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Abstract 

Isolated water-soluble analytes extracted from fog water collected during a radiation fog 

event near Fresno, CA were analyzed using collision induced dissociation and ultrahigh-

resolution mass spectrometry.  Tandem mass analysis was performed on scan ranges 

between 100-400 u to characterize the structures of nitrogen and/or sulfur containing 

species.  CHNO, CHOS, and CHNOS compounds were targeted specifically because of 

the high number of oxygen atoms contained in their molecular formulas.  The presence of 

22 neutral losses corresponding to fragment ions was evaluated for each of the 1308 

precursors.  Priority neutral losses represent specific polar functional groups (H2O, CO2, 

CH3OH, HNO3, SO3, etc., and several combinations of these).  Additional neutral losses 

represent non-specific functional groups (CO, CH2O, C3H8, etc.) Five distinct 

monoterpene derived organonitrates, organosulfates, and nitroxy-organosulfates were 

observed in this study, including C10H16O7S, C10H17NO7S, C10H17 NO8S, C10H17NO9S, 

and C10H17NO10S.  Nitrophenols and linear alkyl benzene sulfonates were present in high 

abundance.  Liquid chromatography/mass spectrometery methodology was developed to 

isolate and quantify nitrophenols based on their fragmentation behavior. 
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1 Introduction 

Both the chemical and physical properties of atmospheric aerosol govern its ability to 

interact directly and indirectly with incoming radiation, thus affecting the Earth’s climate 

(Ramanathan et al. 2001).  Direct radiative effects involve the scattering or absorption of 

solar radiation, which correspond to climate cooling and heating, respectively.  Indirect 

radiative effects mean that an increase in aerosols corresponds to an increase in the 

number of cloud droplets with longer lifetimes.  The increase in the number of droplets in 

a cloud means that the droplet sizes decrease which leads to a decrease in precipitation 

and an increase in cloudiness (increases albedo).  Aerosols have the ability to absorb 

and/or reflect solar radiation that would otherwise be absorbed by the Earth’s surface 

(Ramanathan et al. 2001).  The absorption of solar radiation would result in the 

atmosphere heating and the reflection or scattering of solar radiation would prevent solar 

radiation from reaching the Earth’s surface.  This reduces the potential global warming 

caused by greenhouse gases, which can absorb infrared radiation that is leaving the 

Earth’s surface.  In other words, aerosols play an important role in determining the 

amount of incoming solar radiation that reaches the surface of the Earth, as well as the 

amount of the outgoing radiation since outgoing radiation is a function of incoming 

radiation.  If the future comprises of a cleaner atmosphere, aerosol cooling would decline 

in relation to warming caused by greenhouse gases, due to the shorter atmospheric 

lifetime of aerosols (Andreae et al. 2005).  Although the physical properties of aerosol 

have been studied in detail, there remain large uncertainties on the climate forcing 

estimation of aerosol (IPCC 2007) as well as effects on human health (Poschl 2005).  In 
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fact, the magnitude of the impact of aerosols on the Earth’s climate was stated as a key 

uncertainty in the IPCC 2007 report on climate change (IPCC 2007).  This large 

uncertainty greatly limits the ability of current climate models to predict future climate 

changes.  The uncertainty may be reduced by an improved understanding of the chemical 

composition of aerosols at the molecular level.  The chemical composition of 

atmospheric organic matter (AOM), more specifically the individual molecules and their 

functional groups, may have the ability to significantly influence the physical properties 

of aerosols and their effect on the environment (Rudich et al. 2007). 

Atmospheric aerosols originate from both biogenic and anthropogenic emission sources.  

Fine particles and semi-volatile compounds which partition to aerosols are emitted 

directly to the atmosphere and are often referred to as primary organic aerosols.  

Emission sources of primary organic compounds include: biomass burning, combustion 

of fossil fuels, and biogenic sources such as sea spray, soil, and vegetation.  Due to 

atmospheric processes, up to 70% of the aerosol organic mass is secondary in nature 

(Gelencser et al. 2007). Secondary organic aerosols (SOA) are the molecules produced in 

the atmosphere from the oxidation of primary volatile organic compounds (VOCs) and 

the heterogeneous reactions of primary components.  The secondary reactions create 

products of lower volatility which partition to or remain in the aerosol phase.  Aqueous 

phase reactions may also occur and are thought to be responsible for the formation of the 

higher molecular weight SOA products (Altieri et al. 2009b; Perri et al. 2009; Perri et al. 

2010; Yasmeen et al. 2010; Tan et al. 2011).  Low molecular weight compounds found in 

the gas and aqueous phases may lead to SOA product formation via oxidation and 
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accretion reactions (Blando and Turpin 2000; Yasmeen et al. 2010). Even though SOA is 

widely abundant, it is poorly understood due to the multitude of possible pathways and 

chemical reactions.  The polar organic components of SOA can enhance the hygroscopic 

properties of the aerosols; this increases the direct and indirect effects of aerosols on the 

global climate (Ramanathan et al. 2001; Fuzzi et al. 2006).  They directly affect climate 

by enhancing aerosol light scattering.  They indirectly affect climate by enhancing the 

ability of aerosol to act as cloud condensation nuclei.  Thus SOA affects cloud properties 

and ultimately the hydrological cycle (Ramanathan et al. 2001).  In addition to the 

climate effects of atmospheric aerosols, they are important because of the effects they 

may have on human health.  Studies have shown several severe health problems (e.g., 

enhanced mortality, cardiovascular, respiratory, and allergic diseases) to be associated 

with aerosols and air pollution (Poschl 2005). 

Atmospheric aerosols can act as condensation nucleation sites for droplet formation in 

both clouds and fogs.  Radiation fogs are in essence a ground-level cloud, making them 

easy to sample for chemical analyses.  Formation events are common during the winter in 

the California Central Valley (Holets and Swanson 1981; Waldman et al. 1987; Suckling 

and Mitchell 1988; Underwood et al. 2004).  The events form during stagnant and humid 

conditions, where under a clear night sky the moist surface air cools quickly and 

promotes water vapor condensation onto pre-existing aerosol particles.  Because the fogs 

form during stagnant time periods with little mixing, a variety of emissions from 

agricultural, industrial, and residential activities in the valley accumulates and undergoes 

secondary chemical processes.  These secondary chemical processes are analogous to 
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those that take place in clouds, except that they are expected to be more polluted.  The 

compounds observed in fog water are from a variety of emission sources and the 

secondary reactions that may have occurred before and/or during the sampled fog events.  

The suspended fog droplets represent an aqueous phase reactor which allows secondary 

reactions to occur between water-soluble gases, the water-soluble portion of scavenged 

aerosol particles, and atmospheric oxidants (Waldman and Hoffmann 1987; Fuzzi et al. 

1988).  It has been shown that aqueous phase reactions can contribute to new particle 

growth and the production of secondary organic aerosols (Blando and Turpin 2000). 

There are many possible aqueous phase SOA reaction products and the mechanisms of 

their formation are not well known.  The gas phase oxidation of low molecular weight 

VOC results in the production of water-soluble volatile and semi-volatile organic 

compounds that freely partition to the aqueous phase, whether it is aerosol, cloud, or fog 

water.  In the aqueous phase, compounds undergo further oxidation and subsequent 

accretion, likely contributing to further SOA production (Blando and Turpin 2000).  SOA 

production by atmospheric oxidation happens for most organic compounds (Kroll et al. 

2011).  Products are typically the result of functionalization, fragmentation, and accretion 

reactions (Kroll et al. 2011) which include organic acids and the under characterized 

higher molecular weight SOA (aka oligomers), multifunctional compounds, 

organosulfates, and organonitrates (Altieri et al. 2009b; Perri et al. 2009; Perri et al. 2010; 

Yasmeen et al. 2010; Tan et al. 2011).  Secondary aqueous products may form with or 

without photo-oxidation (Yasmeen et al. 2010).  Accretion reactions have also been 

shown to proceed through two different mechanisms: hydration followed by 
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acetal/hemiacetal formation or acid-catalyzed aldol condensation (Yasmeen et al. 2010).  

The aldol condensation mechanism is prevalent at the higher pHs often found in fog 

water (Yasmeen et al. 2010).  The possibilities that exist for reaction products and 

mechanisms contribute to the complexity of and difficulty of the characterization of 

AOM associated with aerosols and cloud/fog droplets. 

In addition to the effects upon aerosol processes, fog events are of importance because of 

the effects they can have on environmental health (Waldman and Hoffmann 1987; 

Waldman et al. 1987; Weathers 1999; Herckes et al. 2007; Collett et al. 2008).  Wet 

deposition of fog droplets can both remove hazardous pollutants from the air and in turn 

deposit them (Waldman and Hoffmann 1987; Waldman et al. 1987; Weathers 1999; 

Herckes et al. 2007; Collett et al. 2008) and their oxidized reaction products onto plant 

life and into bodies of water, causing harm.  However, fog is very important as it deposits 

water and nutrients to ecosystems (Waldman and Hoffmann 1987; Weathers 1999).  Fog 

is high in organic content and there are a wide range of water soluble organic compounds 

present.  In order to understand the effects fog may have on the surrounding area, it is 

essential to characterize the AOM chemical composition.  Thus far, only a small fraction 

of the organic compounds present have been identified.  Nitrophenols are a great 

example. They have been known to be present in the atmosphere for some time (Nojima 

1975), and their presence in the fog water has been well established (Richartz et al. 1990; 

Herterich 1991; Harrison et al. 2005a).  In fact, nitrophenols are present at higher 

concentrations in fog than in air, due to the more effective scavenging ability of fog and 

the high water solubility of nitrophenols (Rippen et al. 1987; Richartz et al. 1990; 
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Harrison et al. 2005a).  The occurrence of these compounds in fog means exposure to 

plant and animal life through wet deposition.  Nitrophenols have been shown to be toxic 

to both humans (Allen and Allen 1997; Harrison et al. 2005a) and plants (Shea et al. 

1983; Shafer and Schonherr 1985; Rippen et al. 1987).  Studies have shown that 

nitrophenol deposition contributes to plant damage and forest degradation (Rippen et al. 

1987; Leuenberger et al. 1988; Hinkel et al. 1989; Natangelo et al. 1999).  Two 

nitrophenols have also been listed by the Environmental Protection Agency as priority 

pollutants (2000).  Nitrophenols may be emitted directly to or formed in the atmosphere.  

Primary sources are mainly due to traffic and industrial activities (Leuenberger et al. 

1988; Harrison et al. 2005a; Morville et al. 2006).  Some nitrophenols are well known 

herbicides/pesticides used in agriculture and forestry (Rippen et al. 1987), however, it is 

unlikely to be a major source of nitrophenols in the atmosphere (Richartz et al. 1990; 

Harrison et al. 2005a).  Secondary formation of nitrophenols can take place in both the 

gas and liquid phases (Harrison et al. 2005b).  They are formed by oxidation and/or 

nitration of other primary emissions such as benzenes and phenols (Rippen et al. 1987; 

Hinkel et al. 1989; Richartz et al. 1990; Luttke et al. 1997; Bolzacchini et al. 2001; 

Kohler and Heeb 2003; Harrison et al. 2005a; Harrison et al. 2005b).  The nitrophenols 

most commonly detected are 4-nitrophenol, 2-nitrophenol, and 2,4-dinitrophenol 

(Harrison et al. 2005a); of which, 4-nitrophenol is typically reported at the highest 

concentrations (Richartz et al. 1990; Luttke et al. 1997; Harrison et al. 2005a).  The 

presence of dinitrophenols has been attributed to the additional nitration of mono-nitrated 

phenols (Richartz et al. 1990; Luttke et al. 1997; Harrison et al. 2005a; Vione et al. 
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2005).  Although the presence and amount of nitrophenols in the atmosphere has been 

thoroughly reported, the majority of the water-soluble AOM in fog is uncharacterized.  

This is due to the wide variety of secondary processes occurring in the aqueous phase and 

the need for advanced analytical techniques for identification of the individual 

components. 

A few studies employing ultrahigh-resolution mass spectrometry (MS) have shown that 

AOM is quite complex (Wozniak et al. 2008; Mazzoleni et al. 2010).  Ultrahigh-

resolution Fourier transform ion cyclotron resonance (FT-ICR) MS results in very well 

resolved and accurately measured mass enabling molecular formula assignment of its 

thousands of organic components (Marshall et al. 1998; Kujawinski 2002; Marshall et al. 

2006; Sleighter and Hatcher 2007).  Electrospray ionization (ESI) coupled with a FT-

ICR-MS is ideally suited for analysis of any type of natural organic matter (NOM) 

(Fievre et al. 1997; Marshall et al. 1998; Kujawinski 2002; Stenson et al. 2002; Sleighter 

and Hatcher 2007).  Due to its soft ionization, ESI does not fragment the molecules and 

thus preserves its structure during ionization (Fievre et al. 1997; Stenson et al. 2002), 

making it possible to obtain molecular formula assignments post MS.  ESI FT-ICR MS is 

a highly sensitive technique thus it requires only small sample volumes, however, 

ionization efficiency may vary from compound to compound.  Overall, FT-ICR-MS is the 

best mass analyzer for AOM because it has very high resolving power, mass accuracy, 

and sensitivity (Marshall et al. 1998).  Identified molecular formulas of AOM do not 

provide structural information, only insights from the calculated double bond equivalents 

and atomic ratios. Thus, further investigations of the structures are needed to understand 
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the functional groups present and to better evaluate how these molecules affect the 

physical properties of aerosols.  The acquisition of ultrahigh-resolution fragmentation 

data by tandem mass spectrometric analysis (MS/MS or MSn) can help to provide 

structural characterization of these compounds.  There have been many studies on the 

characterization of NOM using high-resolution mass spectrometry (Fievre et al. 1997; 

Kujawinski 2002; Kujawinski et al. 2002; Tolocka et al. 2004; Reemtsma et al. 2006b; 

Reinhardt et al. 2007; Sleighter and Hatcher 2007; Gomez-Gonzalez et al. 2008; Walser 

et al. 2008; Wozniak et al. 2008; Altieri et al. 2009b; Altieri et al. 2009a; Bateman et al. 

2009; Laskin et al. 2009; Muller et al. 2009; Witt et al. 2009; Mazzoleni et al. 2010; 

Bones et al. 2010; Gao et al. 2010; Laskin et al. 2010; Nguyen et al. 2010; Roach et al. 

2010) , however, far fewer have been done using tandem mass analysis (Tolocka et al. 

2004; Reemtsma et al. 2006b; Gomez-Gonzalez et al. 2008; Sadezky et al. 2008; Muller 

et al. 2009; Witt et al. 2009; Bones et al. 2010; Gao et al. 2010; Laskin et al. 2010). 

Previous mass spectrometric analysis of this fog water sample provided exact mass 

measurements and the molecular formulas of low molecular weight water-soluble AOM 

components (Mazzoleni et al. 2010).  Of the 1300+ organic compounds present, nearly 

500 of them contained nitrogen (Mazzoleni et al. 2010).  From this data, a set of target 

compounds was selected for further structural identification.  Of particular interest was to 

use FT-ICR-MS to obtain mass spectra and tandem mass spectra with ultrahigh-

resolution and high mass accuracy for isolated organic anions of fog water samples, in 

order investigate climate relevant CHNO, CHOS, and CHNOS compounds.  These 

compounds are of interest climatically because their polar functional groups (i.e. 
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hydroxyl, carboxyl, carbonyl, nitrate and sulfate). The functional groups have a 

significant amount of oxygen which has been shown to be correlated with the 

hygroscopic properties of the atmospheric aerosols (Zhang et al. 1993; Pang et al. 2006). 

The structural characterization of identified water-soluble organic compounds in polluted 

fog water is presented in Chapter 2.  The sample was obtained during a radiation fog 

event in January 2006 near Fresno, CA in California’s Central Valley.  Tandem mass 

analysis by collision induced dissociation (CID) was conducted within various scan 

ranges between 100 and 400 u to capture the targeted organic components of atmospheric 

aerosols.  Due to the complexity of the water-soluble AOM in the sample, the scan ranges 

included additional precursor ions as well. Functional group analysis by matching 

precursors and fragment ions via neutral losses was more feasible than complete 

structural characterization.  This work helps to shed light on the polar functional groups 

present on the molecules found in the aqueous phase.  By analyzing the presence of these 

polar functional groups it is possible to gain a better understanding of the hygroscopic 

properties of SOA.  Specifically the presence of nitrate, methyl-nitrate, sulfate, carboxyl, 

and hydroxyl functional groups associated with AOM were analyzed using tandem mass 

spectrometry by CID.  Additionally, the presence of several suspected monoterpene 

derived molecules and their fragmentation behavior will be presented.  Many of these 

monoterpene derivatives have been previously reported in both SOA chamber 

experiments and/or ambient samples (Gao et al. 2006; Iinuma et al. 2007; Surratt et al. 

2007; Surratt et al. 2008; Altieri et al. 2009b; Altieri et al. 2009a).  Evaluation of the 

whole data allows for a better understanding of the aerosol aging process.  This method 
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was particularly useful in determining the presence of the various polar functional groups 

found on the molecules in the fog water. 

Also presented in Chapter 2 are additional results of the fragmentation analysis.  

Fragmentation trends are discussed for each of the chemical groups (CHO, CHNO, 

CHNOS, and CHOS).  The frequencies at which each neutral loss was observed are 

separated by structural classification determined by the Aromaticity Index proposed by 

Koch and Dittmar (2006). Presented in Chapter 3 is the presence of nitrophenols and 

linear alkylbenzene sulfonates (LAS) and their fragmentation behavior will also be 

discussed.  Liquid chromatography/mass spectrometry (LC/MS) methodology will be 

discussed which was developed to isolate nitrophenols (m/z 138 – 197) from the bulk of 

the AOM present in the sample and to use tandem mass analysis to quantify their 

presence.  Improvement of the structural understanding of atmospheric aerosols will 

allow for a better understanding of the aerosol aging process as well as the implications 

to human and environmental health and climate. 
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2 Fragmentation Analysis of Water-Soluble Atmospheric Organic 

Matter using Ultrahigh-Resolution Mass Spectrometry 

 

 

 

 

The ultrahigh resolution analysis and data interpretation in the following section was 

completed by Jeffrey LeClair.  Samples were provided by Dr. Jeffrey Collett, Jr. This 

work represents the draft of material to be submitted to the Environmental Science and 

Technology journal for publication in August 2011. 
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2.1 Abstract 

Isolated water-soluble analytes extracted from fog water collected during a radiation fog 

event near Fresno, CA were analyzed using collision induced dissociation and ultrahigh-

resolution mass spectrometry.  Tandem mass analysis was performed on scan ranges 

between 100-400 u to characterize the structures of nitrogen and/or sulfur containing 

species.  CHNO, CHOS, and CHNOS compounds were targeted specifically because of 

the high number of oxygen atoms contained in their molecular formulas.  Structural 

mailto:lrmazzol@mtu.edu
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functional groups were identified by matching fragment ions to precursor ions 

corresponding to common neutral losses (H2O, CO2, CH3OH, HNO3, CH3NO3, SO3, SO4 

and several combinations of these).  These polar functional groups are expected to affect 

the hygroscopic properties of aerosols.  In total, 818 precursors were studied with 

variable structural properties.  22 molecular formulas are consistent with previously 

characterized monoterpene oxidation products.  Five distinct monoterpene derived 

organonitrates, organosulfates, and nitroxy-organosulfates were observed in this study, 

including C10H16O7S, C10H17NO7S, C10H17NO8S, C10H17NO9S, and C10H17NO10S. 

KEYWORDS. WSOC, secondary organic aerosol, organonitrates, organosulfates, 

nitrooxy-organosulfates, FT-ICR MS/MS. 

2.2 Introduction 

Radiation fog events are common during the winter in the California Central Valley 

(Holets and Swanson 1981; Waldman et al. 1987; Suckling and Mitchell 1988; 

Underwood et al. 2004).  The events form during stagnant and humid conditions.  Under 

a clear sky the moist surface air cools quickly and promotes water vapor condensation 

onto pre-existing aerosol particles.  A variety of emissions from agricultural, industrial, 

and residential activities in the valley accumulates and undergoes secondary chemical 

processes.  The suspended fog droplets represent an aqueous phase reactor which allows 

secondary reactions between water-soluble gases, the water-soluble portion of scavenged 

aerosol particles, and atmospheric oxidants (Waldman and Hoffmann 1987; Fuzzi et al. 

1988).  In the aqueous phase, compounds undergo further oxidation and subsequent 
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accretion, likely contributing to enhanced secondary organic aerosol (SOA) production 

(Blando and Turpin 2000).  The oxidation products include organic acids and the poorly 

characterized higher molecular weight oligomers, multifunctional compounds, 

organosulfates, and organonitrates (Altieri et al. 2009b; Perri et al. 2009; Tan et al. 2011; 

Perri et al. 2010; Yasmeen et al. 2010) .  Secondary aqueous products may form in the 

absence of photooxidation (Yasmeen et al. 2010).  Aqueous accretion reactions may 

proceed through different mechanisms: hydration, esterification (Altieri et al. 2008), 

hemiacetal/acetal (Bateman et al. 2008) and aldol condensation (Yasmeen et al. 2010).  

The aldol condensation mechanism is significant at higher pHs (Yasmeen et al. 2010).  

The possibilities that exist for reaction products and mechanisms contribute to the 

complexity and difficulty of the characterization of atmospheric organic matter (AOM).  

Aqueous phase reactions can contribute to new particle growth and the production of 

SOA (Blando and Turpin 2000).  The compounds observed in polluted fog water are 

from a variety of emission sources and the secondary reactions that may have occurred 

before and/or during the sampled fog event.  In addition to the effects upon aerosol 

processes, fog events are of importance because of the effects they can have on 

environmental health (Waldman and Hoffmann 1987; Waldman et al. 1987; Weathers 

1999; Herckes et al. 2007; Collett et al. 2008).   

Preliminary studies have shown that AOM is quite complex (Wozniak et al. 2008; 

Mazzoleni et al. 2010) requiring the use of ultrahigh-resolution mass spectrometry.  

Molecular formula assignment of its thousands of organic components requires 

interpretation of well resolved and accurate masses.  Electrospray ionization (ESI) 
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coupled with a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR-

MS) is ideally suited for analysis of any type of natural organic matter (NOM) (Fievre et 

al. 1997; Marshall et al. 1998; Kujawinski 2002; Stenson et al. 2002; Sleighter and 

Hatcher 2007).  Although molecular formulas have been identified for water-soluble 

organic compounds (WSOC) in AOM, investigations of the structure of these compounds 

are needed.  Tandem mass spectrometry (MS/MS) with ultrahigh resolution analysis 

provides structural characterization of compounds.  There have been many studies on the 

characterization of NOM using high-resolution mass spectrometry (Fievre et al. 1997; 

Kujawinski 2002; Kujawinski et al. 2002; Tolocka et al. 2004; Reemtsma et al. 2006b; 

Reinhardt et al. 2007; Sleighter and Hatcher 2007; Gomez-Gonzalez et al. 2008; Walser 

et al. 2008; Wozniak et al. 2008; Altieri et al. 2009b; Altieri et al. 2009a; Bateman et al. 

2009; Laskin et al. 2009; Muller et al. 2009; Witt et al. 2009; Mazzoleni et al. 2010; 

Bones et al. 2010; Gao et al. 2010; Laskin et al. 2010; Nguyen et al. 2010; Roach et al. 

2010), however, far fewer have been done using tandem mass analysis (Tolocka et al. 

2004; Reemtsma et al. 2006b; Gomez-Gonzalez et al. 2008; Sadezky et al. 2008; Muller 

et al. 2009; Witt et al. 2009; Bones et al. 2010; Gao et al. 2010; Laskin et al. 2010). 

In previous work to identify the molecular formulas of water-soluble AOM components, 

measurements were obtained from a hybrid linear quadrupole-ion trap (LTQ)/FT-ICR 

mass spectrometer (Mazzoleni et al. 2010).  Of the 1300+ organic compounds present, 

nearly 500 of them contained nitrogen (Mazzoleni et al. 2010).  From this data, a set of 

target compounds was selected for further identification.  Of particular interest in this 

study was the use of FT-ICR-MS to obtain tandem mass spectra with ultrahigh-resolution 
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for isolated organic anions of fog water samples, in order to structurally verify the 

presence of suspected climate relevant CHNO, CHOS, and CHNOS compounds.  Polar 

functional groups (i.e., hydroxyl, carboxyl, carbonyl, nitrate and sulfate) add a significant 

amount of oxygen to the total oxygen content which has been shown to be correlated with 

the hygroscopic properties of the atmospheric aerosols (Zhang et al. 1993; Pang et al. 

2006).  Additionally, improvement of the structural characterization of atmospheric 

aerosol components will allow for a better understanding of the aerosol aging process. 

In the current study, we focus on the structural characterization of identified water-

soluble organic compounds in polluted fog water.  Ultrahigh-resolution tandem mass 

analysis was conducted over various scan ranges between 100 and 400 u to target 

nitrogen and sulfur containing organic compounds.  Identification of the nitrate, methyl-

nitrate, sulfate, carboxyl and hydroxyl functional groups associated with AOM is 

presented.  Additionally, several suspected monoterpene derived molecules are presented, 

some of which have been reported in SOA chamber experiments and/or ambient samples 

(Gao et al. 2006; Iinuma et al. 2007; Surratt et al. 2007; Surratt et al. 2008; Altieri et al. 

2009b; Altieri et al. 2009a). 

 

 

 

 



 

27 

 

2.3 Experimental Methods 

2.3.1 Sample Collection and Preparation 

Fog sample collection and preparation were described previously by Mazzoleni et al. 

(Mazzoleni et al. 2010).  Briefly, radiation fog samples were collected in Fresno, CA in 

January 2006. A large stainless steel Caltech Active Strand Cloudwater Collector 

(Herckes et al. 2002a; Herckes et al. 2002b) was set up at the California State University 

experimental farm in an open field. The site represents a polluted urban fog environment, 

influenced by emissions of residential and industrial activities and transportation. Fog 

samples were collected over 1-2 hour time intervals and were stored in pre-baked amber 

glass jars under refrigeration immediately after collection. Strata-X (Phenomenex) solid 

phase extraction (SPE) was used to isolate fog water analytes. A sample volume of 100 

mL (adjusted to pH 4.5, formic acid) was applied to the SPE cartridge.  Isolates were 

extracted with 2 mL of high-purity water (pH adjusted to 10.4 with NH4OH), methanol, 

and acetonitrile (10/45/45 vol/vol/vol). A brown color band was observed moving 

through the SPE material into the sample vial.  Grey color was observed on the SPE 

sorbent, indicating some of the light absorbing compounds were not fully recovered. 
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2.3.2 Instrumental Parameters 

Samples were analyzed with a hybrid 7 T Fourier transform ion cyclotron resonance (FT-

ICR) mass spectrometer (LTQ FT Ultra, Thermo Scientific) equipped with electrospray 

ionization (ESI) source. Negative ions were produced by a source voltage of -3.8 kV. 

Mass resolving power, was set at 200,000 (at m/z 400) for all spectra. Automatic gain 

control was used to consistently fill the linear ion trap with the same number of ions (n = 

1 x 106) for each acquisition and to avoid space charge effects from over-filling the mass 

analyzer. Target precursor ions were isolated and fragmented with helium collision 

induced dissociation (CID) in the linear ion trap and then the ions were transferred to the 

FT-ICR-MS.  This tandem mass analysis was done on several selected scan ranges with 

different isolation widths between 270 and 360 u.  A full list of the scan ranges and 

instrumental parameters are given in Table 5.1.  Due to the sample complexity, the 

isolation of target nominal masses resulted in the fragmentation of several precursor ions 

simultaneously.  Mass spectra with and without CID were collected for each mass range.  

Individual mass spectra were collected and stored as transients by use of Thermo 

Xcalibur software.  Prior to mass analysis, the instrument was externally calibrated in the 

negative ion mode with a standard solution of sodium dodecyl sulfate and taurocholic 

acid; the resulting mass accuracy was better than 2 ppm. 
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2.3.3 Data Processing and Assignment of Molecular Compositions 

100+ transients were recorded in the time domain for each scan range and were co-added 

(Kujawinski et al. 2002; Stenson et al. 2003) with Composer (Sierra Analytics, Modesto, 

CA).  Chemical formulas were assigned to the masses of singly-charged ions 100 < m/z < 

400 with relative abundances (RA) ≥ 0.1% after internal recalibration.  A list of the 

recalibration masses for each mass range is given in Table 5.1.  The chemical formula 

calculator was set to allow up to 30 carbon, 60 hydrogen, 20 oxygen, 3 nitrogen, and 1 

sulfur atoms per elemental composition.  Data filtering for quality assurance of the 

assigned formulas was done as described previously in Mazzoleni et al. (2010).  Double 

bond equivalents (DBE) were based on CxHyNzOn and the equation DBE = x – (1/2)y + 

(1/2)z + 1 (McLafferty and Turecek 1993). 

2.4 Results and Discussion.  

The mass spectra of atmospheric organic matter (AOM) isolated from fog water is very 

complex, as described by Mazzoleni et al. (2010).  The high relative abundance and 

frequency of the N- and S- containing compounds previously observed in fog water led to 

the selection of mass ranges for fragmentation analysis.  The precursor chemical formulas 

were grouped by elemental composition i.e. CHO, CHNO, CHOS, and CHNOS.  The 

number and type of precursor compounds studied were as follows:  304 CHNO (37.1%), 

173 CHNOS (21.1%), 146 CHOS (18.0%), and 195 CHO (23.8%) compounds.  As 

mentioned, the mass spectra are quite complex, for example there were 8 - 46 individual 

isobaric masses with RA > 0.1 (relative abundance is defined as the abundance of a 
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particular ion within the scan range it is associated with) identified within a nominal 

mass.  Patterns of mass difference between isobaric masses are evident.  A common 

repeating mass difference of 36 mDa occurs with the exchange of an O for CH4.  This 

mass difference has been seen in rainwater (Altieriet al. 2009b), aerosol (Reemtsma et al. 

2006b; Schmitt-Kopplin et al. 2010), and fulvic acid samples (Stenson et al. 2003; 

Reemtsma et al. 2006a).  Several series of this type can be found within each nominal 

mass unit.  An excerpt of the mass spectra at m/z 343 is shown in Figure 2.1.  In the mass 

range of 343.02 to 343.23, 10 series of 36 mDa mass difference series are present.  The 

series include 2 CHO, 4 CHNO, 2 CHNOS, and 2 CHOS series.  Each compound group 

is denoted with a unique shaped symbol and the series with each group are distinguished 

by color.  Another way to evaluate this trend in the data is to graph the number of carbon 

atoms vs. m/z (Reemtsma 2010).  The circles in Figure 2.1 were scaled to represent the 

relative abundance of the compounds.  The more oxidized compounds are at the lower 

left of the plot, consistent with the lower numbers of carbon atoms, moving to the right 

with the exchange of O each for CH4 (+36 mDa) in the series.  There is a decrease of one 

DBE as the series moves right, corresponding to each exchange.  Thus, the highest DBE 

values for each series are at the lower left of the plot and have the lowest mass defects. 
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Figure 2.1:  An excerpt of the mass spectra from 342.02 < m/z > 343.24 is shown (top).  The compound groups 
are distinguished by the symbol shape and series with group are distinguished by color.  A #C vs. m/z plot of the 
same mass range 342.02 < m/z> 343 (bottom).  Compound groups are denoted by colored relative abundance 
scaled symbols and the –O, +CH4 series with 36 mDa differences can be seen in diagonal lines with slope of 
~0.04. 

2.4.1 AOM Fragmentation & Functional Groups 

As expected from previous studies of water-soluble organic compounds (WSOC), the 

five most important neutral losses are CO2 (44 u), H2O (18 u), CH3OH (32 u), HNO3 (63 

u) and/or CH3NO3 (77 u), and SO3 (80 u) and/or SO4 (96 u).  The presence and frequency 

of these losses indicate the type of functional groups contained in these structures.  

Considering the 818 compounds evaluated in this study, 21.9% lost H2O, 20.4% lost 

F010606x1_iso342w5_full #1-204 RT:0.02-13.59 AV:204 NL:1.34E4
T: FTMS - p NSI Full ms2 343.50@cid0.00 [90.00-400.00]

343.02 343.07 343.12 343.22

20

40

60

80

100

R
el

at
iv

e 
A

bu
nd

an
ce

343.17

= CHO
= CHNO
= CHNOS
= CHOS

7

9

11

13

15

17

19

21

23

343.02 343.07 343.12 343.17 343.22

#C

m/z

CHNO

CHNOS

CHO

CHOS



 

32 

 

CH4O, and 27.6% lost CO2.  The complexity of water soluble AOM precursors makes 

finding patterns and/or trends in the precursors with and without identified fragment ions 

very challenging.  For this reason, we sorted the data with the Koch and Dittmar (2006) 

aromaticity index (AI).  The use of aromaticity as a metric for structural classification 

allows for the classification of aliphatic, olefinic, aromatic, and condensed (poly-) 

aromatic structures.  The AI assumes there is a contribution to the molecular DBE from 

the heteroatoms O, S, and N (e.g. C=O bonds).  This contribution is removed by using an 

alternate DBE equation (DBEAI = 1 + C – O – S – 0.5H).  The equation from Koch and 

Dittmar (2006) is given below (Equation 1).   

AI = DBEAI/CAI = (1 + C – O – S – 0.5H)/(C – O – S – N)                                              (1) 

If DBEAI ≤ 0 or CAI ≤ 0, then AI = 0 

The AI results in values from 0 to 1.5, where the higher AI values indicate more C-C 

double bonds, as seen in Table 2.1.  Most of the studied compounds were aliphatic and 

olefinic.  53.1% were defined as aliphatic (AI = 0); 33.6% were defined as olefinic (0 < 

AI ≤ 0.50); 8.3% were defined as aromatic (0.5 < AI < 0.67); and 5.0% were defined as 

condensed (poly-) aromatics (AI ≥ 0.67) (see the top of Figure 2.3, located in the 

Supplemental Information (2.6)).  The observed lowest relative abundances 
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correspond to aromatic (0.5 < AI < 0.67) and condensed aromatic compounds (AI ≥ 

0.67).  Two van Krevelen plots, with the symbol size scaled to represent the relative 

abundance and colors to represent the four AI groups, are shown in Figure 2.3.  Note the 

fragment ions have similar AI characteristics as the precursor ions.  This is likely because 

most of the losses considered in this study are functional groups and are not main 

structural units.  However, the density of the fragment ions in this figure may indicate a 

limitation of AI.  Similar van Krevelen plots of the precursors are shown for each 

compound group in Figure 2.4, which is located in the Supplemental Information section 

of this chapter (2.6).  The CHNO compounds exhibit the most aromatic character, 

especially with respect to the number of condensed aromatic structures (AI ≥ 0.67).  A 

total of 25 CHNO compounds with an AI ≥ 0.67were observed, representing 61.0% of 

the total condensed aromatic species.  As stated above, the majority of the compounds 

studied are either aliphatic or olefinic.  Aliphatic compounds show the greatest presence 

representing 48.2% of CHO, 39.5% of CHNO, 77.4% of CHOS, and 61.8% of CHNOS 

compounds.  Compounds with olefinic character are the second most prevalent group, 

consisting of 43.1% of CHO, 40.8% of CHNO, 22.5% of CHOS, and 16.2% of CHNOS 

compounds. 

The frequencies of the neutral losses by group and AI value are given in Table 2.1.  

Losses of H2O come from both hydroxyl and carboxyl functional groups which were 

prevalent among the CHO compounds at 43.6% and 22.0% CHNO compounds.  

Molecules that exhibited a water loss were largely (95.5%) olefinic (0 < AI ≤ 0.5).  The 

neutral loss of methanol was observed from 33.8% of CHO compounds and from 23.0% 
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of CHNO compounds.  The loss of CH3OH indicates the presence of methoxy groups, 

likely from hemiacetal/acetal structures which formed between methanol and reactive 

carbonyl functional groups.  Methanol was introduced during the sample handling, but is 

also expected to be naturally present in fog water (Yasmeen et al. 2010; Leriche et al. 

2000).  Thus, the observed hemiacetal and acetal structures may be a result of natural or 

artificial processes (Bateman et al. 2008).  However, the fog sample was rendered basic 

during sample preparation, which could reverse the formation of hemiacetal/acetal that 

occurred under acidic conditions.  83 of the compounds with methanol losses were 

aliphatic (AI = 0), as well as 78 compounds having olefinic character (0 < AI ≤ 0.50).  

Losses of carboxyl groups were dominate in CHO and CHNO compounds.  Similar to the 

trend with water and methanol losses, 92 of the molecules with CO2 losses were aliphatic 

(AI = 0) and 113 had olefinic character (0 < AI ≤ 0.50). 

Nitrate functional groups were of interest in this study because of the numerous and 

highly abundant CHNO compounds in the sample (Mazzoleni et al. 2010).  A total 108 of 

304 CHNO compounds, or 35.5%, exhibited a neutral loss of HNO3 and/or CH3NO3.  As 

for CHNOS compounds, 19 of 173 CHNOS compounds, or 11%, exhibited a neutral loss 

of HNO3 and/or CH3NO3.  Comparison of CHNO and CHNOS compounds that lost a 

nitrate with those that did not indicates that most of the compounds which exhibited the 

losses (99.2%) (Figure 2.2) were not aromatic.  However, there are many
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aliphatic compounds (AI = 0) of very high relative abundance that did not lose a nitrate 

group.   

The large number (196 of 304 compounds or 64.5%) of CHNO species without a nitrate 

suggests that there may be other types of nitrogen containing functional groups present in 

these structures, such as nitro, amine, and imine groups.  Nitrophenols and other CHNO 

compounds with nitro functional groups are expected, however the occurrence of NO and 

NO2 were rare and uncertain.  NO and NO2 losses were observed from nitrophenols 

observed in the range of 138 – 197 u.  Similarly Zhang and Anastasio 2001 reported a 

large amount of inorganic NH4
+, as well as the presence of amino acids and amino 

containing compounds in radiation fog samples from just south of Fresno in the Central 

Valley (Zhang and Anastasio 2001).  The potential for reduced organic nitrogen species 

in aqueous samples has been well documented (Zhang and Anastasio 2001; 2003; De 

Haan et al. 2009; Galloway et al. 2009; Laskin et al. 2009; Noziere et al. 2009; Shapiro et 

al. 2009; Bones et al. 2010; De Haan et al. 2011; Laskin et al. 2010; Noziere et al. 2010). 

In recent studies (Galloway et al. 2009; Shapiro et al. 2009), the formation of light 

absorbing products, from glyoxal, in the presence of ammonium sulfate and ammonium 

nitrate was observed.  Ammonium ions have been shown to act as a catalyst for accretion 

reactions (Noziere et al. 2009; Shapiro et al. 2009; Noziere et al. 2011).  Reactions with 

aldehydes and dicarbonyls (i.e. glyoxal) produce various imidazole compounds (Galloway 

et al. 2009;  Laskin et al. 2010; De Haan et al. 2011)  and  reactions  with  polycarbonyls 

produce imines (Galloway et al. 2009; Bones et al. 2010; Laskin et al. 2010).  The 

reactions of glyoxal and amino acids have shown imidazole and diamine products (De 
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Haan et al. 2009), while reactions involving methylglyoxal and amino acids/methylamine 

have shown imidazole and accretion products (De Haan et al. 2011).  Similarly, reactions 

have been shown to occur with monoterpene oxidation products (Bones et al. 2010; 

Laskin et al. 2010).  These reports and our observation of isolated colored fog AOM 

components, suggests the presence of secondary products from the reaction of NH4
+ or 

NH3 with reactive carbonyls in this sample.  The pH of the fog at the time of collection 

was 6.5.  The abundance of agricultural emissions in the California Central Valley and 

the high partitioning coefficient for NH3 suggests that it or NH4
+ were available for 

reaction potentially forming imidazoles. Two molecular formulas, C16H23NO3 and 

C16H22N2O3,  were  in  common  with  the  laboratory  study  of  limonene/ozonolysis 

SOA  aging  in  the  presence  of  NH3  gas  by Laskin  et  al.  (2010).   The  first 

compound was C16H23NO3 (DBE = 6, RA = 8.47%) at m/z 276.1607, and did not exhibit 

any common neutral losses.  The second compound, C16H22N2O3 (DBE = 7, RA = 

0.63%), was observed at m/z 289.1560.  A loss of CO2 was observed for this compound.  

The absence of a nitrate loss, suggests the N may be reduced, as in amine or imine 

groups, rather than oxidized as in nitrate or nitro groups. 

Organosulfates are of interest because of their prominence in the mass spectra of the 

sample.  As with nitrate functional groups, sulfates are also important because they 

indicate the location of oxygen atoms in the structures.  Analysis of the fragment ions 

resulted in finding losses representing sulfate for 44% of 146 CHOS.  It may be possible 

that some of these CHOS compounds without identified sulfate losses contain non-

terminal sulfate groups (Iinuma et al. 2007).  Losses of sulfate were identified for 11% of 
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173 CHNOS compounds within the study.  A comparison of compounds that lost a 

sulfate moiety and those that did not is shown in Figure 2.2.  As illustrated, the loss of 

sulfate was found most often in CHOS and CHNOS aliphatic (AI = 0) compounds.  

Comparatively, only a few losses of sulfate were observed for the olefins (0 < AI ≤ 0.50) 

and no losses of sulfate were observed for the aromatic molecules (0.50 < AI < 0.67).  

Several aliphatic CHOS compounds of very high relative abundances were observed 

without matching fragment ions representing [M-SO4]-.  Over all of the CHNOS 

compounds (n = 173), 22.5% of them lost either a sulfate or nitrate.  Only two CHNOS 

compounds showed a loss of both a sulfate and a nitrate. 

2.4.2 Fragmentation of Selected SOA Components 

Recent chamber studies of monoterpene derived organosulfates and nitroxy-

organosulfates have been done and formation mechanisms of the probable structures 

were presented (Schmitt-Kopplin et al. 2010; Gao et al. 2006; Iinuma et al. 2007; Surratt 

et al. 2007; Surratt et al. 2008).  Several investigators (Iinuma et al. 2007; Surratt et al. 

2007; Gomez-Gonzalez et al 2008; Surratt et al. 2008; Altieri et al. 2009b) have reported 

observations of organosulfates and nitroxy-organosulfates in ambient samples.  Here, the 

similarities between our observational data and those studies and a few new formulas 

unique to this study are presented.  Due to the mild average temperature of 55 °F in 

Fresno, emissions of terpenes were very likely present.   



 

40 

 

The presence of organosulfates (CHOS), nitroxy-organosulfates (CHNOS), and 

organonitrates (CHNO) in aqueous atmospheric samples have been reported in several 

studies (Gao et al. 2006; Iinuma et al. 2007; Surratt et al. 2007; Gomez-Gonzalez et al. 

2008; Surratt et al. 2008; Altieri et al. 2009b; Altieri et al. 2009a; Mazzoleni et al. 2010; 

Schmitt-Kopplin et al. 2010).  Several of the same molecular formulas were observed in 

this targeted fragmentation study.  The first is an organosulfate at m/z 279.0546 with a 

molecular formula of C10H16O7S (DBE = 3) and relative abundance of 25%.  It was 

previously observed in ambient and laboratory samples (Surratt et al. 2007; Surratt et al. 

2008; Altieri et al. 2009b) and the probable structures were proposed by Surratt and 

colleagues (Surratt et al. 2007; Surratt et al. 2008).  Several fragment ions corresponding 

to the neutral losses of two water molecules (36 u), SO3, and SO4 were observed.  Similar 

fragment ions are expected for other monoterpene oxidation products.  Interestingly, the 

fragment ion that represents a loss of SO4 from this precursor is m/z 183.1027 

(C10H16O3), likely corresponding to pinonic acid.  Similar to m/z 279, another compound 

C11H18O7S with DBE = 3 at m/z 293.0703 with a relative abundance of 4.26% and related 

to C10H16O7S by a difference of CH2 was observed with both losses of SO4 and SO3.  

Additional possible organosulfates were identified, but all of which had lower relative 

abundances.  One was identified as C10H16O8S at m/z 295.0496 with a DBE = 3 and with 

a relative abundance of 0.7%.  Fragment ions representing losses of H2O, SO3, and SO4 

were identified.  This is identical to what was observed for the compound at m/z 

279.0546.  Another possible organosulfate was identified as C10H16O9S at m/z 311.0444 

with a DBE = 3 and with a relative abundance of 0.2%.  It is very similar to the others 
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with respect to DBE and the number of carbon atoms, but no fragment ions matching the 

neutral losses were identified.  Possibly, this is because of the low abundance of the 

precursor ion which would result in fragment ions below the method detection limit.  

Another similar compound, C11H18O8S (DBE = 3), was identified at m/z 309.0652 with a 

relative abundance of 0.83%.  Two CHOS compounds that may represent monoterpene 

“dimers” were found.  The precursor C17H26O5S (DBE = 5), was identified at m/z 

341.1431 (9.97% RA).  Fragment ions corresponding to losses of H2O, CH4O, CO2, and 

SO3 were identified for this compound.  Another compound differs from the last by CH2.  

This organosulfate, C18H28O5S with DBE = 5, was present at m/z 355.1588 with a 

relative abundance of 2.26%.  The only fragment ion observed was a loss of SO3.  Two 

other possible organosulfates were identified at m/z 279.1637 as C13H28O4S (DBE = 0 

and RA = 100%) and at m/z 353.2007 as C16H34O6S (DBE = 0 and RA = 100%).  None 

of the typical neutral losses were observed for either compound. 

A possible nitrooxy-organosulfate was observed at m/z 294.0655 was identified as 

C10H17NO7S (DBE = 3) with a relative abundance of 33%.  A loss of a HNO3 group 

corresponded to it, which is consistent with previous studies (Schmitt-Kopplin et al. 

2010; Gao et al. 2006; Surratt et al. 2007; Surratt et al. 2008).  The same molecular 

formula has been reported in a few studies (Gao et al. 2006; Surratt et al. 2007; Surratt et 

al. 2008; Altieri et al. 2009b; Schmitt-Kopplin et al. 2010).  Chamber studies indicate that 

it was formed from alpha-pinene oxidation (Gao et al. 2006; Surratt et al. 2007; Surratt et 

al. 2008; Schmitt-Kopplin et al. 2010).  However, the same molecular formula could 

result from the oxidation of other monoterpene precursors (Iinuma et al. 2007).  Several 
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different structures have been proposed for this molecule, but Iinuma et al. (2007) and 

Surratt et al. (2008) both proposed nighttime NO3 radical oxidation of monoterpenes.  

Similar reaction pathways might have occurred before or during the fog event sampled.  

Another two compounds included in this fragmentation analysis were observed in both 

ambient and chamber samples (Surratt et al. 2007; Surratt et al. 2008; Schmitt-Kopplin et 

al. 2010).  The first was C10H17NO8S, DBE = 3, at m/z 310.0604 with a relative 

abundance of 7.5%.  A fragment ion representing the loss of HNO3 was observed.  The 

second, C10H17NO9S (DBE = 3), at m/z 326.0555 was observed with a relative abundance 

of 2.6%.  Consistent with the other possible nitrooxy-organosulfate structures, a neutral 

loss  of  HNO3  was  determined  from  the  fragment  ions.  This  compound  was  seen 

 in  both  Schmitt-Kopplin  et  al.  (2010)  and  Surratt  et al.  (2007).  The specific

structures of these compounds depend on the structure of the precursor monoterpene 

and  the  possible  oxidation  mechanism.  Another  CHNOS  compound  that  remains 

largely uncharacterized, but observed previously (Iinuma et al. 2007; Surratt et al. 2008) 

is C10H17NO10S (DBE = 3) with a relative abundance of 22% at m/z 342.0503.  Neither 

of the previous studies proposed a structure for it.  Iinuma et al. (2007) observed a loss of 

HNO3, which is consistent with our finding.  In addition to the HNO3 loss, a CH3NO3 

loss was also observed.  This loss suggests that the nitrate is present as a methyl-nitrate 

substituent on the molecule.  Another molecule, C10H17NO6S (DBE = 3) at m/z 278.0706 

was present with a relative abundance of 4.7%.  However, neither a nitrate or sulfate loss 

was observed.  In any case, this compound cannot contain both nitrate and sulfate 

functional groups because it contains only six oxygen atoms.  Another compound in the 
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same CH2 homologous series, C11H19NO6S (DBE = 3) with 0.72% relative abundance 

was identified at m/z 292.0862.  Despite its lower relative abundance, fragment ions 

corresponding to the losses of CH4O, CO2, and SO3 were observed. 

There are similarities to monoterpene structures with respect to the #C and #H (C10-C11 

and H15-H19) in several of the CHNO compounds.  This may suggest they are derived 

from monoterpenes.  Five NO7 and NO8 compounds with DBE = 3 or 4 and C# = 10 or 

11 were identified:  m/z 274.0934 C11H17NO7 (DBE = 4, RA = 13.82%), m/z 276.1091 

C11H19NO7 (DBE = 3, RA = 7.29%), m/z 276.0727 C10H15NO8 (DBE = 4, RA = 6.58%), 

m/z 290.0884 C11H17NO8 (DBE = 4, RA = 4.02%), and m/z 292.1040 C11H19NO8 (DBE 

= 3, RA = 2.58%).  Fragment ions representing losses of HNO3 and CH3NO3 were found 

for all five analytes, thus these molecules have methyl-nitrate functional groups.  Methyl-

nitrate functional groups have been proposed (Surratt et al. 2007; Surratt et al. 2008); 

however, none of the previous studies reported a neutral loss of CH3NO3.  The two NO7 

compounds differ by only 2 hydrogen atoms which equates to one DBE.  Losses of CO2, 

and CO2+H2O (62 u) were observed for C11H17NO7 and a loss of two water molecules (36 

u) were observed for C11H19NO7.  This indicates that the double bond in the CO2 

functional group is likely responsible for the difference in DBE values.  Two of the three 

NO8 compounds, C10H15NO8 and C11H17NO8, differ by a CH2 unit and C11H19NO8 differs 

by two hydrogen atoms from C11H17NO8.  In addition to their nitrate losses, C10H15NO8 

lost a CO2+H2O (62 u) and C11H19NO8 lost two water molecules (36 u).  CHNO 

compounds with two nitrogen atoms were also observed.  N2O7 and N2O8 compounds 

may be the result of monoterpene oxidation products with two nitrate groups.  At m/z 
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275.0886, C10H16N2O7 (DBE = 4) was identified with a relative abundance of 1.51%.  A 

fragment ion corresponding to the loss of HNO3 was observed.  A compound with similar 

characteristics was identified at m/z 289.1046, C11H18N2O7 (DBE = 4) with 0.63% 

relative abundance, however, no fragment ions were observed.  Two low abundance (< 

1%) N2O8 compounds were identified as C9H14N2O8 (DBE = 4) and C10H16N2O8 (DBE = 

4) at m/z 277.0674 and m/z 291.0838.  Fragment ions indicating the loss of HNO3 were 

found for C9H14N2O8, but not for C10H16N2O8.  The low relative abundance of these 

compounds is a probable reason for not finding any relevant fragment ions.   

Three possible CHNO monoterpene SOA “dimers” were observed.  The first was 

observed at m/z 352.1770 and identified as C18H27NO6 (DBE = 6, RA = 0.87%).   The 

second, m/z 354.1926 was identified as C18H29NO6 (DBE = 5, RA = 0.73%).  The third, 

m/z 354.1562 was identified as C17H25NO7 (DBE = 6) with relative abundance of 0.91%.  

Fragment ions corresponding to losses of CO2, CO2+H2O, HNO3, and CH3NO3 were 

observed for each of these compounds.  The loss of a methyl-nitrate for each of these 

three possible “dimers” suggests that they have a methyl-nitrate functional group.  

Additional fragment ions, such as a loss of CH3OH+CO2 for C18H27NO6, losses of H2O 

and CH3OH for C18H29NO6, and losses of H2O, CH3OH, and CH3OH+CO2 for 

C17H25NO7 were observed.  As stated previously, the losses of CH3OH indicate the 

presence of acetal/hemiacetal containing structures.   

Fifteen common molecular formulas between this study and recent ultrahigh resolution 

MS analysis of alpha-pinene/ozonolysis SOA (Putman et al. 2011) were found in a mass 
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range of 292-356 u.  Although the molecular formulas are identical, they may represent 

different isomeric structures.  The first, identified as C17H26O7 (DBE = 5) at m/z 

341.1609 with 13.39% relative abundance.  The second was observed at m/z 355.1767 

and was identified as C18H28O7 (DBE = 5) with a relative abundance of 1.61%.  Neutral 

losses corresponding to H2O, CH3OH, CO2, CO2+H2O (62 u), CH3OH+CO2 (76 u), and 

double CO2 (88 u) were observed.  The two compounds may have similar structures 

because the same losses were observed for each of them and they differ by CH2.  The 

third compound observed at m/z 353.1611 and identified as C18H26O7 (DBE = 6) with 

1.80% relative abundance appears to be similar to the first and second compounds, 

suggesting that they are structurally related.  This molecule differs from C18H28O7 by two 

hydrogen atoms and from C17H26O7 by a carbon atom.  Fragment ions corresponding to 

losses of H2O, CO2, and CO2+H2O (62 u) were observed for this compound.  These 

losses were also seen for the first and second compounds.  The fourth, C17H26O6 (DBE = 

5) with a relative abundance of 0.45% was observed at m/z 325.1662.  Losses of CO2 and 

CO2+H2O (62 u) were identified for it.  Several additional common compounds were 

found with low relative abundance (eight with RA < 4%).  Eight C16 compounds were in 

common with the Putman et al. 2011 alpha-pinene/ozonolysis SOA.(Putman  et al. 2011)  

They may also represent monoterpene SOA components.  These C16 compounds range 

from O5 – O8 with DBE = 5 - 6, with two compounds per oxygen number, each differing 

by two hydrogen atoms or one DBE.  Fragment ions were observed for 6 of the 8 C16 

compounds corresponding to neutral losses including H2O, CH3OH, double H2O, CO2, 

lrmazzol
Cross-Out
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CO2+H2O, and CH3OH+CO2.  These CHO compounds may also be present as the core of 

more functionalized compounds.  

2.4.3 Atmospheric Implications and Oxidation State 

Recently, Kroll et al. (2011) proposed the use of the average carbon oxidation state (OSc) 

to describe the oxidative aging of atmospheric organic aerosols.  Due to the complex 

nature of atmospheric water-soluble organic compounds, the OSc is estimated solely from 

the total O:C and H:C ratios.  In this way the oxygen is assumed to be bonded to carbon.  

Further there is a great deal of uncertainty in the effect of N on the OSc because both 

oxidized N (in the form of nitro and nitrate functional groups) and reduced N (in the form 

of amines, imines, and imidazoles) are expected in aerosol organic compounds.  Kroll et 

al. (2011) suggested that nitrogen containing functional groups represent only a small 

part of total WSOC and thus they would have a small effect on the OSc estimate.  

However, in this fog sample, a substantial fraction of the total number of identified AOM 

species is organic nitrogen containing compounds (Mazzoleni et al. 2010).  Thus, the 

presence of various nitrogen and sulfur containing functional groups may have a 

significant effect on the estimate of the OSc.  For example, both nitrogen and sulfur in the 

form of ONO2 and OSO3 were observed in this study.  These functional groups contain 2 

-3 non-carbon associated oxygen atoms. 

Less than half of all of the CHNO and CHNOS compounds present in this sample 

exhibited a loss of a nitrate functional group, there might be other nitrogen containing 
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functional groups present, such as amines, imines, and nitros (as described above).  As 

with the CHNO and CHNOS compounds, less than half of the CHOS and CHNOS 

compounds showed a neutral sulfate loss.  This suggests a presence of other types of 

sulfur functional groups.  It is possible there may be molecules with an internal sulfate 

bridge (Iinuma et al. 2007) or a sulfonate functional group.  Both of these contain oxygen 

atoms which are not directly bonded to carbon.  Further work is needed to identify 

additional functional groups and to overcome some of the detection limit issues observed 

in this study. 

To gain a more concrete understanding of the chemical composition and the type and 

frequency of various N- and S-containing functional groups, the use of both (-) and (+) 

mode ultrahigh-resolution MS on the same sample is necessary.  In fact, a recent 

ultrahigh-resolution MS study on rainwater showed that (-) mode MS only accounted for 

25% of the total N-containing species, while (+) mode accounted for the other 75% 

(Altieri et al. 2009a).  Also, the presence of reduced S-containing functional groups in the 

(+) mode is likely.  However, mass spectrometry cannot provide all of the information 

regarding the nature of the all of the functional groups present.  Other analytical 

techniques, in addition to ultrahigh-resolution mass spectrometry, are required in order to 

determine the presence of the various types of nitrogen and sulfur containing molecules. 
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Additional figures for data visualization are also provided in the following pages. 
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Figure 2.3: A comparison of all identified precursor compounds (top) and fragment ions (bottom) is shown here.  
A calculation of aromaticity index (AI) based on Koch et al.(Koch and Dittmar 2006) was performed and is 
reflected by the color coding of the points on these Van Krevelen diagrams.  An explanation of the color coding 
can be seen in Table 2.1.  The size of the points is dependent on the percent relative abundance for each.  In both 
the top and bottom of the diagram, a few points of low relative abundance lie beyond the O:C = 1.5 cutoff. 
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Figure 2.4: A comparison of precursor compounds from each compound class is shown here.  A calculation of 
aromaticity index (AI) based on Koch and Dittmar ( 2006) was performed and is reflected by the color coding of 
the points on these Van Krevelen diagrams.  An explanation of the color coding can be seen in Table 2.1.  The 
size of the points is dependent on the percent relative abundance for each.  In the CHNOS and CHNO sections 
of the figure, a few points of low relative abundance lie beyond the O:C = 1.5 cutoff. 
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2.7 Additional Fragmentation Studies 

This section was not included with the rest of Chapter 2 for submission to  

Environmental Science and Technology (ACS journal). 

A total of 22 neutral losses were evaluated in order to describe the occurrence of the 

fragmentation patterns observed in the CID spectra of the various scan ranges.  The 

losses were divided into 2 categories: priority and additional losses.  The fragmentation 

results presented in Chapter 2 were of higher priority because they involved neutral 

losses from specific functional groups or moieties (e.g., H2O, CH3OH, CO2, nitrate, and 

sulfate).  These losses are collectively referred to as the priority losses.  The additional 

losses which are not directly related to functional groups (e.g, C3H8, CO, CH2O, etc.) are 

collectively referred to as additional losses. Consistent with Chapter 2, the results are 

discussed in terms of the calculated Aromaticity Index (AI) (Koch and Dittmar 2006) 

which was discussed in Chapter 2.  The results in both Chapter 2 and this section of 

Chapter 3 involve the same precursors, the majority of which appear to be aliphatic (AI = 

0) or olefinic (0 < AI < 0.50) in structure.  This section will briefly summarize the losses 

presented in Chapter 2 (see Chapter 2 for all additional information on these losses), 

while using them as a context to help describe the additional losses. 

As presented in Figure 2.9, a majority of the priority losses for CHO compounds were 

associated with AI defined aliphatic or olefinic groups.  Approximately 30% of the AI 

defined aromatic CHO compounds were associated with a loss of a CO2 group.  Over all 
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of the CHO compounds, the highest frequency of losses was of CO2 from olefinic 

compounds.  Also important are the combination losses of CO2+H2O, CH4O+CO2, and 

double CO2.  Their presence here confirms the polyacidic nature of AOM (Saxena and 

Hildemann 1996; Decesari et al. 2000; Cappiello et al. 2003).   

Losses of secondary priority for CHO compounds are presented in Figure 2.10.  From 

this figure it can be seen that the olefinic compounds had a higher frequency of losses for 

most of the neutral losses than any other AI class. 

 

Figure 2.9: Priority Losses for CHO Compounds.  The frequency of neutral losses for CHO separated by 
aromaticity index (AI)(Koch and Dittmar 2006). 

This was not the case with the losses corresponding to CH2O2 and C2H2O4 from aliphatic 

precursors.  The only loss seen from aromatic precursors was CH2O2, which was only 

seen ~12% of the time.  There were no losses from condensed aromatic species.  This is 
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not a surprise as AOM is typically aliphatic.  The highest frequency of losses was 

observed for aliphatic compounds that lost CH2O2 and olefinic compounds that lost C3H8.  

Comparison of Figures 2.9 and 2.10 indicates that the neutral loss of CO2 from olefinic 

precursors is the most important loss for the CHO compounds.  However, the loss of 

CH2O2 has a higher frequency for aliphatic compounds than CO2.  The loss of CH2O2 is 

suspected to be from a carboxyl group as well.  Its origin is likely due to a nonionized 

carboxyl group on a polyacidic molecule which experienced a rearrangement upon 

fragmentation. 

 

Figure 2.10: Additional Losses for CHO Compounds.  The frequency of neutral losses for CHO separated by 
aromaticity index (AI)(Koch and Dittmar 2006). 

Next, the losses from the CHNO compounds are presented in Figures 2.11 and 2.12.  A 
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for 48 % of the compounds.  This loss is also important for the olefinic compounds, 

which exhibited this loss about 37% of the time.  The loss of CO2 was observed for 43% 

of the olefinic CHNO compounds and for 37% of aromatic compounds.  This is the loss 

of the highest frequency for aromatic CHNO compounds and is attributed to the 

polyacidic nature of AOM (Saxena and Hildemann 1996; Decesari et al. 2000; Cappiello 

et al. 2003). Interestingly, the olefinic CHNO compounds have the highest frequency of 

losses for nearly every additional loss presented in Figure 2.12.  The highest frequency of 

a type of loss is CH2O2 followed by C3H8 for olefinic compounds.  All of the losses 

associated with the other AI categories were observed less than 20% of the time.  The 

only loss seen from the condensed aromatic CHNO structures was CO and was only seen 

about 4% of the time. 

The comparison of Figures 2.11 and 2.12 indicates that the loss of CH2O2 from olefinic 

CHNO compounds is just as important as the loss of HNO3 from aliphatic CHNO 

compounds.  It is also worth mentioning that the loss of CO2 is as important as the loss of 

C3H8 for olefinic CHNO compounds.  This may indicate the presence of alkyl chains.   

CHOS priority losses are presented below in Figure 2.13.  None of the AI defined 

aromatic or condensed aromatic CHOS compounds exhibited any of the priority losses.  

The most important loss was that of SO3 from both aliphatic and olefinic compounds.  All 

other losses were observed to be less than 20% and the only losses from olefinic 

compounds are SO3 and SO4.  It is interesting to compare the loss of SO3 with the loss of 

SO4. 
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Figure 2.11: Priority Losses for CHNO Compounds.  The frequency of neutral losses for CHNO separated by 
aromaticity index (AI) (Koch and Dittmar 2006). 

 

 

Figure 2.12: Additional Losses for CHNO Compounds.  The frequency of neutral losses for CHNO separated by 
aromaticity index (AI) (Koch and Dittmar 2006). 
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Figure 2.13: Priority Losses for CHOS Compounds.  The frequency of neutral losses for CHOS separated by 
aromaticity index (AI) (Koch and Dittmar 2006) 

The discrepancy suggests that the sulfate groups more often fragment to leave an oxygen 

atom on the main structure of the molecule during fragmentation rather than cleave the 

whole sulfate group. 

All of the losses associated with the CHOS compounds shown in Figure 2.14 are from 

aliphatic precursors.  However, the frequencies of all of the losses were less than 20%, 

and most of them were less than 12%.  The two most prevalent losses were C3H8 

followed by CH2O2.  A comparison between Figures 2.13 and 2.14 indicates that the loss 

of SO3 was by far the most important loss for both aliphatic and olefinic compounds.  In 

fact, it is over twice as frequent as any other loss. 
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Figure 2.14: Additional Losses for CHOS Compounds.  The frequency of neutral losses for CHOS separated by 
aromaticity index (AI) (Koch and Dittmar 2006) 

CHNOS compounds were matched with neutral losses with a low frequency (Figure 

2.15).  All of the priority losses were less than 15%.  Losses from aliphatic compounds 

appeared to be the most common.  HNO3 and SO3 losses from aliphatic precursors were 

the most frequent over all.  The only aromatic loss was that of H2O, seen 9% of the time 

and the only condensed aromatic loss was SO3, which was seen 10% of the time.  The 

low frequency of the SO3 losses is likely an explanation for the lack of any SO4 losses 

because the presence of SO4 losses is consistently at a much lower frequency than that of 

SO3.  Additional losses from CHNOS compounds were even less frequent (Figure 2.16) 

than the priority losses shown in Figure 2.15.  All losses in Figure 2.16 were seen less 

than 8% of the time.  The most frequent losses were CH2O2 at 7.9% from aliphatic 

compounds and CH2O at 7.7% from the olefinic compounds.   
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Figure 2.16: Additional Losses for CHNOS Compounds.  The frequency of neutral losses for CHNOS separated 
by aromaticity index (AI) (Koch and Dittmar 2006). 

In all, between Figures 2.15 and 2.16, it can be seen that the only loss associated with the 

AI defined aromatic compounds is H2O and the only loss associated with the AI defined 

condensed aromatic compound is SO3. 

Earlier in Chapter 2, the monoterpene derived compounds were presented. These 

compounds are defined as non-volatile atmospheric oxidation products.  The compounds 

of particular interest are the monoterpene derived organosulfates and nitroxy-

organosulfates and have been reported previously in the literature (Iinuma et al. 2007; 

Surratt et al. 2007; Gomez-Gonzalez et al. 2008; Surratt et al. 2008; Schmitt-Kopplin et 

al. 2010).  The only compound of this type with additional neutral losses was 
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the losses of HNO3 and CH3NO3 which were mentioned earlier in Chapter 2.  To expand 

our analysis of the monoterpene derived compounds, the common molecular formulas in 

the mass range of 292-356 u between this study and a recent study of alpha-

pinene/ozonolysis SOA (Putman et al. 2011) are presented.  Several observations were 

also discussed earlier in Chapter 2. Although the molecular formulas of these compounds 

are identical, they may represent different isomeric structures.  These compounds had a 

carbon atom range of C16-C18 and oxygen atom range of O4-O8.  The frequency of the 

priority losses for these CHO compounds can be seen in Figure 2.17.  All of these CHO 

precursors fell into the aliphatic AI defined category.  The losses with the highest 

frequencies were CO2 which were detected for 84% of the compounds and the 

combination loss of CO2+H2O which was detected for 78% of the compounds.  All of the 

other losses were detected less than 55% of the time, however, losses of H2O, 

CH4O+CO2, double CO2, and CH4O were also important losses from these compounds.  

The neutral losses seen in Figure 2.18 were less frequent than those presented in Figure 

2.17.  From this group, the most notable losses were CH2O2 and C2H4O2 which occurred 

53% of the time.  A comparison of the two figures (2.17 and 2.18) indicates that the 

frequency of these two losses were similar with the loss of H2O; however, the losses of 

CO2 and the combination loss of CO2+H2O remain the most important losses for these 

suspected CHO monoterpene derivatives. 
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Figure 2.18: Frequency of additional losses for previously reported CHO monoterpene derivatives. 

A comparison of selected neutral fragmentation losses by compound group and AI are 

presented below in Table 2.2.  The losses associated with CHNOS and CHOS 

compounds were almost entirely the AI defined aliphatic compounds (AI = 0).  The 

losses are presented with comparison to CO2 for relative significance. 

The process of matching fragment ions to precursors involved first generating a list of 

likely neutral losses.  If a precursor ion were to exhibit a certain neutral loss, it would 

result in a certain fragment ion formula.  Possible fragment ion formulas were generated 

for every precursor ion corresponding to each neutral loss.  The list of actual fragment ion 

formulas was then matched to a list of possible fragment ion formulas on a per scan basis. 
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Table 2.2: Comparison of Additional Neutral Losses. 

 

In general, the low molecular weight neutral losses result in matches between fragment 

and precursor ions with good certainty.  However when higher mass differences are 

observed between fragment and precursor ions, they may represent more than 1 expected 

neutral loss and thus more than one match between the ions is possible.  In other words, a 

fragment ion of a certain formula and m/z could result from more than one precursor 

being fragmented, due to different neutral losses.  Also, a precursor could be assigned 

two fragment ions of the same nominal mass.  Examples of the neutral losses with the 

same nominal mass, but different exact masses include:  CH2O and C2H6, CO2 and C3H8, 

and C3H4O2 and C5H12.  The values shown in Table 2.2 for each of these sets are very 

similar, with the exception of the CO2 losses from aromatic compounds (0.50 < AI < 

0.67).  There is no way to verify that one or the other, or both losses occurred.  In the case 

Fragmentation Losses 
AI Value Group CH2O C2H6 C3H8 CO2 C5H12 C3H4O2 

AI = 0  CHO (n = 94) 15 15 43 43 16 17 
   CHNO (n = 120) 7 7 22 25 3 3 

"Aliphatic"  CHNOS (n = 113) 6 6 4 7 0 0 
   CHOS (n = 107) 12 12 20 17 6 5 

0 < AI < 0.50  CHO (n = 84) 34 33 50 58 28 33 
   CHNO (n = 124) 31 33 53 53 15 20 

"Olefinic"  CHNOS (n = 39) 3 2 1 2 0 0 
   CHOS (n = 28) 0 0 0 0 0 0 

0.50 < AI < 0.67  CHO (n = 16) 0 0 0 5 0 0 
   CHNO (n = 35) 5 2 1 13 0 0 

"Aromatic"  CHNOS (n = 11) 0 0 0 0 0 0 
   CHOS (n = 6) 0 0 0 0 0 0 

AI ≥ 0.67  CHO (n = 1) 0 0 0 0 0 0 
   CHNO (n = 25) 0 0 0 3 0 0 

"Condensed  CHNOS (n = 10) 0 0 0 0 0 0 
Aromatic"  CHOS (n = 5) 0 0 0 0 0 0 
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of CO2 and C3H8, for example, CO2 may be more likely because of the polyacidic nature 

of water-soluble atmospheric organic matter.  However, van Krevelen diagrams can be 

used to see the overall differences between the different groups of precursors.  Figure 

2.19 represents a comparison of the precursors affiliated with each of the neutral losses 

with the same nominal masses.  For CH2O and C2H6, there are 59 precursors that share 

these two losses, while 54 precursors have only CH2O and 51 have only C2H6.  CO2 and 

C3H8 share 99 precursors.  CO2 is lost from 127 unique precursors and C3H8 is lost from 

95.  C3H4O2 and C5H12 a shown to be lost from 17 of the same precursors, while C3H4O2 

is lost from 61 unique precursors and C5H12 is lost from 51 unique precursors. 

In each of these three cases, the comparison is between an alkyl loss and an oxygen 

containing loss.  It can be seen that some of the precursors corresponding to the alkyl 

losses have a larger H:C and a smaller O:C, however, it is important to note that there are 

many precursors that occupy the same region of both parts of the diagram.  When this is 

the case, it is hard to say which loss actually happened.  The fact that some of the 

precursors showing alkyl losses occupy a different region of the diagrams would make 

sense, as compounds exhibiting alkyl losses should have less oxygen and more hydrogen 

than compounds exhibiting oxygenated losses.  This would suggest that in some cases, 

both losses may have occurred.  In addition, all of the precursors corresponding to the 

alkyl losses analyzed have similar H:C and O:C ratios. 
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To better characterize the precursors from which the alkyl losses originated, it was 

necessary to look for multiple alkyl losses from the same compound (Table 2.2).  This 

represents the presence of alkyl chains of varying length.  Again, AI was used to better 

understand the structure of the precursors.  The majority of CHO and CHNO compounds 

to exhibit multiple alkyl losses have olefinic (0 < AI < 0.50) character, however, there are 

some aliphatic (AI = 0) compounds, especially with regard to the CHO compounds 

(Table 2.3).  Interestingly, all of the CHOS compounds to exhibit multiple alkyl losses 

are aliphatic.  Very few multiple alkyl losses were observed for CHNOS compounds, 

suggesting that alkyl chains are unimportant for this compound class.  Also, as expected 

the alkyl losses appear to be unimportant when considering aromatic compounds (0.50 < 

AI < 0.67). 
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3 Analysis of Nitrophenols and Other Selected Compounds 

3.1 LC/MS Methodology 

Many nitrophenol compounds were present in high relative abundance in the fog water 

sample.  CID mass spectra were collected at m/z 138, 152, 166, 183, and 197.  The goal 

of developing LC/MS methodology was to use chromatography to remove isobaric 

interferences from the nominal masses representing the nitrophenols.  This would isolate 

the nitrophenols in the time domain, making interpretation of the fragmentation data 

more reliable. 

3.1.1 Nitrophenol Quantitation 

Calibration levels for the four nitrophenol standards (4-nitrophenol, 3-methyl-4-

nitrophenol, 2,4-dinitrophenol, and 2-methyl-4,6-dinitrophenol) were made in a 50:50 

ACN:H2O solvent mix.  The calibration levels for each ranged from 0.5-20.0 ng/µL. 

 

Table 3.1: Nitrophenol standard calibration level concentrations 

Compound 
Calibration Levels (ng/µL) 
0.05 0.20 1.0 2.5 5.0 10.0 15.0 20.0 

4-nitrophenol 0.063 0.250 1.250 3.125 6.250 12.500 18.750 25.000 
3-methyl-4-nitrophenol 0.065 0.258 1.290 3.225 6.450 12.900 19.350 25.800 
2,4-dinitrophenol 0.056 0.222 1.110 2.775 5.550 11.100 16.650 22.200 
2-methyl-4,6-
dinitrophenol 

0.054 0.216 1.080 2.700 5.400 10.800 16.200 21.600 
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An LC pump solvent gradient program was designed for the fog water sample matrix in 

order to prevent the nitrophenols from coeluting, while allowing the more aliphatic 

organic matter to elute off the PFP column before the nitrophenols and the more aromatic 

organic matter to elute after the nitrophenols.  This is all with the main goal of having the 

nitrophenols fairly isolated while they elute.  The LC solvents used were ACN with 0.1% 

formic acid and H2O with 0.1% formic acid. Formic acid concentrations of 0.2% and 

0.3% were also tried, however 0.1% formic acid yielded the best results.  The solvent 

gradient was created to never exceed 65% ACN in order to keep the PFP column 

properties constant.  The nitrophenols were found to elute from the column at a solvent 

ratio of about 70/30 H2O/ACN. 

Table 3.2: LCQ Solvent Gradient Program 

Time 
(min) 

% 
ACN 

% 
H2O 

0 - 2.0 0.0 100.0 
6.5 - 8.5 30.0 70.0 
18.5 45.0 55.0 
20.0 - 25.0 60.0 40.0 
25.1 - 29.0 0.0 100.0 

The gradient program was created and tested using the prepared standard solutions as 

well as fog water samples.  Standards were run first, to identify retention times of the four 

compounds.  Due to the complexity of the sample matrix, these retention times would 

change slightly when running the sample.  After the sample matrix showed the presence 

of each of the nitrophenols, a nitrophenol spiked sample (80/20 sample/10 ng/µL 

nitrophenol standard solution) was run to confirm their presence. 
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Due to the fog water sample complexity it was necessary to use the most abundant 

fragment ion from each nitrophenol for quantitative purposes.  Otherwise, there would be 

no way of knowing if the parent ion peak abundance was caused by only one compound.  

In the case of these nitrophenols, the most abundant fragment ion for each was due to the 

loss of a NO radical [M-30].  In order to get the best results, it was necessary to optimize 

both the isolation widths and the collision energies for each of the nitrophenol 

compounds.  The optimized settings can be seen in the table below. 

Table 3.3: MS method parameters 

Compound m/z RT  
(min) 

Collision 
Energy 

Iso. 
Width 
(m/z) 

Fragment 
Ion (m/z) 

4-nitrophenol 138 7.19 22.0 1.0 108 
3-methyl-4-nitrophenol 152 8.12 22.0 1.0 122 
2,4-dinitrophenol 183 8.00 22.0 1.0 153 
2-methyl-4,6-
dinitrophenol 197 10.20 26.0 1.0 167 

 

Now that all of the LC method settings were optimized, it was necessary to re-tune the 

LCQ to ensure the best instrument settings.  The objective of re-tuning was to optimize 

the front end ion optics of the mass spectrometer as well as the electrospray ionization 

parameters.  This was done by direct infusion into the ESI via the syringe pump using the 

10 ng/µL nitrophenol calibration standard.  The instrument was tuned using a 30/70 

ACN/H2O solvent mixture from the LC pump because this was the approximate solvent 

concentration that causes the nitrophenols to elute from the column.  After re-tuning, all 
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of the method settings were confirmed first with standards and second with the sample 

matrix. 

All standards were then run in triplicate for the creation of a calibration curve for each 

nitrophenol standard.  The spray voltage was -3.5 kV.  Using Xcalibur: Quan Browser, 

calibration curves were created by selecting the peaks manually for integration.  Fog 

water samples were then run and treated as unknowns in Quan Browser.  The nitrophenol 

peaks were again selected manually for integration, allowing for quantitation. 

3.1.2 Exploration of Higher Molecular Weight Compounds 

Included in the instrument method used to quantitate the nitrophenols present were many 

larger molecular weight compounds (m/z 200-400).  These compounds eluted from the 

column after the nitrophenols and were of interest because they had the highest relative 

abundance in the last half of the run.  The goal was to perform an estimated quantitation 

of these compounds, using the calibration curve created for 4-nitrophenol.  Other than 

that, the quantitation was to be done in the same manner as the nitrophenols, by using the 

fragment with the highest relative abundance.  The first group of compounds was 

identified to be linear alkylbenzene sulfonates (LAS), while the rest remain unknown.  

Due to the presence of multiple peaks for each LAS compound and the co-elution of the 

other unknowns over a span of three minutes, quantitation was not possible.  To resolve 

this issue, more work must be done on the solvent gradient program. 
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Table 3.4: Higher molecular weight compounds 

Compound m/z RT  (min) Collision 
Energy 

Iso. 
Width 
(m/z) 

Fragment 
Ion (m/z) 

LAS - 1 297 17.40 - 18.20 27.0 1.0 183 
LAS - 2 311 19.00 - 20.10 27.0 1.0 183 
LAS - 3 325 20.33 - 21.00 27.0 1.0 183 
LAS - 4 339 21.07 - 21.57 27.0 1.0 183 
Unknown - 1 289 23.20 - 26.50 25.0 1.0 175 
Unknown - 2 305 23.20 - 26.50 25.0 1.0 175 
Unknown - 3 357 23.20 - 26.50 25.0 1.0 289 
Unknown - 4 373 23.20 - 26.50 25.0 1.0 305 

 

3.2 FT-ICR-MS Analysis of Nitrophenols Found Between 100-200 u 

3.2.1 Nitrophenol Analysis 

As mentioned above many nitrophenol compounds were present in high relative 

abundance in the fog water sample.  CID mass spectra were collected at m/z 138, 152, 

166, 183, and 197.  These areas were selected because they contained high relative 

abundance nitrophenols.  Any fragment ions not mentioned are most likely from 

precursors other than those mentioned here.  The simplest was identified to be the mono-

substituted nitrophenol, C6H5NO3, with DBE = 5 at m/z 138.0197.  No fragmentation was 

observed.  This was probably due to low collision energy in the linear ion trap.  Figure 

3.1 gives a possible structure to this nitrophenol, however, the exact substitution of the 

nitro group cannot be confirmed.  Based on previous studies, it is likely that this is either 

2- or 4-nitrophenol. 
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Figure 3.1: Possible nitrophenol structure of m/z 138 

 

The next nitrophenol was identified to be C7H7NO3 at m/z 152.0353 with DBE = 5 and 

100% RA.  The fragment peak at m/z 122.0373 [M-29.998] was identified as C7H7O2 

(DBE = 5) and was suspected to be a loss of NO radical.  Bagglio et al. observes similar 

behavior from nitrophenols (1999).  Another fragment ion was identified at m/z 137.0118 

[M-15.0235] to be C6H4NO3 (DBE = 6) and is likely the result of a CH3 radical loss.  

Formula assignment for these fragment peaks was only possible by allowing radical 

losses.  This is the case for the rest of the nitrophenols presented here that exhibit radical 

losses.  The CID spectra for m/z 152 can be seen in Figure 3.2. 
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From this data, an exact substitution pattern for the structure of this nitrophenol cannot be 

confirmed.  A structure with a possible substitution pattern was given in Sancho et al. 

(2002) (Figure 3.3). 

N
OO

O
 

Figure 3.3: Possible structure of 3-methyl-4-nitrophenol 

 

Another nitrophenol at m/z 166.0510, C8H9NO3, was identified with DBE = 5 and 

relative abundance of 100%.  The CID spectra can be seen in Figure 3.4.  The fragment 

ion peak present at m/z 136.0530 [M-29.998] was identified as C8H9O2 and is likely a 

loss of NO radical.  The fragment peak at m/z 151.0275 [M-15.0235] was identified as 

C7H6NO3 (DBE = 6) and is probably the result of a loss of a CH3 radical.  The fragment 

ion identified as C8H8NO2 (DBE = 6) at m/z 149.0482 [M-17.002736] could be a loss of 

an OH radical, however, the mechanism is not known.  The fragment peak at m/z 

138.0197 [M-28.0313], C6H5NO3 (DBE = 5), was identified to be a loss of an ethyl group 

(C2H4), providing enough insight to propose a structure (Figure 3.5).  As with the other 

structures, the exact substitution pattern could not be confirmed. 
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Figure 3.5: Possible structure of the nitrophenol at m/z 166 

All three of the nitrophenols presented above differ by only a CH2 group, putting them all 

in the same homologous series.  The next homologous series of interest was a group of 

dinitrophenols.  The peak at m/z 183.0047 was identified to be C6H4N2O5 with a DBE = 

6 and a relative abundance of 36.9%.  This is the first of the dinitrophenol compounds 

identified.  The CID spectra can be seen in Figure 3.6.  A close up of the m/z 183 

precursor ions can be seen in Figure 3.7.   

The fragment peak at m/z 153.0067 [M-29.998] was identified to be C6H4NO4 (DBE = 

6), the suspected characteristic loss of a NO radical.  A double loss of NO radicals was 

identified at m/z 123.0088 [M-59.996] to be C6H4O3 with DBE = 5.  Another fragment 

ion peak was identified at m/z 137.0118 [M-45.9929] to be C6H3NO3 (DBE = 6).  This 

fragment is likely the result of a loss of a NO2 radical.  The possible structure of this 

dinitrophenol can be seen in Figure 3.8. 
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Figure 3.8: Possible structure of the dinitrophenol at m/z 183.0047 

 

The next dinitrophenol in the homologous series was identified as C7H6N2O5 at m/z 

197.0204 with a DBE = 6 and a relative abundance of 70.9%.  The CID spectrum is 

presented in Figure 3.9.  A zoomed in view of m/z 197 shows the different precursor ions 

(Figure 3.10). 

A loss of [M-29.998] was identified at m/z 167.0224 as C7H6NO4 (DBE = 6) and is the 

result of the suspected characteristic NO radical loss, consistent with the other 

nitrophenols identified.  The proposed structure of this dinitrophenol is presented below 

(Figure 3.11) and as with all the other nitrophenol structures, the exact substitution 

cannot be confirmed.  A fragment peak at m/z 137.0244 [M-59.996] was identified as 

C7H6O3 with DBE = 5, which is likely to be the result of a loss of two NO radical groups.  

The fragment peak at m/z 180.0177, [M-17.0027], could be a loss of an OH radical from 

the dinitrophenol at m/z 197.0204.  However, if it is an OH radical loss from the 

dinitrophenol, the mechanism remains unknown. 
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Figure 3.11: Possible structure of the dinitrophenol at m/z 197 

3.2.2 NO Loss Mechanism 

All of the nitrophenols studied up to this point have exhibited an apparent NO radical loss 

[M-29.998] and all of the alkyl substituted nitrophenols showed a suspected methyl radical 

loss [M- 15.0235].  It is also suspected that there is an OH radical loss from the 

dinitrophenol at m/z 197.  In order for these losses to occur, there must be some sort of 

rearrangement and radical loss upon fragmentation.  Based on Baglio et al. (1999), a 

mechanism was proposed for the loss of NO radical (Figure 3.12). 
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Figure 3.12: Proposed NO radical loss mechanism 
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 An odd-electron loss from an even electron ion is rare when using electrospray 

ionization (ESI) and goes against the even electron rule.  So, in order to confirm this there 

was a need to look into the literature to find some more cases of this observed behavior. 

Levsen et al. (2007) describes the fragmentation patterns of nitroaromatic compounds 

using ESI-MS.  They describe that the major fragmentation pathways for nitroaromatic 

compounds is by a loss of NO and/or NO2 radicals.  This is because the odd-electron ions 

produced are more stable than if even-electron ions were produced.  Using ESI-MS, 

Schmidt et al. (2006) also talks about the fragmentation behavior of nitroaromatic 

compounds.  Their work gives specific nitrophenol examples (3,5-dinitrophenol, 2,4-

dinitrophenol, and 2-methyl-3-nitrophenol).  They also show a loss of NO and/or NO2 

radicals which result in a distonic product ion.  The possible mechanism is not as clearly 

stated as in Baglio et al. (1999).  However the resulting product ion appears to be same.   

The Schmidt et al. (2006) paper gives the fragmentation pattern up through MS4 analysis.  

This allows them to distinguish between the different substitutions of 3,5-DNP and 2,4-

DNP (m/z 183).  This is only possible by MS3 and beyond, as the MS2 ions that result 

from both parents are the same (m/z 137 and 153).  Since our analysis only involves MS2 

fragmentation, we cannot say that we have one or the other present and we cannot rule 

out that we do or do not have a mixture of the two, as we see fragments at both m/z 137 

[M-NO2] and 153 [M-NO]. 



 

90 

 

The suspected loss of CH3 with alkyl substituted nitrophenols is still under investigation.  

However, some work was found on the possible loss of an OH radical.  Baglio et al 

(1999) describes this when an alkyl group has an ortho- substitution with respect to the 

hydroxyl group (ortho effect) which is now just a negatively charged oxygen atom after 

ionization (negative mode).   Levsen et al (2007) also mentions a possible loss of an OH 

radical, however, the mechanism is different and they do not give much detail with regard 

to nitrophenols.  So far, there has been no further information on this loss. 

3.2.3 Other High Abundance Low Mass Range Compounds (100-200 u) 

Two compounds of high relative abundance, other than the dinitrophenol, were identified 

in the m/z 183 isolation width.  The first was identified to be C10H16O3 (DBE = 3) at m/z 

183.1026 with a relative abundance of 77.0%.  This compound has the same formula as 

pinonic acid.  A fragment ion at m/z 165.0921 [M-18.0105] was identified to be 

C10H14O2 with DBE = 4 and is the result of a neutral loss of H2O.  Another fragment ion 

indicating the neutral loss of CO2 was identified as C9H16O (DBE = 2) at m/z 139.1128 

[M-43.9898].  The neutral loss of CO was also identified to be the result of fragmentation 

producing the fragment ion at m/z 155.1077 [M-27.9949], which is C9H16O2 with DBE = 

2.  These neutral losses are consistent with the conclusion that this compound is pinonic 

acid.  The second compound of high abundance identified was C11H20O2 at m/z 183.1390 

with DBE = 2 and relative abundance of 100%.  Fragmentation analysis identified two 

fragment ions corresponding to two neutral losses from C11H20O2.  These are m/z 
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165.1285 [M-18.0105] identified as a loss of H2O to create C11H18O (DBE = 3) and m/z 

153.0921 [M-30.0469] identified as C9H14O2 (DBE = 3) corresponding to a loss of C2H6. 

3.3 Fragmentation Analysis of Nitrophenol Standards by LC/MS 

The next step was to confirm the observed behavior from the fragmentation studies 

performed previously by using the LCQ Fleet to perform MS2 fragmentation analysis on 

a series of standard nitrophenol compounds.  However, being that this is a nominal mass 

instrument, exact masses were not obtainable.  The standards used for this analysis were:  

2-nitrophenol (m/z 138), 4-nitrophenol (m/z 138), 3-methyl-4-nitrophenol (m/z 152), 2,4-

dinitrophenol (m/z 183), and 2-methyl-4,6-dinitrophenol (m/z 197).  The main goal of 

this MS2 fragmentation analysis was to investigate both alkyl and radical losses. 

All of the nitrophenols that were fragmented exhibited a loss of approximately [M-30], 

which is consistent with the loss of a NO radical from nitrophenol compounds that had 

been suspected.  The only fragmentation observed for the 2- and 4-nitrophenols resulted 

from a NO radical loss, [M-30], at m/z 108.  A loss of approximately [M-60], resulting in 

a fragment peak at m/z 123, was observed from 2,4-dinitrophenol, resulting from what 

could be a loss of two NO groups, which is consistent with the FT-ICR-MS analysis.  

While fragmenting 3-methyl-4-nitrophenol a small fragment peak at m/z 106 was 

observed, resulting from loss of approximately [M-46], which could be the result of a loss 

of a NO2 radical group.  This loss was not seen in the ultrahigh-resolution mass spectra.  

These results help to confirm the identity of the nitrophenol compounds. 
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3.4 Quantification of Nitrophenols in Fog Water by LC/MS 

The fog water sample being investigated was not meant to be used for quantification; 

therefore, the results presented here are not an atmospheric representation.  The goal of 

quantifying the nitrophenols was to develop an LC/MS method for quantification of 

compounds within a complex matrix.  The methods employed are described in detail in 

the LC/MS Methods section.  The method produced reproducible results.  Different but 

very similar calibration curves were used to quantify the four nitrophenols in the fog 

water sample and average concentrations were obtained (Table 3.5).  A duplicate sample 

was also tested in twice and the average concentrations (using the same calibration curve) 

of the nitrophenols can also be seen in Table 3.5. 

Table 3.5: Average Concentration of Nitrophenols in Fog Water 

 
4-
nitrophenol 

3-methyl-4-
nitrophenol 

2,4-
dinitrophenol 

2-methyl-4,6-
dinitrophenol 

m/z 138 152 183 197 
Fog water 1.444 mg/L 0.303 mg/L 0.628 mg/L 0.200 mg/L 
Fog water duplicate 3.1485 mg/L 0.698 mg/L 1.818 mg/L 0.540 mg/L 

 

The most striking aspect of Table 3.5 is the difference in concentrations between the 

sample and it’s duplicate.  This may be due to a couple sources of error, such as sample 

handling and evaporation of sample.  The fog water sample used had been opened and 

sampled from many times since it was collected which may have led to higher 

concentrations due to evaporation as compared to the duplicate sample, which had not 

under gone the same procedures. 
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3.5 Linear Alkylbenzene sulfonate (LAS) Analysis 

There were many suspected linear alkylbenzene sulfonate (LAS) compounds of high 

abundance in this fog water sample (Mazzoleni et al. 2010).  LAS have also been 

observed previously in a rainwater sample (Altieri et al. 2009b). These studies are the 

first to observe this class of compounds in atmospheric samples.  LAS compounds are of 

interest because of their high abundance and their harmful behavior in the environment 

(Debelius et al. 2008).  They are a commonly used surfactant that is found in detergents 

and personal-care products (Debelius et al. 2008). 

LAS compounds were identified at: m/z 297.1532 to be C16H26O3S (DBE = 4, RA = 

100%), m/z 311.1689 to be C17H28O3S (DBE = 4, RA = 100%), m/z 325.1846 to be 

C18H30O3S (DBE = 4, RA = 100%), and m/z 353.2157 to be C20H34O3S (DBE = 4, RA = 

3.0%).  The first three of these have been previously reported (Altieri et al. 2009b; 

Mazzoleni et al. 2010).  All of the LAS compounds identified here lie in the same CH2 

homologous series.  Another suspected LAS compound was identified at m/z 341.1794 to 

be C18H30O4S with DBE = 4 and a relative abundance of 100%.  This compound is not in 

the same homologous series as the others; however, its fragment ions are consistent with 

the fragment ions of the other LAS compounds.  Fragment ions and their corresponding 

LAS precursor ions can be seen in Table 3.6.  All of the fragment ions shown in Table 6 

are in the same CH2 homologous series. 
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Table 3.6: Fragmentation behavior of LAS compounds 

Fragment Ions Corresponding LAS 
Compounds (m/z) m/z Formula DBE 

183.0122 C8H8O3S 5 297, 311, 325, 341, 353 

197.0278 C9H10O3S 5 297, 311, 325, 353 

211.0435 C10H12O3S 5 311, 325, 353 

225.0591 C11H14O3S 5 311, 325, 341, 353 

239.0748 C12H16O3S 5 311, 325, 341, 353 

253.0905 C13H18O3S 5 311, 325, 341, 353 

267.1062 C14H20O3S 5 311, 325, 341, 353 

281.1218 C15H22O3S 5 325, 341, 353 

295.1374 C16H24O3S 5 341 
323.1688 C18H28O3S 5 341 

 

LAS compounds can be identified by their characteristic alkyl chain, the length of which 

determines their surfactant behavior.    Based on the presence of the main fragment ion at 

m/z 183 and a structural template for LAS compounds previously reported (Lara-Martin 

et al. 2006), structures are proposed here for three of the LAS precursors (Figure 3.13).  

From these structures, it can be seen that they only differ in the length of their alkyl 

chain. 
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Figure 3.13: Proposed LAS Structures for m/z 297, 311, and 325 

Each of the fragment ions shown in Table 3.6 is the result of a loss a different number of 

CH2 units from the characteristic alkyl chain.  Lara-Martin et al. (2007) proposes 

structures of the key fragment ions that were observed in this study (Figure 3.14).  Of 

these fragment ions, m/z 183 is the most common and is seen for all of the LAS 

compounds presented here. 

The LAS compound found at m/z 341, C18H30O4S, contains an extra oxygen atom when 

compared to the other LAS compounds.  Fragmentation analysis yielded a neutral loss of 

H2O from this molecule, giving the fragment ion at m/z 323.1688 (Table 3.6).  This 

indicates that the molecule must contain a hydroxyl group, but based on this analysis its 
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location cannot be determined.  Differing from the rest of the LAS compounds, this may 

suggest that the LAS at m/z 341 is a degradation product of a more characteristic LAS 

compound.  A loss of SO3 was also observed for m/z 341.  This loss was not observed for 

any of the other LAS compounds. 

S OO

O

S OO

O

S OO

O

S OO

O

m/z 183 m/z 197 m/z 225 m/z 239

 

Figure 3.14: Neutral structures of key LAS fragment ions. 

So far, there has been no conclusive evidence to explain the presence of LAS in the 

atmosphere.  If they are present in the atmosphere, how do they get there?  It is possible 

that the presence of LAS in the sample could be explained by the fact that they are widely 

used in detergents (Debelius et al. 2008).  They may be present on the surface of 

glassware/equipment used in the sampling and storage process or on the surface of the 

glass of solvent containers.  If this is the case, they are sample contaminants.  In fact, 

preliminary studies have indicated that these LAS compounds are present in multiple 

brands of high purity methanol. 
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5 Appendix 

Table 5.1:  A complete list of the mass spectrometry scan parameters is listed.  Also, 

recalibration and composition parameters used in Composer for formula assignments are 

listed.  This table is provided on the included CD-R via a Microsoft Excel 2007 

workbook named “5_Appendix Tables_LeClair_2011.xlsx” on the “Table 5.1_MS2 

Method Parameters” tab. 

Table 5.2:  A complete list of all formula assigned precursor ions involved in this study is 

provided on the included CD-R via a Microsoft Excel 2007 workbook named 

“5_Appendix Tables_LeClair_2011.xlsx” on the “Table 5.2_Priority Losses” tab.  

Neutral losses of interest are listed corresponding to precursor ions.  A “1” is used to 

denote that a neutral loss was observed for that particular precursor.  Under the scan 

column for the scan 311_1 means that it had an isolation width of 1.8 and 311_2 means 

that it had an isolation width of 6.  A description of the provided data is as follows: 

column “A” lists the relative abundance for each m/z; column “B” lists the negative ion 

mass-to-charge ratio (m/z) measured and internally recalibrated; column “C” lists the 

absolute error of the formula assignment in ppm; column “D” lists the calculated double 

bond equivalents (DBE) of the neutral molecule; column “E” lists the assigned neutral 

mass molecular formula; column “F” lists the scan in which the corresponding precursor 

ion was observed; column “G” lists the precursor ions that had a neutral loss of H2O; 

column “H” lists the precursor ions that had a neutral loss of CH4O; column “I” lists the 



 

107 

 

precursor ions that had a neutral loss of two H2O molecules; column “J” lists the 

precursor ions that had a neutral loss of CO2; column “K” lists the precursor ions that had 

a neutral loss of CO2 + H2O; column “L” lists the precursor ions that had a neutral loss of 

HNO3; column “M” lists the precursor ions that had a neutral loss of CH4O + CO2; 

column “N” lists the precursor ions that had a neutral loss of CH3NO3; column “O” lists 

the precursor ions that had a neutral loss of SO3; column “P” lists the precursor ions that 

had a neutral loss of two CO2 molecules; column “Q” lists the precursor ions that had a 

neutral loss of SO4. 

Table 5.3:  A complete list of all formula assigned precursor ions involved in this study is 

provided on the included CD-R via a Microsoft Excel 2007 workbook named 

“5_Appendix Tables_LeClair_2011.xlsx” on the “Table 5.3_Additional Losses” tab.  

Neutral losses of interest are listed corresponding to precursor ions.  A “1” is used to 

denote that a neutral loss was observed for that particular precursor.  Under the scan 

column for the scan 311_1 means that it had an isolation width of 1.8 and 311_2 means 

that it had an isolation width of 6.  A description of the provided data is as follows: 

column “A” lists the relative abundance for each m/z; column “B” lists the negative ion 

mass-to-charge ratio (m/z) measured and internally recalibrated; column “C” lists the 

absolute error of the formula assignment in ppm; column “D” lists the calculated double 

bond equivalents (DBE) of the neutral molecule; column “E” lists the assigned neutral 

mass molecular formula; column “F” lists the scan in which the corresponding precursor 

ion was observed; column “G” lists the precursor ions that had a neutral loss of CO; 

column “H” lists the precursor ions that had a neutral loss of CH2O; column “I” lists the 
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precursor ions that had a neutral loss of C2H6; column “J” lists the precursor ions that had 

a neutral loss of C3H8; column “K” lists the precursor ions that had a neutral loss of 

CH2O2; column “L” lists the precursor ions that had a neutral loss of C4H10; column “M” 

lists the precursor ions that had a neutral loss of C2H4O2; column “N” lists the precursor 

ions that had a neutral loss of C5H12; column “O” lists the precursor ions that had a 

neutral loss of C3H4O2; column “P” lists the precursor ions that had a neutral loss of CO 

+ CO2 molecules; column “Q” lists the precursor ions that had a neutral loss of C2H2O4. 

Table 5.4:  A complete list of all formula assigned fragment ions produced during tandem 

mass analysis by collision induced dissociation for the scans included in this study is 

provided on the included CD-R via a Microsoft Excel 2007 workbook named 

“5_Appendix Tables_LeClair_2011.xlsx” on the “Table 5.4_Fragment Ions” tab.  All 

fragment ions are listed first by scan and second by m/z.  The letter “R” at the end of the 

Scan name denotes the allowance of radical ions.  A description of the provided data is as 

follows: column “A” lists the relative abundance for each m/z; column “B” lists the 

negative ion mass-to-charge ratio (m/z) measured and internally recalibrated; column “C” 

lists the absolute error of the formula assignment in ppm; column “D” lists the calculated 

double bond equivalents (DBE) of the neutral molecule; column “E” lists the assigned 

neutral mass molecular formula; column “F” lists the scan in which the corresponding 

fragment ion was observed. 
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