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îT ,ĵT ,k̂T Unit vectors along the axes of the tow cable frame of reference

λ Eigenvalues

C Controllability matrix



xvi

O Observability matrix

µ Wind vector azimuth angle

ϕ2 Roll angle of the parafoil-payload system

ψ1 Off-plane tow angle of the tow cable in XY inertial frame

ψ2 Yaw angle of the parafoil-payload system

ρ Density of the air

θ1 In-plane tow angle of the tow cable in XZ inertial frame

θ2 Pitch angle of the parafoil-payload system

u Input vector

u0 Steady state input vector

x State vector

x0 Steady state vector

r⃗1 The absolute position of the ship

r⃗2 The absolute position of the CG of the parafoil-payload system

r⃗3/1 The relative vector between the two ends of the tow cable

r⃗3/2 The relative vector between the CG of the parafoil-payload system and the

point of tow cable attachment

r⃗4/2 The relative vector between the CG of the parafoil-payload system and the

aerodynamic center



xvii

v⃗1, vs The velocity of the ship

v⃗2 The velocity of the CG of the parafoil-payload system

v⃗w Wind velocity vector

v⃗4/w The velocity of the aerodynamic center of the parafoil canopy with respect

to wind

{B} Reference frame attached to the parafoil-payload system

{I} Inertial frame of reference

{T} Tow cable frame of reference

{W} Wind frame of reference

b Span of the parafoil canopy

c Chord of the parafoil canopy

CD Drag coefficient

CL Lift coefficient

Cl Rolling moment coefficient

Cm Pitching moment coefficient

Cn Yawing moment coefficient

CY Side force coefficient

FD Drag Force



xviii

FL Lift Force

FY Side Force

Ixx Total moment of inertia of the parafoil-payload system about body refer-

ence X axis

Iyy Total moment of inertia of the parafoil-payload system about body refer-

ence Y axis

Izz Total moment of inertia of the parafoil-payload system about body refer-

ence Z axis

L Tow cable length

m Total mass of the parafoil-payload system

M4x Rolling moment

M4y Pitching moment

M4z Yawing moment

mair Mass of the air trapped in the inflated canopy

mapp Apparent mass

mcpy Mass of the parafoil canopy

mpl Mass of the payload

p Rotational velocity component of the CG of the parafoil-payload system in

the body reference X axis



xix

p2/1,z Relative altitude between the parafoil-payload system and the ship in {I}

frame

plx Payload dimension in inertial X direction

ply Payload dimension in inertial Y direction

plz Payload dimension in inertial Z direction

q Rotational velocity component of the CG of the parafoil-payload system in

the body reference Y axis

r Rotational velocity component of the CG of the parafoil-payload system in

the body reference Z axis

S Area of the parafoil canopy

T Kinetic energy of the system

t parafoil canopy thickness

u Translational velocity component of the CG of the parafoil-payload system

in the body reference X axis

V Potential energy of the parafoil-payload system

v Translational velocity component of the CG of the parafoil-payload system

in the body reference Y axis

V∞ Relative wind velocity

w Translational velocity component of the CG of the parafoil-payload system

in the body reference Z axis



xx

F4 The aerodynamic forces acting at the aerodynamic center 4 of the parafoil

canopy represented in {B} frame

I Inertia Matrix of the parafoil-payload system

M4 The aerodynamicmoments acting at the aerodynamic center 4 of the parafoil

canopy represented in {B} frame

Bω⃗B Angular velocity of the parafoil-payload system represented in {B} frame

B
I R Rotation matrix to transform vectors from {I} frame to {B} frame

B
WR Rotation matrix to transform vectors from {W} frame to {B} frame

T ω⃗T Angular velocity of the tow cable represented in {T} frame

T
I R Rotation matrix to transform vectors from {I} frame to {T} frame

JPADS Joint Precision Airdrop System

MMIST Mist Mobility Integrated Systems Technology Inc

PADS Precision Airdrop System

PEGASYS Precision Extended Glide Air Drop System

SLADS Ship Launched Aerial Delivery System



Abstract

Dynamic Modeling, Simulation And Control Design Of A Parafoil-Payload System For

Ship Launched Aerial Delivery System (SLADS)

Anand S Puranik

Michigan Technological University, 2011

Advisor: Dr. Gordon Parker

The objective of this researchwas to develop a high-fidelity dynamicmodel of a parafoil-

payload systemwith respect to its application for the Ship LaunchedAerial Delivery System

(SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using

a parafoil-payload system. It is accomplished in two phases: An initial towing phase when

the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase

when the system is guided to the desired point. While many previous researchers have ana-

lyzed the parafoil-payload system when it is released from another airborne vehicle, limited

work has been done in the area of towing up the system from ground or sea. One of the

main contributions of this research was the development of a nonlinear dynamic model of a

towed parafoil-payload system. After performing an extensive literature review of the ex-

isting methods of modeling a parafoil-payload system, a five degree-of-freedommodel was

xxi
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developed. The inertial and geometric properties of the system were investigated to pre-

dict accurate results in the simulation environment. Since extensive research has been done

in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic

model was chosen to incorporate the effects of air flow around the flexible paraglider wing.

During the towing phase, it is essential that the parafoil-payload system follow the line of

the towing vessel path to prevent an unstable flight condition called ‘lockout’. A detailed

study of the causes of lockout, its mathematical representation and the flight conditions and

the parameters related to lockout, constitute another contribution of this work. A linearized

model of the parafoil-payload system was developed and used to analyze the stability of the

system about equilibrium conditions. The relationship between the control surface inputs

and the stability was investigated. In addition to stability of flight, one more important ob-

jective of SLADS is to tow up the parafoil-payload system as fast as possible. The tension

in the tow cable is directly proportional to the rate of ascent of the parafoil-payload system.

Lockout instability is more favorable when tow tensions are large. Thus there is a trade-

off between susceptibility to lockout and rapid deployment. Control strategies were also

developed for optimal tow up and to maintain stability in the event of disturbances.



1. Introduction

A parachute has been an object of general interest as well as a topic of scientific research,

ever since André Jacques Garnerin took a successful jump with a parachute from a balloon

in 1797. During the 19th century the focus of the parachute development was to make it

more compact and stable, until it was successfully used in military operations during World

War I. It was in 1960 that Ms. Domina Jalbert improved the parachute design considerably

and invented a new device called the ram air parachute or parafoil.

Parafoils are extensively used today by sport enthusiasts as well as military forces. Their

light weight structure, high maneuverability and ability to travel large distances make them

especially useful in supplying troops as well as providing urgent humanitarian supplies in

areas of natural calamities. Typically, the ‘payload’ is attached to a parafoil and dropped

from an airplane. The US Air Force’s Precision Airdrop System (PADS) and US Army’s

Precision Extended Glide Air Drop System (PEGASYS), combined into a Joint Precision

Airdrop System (JPADS) program. JPADS is the program which has promoted exten-

sive research and development in deploying parafoil-payload systems from an airplane and

autonomously guide it to the touchdown point with precision. Today, such systems are

commercially available. For example, Mist Mobility Integrated Systems Technology Inc

(MMIST) has developed the ‘SnowGoose’ Unmanned Aerial Vehicle and ‘Sherpa’ Preci-

sion Aerial Delivery System, capable of cargo delivery up to 10,000 lbs. Airborne Systems’
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‘FireFly’, a Guided Precision Aerial Delivery System, is capable of dropping payloads from

altitudes up to 7500 meters and precisely guiding to a point within 150 meters of the desig-

nated impact point. This work focuses on the analysis and control research that will facilitate

similar operations using a towed deployment approach.

This chapter is organized as follows. Section 1.1 presents various projects and scien-

tific missions which have been conducted in the past in the related field of aerodynamic

decelerators. Section 1.3 describes the US Navy Ship Launched Cargo Delivery (SLADS)

project. A summary of research contributions made during this doctoral work is outlined in

Section 1.4, followed by an outline of this dissertation in Section 1.5.

1.1 Background

Parachutes and parafoils have been studied for their application of precision airdrop

systems. Early research focused on understanding the aerodynamics and stability charac-

teristics of this peculiar flexible wing, and soon parafoils were seen as a prime component

of airdrop systems. The two main U.S. programs which promoted research on parafoils

during last two decades were:

1. NASA X-38 crew return vehicle

2. The Joint Precision Airdrop System (JPADS) which was a joint program of US Army

and US Air Force

NASA’s crew return vehicle prototype consisted of a 18,000 lbs pallet, simulating the

actual X-38, attached to a 7500 sq. ft parafoil, which was the largest parafoil parachute

in history (8). It was tested at the US Army’s Yuma Proving Grounds in Arizona. It was
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dropped from a C-130 aircraft at an altitude of 21,500 feet. Starting with the descent speed

of 60 miles an hour, it landed with a descent speed of less than 8 miles an hour. In the

process of this successful testing, a variety of dynamic models of parafoil-payload systems

were developed, many experimental tests conducted to understand the aerodynamics of the

parafoils and tremendous resources were invested to formalize the research in the field of

aerodynamic decelerators.

From the early 90’s, the US Air Force has worked on the Precision Air Drop System

(PADS) while the US Army developed the Precision Extended Glide Air Drop System (PE-

GASYS). A combined Army and Air Force initiative resulted in the Joint Precision Air

Drop System (JPADS) Advanced Concept Technology Demonstration (ACTD) in August

2003. The purpose of this program was to develop a system capable of delivering payloads

ranging from 200-10,000 lbs to a point within 300 feet of the ground target from altitudes

of 25,000 feet.

Some of the other precision airdrop systems include Small Autonomous Parafoil Land-

ing Experiment by Institute of Flight Mechanics of the German Aerospace Center (9), High

Altitude Balloon Experiments in Technology HABET by Iowa State University (10), Ad-

vanced Precision Aerial Delivery System by FXC Corporation (11), the Precision Guided

Parachute System by Atair Aerospace and others (12).

In all these applications the parafoil-payload system has been modeled and experi-

mented for the ‘airdrop’ application. Interestingly, there hasn’t been any significant pub-

lished research in the area of towed parafoil payload system, which forms the main topic of

this dissertation.
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1.2 Aerodynamic Decelerators

Aerodynamic decelerator is a technical term used to describe an object made from tex-

tiles designed to produce drag. There are various existing devices which fall under the

category of aerodynamic decelerators such as:

1. Parachute

2. Parasail

3. Paraglider or Ram-Air Parachute

1.2.1 Parachute

“A parachute is a device used to slow the motion of an object through an atmosphere by

creating drag” (1). The word parachute comes form the French word para which means

“to prepare for” or “to protect against”, and chute, a French word for “fall”, which means

“that which protects against a fall”. Parachutes are used extensively for a wide range of

applications from recreational activities to military operations. The ‘drouge chutes’ used

by aircrafts, racing cars or the ones used for tow cable retraction, fall into the category of

parachutes. Figure 1.1 shows an American paratrooper using a MC1-1C series parachute

(1).

1.2.2 Parasail

A parasail is a specially designed parachute used for towing behind a tow vehicle. The first

parasail was developed by Pierre-Marcel Lemoigne in 1961 (13). Parasailing, which is also

known as parascending, is a popular recreational activity as seen in Figure 1.2.



5

Figure 1.1. An American paratrooper using a MC1-1C series parachute (1). (See Appendix D for
the documentation that this material is in public domain.)

Figure 1.2. Parasail is a towed parachute (2). (See Appendix D for the documentation that this
material is in public domain.)
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1.2.3 Paraglider

A paraglider or a ram-air parachute is a free flying or towed, foot launched aircraft. It has

a rectangular planform with its front end open and the rear end closed, which keeps the

canopy inflated, while it is moving through the air. The increased gliding capabilities along

with its ability to be maneuvered easily, makes paragliding an enterprising activity for sport

enthusiasts. Figure 1.3 shows a ram air parachute in free flight. The main parts of the

paraglider are labeled and described below, as defined in Reference (14).

Parafoil Canopy
Leading Edge

Control Lines

Suspension 
Lines

Risers

Trailing Edge

Figure 1.3. Significant parts of a paraglider or ram-air parachute (3). (See Appendix D for the
documentation of the permission to republish this image).
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1.2.3.1 Parafoil Canopy

When a ram-air parachute or paraglider is inflated it forms the shape of a low aspect ratio

wing. The typical airfoil of a paraglider is called a parafoil or canopy. The terms parafoil

and paraglider are many times used interchangeably. Typically when a ram air parachute is

used for unmanned activities, the system is called a parafoil-payload system.

1.2.3.2 Leading Edge

The front end of the canopy is called the leading edge which has holes or cell openings

to allow the air to flow inside.

1.2.3.3 Trailing Edge

The rear end of the canopy is called the trailing edge which is closed to keep the air

inside and maintain the pressure for keeping it inflated.

1.2.3.4 Suspension Lines

The suspension lines are the main support chords which connect the canopy with the

payload or the harness of the pilot.

1.2.3.5 Control Lines

The control lines are the lines connected to the trailing edge of the canopy on the both

sides and are used by the pilot to steer the paraglider by deflecting its trailing edge.
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1.2.3.6 Risers

The risers are the short straps or webbing used to connect the suspension lines to the

harness or the payload in an organized way so that the pilot can selectively influence certain

lines.

1.3 Ship Launched Aerial Delivery System (SLADS)

As discussed above, previously reported research on controlled paragliders focus on the

parafoil released from a certain height and guided to a pre-defined target point on the Earth.

During naval littoral operations, there is often a need to supply troops. It is required that the

system be capable of delivering goods from a ship to unprepared spots on the shore. This

is the main motivation behind developing a cargo delivery system which is launched from

a ship.

The key mechanical component of a ship launched cargo delivery system is a suitable,

light weight airfoil structure. With the space limitations on-board ships, a flexible airfoil

structure that can be folded and stored in a small volume is desirable.

The SLADS is a four stage concept as shown in Figure 1.4. The parafoil-payload system

is towed up to a desired altitude of about 2000 -2500 feet. Once it reaches this altitude, the

tow cable will be detached from the parafoil-payload system and retrieved with the help of

a small drag chute. The next stage is free flight wherein the parafoil-payload system will be

autonomously guided towards the point on the shore where the cargo is to be delivered. In

the third stage, the payload will be dropped along with a small parachute attached. Finally

the powered glider will fly back to the tow vessel for retrieval.
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High Speed Surface Craft

Tow UpFree Flight

Cargo Delivery 
& Landing 

Glider Retrieval  

Figure 1.4. Stages of operation of SLADS.

1.4 Research Contributions

Though various models of parafoil-payload systems are available in the literature, they

have been developed from the point of view of releasing the system from another airborne

vehicle. This research is focused on modeling the parafoil-payload system in its towing

phase, so as to successfully tow-up the system from a vessel at sea. The key attributes of

the system are speed of deployment and stability. The towed system has been modeled

to capture both longitudinal and lateral flight conditions. Model parameters are used in

accordance with the testing facilities available at Craft Engineering Associates. The main

problem while towing up a parafoil is that of lockout, which will be explained in detail in

Chapter 4. Another contribution is the mathematical development and analysis of lockout.

After validating the model, control strategy development, which maintains stability while

minimizing tow-up time, is developed.
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1.5 Dissertation Outline

This document is organized as follows. Chapter 2 presents a comprehensive literature

review on various aspects of modeling parafoil-payload systems. A detailed mathematical

model of a towed parafoil-payload system is presented in Chapter 3. Chapter 4 elaborates

on the main instability problem during the tow-up, which is called ‘lockout’. A detailed

stability analysis follows, which describes the conditions and causes of lockout. Chapter 5

is dedicated to control system development for optimal towing performance, while main-

taining system stability. Chapter 6 concludes with presenting conclusions out of this study

and describing the opportunities for further research.



2. Literature Review

This chapter is organized as follows. Section 2.1 briefly reviews the history of flexible

kites, hang gliders and paragliders. Section 2.3 describes briefly the research done in the

field of dynamic model development of parafoil-payload systems. A detailed discussion

of longitudinal and lateral stability analysis follows in Section 2.5. Section 2.6 reviews

the methods of modeling the parafoil brakes, followed by Section 2.7 which describes the

significance of modeling apparent mass in the aerodynamics of parafoils.

2.1 Parafoil Evolution

The breakthrough in the field of aerodynamic decelerators camewith Francis andGertrude

Rogallo’s invention of a ‘Flexible Kite’, US Patent # 2,546,078 issuedMarch 20, 1951 (15).

In particular, their invention related to ‘kites with completely flexible surfaces’. The inven-

tion evolved in two directions. One development was the parawing, a completely flexible

parachute-like structure that could be guided and controlled and was investigated for po-

tential use as a recovery mechanism for space craft during re-entry. The other development

was the sport hang glider as shown in Figure 2.1. In the mid 1960’s, water skiers found

that, by adding a weight shift bar, they could release from the towline and glide effortlessly

to shore. The tubular frame, flexible kite became known as the Rogallo wing and launched
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the popular sport of hang gliding.

Figure 2.1. Francis Rogallo with his parawing in the wind tunnel. (Photo credit: NASA/courtesy of
nasaimages.org. See Appendix D for the documentation that this image is in the public
domain.)

The next major breakthrough in lightweight airfoil structures came with Domina Jal-

bert’s invention of a ‘Multi-Cell Wing Type Aerial Device’, US Patent # 3,285,546, issued

November 15, 1966 (16). The invention was a “wing of rectangular or other shape having a

canopy or top skin and a lower spaced apart bottom skin and with the skins being disposed

in equidistantly spaced relation to each other by ribs of a flexible nature that are fixed to the

top and bottom skins and so shaped as to constitute an air foil and with the ribs constitut-

ing air channels having a relatively large opening upon the leading edge of the wing.” The

device is most commonly referred to as a ram-air parachute or a parafoil.
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2.2 Hang gliders and Paragliders

Hang gliders and paragliders are both highly maneuverable devices. The main differ-

ence lies in the rigidity of the devices. A paraglider can be easily packed like a parachute

due to its flexible light weight structure. The rigid tubular structures of the hang glider make

it more stable in case of wind turbulence. The hang gliders are faster than paragliders in free

flight and can cover larger distances due to their high glide ratios. Table 2.1 shows a com-

parison of glide ratios of some gliding devices. The turning radius of the paraglider is much

lesser than the hang glider, and hence a paraglider can land in much smaller space. Con-

sidering all these factors, a paraglider was found to be more suitable for the ship launched

cargo delivery application.
Table 2.1.

Maximum Glide Ratios Obtained with Various Gliding Devices. (7)

Gliding Device Glide Ratio (Lift/Drag)
Powered Parachute 5.6

Paraglider 11
Hang glider 15
Sail plane 70

2.3 Dynamic Models

Parafoil-payload systems in free flight have been modeled in variety of ways to suit

the specific applications. One of the first publications on modeling the motion of parafoil-

payload systemswasmade by Lingard et. al. (17), (12). He derived equations ofmotion of a

three degrees of freedom (DOF) model by resolving the forces in the horizontal and vertical

directions. The velocities calculated from this model were used to generate 2-dimensional
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flight trajectories. This model incorporated the effect of wind on the range covered by the

system. It also predicted the effects of varying canopy size, line length, rigging method

etc. He claimed that the performance of the system could be improved by bifurcating and

minimizing the diameter of suspension lines. Significant gains could also be obtained by

closing the leading edge of the parachute, which in turn forms its swept wing shape to

remain inflated. Glide ratio predicted by these improvement was 6:1, doubling the existing

glide ratios of the day.

Yakimenko et al. developed a controlled model of a six DOF circular parachute (18).

A detailed description of mathematical development along with equations of motion is pre-

sented. The final form of the equations are similar to the standard aircraft equations, except

the difference of apparent mass terms in the inertial quantities. Equations 2.1 and 2.2 sum-

marize the six DOF model of the circular parachute. The nomenclature used to described

these equations is described below:

m = Total mass of the system

Ixx, Iyy, Izz = Total moment of inertia about three body reference axes

αij = Terms from apparent mass tensor (6 × 6)

u, v, w = Translational velocity components of the CG of the system

in body reference frame

p, q, r = Rotational velocity components of the system

in body reference frame

K = Total mass moment of the system

F = Sum of all aerodynamic and gravity forces acting on the system

M = Sum of all aerodynamic moments and the moments caused
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by aerodynamic forces about the CG of the system

F =


(m+ α11) (u̇− vr) + (m+ α33)wq + (K + α15) (q̇ + rp)

(m+ α11) (v̇ + ur) − (m+ α33)wp− (K + α15) (ṗ− qr)

(m+ α33) ẇ − (m+ α11) (uq − vp) − (K + α15)
(
p2 + q2

)
 (2.1)

M =


(Ixx + α44) ṗ− (K + α15) (v̇ − wp+ ur) − (Iyy + α44 − Izz − α66) qr + (α33 − α11) vw

(Iyy + α44) q̇ − (K + α15) (u̇+ wq − vr) + (Iyy + α44 − Izz − α66) pr − (α33 − α11)uw

(Izz + α66) ṙ + (Iyy − Ixx) pq


(2.2)

Along with the mathematical model, the significant contribution of this work was the

geometric description of the system consisting of a G-12 parachute and an A-22 container.

Due to the large distance between the canopy and the payload, it was essential to know

the mass and inertia properties accurately. A nonlinear system identification algorithm was

applied to refine the aerodynamic coefficients. A comprehensive discussion on the mass

properties, apparent mass effects, computation of the moments of inertia, computation of

forces and moments proved to be an illustrative example for developing a detailed model

for towed parafoil-payload system.

Müller et. al. developed a high fidelity nonlinear eight DOF model for its application

as a NASA X-38 re-entry vehicle shown in Figure 2.2 (19). . In this model it was assumed

that the parafoil exhibited six degrees of freedom and the payload had relative motion with

an additional two DoF. This assumption is valid for the peculiar system of straps, wherein

the payload had significant rotary motion around a pitch axis and a vertical axis only. A de-

tailed mathematical modeling of the forces, moments, reactions at the joints and kinematic
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constraints were explained, which provided a deeper insight on how the systems with rel-

ative motions are modeled. System response to symmetric brake inputs, lateral wind gusts

and relative yaw motion of the payload were also analyzed.

Figure 2.2. NASAX-38 re-entry vehicle (4). Photo credit: NASA/courtesy of nasaimages.org. (See
Appendix D for the documentation that this image is in the public domain.)

Thomas Jann at the Institute of Flight Research of the German Aerospace Center (DLR)

developed two instrumented test vehicles ALEX I and II (Small Autonomous Parafoil Land-

ing Experiment) (9). With the purpose of system identification and parameter estimation

for Guidance Navigation and Control (GNC) design, the paper elaborates on development

of both three DOF and four DOF models. Both these models were based on the rigid body

assumptions and do not account for the relative motion between the canopy and the pay-

load. In the three DOF model, only the motion of the center of the mass is considered and

yaw rate changes due to asymmetric edge deflection were modeled with a first order de-

lay. In the four DOF model, even the roll rate changes due to asymmetric edge deflections

were modeled in the actuator dynamics. Parameters related to actuator dynamics and the
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aerodynamic coefficients were estimated using the model and the experimentally measured

data.

Slegers and Costello (5) developed a nine DOF model of a parafoil payload system

to investigate the finer aspects of control using the parafoil brakes. Figure 2.3 shows the

schematic of the nine DOF dynamic model *. The combined system of parafoil and the

payload is assumed to be connected by the labeled joint C. The nine degrees of freedom

include three inertial components of joint C along with three Euler orientation angles of

parafoil and payload each. They developed this model using the prediction made by Doherr

and Schilling (20), that a nine DOF model improves stability predictions as compared to a

six DOF model.

Figure 2.3. Nine DOF dynamic model of parafoil-payload system used by Slegers and Costello (5).
(See Appendix D for the documentation of permssion to republish this figure from (5).)

* Reprinted with permission of the American Institute of Aeronautics and Astronautics
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The interesting findings of this work have provided a deeper insight into the control

mechanisms of parafoil-payload system. They claimed that such systems exhibit twomodes

of operation: roll steering and skid steering. For example, the roll steering mode would turn

the system left when right brake is activated, while in skid steering it turns right with the

same control input. They used the model to predict the effect of the orientation of the

parafoil canopy with respect to the payload, defined by the angle called ‘incidence angle’

and magnitude of brake deflection on the modes of steering. Also, by modeling the canopy

as shown in Figure 2.4, they proved that increasing the canopy curvature can affect the

mode of steering †.

Figure 2.4. Panel discretization used by Slegers and Costello (5). (See Appendix D for the docu-
mentation of permssion to republish this figure from (5).)

All these dynamic models were studied in detail to understand the modeling procedures

used to suit the specific purpose or application. A thorough understanding of the towed

deployment requirements accompanied with the review of these models, prompted the use

of a five DOF model of the parafoil-payload system for SLADS.
† Reprinted with permission of the American Institute of Aeronautics and Astronautics
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2.4 Aerodynamic Theory

This section focuses on review of some basic concepts and terminologies related to

aerodynamics, which will be used as standard terms in this dissertation. An object moving

through air, is acted upon by the forces and moments created to due to the relative motion

between the object and the air. These forces and moments are described mathematically to

model their effect in the simulation environment. Following are few terms described which

form the part of any standard aerodynamic analysis.

2.4.1 Angle Of Attack (α)

Angle of attack is the angle made by the reference line or the chord line of the airfoil with

the vector representing the relative velocity between the object and the fluid through which

it is moving. Figure 2.5 shows the angle of attack of a parafoil moving through air, where

the relative velocity vector is represented by V⃗∞. Due to the flexible nature of the wing

span, the angle of attack of a parafoil, though standard term in theory, is very difficult to

measure on the towed system.

Figure 2.5. Angle of attack α
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2.4.2 Side Slip Angle (β)

Side slip angle is the angle made by the aircraft centerline with the direction of the rela-

tive velocity vector. Figure 2.6 shows a positive side slip angle of an aircraft. The same

definition applies to a paraglider wing in top view.

Figure 2.6. Side slip angle β

2.4.3 Aerodynamic Forces

2.4.3.1 Drag

The force of resistance to the motion of an object in a fluid is called drag D. The drag

is a function of the magnitude of the relative velocity of the object V∞, the density of the

fluid ρ,the reference area of the object S and drag coefficient CD. CD depends on angle

of attack α and in case of paragliders, the control input δs. This will be discussed in more
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detail in Chapter 3.

D = f1 (V∞, ρ, S, CD (α, δs)) (2.3)

2.4.3.2 Lift

An object of an airfoil shape while moving through a fluid is acted upon by a lifting

force due to the pressure difference between the top and the bottom surfaces, and is called

lift L. The lift force, similar to drag, depends on the magnitude of relative velocity, the

density of the fluid, the reference area and the lift coefficient CL. For small values of angle

of attack, the lift coefficient is linearly proportional to the angle of attack.

L = f2 (V∞, ρ, S, CL (α, δs)) (2.4)

2.4.3.3 Side Force

In the case of turns or crosswinds, an aircraft is acted upon by the side force Y , which

is mainly the function of side slip angle β and in the case of paragliders, the asymmetric

control input δa, in addition to the relative velocity, the density of the fluid and the reference

area.

Y = f3 (V∞, ρ, S, CY (β, δa)) (2.5)
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2.4.4 Aerodynamic Moments

2.4.4.1 Pitching Moment

Pitching moment is a moment imposed on the airfoil by the aerodynamic forces. If the

forces are assumed to be acting on the aerodynamic center of the airfoil, it is called the

pitching moment, denoted by m, and is in the body reference Y direction. The magnitude

of the pitching moment depends on the length of the chord of the airfoil c.

m = f4((V∞, ρ, S, c, Cm) (2.6)

Here, the pitching moment coefficientCm is a function of angle of attack α, the pitching

angular velocity of the body q, and in the case of paragliders, the symmetric control input

δs.

Cm = Cm(α, q, δs) (2.7)

2.4.4.2 Rolling Moment

The moment acting on the aerodynamic center of the wing about the body reference X

axis is called as rolling moment, denoted by l. The rolling moment depends on the span of

the wing b, and

l = f5((V∞, ρ, S, b, Cl) (2.8)

The rolling moment coefficient Cl is the function of side slip angle β, asymmetric con-

trol input δa in case of paragliders, the roll angular velocity of the body p and the yaw

angular velocity r.
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Cl = Cl(β, δa, p, r) (2.9)

2.4.4.3 Yawing Moment

The moment acting on the aerodynamic center of the wing about the body reference Z

axis is called as yawing moment, denoted by n. The yawing moment also depends on the

span of the wing b.

n = f6((V∞, ρ, S, b, Cn) (2.10)

The yawing moment coefficient Cn is the function of side slip angle β, asymmetric

control input δa in case of paragliders, the roll angular velocity of the body p and the yaw

angular velocity r.

Cn = Cn(β, δa, p, r) (2.11)

2.5 Stability Analysis

The study of stability of a parachute-payload system is assumed to have commenced

with the Ph.D. work of Wolf (21). Using a ten DOF model he proved that stability was

reduced as riser length was increased or parachute weight was increased (5). Thomas

Goodrick presented an analysis on static and dynamic longitudinal stability of high per-

formace gliding airdrop systems in 1975 (6). The static analysis illustrated the relationship

between the control inputs and glide performance. The dynamic analysis showed the re-
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sponse to wind disturbance and control inputs. The static analysis equations described in

his paper were elaborated in detail. The pitching moment coefficient obtained from this

analysis was used in modeling the longitudinal aerodynamics of the towed parafoil payload

system in Chapter 3.

Figure 2.7 shows a parafoil-payload system in longitudinal flight ‡. Point C represents

the canopy mass center, which is also the aerodynamic center of the canopy. Point P repre-

sents the mass center of the payload. The center of mass of the canopy and payload system,

point O is located as,

r1 + r2 = d (2.12)

where, r1 is the distance between center of mass of the systemO and mass center of the

payload P Similarly, r2 is the distance between point O and mass center of the canopy C.

For static analysis it is assumed that the pitching rate is zero i.e. θ̇ = 0. Also, the drag

acting on the payload is assumed to be negligible.

Assuming that m1 is the mass of the payload and m2 represents the total mass of the

canopy and the air trapped in it,

m1r1 = m2r2 (2.13)

Thus,

r1
d

=
m2

m1 +m2

(2.14)
r2
d

=
m1

m1 +m2

(2.15)

‡ Reprinted with permission of the American Institute of Aeronautics and Astronautics
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Figure 2.7. Longitudinal static analysis (6). (See Appendix D for the documentation of permssion
to reprint this figure from (6).)
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The net aerodynamic force acting at the aerodynamic center of the canopy is shown in terms

of lift L and the drag force D. Also, the net weight of the canopy is the gravitational force

W2 minus the buoyancy force B caused by the included air mass. Thus,

W2 = m2g −B (2.16)

The system is assumed to glide steadily with velocity V with an angle of attack α and flight

path angle γ. The incidence angle Γ is defined as the angle which the mean chord of the

airfoil makes with an imaginary line perpendicular to the line OC. θ represents the pitch

angle of the system. The total moment about the center of mass of the system can be written

as,

∑
M = M0 + r2 {D cos (α+ Γ) − L sin (α+ Γ) +W2 sin θ} −W1 sin θ (2.17)

Dividing Equation 2.17 by 1/2ρV 2Sc, it can be expressed in dimensionless form.

Cm = Cm0 +
r2
c
{CD cos (α+ Γ) − CL sin (α+ Γ)} +

(W2r2 −W1r1)

1/2ρV 2Sc
sin θ (2.18)

If canopy volume is denoted as Q, then,

B = ρQg (2.19)

The buoyancy constant is usually defined as,

CB0 =
2Qg

Sc
(2.20)
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where, S is the canopy area and c is the length of the mean chord.

The last term in Equation 2.18 can be re-written using equation 2.16, 2.19 and equation

2.20 as,

(W2r2 −W1r1)

1/2ρV 2Sc
sin θ =

[(m2g −B)r2 −m1gr1)

1/2ρV 2Sc
sin θ

=
−r2ρQg

1/2ρV 2Sc

= −CB0

V 2

dm1

m1 +m2

(2.21)

Using the relation α + Γ = θ + γ from Figure 2.7, θ can be eliminated from equation

2.18 as shown in Equation 2.22.

Cm = Cm0+
dm1

m1 +m2

[(
CD
c

+
CB0

V 2
sin γ

)
cos (α+ Γ) −

(
CL
c

+
CB0

V 2
sin γ

)
sin (α+ Γ)

]
(2.22)

Finally, using the steady state glide relations L = W cos γ and D = W sin γ equation

2.22 can be made independent of V and γ. The final form of the equation is given in

Equation 2.23.

Cm = Cm0 +

(
dm1

m1 +m2

)(
1

c
+
ρ

2

CB0

W/S

)
[CD cos (α+ Γ) − CL sin (α+ Γ)] (2.23)

Equation 2.23 is used in our analysis of towed parafoil-payload system to model the

pitching aerodynamic moment.

Just as Goodrick analyzed the stability of the parafoil-payload system in longitudinal
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flight conditions, Crimi studied the lateral flight to determine the relationship of various

flight parameters and aerodynamic coefficients on the lateral stability (22). He illustrated

typical aerodynamic loading in a parafoil-payload system including side force, rolling mo-

ment and yawing moment as a function of side-slip angle, roll rate and yaw rate as shown

in Equations 2.24 to 2.26. The system was considered without any parafoil brake inputs.

CY = f1(β, p, r) (2.24)

Cl = f2(β, p, r) (2.25)

Cn = f3(β, p, r) (2.26)

The lateral linearized equations of motion are derived in a simplified form as shown in

equation 2.27.

ẋ = A−1Bx (2.27)

Here the state vector x is defined as,

x =



β

ϕ

ψ

ϕ̇

ψ̇


(2.28)
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The A matrix is defined as,

A =



−2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −hxx −hxz

0 0 0 −hxz −hzz


(2.29)

and B matrix is defined as,

B =



−CY β −CL −CL tan γ ys yδ

0 0 0 1 0

0 0 0 0 1

−2µlβ 0 0 −lp −lr

−2µnβ 0 0 −np −nr


(2.30)

The characteristic equation of the matrix A−1B yields a 4th order polynomial, the roots of

which were used to analyze the lateral stability of the parafoil-payload system.

Aλ4 +Bλ3 + Cλ2 +Dλ+ E = 0 (2.31)

It was observed that this characteristic equation yielded two real and one complex pair

of roots. A stability boundary was plotted with respect to yaw aerodynamic coefficient

Cnβ
and various other parameters. The effect of suspension line lengths, glide slope and

dihedral angle were studied. It was concluded that there were two modes of instabilities

observed; spiral divergence and oscillatory instability. This methodology is used for the
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stability analysis of the towed parafoil-payload system in Chapter 4.

2.6 Control Input

Though it was evident that the primary source of controlling the maneuverable parafoil-

payload system is the symmetric and asymmetric control brake inputs, the analytical study

of modeling control inputs commenced with the work of Glen J. Brown (23). He deter-

mined the relationship of control inputs to the roll and yaw angles of the system in steady

turn flight condition. He modeled the control input as the ratio of the trailing edge of the

parafoil deflected to the aerodynamic chord of the airfoil. Using the equation obtained from

lateral and longitudinal equilibrium, he developed the control input relations analogous to

the standard aircraft equations. He proved that the scale of the parafoil-payload system

plays an important role in the response to the control inputs. Small parafoils with larger

payloads are more sensitive to the control inputs. This causes the system to exhibit, what

is called, roll steering. As the scale of the parafoil-payload system increases, the response

shifts from roll steering to ’skid’ steering. In skid steering, the parafoil takes a turn in the

direction of the side, where the brake is applied. In skid steering the yaw moment predomi-

nates as compared to rolling moment. Also, the apparent mass effects produce a significant

change in the the method of turning of a parafoil-payload system. Due to incrase in ap-

parent mass, the distance between the aerodynamic center and CG of the system changes,

causing the anti-roll moment which in turn contributes for skid turn as against the normal

turn response. This work gave a significant insight into how the control input affects the

lateral response of the system.
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2.7 Apparent Mass Effects

For lightly loaded flight vehicles such as parafoils, the apparent mass of the air has a

strong effect on the flight dynamics (24). Apparent mass is defined as “the quantity having

the dimensions of the mass that is added to the mass of a body moving non-uniformly in a

fluid medium in order to take into account the action of the medium on the body” (25). For

standard air vehicles such as aircraft, the ratio of the mass of the vehicle to the mass of the

air volume displaced is very high, and in turn the significance of apparent mass effects is

very low. One more differentiating parameter between standard aircrafts and the paraglider

is the ‘wing loading’, which is the ratio of the weight of the aircraft or the flying object

to the area of the wing. For lightly loaded vehicles, such as parafoils, the wing loading

is less than 5kg/m2. In such cases, the apparent mass terms can be very significant. For

a parafoil-payload system, the large distance between the aerodynamic center and the CG

of the overall system causes the apparent mass effect to be more pronounced, due to the

significantly large amount of moments of inertia created by the apparent mass. For a typical

geometry and wing loading, assuming a canopy mass of 10 percent of the payload, the

apparent moment of inertia in roll about the apparent principal axis is about five times that

of the parafoil-payload mass system itself (24). Therefore it is absolutely essential to take

into account the effect of apparent mass and moments of inertia, especially while modeling

a parafoil-payload system. Lissaman and Brown (24) have calculated the values of these

apparent masses and inertia for a parafoil with respect to its geometric parameters, which

have become a standard convention to include in analyzing the motion of parafoil-payload

system.



3. Modeling Of Towed Parafoil-Payload System

This chapter is organized as follows. Section 3.1 describes the dynamic model of a towed

parafoil-payload system in detail along with all modeling assumptions. Section 3.2 elab-

orates on the derivation of generalized equations of motion of the dynamic model using

Lagrange’s equations. The aerodynamics of the parafoil canopy is illustrated in Section

3.3. All the geometric and mass properties of the system are detailed in Section 3.4. Sec-

tion 3.5 analyzes the longitudinal flight of the system and presents some typical simulation

results. Section 3.6 presents the operator-in-the-loop capability to simulate the flight con-

ditions real-time.

3.1 Model Description And Modeling Assumptions

A schematic model of a parafoil-payload system being towed behind a ship is shown in

Figure 3.1. The significant points of the model along with the inertial frame of reference

are shown. Point 1 represents the point of attachment of the cable at the ship end. Point 2

is the combined center of gravity (CG) of the parafoil payload system. Point 3 is the tow

cable attachment point on the parafoil-payload system. Point 4 represents the aerodynamic

center of the parafoil canopy, where all the aerodynamic forces and moments are assumed

to act. The tow cable length is a variable and is one of the control inputs for optimal tow-up.
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Figure 3.1. Significant points of the model.

Following are some assumptions made in the process of developing a model of practical

relevance to its application in Ship Launched Aerial Delivery System (SLADS):

1. The parafoil and the payload are assumed to be rigidly connected by the suspension

lines, i.e. No relative motion between the parafoil and payload.

2. The tow cable is assumed to be straight and imposes a kinematic constraint on the

otherwise six DOF rigid body. The tow cables are usually made up of high strength

para-aramid synthetic fiber called Kevlar. Kevlar has a Young’s modulus, in the range

of 85-186 GPa (26). The natural frequency of vibration of a Kevlar tow cable was

evaluated for the cable length of 100 meters and cross-sectional diameter of 0.022m.

It was found that this natural frequency is very high (≈ 120Hz) as compared to the

natural frequency of the parafoil-payload system (≈ 1 Hz). Hence it will be assumed

that there is no longitudinal vibration of the tow cable..
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3. The tow cable is released at a constant rate without any accelerations or jerks.

4. Wind gusts are incorporated so as to affect the aerodynamics of the parafoil only.

5. Payload drag is assumed to be negligible as compared to the drag of parafoil.

3.2 Equations Of Motion

The set of generalized co-ordinates suitable to describe the motion of the system are

shown in Equation 3.1, where

1. θ1 represents the in-plane angle of the tow cable i.e. in XZ inertial frame.

2. ψ1 represents the off-plane angle of the tow cable i.e. in XY inertial frame.

3. ϕ2, θ2 and ψ2 represent the Euler angles of the parafoil-payload system.

qk=1..5 =



θ1

ψ1

ϕ2

θ2

ψ2


(3.1)

The equations of motion of the dynamic system are derived using Lagrange’s equations.

For modeling purposes, various components of the system are described using three frames

of reference: The inertial reference frame {I}, the reference frame attached to the tow cable

{T}, and the body reference frame attached to the parafoil-payload system {B} as shown

in Figure 3.2.
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Side View

Top View

Figure 3.2. Schematic diagram of the states and reference frames of the model.
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3.2.1 Rotation Matrices

The {T} frame of reference is obtained by first rotating the inertial frame of reference {I}

about the K̂ axis by angle ψ1 and then by an angle θ1 about−ĵT axis as shown in the Figure

3.2. Thus the rotation matrix to transform vectors from inertial frame of reference to tow

cable reference frame can be written as shown in Equation 3.2.

T
I R =


cos θ1 cosψ1 cos θ1 sinψ1 sin θ1

− sinψ1 cosψ1 0

− sin θ1 cosψ1 − sin θ1 sinψ1 cos θ1

 (3.2)

The angular velocity of the tow cable represented in {T} frame is represented as shown

in Equation 3.3.

T ω⃗T = −θ̇1ĵT + ψ̇1K̂

= −θ̇1ĵT + ψ̇1 sin θ1îT + ψ̇1 cos θ1k̂T

=


sin θ1ψ̇1

−θ̇1

cos θ1ψ̇1

 (3.3)

The {B} frame of reference is obtained by rotating the inertial frame of reference {I}
through 3−2−1 Euler angle rotations as shown in the Figure 3.2. Thus the rotation matrix

to transform vectors from inertial frame of reference to body reference frame can be written
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as shown in Equation 3.4.

B
I R =


cos θ2 cosψ2 cos θ2 sinψ2 − sin θ2

− cosϕ2 sinψ2 + sinϕ2 sin θ2 cosψ2 cosϕ2 cosψ2 + sinϕ2 sin θ2 sinψ2 sinϕ2 cos θ2

sinϕ2 sinψ2 + cosϕ2 sin θ2 cosψ2 − sinϕ2 cosψ2 + cosϕ2 sin θ2 sinψ2 cos θ2 cosϕ2


(3.4)

The angular velocity of the parafoil-payload system can be represented in the {B} frame

as shown in Equation 3.5

Bω⃗B = ϕ̇2îb + θ̇2ĵ
′′

b + ψ̇2k̂
′

b

= ϕ̇2îb + θ̇2(cosϕ2ĵb − sinϕ2k̂b) + ψ̇2(− sin θ2îb + cos θ2 sinϕ2ĵb + cos θ2 cosϕ2k̂b)

=


ϕ̇2 − sin θ2ψ̇2

θ̇2 cosϕ2 + ψ̇2 cos θ2 sinϕ2

cos θ2 cosϕ2ψ̇2 − θ̇2 sinϕ2

 (3.5)

3.2.2 Kinematics

The absolute position of the CG of the parafoil-payload system can be written in terms of

absolute position of the ship, the relative vector representing the tow cable and the relative

vector between point of attachment of the cable at parafoil end and the CG of the parafoil

payload system.

r⃗2 = r⃗1 + r⃗3/1 − r⃗3/2 (3.6)

Note that r⃗i/j is the vector from point j to point i.

Differentiating Equation 3.6 we get the velocity of CG of the parafoil-payload system

which will be used in Equation 3.8 to calculate kinetic energy of the parafoil-payload sys-
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tem.

v⃗2 = v⃗1 +
d

dt
r⃗3/1 + ω⃗T × r⃗3/1 − ω⃗B × r⃗3/2 (3.7)

3.2.3 Lagrange Equations

In classical mechanics, the Lagrangian L is defined as kinetic energy T minus the potential

energy V . In equation form,

L = T − V

where, the kinetic energy of the parafoil-payload system can be expressed as the sum

of translational and rotational kinetic energy of the parafoil-payload system as shown in

Equation 3.8.

T =
1

2
mv⃗T2 v⃗2 +

1

2
ω⃗TBIω⃗B (3.8)

The inertia matrix I is assumed to be a diagonal matrix as represented in Equation 3.9, due

to the symmetry of the parafoil-payload system about body reference frame axes.

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (3.9)

If z2 represents the height of the CG of the parafoil-payload system above datum, the

potential energy can be expressed as shown in Equation 3.10.
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V = −mgz2 (3.10)

If Qk represents a set of generalized forces acting on the system, the generalized form

of Euler-Lagrange equations can be written as shown in Equation 3.11

d

dt

∂L
∂q̇k

− ∂L
∂qk

= Qk (3.11)

3.2.4 Generalized Forces

To determine the generalized forces acting on a rigid body, we first write the expression for

the virtual work done on a rigid body by n forces Fi (i = 1, 2, ..., n) at points ri and M ∗

moments (i = 1, 2, ...,M∗) are acting on the body (27).

δW =
m∑
k=1

(
n∑
i=1

Fi·
∂_ri
∂q̇k

+M∗·∂ω
∂q̇k

)
δqk

=
m∑
k=1

Qkδqk (3.12)

For the case of a parafoil-payload system the aerodynamic force F4 and moment M4

acting at the aerodynamic center 4, at a distance r4 from the CG contribute as generalized

forces. So Equation 3.12 can be written in more specific form as shown in Equation 3.13.
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δW =
m∑
k=1

(
F4 ·

∂ _r4

∂q̇k
+M4 ·

∂ω

∂q̇k

)
δqk

=
m∑
k=1

Qkδqk (3.13)

The variation of v⃗4 can be represented in terms of generalized coordinates.

m∑
k=1

∂ṙ4

∂q̇k
δqk =

∂ṙ4

∂θ̇1

δθ1 +
∂ṙ4

∂ψ̇1

δψ1 +
∂ṙ4

∂ϕ̇2

δϕ2 +
∂ṙ4

∂θ̇2

δθ2 +
∂ṙ4

∂ψ̇2

δψ2

m∑
k=1

∂ωB

∂q̇k
δqk =

∂ωB

∂θ̇1

δθ1 +
∂ωB

∂ψ̇1

δψ1 +
∂ωB

∂ϕ̇2

δϕ2 +
∂ωB

∂θ̇2

δθ2 +
∂ωB

∂ψ̇2

δψ2 (3.14)

Thus the five generalized forces for five dynamic equations are summarized in Equation

3.15.

Qθ1 = F4 ·
∂ṙ4

∂θ̇1

+M4 ·
∂ωB

∂θ̇1

Qψ1 = F4 ·
∂ṙ4

∂ψ̇1

+M4 ·
∂ωB

∂ψ̇1

Qϕ2 = F4 ·
∂ṙ4

∂ϕ̇2

+M4 ·
∂ωB

∂ϕ̇2

Qθ2 = F4 ·
∂ṙ4

∂θ̇2

+M4 ·
∂ωB

∂θ̇2

Qψ2 = F4 ·
∂ṙ4

∂ψ̇2

+M4 ·
∂ωB

∂ψ̇2

(3.15)
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3.2.5 Dynamic Equations

Using Equation 3.11 and the generalized forces derived in Equation 3.15, the equations

of motion were derived in a symbolic math code Maple. The script is given in Appendix

B. Equation 3.16 shows the five dynamic equations representing the motion of a towed-

parafoil-payload system.



A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55





θ̈1

ψ̈1

ϕ̈2

θ̈2

ψ̈2


=



B1

B2

B3

B4

B5


(3.16)

The individual terms of the A and B matrix are given in Appendix A.

3.3 Aerodynamic Model

The external forces and moments acting on the system are the aerodynamic forces and

moments acting at point 4. Refer Figure 3.3 for the aerodynamic forces acting at point 4.

These forces act in the wind frame {W}, the x axis of which is attached to the direction of

the velocity of point 4 with respect to the wind, and z axis is perpendicular to x-axis and in

the plane of symmetry of the canopy.

The velocity of the aerodynamic center, point 4 with respect to wind can be expressed

as shown in Equation 3.17.

v⃗4/w = v⃗2 + ω⃗B × r⃗4/2 − v⃗w (3.17)
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Side View

Top View

Figure 3.3. Aerodynamic forces
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The angle of attack and the side-slip angle are defined similar to standard aircraft equa-

tions as shown in Equations 3.18 and 3.19.

α = tan−1

(
v4/w,z

v4/w,x

)
(3.18)

β = sin−1

(
v4/w,y

|v⃗4/w|

)
(3.19)

Equation 3.20 shows the transformation of unit vectors from wind frame to body frame

of reference.
îb

ĵb

k̂b

 =


cosα 0 − sinα

0 1 0

sinα 0 cosα



cos β − sin β 0

sin β cos β 0

0 0 1




îw

ĵw

k̂w

 (3.20)

Thus the rotation matrix which converts vectors from wind frame to body frame can be

written as shown in Equation 3.21

B
WR =


cosα cos β − cosα sin β − sinα

sin β cos β 0

sinα cos β − sinα sin β cosα

 (3.21)

The aerodynamic model of an equivalent 500 sq. ft. parafoil, with the payload capacity

of 500 lbs is used for modeling purposes as described in Reference (28). One exception in

this model is the value of the yaw damping coefficientCnr, the value of which is assumed to

be half the value assumed in (28). Also the coefficients in rolling and yawingmoment which

are functions of asymmetric brake deflection δa have been doubled with the assumption that

the system is more sensitive to control inputs in the towed condition as compared to that in



44

free flight. The lift and drag coefficients are the functions of angle of attack and symmetric

brake deflections. Since the absolute value of asymmetric deflection of trailing edge adds

to the lift of the parafoil, the net lift changes due to absolute value of δa too. The lift and

drag coeffcients are shown in Equations 3.22 and 3.23.

CL = CL0 + CLαα+ CLδs
δs + CLδa

|δa| (3.22)

CD = CD0 + (CDα + CDδs
δs)C

2
L (3.23)

The side force acting on the parafoil is the function of side slip angle β, angle of attack

α, and asymmetric brake deflection δa as shown in Equation 3.24.

CY = (CYβ
+ CYαβ

α)β + CYδa
δa (3.24)

The aerodynamic pitching moment coefficient takes its form as described in chapter 2,

which is derived from the static stability analysis done by Thomas Goodrick (6).

Cm = Cm0 +
dmpl

m

(
1

c
+

ρCB0

2W/S

)
(CD cosα− CL sinα) + Cmq

qc

2|v⃗4/w|
(3.25)

Here,
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mpl = Mass of the payload

d = Vertical distance between the CG of the canopy and the payload in {B} frame

CB0 = Buoyancy constant

W = Total weight of the parafoil-payload system

The rolling moment and yawing moment coefficients are typical lateral coefficients,

function of side slip angle β, angle of attack α and asymmetric brake deflections δa. The

damping terms are also included, which are functions of rolling rate and yawing rate re-

spectively.

Cl =
(
Clβ + Clαβ

α
)
β + Clδa

δa +
b

2|v⃗4/w|
(
Clpp+ Clrr

)
(3.26)

Cn =
(
Cnβ

+ Cnαβ
α
)
β + Cnδa

δa +
b

2|v⃗4/w|
(
Cnpp+ Cnrr

)
(3.27)

The values of all the sub-coefficients are listed in Table 3.1.

Finally the aerodynamic forces are calculated using the standard aircraft equations.

L =
1

2
ρ|v⃗4/w|2SCL

Y =
1

2
ρ|v⃗4/w|2SCY

D =
1

2
ρ|v⃗4/w|2SCD

And the total external forces acting on point 4 can be represented in body reference
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Table 3.1.
Aerodynamic Sub-Coefficients

Force Coefficients Moment Coefficients
Symbol Value Units Symbol Value Units
CD0 0.14 n.d. Clβ 0.2865 rad−1

CDα 0.25 rad−1 Clαβ
-5.9091 rad−2

CDδs
0.2 n.d. Clδa

-0.0126 n.d.
CYβ

-0.2865 rad−1 Clp -0.15 rad−1

CYαβ
-0.3283 rad−2 Clr 0.0775 rad−1

CYδa
0.1368 n.d. Cm0 -0.33 n.d.

CL0 0.375 n.d. Cmq -6.39 rad−1

CLα 2.1486 rad−1 Cnβ
0.4011 rad−1

CLδs
0.2 n.d. Cnαβ

-0.9848 rad−2

CLδa
0.1 n.d. Cnδa

0.038 n.d.
Cnp 0.023 rad−1

Cnr -0.0468 rad−1

frame as

BF4 = B
WR


−D

−Y

−L

 (3.28)

The aerodynamic moments acting on parafoil-payload system are

M4,x =
1

2
ρ|v⃗4/w|2SClb

M4,y =
1

2
ρ|v⃗4/w|2SCmc

M4,z =
1

2
ρ|v⃗4/w|2SCnb

3.3.1 Control Inputs

As discussed in Chapter 2, the primary source of steering a parafoil is by deflecting the

trailing edge with the help of control lines. The control input is incorporated into the model,
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in a way that the net aerodynamic forces and moments change due to the trailing edge

deflection. The most common way of modeling the trailing edge is with the help of a

dimensionless quantity called δ. Refer Figure 3.4. If d represents the length of the chord

deflected due to the pulling of trailing edge, then the dimensionless control input δ is defined

as shown in Equation 3.29,

δ =
d

c
(3.29)

So, for example, if the trailing edge at both the sides of the span is deflected in such a

way that the d = 0.3c, then,

δs = 0.3 (3.30)

Now, if the right brake is further pulled down so that on the right side d = 0.5c, then

δs = 0.3

δa = 0.2

Figure 3.5 shows the steady state roll angle ϕ20 for various possible input conditions.

The procedure used to compute steady state values of the states, is described in detail in Sec-

tion 4.3. It can be seen that the steady state roll angle increases with increase in asymmetric

brake deflection at right side of the canopy. When symmetric brake deflection δs = 0, there

is a particular value of asymmetric brakes, which is δa = 0.3 in this case, after which there

is no steady state and system goes unstable. This is a possible lockout stage. Also, as the

symmetric brake deflection increases, the effect of asymmetric brakes keeps on diminish-
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Figure 3.4. Modeling control input or parafoil brake deflection

ing.
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Figure 3.5. Steady state roll angle ϕ20 for various control inputs

The similar effect is observed with yaw angle also as shown in Figure 3.6, though the

net effect on yaw angle is lesser than that of roll angle. The maximum steady state yaw

angle is ψ20 = 8.3 degrees. The possible reason for this is due to increasing off plane tow
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cable angle in negative direction as shown in Figure 3.7. The absence of any steady state

for δs = 0 and δa > 0.3 is evident in both the lateral states, ψ1 and ψ2.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

δ
a

ψ
2
 (

d
e

g
)

 

 

δ
s
 = 0.0

δ
s
 = 0.1

δ
s
 = 0.2

δ
s
 = 0.3

δ
s
 = 0.4

δ
s
 = 0.5

Figure 3.6. Steady state yaw angle ψ20 for various control inputs
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Figure 3.7. Steady state off plane tow angle ψ10 for various control inputs
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3.4 Geometric and Inertial Properties

Due to the large distance between the parafoil canopy and the payload, the geometric

properties of the system play an important role in the overall system dynamics. The parafoil

used for the simulation purpose has the properties of the one which is being used by Craft

EngineeringAssociates for experimental testing, refer Figure 3.8. It is a 13 cell zero porosity

parafoil from Flight Concepts International, Inc. of Norcross, Georgia. The parafoil has a

rectangular design (10.6 m span by 4.16 m chord) with a 3:1 aspect ratio, and has been used

on commercial powered parachutes. The parafoil has a lift capacity of over 4,000 Newtons

and is well suited for a 250 to 300 kg cargo delivery system.

Figure 3.8. Parafoil used for testing. (courtesy: Flight Concepts Int’l, Inc. See Appendix D for the
documentation of the permission to republish this image)

A rectangular frame which will house the payload and related avionics is shown in

Figure 3.9. It is 1.25 meters long, 1.65 meters wide and 1.07 meters tall. The tow cable

attachment is at height of 0.8 meters from the bottom and the attachment is 0.6 meters wide.
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Figure 3.9. Payload dimensions
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Some of the important model parameters are listed in Table 3.2.
Table 3.2.

Model Parameters

Object Parameter Symbol Value Units

Canopy

Span b 10.6 meters
Chord c 4.16 meters
Arch a 2.28 meters
Thickness t 0.61 meters
Area S 50 sq. mts
Mass mcpy 6.44 kg
Mass of air mair 21.67 kg
Apparent mass mapp 0.8*mair kg

Payload

Max weight mpl 226.8 kg
Dim in Inertial X plx 1.25 meters
Dim in Inertial Y ply 1.65 meters
Dim in Inertial Z plz 1.07 meters

3.4.1 Inertia Calculations

Since the parafoil-payload system is considered to be a rigid body, to model the system

dynamicsmore accurately, the systemmass and inertia properties are calculated using actual

values. The mass of the air, large distance between parafoil canopy and payload and the

apparent mass effects have a significant role in the overall CG and inertia calculations.

Consider the parafoil-payload system in side view as shown in the Figure 3.10. Due to the

symmetry of both the canopy and the payload along the inertial Y axis, all the center of

masses are assumed to be in the inertial XZ plane. Point C represents the mass center of the

canopy, which is also the aerodynamic center where all aerodynamic forces and moments

are assumed to act. Point P is the payload mass center. The top edge of the payload and the

vertical passing through the CG of the payload are considered to reference datum for CG

calculations, as indicated in Figure 3.10. xc and zc are the horizontal and vertical distances
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of the canopy mass center from the datum. Similarly xp and zp locate the payload CG. It

should be noted that xp = 0, since the reference datum is assumed to be passing through

payload CG. The total mass of the canopymcpy, mass of the airmair and the apparent mass

of the airmapp is denoted bymc.

mc = mcpy +mair +mapp (3.31)

Thus the overall CG of the system can be calculated by using Equations 3.32 and 3.33.

xcg =
mplxp +mcxc
mpl +mc

(3.32)

zcg =
mplzp +mczc
mpl +mc

(3.33)

The payload moments of inertia about its mass center P are calculated using standard

formulae for a rectangular solid box.

Ixpl
=

mpl

(
pl2y + pl2z

)
12

(3.34)

Iypl
=

mpl (pl
2
x + pl2z)

12
(3.35)

Izpl
=

mpl

(
pl2x + pl2y

)
12

(3.36)

The parafoil canopy is assumed to of a rectangular planform, with very less thickness

as compared to its span and chord. So the formulae of a rectangular plate are used to model

the inertia of the parafoil canopy (28).
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Figure 3.10. Side view of a parafoil payload system for net CG calculation
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Ixc =
mcb

2

12
(3.37)

Iyc =
mcc

2

12
(3.38)

Izc =
mc (b

2 + c2)

12
(3.39)

Finally using parallel axis theorem, the total inertia about all three axes are calculated

using Equations 3.40 to 3.42.

Ixx = Ixpl
+ Ixc +mpl (zp − zcg)

2 +mc (zc − zcg)
2 (3.40)

Iyy = Iypl
+ Iyc +mpl (zp − zcg)

2 +mc (zc − zcg)
2 (3.41)

Izz = Izpl
+ Izc +mpl (xp − xcg)

2 +mc (xc − xcg)
2 (3.42)

3.5 2D Simulation Results

To analyze the dynamics of the towed parafoil-payload system, a longitudinal flight

simulation was developed. In this study, only the variables affecting the longitudinal flight

are studied for their effect on overall dynamics. Firstly the steady state calculations are

made using static analysis to determine the steady state values of in-plane tow angle θ1 and

the pitch angle of the parafoil-payload system, θ2. This exercise is repeated for various ship

velocities and a range of payload weights. Figure 3.11 shows the variation of these two

angles.

It can be observed that for a specific payload weight, there is a minimum ship speed



56

0 20 40 60 80 100
−100

−50

0

50

100

θ
1
 (

d
e

g
)

0 20 40 60 80 100
0

20

40

60

Ship Velocity (Knots)

θ
2
 (

d
e

g
)

 

 
m

pl
=100lb

m
pl

=200lb

m
pl

=300lb

m
pl

=400lb

m
pl

=500lb

Figure 3.11. Steady state values of in-plane tow angle θ1 and pitch angle θ2

required to keep the parafoil-payload system above the ground in steady state. For example,

if the payloadweight ismpl = 300 lb, then theminimum ship speed is about 13 knots to keep

it flying behind the ship in steady state. In the first subplot in Figure 3.11 the intersection

of solid horizontal black line with the plots, indicate this critical ship speed for different

payload weights. When the ship speed increases beyond 40 knots, the steady state in-plane

tow angle becomes independent of the payload mass. The ship speed is high enough for the

parafoil-payload system to remain afloat at a particular height irrespective of the payload

weight. Due to the kinematic constraint applied by the tow cable, the steady state value

of the in-plane tow angle reaches a constant value for higher ship speeds. The higher ship

speed results in higher tension force in the tow cable.

Payload weight, has hardly any effect on the steady state pitch angle, as seen in second

subplot of the Figure 3.11. Also, beyond the ship speed of 40 knots, even the ship speed

does not have any effect on the steady state pitch angle. So if we select the optimum ship
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speed, then it is possible to have a steady longitudinal flight of the parafoil-payload system

behind the ship. Figure 3.12 shows the in-plane tow angle for various symmetric brake

inputs. The mass of the payload is assumed to be mpl = 200lb, equivalent to an average

person’s weight. It can be seen that beyond the practical ship speed, which is 15 knots,

pulling the symmetric brakes reduces the steady state height of the parafoil-payload system

slightly. This helps in keeping the tow cable tension in limit due to increasing ship speed.
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Figure 3.12. Steady state values of in-plane tow angle θ1 for various symmetric brake inputs

Similarly Figure 3.13 shows the effect of symmetric brake inputs on the steady state

pitch angle. Again for all practical values of ship speeds beyond 15 knots, the symmetric

brakes increase the steady state picth angle, in accordance with the intuitive observation of

the pilot.

In another exercise to test the the longitudinal flight scenario, the system is tested for

tow cable release. The ship speed is assumed to be 15 knots, while the payload weight

is 200 lbs. The simulation is started with any given values of θ1 and θ2. Refer Figures
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Figure 3.13. Steady state values of pitch angle θ2 for various symmetric brake inputs

3.14 and 3.15. Until 100 secs, the system comes to a steady state, wherein the steady state

values are the same for ship speed of 15 knots and payload weight of 200 lbs as seen in

Figure 3.11. After 100 seconds, the tow cable is released at a constant rate. It causes the

initial transient where the relative Z distance between the ship and the parafoil-payload

system decreases, but soon the parafoil-payload system starts gaining height at a constant

rate. Also the relative X distance keeps on increasing at constant rate. Three different cable

release rates are studied, L̇ = 0.1, L̇ = 0.3 and L̇ = 0.5 meters per second. As the cable

release rate increases, the excess cable is utilized in increasing the relative distance between

the ship and the parafoil. In another words, the climb rate of the parafoil-payload system

doesnt increase as fast as the cable payout speed.
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Figure 3.14. Inertial X component of the relative vector between point of attachment at ship and the
parafoil-payload system
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3.6 Operator-In-The-Loop Simulation

A real-time simulation tool has been developed in the Intelligent Systems and Control

Laboratory in the Mechanical Engineering Department of Michigan Technological Univer-

sity. This tool, developedwith dSPACEds1103 diagnostic boardwithinMATLAB/Simulink

and ControlDesk environment, has the capability of testing various control inputs on the

towed flight performance. Figure 3.16 shows a view of this system. Two analog joysticks

are used to provide calibrated input to the system. The inputs which are provided include:

Figure 3.16. Operator-In-Loop simulation setup

1. Symmetric brake deflection

2. Asymmetric brake deflection
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3. Cable payout rate

4. Ship velocity in inertial Y direction

The ControlDesk console has the capabilities of recording all the flight variables in a

way analogous to an aircraft in flight. The towed parafoil-payload system has been exten-

sively tested in this open-loop flight scenario before understanding various key issues during

towed deployment. One major concern is that of lockout, which will be discussed more in

detail in the Chapter 4. The lockout phenomenon has been simulated and the reasons and

conditions under which this instability occurs is analyzed.



4. Stability Analysis

When a pilot tows behind a tow vehicle using a paraglider, one of his main concerns is to

avoid a peculiar unstable flight condition called lockout. The purpose of this chapter is to

model and simulate lockout by analyzing the stability of the parafoil-payload system. This

chapter is organized as follows. Section 4.1 presents a motivation for considering stability

analysis of towed flight systems. Section 4.2 describes the linear model used for analysis.

The steady state fight calculations used for linearization are illustrated in Section 4.3. Com-

parison of the nonlinear and linear models for disturbances is illustrated by simulation in

Section 4.4. Section 4.5 presents the stability of the system as a function of specific flight

conditions and physical parameters. The chapter concludes with the summary of results in

Section 4.6 and motivation and goals of a control strategy to be developed and presented in

the Chapter 5.

4.1 Motivation

The main difference between a pilot flying a paraglider in towed flight as compared to

free flight is the tow cable tension acting on the vehicle. In towed flight, it is essential for

the velocity vector of the tow vehicle and the wind relative velocity of the vehicle to lie

in the same vertical plane. If the vehicle is displaced away from the path of the towing
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vehicle, the pilot is taught to bring it back behind the tow vehicle, using the parafoil brakes

and weight shifting techniques. If this control is not provided in time, or if the pilot provides

an over-control, the towed system can reach a configuration, wherein no matter how much

control input is provided, the system will never come back to its steady state and eventually

the towed system will crash. This instability is called ‘lockout’. One of the main factors

contributing to lockout is the tow line tension. As described in the United States Hangliding

and Paragliding Association (USHGA) towing manual (29), the following are three signs

of an impending lockout situation:

1. A lockout could occur if the pilot is pulled in front of the paraglider canopy by more

than 45◦, i.e. θ2 > 45◦ or the angle of attack α > 45◦ in steady flight. This situation

can occur due to excessive tension in the tow cable.

2. A lockout could occur if the flight path of the paraglider diverges away from the

velocity vector of the towed vehicle by more than 45◦, i.e. ψ1 > 45◦.

3. A lockout could occur if the canopy rolls by an angle more than 45◦, i.e. ϕ2 > 45◦.

To avoid lockout, it is essential to understand the main flight conditions and physical

parameters which can cause it. The main causes are listed below (30):

1. A sudden gust of wind causing the parafoil canopy to roll.

2. Over control of brakes while making a correction to bring the system to a desired

steady state flight condition

3. Launching in cross wind conditions
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Although lockout is well understood amongst pilots, very little analysis has been done

to explain it. The purpose of this study is to analytically quantify the physical parameters,

control inputs and flight conditions which can lead to this unstable flight scenario.

4.2 Linear Model

4.2.1 Lyapunov’s Linearization Method

The stability analysis approach followed in this chapter is similar to the one used in Refer-

ence (22). Stability of a nonlinear system can be analyzed using Lyapunov’s linearization

method (31). This method is useful to analyze the stability around the vicinity of an equi-

librium point, i.e. local stability. Consider a nonlinear system represented by Equation

4.1.

ẋ = f (x, u) (4.1)

Neglecting the higher order terms, the linearized system can be represented as shown

in the Equation 4.2.

ẋ =

(
∂f
∂x

)
(x=x∗,u=u∗)

∆x+

(
∂f
∂u

)
(x=x∗,u=u∗)

∆u (4.2)

where, [x∗, u∗] is the equilibrium point around which the system is linearized. If the Jaco-

bian of f with respect to x at [x∗, u∗] is denoted by A and the Jacobian of f with respect to

u at [x∗, u∗] is denoted by B, i.e.
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A =

(
∂f
∂x

)
(x=x∗,u=u∗)

(4.3)

B =

(
∂f
∂u

)
(x=x∗,u=u∗)

(4.4)

the linearization of the nonlinear system in Equation 4.1 around the equilibrium point

[x∗, u∗] can be represented as shown in Equation 4.5.

ẋ = A∆x+ B∆u (4.5)

The stability of the system can be predicted from Equation 4.5 using theorem 3.1 related

to Lyapunov’s linearization method cited from Reference (31), which states:

• “If all the eigenvalues of A are strictly in the left-half complex plane, then the equi-

librium point is asymptotically stable (for the actual nonlinear system)”.

• “If at least one eigenvalue of A is strictly in the right-half complex plane, then the

equilibrium point is unstable”.

• “If all the eigenvalues ofA are in the left-half complex plane, but at least one of them

is on the imaginary axis, then one cannot conclude from the linear approximation (the

equilibrium point may be stable, asymptotically stable or unstable for the nonlinear

system)”.

4.2.2 Linearization of Dynamic System

A linear model of the system is first developed around an operating point. The dynamic

equations of the parafoil-payload system developed in Chapter 3 are linearized about the
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nominal operating flight conditions. The generalized form of the dynamic equations are

summarized in Equation 4.6, where x is the state vector and u is the input vector.

ẋ = F(x, u, t) =



f1(x, u, t)

f2(x, u, t)

.

.

f10(x, u, t)


(4.6)

The ten-dimensional state vector x is formed by

1. In-plane and off-plane tow cable angles θ1 and ψ1,

2. Three Euler angles of the parafoil-payload system; ϕ2, θ2 and ψ2,

3. Angular rates θ̇1, ψ̇1, ϕ̇2, θ̇2 and ψ̇2.

as shown in Equation 4.7.

x =



θ1

ψ1

ϕ2

θ2

ψ2

θ̇1

ψ̇1

ϕ̇2

θ̇2

ψ̇2



(4.7)
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The input vector consists of symmetric and asymmetric brake angles as represented in

Equation 4.8.

u =

 δs

δa

 (4.8)

To linearize the nonlinear dynamic equations, the states and the inputs of the system

are expressed as the sum of their nominal operating values and perturbations about them as

shown in 4.9

x = x0 + ∆x

u = u0 + ∆u (4.9)

The state vector can be represented as shown in Equation 4.10.

x = x0 + ∆x =



θ10 + ∆θ1

ψ10 + ∆ψ1

ϕ20 + ∆ϕ2

θ20 + ∆θ2

ψ20 + ∆ψ2

θ̇10 + ∆θ̇1

ψ̇10 + ∆ψ̇1

ϕ̇20 + ∆ϕ̇2

θ̇20 + ∆θ̇2

ψ̇20 + ∆ψ̇2



(4.10)
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The input vector in its perturbations form can be represented as shown in Equation 4.11.

u = u0 + ∆u =

 δs0 + ∆δs

δa0 + ∆δa

 (4.11)

Equation 4.6 is linearized about an equilibrium point (x0, u0) and the linearized dynamic

equations of the system are represented in Equation 4.12.

∆̇x = A∆x+ B∆u (4.12)

where, A and B are the Jacobians shown in Equation 4.13 and Equation 4.14.

A =



∂f1
∂x1

∂f1
∂x2

. . ∂f1
∂x10

∂f2
∂x1

∂f2
∂x2

. . ∂f2
∂x10

. . . . .

. . . . .

∂f10
∂x1

∂f10
∂x2

. . ∂f10
∂x10


(4.13)

B =



∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

. .

. .

∂f10
∂u1

∂f10
∂u2


(4.14)
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4.3 Steady State Flight

To analyze the stability of a linear model, first the nominal operating point has to be

calculated. This operating point consists of a [x0, u0] set consistent with Equation 4.6. This

is a unique solution of Equation 3.16, when all the rate terms are set to zero, and is a set of

five nonlinear equations. This equation transforms into five equations of the form shown

in Equation 4.15

g (x0, u0) = 0 (4.15)

A code was written using the symbolic manipulation software ‘Maple’ to auto-generate

g for any set of physical parameters and [x0, u0]. Since a closed form solution was elusive,

MATLAB was used to solve Equation 4.15. for each particular steady state input condition

u0. Since all the rate terms are set to zero, the five unknowns of x0 are shown in Equation

4.16.

x0,1..5 =



θ10

ψ10

ϕ20

θ20

ψ20


(4.16)

The steady state solution is then used as an operating point in another Maple code to auto-

generate the linear model of the system. For example, consider the tow vehicle moving at

a constant speed of 13 knots, i.e. 6.68 meters per second. A payload of 200 lbs (90.7 kg)

is being towed by the 500 square foot (46 meter square) parafoil canopy. The steady state
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values of the states for a symmetric brake deflection of δs0 = 0.2 and an asymmetric brake

deflection of δa0 = 0.1 are shown in Equation 4.17. The steady state configuration is shown

in Figure 4.1 which is a snapshot of a MATLAB real-time animation software.



θ10

ψ10

ϕ20

θ20

ψ20


=



32.44◦

−6.16◦

3.32◦

29.29◦

1.27◦


(4.17)

Figure 4.1. Steady state flight condition for symmetric brake input δs0 = 0.2 and asymmetric brake
input δa0 = 0.1

It can be observed that due to the asymmetric brake deflection, the system yaws in the
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positive direction, rolls in positive direction and the tow line sways away from the ship

velocity vector in the positive inertial Y direction. In the ensuing analysis the linear model

of the system is developed about nominal operating points and then the stability of the

system is analyzed using the eigenvalue approach described earlier.

4.4 Linear and Nonlinear Model Comparison

Before analyzing the linear model for determining stability characteristics, the transient

effect of the perturbations was examined to help build confidence of the correctness of the

simulations. The vehicle was set to steady state flight conditions using the steady state

calculator described in Section 4.3. Then a Symmetric brake deflection pulse was applied

for 10 seconds with a magnitude of ∆δs = 0.1 and time constant of 0.2 seconds. The input

profile is shown in Figure 4.2.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (secs)

δ
 (

n
.d

.)

Figure 4.2. Brake input perturbation of ∆δ = 0.1
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Figure 4.3 shows the longitudinal states θ1 and θ2 of both the linear and the nonlinear

model. It can be observed that both the models almost correspond to each other. More

importantly, as the pulse amplitude is decreased the error between the linear and nonlinear

models decreases which is the proper trend.
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Figure 4.3. Linear and nonlinear model comparison of longitudinal states to a symmetric brake per-
turbation

Also, the lateral flight response was compared for asymmetric brake deflection pertur-

bations, keeping the symmetric brakes to zero. The input profile of the asymmetric brakes

is similar to the symmetric brakes as shown in Figure 4.2. The lateral states of both the

models also correspond to each other well as shown in Figure 4.4.
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Figure 4.4. Linear and nonlinear model comparison of lateral states

4.5 Stability Boundaries

The main objective of the linear model is to analyze the stability of the parafoil-payload

system about various operating points. The linear model developed in Section 4.2 is used

to develop the stability boundaries. The rationale behind choosing the physical parameters

and flight conditions which might affect the stability is based on the causes and conditions

in which lockout may occur as described in Section 4.1. One of the main factors which can

cause lockout is the cross wind. The wind input is modeled using three parameters:

1. The magnitude of the wind velocity vector vw,

2. The azimuth angle or the angle it makes with the Inertial X direction in XY plane µ

and

3. The elevation angle or the angle in the XZ plane η as shown in Figure 4.5
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Front View

Top View

Figure 4.5. Wind Input modeled using three parameters: vw,µ and η

The effect of the magnitude of the cross wind and the elevation angle, η, is analyzed for

various steady flight conditions. The procedure adopted for stability analysis is as follows:

1. Set vehicle physical parameters and flight conditions to desired values. The signifi-

cant physical parameters and flight conditions are listed below:

(a) Mass of the payload,mpl

(b) Speed of the towing vehicle, vs

(c) The wind velocity magnitude, vw

(d) Azimuth angle of the wind velocity vector, µ

(e) Elevation angle of the wind velocity vector, η

(f) Symmetric brake deflection, δs
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(g) Asymmetric brake deflection, δa

2. Calculate steady state values of the states shown in Equation 4.16 for each case of

step #1.

3. Use these steady state values to evaluate the linear model, specifically the eigenvalues

of the A matrix.

4. Eigenvalues of the A matrix are analyzed for any poles in right half plane.

4.5.1 Elevation Angle η

Figure 4.6 shows the stability plot of wind velocity versus the asymmetric brake input δa

for various wind elevation angles, η. The physical parameters and flight conditions were:

1. Mass of the payload,mpl = 200 lbs (90.7 Kg)

2. Symmetric brake deflection, δs = 0.2

3. Ship velocity, vs = 13 knots (6.68 m/s)

4. The wind velocity azimuth angle, µ = 90◦

Figure 4.6 shows four stability contours for specific values of wind elevation angle η.

These contours are the stability boundaries, exterior to which, the system is unstable. Due to

the peculiar shape of this contour, it can be termed as stability envelope. The stability enve-

lope depicts that for a particular value of η, there is a limit to the magnitude of wind velocity,

beyond which the system is unstable. This magnitude decreases with increasing asymmet-

ric brake deflection. Also, large values of the wind angle η, require smaller wind velocities

to maintain stability. This effect can be explained by considering the wind vector’s inertial
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Figure 4.6. Stability boundaries for various η. Regions interior to each contour are stable, and un-
stable exterior to a contour.
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Z component as shown in Equation 4.18. The Z component increases the relative velocity

of the aerodynamic center of the parafoil canopy with respect to the wind v⃗4/w as shown in

Equation 4.19. This increases the airfoil angle of attack and thus the aerodynamic forces

and moments. In turn, the tow cable tension increases which promotes lockout.

I v⃗w =


−vw cosµ cos η

−vw sinµ cos η

−vw sin η

 (4.18)

I v⃗4/w = I v⃗4 − I v⃗w

=


v4,x

v4,y

v4,z

−


−vw cosµ cos η

−vw sinµ cos η

−vw sin η

 (4.19)

The steady state values of all the states are presented in Table 4.1 to Table 4.5. These

values correspond to the data represented by the blue line of η = 20◦ in the Figure 4.6.

The values marked with red color indicate that the steady state configuration is unstable.

It can be observed from Table 4.1 that the steady state in-plane tow angle θ10 increases

with increase in the magnitude of wind velocity for any given value of asymmetric brake

deflection. This is consistent with the observed effect of increase in the altitude with the

increase in relative wind speed. But as the altitude increases, for constant tow cable length,

i.e. L̇ = 0, the tension in the cable increases, which favors lockout. This is the unstable

flight regime marked with red color.

Table 4.2 shows the steady state pitch angle which is maximum for the zero wind ve-

locity and decreases as the ratio of wind magnitude to the ship velocity increases.
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Table 4.1
Steady state values of in-plane tow angle θ10 (deg) for η = 20◦

1.0 71.7
0.9 62.5 69.5 62.5
0.8 61.1 66.7 61.1
0.7 49.2 59 63.4 59 49.2
0.6 48 56.1 59.5 56.1 48
0.5 37.4 45.8 52.4 55 52.4 45.8 37.4
0.4 35.8 42.9 48.2 50.1 48.2 42.9 35.8
0.3 26.8 33.6 39.4 43.6 44.9 43.6 39.4 33.6 26.8
0.2 25.2 31 35.8 39.2 40 39.2 35.8 31 25.2
0.1 17.5 23.2 28.3 32.5 35.2 35.8 35.3 32.5 28.3 23.2 17.5
0 16.1 21.4 26 30 32 32.4 32 30 26 21.4 16.1

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Table 4.2
Steady state values of pitch angle θ20 (deg) for η = 20◦

1.0 10.8
0.9 11.8 11.8 11.8
0.8 13.2 13.1 13.2
0.7 14.3 14.7 14.6 14.7 14.3
0.6 16.1 16.4 16.2 16.4 16.1
0.5 17.5 18.1 18.3 18.1 18.3 18.1 17.5
0.4 19.8 20.2 20.3 20.1 20.3 20.2 19.8
0.3 21.4 22.1 22.5 22.5 22.3 22.5 22.5 22.1 21.4
0.2 23.9 24.5 24.8 24.8 24.6 24.8 24.8 24.5 23.9
0.1 25.3 26.3 26.8 27.1 27.1 26.9 27.1 27.1 26.8 26.3 25.3
0 27.6 28.5 29.1 29.3 29.4 29.2 29.4 29.3 29.1 28.5 27.6

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
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Table 4.3, 4.4 and 4.5 show the lateral steady state values. The increase in asymmetric

brake deflection in the positive direction is analogous to a pilot pulling the right side parafoil

brakes. This causes the canopy to yaw and roll in the positive direction. Also, the towed

vehicle displaces in the positive inertial Y direction, which is indicated by the negative

values of ψ1. The lateral steady states corroborate the actual behavior of the parafoil canopy

for asymmetric control inputs.
Table 4.3

Steady state values of off-plane tow angle ψ10 (deg) for η = 20◦

1.0 43.2
0.9 79.8 40.2 0.6
0.8 71.7 37 2.1
0.7 80.9 63.5 33.3 3.1 -14.2
0.6 72.2 55.4 29.4 3.5 -13.4
0.5 73.4 63.2 47.4 25.2 2.9 -12.9 -23
0.4 64.5 54.3 39.7 20.6 1.5 -13.1 22.6
0.3 62.8 55.6 45.7 32.3 15.7 -0.78 -14.2 -24.1 -31.3
0.2 54.3 47 37.4 25.2 10.6 -3.9 -16.1 -25.7 -33
0.1 51.9 46.2 39 29.8 18.4 5.4 -7.7 -19 -28.2 -35.5 -41.1
0 44.6 38.8 31.6 22.7 12.1 0 -12.1 -22.7 -31.6 -38.8 -44.6

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Table 4.4
Steady state values of roll angle ϕ20 (deg) for η = 20◦

1.0 0
0.9 -12 0 12
0.8 -10.8 0 10.8
0.7 -19.6 -9.7 0 9.7 19.6
0.6 -17.7 -8.8 0 8.8 17.7
0.5 -24.5 -16.2 -8.1 0 8.1 16.2 24.5
0.4 -22.6 -15 -7.5 0 7.5 15 22.6
0.3 -28.6 -21.2 -14.1 -7 0 7 14.1 21.2 28.6
0.2 -27.4 -20.3 -13.5 -6.7 0 6.7 13.5 20.3 27.4
0.1 -33.9 -26.8 -19.9 -13.2 -6.6 0 6.6 13.2 19.9 26.8 33.9
0 -34 -26.9 -20 -13.3 -6.6 0 6.6 13.3 20 26.9 34

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
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Table 4.5
Steady state values of yaw angle ψ20 (deg) for η = 20◦

1.0 43.2
0.9 35.8 40.2 44.6
0.8 33 36.9 40.9
0.7 26.2 29.8 33.3 36.9 40.5
0.6 22.9 26.2 29.4 32.6 35.9
0.5 16.1 19.2 22.2 25.2 28.1 31.1 34.3
0.4 12.1 15.1 17.9 20.6 23.3 26.2 29.1
0.3 4.9 7.7 10.5 13.6 15.7 18.3 21.0 23.8 26.6
0.2 0.1 2.9 5.5 8.1 10.6 13.2 15.8 18.4 21.2
0.1 -7.9 -5.1 -2.4 0.3 2.9 5.4 7.9 10.5 13.1 15.8 18.7
0 -13.5 -10.7 -7.9 -5.2 -2.6 0 2.6 5.2 7.9 10.7 13.5

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Additional steady state values for η = 0◦, 10◦ and 30◦ are presented in Appendix C.

Consider the case of δa = 0 and vw

vs
= 0.4 for the steady state configuration in Table

4.1 to Table 4.5 marked in blue. For this case the A matrix and B matrix is shown in

Equation 4.20. The eigenvalues of theAmatrix are all stable: −3.0±2.01i,−0.44±1.46i,

−0.197 ± 0.271i, −0.143 ± 0.737i, -17.6 and -0.25.

∆̇x = A∆x+ B∆u (4.20)
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where,

A =

2
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0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

−0.28 0 0 −0.43 0 1.27 0 0 0

0 −0.29 −1.19 0 1.32 0 4.61 −1.49 0 0.57

0 −0.36 −8.56 0 17.67 0 77.76 −24.38 0 8.39

−1.31 0 0 −7.97 0 35.53 0 0 −8.27 0
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and,

B =
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4.5.2 Symmetric Brake Deflection δs

The stability boundaries with respect to various symmetric brake inputs are plotted in Figure

4.7. The dotted lines represent the practical limits of the asymmetric brakes for a given
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symmetric brake setting. It can be seen that the stability envelope widens with increasing

symmetric brake inputs, but at the same time the range of asymmetric brake decreases.

With δs = 0, the system is more sensitive to δa as compared to δs = 0.2 or δs = 0.4. So

to optimize between the sensitivity and range of asymmetric brake inputs, a compromise

value of the symmetric brake inputs must be used for stable and controllable flight.

4.5.3 Effect of Tow Point Location

Since the main difference between a towed paraglider and a free flying paraglider is the tow

cable force and the moments created by this force about the CG of the system, the tow point

location is an important factor to be considered for stability analysis. In Figure 4.8 X-axis

represents the z component of the relative vector between the tow point and the CG of the

system r3/2,z in meters. On the y axis the ratio of the magnitude of the wind velocity to the

ship velocity is shown. The positive values of r3/2,z represent that the tow point is located

below the CG of the system. It can be clearly seen that that as the tow point moves below

CG, the system can sustain larger magnitudes of wind gusts. Hence the tow point should be

located below the CG of the system for increasing stability in crosswind conditions. Due

to the limitation of the standard optimization routines in Matlab to calculate exact steady

state of the nonlinear dynamic system, a curve is fit to the steady state values as shown in

the Figure 4.8.
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Figure 4.7. Stability boundaries for various δs
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Figure 4.8. Stability boundary showing the effect of tow point location
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4.6 Summary

As discussed earlier, the main problem with towed paragliders is lockout. This unstable

flight condition has been modeled using the linear model and anaylzing the stability for

various flight conditions and input parameters. The stability boundaries indicate that there

is a limitation on the amount of control input that can be used to counter the cross wind

disturbances. This is consistent with pilot’s experiences of lockout sensitivity to crosswinds.

Also, to tow up the system as fast as possible, without loosing the stability, a closed loop

control strategy is essential to maintain stability due to high cable forces. Stability was

also shown to be sensitive to tow cable force which confirms the practical understanding of

lockout. This chapter provided an insight into which factors are important while considering

the problem of lockout. The next chapter will focus on the control strategy development

based on the observations made in this chapter. For stability control, the only two inputs are

symmetric and asymmetric brake setting. The sensitivity and range of these control inputs

will play an important role in designing the control strategy.



5. Control System Design

This chapter is organized as follows. Considering the main goals of SLADS as outlined in

Section 1.3, and the stability analysis results of the towed flight system in Chapter 4, sig-

nificant control objectives are outlined in Section 5.1. In order to develop a control strategy

based on the linear model, the controllability and observability of the system is assessed

in Section 5.2. A tow up control system using the longitudinal linear model is developed

in Section 5.3. Section 5.4 provides a control strategy design to expand the stable flight

regimes, in the case of lateral disturbance. The chapter concludes with observations and

conclusions, followed by a proposed future work in the area of control system development

for towed parafoil-payload systems in Section 5.5.

5.1 Control Objectives

As discussed in Chapter 1, one of the main objectives of the Ship Launched Aerial

Delivery System (SLADS) is that the system be able to precisely deliver cargo from ship to

shore quickly. To accomplish this objective, the parafoil-payload system has to be towed

up, as fast as possible since the main objective during the free flight phase is the precision

of the delivery. Moreover, it is essential to keep the towed system in line with the towing

vehicle to maintain stability as discussed in Chapter 4. Since the focus of this research is
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on the towed phase, the main objectives of the control system are:

1. Tow up the system as fast as possible

2. Maintain stability

With these two goals, the linear model developed in Chapter 4 is used to develop the

control strategy in MATLAB/Simulink environment. These control objectives are first put

forth in mathematical terms in relation to the model developed and then investigated using

simulation.

1. Tomaximize the rate of ascent of the parafoil-payload system, defined by, ṗ2/1,z using

two longitudinal control inputs:

(a) Symmetric brake deflection, δs

(b) Tow cable payout rate, L̇

2. To keep the eigenvalues of the closed loop system in the left half plane using asym-

metric brake deflection δa, to counter the effect of lateral wind disturbance defined

by three parameters:

(a) Wind velocity magnitude, vw

(b) Azimuth angle, µ

(c) Elevation angle, η

5.2 Controllability And Observability

The linear model developed in Chapter 4 is used to develop the control strategies. Be-

fore designing a control strategy, it is essential to analyze whether the system states can be
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controlled using the available set of inputs. The linear model, using perturbed states and

inputs, can be described as shown in the Equation 5.1.

∆̇x = A∆x+ B∆u (5.1)

where, the linearized state vector ∆x is defined as described in Chapter 4.

∆x =

[
∆θ1 ∆ψ1 ∆ϕ2 ∆θ2 ∆ψ2

˙∆θ1
˙∆ψ1

˙∆ϕ2
˙∆θ2

˙∆ψ2

]T
(5.2)

The general A matrix has the form as shown in Equation 5.3.

A =



0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

A61 A62 A63 A64 A65 A66 A67 A68 A69 A610

A71 A72 A73 A74 A75 A76 A77 A78 A79 A710

A81 A82 A83 A84 A85 A86 A87 A88 A89 A810

A91 A92 A93 A94 A95 A96 A97 A98 A99 A910

A101 A102 A103 A104 A105 A106 A107 A108 A109 A1010



(5.3)

The B matrix with respect to the perturbations of input vector ∆u,
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∆u =

 ∆δs

∆δa

 (5.4)

is,

B =



0 0

0 0

0 0

0 0

0 0

B61 B62

B71 B72

B81 B82

B91 B92

B101 B102



(5.5)

5.2.1 Definition

If a system is controllable then a control input ∆u exists that can move the system from an

initial state ∆x0 to any final state ∆x. A n dimensional p input state equation or the pair

(A,B) is said to be controllable, if the n× np controllability matrix

C =

[
B AB A2B · · · An−1B

]
(5.6)

has rank n (full row rank) (32).

Observability is a dual property to controllability. If a system is observable, then all
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the states can be computed at time t1 by knowing the input ∆u(t) for all t ≤ t1 and the

measurements ∆y(t) for all t ≤ t1. A n dimensional q output state equation or the pair

(A,C) is said to be controllable, if the nq × n observability matrix

O =



C

CA

·

·

·

CAn−1


(5.7)

has rank n (full column rank) (32).

The A,B and C matrices are expressed numerically for specific representative cases of

steady states and the controllability and observability are assessed for those cases. The states

of the system are the five angles and their derivatives. All of these states can be measured

in the experimental setup. Depending on the control strategy objective, the output matrix

C will be chosen.

5.2.2 Case I

Consider a steady state flight condition where the ship is moving with the speed of 13 knots,

towing a 500 square feet paraglider with a payload of 200 lbs. The symmetric brakes are

set at δs = 0.2 and the asymmetric brakes are set at δa = 0.2. The cross wind velocity

magnitude is 0.5 times the velocity of the ship. The cross wind is acting on the parafoil

aerodynamic center at an azimuth angle µ = 90◦ and elevation angle η = 20◦. The steady

state values of the states are given in Table 4.1 to 4.5. The steady state vector is summarized
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in Equation 5.8.

x0 =

[
52.4◦ 2.9◦ 8.1◦ 18.3◦ 28.1◦ 0 0 0 0 0

]T
(5.8)

The steady state input vector is shown in Equation 5.9.

u0 =

 0.2

0.2

 (5.9)

Figure 5.1. Top view of the steady state configuration in case I

The top view of the steady state flight configuration is shown in Figure 5.1. This steady

state configuration was found to be stable with all the eigenvalues of the system in the

left half plane. Equation 5.10 gives the A and B matrices of linear model. Note that the

inputs to the system consist of the symmetric and asymmetric brake perturbations. The



92

controllability matrix was evaluated using Maple and the rank of the controllability matrix

was found to be 10, which is equal to the full row rank. Hence the system is completely

controllable in this configuration. Also, the observability matrix associated with complete

state output has rank 10 and hence the system is observable too.

∆̇x =



0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

−0.3 −0.001 −0.3 −0.5 0.3 2.0 0.6 −0.4 −0.5 0.06

−0.003 −0.3 −1.0 0.4 1.0 2.0 4.0 −1.0 0.2 0.5

−0.3 −0.4 −9.0 −3.0 20.0 50.0 70.0 −20.0 −1.0 8.0

−1.0 0.2 0.1 −9.0 −2.0 30.0 −8.0 0.8 −8.0 −1.0

0.5 1.0 −0.3 −3.0 3.0 20.0 20.0 −5.0 −1.0 0.4



∆x

+



0 0

0 0

0 0

0 0

0 0

0.18 −0.01

−0.08 −0.05

0.2 0.83

3.92 −0.19

0.44 1.5



∆u (5.10)
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5.2.3 Case II:

The flight conditions and parameters are chosen similar to Case I, except that all the brake

deflections are set to zero, i.e.

U0 =

 0

0

 (5.11)

The steady state vector is shown in Equation 5.12. Note that the roll angle is zero, since the

asymmetric brakes are set to zero. The steady state configuration is shown in Figure 5.2.

X0 =

[
56.02◦ 25.17◦ 0.0◦ 13.17◦ 25.17◦ 0 0 0 0 0

]T
(5.12)

The linear system is represented in Equation 5.13. Note that the longitudinal and the lateral

Figure 5.2. Top view of the steady state configuration in case II

states can be decoupled in this steady state configuration as shown in the equation 5.13 by
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blue and green colors respectively.

∆̇x =



0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

−0.19 0.0 0.0 −0.33 0.0 1.1 0.0 0.0 −0.52 0

0.0 −0.20 −1.1 0.0 1.3 0.0 4.0 −1.5 0.0 0.41

0.0 −0.29 −5.6 0.0 14.0 0.0 51.0 −18.0 0.0 4.3

−0.90 0.0 0.0 −7.2 0.0 31.0 0.0 0.0 −7.4 0

0.0 0.62 0.68 0.0 0.34 0.0 3.6 −0.70.0 0.0 −1.0





∆θ1

∆ψ1

∆ϕ2

∆θ2

∆ψ2

˙∆θ1

˙∆ψ1

˙∆ϕ2

˙∆θ2

˙∆ψ2



+



0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.14 0.0

0.0 −0.059

0.0 0.69

2.8 0

0.0 1.5



 ∆δs

∆δa

 (5.13)
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The controllability matrix developed for this configuration also has rank 10, and hence the

system is controllable in the vicinity of this steady state flight. Also the observability matrix

for a complete state output has the rank 10 and the system is thus observable.

5.2.4 Case III:

A unstable steady state case will be presented here for assessing the system’s controllability

and observability. Refering to Table 4.1 to Table 4.5, the steady state for asymmetric brake

deflection of δa = 0.2 and vw

vs
= 0.8, the system is unstable. The remaining physical

parameters and flight conditions are the same as in Case I. The steady state vector is shown

in Equation 5.14. The steady state configuration is shown in Figure 5.3. Note the large yaw

angle of the system in this configuration, leading to instability.

Figure 5.3. Top view of the steady state configuration in case III



96

X0 =

[
61.1◦ 2.1◦ 10.8◦ 13.2◦ 40.9◦ 0 0 0 0 0

]T
(5.14)

The linear system is represented in Equation 5.15.

∆̇x =



0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

−0.47 −0.0028 −0.62 −0.65 0.50 2.8 0.81 −0.64 −0.47 0.087

−0.012 −0.47 −1.7 0.93 1.9 4.1 3.4 −1.8 0.45 0.56

−0.83 −0.45 −11.0 −4.8 22.0 82.0 48.0 −26.0 −1.2 5.9

−2.0 0.43 −0.064 −11.0 −2.9 25.0 −8.7 0.84 −8.7 −1.6

1.2 1.1 0.47 −4.4 2.8 25.0 8.4 −4.7 −1.9 −0.58



∆x

+



0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.18 −0.026

−0.19 −0.070

0.25 0.90

4.7 −0.35

0.73 1.9



∆u (5.15)
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In this case also, the system is both controllable and observable, as evaluated in Maple.

Since the A, B and C matrices have forms similar to one of the representative cases men-

tioned above, it appears that the system is controllable and observable in the vicinity of all

the steady state configurations under study.

5.3 Tow Up Control Strategy

One of the main objectives of SLADS is to tow up the parafoil-payload system to the

desired altitude as fast as possible. Before developing any tow up control strategy, the

various significant parameters affecting the tow up were analyzed by simulation. A general

schematic of the open loop plant is shown in Figure 5.4.

Figure 5.4. Open Loop Plant Schematic

The symmetric brake inputs δs and the tow cable payout rate L̇, affect only the symmetric

states θ1 and θ2, assuming no cross winds. Also, it has been observed that in steady state

flight condition with zero asymmetric brake deflection δa = 0, the system can be decoupled

into longitudinal and lateral states as seen in subsection 5.2.3. Effect of δs and L̇ on the rate

of ascent of the parafoil-payload system is analyzed in longitudinal flight mode. Figure 5.8

shows the effect of symmetric brake deflection on the ascent rate. It can be observed that



98

the ascent rate is the minimum for δs = 0, with significant loss of altitude in the transient

phase. Also, the ascent rate increases with increasing symmetric brake deflection upto a

certain limit, in this case δs = 0.4. Beyond this, the ascent rate decreases with increase in

the symmetric brake deflection. Hence it is essential to keep the symmetric deflection at

some non zero value but below this transition point.

0 50 100 150 200
−55

−50

−45

−40

−35

−30

−25

−20

−15

Time (sec)

p
2
/
1
,z

 

 
δs = 0
δs = 0 .2
δs = 0 .4
δs = 0 .6

The ascent rate decreases 
beyond a  limit of symmetric 
brake deflection

Figure 5.5. Effect of symmetric brake deflection on ascent rate. Cable payout rate is 0.3 meters/sec
starting at 10 sec, negative p2/1,z is an upward motion.

A similar study was conducted to analyze the net effect of cable payout rates and the

symmetric brake deflection on the ascent rate. The ascent rate data is shown in Table 5.1.

As expected, the ascent rate increases as the cable payout rate is increased. However, the

tow cable payout rate should be increased gradually to decrease the loss of altitude in the

transient phase.

One more important factor from the perspective of optimal tow up is the tension in

the cable. Data showing the tow cable tension for various symmetric brake deflection and
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Table 5.1
Ascent rate ṗ2/1,z in meters/second for various cable payout rates L̇ in meters/second and

symmetric brake deflections δs
0.6 0.0505 0.1407 0.2146 0.271 0.3086
0.4 0.0524 0.1435 0.2149 0.2646 0.2905
0.2 0.0508 0.1349 0.1933 0.223 0.2208
0.0 0.0414 0.0992 0.1397 0.1045 0.0433
δs ⇑,
L̇⇒ 0.1 0.3 0.5 0.7 0.9

cable payout rate combination is presented in Table 5.2. The tension should be kept as low

as possible to avoid lockout instability. It can be seen that with the increasing symmetric

brake deflection the tension in the tow cable increases. So there is a limit to which the

symmetric brakes can be increased, such that the parafoil payload system ascends as fast as

possible without compromising stability.
Table 5.2

Tow cable tension in Newtons for various cable payout rates L̇ in meters/second and symmetric
brake deflections δs

0.6 2496 2375 2251 2125 1997
0.4 1799 1713 1625 1533 1439
0.2 1236 1176 1113 1047 976
0.0 817 774 726 676 621
δs ⇑,
L̇⇒ 0.1 0.3 0.5 0.7 0.9

5.3.1 Controller for Ascent Rate

After analyzing the factors affecting ascent rate, it was concluded that the controller for the

ascent rate can be developed in the longitudinal flight mode. The schematic of the feedback

control law is shown in the Figure 5.6.

The input to the system is the tow cable payout rate at the ship end. Two types of control
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Figure 5.6. Schematic of tow up ascent rate controller for parafoil-payload system

systems are developed and compared. A simple proportional controller is designed to tow

up the parafoil-payload system at a particular ascent rate. The proportional control law is

shown in the Equation 5.16

L̇ = Kp

(
ṗ2/1,zref

− ṗ2/1,z

)
(5.16)

Similarly, the proportional-derivative (PD) controller is represented as shown in Equa-

tion 5.17.

L̇ = Kp

(
ṗ2/1,zref

− ṗ2/1,z

)
+Kd

d

dt

(
ṗ2/1,zref

− ṗ2/1,z

)
(5.17)

The ascent rate obtained with these two control systems is shown in Figure 5.7. The

symmetric brakes are held constant at δs = 0.2. The system is allowed to fly in longitudinal

steady state flight condition and the control system is set ‘on’ at 10 seconds after starting

the simulation time. Though both the controllers reach the same steady state ascent rate,

the proportional controller has much less damping effect as compared to the proportional

derivative controller. It should be noted that the steady state ascent rate is the maximum

ascent rate possible with this configuration of symmetric brakes as shown in Table 5.1.

The settling time with the PD controller is much better, at about 133 seconds, than the
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proportional control law, for which it is more than 300 seconds.

0 50 100 150 200 250 300
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (sec)

ṗ
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Figure 5.7. Ascent rate comparison obtained with two types of controllers

Figure 5.8 shows the relative altitude of the parafoil-payload system with respect to the

ship. The negative sign indicates that the system is moving above the ground, since the

inertial frame of reference has positive Z direction towards earth. The initial loss of altitude

in the transient phase is minimized using the PD controller.

The input, the tow cable payout rate, is shown in Figure 5.9. The steady state tow

cable payout rate corresponds to the maximum ascent rate in Table 5.1. Note that the L̇

is always positive. As discussed earlier, the tow cable tension is also an important factor,

which should be kept within certain limits, to avoid unstable flight regimes due to lateral

disturbance. Hence the tow cable tension is monitored for both the controllers as shown

in Figure 5.10. The tension in the cable reduces initially, which corresponds to the sudden

cable payout. The sudden increase in the tension, due to the proportional control transients

correspond to the reduced tow cable payout rate. These transients are significantly reduced
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Figure 5.8. Relative altitude between parafoil-payload system and ship:comparison obtained with
two types of controllers

using the proportional derivative controller.

Overall, it can be concluded that a simple proportional controller can create significant

oscillating tow up with large tension in the cable during transient response. Instead, a pro-

portional derivative controller provides much faster and smoother tow up.



103

0 50 100 150 200 250 300
0

0.5

1

1.5

Time (sec)

L̇

 

 

Proportional

Proportional Derivative

Figure 5.9. The tow cable payout rate required with two types of controllers
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Figure 5.10. The Tow Cable Tension With Two Types of Controllers
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5.4 Lateral Stability Control

In addition to the speed of the tow up, the other main objective of the control design is

to maintain the lateral stability of the flight, in the event of wind disturbances. This section

will focus on the control system development to stabilize the unstable open loop flight

regimes. As discussed earlier, in the steady state flight condition with zero asymmetric

brake deflection, the linear model can be easily decoupled into the longitudinal and lateral

state equations. A lateral state feedback controller is presented in next subsection. For all

the steady state configurationswith nonzero asymmetric brake deflection, the system cannot

be decoupled into longitudinal and lateral models. In those cases, a full state feedback

control law has to be used, which will be illustrated in subsection 5.4.2.

5.4.1 Lateral State Feedback Controller

The states ψ1, ϕ2 and ψ2 and their corresponding rates form the lateral model. To differen-

tiate lateral state vector from the full state vector, it will be represented with x symbol.

x =

[
∆ψ1 ∆ϕ2 ∆ψ2

˙∆ψ1
˙∆ϕ2

˙∆ψ2

]T
(5.18)

The input is the asymmetric brake deflection δa. An Alat matrix of size 6 × 6, the lateral

input model Blat of size 6× 1 and a output matrix Clat, of size 6× 6 forms the system. The

lateral model is represented as shown in Equation 5.19.

ẋ = Alatx+Blatδa

y = Clatx (5.19)
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In the state feedback control, the input δa is obtained from the states as shown in Equation

5.20.

δa = −Klatx (5.20)

where,Klat is of size 1×6 in this case. Substituting Equation 5.20 in Equation 5.19 yields,

ẋ = (Alat −BlatKlat) x

y = Clatx (5.21)

The lateral state feedback control system is shown in Figure 5.11. The purpose of this

controller is to stabilize the linear model around an unstable steady state configuration.

Consider a steady state configuration with reference to Table 4.1 to Table 4.5, with asym-

metric brake deflection set to zero and the wind is blowing at an azimuth angle of µ = 90◦

and elevation angle of η = 20◦ such that,
∣∣∣ Vw

Vshp
= 1
∣∣∣. This is an unstable steady state con-

figuration in open loop. The lateral model in this configuration is computed using Maple

and is described in Equation 5.22.



˙∆ψ1

˙∆ϕ2

˙∆ψ2

¨∆ψ1

∆̈ϕ2

¨∆ψ2



=



0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0

−0.59 −3.9 3.8 5.5 −3.7 0.85

−0.53 −12.0 25.0 42.0 −27.0 5.4

1.0 1.3 3.4 7.5 −4.0 −0.70





∆ψ1

∆ϕ2

∆ψ2

∆ψ1

∆ϕ2

∆ψ2



+



0.0

0.0

0.0

−0.17

1.0

2.4



δa (5.22)
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Figure 5.11. Laterel State Feedback Control Law

The eigenvalues of this system are shown in Equation 5.23

λ1..6 =


−20.67

−0.66 ± 1.94i

0.02 ± 0.56i

 (5.23)

It can be observed that a pair of eigenvalues is in the right half plane and hence the system

is unstable. The purpose of the state feedback controller is to place all the poles in the left

half plane. Let the desired eigenvalues be as shown in Equation 5.24.

λdes1..6 =


−20.67

−0.66 ± 1.94i

−0.98 ± 0.56i

 (5.24)

The rationale behind choosing these desired eigen values is to cause minimum change in

the poles to stabilize the system, so that the controller gain values are not very high. Using

the place command in Matlab, the controller gains can be determined to place the closed

loop poles in the desired location, while minimizing the L2 norm of the gain vector. TheK
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matrix is shown in Equation 5.25

K = [ −0.4285 −0.0781 2.0875 2.0032 −0.4334 1.1762 ] (5.25)

The controller performance is tested in Matlab/Simulink environment. Three systems

are considered:

1. Open loop nonlinear system

2. Open loop linear system

3. Closed loop linear system

All the systems are started with steady state flight condition. A wind disturbance input

is provided to all the systems starting at 10 seconds, with a time constant of 0.2 seconds as

shown in Figure 5.12.
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Figure 5.12. Wind Disturbance Input to Unstable Steady State Flight Equilibrium
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The open loop nonlinear and linear systems go unstable due to this wind disturbance.

The linear system with closed loop lateral state feedback controller stabilizes the system

and brings it back to its steady state equilibrium flight condition as shown in Figure 5.13.
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Figure 5.13. The lateral state feedback controller performance

This stabilizing efect is achieved with minimal control effort in asymmetric brake de-

flection as shown in Figure 5.14.

5.4.2 Full State Feedback Controller

The lateral state feedback controller is designed for the steady state flight configuration with

zero asymmetric brake deflections. There are other steady states, where the asymmetric

brake deflection is not zero. Moreover, as the asymmetric brake increases, the stability

regime keeps on reducing and the instability is caused due to slightest disturbances in the

inputs. To avoid such instabilities, a full state feedback controller is required. A schematic

of the full state feedback controller is shown in Figure 5.15.
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Figure 5.15. The schematic of Full State Feedback Controller

An unstable steady state flight condition with non-zero asymmetric brake deflection is

chosen for stability control as discussed in subsection 5.2.4. The linear model is developed

usingMaple and is shown in Equation 5.15. The eigenvalues of this unstable flight condition

are:
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λ1..10 =



−19.67

−4.57

−1.95

−0.55 ± 1.74i

−0.89 ± 0.26i

0.02 ± 0.51i

−0.33



(5.26)

The state feedback control gain matrix is evaluated in MATLAB and is shown in Equa-

tion 5.27.

K =

 −1.13 −0.05 −0.45 −0.29 −0.08 1.46 0.02 −0.07 −0.23 0.06

−3.80 −0.50 −0.93 1.89 3.33 −0.58 5.92 −0.77 0.90 2.22


(5.27)

Figure 5.16 shows the wind disturbance acting on the three systems which will be com-

pared: Nonlinear, linear and the linear with full state feedback controller.

Figure 5.17 and 5.18 shows the lateral and the longitudinal states of the system for all

the three systems under test. It can be observed that the state feedback controller stabilizes

all the states to its equilibrium values.

In full state feedback controller, both the control inputs δs and δa are used to stabilize

the system, since the linear state system is coupled. It should be noted that both the inputs

are set to a equilibrium value of 0.2 in steady state flight.
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Figure 5.16. Wind Disturbance Input to Unstable Steady State Flight Equilibrium with δa0 = 0.2
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Figure 5.17. Lateral States
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Figure 5.18. Longitudinal States
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5.5 Conclusions

The two main control goals during tow up are stability and ascent rate. The various

factors affecting the tow up performance are analyzed in simulation environment. It was

found that the symmetric brake deflection and the cable payout rate are the two main inputs

of the longitudinal model, which can be used to design the tow up control strategy decoupled

from the lateral control system. A simple proportional controller, along with a PD controller

are designed and tested. The PD controller is better suited for tow up control, for smooth

and fast tow up.

The stability of the system was analyzed in Chapter 4. Two different type of controllers

are investigated for their ability to stabilize an unstable equilibrium point. In steady state

flight conditions with zero asymmetric brake deflection, a lateral state feedback controller

can be used to stabilize the system for wind disturbances. In more severe equilibrium states,
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involving non zero asymmetric brake deflection, a full state feedback controller can be used

to stabilized the system.



6. Conclusions And Future Work

While previous research has focused on modeling the parafoil-payload system which is

released from an airborne vehicle, this research focused on the modeling, simulation and

control design of a towed parafoil-payload system. A nonlinear dynamicmodel of the towed

parafoil-payload system was developed for its application to the Ship Launched Aerial De-

livery System, SLADS. The main difference between the paragliders and conventional glid-

ers is the flexible wing structure without a stabilizer, due to which, the aerodynamics of

paragliders is significantly different than that of conventional aircraft. Moreover, due to

the large vertical distance between the aerodynamic center of the parafoil and the center

of mass of the parafoil-payload system, aerodynamic forces create large moment about the

center of mass.

A high fidelity model of the towed parafoil-payload system was developed, which in-

corporated both, the aerodynamic characteristics of a paraglider, and the actual geometric

and inertial properties of the parafoil-payload system. The main mechanism of steering

a paraglider, the parafoil brakes, were incorporated into the aerodynamic model of the

paraglider. The model was simulated in MATLAB/simulink environment, with realistic

inputs, parameters and flight conditions. The model was partially validated using a real

time simulation using MATLAB and dSPACE, to replicate the flight experience of a pilot

towing a paraglider.
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The peculiar unstable flight condition of a towed paragliders, called lockout, was inves-

tigated by analyzing the stability of the linearized system. It was observed that lockout is

more favorable in higher magnitudes of wind gusts, with increasing angle of elevation of the

cross wind, higher tensions in the tow cable and larger asymmetric brake deflections. All

these effects are consistent with the experiences of a paraglider pilot being towed. Hence

it can be concluded that one of the main objectives of modeling the lockout has been suc-

cessfully accomplished.

One of main objective of SLADS is to tow up the system as fast as possible and maintain

stability. A linear model was used to develop the control strategies for accomplishing this.

The controllability and observability of the linear model was assessed before designing the

control systems. It was found that the system is completely controllable and observable

for the available set of inputs and measurable outputs. The inputs include symmetric and

asymmetric brake deflections, while the measurable outputs include the tow angles and the

angular rates of the parafoil-payload system. A closed loop control strategy was developed

for rapid deployment of the system. It was concluded that tow up control can be developed

using symmetric brake deflection and cable payout rate in the longitudinal flight mode,

decoupled from the lateral control system. Two different types of state feedback controllers

were investigated for stabilizing the unstable equilibrium points. It was concluded that the

otherwise, irrecoverable flight condition, lockout, can be controlled using a sate feedback

controller.

Thus a mathematical model of a towed parafoil-payload system was developed and

simulated. The linear model of the system was used to design control strategies for rapid

deployment and maintaining stability. Since this is the first formal treatment of towed

paragliders, there is a vast amount of scope to further investigate the complex dynamics

of the towed flight systems. A few important steps forward in this area of research are
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outlined below.

1. One of the main control inputs used by the pilots towing a paraglider, in addition

to the trailing edge deflection, is the weight shifting technique. A higher degree of

freedom model, which can incorporate relative motion between parafoil and payload

can be developed to simulate the towed system in more realistic way.

2. The experimental investigation of the towed paragliders can facilitate more refined

aerodynamic characteristics of this flexible wing structure.

3. The launching phase of the towed paraglider is very critical in terms of rapid deploy-

ment and stability. A more detailed model can be developed to incorporate the initial

launching phase.

4. The control strategies developed in this work, can be tested in the actual towed au-

tonomous paraglider systems.

5. A more comprehensive control strategy can be developed to maintain stability in se-

vere wind disturbances and use advanced control techniques to recover from a range

of unstable flight configurations.
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A. Nonlinear Dynamic Equation Coefficients

A11 = mL2

A12 = 0

A13 = mL
[
r3/2,z sin (θ1) sin (ψ1) cos (ϕ2) cos (ψ2)

+r3/2,z sin (θ1) sin (ψ1) sin (ϕ2) sin (θ2) sin (ψ2)

+r3/2,y sin (θ1) sin (ψ1) sin (ϕ2) cos (ψ2)

−r3/2,y sin (θ1) sin (ψ1) cos (ϕ2) sin (θ2) sin (ψ2)

−r3/2,z sin (θ1) cos (ψ1) cos (ϕ2) sin (ψ2)

+r3/2,z sin (θ1) cos (ψ1) sin (ϕ2) sin (θ2) cos (ψ2)

−r3/2,y sin (θ1) cos (ψ1) sin (ϕ2) sin (ψ2)

−r3/2,y sin (θ1) cos (ψ1) cos (ϕ2) sin (θ2) cos (ψ2)

−r3/2,z cos (θ1) sin (ϕ2) cos (θ2)

+r3/2,y cos (θ1) cos (ϕ2) cos (θ2)
]
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A14 = mL
[
r3/2,x sin (θ1) sin (ψ1) sin (θ2) sin (ψ2)

−r3/2,z sin (θ1) sin (ψ1) cos (θ2) sin (ψ2) cos (ϕ2)

−r3/2,y sin (θ1) sin (ψ1) cos (θ2) sin (ψ2) sin (ϕ2)

−r3/2,z cos (θ1) cos (ϕ2) sin (θ2)

−r3/2,y cos (θ1) sin (ϕ2) sin (θ2)

−r3/2,x cos (θ1) cos (θ2)

+r3/2,x sin (θ1) cos (ψ1) sin (θ2) cos (ψ2)

−r3/2,z sin (θ1) cos (ψ1) cos (θ2) cos (ψ2) cos (ϕ2)

−r3/2,y sin (θ1) cos (ψ1) cos (θ2) cos (ψ2) sin (ϕ2)
]

A15 = mL sin (θ1)
[
− sin (ψ1) cos (ϕ2) cos (ψ2) sin (θ2) r3/2,z

− sin (ψ1) sin (ϕ2) sin (ψ2) r3/2,z

− sin (ψ1) sin (ϕ2) cos (ψ2) sin (θ2) r3/2,y

− sin (ψ1) cos (ψ2) cos (θ2) r3/2,x

+ sin (ψ1) cos (ϕ2) sin (ψ2) r3/2,y

+ cos (ψ1) cos (ϕ2) sin (ψ2) sin (θ2) r3/2,z

− cos (ψ1) sin (ϕ2) cos (ψ2) r3/2,z

+ cos (ψ1) sin (ϕ2) sin (ψ2) sin (θ2) r3/2,y

+ cos (ψ1) sin (ψ2) cos (θ2) r3/2,x

+ cos (ψ1) cos (ϕ2) cos (ψ2) r3/2,y
]

A21 = 0

A22 = mL2 (cos (θ1))
2
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A23 = −mL cos (θ1)
[
sin (ψ1) r3/2,z cos (ϕ2) sin (ψ2)

− sin (ψ1) r3/2,z sin (ϕ2) sin (θ2) cos (ψ2)

+ sin (ψ1) r3/2,y sin (ϕ2) sin (ψ2)

+ sin (ψ1) r3/2,y cos (ϕ2) sin (θ2) cos (ψ2)

+ cos (ψ1) r3/2,z cos (ϕ2) cos (ψ2)

+ cos (ψ1) r3/2,z sin (ϕ2) sin (θ2) sin (ψ2)

+ cos (ψ1) r3/2,y sin (ϕ2) cos (ψ2)

− cos (ψ1) r3/2,y cos (ϕ2) sin (θ2) sin (ψ2)
]

A24 = mL cos (θ1)
[
sin (ψ1) r3/2,x sin (θ2) cos (ψ2)

− sin (ψ1) cos (θ2) cos (ψ2) cos (ϕ2) r3/2,z

− sin (ψ1) cos (θ2) cos (ψ2) sin (ϕ2) r3/2,y

− cos (ψ1) r3/2,x sin (θ2) sin (ψ2)

+ cos (ψ1) cos (θ2) sin (ψ2) cos (ϕ2) r3/2,z

+ cos (ψ1) cos (θ2) sin (ψ2) sin (ϕ2) r3/2,y
]

A25 = mL cos (θ1)
[
sin (ψ1) cos (ϕ2) sin (ψ2) sin (θ2) r3/2,z

− sin (ψ1) sin (ϕ2) cos (ψ2) r3/2,z

+ sin (ψ1) sin (ϕ2) sin (ψ2) sin (θ2) r3/2,y

+ sin (ψ1) sin (ψ2) cos (θ2) r3/2,x

+ sin (ψ1) cos (ϕ2) cos (ψ2) r3/2,y

+ cos (ψ1) cos (ϕ2) cos (ψ2) sin (θ2) r3/2,z

+ cos (ψ1) sin (ϕ2) sin (ψ2) r3/2,z

+ cos (ψ1) sin (ϕ2) cos (ψ2) sin (θ2) r3/2,y

+ cos (ψ1) cos (ψ2) cos (θ2) r3/2,x

− cos (ψ1) cos (ϕ2) sin (ψ2) r3/2,y

]
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A31 = mL
[
sin (θ1) sin (ψ1) r3/2,z cos (ϕ2) cos (ψ2)

+ sin (θ1) sin (ψ1) r3/2,z sin (ϕ2) sin (θ2) sin (ψ2)

+ sin (θ1) sin (ψ1) r3/2,y sin (ϕ2) cos (ψ2)

− sin (θ1) sin (ψ1) r3/2,y cos (ϕ2) sin (θ2) sin (ψ2)

− sin (θ1) cos (ψ1) r3/2,z cos (ϕ2) sin (ψ2)

+ sin (θ1) cos (ψ1) r3/2,z sin (ϕ2) sin (θ2) cos (ψ2)

− sin (θ1) cos (ψ1) r3/2,y sin (ϕ2) sin (ψ2)

− sin (θ1) cos (ψ1) r3/2,y cos (ϕ2) sin (θ2) cos (ψ2)

− cos (θ1) sin (ϕ2) cos (θ2) r3/2,z

+ cos (θ1) cos (ϕ2) cos (θ2) r3/2,y

]
A32 = −m cos (θ1)L

(
sin (ψ1) r3/2,z cos (ϕ2) sin (ψ2)

− sin (ψ1) r3/2,z sin (ϕ2) sin (θ2) cos (ψ2)

+ sin (ψ1) r3/2,y sin (ϕ2) sin (ψ2)

+ sin (ψ1) r3/2,y cos (ϕ2) sin (θ2) cos (ψ2)

+ cos (ψ1) r3/2,z cos (ϕ2) cos (ψ2)

+ cos (ψ1) r3/2,z sin (ϕ2) sin (θ2) sin (ψ2)

+ cos (ψ1) r3/2,y sin (ϕ2) cos (ψ2)

− cos (ψ1) r3/2,y cos (ϕ2) sin (θ2) sin (ψ2)
)

A33 = Ixx +mr3/2,y
2 +mr3/2,z

2

A34 = mr3/2,x

(
sin (ϕ2) r3/2,z − r3/2,y cos (ϕ2)

)
A35 = − sin (θ2) Ixx −mr3/2,z

2 sin (θ2)

−mr3/2,y
2 sin (θ2) −mr3/2,z cos (ϕ2) cos (θ2) r3/2,x

−mr3/2,y sin (ϕ2) cos (θ2) r3/2,x
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A41 = mL
(
sin (θ1) sin (ψ1) r3/2,x sin (θ2) sin (ψ2)

− sin (θ1) sin (ψ1) cos (θ2) sin (ψ2) cos (ϕ2) r3/2,z

− sin (θ1) sin (ψ1) cos (θ2) sin (ψ2) sin (ϕ2) r3/2,y

− cos (θ1) cos (ϕ2) sin (θ2) r3/2,z

− cos (θ1) sin (ϕ2) sin (θ2) r3/2,y

− cos (θ1) cos (θ2) r3/2,x

+ sin (θ1) cos (ψ1) r3/2,x sin (θ2) cos (ψ2)

− sin (θ1) cos (ψ1) cos (θ2) cos (ψ2) cos (ϕ2) r3/2,z

− sin (θ1) cos (ψ1) cos (θ2) cos (ψ2) sin (ϕ2) r3/2,y
)

A42 = mL cos (θ1)
(
sin (ψ1) r3/2,x sin (θ2) cos (ψ2)

− sin (ψ1) cos (θ2) cos (ψ2) cos (ϕ2) r3/2,z

− sin (ψ1) cos (θ2) cos (ψ2) sin (ϕ2) r3/2,y

− cos (ψ1) r3/2,x sin (θ2) sin (ψ2)

+ cos (ψ1) cos (θ2) sin (ψ2) cos (ϕ2) r3/2,z

+ cos (ψ1) cos (θ2) sin (ψ2) sin (ϕ2) r3/2,y
)

A43 = mr3/2,x

(
sin (ϕ2) r3/2,z − r3/2,y cos (ϕ2)

)
A44 = Izz + (cos (ϕ2))

2 Iyy −mr3/2,y
2 (cos (ϕ2))

2

+m (cos (ϕ2))
2 r3/2,z

2 +mr3/2,y
2

+ 2m cos (ϕ2) r3/2,z sin (ϕ2) r3/2,y

+mr3/2,x
2 − Izz (cos (ϕ2))

2
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A45 = sin (ϕ2) cos (θ2) Iyy cos (ϕ2)

− cos (ϕ2) cos (θ2) Izz sin (ϕ2)

+mr3/2,x sin (θ2) cos (ϕ2) r3/2,y

+m cos (θ2) r3/2,yr3/2,z − 2m cos (θ2) r3/2,yr3/2,z (cos (ϕ2))
2

+m cos (θ2) cos (ϕ2) r3/2,z
2 sin (ϕ2)

−m sin (ϕ2) r3/2,x sin (θ2) r3/2,z

−m cos (θ2) sin (ϕ2) r3/2,y
2 cos (ϕ2)

A51 = mL sin (θ1)
(
− sin (ψ1) cos (ϕ2) cos (ψ2) sin (θ2) r3/2,z

− sin (ψ1) sin (ϕ2) sin (ψ2) r3/2,z

− sin (ψ1) sin (ϕ2) cos (ψ2) sin (θ2) r3/2,y

− sin (ψ1) cos (ψ2) cos (θ2) r3/2,x

+ sin (ψ1) cos (ϕ2) sin (ψ2) r3/2,y

+ cos (ψ1) cos (ϕ2) sin (ψ2) sin (θ2) r3/2,z

− cos (ψ1) sin (ϕ2) cos (ψ2) r3/2,z

+ cos (ψ1) sin (ϕ2) sin (ψ2) sin (θ2) r3/2,y

+ cos (ψ1) sin (ψ2) cos (θ2) r3/2,x

+ cos (ψ1) cos (ϕ2) cos (ψ2) r3/2,y
)
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A52 = mL cos (θ1)
(
sin (ψ1) cos (ϕ2) sin (ψ2) sin (θ2) r3/2,z

− sin (ψ1) sin (ϕ2) cos (ψ2) r3/2,z

+ sin (ψ1) sin (ϕ2) sin (ψ2) sin (θ2) r3/2,y

+ sin (ψ1) sin (ψ2) cos (θ2) r3/2,x

+ sin (ψ1) cos (ϕ2) cos (ψ2) r3/2,y

+ cos (ψ1) cos (ϕ2) cos (ψ2) sin (θ2) r3/2,z

+ cos (ψ1) sin (ϕ2) sin (ψ2) r3/2,z

+ cos (ψ1) sin (ϕ2) cos (ψ2) sin (θ2) r3/2,y

+ cos (ψ1) cos (ψ2) cos (θ2) r3/2,x

− cos (ψ1) cos (ϕ2) sin (ψ2) r3/2,y

)
A53 = − sin (θ2) Ixx −mr3/2,z

2 sin (θ2)

−mr3/2,y
2 sin (θ2)

−mr3/2,z cos (ϕ2) cos (θ2) r3/2,x

−mr3/2,y sin (ϕ2) cos (θ2) r3/2,x

A54 = sin (ϕ2) cos (θ2) Iyy cos (ϕ2)

− cos (ϕ2) cos (θ2) Izz sin (ϕ2)

+mr3/2,x sin (θ2) cos (ϕ2) r3/2,y

+m cos (θ2) r3/2,yr3/2,z

− 2m cos (θ2) r3/2,yr3/2,z (cos (ϕ2))
2

+m cos (θ2) cos (ϕ2) r3/2,z
2 sin (ϕ2)

−m sin (ϕ2) r3/2,x sin (θ2) r3/2,z

−m cos (θ2) sin (ϕ2) r3/2,y
2 cos (ϕ2)
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A55 = (cos (ϕ2))
2 (cos (θ2))

2 Izz + Ixx−

m (cos (ϕ2))
2 r3/2,z

2 (cos (θ2))
2

+mr3/2,y
2 (cos (ϕ2))

2 (cos (θ2))
2

− Ixx (cos (θ2))
2 + (cos (θ2))

2 Iyy

− (cos (θ2))
2 Iyy (cos (ϕ2))

2

−mr3/2,y
2 (cos (θ2))

2

+mr3/2,y
2 +mr3/2,z

2 − 2m cos (ϕ2) r3/2,z sin (ϕ2) r3/2,y (cos (θ2))
2

+ 2m cos (ϕ2) sin (θ2) r3/2,z cos (θ2) r3/2,x

+ 2m sin (ϕ2) sin (θ2) r3/2,y cos (θ2) r3/2,x

+m (cos (θ2))
2 r3/2,x

2
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B1 = m sin (θ2) sin (ψ2) r3/2,xθ̇2 sin (θ1) sin (ψ1) L̇−mg cos (θ1)L

−m cos (θ2) cos (ψ2) r3/2,z θ̇2 cos (ϕ2) sin (θ1) cos (ψ1) L̇

−m sin (θ1) sin (ψ1)L cos (ϕ2) ϕ̇
2
2 cos (ψ2) r3/2,y

+ 2m sin (θ1) sin (ψ1)L cos (ϕ2) ϕ̇2 cos (ψ2) r3/2,y sin (θ2) ψ̇2

+ 2m sin (θ1) sin (ψ1)L sin (ϕ2) sin (ψ2) ψ̇2 r3/2,yϕ̇2

−m sin (θ1) sin (ψ1)L sin (ϕ2) sin (ψ2) ψ̇
2
2r3/2,y sin (θ2)

−m sin (θ1) sin (ψ1)L sin (ϕ2) ϕ̇
2
2 sin (θ2) sin (ψ2) r3/2,y

+ 2m sin (θ1) sin (ψ1)L cos (θ2) cos (ψ2) ψ̇2 r3/2,z θ̇2 cos (ϕ2)

+ 2m sin (θ1) sin (ψ1)L cos (θ2) cos (ψ2) ψ̇2 r3/2,yθ̇2 sin (ϕ2)

− 2m sin (θ1) sin (ψ1)L sin (ϕ2) ϕ̇2 cos (ψ2) r3/2,z sin (θ2) ψ̇2

−m sin (θ1) sin (ψ1)L cos (ϕ2) sin (ψ2) ψ̇
2
2r3/2,z sin (θ2)

−m sin (θ1) sin (ψ1)L cos (ϕ2) ϕ̇
2
2 sin (θ2) sin (ψ2) r3/2,z

− 2m sin (θ1) sin (ψ1)L sin (ϕ2) cos (θ2) θ̇2 sin (ψ2) r3/2,zϕ̇2

+ F4x cos (θ2) cos (ψ2) sin (θ1) cos (ψ1)L

−m sin (ϕ2) sin (ψ2) r3/2,yϕ̇2 sin (θ1) cos (ψ1) L̇

+m sin (ϕ2) sin (ψ2) r3/2,y sin (θ2) ψ̇2 sin (θ1) cos (ψ1) L̇

−m cos (ϕ2) sin (θ2) cos (ψ2) r3/2,yϕ̇2 sin (θ1) cos (ψ1) L̇

+ F4z sin (θ1) cos (ψ1)L sin (ϕ2) sin (ψ2)

+ F4z sin (θ1) cos (ψ1)L cos (ϕ2) sin (θ2) cos (ψ2)

− F4z sin (θ1) sin (ψ1)L sin (ϕ2) cos (ψ2)

+ F4z sin (θ1) sin (ψ1)L cos (ϕ2) sin (θ2) sin (ψ2)

− F4z cos (ϕ2) cos (θ2) cos (θ1)L



131

−m sin (θ1) cos (ψ1)L sin (θ2) θ̇
2
2 cos (ψ2) r3/2,z cos (ϕ2)

−m sin (θ1) cos (ψ1)L sin (θ2) θ̇
2
2 cos (ψ2) r3/2,y sin (ϕ2)

+ F4y sin (θ1) sin (ψ1)L sin (ϕ2) sin (θ2) sin (ψ2)

− F4y sin (ϕ2) cos (θ2) cos (θ1)L+mY1d sin (θ1) sin (ψ1) L̇

−m sin (θ1) cos (ψ1)L sin (ϕ2) ϕ̇
2
2 sin (ψ2) r3/2,z

+ F4x sin (θ2) cos (θ1)L−

m cos (θ2) cos (ψ2) r3/2,yθ̇2 sin (ϕ2) sin (θ1) cos (ψ1) L̇

−m cos (ϕ2) sin (ψ2) r3/2,zϕ̇2 sin (θ1) cos (ψ1) L̇

+m cos (ϕ2) sin (ψ2) r3/2,z sin (θ2) ψ̇2 sin (θ1) cos (ψ1) L̇

+m sin (ϕ2) sin (θ2) cos (ψ2) r3/2,zϕ̇2 sin (θ1) cos (ψ1) L̇

+m sin (ϕ2) cos (ψ2) r3/2,yϕ̇2 sin (θ1) sin (ψ1) L̇

−m sin (ϕ2) cos (ψ2) r3/2,y sin (θ2) ψ̇2 sin (θ1) sin (ψ1) L̇

−m cos (ϕ2) sin (θ2) sin (ψ2) r3/2,yϕ̇2 sin (θ1) sin (ψ1) L̇

−m sin (θ2) r3/2,z θ̇2 cos (ϕ2) cos (θ1) L̇−

m sin (θ2) r3/2,yθ̇2 sin (ϕ2) cos (θ1) L̇

−m sin (ϕ2) cos (θ2) r3/2,zϕ̇2 cos (θ1) L̇

+m cos (ϕ2) cos (θ2) r3/2,yϕ̇2 cos (θ1) L̇

− 2m cos (θ1)L sin (ϕ2) sin (θ2) θ̇2 r3/2,zϕ̇2

+ 2m cos (θ1)L sin (θ2) r3/2,yθ̇2 cos (ϕ2) ϕ̇2

− 2m sin (θ1) cos (ψ1)L cos (θ2) sin (ψ2) ψ̇2 r3/2,z θ̇2 cos (ϕ2)

− 2m sin (θ1) cos (ψ1)L cos (ϕ2) ϕ̇2 sin (ψ2) r3/2,y sin (θ2) ψ̇2

+ 2m sin (θ1) cos (ψ1)L sin (ϕ2) cos (ψ2) ψ̇2 r3/2,yϕ̇2
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−m sin (θ1) cos (ψ1)L sin (ϕ2) cos (ψ2) ψ̇
2
2r3/2,y sin (θ2)

−m sin (θ1) cos (ψ1)L sin (ϕ2) ϕ̇
2
2 sin (θ2) cos (ψ2) r3/2,y

−m cos (θ2) sin (ψ2) r3/2,yθ̇2 sin (ϕ2) sin (θ1) sin (ψ1) L̇

+m cos (ϕ2) cos (ψ2) r3/2,zϕ̇2 sin (θ1) sin (ψ1) L̇

−m cos (ϕ2) cos (ψ2) r3/2,z sin (θ2) ψ̇2 sin (θ1) sin (ψ1) L̇

+m sin (ϕ2) sin (θ2) sin (ψ2) r3/2,zϕ̇2 sin (θ1) sin (ψ1) L̇

+ F4y sin (θ1) cos (ψ1)L sin (ϕ2) sin (θ2) cos (ψ2)

+ F4y sin (θ1) sin (ψ1)L cos (ϕ2) cos (ψ2)

+mẋ1 sin (θ1) cos (ψ1) L̇

−m cos (θ2) sin (ψ2) r3/2,z θ̇2 cos (ϕ2) sin (θ1) sin (ψ1) L̇

− F4y sin (θ1) cos (ψ1)L cos (ϕ2) sin (ψ2)

+ F4x cos (θ2) sin (ψ2) sin (θ1) sin (ψ1)L

+ 2m sin (θ1) cos (ψ1)L cos (θ2) cos (ψ2) r3/2,yθ̇2 cos (ϕ2) ϕ̇2

− 2m sin (θ1) cos (ψ1)L cos (θ2) sin (ψ2) ψ̇2 r3/2,yθ̇2 sin (ϕ2)

+ 2m sin (θ1) cos (ψ1)L sin (ϕ2) ϕ̇2 sin (ψ2) r3/2,z sin (θ2) ψ̇2

+ 2m sin (θ1) cos (ψ1)L cos (ϕ2) cos (ψ2) ψ̇2 r3/2,zϕ̇2

−m sin (θ1) cos (ψ1)L cos (ϕ2) cos (ψ2) ψ̇
2
2r3/2,z sin (θ2)

−m sin (θ1) cos (ψ1)L cos (ϕ2) ϕ̇
2
2 sin (θ2) cos (ψ2) r3/2,z

− 2m sin (θ1) cos (ψ1)L sin (ϕ2) cos (θ2) θ̇2 cos (ψ2) r3/2,zϕ̇2

−m sin (θ1) sin (ψ1)L sin (θ2) θ̇
2
2 sin (ψ2) r3/2,z cos (ϕ2)

−m sin (θ1) sin (ψ1)L sin (θ2) θ̇
2
2 sin (ψ2) r3/2,y sin (ϕ2)

+ 2m sin (θ1) sin (ψ1)L cos (θ2) sin (ψ2) r3/2,yθ̇2 cos (ϕ2) ϕ̇2
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+m sin (θ1) sin (ψ1)L sin (ϕ2) ϕ̇
2
2 cos (ψ2) r3/2,z

+ 2m sin (θ1) sin (ψ1)L cos (ϕ2) sin (ψ2) ψ̇2 r3/2,zϕ̇2

+m sin (θ1) cos (ψ1)L cos (ϕ2) ϕ̇
2
2 sin (ψ2) r3/2,y

+m cos (θ1)L cos (θ2) θ̇
2
2r3/2,z cos (ϕ2)

+m cos (θ1)L cos (θ2) θ̇
2
2r3/2,y sin (ϕ2)

+m cos (θ1)L cos (ϕ2) ϕ̇
2
2 cos (θ2) r3/2,z

+m cos (θ1)L sin (ϕ2) ϕ̇
2
2 cos (θ2) r3/2,y

−m sin (θ1)L
2ψ̇2

1 cos (θ1)

−m sin (ϕ2) cos (ψ2) r3/2,zψ̇2 sin (θ1) cos (ψ1) L̇

+m cos (ϕ2) cos (ψ2) r3/2,yψ̇2 sin (θ1) cos (ψ1) L̇

+m cos (ϕ2) sin (ψ2) r3/2,yψ̇2 sin (θ1) sin (ψ1) L̇

+m sin (θ1) cos (ψ1)L cos (ϕ2) sin (ψ2) ψ̇
2
2r3/2,y

+m sin (θ1) sin (ψ1)L sin (ϕ2) cos (ψ2) ψ̇
2
2r3/2,z

+m sin (θ2) cos (ψ2) r3/2,xθ̇2 sin (θ1) cos (ψ1) L̇

+m sin (ψ2) r3/2,xψ̇2 cos (θ2) sin (θ1) cos (ψ1) L̇

−m cos (θ2) r3/2,xθ̇2 cos (θ1) L̇

−m cos (ψ2) r3/2,xψ̇2 cos (θ2) sin (θ1) sin (ψ1) L̇

−m sin (θ1) sin (ψ1)L sin (ψ2) ψ̇
2
2r3/2,x cos (θ2)

−m sin (θ1) sin (ψ1)L cos (ϕ2) cos (ψ2) ψ̇
2
2r3/2,y

−m sin (ϕ2) sin (ψ2) r3/2,zψ̇2 sin (θ1) sin (ψ1) L̇

−m sin (θ1) cos (ψ1)L cos (θ2) θ̇
2
2 cos (ψ2) r3/2,x

−m cos (θ1)L sin (θ2) θ̇
2
2r3/2,x
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+ 2m sin (θ1) cos (ψ1)L sin (θ2) sin (ψ2) ψ̇2 r3/2,xθ̇2

−m sin (θ1) cos (ψ1)L cos (ψ2) ψ̇
2
2r3/2,x cos (θ2)

−m sin (θ1) cos (ψ1)L sin (ϕ2) sin (ψ2) ψ̇
2
2r3/2,z

−m sin (θ1) sin (ψ1)L cos (θ2) θ̇
2
2 sin (ψ2) r3/2,x

− 2m sin (θ1) sin (ψ1)L sin (θ2) cos (ψ2) ψ̇2 r3/2,xθ̇2
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B2 = − cos (θ1)
(
−2m cos (ψ1)L sin (θ2) cos (ψ2) ψ̇2 r3/2,xθ̇2

−m cos (ψ1)L sin (ϕ2) ϕ̇
2
2 sin (θ2) sin (ψ2) r3/2,y

−m sin (ψ1)L cos (ϕ2) ϕ̇
2
2 sin (ψ2) r3/2,y

+2m sin (ψ1)L cos (θ2) sin (ψ2) ψ̇2 r3/2,yθ̇2 sin (ϕ2)

−F4y sin (ψ1)L sin (ϕ2) sin (θ2) cos (ψ2)

+F4y cos (ψ1)L cos (ϕ2) cos (ψ2)

+2m cos (ψ1)L cos (ϕ2) ϕ̇2 cos (ψ2) r3/2,y sin (θ2) ψ̇2

+2m sin (ψ1)L cos (θ2) sin (ψ2) ψ̇2 r3/2,z θ̇2 cos (ϕ2)

+2m sin (ψ1)L cos (ϕ2) ϕ̇2 sin (ψ2) r3/2,y sin (θ2) ψ̇2

−2m sin (ψ1)L sin (ϕ2) cos (ψ2) ψ̇2 r3/2,yϕ̇2

+2m cos (ψ1)L cos (θ2) cos (ψ2) ψ̇2 r3/2,yθ̇2 sin (ϕ2)

−2m cos (ψ1)L sin (ϕ2) ϕ̇2 cos (ψ2) r3/2,z sin (θ2) ψ̇2

+2m cos (ψ1)L cos (ϕ2) sin (ψ2) ψ̇2 r3/2,zϕ̇2

−2m sin (ψ1)L sin (ϕ2) ϕ̇2 sin (ψ2) r3/2,z sin (θ2) ψ̇2

+m sin (ψ1)L sin (ϕ2) cos (ψ2) ψ̇
2
2r3/2,y sin (θ2)

+m sin (ψ1)L sin (ϕ2) ϕ̇
2
2 sin (θ2) cos (ψ2) r3/2,y

+2m cos (ψ1)L cos (θ2) cos (ψ2) ψ̇2 r3/2,z θ̇2 cos (ϕ2)

−2m sin (ψ1)L cos (ϕ2) cos (ψ2) ψ̇2 r3/2,zϕ̇2

+m sin (ψ1)L cos (ϕ2) cos (ψ2) ψ̇
2
2r3/2,z sin (θ2)

+m sin (ψ1)L cos (ϕ2) ϕ̇
2
2 sin (θ2) cos (ψ2) r3/2,z

+2m sin (ψ1)L sin (ϕ2) cos (θ2) θ̇2 cos (ψ2) r3/2,zϕ̇2
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−m cos (ψ1)L sin (θ2) θ̇
2
2 sin (ψ2) r3/2,z cos (ϕ2)

−m cos (ψ1)L sin (θ2) θ̇
2
2 sin (ψ2) r3/2,y sin (ϕ2)

+2m cos (ψ1)L cos (θ2) sin (ψ2) r3/2,yθ̇2 cos (ϕ2) ϕ̇2

−m cos (ψ1)L cos (ϕ2) ϕ̇
2
2 cos (ψ2) r3/2,y

−m cos (ψ1)L cos (ϕ2) sin (ψ2) ψ̇
2
2r3/2,z sin (θ2)

−m cos (ψ1)L cos (ϕ2) ϕ̇
2
2 sin (θ2) sin (ψ2) r3/2,z

+m cos (ϕ2) sin (ψ2) r3/2,zϕ̇2 sin (ψ1) L̇

−m cos (ϕ2) sin (ψ2) r3/2,z sin (θ2) ψ̇2 sin (ψ1) L̇

−2m sin (ψ1)L cos (θ2) cos (ψ2) r3/2,yθ̇2 cos (ϕ2) ϕ̇2

−2m cos (ψ1)L sin (ϕ2) cos (θ2) θ̇2 sin (ψ2) r3/2,zϕ̇2

+m cos (ψ1)L sin (ϕ2) ϕ̇
2
2 cos (ψ2) r3/2,z

−m sin (ϕ2) cos (ψ2) r3/2,y sin (θ2) ψ̇2 cos (ψ1) L̇

−m cos (ϕ2) sin (θ2) sin (ψ2) r3/2,yϕ̇2 cos (ψ1) L̇

−m sin (ϕ2) sin (θ2) cos (ψ2) r3/2,zϕ̇2 sin (ψ1) L̇

−m sin (ϕ2) sin (ψ2) r3/2,y sin (θ2) ψ̇2 sin (ψ1) L̇

−F4z sin (ψ1)L sin (ϕ2) sin (ψ2)

−m cos (ϕ2) cos (ψ2) r3/2,z sin (θ2) ψ̇2 cos (ψ1) L̇

+m sin (ϕ2) sin (θ2) sin (ψ2) r3/2,zϕ̇2 cos (ψ1) L̇

+m sin (ϕ2) cos (ψ2) r3/2,yϕ̇2 cos (ψ1) L̇

−m cos (θ2) sin (ψ2) r3/2,z θ̇2 cos (ϕ2) cos (ψ1) L̇

−m cos (θ2) sin (ψ2) r3/2,yθ̇2 sin (ϕ2) cos (ψ1) L̇

+m cos (ϕ2) cos (ψ2) r3/2,zϕ̇2 cos (ψ1) L̇

+m sin (ψ1)L sin (ϕ2) ϕ̇
2
2 sin (ψ2) r3/2,z
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+m sin (ψ1)L sin (θ2) θ̇
2
2 cos (ψ2) r3/2,z cos (ϕ2)

+m sin (ψ1)L sin (θ2) θ̇
2
2 cos (ψ2) r3/2,y sin (ϕ2)

−F4z sin (ψ1)L cos (ϕ2) sin (θ2) cos (ψ2)

−F4z cos (ψ1)L sin (ϕ2) cos (ψ2)

+F4z cos (ψ1)L cos (ϕ2) sin (θ2) sin (ψ2)

+m cos (θ2) cos (ψ2) r3/2,yθ̇2 sin (ϕ2) sin (ψ1) L̇

+m cos (ϕ2) sin (θ2) cos (ψ2) r3/2,yϕ̇2 sin (ψ1) L̇

−F4x cos (θ2) cos (ψ2) sin (ψ1)L

+m cos (θ2) cos (ψ2) r3/2,z θ̇2 cos (ϕ2) sin (ψ1) L̇

+F4x cos (θ2) sin (ψ2) cos (ψ1)L

+F4y sin (ψ1)L cos (ϕ2) sin (ψ2)

+F4y cos (ψ1)L sin (ϕ2) sin (θ2) sin (ψ2)

+m sin (ϕ2) sin (ψ2) r3/2,yϕ̇2 sin (ψ1) L̇

+2m cos (ψ1)L sin (ϕ2) sin (ψ2) ψ̇2 r3/2,yϕ̇2

−m cos (ψ1)L sin (ϕ2) sin (ψ2) ψ̇
2
2r3/2,y sin (θ2)

+mY1d cos (ψ1) L̇−mẋ1 sin (ψ1) L̇

+m cos (ψ1)L sin (ϕ2) cos (ψ2) ψ̇
2
2r3/2,z

−m cos (ϕ2) cos (ψ2) r3/2,yψ̇2 sin (ψ1) L̇

+m sin (ψ1)L cos (ψ2) ψ̇
2
2r3/2,x cos (θ2)

+m cos (ϕ2) sin (ψ2) r3/2,yψ̇2 cos (ψ1) L̇

+m sin (ψ1)L sin (ϕ2) sin (ψ2) ψ̇
2
2r3/2,z

−m cos (ψ1)L cos (θ2) θ̇
2
2 sin (ψ2) r3/2,x
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−m cos (ψ1)L cos (ϕ2) cos (ψ2) ψ̇
2
2r3/2,y

−2m sin (ψ1)L sin (θ2) sin (ψ2) ψ̇2 r3/2,xθ̇2

−m sin (θ2) cos (ψ2) r3/2,xθ̇2 sin (ψ1) L̇

−m cos (ψ1)L sin (ψ2) ψ̇
2
2r3/2,x cos (θ2)

−m sin (ψ2) r3/2,xψ̇2 cos (θ2) sin (ψ1) L̇

−m cos (ψ2) r3/2,xψ̇2 cos (θ2) cos (ψ1) L̇

−m sin (ϕ2) sin (ψ2) r3/2,zψ̇2 cos (ψ1) L̇

−m sin (ψ1)L cos (ϕ2) sin (ψ2) ψ̇
2
2r3/2,y

+m sin (θ2) sin (ψ2) r3/2,xθ̇2 cos (ψ1) L̇

+m sin (ϕ2) cos (ψ2) r3/2,zψ̇2 sin (ψ1) L̇

+m sin (ψ1)L cos (θ2) θ̇
2
2 cos (ψ2) r3/2,x − 2mL2 sin (θ1) θ̇1 ψ̇1

)
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B3 = 2 Iyyθ̇2 (cos (ϕ2))
2 cos (θ2) ψ̇2

−m sin (θ1) θ̇1 sin (ψ1) L̇ r3/2,y sin (ϕ2) cos (ψ2)

+ Iyyψ̇
2
2 (cos (θ2))

2 sin (ϕ2) cos (ϕ2)

+M4x + cos (θ2) θ̇2 ψ̇2 Ixx

+ 4m sin (ϕ2) r3/2,zψ̇2 r3/2,y cos (ϕ2) cos (θ2) θ̇2

+ 2mθ̇2
2r3/2,yr3/2,z (cos (ϕ2))

2

−m cos (ϕ2) r3/2,y
2ψ̇2

2 sin (ϕ2) (cos (θ2))
2

+ 2m cos (θ2) r3/2,y
2θ̇2 ψ̇2 + F4y r3/2,z − F4z r3/2,y

− Iyyψ̇2 cos (θ2) θ̇2

+mθ̇2
2r3/2,y

2 sin (ϕ2) cos (ϕ2)

+ 2m cos (θ2) ψ̇2 r3/2,z
2θ̇2 (cos (ϕ2))

2

−mθ̇2
2r3/2,z

2 cos (ϕ2) sin (ϕ2)

+mψ̇2
2 cos (θ2) r3/2,xr3/2,y cos (ϕ2) sin (θ2)

−mθ̇2
2r3/2,yr3/2,z − 2m sin (ϕ2) sin (θ2) r3/2,xθ̇2 r3/2,yψ̇2

−m sin (ϕ2) ψ̇
2
2 cos (θ2) r3/2,xr3/2,z sin (θ2)

− 2m cos (θ2) r3/2,y
2θ̇2 ψ̇2 (cos (ϕ2))

2

+m sin (ϕ2) ψ̇
2
2r3/2,z

2 cos (ϕ2) (cos (θ2))
2

+mψ̇2
2r3/2,zr3/2,y (cos (θ2))

2

− 2mψ̇2
2r3/2,zr3/2,y (cos (ϕ2))

2 (cos (θ2))
2

− 2m sin (θ2) r3/2,xθ̇2 cos (ϕ2) r3/2,zψ̇2 + Izzψ̇2 cos (θ2) θ̇2

− F4y r4/2,z + F4z r4/2,y − Iyyθ̇
2
2 cos (ϕ2) sin (ϕ2)

+ Izz θ̇
2
2 cos (ϕ2) sin (ϕ2)
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−m cos (θ1) θ̇
2
1 sin (ψ1)Lr3/2,y sin (ϕ2) cos (ψ2)

−m sin (θ1) θ̇1 sin (ψ1) L̇ r3/2,z cos (ϕ2) cos (ψ2)

+m sin (θ1) θ̇1 cos (ψ1) L̇ r3/2,z cos (ϕ2) sin (ψ2)

+m cos (θ1) cos (ψ1) ψ̇1 L̇ r3/2,z sin (ϕ2) sin (θ2) sin (ψ2)

−m sin (ψ1) ψ̇
2
1 cos (θ1)Lr3/2,z cos (ϕ2) cos (ψ2)

+m sin (ψ1) ψ̇
2
1 cos (θ1)Lr3/2,y cos (ϕ2) sin (θ2) sin (ψ2)

−m cos (θ1) θ̇
2
1 cos (ψ1)Lr3/2,z sin (ϕ2) sin (θ2) cos (ψ2)

−m cos (θ1) θ̇
2
1 sin (ψ1)Lr3/2,z sin (ϕ2) sin (θ2) sin (ψ2)

+m cos (θ1) θ̇
2
1 sin (ψ1)Lr3/2,y cos (ϕ2) sin (θ2) sin (ψ2)

− 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 Lr3/2,y sin (ϕ2) cos (ψ2)

−m sin (θ1) θ̇1 cos (ψ1) L̇ r3/2,z sin (ϕ2) sin (θ2) cos (ψ2)

+m sin (θ1) θ̇1 cos (ψ1) L̇ r3/2,y sin (ϕ2) sin (ψ2)

+m sin (θ1) θ̇1 cos (ψ1) L̇ r3/2,y cos (ϕ2) sin (θ2) cos (ψ2)

+m cos (θ1) sin (ψ1) ψ̇1 L̇ r3/2,z cos (ϕ2) sin (ψ2)

−m cos (θ1) sin (ψ1) ψ̇1 L̇ r3/2,z sin (ϕ2) sin (θ2) cos (ψ2)

+m cos (θ1) sin (ψ1) ψ̇1 L̇ r3/2,y sin (ϕ2) sin (ψ2)

+m cos (θ1) sin (ψ1) ψ̇1 L̇ r3/2,y cos (ϕ2) sin (θ2) cos (ψ2)

+m cos (ψ1) ψ̇
2
1 cos (θ1)Lr3/2,z cos (ϕ2) sin (ψ2)

−m cos (ψ1) ψ̇
2
1 cos (θ1)Lr3/2,z sin (ϕ2) sin (θ2) cos (ψ2)

+m cos (ψ1) ψ̇
2
1 cos (θ1)Lr3/2,y sin (ϕ2) sin (ψ2)

+m cos (ψ1) ψ̇
2
1 cos (θ1)Lr3/2,y cos (ϕ2) sin (θ2) cos (ψ2)

+m cos (θ1) θ̇
2
1 cos (ψ1)Lr3/2,z cos (ϕ2) sin (ψ2)

+m cos (θ1) θ̇
2
1 cos (ψ1)Lr3/2,y sin (ϕ2) sin (ψ2)
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+m cos (θ1) θ̇
2
1 cos (ψ1)Lr3/2,y cos (ϕ2) sin (θ2) cos (ψ2)

− 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 Lr3/2,z cos (ϕ2) sin (ψ2)

+ 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 Lr3/2,z sin (ϕ2) sin (θ2) cos (ψ2)

− 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 Lr3/2,y sin (ϕ2) sin (ψ2)

− 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 Lr3/2,y cos (ϕ2) sin (θ2) cos (ψ2)

− 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 Lr3/2,z cos (ϕ2) cos (ψ2)

− 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 Lr3/2,z sin (ϕ2) sin (θ2) sin (ψ2)

+ 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 Lr3/2,y cos (ϕ2) sin (θ2) sin (ψ2)

−m sin (θ1) θ̇1 sin (ψ1) L̇ r3/2,z sin (ϕ2) sin (θ2) sin (ψ2)

+m sin (θ1) θ̇1 sin (ψ1) L̇ r3/2,y cos (ϕ2) sin (θ2) sin (ψ2)

−m sin (ψ1) ψ̇
2
1 cos (θ1)Lr3/2,z sin (ϕ2) sin (θ2) sin (ψ2)

−m sin (ψ1) ψ̇
2
1 cos (θ1)Lr3/2,y sin (ϕ2) cos (ψ2)

−m cos (θ1) θ̇
2
1 sin (ψ1)Lr3/2,z cos (ϕ2) cos (ψ2)

+m cos (θ1) cos (ψ1) ψ̇1 L̇ r3/2,z cos (ϕ2) cos (ψ2)

+m cos (θ1) cos (ψ1) ψ̇1 L̇ r3/2,y sin (ϕ2) cos (ψ2)

−m cos (θ1) cos (ψ1) ψ̇1 L̇ r3/2,y cos (ϕ2) sin (θ2) sin (ψ2)

−m sin (θ1) θ̇
2
1L sin (ϕ2) cos (θ2) r3/2,z

+m sin (θ1) θ̇
2
1L cos (ϕ2) cos (θ2) r3/2,y

+m cos (θ1) θ̇1 L̇ sin (ϕ2) cos (θ2) r3/2,z

−m cos (θ1) θ̇1 L̇ cos (ϕ2) cos (θ2) r3/2,y

+mg sin (ϕ2) cos (θ2) r3/2,z −mg cos (ϕ2) cos (θ2) r3/2,y

− Izzψ̇
2
2 (cos (θ2))

2 sin (ϕ2) cos (ϕ2)

− 2 Izz θ̇2 (cos (ϕ2))
2 cos (θ2) ψ̇2
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B4 = −mψ̇2
2 sin (θ2) r3/2,y

2 cos (θ2) (cos (ϕ2))
2

−m cos (ϕ2) ψ̇
2
2r3/2,zr3/2,x −m cos (ϕ2) ϕ̇

2
2r3/2,zr3/2,x

−m sin (ϕ2) ψ̇
2
2r3/2,yr3/2,x − 4mr3/2,z θ̇2 (cos (ϕ2))

2 ϕ̇2 r3/2,y

− 2mr3/2,y
2ϕ̇2 cos (θ2) ψ̇2

+m cos (θ1) sin (ψ1) ψ̇1 L̇ cos (θ2) cos (ψ2) sin (ϕ2) r3/2,y

+m cos (ψ1) ψ̇
2
1 cos (θ1)L cos (θ2) cos (ψ2) cos (ϕ2) r3/2,z

+m cos (ψ1) ψ̇
2
1 cos (θ1)L cos (θ2) cos (ψ2) sin (ϕ2) r3/2,y

+m cos (θ1) θ̇
2
1 cos (ψ1)L cos (θ2) cos (ψ2) cos (ϕ2) r3/2,z

− 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 L cos (θ2) cos (ψ2) cos (ϕ2) r3/2,z

− 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 L cos (θ2) cos (ψ2) sin (ϕ2) r3/2,y

+mg sin (ϕ2) sin (θ2) r3/2,y +mg cos (ϕ2) sin (θ2) r3/2,z

+m sin (θ1) θ̇1 cos (ψ1) L̇ cos (θ2) cos (ψ2) cos (ϕ2) r3/2,z

+m sin (θ1) θ̇1 cos (ψ1) L̇ cos (θ2) cos (ψ2) sin (ϕ2) r3/2,y

+m cos (θ1) sin (ψ1) ψ̇1 L̇ cos (θ2) cos (ψ2) cos (ϕ2) r3/2,z

−m sin (θ1) θ̇
2
1L cos (ϕ2) sin (θ2) r3/2,z

−m sin (θ1) θ̇
2
1L sin (ϕ2) sin (θ2) r3/2,y

+m cos (θ1) θ̇1 L̇ cos (ϕ2) sin (θ2) r3/2,z

+m cos (θ1) θ̇1 L̇ sin (ϕ2) sin (θ2) r3/2,y

+M4y cos (ϕ2) −M4z sin (ϕ2) − F4y sin (ϕ2) r4/2,x

− F4z cos (ϕ2) r4/2,x + F4x cos (ϕ2) r4/2,z

+ F4x sin (ϕ2) r4/2,y +mg cos (θ2) r3/2,x

− Ixx cos (θ2) ψ̇2 ϕ̇2 + Ixx cos (θ2) ψ̇
2
2 sin (θ2)
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+m sin (θ1) θ̇1 sin (ψ1) L̇ cos (θ2) sin (ψ2) cos (ϕ2) r3/2,z

+m sin (θ1) θ̇1 sin (ψ1) L̇ cos (θ2) sin (ψ2) sin (ϕ2) r3/2,y

+m sin (ψ1) ψ̇
2
1 cos (θ1)L cos (θ2) sin (ψ2) cos (ϕ2) r3/2,z

+m sin (ψ1) ψ̇
2
1 cos (θ1)L cos (θ2) sin (ψ2) sin (ϕ2) r3/2,y

+m cos (θ1) θ̇
2
1 sin (ψ1)L cos (θ2) sin (ψ2) cos (ϕ2) r3/2,z

+m cos (θ1) θ̇
2
1 sin (ψ1)L cos (θ2) sin (ψ2) sin (ϕ2) r3/2,y

−m cos (θ1) cos (ψ1) ψ̇1 L̇ cos (θ2) sin (ψ2) cos (ϕ2) r3/2,z

−m cos (θ1) cos (ψ1) ψ̇1 L̇ cos (θ2) sin (ψ2) sin (ϕ2) r3/2,y

+ 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 L cos (θ2) sin (ψ2) cos (ϕ2) r3/2,z

+ 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 L cos (θ2) sin (ψ2) sin (ϕ2) r3/2,y

+m cos (θ1) θ̇
2
1 cos (ψ1)L cos (θ2) cos (ψ2) sin (ϕ2) r3/2,y

− Izz (cos (ϕ2))
2 sin (θ2) ψ̇

2
2 cos (θ2)

− F4x sin (ϕ2) r3/2,y − F4x cos (ϕ2) r3/2,z + F4y sin (ϕ2) r3/2,x

+ F4z cos (ϕ2) r3/2,x − 2 Iyy (cos (ϕ2))
2 ψ̇2 cos (θ2) ϕ̇2

+ 2 Iyy cos (ϕ2) θ̇2 sin (ϕ2) ϕ̇2 + 2 Izz (cos (ϕ2))
2 ϕ̇2 cos (θ2) ψ̇2

− 2 Izz cos (ϕ2) ϕ̇2 θ̇2 sin (ϕ2) − Izzϕ̇2 cos (θ2) ψ̇2

+ Iyyϕ̇2 ψ̇2 cos (θ2) − Iyyψ̇
2
2 sin (θ2) cos (θ2)

+ 2mr3/2,yθ̇2 ϕ̇2 r3/2,z + 2m sin (ϕ2) ψ̇
2
2r3/2,yr3/2,x (cos (θ2))

2

+ 2m cos (ϕ2) ψ̇
2
2r3/2,zr3/2,x (cos (θ2))

2

+m cos (θ1) cos (ψ1) ψ̇1 L̇ r3/2,x sin (θ2) sin (ψ2)

+ 2m sin (ϕ2) r3/2,yϕ̇2 r3/2,x sin (θ2) ψ̇2

+mψ̇2
2 sin (θ2) r3/2,y

2 cos (θ2) + 2m cos (ϕ2) r3/2,zϕ̇2 r3/2,x sin (θ2) ψ̇2

+m (cos (ϕ2))
2 ψ̇2

2 sin (θ2) r3/2,z
2 cos (θ2)
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+m cos (θ1) θ̇1 L̇ cos (θ2) r3/2,x

− 2m (cos (ϕ2))
2 r3/2,z

2ϕ̇2 cos (θ2) ψ̇2

− 2mr3/2,y
2θ̇2 sin (ϕ2) cos (ϕ2) ϕ̇2

− 4m sin (ϕ2) r3/2,zψ̇2 cos (θ2) cos (ϕ2) ϕ̇2 r3/2,y

−m sin (ψ1) ψ̇
2
1 cos (θ1)Lr3/2,x sin (θ2) sin (ψ2)

−m cos (θ1) θ̇
2
1 sin (ψ1)Lr3/2,x sin (θ2) sin (ψ2)

− 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 Lr3/2,x sin (θ2) sin (ψ2)

−m sin (ϕ2) ϕ̇
2
2r3/2,yr3/2,x + 2mr3/2,z

2θ̇2 cos (ϕ2) sin (ϕ2) ϕ̇2

−m sin (θ1) θ̇1 cos (ψ1) L̇ r3/2,x sin (θ2) cos (ψ2)

+ 2mr3/2,y
2ϕ̇2 cos (θ2) ψ̇2 (cos (ϕ2))

2

−mψ̇2
2 cos (θ2) r3/2,x

2 sin (θ2)

+ 2m cos (ϕ2) ψ̇
2
2 sin (θ2) r3/2,z cos (θ2) sin (ϕ2) r3/2,y

−m cos (θ1) sin (ψ1) ψ̇1 L̇ r3/2,x sin (θ2) cos (ψ2)

−m cos (ψ1) ψ̇
2
1 cos (θ1)Lr3/2,x sin (θ2) cos (ψ2)

−m cos (θ1) θ̇
2
1 cos (ψ1)Lr3/2,x sin (θ2) cos (ψ2)

+ 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 Lr3/2,x sin (θ2) cos (ψ2)

−m sin (θ1) θ̇
2
1L cos (θ2) r3/2,x

−m sin (θ1) θ̇1 sin (ψ1) L̇ r3/2,x sin (θ2) sin (ψ2)

+ Iyyψ̇
2
2 sin (θ2) cos (θ2) (cos (ϕ2))

2
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B5 = F4y sin (θ2) r4/2,z +m cos (θ1) θ̇
2
1 sin (ψ1)L sin (ϕ2) sin (ψ2) r3/2,z

+ 2 Izz sin (ϕ2) ϕ̇2 (cos (θ2))
2 cos (ϕ2) ψ̇2

−m sin (θ1) θ̇1 cos (ψ1) L̇ cos (ϕ2) cos (ψ2) r3/2,y

+ 2m cos (θ2) r3/2,y
2θ̇2 ϕ̇2 (cos (ϕ2))

2

+m sin (θ1) θ̇1 sin (ψ1) L̇ cos (ψ2) cos (θ2) r3/2,x

+m cos (θ1) θ̇
2
1 cos (ψ1)L sin (ϕ2) cos (ψ2) r3/2,z

−m cos (θ2) θ̇
2
2r3/2,x cos (ϕ2) r3/2,y

− Izz cos (ϕ2) sin (θ2) θ̇
2
2 sin (ϕ2)

+ Iyy sin (ϕ2) sin (θ2) θ̇
2
2 cos (ϕ2)

+m cos (θ1) θ̇
2
1 sin (ψ1)L sin (ϕ2) cos (ψ2) sin (θ2) r3/2,y

− 2m sin (θ2) θ̇
2
2r3/2,z (cos (ϕ2))

2 r3/2,y + 2mψ̇2 r3/2,xθ̇2 cos (ϕ2) r3/2,z

+ F4z sin (θ2) r3/2,y − Izzϕ̇2 cos (θ2) θ̇2 − F4y cos (ϕ2) cos (θ2) r3/2,x

+ F4z sin (ϕ2) cos (θ2) r3/2,x + F4x cos (θ2) cos (ϕ2) r3/2,y

+ cos (θ2) Iyyθ̇2 ϕ̇2 − F4x cos (θ2) sin (ϕ2) r3/2,z

− 2 cos (θ2) θ̇2 ψ̇2 Ixx sin (θ2)

− 2m cos (θ2) ψ̇2 r3/2,z
2θ̇2 (cos (ϕ2))

2 sin (θ2)

− 2m sin (ϕ2) r3/2,z
2ψ̇2 cos (ϕ2) ϕ̇2 (cos (θ2))

2

−m sin (θ1) θ̇1 cos (ψ1) L̇ sin (ψ2) cos (θ2) r3/2,x

− 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 L cos (ϕ2) sin (ψ2) r3/2,y

−m cos (θ1) sin (ψ1) ψ̇1 L̇ sin (ψ2) cos (θ2) r3/2,x

−m cos (θ1) sin (ψ1) ψ̇1 L̇ cos (ϕ2) cos (ψ2) r3/2,y

+M4y sin (ϕ2) cos (θ2) +M4z cos (ϕ2) cos (θ2)
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−M4x sin (θ2) + 2 (cos (ϕ2))
2 cos (θ2) Izz θ̇2 ϕ̇2

− F4z sin (θ2) r4/2,y − 2mϕ̇2 r3/2,zψ̇2 r3/2,y (cos (θ2))
2

+ 4mϕ̇2 r3/2,zψ̇2 r3/2,y (cos (ϕ2))
2 (cos (θ2))

2

+m sin (θ2) θ̇
2
2r3/2,z

2 cos (ϕ2) sin (ϕ2)

+m sin (ψ1) ψ̇
2
1 cos (θ1)L sin (ϕ2) sin (ψ2) r3/2,z

+m sin (θ1) θ̇1 sin (ψ1) L̇ sin (ϕ2) sin (ψ2) r3/2,z

+m sin (ψ1) ψ̇
2
1 cos (θ1)L cos (ψ2) cos (θ2) r3/2,x

−m cos (ψ1) ψ̇
2
1 cos (θ1)L cos (ϕ2) cos (ψ2) r3/2,y

+ 2m sin (ϕ2) ϕ̇2 r3/2,z sin (θ2) ψ̇2 cos (θ2) r3/2,x

+ 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 L cos (ψ2) cos (θ2) r3/2,x

+ 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 L sin (ϕ2) sin (ψ2) r3/2,z

+ 2m sin (ϕ2) ψ̇2 r3/2,xθ̇2 r3/2,y − 4m sin (ϕ2) ψ̇2 r3/2,xθ̇2 r3/2,y (cos (θ2))
2

+ 2m sin (θ2) ψ̇2 r3/2,x
2θ̇2 cos (θ2)

−m sin (θ1) θ̇1 sin (ψ1) L̇ cos (ϕ2) sin (ψ2) r3/2,y

−m cos (θ1) θ̇
2
1 cos (ψ1)L cos (ϕ2) cos (ψ2) r3/2,y

− 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 L sin (ϕ2) cos (ψ2) r3/2,z

+m cos (ψ1) ψ̇
2
1 cos (θ1)L sin (ϕ2) cos (ψ2) r3/2,z

− 2m cos (θ2) ψ̇2 r3/2,y
2θ̇2 sin (θ2)

+ 2m cos (θ2) ψ̇2 r3/2,y
2θ̇2 sin (θ2) (cos (ϕ2))

2

+m sin (ϕ2) cos (θ2) θ̇
2
2r3/2,xr3/2,z

+m cos (θ1) sin (ψ1) ψ̇1 L̇ sin (ϕ2) cos (ψ2) r3/2,z

− 2m cos (θ2) r3/2,z
2θ̇2 (cos (ϕ2))

2 ϕ̇2 + 2m cos (θ2) θ̇2 r3/2,z
2ϕ̇2

+ 2m cos (ϕ2) ϕ̇2 r3/2,y
2ψ̇2 sin (ϕ2) (cos (θ2))

2 −
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4m cos (ϕ2) r3/2,zϕ̇2 cos (θ2) r3/2,yθ̇2 sin (ϕ2)

−m cos (θ1) θ̇
2
1 sin (ψ1)L cos (ϕ2) sin (ψ2) r3/2,y − F4y sin (θ2) r3/2,z

−m cos (θ1) cos (ψ1) ψ̇1 L̇ sin (ϕ2) sin (ψ2) r3/2,z

+ 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 L sin (ψ2) cos (θ2) r3/2,x

+ 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 L cos (ϕ2) cos (ψ2) r3/2,y

− 2m cos (ϕ2) ϕ̇2 r3/2,y sin (θ2) ψ̇2 cos (θ2) r3/2,x

+m cos (ϕ2) ϕ̇
2
2r3/2,y cos (θ2) r3/2,x +m sin (θ2) θ̇

2
2r3/2,yr3/2,z

+m sin (θ1) θ̇1 cos (ψ1) L̇ sin (ϕ2) cos (ψ2) r3/2,z

− 4m cos (θ2) ψ̇2 r3/2,z θ̇2 cos (ϕ2) sin (ϕ2) sin (θ2) r3/2,y

− 4m (cos (θ2))
2 ψ̇2 r3/2,z θ̇2 cos (ϕ2) r3/2,x

−m cos (θ1) θ̇
2
1 cos (ψ1)L sin (ψ2) cos (θ2) r3/2,x

+m cos (θ1) θ̇
2
1 sin (ψ1)L cos (ψ2) cos (θ2) r3/2,x

−m cos (θ1) cos (ψ1) ψ̇1 L̇ cos (ψ2) cos (θ2) r3/2,x

−m cos (ψ1) ψ̇
2
1 cos (θ1)L sin (ψ2) cos (θ2) r3/2,x

−m sin (ϕ2) ϕ̇
2
2r3/2,z cos (θ2) r3/2,x + 2 Iyy sin (θ2) θ̇2 ψ̇2 cos (θ2)

− 2 Iyy sin (θ2) θ̇2 ψ̇2 cos (θ2) (cos (ϕ2))
2

−m sin (θ2) θ̇
2
2r3/2,y

2 sin (ϕ2) cos (ϕ2)

−m sin (ψ1) ψ̇
2
1 cos (θ1)L cos (ϕ2) sin (ψ2) r3/2,y

+m cos (θ1) cos (ψ1) ψ̇1 L̇ cos (ϕ2) sin (ψ2) r3/2,y

+ F4x sin (ϕ2) cos (θ2) r4/2,z − F4x cos (ϕ2) cos (θ2) r4/2,y

− F4z sin (ϕ2) cos (θ2) r4/2,x + Ixx cos (θ2) θ̇2 ϕ̇2

+ F4y cos (ϕ2) cos (θ2) r4/2,x − 2 Iyy (cos (ϕ2))
2 ϕ̇2 cos (θ2) θ̇2

−m cos (ψ1) ψ̇
2
1 cos (θ1)L cos (ϕ2) sin (ψ2) sin (θ2) r3/2,z
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−m sin (θ1) θ̇1 cos (ψ1) L̇ cos (ϕ2) sin (ψ2) sin (θ2) r3/2,z

−m sin (θ1) θ̇1 cos (ψ1) L̇ sin (ϕ2) sin (ψ2) sin (θ2) r3/2,y

−m cos (θ1) sin (ψ1) ψ̇1 L̇ cos (ϕ2) sin (ψ2) sin (θ2) r3/2,z

−m cos (θ1) sin (ψ1) ψ̇1 L̇ sin (ϕ2) sin (ψ2) sin (θ2) r3/2,y

−m cos (ψ1) ψ̇
2
1 cos (θ1)L sin (ϕ2) sin (ψ2) sin (θ2) r3/2,y

−m cos (θ1) θ̇
2
1 cos (ψ1)L cos (ϕ2) sin (ψ2) sin (θ2) r3/2,z

−m cos (θ1) θ̇
2
1 cos (ψ1)L sin (ϕ2) sin (ψ2) sin (θ2) r3/2,y

+ 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 L cos (ϕ2) sin (ψ2) sin (θ2) r3/2,z

+ 2m sin (ψ1) sin (θ1) θ̇1 ψ̇1 L sin (ϕ2) sin (ψ2) sin (θ2) r3/2,y

+ 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 L cos (ϕ2) cos (ψ2) sin (θ2) r3/2,z

+ 2m cos (ψ1) sin (θ1) θ̇1 ψ̇1 L sin (ϕ2) cos (ψ2) sin (θ2) r3/2,y

+m sin (θ1) θ̇1 sin (ψ1) L̇ cos (ϕ2) cos (ψ2) sin (θ2) r3/2,z

+m sin (θ1) θ̇1 sin (ψ1) L̇ sin (ϕ2) cos (ψ2) sin (θ2) r3/2,y

+m sin (ψ1) ψ̇
2
1 cos (θ1)L cos (ϕ2) cos (ψ2) sin (θ2) r3/2,z

+m sin (ψ1) ψ̇
2
1 cos (θ1)L sin (ϕ2) cos (ψ2) sin (θ2) r3/2,y

+m cos (θ1) θ̇
2
1 sin (ψ1)L cos (ϕ2) cos (ψ2) sin (θ2) r3/2,z

−m cos (θ1) cos (ψ1) ψ̇1 L̇ cos (ϕ2) cos (ψ2) sin (θ2) r3/2,z

−m cos (θ1) cos (ψ1) ψ̇1 L̇ sin (ϕ2) cos (ψ2) sin (θ2) r3/2,y

+ 2 (cos (ϕ2))
2 cos (θ2) Izz sin (θ2) θ̇2 ψ̇2

− 2 sin (ϕ2) (cos (θ2))
2 Iyyψ̇2 cos (ϕ2) ϕ̇2



B. Derivation of Equations of Motion: Maple

Script

with(LinearAlgebra):

readlib(mtaylor):

with(codegen,C):

with(CodeGeneration):

#with(VectorCalculus):

###########################

## Read custom diff package

###########################

read ‘eqmo_util.mpl‘;

# read in custom differentiation package

# The following 4 vectors contain all the variable names that

# are functions of time. This is needed to support the custom

# differentiation code in eqmo_util.mpl.



150

##################################################

## Store all the states in vars,varsd,varsdd,varst

##################################################

vars := Vector([th1,ps1,ph2,th2,ps2]):

varsd := Vector([th1d,ps1d,ph2d,th2d,ps2d]):

varsdd := Vector([th1dd,ps1dd,ph2dd,th2dd,ps2dd]):

varst := Vector([th1(t),ps1(t),ph2(t),th2(t),ps2(t)]):

###################################################

## Rotation Matrices to rotate vectors between {I}

## frame, {T} frame and {B} frame

###################################################

Rth1 := Matrix([[cos(th1), 0, sin(th1)],

[0, 1, 0 ],

[-sin(th1), 0, cos(th1)]]):

Rps1 := Matrix([[ cos(ps1), sin(ps1), 0],

[-sin(ps1), cos(ps1), 0],

[0, 0, 1]]):

RI2T := MatrixMatrixMultiply(Rth1,Rps1):

RT2I := Transpose(RI2T):
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Rph2 := Matrix([[1, 0, 0 ],

[0, cos(ph2), sin(ph2)],

[0, -sin(ph2), cos(ph2)]]):

Rth2 := Matrix([[cos(th2), 0, -sin(th2)],

[0, 1, 0 ],

[sin(th2), 0, cos(th2)]]):

Rps2 := Matrix([[cos(ps2), sin(ps2), 0],

[-sin(ps2), cos(ps2), 0],

[0, 0, 1]]):

RI2B := MatrixMatrixMultiply(Rph2,MatrixMatrixMultiply(Rth2,Rps2)):

RB2I := Transpose(RI2B):

###############################################

## Getting velocity of point 2

## (CG of the parafoil-payload system)

###############################################

p1I := Vector([X1, Y1, 0]): # ship position

v1I := Vector([X1d, Y1d, 0]): # velocity of the ship in {I} frame
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p31T := Vector([-L, 0, 0]): # p31 in {T} frame

p31I := MatrixVectorMultiply(RT2I,p31T):

p32B := Vector([p32xb, p32yb, p32zb]):# relative vector between CG

# and point of attachment

# defined in {B} frame

p32I := MatrixVectorMultiply(RB2I,p32B):

omgT := Vector([ sin(th1)*ps1d,-th1d,cos(th1)*ps1d]):

omgB := Vector([ph2d-sin(th2)*ps2d,

th2d*cos(ph2) + ps2d*cos(th2)*sin(ph2),

cos(ph2)*cos(th2)*ps2d - th2d*sin(ph2)]):

ddtp31T := Vector([-Ld, 0, 0]): # derivative of vector p31 in {T} frame

omgTcrp31T := CrossProduct(omgT,p31T):

omgBcrp32B := CrossProduct(omgB,p32B):

p2I := p1I + p31I - p32I:

v2I := v1I + MatrixVectorMultiply(RT2I,ddtp31T) +

MatrixVectorMultiply(RT2I,omgTcrp31T) -

MatrixVectorMultiply(RB2I,omgBcrp32B):

v2B := MatrixVectorMultiply(RI2B,v2I):
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##################################################

## Kinetic Energy, Potential Energy and Lagrangian

##################################################

InrtMat := Matrix([[Ixx, 0, 0],

[0, Iyy, 0],

[0, 0, Izz]]):

Trot := 1/2*Multiply(VectorMatrixMultiply(Transpose(omgB),InrtMat),omgB):

Ttrans:= 1/2*mass*Multiply(Transpose(v2I),v2I):

KE := Ttrans + Trot:

PE := -mass*grav*p2I(3):

Lag := KE - PE:

####################

## Dynamic Equations

####################

DynEq := MakeEQMO(Lag,vars,varsd,varsdd,varst):

#####################

## Generalized Forces
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#####################

p42B := Vector([p42xb, p42yb, p42zb]):

# relative vector between CG and aero center 4 defined in {B} frame

omgBcrp42B := CrossProduct(omgB,p42B):

v4B := v2B + omgBcrp42B:

delv4Bth1d :=Vector(1..3,0):

delv4Bps1d :=Vector(1..3,0):

delv4Bph2d :=Vector(1..3,0):

delv4Bth2d :=Vector(1..3,0):

delv4Bps2d :=Vector(1..3,0):

for i from 1 to 3 do

delv4Bth1d[i] := diff(v4B[i],th1d):

delv4Bps1d[i] := diff(v4B[i],ps1d):

delv4Bph2d[i] := diff(v4B[i],ph2d):

delv4Bth2d[i] := diff(v4B[i],th2d):

delv4Bps2d[i] := diff(v4B[i],ps2d):

end do:

delomgBth1d :=Vector(1..3,0):

delomgBps1d :=Vector(1..3,0):

delomgBph2d :=Vector(1..3,0):
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delomgBth2d :=Vector(1..3,0):

delomgBps2d :=Vector(1..3,0):

for i from 1 to 3 do

delomgBth1d[i] := diff(omgB[i],th1d):

delomgBps1d[i] := diff(omgB[i],ps1d):

delomgBph2d[i] := diff(omgB[i],ph2d):

delomgBth2d[i] := diff(omgB[i],th2d):

delomgBps2d[i] := diff(omgB[i],ps2d):

end do:

Ma4b := Vector([M4x, M4y, M4z]):

Fa4b := Vector([F4x, F4y, F4z]):

Qth1 := Multiply(Transpose(delv4Bth1d),Fa4b) +

Multiply(Transpose(delomgBth1d),Ma4b):

Qps1 := Multiply(Transpose(delv4Bps1d),Fa4b) +

Multiply(Transpose(delomgBps1d),Ma4b):

Qph2 := Multiply(Transpose(delv4Bph2d),Fa4b) +

Multiply(Transpose(delomgBph2d),Ma4b):

Qth2 := Multiply(Transpose(delv4Bth2d),Fa4b) +

Multiply(Transpose(delomgBth2d),Ma4b):

Qps2 := Multiply(Transpose(delv4Bps2d),Fa4b) +

Multiply(Transpose(delomgBps2d),Ma4b):
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#######################################################

## Final Equations in the form of Comat*varsdd = RHSmat

#######################################################

GenForce := Vector([Qth1, Qps1, Qph2, Qth2, Qps2]):

for i from 1 to 5 do

DynEq[i]:=DynEq[i]-GenForce[i]:

end do:

# Coefficient Matrix

Comat:=Matrix(1..5,1..5,0):

for i from 1 to 5 do

for j from 1 to 5 do

temp:=collect(DynEq[i],varsdd[j]):

Comat[i,j]:=coeff(temp,varsdd[j]):

end do:

end do:

# Right Hand Side Matrix

RHSmat:=Vector(1..5,0):

for i from 1 to 5 do

RHSmatbuild:=collect(DynEq[i],varsdd[1])-Comat[i,1]*varsdd[1]:

RHSmatbuild:=collect(RHSmatbuild,varsdd[2])-Comat[i,2]*varsdd[2]:
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RHSmatbuild:=collect(RHSmatbuild,varsdd[3])-Comat[i,3]*varsdd[3]:

RHSmatbuild:=collect(RHSmatbuild,varsdd[4])-Comat[i,4]*varsdd[4]:

RHSmat[i]:=-1*(collect(RHSmatbuild,varsdd[5])-Comat[i,5]*varsdd[5]):

end do:

Comat := simplify(Comat,trig):

RHSmat := simplify(RHSmat,trig):

C(Comat,resultname=”A”);

C(RHSmat,resultname=”B”);

#########################

## Steady State Equations

#########################

SSeq := Vector(1..5,0):

for i from 1 to 5 do

SSeq[i] := subs([th1d=0,ps1d=0,ph2d=0,th2d=0,ps2d=0,Ld=0],RHSmat(i)):

end do:

Matlab(SSeq,resultname=”SSeq”);



C. Steady State Values

The steady state values of all states corresponding to the stability boundaries shown in

Figure 4.6 are presented here. The cells in red color indicate unstable steady state values.
Table C.1

Steady state values of in-plane tow angle θ10 (deg) for η = 0◦

1.7 58.7
1.6 58.1
1.5 57.4
1.4 56.6
1.3 55.6
1.2 48.8 54.5 48.8
1.1 48.5 53.3 48.5
1 47.8 51.8 47.8
0.9 46.8 50.1 46.8
0.8 38.5 45.5 48.1 45.5 38.5
0.7 37.9 43.8 46.0 43.8 37.9
0.6 29.9 36.9 41.8 43.5 41.8 36.9 29.9
0.5 29.5 35.5 39.7 41.0 39.7 35.5 29.5
0.4 22.5 28.8 33.9 37.4 38.4 37.4 33.9 28.8 22.5
0.3 22.3 27.8 32.3 35.3 36.1 35.3 32.3 27.8 22.3
0.2 16.1 21.8 26.9 30.9 33.6 34.1 33.6 30.9 26.9 21.8 16.1
0.1 21.5 26.2 30.0 32.4 32.8 32.4 30.0 26.2 21.5
0 16.1 21.4 26.0 29.7 32.0 32.4 32.0 29.7 26.0 21.4 16.1

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Table C.2
Steady state values of off-plane tow angle ψ10 (deg) for η = 0◦

1.7 59.5
1.6 58.0
1.5 56.3
1.4 54.5
1.3 52.4
1.2 79.9 50.2 20.5
1.1 74.9 47.7 20.6
1 69.7 45.0 20.3
0.9 64.4 42.0 19.6
0.8 74.5 59.0 38.7 18.4 2.8
0.7 68.1 53.4 35.0 16.6 1.9
0.6 71.8 61.4 47.7 31.0 14.2 0.5 -9.9
0.5 64.8 54.8 41.9 26.6 11.2 -1.6 -11.7
0.4 65.2 57.7 48.1 36.0 21.8 7.6 -4.5 -14.1 -21.6
0.3 58.2 50.8 41.4 29.9 16.7 3.5 -8.0 -17.4 -24.8
0.2 57.1 51.3 44.0 34.9 23.9 11.3 -1.3 -12.3 -21.4 -28.7 -34.5
0.1 44.8 37.6 28.6 17.9 5.7 -6.5 -17.2 -26.2 -33.4
0 44.6 38.8 31.6 22.7 12.1 0.0 -12.1 -22.7 -31.6 -38.8 -44.6

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Table C.3
Steady state values of roll angle ϕ20 (deg) for η = 0◦

1.7 0.0
1.6 0.0
1.5 0.0
1.4 0.0
1.3 0.0
1.2 -17.5 0.0 17.5
1.1 -15.8 0.0 15.8
1 -14.1 0.0 14.1
0.9 -12.7 0.0 12.7
0.8 -22.9 -11.4 0.0 11.4 22.9
0.7 -20.6 -10.3 0.0 10.3 20.6
0.6 -28.3 -18.6 -9.3 0.0 9.3 18.6 28.3
0.5 -25.7 -17.0 -8.5 0.0 8.5 17.0 25.7
0.4 -31.9 -23.6 -15.6 -7.8 0.0 7.8 15.6 23.6 31.9
0.3 -29.7 -22.0 -14.6 -7.3 0.0 7.3 14.6 22.0 29.7
0.2 -35.6 -28.1 -20.9 -13.9 -6.9 0.0 6.9 13.9 20.9 28.1 35.6
0.1 -27.2 -20.2 -13.4 -6.7 0.0 6.7 13.4 20.2 27.2
0 -34.0 -26.9 -20.0 -13.3 -6.6 0.0 6.6 13.3 20.0 26.9 34.0

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Table C.4
Steady state values of pitch angle θ20 (deg) for η = 0◦

1.7 24.3
1.6 24.4
1.5 24.6
1.4 24.8
1.3 25.0
1.2 24.8 25.3 24.8
1.1 25.3 25.6 25.3
1 25.7 25.9 25.7
0.9 26.2 26.3 26.2
0.8 25.9 26.6 26.6 26.6 25.9
0.7 26.6 27.1 27.0 27.1 26.6
0.6 26.3 27.2 27.6 27.5 27.6 27.2 26.3
0.5 27.1 27.8 28.0 27.9 28.0 27.8 27.1
0.4 26.8 27.8 28.3 28.5 28.8 28.5 28.3 27.8 26.8
0.3 27.5 28.3 28.7 28.8 28.6 28.8 28.7 28.3 27.5
0.2 27.0 28.0 28.7 29.1 29.1 28.9 29.1 29.1 28.7 28.0 27.0
0.1 28.4 29.0 29.3 29.3 29.1 29.3 29.3 29.0 28.4
0 27.5 28.5 29.0 29.3 29.4 29.2 29.4 29.3 29.0 28.5 27.5

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Table C.5
Steady state values of yaw angle ψ20 (deg) for η = 0◦

1.7 59.5
1.6 58.0
1.5 56.3
1.4 54.5
1.3 52.4
1.2 43.5 50.2 56.8
1.1 41.7 47.7 53.7
1 39.6 45.0 50.4
0.9 37.2 42.0 46.8
0.8 29.9 34.3 38.7 43.0 47.4
0.7 27.1 31.1 35.0 38.9 42.9
0.6 20.0 23.8 27.4 31.0 34.5 38.2 41.9
0.5 16.6 20.0 23.3 26.6 29.8 33.1 36.5
0.4 9.3 12.6 15.7 18.8 21.8 24.8 27.9 31.0 34.3
0.3 5.0 8.1 11.0 13.9 16.7 19.5 22.4 25.3 28.4
0.2 -2.8 0.2 3.1 5.9 8.6 11.3 14.0 16.7 19.5 22.4 25.4
0.1 -5.1 -2.3 0.5 3.1 5.7 8.3 11.0 13.7 16.5
0 -13.5 -10.7 -7.9 -5.2 -2.6 0.0 2.6 5.2 7.9 10.7 13.5

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Table C.6
Steady state values of in-plane tow angle θ10 (deg) for η = 10◦

1.2 64.6
1.1 56.6 63.2 56.6
1 56.0 61.6 56.0
0.9 44.4 55.0 59.6 55.0 44.4
0.8 44.5 53.5 57.2 53.5 44.5
0.7 44.0 51.5 54.5 51.5 44.0
0.6 34.3 42.7 48.9 51.3 48.9 42.7 34.3
0.5 33.7 40.8 46.0 47.8 46.0 40.8 33.7
0.4 25.4 32.5 38.5 42.7 44.1 42.7 38.5 32.5 25.4
0.3 24.7 30.8 35.9 39.4 40.4 39.4 35.9 30.8 24.7
0.2 23.6 29.0 33.4 36.4 37.1 36.4 33.4 29.0 23.6
0.1 16.8 22.4 27.3 31.3 33.8 34.3 33.8 31.3 27.3 22.4 16.8
0 16.1 21.4 26.0 29.7 32.0 32.4 32.0 29.7 26.0 21.4 16.1

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Table C.7
Steady state values of off-plane tow angle ψ10 (deg) for η = 10◦

1.2 49.8
1.1 82.5 47.3 12.1
1 76.5 44.6 12.7
0.9 87.8 70.3 41.6 12.8 -4.7
0.8 80.9 63.9 38.2 12.6 -4.5
0.7 73.7 57.5 34.6 11.7 -4.5
0.6 76.6 66.2 50.9 30.6 10.2 -5.1 -15.5
0.5 68.9 58.6 44.3 26.2 8.1 -6.2 -16.5
0.4 68.4 61.0 51.0 37.7 21.5 5.3 -8.0 -18.0 -25.4
0.3 60.6 53.2 43.5 31.2 16.5 1.8 -10.6 -20.3 -27.6
0.2 52.9 45.6 36.2 24.6 11.1 -2.3 -14.0 -23.3 -30.6
0.1 51.3 45.6 38.3 29.3 18.2 5.6 -7.0 -18.0 -27.1 -34.3 -40.1
0 44.6 38.8 31.6 22.7 12.1 0.0 -12.1 -22.7 -31.6 -38.8 -44.6

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Table C.8
Steady state values of roll angle ϕ20 (deg) for η = 10◦

1.2 0.0
1.1 -15.2 0.0 15.2
1 -13.6 0.0 13.6
0.9 -24.7 -12.2 0.0 12.2 24.7
0.8 -22.2 -11.0 0.0 11.0 22.2
0.7 -19.9 -9.9 0.0 9.9 19.9
0.6 -27.4 -18.1 -9.0 0.0 9.0 18.1 27.4
0.5 -25.0 -16.5 -8.2 0.0 8.2 16.5 25.0
0.4 -31.1 -23.0 -15.2 -7.6 0.0 7.6 15.2 23.0 31.1
0.3 -29.1 -21.6 -14.3 -7.1 0.0 7.1 14.3 21.6 29.1
0.2 -27.7 -20.6 -13.7 -6.8 0.0 6.8 13.7 20.6 27.7
0.1 -34.2 -27.0 -20.1 -13.3 -6.7 0.0 6.7 13.3 20.1 27.0 34.2
0 -34.0 -26.9 -20.0 -13.3 -6.6 0.0 6.6 13.3 20.0 26.9 34.0

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Table C.9
Steady state values of pitch angle θ20 (deg) for η = 10◦

1.2 17.1
1.1 17.4 17.7 17.4
1 18.2 18.3 18.2
0.9 18.0 19.0 19.0 19.0 18.0
0.8 19.2 19.9 19.9 19.9 19.2
0.7 20.4 20.9 20.8 20.9 20.4
0.6 20.8 21.6 21.9 21.8 21.9 21.6 20.8
0.5 22.3 22.9 23.1 22.9 23.1 22.9 22.3
0.4 22.8 23.7 24.2 24.4 24.2 24.4 24.2 23.7 22.8
0.3 24.4 25.2 25.6 25.6 25.4 25.6 25.6 25.2 24.4
0.2 25.9 26.6 26.9 26.9 26.7 26.9 26.9 26.6 25.9
0.1 26.4 27.3 27.9 28.2 28.2 28.0 28.2 28.2 27.9 27.3 26.4
0 27.5 28.5 29.0 29.3 29.4 29.2 29.4 29.3 29.0 28.5 27.5

vw

vs
⇑

δa ⇒
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Table C.10
Steady state values of yaw angle ψ20 (deg) for η = 10◦

1.2 49.8
1.1 41.7 47.3 52.9
1.0 39.5 44.6 49.6
0.9 32.4 37.0 41.6 46.1 50.7
0.8 30.0 34.2 38.2 42.3 46.5
0.7 27.1 30.9 34.6 38.3 42.0
0.6 20.3 23.8 27.2 30.6 33.9 37.4 40.9
0.5 16.8 20.0 23.2 26.2 29.3 32.4 35.7
0.4 9.6 12.7 15.7 18.7 21.5 24.3 27.3 30.3 33.4
0.3 5.2 8.2 11.0 13.8 16.5 19.1 21.9 24.8 27.7
0.2 0.3 3.2 5.9 8.6 11.1 13.7 16.4 19.1 21.9
0.1 -7.8 -5.0 -2.2 0.5 3.1 5.6 8.2 10.8 13.5 16.2 19.1
0.0 -13.5 -10.7 -7.9 -5.2 -2.6 0.0 2.6 5.2 7.9 10.7 13.5
vw

vs
⇑

δa ⇒
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Table C.11
Steady state values of in-plane tow angle θ10 (deg) for η = 30◦

0.8 76.4
0.7 65.7 72.6 65.7
0.6 52.2 62.7 68.0 62.7 52.2
0.5 50.2 58.6 62.4 58.6 50.2
0.4 38.7 46.9 53.5 56.1 53.5 46.9 38.7
0.3 28.7 36.1 42.7 47.7 49.5 47.7 42.7 36.1 28.7
0.2 26.6 32.8 38.1 41.9 43.0 41.9 38.1 32.8 26.6
0.1 18.2 24.0 29.3 33.6 36.5 37.1 36.5 33.6 29.3 24.0 18.2
0.0 16.1 21.4 26.0 29.7 32.0 32.4 32.0 29.7 26.0 21.4 16.1

Vw/Vshp
& gamA -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
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Table C.12
Steady state values of off-plane tow angle ψ10 (deg) for η = 30◦

0.8 34.7
0.7 73.7 31.2 -11.2
0.6 52.2 62.3 27.5 -7.4 -24.7
0.5 68.8 51.7 23.4 -4.8 -21.9
0.4 68.0 46.9 42.0 19.1 -3.8 -19.8 -29.8
0.3 64.8 57.8 47.8 33.3 14.6 -4.2 -18.6 -28.7 -35.6
0.2 55.4 48.2 38.4 25.5 9.8 -5.9 -18.8 -28.6 -35.8
0.1 52.3 46.7 39.4 30.1 18.5 4.9 -8.6 -20.2 -29.5 -36.8 -42.4
0.0 44.6 38.8 31.6 22.7 12.1 0.0 -12.1 -22.7 -31.6 -38.8 -44.6
vw

vs
⇑

δa ⇒
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Table C.13
Steady state values of roll angle ϕ20 (deg) for η = 30◦

0.8 0.0
0.7 -9.7 0.0 9.7
0.6 -17.6 -8.8 0.0 8.8 17.6
0.5 -16.1 -8.0 0.0 8.0 16.1
0.4 -22.4 -14.8 -7.4 0.0 7.4 14.8 22.4
0.3 -28.3 -21.0 -13.9 -7.0 0.0 7.0 13.9 21.0 28.3
0.2 -27.1 -20.1 -13.4 -6.7 0.0 6.7 13.4 20.1 27.1
0.1 -33.7 -26.6 -19.8 -13.2 -6.6 0.0 6.6 13.2 19.8 26.6 33.7
0.0 -34.0 -26.9 -20.0 -13.3 -6.6 0.0 6.6 13.3 20.0 26.9 34.0
vw

vs
⇑

δa ⇒
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Table C.14
Steady state values of pitch angle θ20 (deg) for η = 30◦

0.8 6.6
0.7 8.7 8.6 8.7
0.6 10.8 11.0 10.8 11.0 10.8
0.5 13.5 13.6 13.4 13.6 13.5
0.4 16.0 16.4 16.5 16.3 16.5 16.4 16.0
0.3 18.5 19.2 19.5 19.6 19.3 19.6 19.5 19.2 18.5
0.2 21.9 22.5 22.8 22.8 22.6 22.8 22.8 22.5 21.9
0.1 24.4 25.3 25.8 26.1 26.1 25.9 26.1 26.1 25.8 25.3 24.4
0.0 27.5 28.5 29.0 29.3 29.4 29.2 29.4 29.3 29.0 28.5 27.5
vw

vs
⇑

δa ⇒
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
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Table C.15
Steady state values of yaw angle ψ20 (deg) for η = 30◦

0.8 34.7
0.7 27.7 31.2 34.7
0.6 21.1 24.3 27.5 30.6 33.8
0.5 17.6 20.6 23.4 26.3 29.2
0.4 10.9 13.7 16.5 19.1 21.8 24.5 27.3
0.3 -28.3 6.7 9.4 12.0 14.6 17.1 19.7 22.4 25.2
0.2 -0.5 2.2 4.8 7.4 9.8 12.3 14.8 17.4 20.2
0.1 -8.2 -5.4 -2.7 -0.1 2.5 4.9 7.4 10.0 12.6 15.3 18.1
0.0 -13.5 -10.7 -7.9 -5.2 -2.6 0.0 2.6 5.2 7.9 10.7 13.5
vw

vs
⇑

δa ⇒
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
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