→S < PS→I
0 ≤ PB→I

0 < PI→B,

i.e. a strategy combination that results in the market maker IM being involved in
the trade.

Then s0,M is a Nash equilibrium if and only if PB→I
0 and PS→I

0 satisfy

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
. (5.41)

Proof. Consider first a strategy combination s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
with

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
.
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Proposition 5.2.2 then implies that B will not be able to singlehandedly increase
his profit by offering a price PB→I

1 satisfying PB→I
1 < PS→I

0 = PB→I
0 . Furthermore,

also an offer satisfying PS→I
0 = PB→I

0 < PB→I
1 will not increase B’s payoff: since

the spread PB→I
1 − PS→I

0 is positive, IM will still be involved, only this time B will
buy the needed units for a higher price. Hence B will not be able to increase his
payoff by singlehandedly changing his strategy.

Similarly, also S will not be able to singlehandedly improve his payoff: on the
one hand an offer PS→I

1 with PS→I
0 = PB→I

0 < PS→I
1 will not increase S ’s payoff

according to Proposition 5.2.5; on the other hand an offer PS→I
1 satisfying PS→I

1 <
PS→I

0 = PB→I
0 will only result in S selling ν units for a lower price to IM.

Since neither S nor B can singlehandedly improve their payoff this shows that s0,M

is in fact a Nash equilibrium.

Suppose now that a strategy combination s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
with

PI→S < PS→I
0 ≤ PB→I

0 < PI→B

is a Nash equilibrium. Then neither S nor B should be able to singlehandedly
improve their payoff.

Corollary 5.2.3 implies that B could profitably change to a scenario not involving
the market maker if

PS→I
0 >

αPI→S + νPI→B

α + ν
.

This implies that s0,M can only be a Nash equlibrium if

PS→I
0 ≤

αPI→S + νPI→B

α + ν
.

Similarly, Corollary 5.2.6 implies that S can only be prevented from switching to
a scenario without IM if

PB→I
0 ≥

αPI→S + νPI→B

α + ν
.

Suppose now that

PS→I
0 <

αPI→S + νPI→B

α + ν
≤ PB→I

0 .
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Then S could change his offer PS→I
0 to an offer PS→I

1 satisfying

PS→I
0 < PS→I

1 ≤
αPI→S + νPI→B

α + ν
.

In such a case the spread PB→I
0 − PS→I

1 would still be nonnegative and hence IM

would still be involved in the trade. This implies that IM would now buy m =
min{α, ν} units for a price PS→I

1 > PS→I
0 , i.e. S would sell m units for a higher

price. Since the remaining α − m would still be sold to IR for PI→S , this means
that S would have singlehandedly increased his payoff. It follows that a strategy
combination with

PS→I
0 <

αPI→S + νPI→B

α + ν

cannot be a Nash equilibrium. This implies that for s0,M to be a Nash equilibirum
S ’s offer PS→I

0 has to satisfy

PS→I
0 =

αPI→S + νPI→B

α + ν
.

Similarly, if

PS→I
0 =

αPI→S + νPI→B

α + ν
< PB→I

0

B could singlehandedly improve his payoff by offering a price PB→I
1 with

PB→I
0 > PB→I

1 ≥
αPI→S + νPI→B

α + ν

since B would then buy the needed m = min{α, ν} units for a lower price from IM.
Hence for s0,M to be a Nash equilibrium PB→I

0 has to satisfy

PB→I
0 =

αPI→S + νPI→B

α + ν
.

But this shows that if a strategy combination s0,M with

PI→S < PS→I
0 ≤ PB→I

0 < PI→B,

is a Nash equilibrium, then

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
.

This proves the claim. �
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5.3 Interpretation of the Nash equilibrium solution
In the previous two sections it was shown that

1. no strategy combination with a negative price spread can be a Nash equilib-
rium.

2. exactly one strategy combination with a nonnegative price spread will be a
Nash equilibrium.

Combining these results, the following can be said about a market with a com-
mercial buyer B, a commercial seller S and two intermediaries IR and IM:

Theorem 5.3.1 (Model II: Existence & Uniqueness of a Nash equilibrium)
Consider a market as described above with α, ν,RS ,RB > 0.

Then a strategy combination s0 =
(
PS→I

0 , PB→I
0 , sM, sR

)
is a Nash equilibrium if

and only if PB→I
0 and PS→I

0 satisfy

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
. (5.42)

Proof. The theorem follows directly from theorems 5.1.4 and 5.2.7. �

Since the strategy combination s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
with

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
.

is a unique Nash equilibrium solution, trades will occur in a completely pre-
dictable fashion (assuming that all players act perfectly rational1):

1. S will sell m = min{α, ν} units to IM for

PS→I
0 =

αPI→S + νPI→B

α + ν
.

2. B will buy m = min{α, ν} units from IM for

PB→I
0 =

αPI→S + νPI→B

α + ν
.

3. IR will buy/sell the remaining |α − ν| units for PI→S or PI→B respectively.
1see section 1.2.4
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5.3.1 A fair forward price
Theorem 5.3.1 suggests that min{α, ν} units of G will be traded at a price of

F =
αPI→S + νPI→B

α + ν
.

Considering that PI→S = (1 − RS ) Λ̂ and PI→B = (1 + RB) Λ̂ it follows that

F =
αPI→S + νPI→B

α + ν

=

(
α (1 − RS ) + ν (1 + RB)

α + ν

)
Λ̂

=

(
1 −

(
α

α + ν

)
RS +

(
ν

α + ν

)
RB

)
Λ̂.

It can be seen that this price depends on all parameters that were assumed to be
relevant for this market model in quite a natural fashion:

1. Λ̂: the expected price of G at time t = T discounted to time t = 0 is the base
price. If Λ̂ changes, also F will change correspondingly.

2. RS : the risk premium S is willing to pay determines a lower limit for F
since

F =
(
1 −

(
α

α + ν

)
RS +

(
ν

α + ν

)
RB

)
Λ̂

≥

(
1 −

(
α

α + ν

)
RS

)
Λ̂

≥ (1 − RS ) Λ̂.

Furthermore, if everything else is assumed to be constant, an increased risk
premium RS will result in F selling min{α, ν} units of G for a lower price,
since

∂F
∂RS
= −

(
α

α + ν

)
Λ̂ < 0.

In other words: if S is willing to pay more for transferring his risk, he will
sell G for a cheaper price.
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3. RB: similarly to RS also B’s risk premium influences F. An upper limit of
F can be found as

F =
(
1 −

(
α

α + ν

)
RS +

(
ν

α + ν

)
RB

)
Λ̂

≤

(
1 +

(
ν

α + ν

)
RB

)
Λ̂

≤ (1 + RB) Λ̂.

Assuming that all other parameters remain constant, increasing RB will in-
crease F:

∂F
∂RB
=

(
ν

α + ν

)
Λ̂ > 0.

This means that if B is willing to pay more for a risk transfer, buying G will
be more expensive.

4. α, ν: supply α and demand ν will determine how close F will be to the
extreme values PI→S = (1 − RS ) Λ̂ and PI→B = (1 + RB) Λ̂.

If the supply α is increased while everything else remains constant, F will
decrease since

∂F
∂α
= −

ν

(α + ν)2 RS Λ̂ −
ν

(α + ν)2 RBΛ̂

= −
ν

(α + ν)2 (RS + RB) Λ̂

< 0.

This result is not surprising: basic economic theory suggests that an increase
in supply that is not accompanied by an increase in demand should result in
a lower price.

In the case of a huge supply surplus, i.e. if α >> ν, S will be under a lot
more pressure than B to hedge his risk. This pressure is reflected in the
forward price F:

F =
(
1 −

(
α

α + ν

)
︸  ︷︷  ︸
≈1

RS +

(
ν

α + ν

)
︸  ︷︷  ︸
≈0

RB

)
Λ̂

≈ (1 − RS ) Λ̂.
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If on the other hand ν is increased while α is kept constant, F will increase
as well:

∂F
∂ν
=

α

(α + ν)2 RS Λ̂ +
α

(α + ν)2 RBΛ̂

=
α

(α + ν)2 (RS + RB) Λ̂

> 0.

In a market characterized by an extreme demand surplus ν >> α, most of
the hedging pressure will be on B’s side of the trade. Hence

F =
(
1 −

(
α

α + ν

)
︸  ︷︷  ︸
≈0

RS +

(
ν

α + ν

)
︸  ︷︷  ︸
≈1

RB

)
Λ̂

≈ (1 + RB) Λ̂.

Finally, if α ≈ ν similar pressure will apply to both S and B. The price F
will therefore mainly depend on how RS and RB are set:

F =
(
1 −

(
α

α + ν

)
︸  ︷︷  ︸
≈ 1

2

RS +

(
ν

α + ν

)
︸  ︷︷  ︸
≈ 1

2

RB

)
Λ̂

≈

(
1 +

1
2

(RB − RS )
)
Λ̂.

If furthermore both S and B are willing to pay roughly the same risk pre-
mium RS ≈ RB then

F ≈ Λ̂,

i.e. the lion’s share of the trade will take place for approximately the dis-
counted price Λ̂.

5.3.2 The role of the intermediaries
In the previous model (Model I) with only one intermediary I trading both price
spreads and risk, it was shown that I will usually be involved in more than just the
trade of the supply-demand surplus.

A similiar observation can be made here:
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1. The risk trader IR will only trade the supply-demand surplus:

• if α > ν, IR will buy α − ν units at time t = 0 from S for PI→S (i.e.
the cheapest possible price) and sell them at time t = T for the cash
market price P(T ).

• if ν > α, IR will sell ν − α units at time t = 0 to B for PI→B (i.e. the
highest possible price) and buy them at time t = T for the cash market
price P(T ).

2. The market maker IM will be involved in all remaining trades. For a price
of

αPI→S + νPI→B

α + ν
.

he will

• buy min{α, ν} units from S

• and sell the same amount to B.

Both trades will occur at time t = 0.

This shows that IR and IM will in fact be involved in all occuring trades. Their
pure existence will prevent S and B from involving into any kind of direct trade.
This agrees with observations made in daily life: the presence of intermediaries
in markets usually leads to them trading almost the complete supply and demand.

On the other hand, the motivation for IM to enter this trade is not completely clear.
Since he is selling and buying for the same price, it follows that his payoff satisfies

E
[
Û IM

(
s0,M

)]
= min{α, ν}

(
PB→I

0 − PS→I
0

)
= 0.

While this does at least not constitute a monetary loss for IM, it does however
mean that IM would work for free. He would invest his time and attention to carry
out a trade without the prospect of a monetary return.

This outcome is due to the assumption of IM trading every nonnegative price
spread, i.e. in particular also a zero price spread. Simply excluding a zero
price spread (and hence allowing IR to enter the trade in the case of price offers
PS→I

0 = PB→I
0 ) wouldn’t really solve this problem:
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1. The reader may convince himself that in a market where IM is only trading
positive spreads, a Nash equilibrium s0,M =

(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
would have

to satisfy2

PS→I
0 <

αPI→S + νPI→B

α + ν
< PB→I

0 .

2. But if continuous pricing is allowed, any offer PS→I
0 satisfying PS→I

0 <
αPI→S+νPI→B

α+ν
would allow for another offer PS→I

1 with

PS→I
0 < PS→I

1 <
αPI→S + νPI→B

α + ν
.

Since this new offer PS→I
1 would result in a higher payoff for S it follows that

PS→I
0 couldn’t have been part of a Nash equilibrium solution. Analogous

arguments apply to PB→I
0 . Hence no Nash equilibrium can exist.

3. If on the other hand trading takes place on a discrete price scale, a Nash
equilibrium will exist. PS→I

0 and PB→I
0 will be set such that

PS→I
0 <

αPI→S + νPI→B

α + ν
< PB→I

0

is satisfied and such that PS→I
0 and PB→I

0 are as close to each other as possi-
ble. The latter means that depending on whether or not

F =
αPI→S + νPI→B

α + ν

is a legal price on a discrete price scale with minimal tick size τ, the price
spread will satisfy

PB→I
0 − PS→I

0 =

τ if F is not legal.
2τ if F is legal.

But even this Nash equilibrium would only give a very weak explanation
for IM’s participation in the trade: IM’s payoff would now be positive, but
only to the smallest possible extent, since

E
[
Û IM

(
s0,M

)]
= min{α, ν}

(
PB→I

0 − PS→I
0

)
=

τmin{α, ν} if F is not legal.
2τmin{α, ν} if F is legal.

2as a version of Theorem 5.2.7
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Considering that the tick size is usually only a very small fraction of the
actual price of a traded good, it becomes apparent, that simply receiving
one tick per unit might not be enough to justify the amount of work that IM

has to invest in order to trade as much as min{α, ν} units.

In an analysis of the effective transaction fee received by market makers, Locke
and Venkatesh (see [LV91]) show that while for some futures contracts market
makers are willing to trade for an average revenue of a tick or even less per trade,
some contracts show a significantly higher transaction cost (for example currency
futures). Hence, an extension of the previous model needs to take into account
that the previous assumption of IM entering the trade whenever the price spread
is nonnegative (or even positive) does not sufficiently describe IM’s motivation to
participate in the market. IM needs an additional monetary incentive to enter a
trade: a fixed transaction fee.



Part IV

Transaction costs and the existence
of an equilibrium price
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On most financial exchanges, the matchmaking process between potential
buyers and sellers is operated on a matched bargain or order driven basis: when
offers by a buyer and a seller match up, the trade will be executed by the ex-
change’s matching system. In the previous model a market maker was introduced
to simulate this type of matchmaking.

It was shown that the existence of such a market maker leads to a completely
predictable equilibrium solution. This solution can however not explain why a
market maker would enter a trade in the first place. To explain a market maker’s
participation an additional monetary incentive is necessary: a fixed transaction
fee.

This corresponds to the structure of real-world financial exchanges: a financial
exchange supplies services to its participants in order to facilitate trades. The ex-
istence of for example the specialist on the NYSE can be seen as such a service.
In return however, the exchange will charge its participants for the services it sup-
plies.

In the following model, a market maker IM will execute a trade as soon as a com-
mercial buyer B and a commercial seller S offer prices with a nonnegative price
spread

PB→I − PS→I ≥ 0.

In return for executing the trade, IM will charge a transaction fee TM that buyer B
and seller S have to pay per traded unit of G.

It will be shown that the introduction of such a transaction fee will result in an
equilibrium solution analogous to the one observed in the previous model. How-
ever, depending on how the transaction fee TM was set such an equilibrium so-
lution will not always exist. Hence the market participants will under certain
conditions again behave in an unpredictable manner.



Chapter 6

Model III: A market with
transaction costs

In the following model, we will consider a market structured in complete anal-
ogy to the previous market model. Only one of the previous assumptions will be
dropped: trading with the market maker IM will now involve the payment of a
transaction fee TM.

6.1 Basic market structure
Four participants - a commercial buyer B, a commercial seller S , a market maker
IM and a risk-neutral intermediary IR - will trade a good G on a marketM. The
four participants can fulfil their needs by either trading with each other directly at
time t = 0 or by accessing the cash market C at time t = T .

The following assumptions are made on the market structure:

1. Accessing the cash market C as well as trading directly with S , B or IR will
be free of transaction costs.

2. The spread trader/market maker IM will charge a transaction fee of TM per
unit of G that is traded with him.

3. There will be no cost of carry and no convenience yield.

4. Trading will take place on a continuous price scale.

5. There will be no bid/ask spread on the cash market.
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6. No participant in the cash market C can affect the cash market price P(t) by
his trading. Therefore P(t) can be seen as an exogenous parameter: it is a
random variable.

7. All players know that P(t) is a random variable. Furthermore the expected
value of P(t) at time t = T ,

Λ = E [P(T )]

is known to all players.

8. The return of riskless investments is known to be r.

9. Supply, or production, α and demand, or consumption, ν of G will be deter-
ministic and known to all players at time t = 0.

Each of the four players enters the market with a certain motivation:
S and B are under hedging pressure and want to minimize the possible variation in
their returns. They are willing to pay certain risk premia RS and RB for transferring
this type of risk at time t = 0 to one of the other players. This means that at time
t = T S wants to have sold all his supply for at least (1 − RS )Λ per unit while B
wants have bought all he demands for not more than (1 + RB)Λ per unit.

IR is a risk-neutral intermediary, entering the market with the goal of earning an
expected profit higher than the risk-free return. The market maker IM is trading on
the turn, i.e. he is trying to make a risk-free profit by trading a nonnegative price
spread.

IM will furthermore generate income by charging a transaction fee TM for his
services. It will be assumed that this transaction fee is a fair reflection of the
amount of work that IM has to invest in order to execute a trade. In other words:
while IM could still realize a monetary profit by trading a negative price spread

PB→I − PS→I < 0

with

|PB→I − PS→I | < TM,

this profit would be too small to warrant his participation in a trade.

The matchmaking process in a trade will be just like in the previous case:
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1. IR will make binding offers PI→B = (1 + RB) Λ̂ and PI→S = (1 − RS ) Λ̂, on
which S and B will react with their respective price offers PS→I and PB→I .

2. If the spread satisfies

PB→I − PS→I ≥ 0,

the market maker IM will enter the trade: he will buy m = min{α, ν} units of
G from S for PS→I and sell them to B for PB→I per unit.

3. IR will decide whether or not he will accept PS→I and PB→I . If he accepts a
price, all still available units will be traded at that price.

4. (a) If both S and B have not fulfilled their supply or demand needs yet,
they will trade the maximal amount min{α, ν} directly for a price PS ,B =

Λ̂.

(b) If either S or B still has open supply or demand needs (because of α ,
ν), the respective player will trade the remaining units with IR for the
posted price PI→S or PI→B respectively, if these prices are acceptable.
Otherwise this player will take the risk himself and realize his supply
or demand needs at time t = T on the cash market.

6.2 Strategies and payoffs
As discussed in more detail previously, the only strategic decision made by player
S is his price offer PS→I , B’s only strategic action his price offer PB→I . IR has the
choice between

• sR
B: IR accepts B’s and rejects S ’s price offer

• sR
S : IR accepts S ’s and rejects B’s price offer

• and sR
−: IR rejects both price offers.

The market maker can either enter the market or not, hence he has the choice
between

• sM
+ : IM trades m = min{α, ν} from S to B by accepting their respective price

offers
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• and sM
− : IM does not enter the trade.

One might however wonder, whether or not IM should also be allowed to set the
transaction costs TM as part of his strategy. As it will be shown later, IM’s partici-
pation in a trade and hence his payoff will depend on how TM relates to α, ν, RB,
RS and Λ. If IM would therefore be allowed to adjust TM in a strategic decision,
he could make sure that he will be involved in the resulting equilibrium solution.

Allowing IM to adjust TM would however contradict the very idea of these trans-
action costs: it was assumed earlier that the transaction costs TM represent the fair
monetary value of the work and attention IM has to invest in a trade. But this value
should be rather constant on a short time horizon. Furthermore, it can be observed
in daily life that transaction costs are quite stable and are changed only on rare
occasions. Key features for a financial market place to attract its customers are
price transparency and stability. Such features would however be missing if IM

would be allowed to adjust the transaction costs TM in every single round. TM

will therefore be assumed to be only an exogenous parameter and not a part of
IM’s strategy.

Note that the structure of the matchmaking process again implies that IM’s and
IR’s strategy choices will automatically be best responses to S ’s and B’s price of-
fers, effectively reducing the game to a two-person game between S and B. Since
the transaction costs TM are not part of IM’s strategy, It follows furthermore that
the strategy setup is the same as in the previous model. Hence also in this model
four possible outcome scenarios can be identified:

• sB =
(
PS→I , PB→I , sM

− , s
R
B

)
:

in this scenario, IM is not involved in the trade and IR accepts B’s and rejects
S ’s offer. The relevant payoffs are

E
[
ÛS (sB)

]
= α

(
PI→S − Λ̂

)
E

[
ÛB (sB)

]
= ν

(
Λ̂ − PB→I

)
E

[
Û IM (sB)

]
= 0

E
[
Û IR (sB)

]
= νPB→I − αPI→S + (α − ν) Λ̂.

• sS =
(
PS→I , PB→I , sM

− , s
R
S

)
:

IM is not involved in the trade and IR accepts S ’s and rejects B’s offer. The
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relevant payoffs are

E
[
ÛS (sS )

]
= α

(
PS→I − Λ̂

)
E

[
ÛB (sS )

]
= ν

(
Λ̂ − PI→B

)
E

[
Û IM (sS )

]
= 0

E
[
Û IR (sS )

]
= νPI→B − αPS→I + (α − ν) Λ̂.

• sDT =
(
PS→I , PB→I , sM

− , s
R
−

)
:

IM is not involved in the trade and IR rejects both S ’s and B’s offer. The
relevant payoffs are

E
[
ÛS (sDT )

]
= (α − m)

(
PI→S − Λ̂

)
E

[
ÛB (sDT )

]
= (ν − m)

(
Λ̂ − PI→B

)
E

[
Û IM (sDT )

]
= 0

E
[
Û IR (sDT )

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
.

• sM =
(
PS→I , PB→I , sM

+ , s
R
−

)
:

because of a nonnegative price spread IM will trade m = min{α, ν} units of
G from S to B by accepting their respective price offers. He will charge a
transaction fee of TM per unit from each S and B.

E
[
ÛS (sM)

]
= m

(
PS→I − Λ̂

)
+ (α − m)

(
PI→S − Λ̂

)
− m TM

E
[
ÛB (sM)

]
= m

(
Λ̂ − PB→I

)
+ (ν − m)

(
Λ̂ − PI→B

)
− m TM

E
[
Û IM (sM)

]
= m

(
PB→I − PS→I

)
+ 2m TM

E
[
Û IR (sM)

]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
.

6.3 Feasibility of strategy combinations
One of the key assumptions in the discussion of the previous two models (Model
I and Model II) was the complete risk aversity of B and S . Their primary goal is
to realize a price corresponding to their respective risk evaluation: by entering the
market at time t = 0 rather than at time t = T , S wants to make sure that all his
supply will be sold at time t = T for a price of at least (1 − RS )Λ, while B’s goal
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is that whatever he demands at time t = T will have been bought at a price not
exceeding (1 + RB)Λ. The setup of Model I and Model II guaranteed both S and
B the realization of their goals: it was in IR’s very own interest to place standing
offers PI→S = (1 − RS )Λ̂ and PI→B = (1 + RB)Λ̂ that just narrowly satisfied these
condiitons. As long as S offered a price PS→I ≥ PI→S and B a price PB→I ≤ PI→B

the worst that could happen to S or B was a trade at PI→S or PI→B.

With the primary goal of S and B already satisfied, the focus of the game-theoretic
analysis was then put on their secondary goals, namely maximizing their respec-
tive payoffs. The key questions that were examined were how and at what prices
the goods transfer will occur given that every market participant is trying to max-
imize his respective monetary payoff in a rational fashion. For this purpose every
combination of offers

(
PS→I , PB→I

)
satisfying PS→I ≥ PI→S and PB→I ≤ PI→B was

examined for whether or not it could be part of an equilibrium solution. If an
equilbrium solution was found it certainly was a feasible solution since no matter
how this equilibrium solution was assembled, it at least satisfied S ’s and B’s goals
for transferring their operatory risk for a risk premium not exceeding RS or RB.

In the discussion of this model however not all combinations of price offers with
PS→I ≥ PI→S and PB→I ≤ PI→B will be feasible. Clearly, if S ’s offer PS→I satisfies

PI→S + TM ≤ PS→I ,

the resulting outcome would certainly be a legal solution from S ’s point of view.
In a trade with IR he would at least receive a payment of PI→S = (1 − RS )Λ̂ per
unit, and if IM would enter the trade, S would receive his posted price PS→I minus
the transaction fee TM that S has to pay for a trade with IM. But since

PI→S ≤ PS→I − TM

it follows that S would have received at least the desired price of PI→S per unit. If
S ’s offer however satisfies

PI→S ≤ PS→I < PI→S + TM,

the feasibility of the resulting outcome scenario will not be guaranteed. If

PS→I ≤ PB→I ,

then S would have failed to meet his primary goal: because of the nonnegative
price spread IM would enter the market and buy m = min{α, ν} units from S for a
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price of PS→I . Additionally he would charge a transaction fee of TM per unit. S
would therefore have realized an effective price of

PS→I − TM < PI→S = (1 − RS )Λ̂

per unit. But this means that S would have failed to realize his primary pricing
goal for m of the units he sells and hence that he would have failed his goal as
defined in Definition 2.4.1 as a whole.

If on the other hand

PS→I > PB→I ,

the strategy combination would be perfectly feasible. The trade would now take
place without the market maker IM and hence - since no transaction fees need to
be paid - the worst that could happen to S would be a price of PI→S per unit.

Similarly a strategy combination is not feasible from B’s point of view if the price
offers satisfy

PI→B − TM < PB→I ≤ PI→B

and

PS→I ≤ PB→I .

All other possible combinations of price offers will be feasible.

The previous discussion suggests the following proposition:

Proposition 6.3.1 (Model III: Non-feasibility of a strategy combination)
Consider a market as described above where IM charges a transaction fee TM per
traded unit.
Then a combination of price offers s =

(
PS→I , PB→I

)
with PS→I ≤ PB→I is not

feasible if

PI→S ≤ PS→I < PI→S + TM

or if

PI→B − TM < PB→I ≤ PI→B.

All other combinations of price offers are feasible as long as PI→S ≤ PS→I and
PB→I ≤ PI→B are satisfied.



Chapter 7

The existence of an equilibrium
solution in Model III

In Model II no transaction fees were charged by the market maker/spread trader
IM. It was shown that then only one equilibrium solution could exist: m =

min{α, ν} units of G were traded from S via IM to B for a price of

F =
αPI→S + νPI→B

α + ν
,

the remaining α−m or ν−m were traded from S to IR or from IR to B for IR’s posted
offers of PI→S or PI→B respectively. This equilibrium solution will under certain
conditions also be an equilibrium solution in Model III. However, the introduction
of transaction fees TM will under certain conditions reintroduce randomness into
the market behaviour.

7.1 Equilibrium analysis for trades with IM

Suppose first that S and B have set their offers such that IM will decide to enter
the market, i.e. suppose that

PB→I − PS→I ≥ 0.

Note that Proposition 6.3.1 implies that such a combination of offers is only fea-
sible if PB→I and PS→I satisfy

PI→S + TM ≤ PS→I ≤ PB→I ≤ PI→B − TM.
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Other than for this feasibility restriction it will be shown that a trade with IM

results in the same equilibrium solution as the one identified in the previous model:

Theorem 7.1.1 (Model III: an equilibrium involving IM)
Consider a market with transaction fee TM as described above and suppose that
α, ν,RS ,RB > 0.
Consider a strategy combination s0,M =

(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
with

PI→S + TM ≤ PS→I
0 ≤ PB→I

0 ≤ PI→B − TM,

i.e. a feasible strategy combination that results in the market maker IM being
involved in the trade.

Then s0,M is a Nash equilibrium if and only if PB→I
0 and PS→I

0 satisfy

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
. (7.1)

To prove this theorem it will be necessary to check whether one of the players
can singlehandedly improve his payoff. One way in which an improvement might
be possible is a switch to an outcome scenario not involving IM, i.e. a scenario
where M plays his strategy sM

− . Such a switch will either result in a strategy
combination of the type sB, sS or sDT . For player S the following can be said
about his preferences concerning these three outcome scenarios:

Lemma 7.1.2 (Model III: S’s view on a switch to sM
−

)
Suppose that α, ν,RS ,RB > 0.
Consider a combination of price offers

(
PS→I

0 , PB→I
0

)
with

PI→S + TM ≤ PS→I
0 ≤ PB→I

0 ≤ PI→B − TM,

i.e. a combination of price offers resulting in a strategy combination s0,M involving
the market maker IM:

s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
.

If S is changing his offer to an offer satisfying PS→I
0 ≤ PB→I

0 < PS→I
1 , the following

can be said about possible outcome scenarios:

1. S will always prefer s0,M over s1,B =
(
PS→I

1 , PB→I
0 , sM

− , s
R
B

)
.
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2. A change from s0,M to s1,S =
(
PS→I

1 , PB→I
0 , sM

− , s
R
S

)
will always be profitable

for S .

3. If PS→I
0 < Λ̂ + TM, a change from s0,M to s1,DT =

(
PS→I

1 , PB→I
0 , sM

− , s
R
−

)
will

be advantageous for S . Otherwise such a change will not be profitable for
S .

Proof. Suppose S wants to change from a strategy combination

s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
,

where

PI→S + TM ≤ PS→I
0 ≤ PB→I

0 ≤ PI→B − TM,

to a strategy combination not involving IM. He can do so by offering a price PS→I
1

satisfying

PS→I
1 > PB→I

0 .

Since now IM’s strategy will then be sM
− , only outcome scenarios of the type sB,

sS and sDT are possible after such a switch. To discuss the profitability of the
possible changes consider first that S ’s payoff under the old strategy combination
s0,M was given by

E
[
ÛS (

s0,M
)]
= m

(
PS→I

0 − Λ̂
)
+ (α − m)

(
PI→S − Λ̂

)
− m TM.

This payoff can now be compared to the payoffs of other possible outcome sce-
narios as follows:

1. s1,B =
(
PS→I

1 , PB→I
0 , sM

− , s
R
B

)
:

in this scenario IR will accept B’s offer and S ’s payoff will be given by

E
[
ÛS (

s1,B
)]
= α

(
PI→S − Λ̂

)
.

Since S will only be interested in such an outcome if

E
[
ÛS (

s1,B
)]
> E

[
ÛS (

s0,M
)]
,

it follows that

α
(
PI→S − Λ̂

)
> m

(
PS→I

0 − Λ̂
)
+ (α − m)

(
PI→S − Λ̂

)
− m TM
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and hence that

m
(
PS→I

0 − PI→S − TM

)
< 0.

This implies that such a change would only be profitable for S if

PS→I
0 < PI→S + TM.

The feasibility of the strategy combination s0,M however implies that

PS→I
0 ≥ PI→S + TM.

It follows that a switch from s0,M to s1,B will never be profitable for S .

2. s1,S =
(
PS→I

1 , PB→I
0 , sM

− , s
R
S

)
:

in this scenario, IR is accepting S ’s price offer and buys α units of G from
S for a price of PS→I

1 per unit. A change from s0,M to s1,S will be profitable
for S if

E
[
ÛS (

s1,S
)]
> E

[
ÛS (

s0,M
)]
.

Since

E
[
ÛS (

s1,S
)]
= α

(
PS→I

1 − Λ̂
)

it follows that

α
(
PS→I

1 − Λ̂
)
> m

(
PS→I

0 − Λ̂
)
+ (α − m)

(
PI→S − Λ̂

)
− m TM

and hence that

PS→I
1 > mPS→I

0 + (α − m)PI→S − m TM.

This implies that a change from s0,M to s1,S will be profitable for S if PS→I
1

satisfies

αPS→I
1 >

m
α

PS→I
0 +

(
1 −

m
α

)
PI→S −

m
α

TM.

With TM > 0, PS→I
1 > PS→I

0 > PI→S and 0 < m ≤ α it follows that

m
α

PS→I
0 +

(
1 −

m
α

)
PI→S −

m
α

TM <
m
α

PS→I
0 +

(
1 −

m
α

)
PI→S

≤
m
α

PS→I
0 +

(
1 −

m
α

)
PS→I

0

≤ PS→I
0

< PS→I
1 .
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The inequality

E
[
ÛS (

s1,S
)]
> E

[
ÛS (

s0,M
)]

is therefore satisfied for every price offer PS→I
1 > PS→I

0 and it follows that a
switch from s0,M to s1,S will always be advantageous for player S .

3. s1,DT =
(
PS→I

1 , PB→I
0 , sM

− , s
R
−

)
:

IR is rejecting both offers and S and B will involve in a direct trade for a
price of Λ̂ per unit. In such a case, S ’s payoff can be determined as

E
[
ÛS (

s1,DT
)]
= (α − m)

(
PI→S − Λ̂

)
This payoff will be an improvement for S if

E
[
ÛS (

s1,DT
)]
> E

[
ÛS (

s0,M
)]

and hence if

(α − m)
(
PI→S − Λ̂

)
> m

(
PS→I

0 − Λ̂
)
+ (α − m)

(
PI→S − Λ̂

)
− m TM.

It follows that a switch from s0,M to s1,DT will be advantageous for S if

0 > m
(
PS→I

0 − Λ̂
)
− m TM.

or in other words if

PS→I
0 < Λ̂ + TM.

�

Similarly, if B wants to change from a scenario with IM to one not involving IM

the following can be said about his preference concerning the possible outcomes:

Lemma 7.1.3 (Model III: B’s view on a switch to sM
−

)
Suppose that α, ν,RS ,RB > 0.
Consider a combination of price offers

(
PS→I

0 , PB→I
0

)
with

PI→S + TM ≤ PS→I
0 ≤ PB→I

0 ≤ PI→B − TM,

i.e. a combination of price offers resulting in a strategy combination s0,M involving
the market maker IM:

s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
.

If B is changing his offer to an offer satisfying PB→I
1 < PS→I

0 ≤ PB→I
0 , the following

can be said about possible outcome scenarios:
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1. B will always prefer s0,M over s1,S =
(
PS→I

0 , PB→I
1 , sM

− , s
R
S

)
.

2. A change from s0,M to s1,B =
(
PS→I

0 , PB→I
1 , sM

− , s
R
B

)
will always be profitable

for B.

3. If PB→I
0 > Λ̂ − TM, a change from s0,M to s1,DT =

(
PS→I

0 , PB→I
1 , sM

− , s
R
−

)
will

be advantageous for B. Otherwise such a change will not be profitable for
B.

Proof. Suppose B wants to initiate a change from a strategy combination

s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
.

to one not involving the market maker IM. He can do so by offering a price satis-
fying

PB→I
1 < PS→I

0 ≤ PB→I
0 .

With IM then being forced into playing sM
− , the remaining possible outcome sce-

narios are of the type sS , sB and sDT . With

E
[
ÛB (sM)

]
= m

(
Λ̂ − PB→I

0

)
+ (ν − m)

(
Λ̂ − PI→B

)
− m TM

being B’s payoff under the old strategy combination s0,M, the following can be
said about the profitability of a switch:

1. s1,S =
(
PS→I

0 , PB→I
1 , sM

− , s
R
S

)
:

in such a scenario IR will accept S ’s and reject B’s offer. B’s payoff will
therefore be given by

E
[
ÛB (

s1,S
)]
= ν

(
Λ̂ − PI→B

)
.

B will only be interested in such a switch if he can thereby increase his
payoff, i.e. if

E
[
ÛB (

s1,S
)]
> E

[
ÛB (

s0,M
)]
.

This means that

ν
(
Λ̂ − PI→B

)
> m

(
Λ̂ − PB→I

0

)
+ (ν − m)

(
Λ̂ − PI→B

)
− m TM
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and hence that

m
(
PI→B − PB→I

0 − TM

)
< 0.

This implies that such a change would only be profitable for S if

PB→I
0 > PI→B − TM.

Since this is in contradiction to the feasibility condition

PB→I
0 ≤ PI→B − TM.

it follows that a switch from s0,M to s1,S will never be profitable for B.

2. s1,B =
(
PS→I

0 , PB→I
1 , sM

− , s
R
B

)
:

this strategy combination results in IR buying ν units from B for B’s posted
price PB→I

1 . The resulting payoff will be

E
[
ÛB (

s1,B
)]
= ν

(
Λ̂ − PB→I

1

)
.

A change from s0,M to s1,B will be profitable for B if

E
[
ÛB (

s1,B
)]
> E

[
ÛB (

s0,M
)]
.

This implies that a change would be profitable if

ν
(
Λ̂ − PB→I

1

)
> m

(
Λ̂ − PB→I

0

)
+ (ν − m)

(
Λ̂ − PI→B

)
− m TM

and hence if

νPB→I
1 < mPB→I

0 + (ν − m)PI→B + m TM.

It follows that B would like to change from s0,M to s1,B if PB→I
1 satisfies

PB→I
1 <

m
ν

PB→I
0 +

(
1 −

m
ν

)
PI→B +

m
ν

TM.

With TM > 0, PB→I
1 < PB→I

0 < PI→B and 0 < m ≤ ν it follows that

m
ν

PB→I
0 +

(
1 −

m
ν

)
PI→B +

m
ν

TM >
m
ν

PB→I
0 +

(
1 −

m
ν

)
PI→B

≥
m
ν

PB→I
0 +

(
1 −

m
ν

)
PB→I

0

≥ PB→I
0

> PB→I
1 .
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Hence,

E
[
ÛB (

s1,B
)]
> E

[
ÛB (

s0,M
)]

will be satisfied for every price offer PB→I
1 < PB→I

0 . A switch from s0,M to
s1,B will therefore always be advantageous for player B.

3. s1,DT =
(
PS→I

0 , PB→I
1 , sM

− , s
R
−

)
:

in this scenario, IR is rejecting both offers and S and B will involve in a
direct trade for a price of Λ̂ per unit. In such a case, B’s payoff can be
determined as

E
[
ÛB (

s1,DT
)]
= (ν − m)

(
Λ̂ − PI→B

)
.

B’s payoff will have improved if

E
[
ÛB (

s1,DT
)]
> E

[
ÛB (

s0,M
)]

and hence if

(ν − m)
(
Λ̂ − PI→B

)
> m

(
Λ̂ − PB→I

0

)
+ (ν − m)

(
Λ̂ − PI→B

)
− m TM.

Simplifying yields

0 > m
(
Λ̂ − PB→I

0

)
− m TM.

or in other words if

PB→I
0 > Λ̂ − TM.

�

Having discussed B’s and S ’s preferences, the main theorem of this section can
now be proven:

Proof of Theorem 7.1.1. Consider a set of price offers
(
PS→I

0 , PB→I
0

)
with

PI→S + TM ≤ PS→I
0 ≤ PB→I

0 ≤ PI→B − TM.

and the resulting strategy combination

s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
.
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Suppose that s0,M is a Nash equilibrium. Then no player should be able to single-
handedly improve his payoff.

Suppose first that PS→I
0 < PB→I

0 . Then S could singlehandedly receive a higher
payoff by simply offering a price PS→I

1 = PB→I
0 , since S would then sell m = {α, ν}

units of G to IM for a price of PS→I
1 > PS→I

0 . Similarly, also B could singlehandedly
improve his payoff by offering PB→I

1 = PS→I
0 < PB→I

0 . It follows that if s0,M is to
be a Nash equilibrium solution, PB→I

0 and PS→I
0 have to satisfy

PS→I
0 = PB→I

0 . (7.2)

Suppose now that PS→I
0 = PB→I

0 and suppose that S wants to improve his payoff.
Consider for this purpose that S ’s payoff under the old strategy combination s0,M

was given by

E
[
ÛS (

s0,M
)]
= m

(
PS→I

0 − Λ̂
)
+ (α − m)

(
PI→S − Λ̂

)
− m TM

Since decreasing his offer to a price PS→I
1 < PS→I

0 would mean that S would still
trade with IM, but this time for a lower price, an increase in S ’s payoff can only
be realized if S offers a price PS→I

1 > PS→I
0 . Since the price spread then satisfies

PB→I
0 − PS→I

1 = PS→I
0 − PS→I

1 > 0,

it follows that this change in strategy will lead to an outcome scenario not involv-
ing the market maker IM, i.e. a scenario of the type sB, sS or sDT .

Lemma 7.1.2 implies that a change that is profitable for S could only occur with
a switch to a strategy combination s1,S , or in the case of

PS→I
0 < Λ̂ + TM

also to a strategy combination s1,DT . Hence, for S to be unable to profitably initiate
a change, IR would need to decline playing his strategy sR

S and if necessary also
his strategy sR

−.

In the case PS→I
0 ≥ Λ̂ + TM, only s1,S would be profitable for S and hence - in

order to prevent S from changing profitably - IR’s payoffs would need to satisfy

E
[
Û IR

(
s1,DT

)]
> E

[
Û IR

(
s1,S

)]
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or

E
[
Û IR

(
s1,B

)]
> E

[
Û IR

(
s1,S

)]
.

If PS→I
0 < Λ̂ + TM, a profitable change of S away from s0,M can only be avoided if

IR would opt for sR
B, i.e. if

E
[
Û IR

(
s1,B

)]
> E

[
Û IR

(
s1,S

)]
and

E
[
Û IR

(
s1,B

)]
> E

[
Û IR

(
s1,DT

)]
.

Note now that in the Model II IR’s payoffs were arranged in an almost completely
identical setup in the proof of Proposition 5.2.5 (see inequalities (5.33), (5.34),
(5.38) and (5.39)). The only difference was that instead of a case distinction at
PS→I

0 = Λ̂ + TM, the two cases were separated along PS→I
0 = Λ̂. However, the

exact value at which this distinction took place did not influence the analysis of
Model II. Since the introduction of a transaction fee TM did not change IR’s payoff
functions for the different outcome scenarios, it follows that the analysis from the
proof of Proposition 5.2.5 can be directly applied to this set of inequalities. Using
a result from the proof of Proposition 5.2.5 it follows that these inequalities will
be satisfied if1

PB→I
0 ≥

αPI→S + νPI→B

α + ν
. (7.3)

Suppose now that B wants to single-handedly improve his payoff. Since increasing
his price offer would only result in IM still being involved but this time selling G
to B for a higher price, B can only improve by decreasing his price offer to an
offer PB→I

1 < PB→I
0 . Since such an offer would result in a negative price spread,

IM would opt to play his strategy sM
− . The possible outcome scenarios of such a

strategy switch are s1,B, s1,S and s1,DT .

By Lemma 7.1.3 only a change to s1,B, and in the case of

PB→I
0 > Λ̂ − TM

1for the equivalent result in the Model II see inequality (5.40).
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also to s1,DT would be profitable for B. Hence, in order not to prevent B from
profitably changing his strategy, IR’s relevant payoffs for the three strategy com-
binations s1,B, s1,S and s1,DT need to satisfy

E
[
Û IR

(
s1,DT

)]
> E

[
Û IR

(
s1,B

)]
and/or (depending on whether PB→I

0 > Λ̂ − TM or PB→I
0 ≤ Λ̂ − TM)

E
[
Û IR

(
s1,S

)]
> E

[
Û IR

(
s1,B

)]
.

The same setup can be found in the proof of Proposition 5.2.2 (see inequalities
(5.22),(5.23),(5.27) and (5.28)). The resulting bound (5.29) can therefore also be
applied in this case. It follows that the above inequalities will be satisfied in the
described manner if

PS→I
0 ≤

αPI→S + νPI→B

α + ν
. (7.4)

Combining inequalities (7.2), (7.3) and (7.4) yields that s0,M is a Nash equilibrium
only if

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
. (7.5)

Suppose now that a strategy combination s0,M satisfies

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
.

If S would change his strategy to an offer PS→I
1 < PS→I

0 , IM would still be involved.
S would then sell m = min{α, ν} units of G for a cheaper price. Changing his offer
in this way would therefore decrease S ’s payoff. Similarly, B’s payoff would
decrease if B would offer a price PB→I

1 > PB→I
0 .

Suppose now that S is trying to improve his payoff by offering a price PS→I
1 with

PS→I
0 < PS→I

1 . With the spread PB→I
0 − PS→I

1 being negative, IM’s response to this
strategy change will be a switch to strategy sM

− . Since PB→I
0 satisfies

PB→I
0 =

αPI→S + νPI→B

α + ν
,
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previous reasoning2 implies that IR will opt for sR
B: IR will accept B’s offer and buy

α units from S for the standing offer PI→S . But by Lemma 7.1.2 such a change
will not improve S ’s payoff. It follows that there is no way for S to profitably
leave a strategy combination s0,M with

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
.

Similarly, also B isn’t able to increase his payoff by offering a price satisfying
PB→I

1 < PB→I
0 : IR would then opt for strategy sR

S and the resulting strategy combi-
nation s1,S would not increase B’s payoff according to Lemma 7.1.3. Hence also
B cannot profitably change away from s0,M.

It follows that if in a strategy combination s0,M the price offers are set according
to

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
,

neither S nor B can profitably change their strategy. Since IM’s and IR’s strategies
are (by the very setup of the matchmaking process) best answers to S ’s and B’s
offers, it follows that s0,M is a Nash equilibrium. This proves the claim. �

An immediate consequence of Theorem 7.1.1 is that such an equilibrium solution
will not always exist:

Corollary 7.1.4 (Model III: Existence of an equilibrium involving IM)
Suppose that α, ν,RS ,RB > 0.
A necessary and sufficient condition for the existence of a Nash equilibrium in-
volving the market maker IM is that the transaction fee TM satisfies

TM ≤
m
α + ν

(
PI→B − PI→S

)
, (7.6)

where m = min{α, ν}.

Proof. Suppose first that

TM ≤
m
α + ν

(
PI→B − PI→S

)
.

2see the proof of Corollary 5.2.3.
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This implies in particular that

TM ≤
ν

α + ν

(
PI→B − PI→S

)
and hence that

PI→S + TM ≤ PI→S +
ν

α + ν

(
PI→B − PI→S

)
=
αPI→S + νPI→B

α + ν
.

TM also satisfies

TM ≤
α

α + ν

(
PI→B − PI→S

)
.

This implies that

PI→B − TM ≥ PI→B −
α

α + ν

(
PI→B − PI→S

)
=
αPI→S + νPI→B

α + ν
.

Combining these two results it follows that

PI→S + TM ≤
αPI→S + νPI→B

α + ν
≤ PI→B − TM.

Hence, offers PB→I
0 and PS→I

0 with

PB→I
0 = PS→I

0 =
αPI→S + νPI→B

α + ν

satisfy the feasibility condition

PI→S + TM ≤ PS→I
0 ≤ PB→I

0 ≤ PI→B − TM.

Since Theorem 7.1.1 then implies that such a set of offers results in a Nash equi-
librium solution of the s0,M-type, the existence of a Nash equilibrium has been
proven.

Suppose now that

TM >
m
α + ν

(
PI→B − PI→S

)
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and assume furthermore that m = ν. Then

PI→S + TM > PI→S +
ν

α + ν

(
PI→B − PI→S

)
=
αPI→S + νPI→B

α + ν
.

This shows that a combination of offers with

PB→I
0 = PS→I

0 =
αPI→S + νPI→B

α + ν

violates the feasibility condition

PI→S + TM ≤ PS→I
0 .

Theorem 7.1.1 now implies that no equilibrium solution can exist.

Similarly, if m = α it follows that

PI→B − TM <
αPI→S + νPI→B

α + ν

and therefore that a combination of such offers is not feasible. By Theorem 7.1.1
it follows that no Nash equilibrium of the type s0,M exists. It can be concluded
that if

TM >
m
α + ν

(
PI→B − PI→S

)
no equilibrium solution of the form s0,M will exist, no matter whether m = α or
m = ν. This proves the claim. �

7.2 Equilibrium analysis for trades without IM

Suppose now that a combination of price offers
(
PS→I

0 , PB→I
0

)
satisfies

PS→I
0 > PB→I

0 .

In this situation IM’s reponse will be his strategy sM
− , i.e. the negative price spread

will push IM out of the market. Depending on IR’s response there are three possible
outcome scenarios: a direct trade scenario of the form s0,DT , a scenario s0,B where
B’s offer is accepted and a scenario s0,S where S ’s offer is accepted. It will be
shown that none of these scenarios will result in a Nash equilibrium solution.
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Lemma 7.2.1 (Model III: non-existence of a sDT-type equilibrium)
Consider a market with transaction fee TM as described above and suppose that
α, ν,RS ,RB > 0. Then no strategy combination of the form

s0,DT =
(
PS→I

0 , PB→I
0 , sM

− , s
R
−

)
,

i.e. no strategy combination resulting in a direct trade scenario, will be a Nash
equilibrium solution.

Proof. Let
(
PS→I

0 , PB→I
0

)
with

PS→I
0 > PB→I

0

be a combination of price offers resulting in a direct trade scenario. For IR to opt
for a direct trade the following conditions need to hold:

E
[
Û IR

(
s0,DT

)]
≥ E

[
Û IR

(
s0,B

)]
(7.7)

and

E
[
Û IR

(
s0,DT

)]
≥ E

[
Û IR

(
s0,S

)]
. (7.8)

From inequality (7.7) it follows that

(α − m)
(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
≥ νPB→I

0 − αPI→S + (α − ν) Λ̂

and hence that

PB→I
0 ≤ PI→B −

m
ν

(
PI→B − PI→S

)
. (7.9)

Inequality (7.8) on the other hand implies that

(α − m)
(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
≥ νPI→B − αPS→I

0 + (α − ν) Λ̂.

This yields

PS→I
0 ≥ PI→S +

m
α

(
PI→B − PI→S

)
. (7.10)

Suppose now that S wants to improve his payoff by offering a price PS→I
1 . A

change to a scenario s1,S would be profitable for S if

E
[
ÛS (

s1,S
)]
> E

[
ÛS (

s0,DT
)]
,



7.2. EQUILIBRIUM ANALYSIS FOR TRADES WITHOUT IM 124

i.e. if

α
(
PS→I

1 − Λ̂
)
> (α − m)

(
PI→S − Λ̂

)
.

It follows that a change from s0,DT to s1,S would be profitable for S if

PS→I
1 > PI→S +

m
α

(
Λ̂ − PI→S

)
. (7.11)

Note now that IR would agree to such a change if

E
[
Û IR

(
s1,S

)]
> E

[
Û IR

(
s1,DT

)]
(7.12)

and

E
[
Û IR

(
s1,S

)]
> E

[
Û IR

(
s1,B

)]
. (7.13)

Note first that inequality (7.13) will hold automatically as long as inequality (7.12)
is satisfied:
E

[
Û IR

(
s1,DT

)]
and E

[
Û IR

(
s1,B

)]
do not depend on S ’s price offer. A change from

PS→I
0 to PS→I

1 will therefore not have changed those payoffs. Hence

E
[
Û IR

(
s1,DT

)]
= E

[
Û IR

(
s0,DT

)]
and

E
[
Û IR

(
s1,B

)]
= E

[
Û IR

(
s0,B

)]
.

For a strategy combination s0,DT to be played a necessary condition was

E
[
Û IR

(
s0,DT

)]
≥ E

[
Û IR

(
s0,B

)]
.

Hence also

E
[
Û IR

(
s1,DT

)]
≥ E

[
Û IR

(
s1,B

)]
.

If therefore

E
[
Û IR

(
s1,S

)]
> E

[
Û IR

(
s1,DT

)]
holds, it follows that

E
[
Û IR

(
s1,S

)]
> E

[
Û IR

(
s1,DT

)]
≥ E

[
Û IR

(
s1,B

)]
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and hence that

E
[
Û IR

(
s1,S

)]
> E

[
Û IR

(
s1,B

)]
.

Inequality (7.12) is satisfied as long as

PS→I
1 < PI→S +

m
α

(
PI→B − PI→S

)
(7.14)

(using a version of inequality (7.10)).

Finally, a change to s1,S =
(
PS→I

1 , PB→I
0 , sM

− , s
R
S

)
is only possible if IM opts for his

strategy sM
− , i.e. if

PS→I
1 > PB→I

0 .

Inequality (7.9) implies that this can be assured as long as PS→I
1 satisfies

PS→I
1 > PI→B −

m
ν

(
PI→B − PI→S

)
. (7.15)

Combining inequalities (7.11), (7.14) and (7.15) yields that S will be able to prof-
itably switch from s0,DT to s1,S if his offer PS→I

1 satisfies:

max
{
PI→B −

m
ν

(
PI→B − PI→S

)
, PI→S +

m
α

(
Λ̂ − PI→S

)}
< PS→I

1 < PI→S +
m
α

(
PI→B − PI→S

)
. (7.16)

It follows that such a price PS→I
1 will exist if

PI→B −
m
ν

(
PI→B − PI→S

)
< PI→S +

m
α

(
PI→B − PI→S

)
(7.17)

and if

PI→S +
m
α

(
Λ̂ − PI→S

)
< PI→S +

m
α

(
PI→B − PI→S

)
. (7.18)

Inequality (7.17) implies that(
1 −

m
ν
−

m
α

) (
PI→B − PI→S

)
< 0.

With PI→B > PI→S it follows that

1 −
m
ν
−

m
α
< 0.
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But this inequality will always be satisfied since

1 −
m
ν
−

m
α
=

{
− ν
α

if m = ν
−α
ν

if m = α

}
< 0

Inequality (7.18) will hold if

m
α

(
Λ̂ − PI→S

)
<

m
α

(
PI→B − PI→S

)
and hence if

Λ̂ < PI→B.

But since B is assumed to be willing to pay a price for transferring his risk, this
inequality will automatically be satisfied.

It follows that both inequalities (7.17) and (7.18) will always hold and hence that
a price offer PS→I

1 satisfying the bounds (7.16) will exist. But this means that S
is able to single-handedly induce a profitable change to a strategy combination
s1,S . Similarly it could also have been shown that B will always be able to single-
handedly switch to a strategy combination s1,B in a profitable manner. This implies
that s0,DT could not have been a Nash equilibrium. �

A similar result can also be shown for a strategy combination of the sB type:

Lemma 7.2.2 (Model III: non-existence of a sB-type equilibrium)
Consider a market with transaction fee TM as described above and suppose that
α, ν,RS ,RB > 0. Then no strategy combination of the form

s0,B =
(
PS→I

0 , PB→I
0 , sM

− , s
R
B

)
,

i.e. no strategy combination in which IR sells ν units to B for PB→I
0 per unit, will

be a Nash equilibrium solution.

Proof. Suppose that S and B set their offers PS→I
0 and PB→I

0 such that IM will not
enter the market by playing his strategy sM

− and such that IR will opt for sR
B. The

resulting strategy combination

s0,B =
(
PS→I

0 , PB→I
0 , sM

− , s
R
B

)
will result in IR selling ν units to B for PB→I

0 per unit. S on the other hand will sell
all α units to IR for a price of PI→S per unit, i.e. for the cheapest possible price.



7.2. EQUILIBRIUM ANALYSIS FOR TRADES WITHOUT IM 127

Suppose furthermore that s0,B is a Nash equilibrium.

Suppose now that S wants to induce a change to a strategy combination that is
promising him a higher payoff. There are essentially two ways for S to do this: he
can offer a price PS→I

1 > PB→I
0 or a price PS→I

2 ≤ PB→I
0 . In the first case all trades

will take place without IM’s participation while in the second case IM will trade
min{α, ν} units from S to B at their posted price offers.

Suppose first that S is offering a price PS→I
1 > PB→I

0 . Note that S cannot induce
a change to a direct trade scenario: S ’s changed price offer will only affect IR’s
payoff if IR opts to play sR

S , i.e.

E
[
Û IR

(
s0,B

)]
= E

[
Û IR

(
s1,B

)]
and

E
[
Û IR

(
s0,DT

)]
= E

[
Û IR

(
s1,DT

)]
Since under the old price offers PS→I

0 and PB→I
0 IR decided to play his strategy sR

B,
he preferred an outcome scenario s0,B over a direct trade scenario s0,DT . Hence

E
[
Û IR

(
s0,B

)]
≥ E

[
Û IR

(
s0,DT

)]
and therefore also

E
[
Û IR

(
s1,B

)]
≥ E

[
Û IR

(
s1,DT

)]
.

Since an outcome scenario s1,B will not improve S ’s payoff his only option for a
profitable change will hence be a strategy combination s1,S . IR will opt for such a
change if

E
[
Û IR

(
s1,S

)]
≥ E

[
Û IR

(
s1,B

)]
,

i.e. if

νPI→B − αPS→I
1 + (α − ν) Λ̂ > νPB→I

0 − αPI→S + (α − ν) Λ̂.

It follows that

νPI→B − αPS→I
1 > νPB→I

0 − αPI→S
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and hence that

PS→I
1 < PI→S +

ν

α

(
PI→B − PB→I

0

)
. (7.19)

Consider now that s0,B was assumed to be a Nash equilibrium. This means that no
player can profitably change his strategy. Since PS→I

1 > PB→I
0 , S will not be able

to find a price offer PS→I
1 satisfying inequality (7.19) if PB→I

0 is set such that

PB→I
0 ≥ PI→S +

ν

α

(
PI→B − PB→I

0

)
.

It follows that for s0,B to be a Nash equilibrium

PB→I
0 ≥

αPI→S + νPI→B

α + ν
. (7.20)

Suppose now that S is trying to induce a profitable change by offering a price
PS→I

2 ≤ PB→I
0 . In such a case IM would enter the market and buy m = min{α, ν}

units for S ’s posted price PS→I
2 . A transaction fee TM would be charged per traded

unit. In such a case S ’s payoff will have increased if

E
[
ÛS (

s2,M
)]
> E

[
ÛS (

s0,B
)]
,

i.e. if

m
(
PS→I

2 − Λ̂
)
+ (α − m)

(
PI→S − Λ̂

)
− m TM > α

(
PI→S − Λ̂

)
.

It follows that

m
(
PS→I

2 − PI→S
)
− m TM > 0

and hence that

PS→I
2 > PI→S + TM.

Since PS→I
2 ≤ PB→I

0 , S will not be able to find such a price as long as

PB→I
0 ≤ PI→S + TM. (7.21)

It follows that a necessary condition for s0,B-type equilibrium solution is

αPI→S + νPI→B

α + ν
≤ PB→I

0 ≤ PI→S + TM. (7.22)
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Suppose now that PB→I
0 satisfies inequality (7.22). Then S will not be able to

profitably change his strategy. For s0,B to be a Nash equilibrium however, also
B should not be able to single-handedly increase his payoff. It can however be
shown that - no matter how PB→I

0 and PS→I
0 were chosen - B will always be able to

induce a profitable strategy change.

Consider for this purpose that PS→I
0 > PB→I

0 . With

αPI→S + νPI→B

α + ν
≤ PB→I

0

this implies

αPI→S + νPI→B

α + ν
< PS→I

0

and hence that there is a constant CS > 0 such that

PS→I
0 =

αPI→S + νPI→B +CS

α + ν
.

Suppose now that B is changing his strategy to a price offer PB→I
3 satisfying

PB→I
3 =

αPI→S + νPI→B −CB

α + ν

for some constant CB > 0. Since

PB→I
3 <

αPI→S + νPI→B

α + ν
≤ PB→I

0

it follows that B would have increased his payoff by making such an offer if only
IR is willing to accept the strategy sR

B.
The resulting outcome will hence depend on IR’s decision. For a strategy combi-
nation s3,B, IR’s payoff can be determined as

E
[
Û IR

(
s3,B

)]
= ν

(
PB→I

3 − Λ̂
)
+ α

(
Λ̂ − PI→S

)
= ν

(
αPI→S + νPI→B −CB

α + ν
− Λ̂

)
+ α

(
Λ̂ − PI→S

)
=
ν2PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S − νCB

α + ν
.
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If however s3,S is played IR will receive the following payoff:

E
[
Û IR

(
s3,S

)]
= ν

(
PI→B − Λ̂

)
+ α

(
Λ̂ − PS→I

0

)
= ν

(
PI→B − Λ̂

)
+ α

(
Λ̂ −
αPI→S + νPI→B +CS

α + ν

)
=
ν2PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S − αCS

α + ν
.

Comparing these two results it follows that IR will prefer sR
B over sR

S if

νCB < αCS ,

i.e. if

CB <
α

ν
CS . (7.23)

Finally, IR could also opt for a strategy sR
−. In this case his payoff would be given

by

E
[
Û IR

(
s3,DT

)]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
=

(α − ν)
(
Λ̂ − PI→S

)
if m = ν

(ν − α)
(
PI→B − Λ̂

)
if m = α

=


ν2PI→S+(α2−ν2)Λ̂−α2PI→S

α+ν
if m = ν

ν2PI→B+(α2−ν2)Λ̂−α2PI→B

α+ν
if m = α

Consider now that PI→S = (1 − RS ) Λ̂ and PI→B = (1 + RB) Λ̂ imply that

PI→B =
1 + RB

1 − RS
PI→S

= PI→S +
RS + RB

1 − RS
PI→S

= PI→S + (RS + RB) Λ̂

and that

PI→S =
1 − RS

1 + RB
PI→B

= PI→B −
RS + RB

1 + RB
PI→B

= PI→B − (RS + RB) Λ̂
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With these results it follows that

E
[
Û IR

(
s3,DT

)]
=


ν2PI→B−ν2(RS+RB)Λ̂+(α2−ν2)Λ̂−α2PI→S

α+ν
if m = ν

ν2PI→B+(α2−ν2)Λ̂−α2PI→S−α2(RS+RB)Λ̂
α+ν

if m = α

=
ν2PI→B +

(
α2 − ν2

)
Λ̂ − α2PI→S − m2 (RS + RB) Λ̂

α + ν

This implies that IR will prefer s3,B over s3,DT if

νCB < m2 (RS + RB) Λ̂

and hence if

CB <
m2

ν
(RS + RB) Λ̂. (7.24)

Combining inequalities (7.23) and (7.24) yields that in order for IR to opt for the
strategy sR

B, CB has to satisfy

CB < min
{
α

ν
CS ,

m2

ν
(RS + RB) Λ̂

}
.

Such a CB > 0 will exist if

0 < min
{
α

ν
CS ,

m2

ν
(RS + RB) Λ̂

}
.

But since both quantities on the right hand of this inequality are distinctly positive,
it follows that such a CB will exist. Hence B will be able to offer a price PB→I

3 <
PB→I

0 that increases his payoff. Therefore a strategy combination of the type s0,B

cannot be a Nash equilibrium. �

Finally, also a strategy combination of the sS -type cannot be a Nash equilibrium:

Lemma 7.2.3 (Model III: non-existence of a sS-type equilibrium)
Consider a market with transaction fee TM as described above and suppose that
α, ν,RS ,RB > 0. Then no strategy combination of the form

s0,S =
(
PS→I

0 , PB→I
0 , sM

− , s
R
S

)
,

i.e. no strategy combination in which IR buys α units from S for PS→I
0 per unit,

will be a Nash equilibrium solution.
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Proof. In analogy to the proof of the previous lemma it can be shown that B will
be able to profitably switch to a strategy combination of the sB-type unless PS→I

0
satisfies

PS→I
0 ≤

αPI→S + νPI→B

α + ν
. (7.25)

Furthermore, B could profitably switch to an outcome scenario involving IM if

PS→I
0 < PI→B − TM.

Hence for s0,S to be a Nash equilibrium it follows that

PS→I
0 ≥ PI→B − TM. (7.26)

Since it will be impossible for B to initiate a change to a direct trade scenario sDT ,
inequalities (7.22) and (7.22) imply that for s0,S to be a Nash equilibrium S ’s price
offer needs to satisfy

PI→B − TM ≤ PS→I
0 ≤

αPI→S + νPI→B

α + ν
. (7.27)

Consider now that in order for a sS -scenario to be possible in the first place, the
initial price offers had to be set according to

PS→I
0 > PB→I

0 .

From inequality (7.27) it follows that

PB→I
0 <

αPI→S + νPI→B

α + ν
.

Hence,

PB→I
0 =

αPI→S + νPI→B −CB

α + ν

for some CB > 0. It can then be shown that S could improve his payoff by offering
a price

PS→I
1 =

αPI→S + νPI→B +CS

α + ν
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where CS satisfies

CS < min
{
ν

α
CB,

m2

α
(RS + RB) Λ̂

}
.

The existence of such a CS follows from the fact that clearly

0 < min
{
ν

α
CB,

m2

α
(RS + RB) Λ̂

}
.

It was therefore shown that either S or B will always be able to profitably switch
away from a strategy combination s0,S . It follows that no such strategy combina-
tion can be a Nash equilibrium. �

7.3 Interpretation of the predicted market behaviour
Summarizing the results of the previous two sections, the following can be said
about Nash equilibrium solutions in a market with transaction fee TM:

Theorem 7.3.1 (A Nash equilibrium solution in a market with fees)
Consider a market with transaction fee TM as described above.
A Nash equilibrium solution

s0,M =
(
PS→I

0 , PB→I
0 , sM

+ , s
R
−

)
with

PS→I
0 = PB→I

0 =
αPI→S + νPI→B

α + ν
(7.28)

will exist if and only if

TM ≤
m
α + ν

(
PI→B − PI→S

)
, (7.29)

where m = min{α, ν}.
No other equilibrium solutions can exist.

Proof. The above claim follows directly from Theorem (7.1.1), Corollary (7.1.4)
and Lemmata (7.2.1)-(7.2.3). �



7.3. INTERPRETATION OF THE PREDICTED MARKET BEHAVIOUR 134

This result implies that the market behaviour will be completely predictable as
long as inequality (7.29) is satisfied (assuming that all players act perfectly ratio-
nal, see section 1.2.4):

1. S will sell m = min{α, ν} units to IM for

PS→I
0 =

αPI→S + νPI→B

α + ν
.

A transaction fee TM will apply for each traded unit.

2. B will buy m = min{α, ν} units from IM for

PB→I
0 =

αPI→S + νPI→B

α + ν
.

In order to trade with IM, B will have to pay a transaction fee of TM per unit.

3. IR will buy/sell the remaining |α − ν| units for PI→S or PI→B respectively.

The price for which m = min{α, ν} units of G are traded is the same price as the
one discussed in the previous model. Hence, also this price will depend on the
model parameters Λ̂, RS , RB, α and ν in a rather natural fashion3.
The behaviour of the different market participants can however not be predicted if
inequality (7.29) does not hold.

7.3.1 The roles of the intermediaries
The roles played by the two intermediaries in this model depend on how the trans-
action costs TM relate to the other model parameters Λ̂, RS , RB, α and ν.

If

TM ≤
m
α + ν

(
PI→B − PI→S

)
,

IM and IR will trade the complete market volume according to a strategy combi-
nation s0,M. While IM will trade m = min{α, ν} from S to B, IR will trade the
remaining |α − ν| for his own posted price. The intermediaries’ payoffs can hence
be found as

E
[
Û IM

(
s0,M

)]
= 2m TM

3for a detailed discussion of the equilibrium price see section 5.3.1
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and

E
[
Û IR

(
s0,M

)]
= (α − m)

(
Λ̂ − PI→S

)
+ (ν − m)

(
PI→B − Λ̂

)
.

Since both payoffs can be expected to be positive, it follows that in this case the
participation of both intermediaries is sufficiently explained.

In a market with

TM >
m
α + ν

(
PI→B − PI→S

)
nothing can be said about how the exact nature of the trades is assembled. But
also in this case IR’s and IM’s payoffs can always be expected to be positive. Only
if one of the intermediaries does not at all participate in the market, his expected
payoffwill be zero - but in such a case this would simply be justified since no work
would have been done by the respective intermediary. Hence also in this case a
financial motiviation for the intermediaries to enter the trade will be apparent.

7.3.2 An upper bound for transaction costs
Theorem 7.3.1 shows that the market maker IM is guaranteed to participate in the
trade as long as his transaction fee TM satisfies

TM ≤
m
α + ν

(
PI→B − PI→S

)
.

Using

PI→B − PI→S = (1 + RB) Λ̂ − (1 − RS ) Λ̂

= (RB + RS ) Λ̂

this bound for TM can be rewritten as

TM ≤
m
α + ν

(RB + RS ) Λ̂. (7.30)

Using m
α+ν
≤ 1

2 and Ravg =
RB+RS

2 a less accurate, but more accessible formulation
of an upper bound for TM can be found as

TM ≤ Ravg Λ̂. (7.31)



7.3. INTERPRETATION OF THE PREDICTED MARKET BEHAVIOUR 136

It was one of the key assumptions of the model that IM should not be able to adjust
his transaction fee TM on a round-by-round basis. If he would be allowed to act in
such a way he could simply use his perfect information on the respective model
parameters to force S and B into a trade with him.

It is however crucial for a market place to offer its participants more or less stable
trading conditions, in this case more or less stable transaction fees. Only then can
a market place be an attractive trading environment. Furthermore, it was assumed
that TM represents a fair reflection of the work IM has to invest in order to execute
a trade. It follows that the bounds (7.30) and (7.31) can be used to estimate how
much this work may cost at most in order to allow trades with IM. Bound (7.31)
for example implies that IM’s participation in a trade will not be guaranteed if IM’s
work is more expensive than the average risk premium S and B are willing to pay.

Consider now that it is in IM’s interest to participate in trades in as many rounds
as possible during the time in which TM remains unchanged. Since however Λ̂,
RS , RB, α and ν vary from round to round, IM will try to offer his work for a price
significantly less than the expected average risk premium over the period during
which TM is kept constant. For futures trading, Locke and Venkatesh4 observe
effective transaction costs between 0.0004% and 0.033% of the nominal value of
a contract. Since even 0.033% can be expected to be significanly less than Ravg,
the results of this model agree with such low transaction costs.

7.3.3 A closer view on markets in disequilibrium
If the transaction fee TM satisfies

TM >
m
α + ν

(
PI→B − PI→S

)
(7.32)

Theorem 7.3.1 implies that no equilibrium solution can be found.

There are various possible reasons for TM and the other model parameters to be
related in such a way. It is for example possible that IM’s work represented by TM

is simply too expensive in comparison with Ravg Λ̂. In such a case, the combined
transaction fee that S and B would have to pay for trading one unit of G via the
intermediary IM (i.e. 2 TM) should be expected to be at least not much smaller
than the maximal price spread PI→B − PI→S . A participation of IM in the trade is
hence rather unlikely.

4see [LV91] p. 239f.
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Suppose now that IM is able to offer his work sufficiently cheap, i.e. suppose that
- under reasonable expectations on the model parameters - TM satisifies TM <<
Ravg Λ̂ during most rounds in which TM is kept constant. Inequality (7.32) might
then be due to one or more of the following reasons:

• RS and RB are unusually small. Since this would correspond to a drastic
reevaluation of S ’s and B’s risk aversity, such a case should occur extremely
rarely.

• Λ̂ is very small compared to its usual level. This means that the price per
unit of G has crashed significantly. Since under normal expectations on Λ̂,
TM should satisfy TM << Ravg Λ̂, the price might have to decrease by 50%
or more to violate this condition. Also such a price crash should hence occur
quite rarely.

• Supply and demand are in a significant disequilibrium, i.e. either α >> ν or
ν >> α. If inequality (7.32) can mainly be explained by this reason, it can
be shown that the market should be in some kind of quasi-equilibrium.

Suppose now that

TM >
m
α + ν

(
PI→B − PI→S

)
mainly holds because of a significant supply-demand disequilibrium, i.e. suppose
that

TM << Ravg Λ̂

is still satisfied. If for example ν << α, inequality (7.32) implies

PI→S + TM > PI→S +
ν

α + ν

(
PI→B − PI→S

)
=
αPI→S + νPI→B

α + ν
,

i.e.

PI→S <
αPI→S + νPI→B

α + ν
< PI→S + TM.
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Since TM is assumed to be rather small compared to Ravg Λ̂ and hence also small
compared to

PI→B − PI→S = (RB + RS ) Λ̂

= 2Ravg Λ̂,

it follows that in such a case αPI→S+νPI→B

α+ν
should be expected to be very close to

PI→S and rather distant from PI→B, i.e.

PI→S ≈
αPI→S + νPI→B

α + ν
.

Furthermore, unless RS ≈ 0, αPI→S+νPI→B

α+ν
should also be expected to be clearly less

than Λ̂ since

αPI→S + νPI→B

α + ν
≈ (1 − RS )Λ̂.

Suppose now that B is offering a price

PB→I
0 =

αPI→S + νPI→B

α + ν
.

Then an offer PS→I
0 ≤ PB→I

0 would not be feasible in the sense of Proposition 6.3.1.
Hence S could only offer a price

PS→I
0 >

αPI→S + νPI→B

α + ν
.

Consider that the outcome would then depend on IR’s decision. It was shown
previously that in such a case IR would opt for his strategy sR

B. Furthermore, it was
shown in the proof of Lemma 7.2.2 that S would be unable to change away from
this outcome to a from his point of view more profitable strategy combination.
Hence, by setting such an offer, B could guarantuee himself the realization of a
price

PB→I
0 =

αPI→S + νPI→B

α + ν

per unit.

As shown in the proof of Lemma 7.2.2 this solution will not be a Nash equilibrium
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solution only because of B’s chance of further improving his payoff. However,
while a price offer

PB→I
1 <

αPI→S + νPI→B

α + ν
.

might improve B’s payoff, such a price offer might also backfire. B would no
longer be guaranteed the rather favorable s0,B-outcome and might instead face the
worst possible case: a strategy combination s0,S . The question that now arises is
whether the possible increase in B’s payoff warrants facing the downside of such
a changed offer.

Note that already a switch to a direct trade scenario would most likely decrease
B’s payoff: as explained earlier αPI→S+νPI→B

α+ν
should be expected to be clearly less

than Λ̂ (unless RS ≈ 0). A change to either s1,S or s1,DT would occur if

E
[
Û IR

(
s1,DT

)]
> E

[
Û IR

(
s1,B

)]
.

With m = ν this translates to

(α − ν)
(
Λ̂ − PI→S

)
> νPB→I

1 − αPI→S + (α − ν) Λ̂

and hence to

PI→S > PB→I
1 .

It follows that no matter how S ’s offer PS→I
0 was set, B could at best realize a price

PB→I
1 = PI→S .

Since however for small TM already

PB→I
0 =

αPI→S + νPI→B

α + ν
≈ PI→S

B can barely improve by changing his offer. It is hence a reasonable expectation
that B would stay at his offer PB→I

0 and force the market into a s0,B-type outcome.
This result corresponds to what one might expect in such a market: since α >> ν,
S is under a lot more hedging pressure than B. B can use this advantage to buy
his ν units for a price that is very close to PI→S , the cheapest price in the model
framework.
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Similarly, if m = α, S should be expected to offer a price

PS→I
0 =

αPI→S + νPI→B

α + ν
≈ PI→B.

The resulting strategy combination would in this case be of the type s0,S .

It follows that in markets where inequality (7.32) is mainly due to a drastic supply-
demand disequilibrium, anything else than a s0,B- or s0,S -type trade (depending on
whether α >> ν or ν >> α) would be a rather surprising outcome. Hence, while a
market with

TM >
m
α + ν

(
PI→B − PI→S

)
will technically not be in an equilibrium state, it will in many cases be in some
kind of quasi-equilibrium5.

5Technically, the identified quasi-equilibrium is a so called ε-equilibrium, see Everett, [Eve57]



Conclusion

In the modern economy, exchange of goods is a process largely driven by the ac-
tivity of intermediaries. Crucial advantages of intermediated exchange versus a
more direct, cross-customer exchange are - among others - the centralization of
exchange, facilitation of information transfer, reduction of search and bargaining
costs, alleviation effects of adverse selection or management of inventory

In existing literature, the classic theoretical framework for understanding interme-
diated exchange is based on two major components: information asymmetry and
inventory management. Examples for such classical models can be found in the
papers by Dennert [Den93], Kyle [Kyl85], Laffont and Maskin [LM90], Copeland
and Galai [CG83] or Glosten and Milgrom [GM85]. Spulber [Spu99] provides a
detailed review of many classical models and aspects of intermediated trading.

While these models are applicable to the relatively slow, pit-oriented trading be-
fore the Internet revolution, they do not reflect the modern structure of the finan-
cial marketplace. The advent of electronic trading environments led to a fast and
direct access to exchanges, pit-trading has on many exchanges disappeared com-
pletely. Information asymmetries have decreased, platforms like the Bloomberg
terminal do now provide a quick access to almost all relevant information. Market
inefficiencies have hence been eliminated.

At the same time, the storage and “buffering” functions of intermediaries are
declining in the modern economy. Intermediaries do often carry no inventory at
all: they serve as pure conduits in the transfer of goods or services. It follows
that modern market structure makes it necessary to develop a new generation of
models.

In the preceding work a series of three such models was proposed in a game-
theoretical context. In all proposed models a commercial buyer, a commercial
seller and one or two non-commercial intermediaries were assumed to trade a
certain amount of one commodity. As a common feature, all three models were

141



CONCLUSION 142

mainly based on differences in the goals of the different market participants, hedg-
ing pressure as one of the most critical aspects in the behaviour of commercial en-
tities played a crucial role. The main components of most classical models, infor-
mation asymmetry and inventory management, were largely ignored. Information
was assumed to be distributed in a perfectly symmetric way, and the existence of
intermediaries was explained by the different financial goals of the market partic-
ipants.

In the first proposed model, only one intermediary acted in the market, hence ful-
filling a dual function: he traded price spreads and took risk. As a main result of
this first model, it has been shown that a naive approach in which buyer and seller
were assumed to fulfil as much of their needs as possible in a direct trade could
not be an equilibrium solution. This result showed a clear economic need for non-
commercial intermediaries in such a market. However, it has also been shown,
that the setup of this market model did result in a complete market disequilibrium.
No clearing equilibrium price could be established. The behaviour of the different
market participants was hence completely unpredictable.

In a second model, a second intermediary was introduced. Instead of having one
intermediary trade spreads and take risk, specialized intermediaries IM (a market
maker) and IR (a risk-neutral intermediary) were now either trading spreads or
taking risk. As a main result, this economic specialization led to a rather stable
market situation: it has been shown that in such a market model the market maker
IM would trade min{α, ν} from seller S to buyer B for a price F determined as

F =
αPI→S + νPI→B

α + ν
.

The remaining |α − ν| were traded with IR for his binding price offers PI→S and
PI→B respectively.

It should be noted that in this equilibrium solution intermediaries were in-
volved in all occurring trades, no direct trades from buyer to seller were taking
place. This result corresponds to observations that can be made in real markets:
wherever intermediaries occur, they are usually trading almost the complete sup-
ply and demand.

The equilibrium price F turned out to be a rather natural solution: in accor-
dance to standard economic theory, it has been shown that an increase in the sup-
ply α would lead to a decrease of F, while an increase in demand ν would be
accompanied by an increasing clearing price F. Also the other model parame-
ters RS , RB and Λ̂ were shown to influence the equilibrium price F in a rather
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predictable and natural manner.
Overall, the introduction of a fourth player, the market maker IM, proved to

be a crucial step towards a more efficient and transparent market behaviour. This
corresponds to findings made by Rust and Hall [RH03]: they extended a model
proposed by Spulber [Spu96] consisting of buyers, sellers and middlemen by in-
troducing a market maker and found that under certain conditions the introduction
of such a market maker would lead to a more efficient market environment.

As a major shortcoming, this second market model could not explain why a mar-
ket maker IM would have entered such a market in the first place. In the market
equilibrium, IM’s payoff was shown to equal zero, a financial motive for trading
was hence missing. To overcome this model deficiency, a third model was then
considered: the market maker was now assumed to charge a transaction fee TM

for his services.
In this market model the existence of an equilibrium solution depended on

how the transaction fee TM was set. If

TM ≤
m
α + ν

(
PI→B − PI→S

)
,

where m = min{α, ν}, the market equilibrium was found to be the same as in the
previous model. The only difference was that this time IM’s motiviation was clear:
he would now earn a payoff of 2m TM.

If however on the other hand

TM >
m
α + ν

(
PI→B − PI→S

)
,

no Nash equilibrium could be observed. Under certain conditions it was never-
theless possible to predict that the market would approach some kind of quasi-
equilibrium: if α >> ν, the shortage of demand would lead to B being able to
buy G from IR for a price close to PI→S , the cheapest possible price in the model
framework. In the case of ν >> α, just the opposite would occur: a shortage in
supply would then lead to S selling his supply to IR for a price close to the most
expensive possible price, i.e. for a price close to PI→B.

A more detailed examination of the above bound on TM suggested that in order
for IM to be involved in the trades in as many rounds as possible, he would need
to offer his services for a price

TM << Ravg Λ̂,
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i.e. for a price much less than the average risk premium S and B are willing to
pay. This agrees with findings made by Locke and Venkatesh [LV91], who ob-
served effective transaction costs between 0.0004% and 0.033% of the nominal
value of a contract, i.e. prices much smaller than what market participants should
be expected to pay for transferring their risk.

While the presented models provided some insightful results that should help to
explain phenomena observed in real markets, they are of course just models of re-
ality. Further research might be necessary to explain more aspect of intermediated
trading. Possible directions of future research could for example be seen in the
introduction of implicit instead of explicit transaction costs or in a discretization
of the underlying price scale.

In many cases, market makers do not charge an explicit trading fee for their
services as assumed in the third model of this work. Instead, they will only trade a
spread if this spread appears to be big enough to guarantuee them a certain mini-
mal profit. The minimal spread size could hence be seen as an implicit transaction
fee that market participants have to pay. Such a model extension might therefore
provide further insight into real-life market behaviour.

Furthermore, one of the key assumptions of the presented models was that
trading took place on a continuous price scale. For every two prices p1 < p2, a
tradeable price p3 with p1 < p3 < p2 was assumed to exist. This does however
not correspond to reality: the minimal price step in a certain market is defined
by the so called tick size τ. If therefore p2 = p1 + τ, no tradeable price p3 with
p1 < p3 < p2 can exist. The price scale in a model incorporating this tick size
would therefore have to be discrete. For seller S and buyer B this would imply that
their strategy sets would no longer be infinite but finite, since only tradeable prices
could be used as strategies. It is highly likely that looking at a discrete instead of at
a continuous price scale may provide some more interesting and important results.

These examples show that already simple extensions to the presented models
might be of interest for future research. I am however confident that also the
presented models can provide the reader with interesting insight and important
information on how and why intermediated exchange works in the modern-day
economy.
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