
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2006

Reducing main memory access latency through SDRAM address Reducing main memory access latency through SDRAM address

mapping techniques and access reordering mechanisms mapping techniques and access reordering mechanisms

Jun Shao
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

Copyright 2006 Jun Shao

Recommended Citation Recommended Citation
Shao, Jun, "Reducing main memory access latency through SDRAM address mapping techniques and
access reordering mechanisms", Dissertation, Michigan Technological University, 2006.
https://digitalcommons.mtu.edu/etds/72

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages

Reducing Main Memory Access Latency through

SDRAM Address Mapping Techniques

and Access Reordering Mechanisms

by

JUN SHAO

A DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

(Electrical Engineering)

MICHIGAN TECHNOLOGICAL UNIVERSITY

2006

Copyright c© Jun Shao 2006

All rights reserved

This dissertation, “Reducing Main Memory Access Latency through SDRAM Address

Mapping Techniques and Access Reordering Mechanisms”, is hereby approved in partial

fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the field

of Electrical Engineering.

DEPARTMENT or PROGRAM: Electrical and Computer Engineering

Dissertation Advisor
Dr. Brian T. Davis

Committee
Dr. Jindong Tan

Dr. Chunxiao Chigan

Dr. Soner Önder

Department Chair
Dr. Timothy J. Schulz

Date

To my parents and friends

Acknowledgments

First and foremost, I wish to express my gratitude to my advisor Dr. Brian T. Davis

for his constant support, guidance and encouragement throughout the Ph.D. program. I

was deeply impressed by his passion for teaching and his inspiring way to guide me to a

deeper understanding of knowledge. He showed me the way to approach research objectives

and encouraged me to be an independent researcher. His advice and comments in this

dissertation are highly appreciated.

I would also like to thank the advisory committee: Dr. Jindong Tan, Dr. Chunxiao

Chigan and Dr. Soner Önder. I am extremely grateful to their helpful advice and insightful

comments to my thesis work. Thanks also go to my colleagues and friends, who gave me

help and had fun with me. I really enjoy the life with them in the beautiful Keweenaw

Peninsula.

Last but not least, a special thanks to my parents. Their continued support and encour-

agement in my life has truly given me strength through difficult situations and the desire

to do my best at everything I do.

Support for this research was provided by National Science Foundation CAREER Award

CCR 0133777 at Michigan Technological University.

Abstract

As the performance gap between microprocessors and memory continues to increase,

main memory accesses result in long latencies which become a factor limiting system per-

formance. Previous studies show that main memory access streams contain significant

localities and SDRAM devices provide parallelism through multiple banks and channels.

These locality and parallelism have not been exploited thoroughly by conventional mem-

ory controllers. In this thesis, SDRAM address mapping techniques and memory access

reordering mechanisms are studied and applied to memory controller design with the goal

of reducing observed main memory access latency.

The proposed bit-reversal address mapping attempts to distribute main memory accesses

evenly in the SDRAM address space to enable bank parallelism. As memory accesses to

unique banks are interleaved, the access latencies are partially hidden and therefore reduced.

With the consideration of cache conflict misses, bit-reversal address mapping is able to direct

potential row conflicts to different banks, further improving the performance.

The proposed burst scheduling is a novel access reordering mechanism, which creates

bursts by clustering accesses directed to the same rows of the same banks. Subjected to a

threshold, reads are allowed to preempt writes and qualified writes are piggybacked at the

end of the bursts. A sophisticated access scheduler selects accesses based on priorities and

interleaves accesses to maximize the SDRAM data bus utilization. Consequentially burst

scheduling reduces row conflict rate, increasing and exploiting the available row locality.

Using a revised SimpleScalar and M5 simulator, both techniques are evaluated and com-

pared with existing academic and industrial solutions. With SPEC CPU2000 benchmarks,

bit-reversal reduces the execution time by 14% on average over traditional page interleaving

address mapping. Burst scheduling also achieves a 15% reduction in execution time over

conventional bank in order scheduling. Working constructively together, bit-reversal and

burst scheduling successfully achieve a 19% speedup across simulated benchmarks.

Contents

Contents VII

List of Tables XI

List of Figures XIII

1 Introduction 1

1.1 Memory Lags Microprocessor . 2

1.2 Hitting the Memory Wall . 4

1.3 Goal of This Thesis . 5

1.4 Contributions . 6

1.5 Terminology and Assumptions . 7

1.6 Organization . 7

2 Background and Related Work 9

2.1 Modern SDRAM Device . 9

2.1.1 SDRAM Device Structure . 10

2.1.2 Access SDRAM Device . 12

2.1.3 SDRAM Access Latency . 14

2.2 Locality and Parallelism . 16

2.3 SDRAM Controller and Controller Policy 17

2.4 Main Memory Hierarchy . 19

2.5 Address Bits Representation . 20

2.6 SDRAM Address Mapping . 22

2.6.1 Existing Address Mapping Techniques 23

2.6.2 Dual Channel Configurations . 27

2.7 Access Reordering Mechanism . 28

VII

2.7.1 Memory Access Scheduling . 28
2.7.2 Design Issues . 29
2.7.3 Existing Access Reordering Mechanisms 30

2.8 Other SDRAM Optimization Techniques . 37
2.8.1 The Impulse Memory System . 37
2.8.2 SDRAM Controller Policy Predicator 38
2.8.3 Adaptive Data Placement . 39

3 Methodology 41

3.1 Methodologies Used in the Thesis . 41
3.2 SimpleScalar Simulation Environment . 42

3.2.1 SDRAM Simulation Module v1.0 . 42
3.2.2 Revised SimpleScalar Baseline Machine Configuration 47

3.3 M5 Simulation Environment . 48
3.3.1 Switching from SimpleScalar to M5 Simulator 48
3.3.2 SDRAM Simulation Module v2.0 . 50
3.3.3 Revised M5 Baseline Machine Configuration 54

3.4 Benchmarks . 55
3.4.1 Number of Instructions to Simulate 56
3.4.2 Main Memory Access Behaviors of Simulated Benchmarks 58

3.5 Validation . 60
3.5.1 Validating the Implementations . 60
3.5.2 Verifying the Simulation Results . 61

4 SDRAM Address Mapping 63

4.1 Localities in Main Memory Access Stream 63
4.1.1 Temporal Locality in Main Memory Access Stream 64
4.1.2 Spatial Locality in Main Memory Access Stream 65
4.1.3 Exploiting Localities with SDRAM Device 67

4.2 Bit-reversal Address Mapping . 68
4.2.1 Philosophy of Bit-reversal Address Mapping 69
4.2.2 Hardware Implementation . 69

4.3 Performance Evaluation . 70
4.3.1 The Depth of Reversal . 70
4.3.2 Remapped Physical Address Bits Change Pattern 74
4.3.3 Access Distribution in SDRAM Space 76

VIII

4.3.4 Row Hit and Row Conflict . 78
4.3.5 Access Latency and Bus Utilization 80
4.3.6 Execution Time . 82

4.4 Address Mapping Working under Other Techniques 84
4.4.1 Address Mapping with Controller Policy 84
4.4.2 Address Mapping with Virtual Paging 86

5 Access Reordering Mechanisms 89

5.1 Philosophy of Burst Scheduling . 89
5.2 Evolution of Burst Scheduling . 92

5.2.1 Preliminary Study . 92
5.2.2 Burst Scheduling: A Two-level Scheduler 93
5.2.3 Optimizations to Burst Scheduling 94

5.3 Details of Burst Scheduling . 95
5.3.1 Hardware Structure . 96
5.3.2 Scheduling Algorithm . 97
5.3.3 Program Correctness . 102

5.4 Performance Evaluation . 103
5.4.1 Simulated Access Reordering Mechanisms 103
5.4.2 Row Hit Rate and Row Conflict Rate 104
5.4.3 Access Latency . 105
5.4.4 SDRAM Bus Utilization . 108
5.4.5 Execution Time . 109
5.4.6 Threshold of Read Preemption and Write Piggybacking 110

5.5 Adaptive Threshold Burst Scheduling . 115
5.5.1 Performance Improvement Space of Adaptive Threshold 116
5.5.2 History-based Adaptive Threshold 117

5.6 Access Reordering Combines with Address Mapping 121
5.6.1 Performance Variation of SDRAM Address Mapping 122
5.6.2 Combined Performance . 124

6 Conclusions and Future Work 127

6.1 Main Memory Issue and Research Goal . 127
6.1.1 Characteristics of Modern SDRAM Devices 128
6.1.2 Main Memory Access Stream Properties 129
6.1.3 Techniques to Reduce Main Memory Access Latency 129

IX

6.2 Conclusions of Bit-reversal SDRAM Address Mapping 130
6.2.1 Depth of Reversal . 130
6.2.2 Performance of Bit-reversal Address Mapping 131
6.2.3 Bit-reversal under Controller Policies and Virtual Paging 131

6.3 Conclusions of Burst Scheduling Access Reordering 132
6.3.1 Key Features of Burst Scheduling . 132
6.3.2 Improvements to Burst Scheduling 134
6.3.3 Performance of Burst Scheduling . 134

6.4 Future Work . 135
6.4.1 Future Study of Access Reordering Mechanisms 135
6.4.2 Dynamic SDRAM Controller Policy 136
6.4.3 Intelligent Data Placement through Software 137

6.5 Afterward . 137

A Dual SDRAM Channels 139

A.1 Asymmetric and Symmetric Dual Channel 139
A.2 Performance of Dual Channel . 140

B SDRAM Power Consumption 143

B.1 SDRAM Power Components . 143
B.1.1 Background Power . 144
B.1.2 Active Power . 145
B.1.3 Read/Write Power . 146
B.1.4 I/O and Termination Power . 146
B.1.5 Refresh Power . 147

B.2 Total SDRAM Power . 148
B.3 Power Consumption vs. Energy Consumption 150

Bibliography 153

X

List of Tables

1.1 Typical performances of CPU and main memory 3

2.1 Some of the DDR/DDR2 SDRAM timing constraints 13
2.2 Possible SDRAM access latencies . 14
2.3 Possible SDRAM access latencies with various controller policy 19
2.4 PC-2100 DDR SDRAM vs. PC2-6400 DDR2 SDRAM 30

3.1 Revised SimpleScalar baseline machine configuration 48
3.2 Revised M5 baseline machine configuration 55
3.3 SPEC CPU2000 benchmark suites and command line parameters 57

4.1 Simulated SDRAM address mapping techniques 70
4.2 The depth having the shortest execution time under various cache sizes . . 72

5.1 Possible reordering policies and bank arbiter policies 93
5.2 SDRAM transactions priority table (1: the highest, 8: the lowest) 101
5.3 Simulated access reordering mechanisms . 103
5.4 Top five combinations of address mapping and access reordering 124

A.1 Configuration of single channel and two modes of dual channels 141

B.1 SDRAM background powers . 144
B.2 Typical I/O and Termination Power Consumption 147

XI

XII

List of Figures

1.1 Performance improvement of microprocessors and SDRAM devices 3

2.1 A single-transistor memory cell with a sense amplifier 11

2.2 Modern SDRAM device structure . 11

2.3 A typical DDR SDRAM read . 12

2.4 Examples of row hit, row empty and row conflict 15

2.5 SDRAM row locality (DDR with 2-2-2 timing shown) 16

2.6 SDRAM bank parallelism (DDR with 2-2-2 timing shown) 17

2.7 Address bit representations at different memory hierarchies 21

2.8 Flat SDRAM address mapping . 22

2.9 Page interleaving address mapping . 23

2.10 Rank interleaving address mapping . 24

2.11 Direct Rambus DRAM address mapping . 25

2.12 Permutation-based page interleaving address mapping 25

2.13 Intel 925X chipset address mapping . 26

2.14 VIA KT880 north bridge address mapping 27

2.15 Memory access scheduling . 29

2.16 Bank in order memory scheduling . 31

2.17 The row hit access reordering . 32

2.18 Adaptive history-based memory scheduler 33

2.19 Fine-grain priority scheduling . 35

2.20 Intel’s out of order memory access scheduling 36

2.21 The Impulse Memory System . 38

3.1 SDRAM Module v1.0 for SimpleScalar . 43

3.2 Bank state transition diagram . 44

XIII

3.3 SDRAM Module v2.0 for M5 Simulator . 50
3.4 Memory access queue for the row hit access reordering 52
3.5 SDRAM bus scheduler . 53
3.6 Total number of main memory accesses of SPEC CPU2000 benchmarks . . 59
3.7 Main memory accesses read write ratio of SPEC CPU2000 benchmarks . . 59
3.8 Example of SDRAM bus transaction trace file 61

4.1 Memory block reuse distance . 65
4.2 Address bits change probability between adjacent main memory accesses . . 66
4.3 Bit-reversal SDRAM address mapping . 68
4.4 The depth of reversal with various L2 cache sizes 71
4.5 Relationship between depth of reversal and cache tag width 73
4.6 Remapped physical address bits change probability between adjacent main

memory accesses . 75
4.7 Address distribution across all banks . 77
4.8 Hard row conflict and soft row conflict . 78
4.9 Row hit and hard row conflict rate . 80
4.10 Average main memory access latency in CPU cycles 81
4.11 Average SDRAM address and data bus utilization 81
4.12 Normalized execution time of various address mapping 82
4.13 Address mapping techniques under controller policies 85
4.14 Address mapping techniques under virtual paging systems 87

5.1 Creating bursts from row hits . 90
5.2 Interleaving bursts from different banks . 91
5.3 Structure of burst scheduling . 96
5.4 Access enter queue subroutine . 98
5.5 Bank arbiter subroutine . 99
5.6 SDRAM bus transaction scheduler subroutine 102
5.7 Average row hit, row conflict and row empty rate 105
5.8 Access latency in SDRAM clock cycles . 106
5.9 Cumulative distribution of access latency and distribution of outstanding

accesses for the swim benchmark . 107
5.10 SDRAM bus utilization . 108
5.11 Execution time of access reordering mechanisms 109
5.12 Access latency of burst scheduling with various thresholds 111

XIV

5.13 Execution time of burst scheduling with various thresholds 111
5.14 Cumulative distribution of access latency and distribution of outstanding

accesses for the swim benchmark with various thresholds 112
5.15 Cumulative distribution of access latency and distribution of outstanding

accesses for the parser benchmark with various thresholds (Read preemption
contributes most) . 113

5.16 Cumulative distribution of access latency and distribution of outstanding ac-
cesses for the lucas benchmark with various thresholds (Write piggybacking
contributes most) . 114

5.17 Burst scheduling with various static thresholds on selected benchmarks . . . 116
5.18 A history-based adaptive threshold algorithm 118
5.19 Burst scheduling with static and adaptive threshold on selected benchmarks 119
5.20 Adaptive threshold distribution on selected benchmarks 120
5.21 Access reordering working in conjunction with address mapping 122
5.22 Access distribution in a dual channel system 123

A.1 Execution time of asymmetric dual channel and symmetric dual channel (nor-
malized to single channel) . 141

B.1 Main memory power consumption . 149
B.2 Power consumption of various SDRAM channel configurations 151
B.3 Energy consumption of various SDRAM channel configurations 151

XV

XVI

Chapter 1

Introduction

Since its introduction in the late 1960s [20], Dynamic Random Access Memory (DRAM)

technology has progressed at a rapid pace, quadrupling chip density every three years [38].

As optimized for low cost and high yield, DRAM is commonly used as the main memory

for modern PCs as well as many embedded systems. International Technology Roadmap

for Semiconductors (ITRS) forecasts that commodity DRAM will continue to double in

capacity every three years [29].

DRAM performance can be measured in two ways: by bandwidth, which measures the

amount of data it can transfer each second, and by latency, which measures the length of

time between the time data is requested and the time it is returned. DRAM latency does not

improve as quickly as that bandwidth. DRAM bandwidth increases by 25% each year [29],

and DRAM latency improves by only 5% per year [51]. The research work presented in this

thesis is to propose and improve memory optimization techniques to reduce access latency

to DRAM. The techniques being studied include SDRAM address mapping and memory

access reordering mechanisms.

1

2 Chapter 1 Introduction

1.1 Memory Lags Microprocessor

In 1965, Gordon Moore noted that the number of transistors that could be economically

fabricated on a single processor die was doubling every year [45]. Moore projected that

such an increase was likely to continue in the future, which was referred as “Moore’s Law”1.

Today, approximately 50% more components can be placed on a single die each year [51].

This rate of growth is expected to continue for at least the next decade.

As the number of transistors on integrated circuits increases, the size of each transistor

is also decreased. Because of their smaller size, these transistors can operate faster. His-

torically, transistor speeds have increased by 15% per year [18]. Together, the increase in

transistor count and clock speed combine to increase the computing power of microproces-

sors by 71% per year [51].

Because the DRAM technology has been driven by cost, while the logic technology

has been driven by speed, DRAM performance does not increase as quickly as that of

microprocessors, leading to a wide gap between slower memory and faster microprocessors.

Figure 1.1 illustrates the trend of performance improvements made to microprocessors and

DRAM. As performance gap between microprocessors and DRAM continues to increase,

main memory becomes a bottleneck of system performance [73, 15].

Improvements of DRAM latency lag behind improvements in DRAM bandwidth [50].

This is mainly because that bandwidth is an issue that can be largely solved by increasing

resources, i.e. increasing data bus width or bus clock frequency. However, mechanisms to

reduce latency require a reduction in density. Table 1.1 lists typical performances of CPU

and memory from a few years back to the near future. CAS latency is a commonly used

metric to evaluate DRAM latency and will be discussed in Section 2.1.2. While the band-

width of DRAM improves significantly by 200% from 2.13GB/s to 6.4GB/s, the absolute

1Although Moore’s Law is commonly referred to the rapidly continuing advance in computing power per
unit cost, Moore’s actual prediction referred only to the number of devices that could fit on a single die.

1.1 Memory Lags Microprocessor 3

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1981 1985 1989 1993 1997 2001 2005

Year

Pe
rf

or
m

an
ce

 I
m

pr
ov

m
en

ts Microprocessor
71% per year

DRAM latency
5% per year

DRAM bandwidth
25% per year

DRAM capacity
59% per year

Figure 1.1: Performance improvement of microprocessors and SDRAM devices

DRAM latency only reduces by 17% from 15ns to 12.5ns. More importantly, as CPU im-

proves faster than memory, the memory latency in terms of CPU cycles actually increases

from 30 cycles to 50 cycles. Therefore main memory access latency will continue to be a

factor limiting system performance.

Table 1.1: Typical performances of CPU and main memory

A few years back Today Near future
CPU Frequency 2GHz 3GHz 4GHz

Memory

Device DDR PC-2100 DDR PC-3200 DDR2 PC2-6400
Frequency 133MHz 200MHz 400MHz
Bandwidth 2.13GB/s 3.2GB/s 6.4GB/s

Timing 2-2-2 3-3-3 5-5-5

CAS latency
ns 15ns 15ns 12.5ns

MEM cycle 2 cycles 3 cycles 5 cycles
CPU cycle 30 cycles 45 cycles 50 cycles

4 Chapter 1 Introduction

1.2 Hitting the Memory Wall

Systems have been designed to tolerate the long main memory access time through var-

ious techniques, including caches and out-of-order execution. Caches comprised of Static

Random Access Memory (SRAM), which is expensive (thus smaller) but much faster than

DRAM, can store frequently accessed data for rapid access, therefore reducing the average

memory access time. An out-of-order execution processor can continue to execute sub-

sequent instructions when a memory access is outstanding to hide long memory access

latency.

Average memory access time is given by Equation 1.1, where pcache hit is the overall

cache hit rate, t cache is the cache access time, and tmain mem is the main memory access

time.

tave mem = pcache hit × tcache + (1− pcache hit)× tmain mem (1.1)

Pessimistically assume an out-of-order execution superscalar CPU can achieve an In-

structions Per Cycle (IPC) of 1. And 20% of executed instructions are memory instruc-

tions. Also assume the cache has 1 cycle access time and has a 95% of overall hit rate.

Main memory has 100 cycles access time. Using Equation 1.1, the average memory access

time is 5.95 cycles, as given by Equation 1.2.

tave mem = 0.95× 1 + (1− 0.95)× 100 = 5.95 (cycles) (1.2)

Although the CPU in this example can continue to execute subsequent non-memory

instructions when a memory instruction is pending, it has to idle for 5.95 − 1/0.2 = 0.95

cycle on average for every memory instruction. In this example, main memory is the

bottleneck. Improving the IPC on non-memory instructions will not make the system run

faster. The system performance is eventually determined by the memory speed, which is

known as “hitting the memory wall” [73].

1.3 Goal of This Thesis 5

1.3 Goal of This Thesis

Synchronous DRAM (SDRAM) devices have a nonuniform access time due to the multi-

dimensional structure [16, 19, 56]. The memory access latency largely depends upon the

location of requested data and the state of the SDRAM device. For example, two temporally

adjacent memory accesses directed to the same row of the same bank can complete faster

than two accesses directed to different rows of the same bank. This is because an accessed

row can be cached at the sense amplifiers allowing faster access for subsequent accesses

to that row. In addition, two accesses directed to two unique banks may have shorter

latency than two accesses directed to the same bank because accesses to unique banks can

be pipelined.

These and other characteristics of SDRAM create a design space where locality and

parallelism can be exploited to reduce memory access latency. Previously these locality

and parallelism have not been fully exploited by conventional SDRAM controllers. The

goal of this thesis is to reduce the observed main memory access latency through memory

optimization techniques which do not require any modifications to memory devices, mi-

croprocessors, the operating systems or applications. Only the memory controller requires

change. The techniques being studied herein are SDRAM address mapping and access

reordering mechanisms.

SDRAM address mapping is a protocol in which a physical address is translated into

an SDRAM address in order to locate the requested memory block in the SDRAM space.

The major objective of SDRAM address mapping is to evenly distribute memory accesses

in the entire SDRAM space to enable the parallelism available between SDRAM banks.

With an out-of-order execution processor and non-blocking caches, it is common that

multiple memory requests are issued to main memory in the same time. The order in which

these pending memory requests are served has impacts on system performance, because

the actual memory access time is largely dependent upon the current access and the previ-

6 Chapter 1 Introduction

ous access to the same bank. Access reordering mechanisms execute outstanding memory

accesses in a sequence that attempts to yield the shortest overall execution time.

SDRAM address mapping techniques and access reordering mechanisms can effectively

reduce main memory access latency by exploiting both parallelism and locality. The tech-

niques being proposed do not necessitate a large amount of chip area as required by other

techniques such as caches, and only require modifications to the SDRAM controller.

1.4 Contributions

This thesis makes the following contributions:

• Makes modifications and improvements to existing computer architecture simulators

which enable comprehensive studies of SDRAM optimization techniques.

• Predicts the upper bound improvement of a dynamic SDRAM controller policy over

static controller policies.

• Studies and evaluates performance impacts contributed by SDRAM address mapping

techniques and access reordering mechanisms.

• Proposes bit-reversal address mapping and describes the depth of reversal parameter.

Compares bit-reversal with existing address mapping techniques including published

and commercial solutions.

• Performs a study of the SDRAM address mapping in the presence of virtual paging.

• Proposes burst scheduling which creates bursts by clustering accesses directed to the

same rows of the same banks to achieve a high SDRAM data bus utilization. Makes

optimizations to burst scheduling by allowing reads to preempt writes and piggyback-

ing writes at the end of bursts.

1.5 Terminology and Assumptions 7

• Evaluates the performance of burst scheduling. Compares with conventional in order

scheduling, published academic and industrial out of order scheduling.

• Explores the design space of burst scheduling by using a static threshold to control

read preemption and write piggybacking. Determines the threshold that yields the

shortest execution time by experiments and proposes a dynamic threshold algorithm.

• Combines bit-reversal address mapping and burst scheduling to achieve a maximal

performance improvement.

1.5 Terminology and Assumptions

Throughout the rest of this thesis, the term main memory access, or access, denotes a

memory request issued by the processor, such as a read or write to a memory location.

Due to the existence of cache(s), a main memory access is actually a cache miss from the

lowest level cache. In this thesis main memory accesses from other devices such as DMA

controllers are not considered, although they can be treated in the exactly same way as

accesses from the processor.

The term SDRAM bus transaction, or transaction, denotes a command or data transfer,

such as a bank precharge, a row activate or a column access, appearing on the SDRAM

address and/or data bus. A single main memory access may require one or more SDRAM

bus transactions depending on the address of requested memory block and the current

state of SDRAM device. It is the SDRAM controller that generates associated SDRAM

bus transactions for each main memory access and sent them to the SDRAM device.

1.6 Organization

The rest of this thesis is organized as follows. Chapter 2 reviews the characteristics of mod-

ern SDRAM devices and related memory optimization techniques. Chapter 3 presents the

8 Chapter 1 Introduction

experimental environments and the SDRAM simulation modules added into the simulators.

Chapter 4 introduces and studies the bit-reversal SDRAM address mapping, then compares

it with existing address mapping techniques. Chapter 5 introduces the burst scheduling ac-

cess reordering mechanism and evaluates the performance of burst scheduling by comparing

it with existing access reordering mechanisms. Finally Chapter 6 draws conclusions based

on simulation results and briefly discusses future work.

Chapter 2

Background and Related Work

This chapter reviews the characteristics of modern SDRAM devices, introduces main mem-

ory hierarchy, SDRAM controller policy and address bit representations. Two SDRAM

optimization techniques, SDRAM address mapping techniques and access reordering mech-

anisms, are briefly discussed. Other related SDRAM access management and optimization

techniques are also introduced.

2.1 Modern SDRAM Device

Many types of memory devices are used in computer systems. Static Random Access

Memory (SRAM) and Dynamic Random Access Memory (DRAM) are two of the most

important memory devices. SRAM retains its contents as long as the power is applied

to the device. DRAM, however, needs to be periodically refreshed to retain the stored

data. SRAM devices offer fast access times but are more expensive to produce than DRAM

devices on a per bit basis. DRAM devices, on the other hand, provide large capacity but

have relatively slow access times. Therefore SRAM devices are mainly used in caches where

access speed is the major concern, while DRAM devices are commonly used as main memory

where large address spaces are required.

9

10 Chapter 2 Background and Related Work

Early DRAM devices were asynchronous and could not be pipeline, such as Fast Page

Mode (FPM) and Extended Data Out (EDO) DRAM [17]. Modern DRAM devices are

Synchronous DRAM (SDRAM), which uses a clock to synchronize its data input and output.

Because of the synchronize interface, commands to the SDRAM are latched inside the

device, which allows SDRAM accesses to be pipelined. SDRAM devices thus can run at

faster clock speeds and deliver higher bandwidths than earlier asynchronous DRAM devices.

SDRAM dominated the DRAM market throughout the late 1990s and though 2001,

then gave way to Double Data Rate SDRAM (DDR SDRAM) as well as Rambus DRAM

(RDRAM) [53]. DDR SDRAM and RDRAM improve the memory bandwidth by trans-

ferring data on both the rising and falling edges of the clock signal. For example, with

a 200MHz clock frequency and a 64-bit memory bus, DDR 400 (PC-3200) offers 3.2GB/s

bandwidth.

DDR2 SDRAM, an successor of DDR SDRAM, offers higher clock frequency and reduced

power consumption, i.e. a DDR2 800 (PC2-6400) running at 400MHz provides 6.4GB/s

bandwidth. Today, as defined by Joint Electronic Device Engineering Council (JEDEC) [31],

DDR and DDR2 SDRAM are most widely used as the computer main memory. This thesis

focuses on memory optimization techniques which are applicable to JEDEC DDR and DDR2

SDRAM.

2.1.1 SDRAM Device Structure

SDRAM devices use memory cells to store data. Memory cells are built from storage

capacitors and select transistors. Figure 2.1 shows a memory cell with a sense amplifier [67].

The sense amplifier is used to retrieve the data stored in the memory cell and shared across

entire bit line. To read the data stored in a cell, first the bit line is charged to a middle

value of VDD, then the cell is activated by selecting the corresponding word line, which turns

on the transistor and connects the capacitor to the bit line. As the capacitor is sharing

2.1 Modern SDRAM Device 11

word line

bi
t l

in
e

sense
amplifier

Figure 2.1: A single-transistor memory cell with a sense amplifier

the charge with the bit line, the sense amplifier detects voltage change of the bit line and

distinguishes signals that represent a stored 0 or 1. Once the data is output through I/O

logic, the sense amplifier restores the data to the cell as the capacitor was depleted [53].

I/O Gate Logic

Column Decoder

R
ow

 D
ecoder

Row
index

Bank
index

Column
index

DQ

B
ank

Logic

Sense Amplifiers

Memory Array
(Bank 0)

Figure 2.2: Modern SDRAM device structure

Memory cells are arranged in two-dimensional arrays, which are called banks. A typical

JEDEC SDRAM device has 4 or 8 internal banks, as shown in Figure 2.2. Therefore, bank

index, row index and column index are necessitated to locate a memory block in an SDRAM

device. SDRAM devices usually have 4, 8 or 16 bits of data I/O, denoted as ×4, ×8 or ×16.

12 Chapter 2 Background and Related Work

For example, a 512Mb×8×4banks SDRAM device contains 4 banks, each of which is 8192

rows by 2048 columns. With 8-bit data I/O this device has a total capacity of 512Mbit.

Memory cells need to be periodically refreshed in order to keep the data due to the

leakage currency of the capacity. This is known as refreshing, which can be simply done by

a dummy read without output. According to the JEDEC standard, every bit of an SDRAM

device has to be refreshed every 64ms or less to prevent data loss [42]. A refreshing logic is

commonly used to refresh the DRAM device periodically. SDRAM rows can be refreshed

all together every 64ms, or be refreshed row by row with a specified refresh rate.

2.1.2 Access SDRAM Device

Accessing an SDRAM device may require three SDRAM bus transactions besides the actual

data transfer: bank precharge, row activate and column access [43]. A bank precharge

prepares the selected bank by charging the bit lines. A row activate activates the word

line selected by row index and copies the entire row of data from the array to the sense

amplifiers, which function like a row cache. Then one or more column accesses can select

the specified column data using column index and output it through I/O gate logic. To

access a different row of the same bank, the bank needs to be precharged again, followed by

the new row activate and column access. Figure 2.3 is a typical timing diagram of a DDR

SDRAM device read [42].

CK

Command

Address

DQ DO
0

DO
1

DO
2

DO
3

DO
4

DO
5

DO
6

DO
7

Bank a

CK#

tCL

Row
activate

Bank a
Row x

Column
access

Bank a
Col n

tRP tRCD

Bank
precharge

Access latency Burst length

Figure 2.3: A typical DDR SDRAM read

2.1 Modern SDRAM Device 13

Table 2.1: Some of the DDR/DDR2 SDRAM timing constraints

tCL Read column access to first data delay
tRCD Row activate to column access delay
tRP Bank precharge to row activate delay
tRAS Row activate to the next bank precharge delay
tRC Interval between successive row activates to the same bank (= tRAS + tRP)
tDQSS Write column access to first data delay
tWTR Internal write to read delay
tWR Write recovery time
tRRD Interval between successive row activates to different banks
tFAW No more than 4 banks may be activated in a rolling four activate window
tRRT Rank to rank turnaround cycle

SDRAM devices have a set of timing constraints that must be met for all transactions.

As shown in Figure 2.3, after a bank precharge, no transaction can be performed on this bank

until tRP has lapsed. Similarly, tRCD is the minimal time interval between a row activate

and a column access. For a read, the data will appear on the data bus tCL (CAS latency)

cycles after the column access. Some of the DDR/DDR2 SDRAM timing constraints are

listed in Table 2.1 [42].

SDRAM devices support burst mode, which allows multiple sequential data within the

same row to be accessed without additional column access transactions1. The number

sequential data in the burst mode is known as burst length, which can be set to 2, 4 or

8 for DDR; 4 or 8 for DDR2. Figure 2.3 shows a burst length of 8 and it takes 4 cycles

to complete the burst due to the double data rate bus. Because main memory accesses

are cache misses, memory accesses always require entire cache lines. The burst length is

selected such that an entire cache line can be transferred in one burst. For an instance, a

system that has a 64-bit memory bus and 64B L2 cache line size, the burst length should

be 8.

1SDRAM’s burst mode has nothing to do with the burst scheduling which will be introduced in Chapter 5.

14 Chapter 2 Background and Related Work

2.1.3 SDRAM Access Latency

The latency of a memory access is the interval from the time when the access is issued to

the time when the first word of data appears on the data bus. Given the memory bus and

the SDRAM device are both idle, the access shown in Figure 2.3 has a latency of 6 cycles

(tRP + tRCD + tCL), which is often referred as a timing of 2-2-2 (tCL-tRCD-tRP).

One of the most important characteristics of SDRAM devices is nonuniform access

latency. Depending on the state of the SDRAM device, a memory access could be a row

hit, a row empty or a row conflict and experiences different access latencies [57]. A row hit

occurs when an access is directed to the same row as the last access to the same bank, and

the bank has not been precharged since the last access. A row empty occurs when the bank

has been precharged since the last access to this bank. Accessing a different row as the last

access to the same bank results in a row conflict. Figure 2.4 shows examples of row hit, row

empty and row conflict, assuming both the memory bus and the SDRAM device are idle

when the access is issued.

As illustrated by Figure 2.4, a row hit only requires a column access because the row data

accessed by the last access is still in the sense amplifiers (row cache). A row empty requires

a row activate to copy the row data into the sense amplifiers followed by a column access to

access the data. A row conflict, however, necessitates all three transactions. Obviously row

hits have the shortest access latency while row conflicts have the longest latency. Therefore,

SDRAM devices are not truly random access memory and have nonuniform access latencies.

Table 2.2 summarizes the possible SDRAM access latencies given no contentions on the

SDRAM buses.

Table 2.2: Possible SDRAM access latencies

Row hit tCL Same row as the last access to the same bank
Row empty tRCD+tCL The bank has been precharged since the last access
Row conflict tRP +tRCD+tCL Different row as the last access to the same bank

2.1 Modern SDRAM Device 15

CK

Command

Address

DQ DO
0

DO
1

DO
2

DO
3

DO
4

DO
5

DO
6

DO
7

CK#

tCL

Column
access

Bank a
Col n

CK

Command

Address

DQ DO
0

DO
1

DO
2

DO
3

DO
4

DO
5

DO
6

DO
7

CK#

tCL

Row
activate

Bank a
Row x

Column
access

Bank a
Col n

tRCD

(a) A row hit

(b) A row empty

CK

Command

Address

DQ DO
0

DO
1

DO
2

DO
3

DO
4

DO
5

DO
6

DO
7

Bank a

CK#

tCL

Row
activate

Bank a
Row x

Column
access

Bank a
Col n

tRP tRCD

Bank
precharge

(c) A row conflict

Figure 2.4: Examples of row hit, row empty and row conflict

There are enhanced DRAM devices, such as CDRAM and EDRAM [9, 48], which have

an SRAM cache on the DRAM chip to reduce access latency, especially row conflict la-

tency. Unlike the sense amplifiers of JEDEC DRAM, whose contents are lost during a

bank precharge, the row data can still be accessed from the SRAM cache when the en-

hanced DRAM device is being precharged [72]. However DRAM caching techniques require

modifications to DRAM devices. Enhanced DRAM devices are beyond the scope of this

thesis.

16 Chapter 2 Background and Related Work

2.2 Locality and Parallelism

As introduced in Section 2.1.3, row hits have the shortest access latency. If temporally suc-

cessive accesses all directed to the same row of the same bank, they will result in successive

row hits. This is referred to SDRAM row locality. An example is shown in Figure 2.5. Three

accesses go to the same row. The first access is a row empty, while the next two accesses

are row hits. The data transactions of all three accesses are transferred back to back on the

data bus, resulting in the maximal data bus utilization.

CK

Command

Address

DQ DO
n0

DO
n1

DO
n2

DO
n3

DO
p0

DO
p1

DO
p2

DO
p3

CK#

Column
access

Bank a
Col n

DO
m0

DO
m1

DO
m2

DO
m3

Row
activate

Bank a
Row x

Column
access

Bank a
Col m

Column
access

Bank a
Col p

Figure 2.5: SDRAM row locality (DDR with 2-2-2 timing shown)

SDRAM row locality is a direct result of both temporal locality and spatial locality of

memory access streams. When the same part of a row is reused (temporal locality), or when

adjacent data of the same row is accesses (spatial locality), the sense amplifiers may be able

to capture these localities as long as the requested row data is still in the sense amplifiers.

Many memory optimization techniques attempt to exploit SDRAM row locality to reduce

access latency and improve bus utilization, including SDRAM address mapping techniques

and access reordering mechanisms which will be studies in this thesis.

SDRAM devices usually have 4 or 8 internal banks. Accesses to unique banks can be

pipelined. This is known as bank parallelism. Figure 2.6 illustrates two row conflicts directed

to different banks. Because of the available bank parallelism, it is not necessary to wait

for the completion of the first access before starting the second one. While bank a is being

precharged, bank b can start the bank precharge too as long as both bank precharges do not

2.3 SDRAM Controller and Controller Policy 17

CK

Command

Address

DQ DO
a0

DO
a1

DO
a2

DO
a3

DO
b0

DO
b1

DO
b2

DO
b3

Bank a

CK#

Row
activate

Bank a
Row x

Column
access

Bank a
Col n

Bank
precharge

Bank b

Row
activate

Bank b
Row x’

Column
access

Bank b
Col n’

Bank
precharge

Figure 2.6: SDRAM bank parallelism (DDR with 2-2-2 timing shown)

conflict on the bus and all timing constrains are met. Similarly other transactions such as

row activate can also be interleaved between banks. Although the absolute access latencies

of both accesses do not reduce by interleaving, the overall execution time certainly reduces

because a large part of the latency of the second row conflict is hidden by the first access.

This ability to interleave accesses between multiple unique banks is supported by many

systems through BIOS [71]. Techniques such as SDRAM address mapping and intelligent

data placement attempt to exploit bank parallelism. Research work presented in this thesis

is to exploit both row locality and bank parallelism with the goal of reducing the observed

access latency and/or overall execution time.

2.3 SDRAM Controller and Controller Policy

Main memory requests issued by the CPU typically contains the address of requested mem-

ory block, the size of the block and type of the request (read or write). SDRAM devices

can not process these memory requests directly. Thus SDRAM controllers, also known as

memory controllers, are used to manage the flow of data going to and from the memory.

Traditionally SDRAM controllers are located on the motherboard’s north bridge, while some

modern microprocessors, such as AMD’s Athlon 64 Processor [5], IBM’s POWER5 [26, 62],

and Sun Microsystems UltraSPARC T1 [44], have the memory controller integrated on the

CPU die to reduce memory access latency.

18 Chapter 2 Background and Related Work

SDRAM controllers contain the logic necessary to read and write SDRAM devices. To

locate a memory block in the SDRAM space, an SDRAM controller translates the address

of requested memory block into the SDRAM address, which is composed of channel, rank,

bank, row and column index [58]. With the considerations of timing constrains and possible

bus contentions, the controller generates transactions to access the SDRAM device. For

reads, the SDRAM controller returns the requested data to the CPU; for writes, it updates

the requested memory block in the SDRAM device with the new data. Also, the SDRAM

controller periodically refreshes the SDRAM devices to prevent data loss due to capacitor

leakage current.

After completing a memory access, the SDRAM controller selects whether to leave

the accessed row open or close the row by performing a bank precharge. One of two

static SDRAM controller policies, Close Page Autoprecharge (CPA) and Open Page (OP),

typically makes this selection [71]2.

When OP policy is used, the accessed row data remains in the sense amplifiers after

completion of a memory access. As discussed in Section 2.1.3, if the next access to this bank

goes to the same row, then a row hit with a latency of tCL occurs. Otherwise, a row conflict

with a latency of tRP + tRCD + tCL occurs. With OP policy, row empties only happen after

SDRAM refreshing, because banks are automatically precharged after each refreshing.

When CPA policy is used, the accessed row is closed immediately by an autoprecharge

after an access completes. The next access to this bank, whether it goes to the same row

or not, results in a row empty which has a fixed latency of tRCD + tCL. Thus all accesses

are row empties with CPA policy. Table 2.3 summarizes the possible access latencies with

OP or CPA policy, assuming there are no contentions on the buses and SDRAM devices

are idle.

Controller policy has impacts on system performance. Obviously OP policy is more

2Historically the term page is referred to SDRAM row.

2.4 Main Memory Hierarchy 19

Table 2.3: Possible SDRAM access latencies with various controller policy

Row hit Row empty Row conflict
Open Page tCL tRCD + tCL tRP + tRCD + tCL

Close Page Autoprecharge N/A tRCD + tCL N/A

useful for applications that have significant locality in main memory access stream, while

CPA policy is more suitable for applications that do not have or have little locality. Please

note, because main memory accesses are filtered by caches, CPA policy is also applicable

to applications which have significant locality but most of which are captured by caches.

It is possible to apply different controller policies for each memory access. However,

making the correct selection of maintaining an open row or precharging the bank requires

knowledge of future access to this bank. Techniques such as SDRAM controller policy

predictors can be used to predicate whether the next memory access would be a row hit

or a row conflict based on history information [74]. Therefore the controller can apply the

appropriate controller policy and reduce the average memory access latency at the cost of

increased complexity.

2.4 Main Memory Hierarchy

SDRAM controllers and SDRAM devices compose main memory. SDRAM devices are

organized to create an SDRAM address space. SDRAM controllers provide a memory

interface through which the CPU or other devices (i.e. DMA controllers) can issue memory

requests and receive responses.

SDRAM devices usually have 4, 8 or 16 I/O pins, while the system memory bus width

is 64-bit for most PCs. A set of identical SDRAM devices are concatenated to create an

SDRAM rank to fill the memory data bus. For example, eight 512Mbx8 SDRAM devices

compose a rank that has a 64-bit data bus and a total of 512MB capacity. Used as main

memory, commodity SDRAM devices are commonly packaged and sold in Dual In-line

20 Chapter 2 Background and Related Work

Memory Module (DIMM). A DIMM has the same data bus width as the system memory

bus. Depending on configurations, a single DIMM may comprise up to 4 ranks. Multiple

ranks (either intra a DIMM or across differ DIMMs) share the same address bus as well as

data bus, and are selected by chip select (CS) signals.

To meet the increasing memory demands, modern chipsets or microprocessors support

multiple SDRAM channels, such as NVIDIA’s nForce4 SLI (Intel Edition) [49], Intel’s 965

Express Chipset [28], AMD’s Athlon 64 Processor (939-pin package) [5]. An SDRAM chan-

nel is composed of one or more ranks. Different channels have unique address and data bus,

therefore accesses to different channels can be performed simultaneously. SDRAM devices

also allow multiple accesses to different internal banks to be interleaved, as introduced in

Section 2.2. However, at each memory cycle only one transaction can be executed on the

shared SDRAM buses. In contrast, multiple SDRAM transactions can happen on different

channels in the exactly same clock due to separate address/data buses. Therefore multiple

SDRAM channels provide great parallelism at the cost of duplicating address bus, data bus

and related control logic.

2.5 Address Bits Representation

Due to the different structures and memory devices used, TLB, cache(s) and main memory

have distinct interpretations of address bits. Figure 2.7 illustrates the interactions between

the TLB, cache(s) and main memory. The addresses shown in the figure have high-order

bits to the left. The TLB translates a virtual address to a physical address, which is then

interpreted as a cache address and used to access the cache. The fields of cache address are

determined by the cache organization. The cache address shown in Figure 2.7 represents a

N -way set associative cache [23]. If a cache miss occurs, a memory request of the missing

cache line is issued to the main memory.

The cache address or physical address is translated into the SDRAM address at main

2.5 Address Bits Representation 21

Cache Set Index Block OffsetCache Tag

Virtual Tag Virtual Page Index Page Offset

Bank Row Column Byte

Cache
Address

Rank

Page OffsetPhysical Page Index

Ch

TLB

Physical
Address

Virtual
Address

SDRAM
Address

Main Memory

Cache(s)

SDRAM Address Mapping

Figure 2.7: Address bit representations at different memory hierarchies

memory level. An SDRAM address is composed of channel, rank, bank, row, column

and byte index. Channel index chooses the SDRAM channel and may not be available in

systems that do not have multiple SDRAM channels. Rank index selects the rank within

that channel. Bank, row and column index are then used to access the SDRAM devices of

the selected rank as described in Section 2.1.2. The byte index allows a particular byte of

the data that is transferred on the memory bus to be selected. However, due to the access

granularity, which is equal to the lowest level cache line size, the byte index is usually fixed

at zero.

The organization shown in Figure 2.7 serializes the TLB and cache. The TLB must be

accessed before the cache can be accesses. A virtual indexed cache allows the accessing of

the TLB and the cache to be performed in parallel to reduce the overall latency [59].

22 Chapter 2 Background and Related Work

2.6 SDRAM Address Mapping

As discussed in Section 2.5, when a memory access is issued to the main memory, the

memory address (physical address) needs to be interpreted into an SDRAM address in

terms of channel, rank, bank, row, column and byte index. This process of translating

physical addresses to SDRAM addresses is known as SDRAM Address Mapping.

Many possible ways exist to do SDRAM address mapping. The one shown in Figure 2.8

is called flat address mapping, which maps the channel, rank, bank index, row, column and

byte index from the highest order address bits to the lowest order bits. Flat address mapping

is instinctive, using higher order address bits for larger components in the memory system.

Consequently, memory blocks are lineally allocated in SDRAM address space. For example,

once row0 of bank0/rank0/channel0 is filled up, it goes to row1 of bank0/rank0/channel0,

then row2 of bank0/rank0/channel0, so on and so forth.

Ch Rank Column ByteRowBank

Figure 2.8: Flat SDRAM address mapping

Flat address mapping makes sense only for truly random access memory, where accessing

any two locations in the memory space results in the exactly same latency. However,

SDRAM devices are not truly random access memory and have non-uniform access latency

as introduced in Section 2.1.3. Also, applications commonly exhibit hot spots where data

are accessed frequently, such as the stack or a lookup table. Performance could be improved

if those hot spots were allocated at locations where accesses to hot spots would experience

shorter latencies than at other locations.

SDRAM address mapping techniques, besides the functionality of translating physical

addresses into SDRAM addresses, could be used to change the allocation of memory blocks

in SDRAM address space. By exploiting available locality and parallelism in main mem-

2.6 SDRAM Address Mapping 23

ory, SDRAM address mapping techniques can reduce average memory access latency and

improve system performance.

2.6.1 Existing Address Mapping Techniques

There are existing address mapping techniques from previous studies [69, 58, 66, 21, 77, 72].

Industrial address mapping solutions can also be found in motherboard chipsets [27, 70].

This section briefly introduces some of them.

2.6.1.1 Page Interleaving Address Mapping

Page interleaving, also known as page mode interleaving, is one commonly used address map-

ping technique [69, 66]. Early SDRAM devices were slow, so it was necessary to interleave

data across several SDRAM banks to obtain adequate bandwidth for the processor [14]. As

shown in Figure 2.9, the bank index is mapped from the middle order address bits, while

channel and rank index are still mapped from the higher order address bits.

Ch Rank Column ByteRow Bank

Figure 2.9: Page interleaving address mapping

With page interleaving, memory blocks adjacent in the physical address space are

mapped into the first rows of internal banks within a rank, then the second rows of the

banks within the same rank; once all banks of a rank are filled up, allocation continues

to the next rank. By this way, memory blocks are actually stridden across different banks

intra ranks. For example, memory blocks are allocated in the order of row0/bank0/rank0,

row0/bank1/rank0, row0/bank2/rank0, ..., row1/bank0/rank0, row1/bank1/rank0, so on

and so forth.

24 Chapter 2 Background and Related Work

2.6.1.2 Rank Interleaving Address Mapping

Rank interleaving is similar to page interleaving except that memory blocks are stridden

across banks not only intra ranks but also inter ranks [58]. Figure 2.10 illustrates rank

interleaving address mapping. The rank index is mapped from address bits right above

bank index. Rank interleaving increases the possibility of pipelining accesses to different

banks crossing different ranks. One disadvantage of rank interleaving is that it may increase

the number rank-to-rank turnaround cycles required by DDR2 devices [30].

Ch Rank Column ByteRow Bank

Figure 2.10: Rank interleaving address mapping

2.6.1.3 Address Mapping for Direct Rambus DRAM

Wei-fen Lin et al. pointed out that address mappings affect performance significantly and

proposed an address mapping scheme for Direct Rambus DRAM (DRDRAM) [21].

DRDRAM provides a 1.6GB/s bandwidth on a single 16-bit device running at 400MHz

clock frequency with double data rate. Each DRDRAM device has multiple banks, allowing

pipelining and interleaving of accesses to different banks. DRDRAM device’s split control

buses (a 3-bit row bus and a 5-bit column bus) allows the memory controller to send

commands to independent banks concurrently [13].

Similar to JEDEC SDRAM, DRDRAM memory space has coordinates of channel, device

(equivalent to rank in JEDEC SDRAM), bank, row and column. Channel index is mapped

from lower order bits to create a single wider logical channel from several physical channels.

Then column, bank and device index are mapped from the next lowest order bits to higher

order bits, allocating memory blocks contiguously into rows, then stripping across devices

and banks. The highest bits are used as row index. This address mapping is further

improved by XORing the device and bank index with the lower bits of row index, as well

2.6 SDRAM Address Mapping 25

ChBank Column offset

XOR

Cache tag

DevRow

ChBank Column offsetDevRow

Figure 2.11: Direct Rambus DRAM address mapping

as changing the bit order of bank index to create a more randomized bank interleaving.

2.6.1.4 Permutation-based Page Interleaving Address Mapping

As an improvement to page interleaving address mapping, Zhao Zhang et al. proposed the

permutation-based page interleaving address mapping for JEDEC SDRAM [77]. As shown

in Figure 2.12, the permutation-based page interleaving XORs bank index with a range of

row index bits which correspond to the lowest bits of the L2 cache tag in a cache address.

This permutation-based address mapping attempts to convert row conflicts mainly due to

L2 conflict misses into accesses to different banks, therefore reduce row conflict rate and

preserve the spatial locality in SDRAM rows.

Ch BankRow Column Byte

XOR

BankRow Column Byte

Cache tag

Ch

Rank

Rank

Figure 2.12: Permutation-based page interleaving address mapping

26 Chapter 2 Background and Related Work

2.6.1.5 Intel 925X Chipset Address Mapping

Intel’s 925X chipset uses an SDRAM address mapping method similar to page interleaving.

Figure 2.13 shows one address mapping of 925X chipset as the width of row and column

index may vary with different SDRAM devices. In addition to mapping bank index from

the middle order address bits, a subset of bank and row index bits are reordered [27]. Intel’s

925X chipset supports two dual channel modes, dual asymmetric mode and dual symmetric

mode. With dual asymmetric mode, channel index is mapped from the highest address bit,

leaving two independent channels. In dual symmetric mode, bit{6} is used as the channel

index. Given a 128B cache line size, each cache line strides on two channels. Two 64-bit

channels are equivalent to a single 128-bit channel in dual symmetric mode.

BankRow Column ByteCh

BankRow Col ByteRank Ch Col

(a) Single channel/Dual asymmetric mode

(b) Dual channel symmetric mode

Rank

3-bit

6-bit

Figure 2.13: Intel 925X chipset address mapping

2.6.1.6 VIA KT880 North Bridge Address Mapping

Figure 2.14 shows the address mapping method used in VIA’s KT880 north bridge [70].

The bank index is permanently mapped from address bit{14:13}. As the width of column

and row index may vary with different SDRAM devices, row index may be mapped from

two segments of address bits right above or below bank index. KT880 also supports dual

memory channel. In dual channel mode, the channel index is mapped from address bit{3}.

Therefore, each 16-byte memory block strides on two 64-bit channels, also resulting in a

128-bit logical channel.

2.6 SDRAM Address Mapping 27

Row Column Byte

BankRow Column ByteRank Ch

(a) Single channel mode

(b) Dual channel mode

Rank Bank Row

12-bit

3-bit

Figure 2.14: VIA KT880 north bridge address mapping

2.6.2 Dual Channel Configurations

Page interleaving, permutation-based page interleaving as well as rank interleaving were

originally designed for signal channel systems. They can be used in dual channel systems

by simply mapping the channel index from the highest address bit. However, using the

highest address bit as channel index may result in an unbalanced load to each channel,

leaving parallelism between channels unexploited.

Intel’s 925X chipset and VIA’s KT880 north bridge both support symmetric dual chan-

nel configuration, with which a lower order address bit is used as the channel index to

interleave memory blocks between two channel at a small granularity. Symmetric dual

channel configuration is equivalent to a logical channel which has the data bus width dou-

bled. The advantage of a wider data bus is the bandwidth. Data are transferred faster on

a wider bus. However the access latency may not benefit directly from a wider data bus.

Two independent channels, such as dual asymmetric mode of Intel’s 925X chip set, are able

to start a new access immediately while one channel is serving the previous access. Two

independent channels enable parallelism therefore can reduce access latency. Appendix A

presents a comparison between single channel, dual asymmetric channel and symmetric

channel.

28 Chapter 2 Background and Related Work

2.7 Access Reordering Mechanism

Similar to an out-of-order execution processor, which executes subsequently independent

instructions when the current instruction is pending due to a cache miss, main memory

accesses can also be scheduled out of order to hide long latency or avoid row conflicts.

Access Reordering Mechanisms select accesses from available outstanding memory accesses

and schedule them in an order that yields the minimal overall execution time.

2.7.1 Memory Access Scheduling

As introduced in Section 2.1, SDRAM devices use a synchronized interface to synchronize

the input and output signals with the clock. Most address bus transactions, such as bank

precharge or row activate, are done in a single clock cycle, while data transactions may take

more than one cycles depending upon the access granularity (burst length) and the bus

data rate. SDRAM buses are split transaction buses, which mean transactions belonging

to different accesses can be interleaved. Memory access scheduling is how the SDRAM

controller schedules bus transactions on the SDRAM buses for each access and handles

possible bus contentions.

Figure 2.15 gives an example of scheduling four outstanding memory accesses. In this

example, access0 and access1 are row empties; access2 and access3 are row conflicts. In

Figure 2.15(a), a naive SDRAM controller performs these accesses in the same order as

they arrive and does not interleave any transactions. Assuming the SDRAM device in this

example has a timing of 2-2-2 (tCL-tRCD-tRP) and a burst length of 4 (2 cycles with double

data rate), it takes 28 SDRAM cycles to complete four accesses.

In Figure 2.15(b), the same four accesses are executed by an out of order scheduling

SDRAM controller. Access3 is scheduled prior to access1, which turns access3 from a row

conflict to a row hit because access0 and access3 are for the same row of the same bank.

The controller also attempts to interleave and overlap transactions of different accesses to

2.7 Access Reordering Mechanism 29

Access0 to
bank0 row0

Access1 to
bank1 row0

Access2 to
bank0 row1

Access3 to
bank0 row0

28 cycles

16 cycles

(a) In order scheduling without overlapping

(b) Out of order scheduling with overlapping

Bank precharge Row activate Column access Data

R C

D0

R C

D0

R C

D1

R C

D1

R C

D2

P

R C

D2

P

R C

D3

P

C

D3

P R C Dx

Figure 2.15: Memory access scheduling

maximize the utilization of the SDRAM buses. With the out of order scheduling SDRAM

controller, it only takes 16 SDRAM cycles to complete the same four accesses. Therefore,

memory access scheduling has significant impacts on system performance, especially for

memory intensive applications.

2.7.2 Design Issues

As introduced in Section 1.1, SDRAM bandwidth improves by 25% each year, mainly due to

the increase clock frequency, while SDRAM latency only reduces by 5% per year. Table 2.4

compares the specifications of a DDR PC-2100 SDRAM with that of a DDR2 PC2-6400

SDRAM. The actual latency for a row conflict reduces from 45ns to 37.5ns, however, because

the clock frequency improves faster, the access latency in terms of memory clock cycles

increases from 6 cycles to 15 cycles. Compared to bandwidth, memory latency is a bigger

issue that needs to be concerned. Fortunately, the increased access latency (in cycles) leaves

more performance improvement space to memory optimization techniques, such as access

reordering mechanisms.

30 Chapter 2 Background and Related Work

Table 2.4: PC-2100 DDR SDRAM vs. PC2-6400 DDR2 SDRAM

DDR PC-2100 SDRAM DDR2 PC2-6400 SDRAM
Bus clock 133MHz 400MHz
Bandwidth (64-bit bus) 2.13GB/s 6.4GB/s
Timing (tCL-tRCD-tRP) 2-2-2 (15ns-15ns-15ns) 5-5-5 (12.5ns-12.5ns-12.5ns)
Latency (row conflict) 6 cycles (45ns) 15 cycles (37.5ns)

As access latency increases, so does the temporal interval between transactions belonging

to the same accesses. Consequentially the address bus becomes sparse and there are fewer

contentions on the address bus. The SDRAM data bus becomes more critical. Therefore,

how to improve the data bus utilization is one of the major design goals of access reordering

mechanisms.

Traditionally access reordering mechanisms are implemented with SDRAM controllers

located in north bridges. Some modern microprocessors have integrated memory controllers,

from which access reordering mechanisms could benefit. Due to a tighter connection between

the on-die SDRAM controller and the CPU, more instruction level information, such as

the number of dependent instructions, can be obtainable to the SDRAM controller. This

information may help the controller to make intelligent scheduling decisions. In addition, an

integrated SDRAM controller can run at the same speed as the CPU. By taking advantage

of the clock multiplier between CPU clock and memory clock, an integrated controller can

take multiple CPU cycles to make a scheduling decision which is due in one memory clock,

making complex scheduling algorithms feasible.

2.7.3 Existing Access Reordering Mechanisms

While a naive memory controller using in order scheduling is easy to implemented, it is

clearly inefficient as illustrated in Figure 2.15. Previous studies have proposed access re-

ordering mechanisms for stream-oriented systems [56, 25, 41, 55], web servers [54], network

processors [22], embedded systems [36, 33] and other applications [79, 39, 46, 34].

2.7 Access Reordering Mechanism 31

2.7.3.1 Bank In Order Scheduling

As introduced in Section 2.1, modern SDRAM devices provide multiple internal banks.

Accesses to different banks are allowed to be executed in parallel as long as all timing

constrains are met. Bank in order scheduling takes advantage of this bank parallelism [56].

It has a structure as shown in Figure 2.16. Composed by unique memory access queues for

each bank and a global arbiter, bank in order scheduling can start another access from a

different bank when the current access is being scheduled. Therefore access between banks

may be scheduled out of order.

Bank0

Bank1

BankN

S
cheduler

Transactions
to SDRAM

devices

Memory
access

Figure 2.16: Bank in order memory scheduling

Outstanding memory accesses are stored at memory access queues depending on the

bank they are directed. Bank queues are based on first come first served, which means

accesses within the same bank are served in the same order as they arrive. The global arbiter

then selects one access from all bank queues using a bank selection policy. A round robin

or an oldest first bank selection policy usually works well. While bank in order scheduling

exploits bank parallelism by interleaving accesses between different banks, accesses within

the same banks are still served in order.

2.7.3.2 The Row Hit Access Reordering

One improvement to bank in order scheduling is to use priority queues instead of FIFO

queues. With priority queues, accesses within the same bank can be scheduled out of order

32 Chapter 2 Background and Related Work

as well. Figure 2.17 shows a row hit access reordering, which uses priority bank queues and

a row hit first policy [56]. At each bank, the oldest access that goes to the same row as

the last access is assigned the highest priority and scheduled first. Similar to bank in order

scheduling, bank selection policies, such as round robin, are still applicable when the arbiter

needs to select accesses from different banks.

Bank0

S
cheduler

Transactions
to SDRAM

devices
Memory
access

Bank1

BankN

Figure 2.17: The row hit access reordering

The row hit access reordering attempts to create as many row hits as possible out of

available accesses. Because row hits have the shortest access latencies, the row hit access

reordering will have a better performance than bank in order scheduling.

2.7.3.3 Memory Access Scheduler for Virtual Channel SDRAM

Virtual Channel SDRAM provides a set of channel buffers within the SDRAM to hold

segments of rows for faster access and greater concurrency than conventional SDRAM [47].

Scott Rixner et al. proposed a memory access scheduler, which has a similar structure to

the row hit access reordering as shown in Figure 2.17, for Virtual Channel SDRAM [54].

While most bank queue reordering policies such as row hit first, and bank selection

policies such as round robin can still apply to Virtual Channel SDRAM, the scheduler must

be augmented with a channel selection policy to exploit the features of Virtual Channel

SDRAM devices.

2.7 Access Reordering Mechanism 33

Access latency is reduced both by increasing parallelism within conventional SDRAM

and by increasing the segment hit rate exclusive for Virtual Channel SDRAM. With pro-

posed access reordering policies, their memory access scheduler achieves high memory band-

width and low memory latency for modern web servers.

2.7.3.4 Adaptive History-based Memory scheduler

Proposed by Ibrahim Hur et al., the adaptive history-based memory scheduler tracks the

access pattern of recently scheduled accesses and selects memory accesses matching the

program’s mixture of reads and writes [25].

Read Queue
Transactions
to SDRAM

devices

Reads

Write Queue
Writes

Arbiter1

Arbiter2

ArbiterN

Arbiter
Selection Logic

Figure 2.18: Adaptive history-based memory scheduler

As illustrated in Figure 2.18, outstanding accesses are stored at a global read queue

and write queue. A set of arbiters select accesses from the read queue or the write queue

with the goal of matching some expected mixtures of reads and writes based on history

information. For example, if the arbiter has a history of write|read|read and the expected

read write ratio is 1:1, then the arbiter will select a write from the write queue. When

multiple qualified accesses are available, the arbiter uses the expected latency as the second

criterion to make final decisions.

Each history-based arbiter is optimized for one particular read write ratio. Therefore

34 Chapter 2 Background and Related Work

only one arbiter is working at any time. An arbiter selection logic observes the recent

program access pattern and periodically chooses the most appropriate history-based arbiter.

2.7.3.5 Stream Memory Controller

Sally McKee et al. described a Stream Memory Controller (SMC) system for streaming

computations. The SMC system combines compile time detection of streams with execution

time access reordering to exploit the existing memory bandwidth [41, 24].

The SMC system detects streams at compile time, then selects access and issues access

at execution time. The SMC effectively prefetches read streams, buffers write streams, and

reorders accesses to exploit the existing memory bandwidth as much as possible. Unlike

most other hardware prefetching or stream buffer designs, the SMC system does not increase

bandwidth requirements. The SMC can be implemented using existing compiler technology

and requires a modest amount of special purpose hardware. The SMC system is designed

for applications performing streaming memory accesses and Fast Page Mode DRAM and

Rambus DRAM.

2.7.3.6 Fine-grain Priority Scheduling

Zhichun Zhu et al. proposed fine-grain priority scheduling for Direct Rambus DRAM sys-

tems [79]. Memory accesses are split and mapped into different channels and critical data

are returned first, to fully utilize the available bandwidth and concurrency provided by

DRDRAM.

Requested memory blocks are split into sub-blocks with minimal granularity, which are

then mapped into different channels. Sub-blocks that contain the desired data are marked

as critical ones with higher priorities therefore are returned earlier than non-critical sub-

blocks. This approach also allows critical sub-blocks of one access to bypass non-critical

sub-blocks from other accesses.

2.7 Access Reordering Mechanism 35

A5 A1 B1 B5 C1 C5 D1 D5

B6 A2 A6 B2 C2 C6 D2 D6

C7 A3 A7 B3 B7 C3 D3 D7

D8 A4 A8 B4 B8 C4 C8 D4

CH0

CH1

CH2

CH3

Figure 2.19: Fine-grain priority scheduling

An example of a 4-channel memory systems processing four accesses is shown in Fig-

ure 2.19. Each memory block is split into eight sub-blocks, and the four critical sub-blocks

(the boxes with bold letters) are mapped to different channels. With fine-grain priority

scheduling, all critical sub-blocks finish earlier than non-critical sub-blocks, reducing laten-

cies to critical data.

2.7.3.7 Access Reordering for Network Processors

SDRAM access reordering and prefetching were also proposed by Jahangir Hasan et al. to

increase row locality and reduce row conflict penalty for network processors [22]. Network

processors (NP) are programmable microprocessors optimized for packet switches. NPs

implement a variety of packet processing functions, such as IP forwarding, in software.

Thus memory bandwidth is a key consideration in the design of packet switching platforms.

They propose a piece-wise linear allocation that attempts to allocate memory space for

contemporaneously arriving packets in the same row. To enhance row locality, SDRAM

accesses that are likely to go to the same row are made consecutively in small groups (e.g.,

4 accesses), without being intervened by other accesses. For the row misses that occur

despite the allocation and reordering, prefetching is used to overlap a row conflict access

with the preceding access to hide the latency, given the two accesses go to different banks.

36 Chapter 2 Background and Related Work

2.7.3.8 Intel’s Out of Order Memory Access Scheduling

Intel has a patented memory access scheduling algorithm that performs read and write

memory accesses out of order to improve SDRAM buses utilization and gain performance

over a range of workloads [57]. Figure 2.20 shows the structure of Intel’s out of order

memory access scheduling.

Bank0

R
ead S

election Logic
Transactions
to SDRAM

devices

Reads
Bank1

BankN

Write
Writes

R
ead/W

rite A
rbiter

Figure 2.20: Intel’s out of order memory access scheduling

In their design, read queues have a similar structure to the row hit scheduling as shown

in Figure 2.17. But writes are stored at a separate write queue to allow reads to bypass

writes. Read selection logic uses a complex algorithm to make decisions. Basically those

already started but unfinished accesses, such as a row conflict whose bank precharge and

row activate have been performed, have the highest priority. Any row hit accesses have the

next highest priority.

Write scheduling is out of order as well. When possible, writes from other banks are

inserted between the back to back write row conflicts. Writes to the same row are clustered.

A read/write arbiter then prioritizes between reads and writes. Reads generally have higher

priorities over writes to optimize read latency. Preempting an already started but unfinished

write, such as a write that has performed bank precharge and/or row activate but has not

started column access yet, with a later arrived read can result a better performance.

2.8 Other SDRAM Optimization Techniques 37

2.8 Other SDRAM Optimization Techniques

This section briefly introduces some other SDRAM related techniques, which also attempt

to improve SDRAM performance by exploiting locality and parallelism.

2.8.1 The Impulse Memory System

Proposed by John Carter et al., the Impulse Memory System adds two features to a tra-

ditional memory controller. First, an extra stage of address translation is added into the

memory controller to allow applications to control how their data is accessed and cached.

Second, the Impulse controller supports prefetching at the memory controller, which reduces

the effective latency to memory [10, 76].

Real systems usually do not use all physical address space, i.e. in a system with 4GB of

physical address space having only 1GB memory populated. The Impulse system uses these

unused addresses constitute a shadow address space which is mapped to physical memory by

the Impulse controller. By giving applications and the operating system control over the use

of shadow addresses, Impulse supports application-specific optimizations that restructure

data.

As an example, consider a program that accesses five elements of an array. Given the

physical memory layout of the requested elements shown in Figure 2.21(a), a conventional

memory system loads the five elements in five separate memory accesses, each of which

contains a full cache line of contiguous physical memory. The five elements then occupy

five cache lines, although only a subset of each line is requested.

In an Impulse memory system, an application can configure the memory controller to

export a dense shadow space alias that contains just the requested elements, and have the

OS map a new set of virtual addresses, which fall into the same cache line. The application

can then access the elements via the virtual alias in a single memory access as shown in

Figure 2.21(b). In this way the five requested elements only occupy one cache line and

38 Chapter 2 Background and Related Work

1
2

3
4

5

2

4

5

1
2

3
4

5

2 53 4

Impulse Controller

1

13

(a) Conventional Memory System (b) Impulse Memory System

Cache

Physial
memory

Cache

Physial
memory

Memory
bus

Memory
bus

Figure 2.21: The Impulse Memory System

require only one bus transfer.

The Impulse memory controller also supports prefetching by adding a small amount of

SRAM on the controller. For non-remapped data, prefetching is useful for reducing the

latency of sequentially accessed data. The Impulse memory system is designed for appli-

cations that do not exhibit sufficient locality, e.g. sparse matrix, database and multimedia

applications.

2.8.2 SDRAM Controller Policy Predicator

SDRAM controller policy is introduced in Section 2.3. Two static controller policies, CPA

and OP, are commonly used and can be selected through many BIOS [71]. However, which

policy yields a better performance largely depends upon an applications’ access pattern. A

dynamic controller policy which applies different policies to each access can reduce access

latency.

An ideal dynamic controller policy, referred to as Dynamic Upper Bound, will be pre-

sented in Section 3.2.1.3. The dynamic upper bound policy uses future information only

available in simulations to give an upper bound of performance improvement that a real

dynamic controller policy can achieve without reordering accesses [58].

2.8 Other SDRAM Optimization Techniques 39

While dynamic upper bound policy requires future access information, a two-level dy-

namic SDRAM controller policy predictor proposed by Ying Xu uses a history based pre-

dictor to make the decision of leaving the accessed row open or precharging the bank after

completing each access [74]. This controller policy predictor is similar to branch predic-

tors [40, 75], making predictions using history information.

2.8.3 Adaptive Data Placement

When virtual paging systems are in use, the performance of a virtual paging system is often

evaluated by how fast a virtual page can be allocated or freed. However, how fast a page

can be accessed during the runtime also impacts performance, especially when the main

memory has nonuniform access latencies.

SDRAM address mapping techniques, as will be presented in Chapter 4, can change

access distribution in the SDRAM address space to exploit parallelism. However, SDRAM

address mapping must be static and does not reflect any dynamic changes in program

behavior.

The operating system, provided with the knowledge of the memory hierarchy, can in-

telligently place data in the SDRAM space to exploit parallelism available in the main

memory. Theoretically an intelligent virtual paging system can achieve at least the same

performance improvement as that of SDRAM address mapping techniques at the cost of

operating system page allocation complexity. In addition, the virtual paging system may

have the ability to change the data placement as program access patterns change [37].

40 Chapter 2 Background and Related Work

Chapter 3

Methodology

This chapter describes the simulation environments and methodologies used in the thesis.

Two modified simulators, SimpleScalar v3.0d and M5 v1.1, are used for SDRAM address

mapping and access reordering mechanisms studies respectively. Decisions and considera-

tions in selecting simulators are discussed. Modifications made to the simulators in order

to support the studies are presented.

3.1 Methodologies Used in the Thesis

Simulators are widely used in computer architecture and microprocessor studies [35, 2, 1].

Using these architecture simulators is an efficient way to study memory organizations and

optimization techniques. However, many simulators focus on microprocessor studies, such

as pipeline or cache organizations, and use simplified main memory modules, which may

not be accurate for memory studies.

The selected simulators are revised to replace the original main memory modules with

more detailed SDRAM modules. The techniques being studied, including the proposed and

existing techniques, are implemented in simulation modules and added into the simulators.

Using standard benchmarks, these techniques are simulated and examined. Trace files gen-

41

42 Chapter 3 Methodology

erated by the simulators are used to validate the implementations. Further improvements

are made based on analysis of simulation results.

3.2 SimpleScalar Simulation Environment

SimpleScalar, selected for use in the SDRAM address mapping technique studies, is a well

established and widely used computer architecture simulator in academic research [35].

SimpleScalar performs fast, flexible, and accurate simulation of modern processors. It is

an execution-driven simulator, featuring a detailed, out-of-order issue, superscalar proces-

sor simulator that supports nonblocking caches and speculative execution. It executes the

PISA among other ISAs, which is a close derivative of the MIPS architecture [52]. Precom-

piled binaries for the SimpleScalar architecture exist, including SPEC CPU95 and SPEC

CPU2000 benchmark suites [8, 11]. Therefore, SimpleScalar is selected for SDRAM address

mapping techniques studies.

As distributed, SimpleScalar v3.0d uses a simplified main memory module which has

a fixed access latency for all main memory accesses. Due to the implementation, access

latencies have to be determined at the time when memory accesses are issued, which is not

an issue so long as main memory accesses are scheduled in order such that access latencies

are deterministic. However, the fixed-latency main memory does not represent any real

memory systems and requires modifications to support the studies of SDRAM address

mapping techniques. The following section presents a detailed SDRAM simulation module

designed for SimpleScalar v3.0d, which not only allows the studies of SDRAM address

mapping but also other memory related techniques.

3.2.1 SDRAM Simulation Module v1.0

The SDRAM module v1.0 is developed to replace the original main memory module pro-

vided with SimpleScalar v3.0d. As a timing simulation module, the major functionality of

3.2 SimpleScalar Simulation Environment 43

CPU

Virtual Paging System

Write Buffer

SDRAM Address
Mapping Logic

Memory Access
Scheduler

Rank0
Rank1

Rank0
Rank1

Ch1

Ch0

SDRAM Controller SDRAM Device

Bank0
DevN

Bank0
Dev0

Bank0
DevN

Bank0
Dev0

Figure 3.1: SDRAM Module v1.0 for SimpleScalar

the SDRAM module v1.0 is to determine the access latency at the time when a memory

access is issued. The access latency is calculated based on the address of the requested

memory block, the current state of SDRAM devices and bus availability. These considera-

tions are absent from the original main memory module used by SimpleScalar v3.0d. The

SDRAM module v1.0 is a purely timing module, which does not provide any of the data

storage and retrieval functionalities of main memory. Functional memory continues to be

handled by SimpleScalar. The SDRAM module v1.0 is composed of SDRAM device mod-

ules, an SDRAM controller module and an optional virtual paging system, as illustrated in

Figure 3.1.

3.2.1.1 SDRAM Device Module

The SDRAM device module represents a typical JEDEC SDR/DDR SDRAM device. It

is fully parameterized, including many of the parameters present in an SDRAM device,

including capacity, clock frequency, data rate, I/O width, row size, column size and timing

constraints (tRP , tRCD, tCL, etc). Some of these timing constraints are listed in Table 2.1.

A state machine is used to keep track of the current state of each bank. According to

44 Chapter 3 Methodology

Bank
Precharge

Row
activate

Bank
precharge

Auto
Refresh

Column
access

Idle

Precharged Active

Auto
refresh

Figure 3.2: Bank state transition diagram

the bank state transition diagram given in Figure 3.2, all banks are reset to idle state after

initialization. Each bank precharge or auto refresh will send the bank to the precharged

state. The state is transited to active by a row activate, where one or more column accesses

can perform reads or writes.

3.2.1.2 SDRAM Controller Module

The SDRAM controller module provides a main memory interface to the CPU, accepts

and schedules main memory requests issued by the CPU in a manner similar to that of a

hardware memory controller. As introduced in Section 2.4, multiple SDRAM devices are

concatenated to form a rank to fill the data bus of the memory interface. Ranks share

address/data buses and are selected by chip select (CS) signals. Composed by one or more

ranks, channels have unique address/data buses as well as control signals. As shown in

Figure 3.1, the SDRAM controller module further contains three submodules. They are

SDRAM address mapping logic, memory access scheduler and write buffer.

• SDRAM address mapping logic translates the physical address of each memory access

into the SDRAM address in terms of channel, rank, bank, row, column and byte index

using the selected SDRAM address mapping technique, as introduced in Section 2.6.

3.2 SimpleScalar Simulation Environment 45

• Memory access scheduler generates required SDRAM bus transactions for each mem-

ory access according to the current state of the target SDRAM device. Transactions

are then scheduled and sent to the device. Unlike the naive in order scheduler as shown

in Figure 2.15(a) which schedules transactions strictly in order, the scheduler used by

the SDRAM module v1.0 attempts to interleave and overlap transactions between

adjacent accesses whenever possible, while it maintains the actual data transactions

in the same order as accesses arrive. This scheduler is still considered as an in order

scheduler, however it is more efficient than a naive in order scheduler and is used in

SDRAM address mapping studies.

• A limited-size write buffer replaces the infinite write buffer originally used by Sim-

pleScalar v3.0d [63]. The write buffer offers three features. First, it hides the write

latency so that writes can complete immediately. Second, the write buffer allows reads

to bypass writes to reduce read latency. Third, if a read requests the same memory

block as a previous write, the write data can be forwarded from the latest write to the

read, therefore reducing the traffic to the main memory. In the presence of a write

buffer, reads must search the write buffer for possible read hits before accessing the

main memory to avoid data hazard. The write buffer performs writebacks when the

write buffer reaches its capacity or when the SDRAM bus has been idle for a certain

number of memory cycles.

3.2.1.3 Dynamic Upper Bound Controller Policy

The SDRAM controller makes the decision, logically at the end of each access, whether

or not leave the accessed row open. This decision making process is known as applying

controller policies. The SDRAM controller module supports two static controller policies,

OP and CPA, as introduced in Section 2.3.

In order to support future studies of dynamic controller policies, a dynamic controller

46 Chapter 3 Methodology

policy called Dynamic Upper Bound (DYN-UPB) is added into the SDRAM module v1.0.

With DYN-UPB policy, the controller keeps the accessed row open and postpones the

decision until the next access to this bank is available. If the subsequent access to the same

bank is known to be a row conflict, then the controller goes back in time and precharges

the bank by modifying the state of that bank. Obviously DYN-UPB policy requires the

knowledge of future access information which is only available in simulations. The purpose

of introducing DYN-UPB policy is to predict an upper bound of performance improvement

that a dynamic controller policy could achieve under the constraints of the simulation

environment, specifically access sequence.

3.2.1.4 Virtual Paging System

Virtual paging system determines the placement of data in the physical address space

and allows programs that require a larger amount of memory than the size of physical

memory to run by swapping pages [60]. There is no virtual paging system implemented in

SimpleScalar v3.0d as it does not simulate the entire operating system. Given single thread

benchmarks, enough main memory (no page swapping) and fixed main memory access

latency, virtual paging system does not have impacts on the performance. However, with a

detailed nonuniform main memory, such as what the SDRAM module v1.0 represents, page

placements will result in different access latencies. A preliminary virtual paging system is

therefore implemented and added into SimpleScalar v3.0d.

The virtual paging system translates virtual addresses into physical addresses using

an inverted page table [60]. As a purely functional module, this simulated virtual paging

system does not generate any timing information. It does not have a Translation Look-

aside Buffer (TLB) either. In addition, assuming simulated machines have enough physical

memory for each benchmark, there will be no page swapping or page faults expect for initial

page allocations.

3.2 SimpleScalar Simulation Environment 47

Two paging allocation algorithms are implemented, Sequential Allocation and Random

Allocation. With sequential allocation, pages are allocated sequentially from the beginning

of the physical address space. Random allocation on the other hand allocates pages com-

pletely randomly. While sequential allocation is more like a typical machine shortly after

booting up, random allocation models a machine running for a long time with high memory

utilization, in which pages are randomized located in the physical address space.

3.2.2 Revised SimpleScalar Baseline Machine Configuration

Table 3.1 lists the configuration of the baseline machine used for SDRAM address mapping

studies. A revised SimpleScalar v3.0d and the SDRAM module v1.0 are used. The baseline

machine is representative of a typical desktop PC with the memory controller located on

the north bridge. The simulated CPU is a 2.4GHz 4-way out-of-order execution processor

with 128KB split L1 cache and 512KB unified L2 cache. The simulated SDRAM controller

has a memory access buffer big enough to hold the maximal number of outstanding memory

accesses supported by the LSQ and RUU. Main memory uses 512Mbit technology (64M×8)

DDR 400 (PC-3200) SDRAM device with timing parameters of 3-4-4-8 (tCL-tRCD-tRP -

tRAS), which mimics the Micron MT46V64M8 DDR SDRAM [42]. Burst length is set to 8

such that an entire L2 cache line (64-Byte) can be loaded in each main memory access. The

baseline machine has a single SDRAM channel with 4 ranks, providing a 3.2GB/s memory

bandwidth. A total of 2GB of main memory is simulated.

The baseline machine uses OP controller policy, leaving the accessed row open after each

access. There is no virtual paging system for the baseline machine and accesses are scheduled

in order (not naive in order), as described in Section 3.2.1.2, to isolate the contribution

of SDRAM address mapping from other techniques. The impacts of controller policies

and virtual paging systems will be studied in Section 4.4.1 and Section 4.4.2 respectively.

Chapter 5 will be presenting access reordering mechanisms.

48 Chapter 3 Methodology

Table 3.1: Revised SimpleScalar baseline machine configuration

SimpleScalar v3.0d configuration
CPU 2.4GHz, 4-way, out-of-order execution, 16 RUU, 8 LSQ
L1 cache 64KB I-cache and 64KB D-cache, 2-way, 32B cache line
L2 cache 512KB, 16-way, 64B cache line

SDRAM module v1.0 configuration
Front Side Bus 64-bit, 200MHz (400MHz data rate)
Main memory 2GB DDR 400 (PC-3200) SDRAM, 3-4-4-8, 64-bit data

bus, burst length 8
Channel/Rank/Bank 1/4/4
Virtual paging Not available
Controller policy Open Page
Address mapping Page interleaving
Write buffer size 16 entries

3.3 M5 Simulation Environment

First introduced in 2003, the M5 simulator is a modular platform for computer system

architecture research, encompassing system-level architecture as well as processor microar-

chitecture [7, 6]. Version 1.0 was released in 2005 and the current version is 2.0.

Written in C++ and Python, M5 is object oriented. Major simulation structures (CPUs,

buses, caches, etc.) are represented as objects and interchangeable. M5 features a detailed

model of an out-of-order SMT-capable CPU (Alpha ISA) and an event-driven memory

system including non-blocking caches and split-transaction buses. M5 is capable of full-

system simulation. It models a DEC Tsunami system in sufficient detail to boot unmodified

Linux/FreeBSD. M5 is also capable of multiprocessor or multi-system simulation [2].

3.3.1 Switching from SimpleScalar to M5 Simulator

A revised SimpleScalar v3.0d is used for SDRAM address mapping studies as shown in

Section 3.2. When memory accesses are scheduled in program order, the latency of each

access is determinate at the time when the access is issued. SimpleScalar uses an event-

3.3 M5 Simulation Environment 49

driven mechanism to invoke the main access process function provided by the SDRAM

module when a main memory access is requested. The SDRAM module schedules the

access immediately, calculates and return the access latency.

Consider a memory controller that can schedule memory access out of order, an access

received later may be scheduled earlier than its predecessors. The access latency (of the

first access) is therefore not determined at the time when the access is issued by the CPU.

In order to perform access reordering, following requisites must be satisfied. First, the main

memory has to be non-blocking so that new memory requests can continue to be issued

to the main memory while previously issued requests are still pending. Second, memory

requests need to be separated from responses. For example, after issuing a memory request,

the CPU will be notified by a separate response, which contains the requested data as well

as other information such as the access latency of that access.

Although it is not impossible to modify SimpleScalar v3.0d to support access reordering

through introducing callback functions, it certainly requires significant amount of effort to

make callback functions work with SimpleScalar’s event-driven mechanism. M5 simulator

v1.1 features split-transaction buses. Memory requests can be easily separated from re-

sponses, thus the CPU does not need to wait for the response before it can issue another

memory request. Meanwhile M5 simulator executes Alpha binaries so that it can share

benchmarks with SimpleScalar. These features of M5 simulator make it an ideal simula-

tor for studies of access reordering mechanisms. The M5 simulator’s Syscall Emulation

(SE) mode (non-full-system) is used for the studies of access reordering mechanisms to be

presented in Chapter 5.

Unfortunately M5 simulator v1.1 still uses a fixed-latency main memory module. An

all new SDRAM module v2.0 is therefore developed for M5 v1.1, featuring out-of-order

memory access scheduling and supporting DDR2 SDRAM devices. The following sections

present the details of the SDRAM module v2.0.

50 Chapter 3 Methodology

3.3.2 SDRAM Simulation Module v2.0

The SDRAM module v2.0 is an update from the SDRAM module v1.0 and designed for M5

v1.1. Unlike the SDRAM module v1.0 which is driven by memory access events, the SDRAM

module v2.0 is driven by its own clock events. The SDRAM clock is divided from the CPU

clock by a clock multiplier. The SDRAM module v2.0 is still a purely timing simulation

module, which means it only provides timing information. Main memory functionality is

provided by M5’s functional memory.

CPU

Virtual Paging System

Memory Access
Queue

SDRAM Address
Mapping Logic

SDRAM Controller

SDRAM Bus
Trans Scheduler

Rank0
Rank1

Rank0
Rank1

Ch1

Ch0

SDRAM Device

Bank0
DevN

Bank0
Dev0

Bank0
DevN

Bank0
Dev0

Figure 3.3: SDRAM Module v2.0 for M5 Simulator

Figure 3.3 illustrates the structure of the SDRAM module v2.0, which is composed of an

optional virtual paging system, an SDRAM controller module and SDRAM device modules.

Inside the SDRAM controller module, there are the SDRAM address mapping logic, the

memory access queue and the SDRAM bus scheduler.

Virtual paging system and SDRAM address mapping logic are identical to that of the

SDRAM module v1.0. Major changes to the SRAM device module include the support for

DDR2 SDRAM devices, an SDRAM power consumption module which estimates the power

consumption of main memory. The memory access queue is new in the SDRAM module

3.3 M5 Simulation Environment 51

v2.0 and will be discussed below. The write buffer used in the SDRAM module v1.0 is now

integrated into the memory access queue, which can achieve the same functionality as the

write buffer. The in order memory access scheduler, presented in Section 3.2.1.2, is replaced

by a sophisticated SDRAM bus scheduler which works closely together with the memory

access queue to perform various access reordering mechanisms.

3.3.2.1 Memory Access Queue

The memory access queue is the place where outstanding memory accesses are stored when

they are waiting to be scheduled. The memory access queue has a buffer structure and

associated control logic. Depending on its structure, the memory access queue can model

various access reordering mechanism as introduced in Section 2.7.3.

For example, to model a bank in order scheduling as shown in Figure 2.16, the memory

access queue uses one FIFO queue for each bank. Replacing the FIFO queues with priority

queues and applying certain policies, such as row hit fist policy, the memory access queue

can model the row hit access reordering as introduced in Section 2.7.3.2.

Figure 3.4 shows a more detailed memory access queue structure for the row hit access

reordering. Each bank has an unique queue and an associated control logic, known as the

bank arbiter. Bank arbiters use a row hit first policy, which selects the oldest access in the

queue directed to the same row as the previous access of the same bank if such an access

exists. The selected access is marked as the ongoing access of that bank.

Ongoing accesses from all banks are then forwarded to the SDRAM bus scheduler,

which will be introduced in Section 3.3.2.2, to perform transaction scheduling. Once all

transactions belonging to an ongoing access have been scheduled (notified by the access

complete signal), a response is sent to the CPU containing the requested information as

well as access latency. The complete access is removed from that bank and the bank arbiter

selects another access from the bank queue to be the next ongoing access.

52 Chapter 3 Methodology

Bank0

Bank0 Arbiter

Bank1

Bank1 Arbiter

BankN

BankN Arbiter

Ongoing
Access

Access complete

Bank0 access

Bank1 access

BankN access

Access

Figure 3.4: Memory access queue for the row hit access reordering

Depending on the implementation, the memory access queue could be considered as full

when all bank queues are full, or any one bank queue is full, given a multiple bank queues

structure as shown in Figure 3.4. In case the memory access queue is full, the SDRAM

controller blocks the memory interface to the CPU so that no new accesses can be issued

to the main memory.

The write buffer, used in the SDRAM module v1.0 and discussed in Section 3.2.1.2,

can be integrated into the memory access queue by adding a dedicated write queue and an

extra read/write arbiter. Because the memory access queue has the ability to delivery the

functionality of a write buffer, the SDRAM module v2.0 does not contain a stand alone

write buffer module.

Thanks to M5’s object orientated structure, different implementations of memory access

queues can share the same or compatible interfaces so that different memory access queue

modules, representing various access reordering mechanisms, can be easily exchanged for

performance comparisons.

3.3 M5 Simulation Environment 53

3.3.2.2 SDRAM Bus Scheduler

While the memory access queue determines the order in which accesses within the same

banks are served, the SDRAM bus scheduler schedules the transactions for the accesses

sent by the memory access queue. The SDRAM bus scheduler performs transaction level

scheduling with the considerations of bank states as well as bus utilization. Figure 3.5

illustrates an SDRAM bus scheduler that will work with the memory access queue as shown

in Figure 3.4.

N
ext T

ransaction &

E
arliest S

tarting T
im

e
Transaction
Scheduler

Bank0 access

Bank1 access

BankN access

Transaction to
SDRAM devie

T
ransaction A

rbiter

SDRAM
Bus Usage

Record

Access complete
U

nblocked
transaction

Current time

Bank
State

Auto
Refresh

Figure 3.5: SDRAM bus scheduler

First, the SDRAM bus scheduler determinates the next transaction of each access it

receives based on the current state of the target bank. For example, the next transaction

of an access directed to a precharged bank would be a row activate. Then the earliest

starting time of the next transaction is calculated with the considerations of all applicable

timing constraints and bus usages. Any transactions whose starting times have not come are

marked as blocked. Only unblocked transactions enter the transaction arbiter, which selects

one transaction at each memory cycle based on arbiter policies. Various arbiter policies can

be applied here to interleave transactions between different accesses/banks and maximize

the bus utilization. Finally the selected transaction is scheduled. The target bank’s state

will be updated according to the bank state transition diagram as shown in Figure 3.2. The

54 Chapter 3 Methodology

next transaction of the access will also be updated. If the scheduled transaction is the last

transaction of an access, the access complete signal is used to notify the memory access

queue to select and send a new access.

An SDRAM auto refresh logic periodically generates refreshing transactions. Refreshing

is done via row by row for all banks. Upon the completion of a refreshing, the bank will be

precharged. Therefore refreshing may interrupt partially scheduled accesses. For example,

an access whose row activate has done but the column access has not scheduled yet will

be interrupted by a refreshing, because the bank precharge closes the activate row. Those

interrupted accesses need to be restarted after the refreshing.

3.3.3 Revised M5 Baseline Machine Configuration

Table 3.2 lists the baseline machine configuration for the revised M5 v1.1 simulator and the

SDRAM module v2.0. Representing a high-end desktop PC, the baseline machine is to be

used for address reordering studies.

The CPU of the baseline machine is a 4GHz, 8-way out-of-order execution superscalar

processor with a 128KB instruction cache and a 128KB data cache, as well as an unified

2MB L2 cache. The simulated machine has 4GB DDR2 800 (PC2-6400) SDRAM main

memory, which is based on Micron MT47H64M8 512Mb DDR2 SDRAM device with 5-5-5-

17 (tCL-tRCD-tRP -tRAS) timing [43]. Burst length 8 is selected to transfer an entire cache

line in each memory access. There are two 64-bit channels, each of which consist of 4 ranks

and delivers a 6.4GB/s bandwidth. The 64-bit Front Side Bus (FSB) runs at 800MHz with

double data rate, resulting in a 12.8GB/s bandwidth matching for the total bandwidth

provided by two SDRAM channels.

The baseline machine uses a traditional bank in order scheduling, as discussed in Sec-

tion 2.7.3.1. Accesses within the same banks are scheduled in the same order as they are

issued, while access between different banks may be scheduled out of order. The static OP

3.4 Benchmarks 55

Table 3.2: Revised M5 baseline machine configuration

M5 v1.1 configuration
CPU 4GHz, 8-way out-of-order execution, 32 LSQ, 196 ROB
L1 cache 128KB I-cache and 128KB D-cache, 2-way, 64B cache line
L2 cache 2MB, 16-way, 64B cache line

SDRAM module v2.0 configuration
Front Side Bus 64-bit, 800MHz (1.6GHz data rate)
Main memory 4GB DDR2 800 (PC2-6400) SDRAM, 5-5-5-17, 64-bit

data bus, burst length 8
Channel/Rank/Bank 2/4/4
Virtual paging Not available
Controller policy Open Page
Address mapping Page interleaving
Access reordering Bank in order scheduling
Memory access pool 256
Maximal writes 64

policy and conventional page interleaving address mapping are used to isolate the contribu-

tions of controller policy and address mapping techniques. Read accesses and write accesses

share a memory access pool. The size of the memory access pool (256) is chosen not to

create a bottleneck. Because writes need extra spaces to store the write data, a maximal of

64 writes can be hold by the memory access pool.

3.4 Benchmarks

SPEC CPU2000 is the fourth major version of the Standard Performance Evaluation Cor-

poration (SPEC) CPU benchmark suites, which in 1989 became the first widely accepted

standard for comparing compute-intensive performance across various architectures [65].

SPEC CPU2000 comprises two sets of benchmarks: CINT2000 and CFP2000. The

CINT2000 comprises 12 application-based benchmarks written in C and C++ languages

for measuring compute-intensive integer performance. The CFP2000 comprises 14 bench-

marks written in FORTRAN (77 and 90) and C languages for measuring compute-intensive

56 Chapter 3 Methodology

floating point performance. The two suites measure the performance of a computer’s proces-

sor, memory architecture and compiler. Compared to the previous version SPEC CPU95,

CPU2000 suite offers longer run times, larger problems for benchmarks and more application

diversity.

SPEC CPU2000 benchmark suite is selected and used in SDRAM address mapping and

access reordering studies, except for the sixtrack benchmark which could not complete due

to insufficient floating point precision of the simulators. Some benchmarks are not memory

intensive, thus memory optimization techniques begin studied in this thesis may have little

impacts on them. However, results from the rest 25 SEPC CPU2000 benchmarks will all

be presented in Chapter 4 and Chapter 5 to prevent biasing the results [12]. Pre-compiled

little-endian Alpha ISA SPEC2000 binaries with reference input sets are used [11]. Table 3.3

lists the all simulated benchmarks and their command line parameters.

Besides SPEC CPU2000 benchmarks, SPEC CPU95 and other benchmarks such as the

STREAM are also used during the studies [64, 32]. Because these benchmarks are mainly

used for testing and debugging, their simulation results are not shown in this thesis.

3.4.1 Number of Instructions to Simulate

With reference input sets, simulation times of some SPEC CPU2000 benchmarks can be

extremely long, especially with the M5 simulator. Therefore only a selected number of

instructions are simulated.

The choice of the number instructions to simulate is based on simulation times and

how fast the caches are warmed up. The simulations should be able to complete within

reasonable times, meanwhile enough instructions should be simulated to expose the major

behaviors of the benchmarks. Fast forwarding, commonly used to skip cache warming up

stage, is not employed in studies presented in this thesis. This is because during cache

warming up stage there will be many cache misses (main memory accesses), meaning more

3.4 Benchmarks 57

Table 3.3: SPEC CPU2000 benchmark suites and command line parameters

CINT2000, 11 applications written in C and 1 in C++ (252.eon)
Name Remarks Input sets
164.gzip Data compression utility gzip.input.source 60
175.vpr FPGA circuit placement and routing net.in arch.in place.out dum.out

-nodisp -place only -init t 5 -exit t
0.005 -alpha t 0.9412 -inner num 2

176.gcc C compiler 166.i -o 166.s
181.mcf Minimum cost network flow solver mcf.inp.in
186.crafty Chess program < crafty.in
197.parser Natural language processing 2.1.dict -batch < parser.ref.in
252.eon Ray tracing chair.control.cook chair.camera

chair.surfaces chair.cook.ppm
ppm pixels out.cook

253.perlbmk Perl -I./lib diffmail.pl 2 550 15 24 23 100
254.gap Computational group theory -l ./ -q -m 192M < gap.ref.in
255.vortex Object Oriented Database lendian1.raw
256.bzip2 Data compression utility bzip2.input.source 58
300.twolf Place and route simulator ref

CFP2000, 14 applications (6 Fortran-77, 4 Fortran-90 and 4 C)
Name Remarks Input sets
168.wupwise Quantum chromodynamics
171.swim Shallow water modeling < swim.in
172.mgrid Multi-grid solver in 3D potential field < mgrid.in
173.applu Parabolic/elliptic partial differential

equations
< applu.in

177.mesa 3D Graphics library -frames 1000 -meshfile mesa.in
-ppmfile mesa.ppm

178.galgel Fluid dynamics: analysis of oscilla-
tory instability

< galgel.in

179.art Neural network simulation; adaptive
resonance theory

-scanfile c756hel.in -trainfile1 a10.img
-trainfile2 hc.img -stride 2 -startx 110
-starty 200 -endx 160 -endy 240
-objects 10

183.equake Finite element simulation; earthquake
modeling

< equake.inp.in

187.facerec Computer vision: recognizes faces < facerec.ref.in
188.ammp Computational chemistry < ammp.in
189.lucas Number theory: primality testing < lucas2.in
191.fma3d Finite element crash simulation
200.sixtrack Particle accelerator model < sixtrack.inp.in
301.apsi Solves problems regarding tempera-

ture, wind, velocity and distribution
of pollutants

58 Chapter 3 Methodology

performance improvement space is available to memory optimization techniques.

For SDRAM address mapping studies, the first 232 (about 4.3-billion) instructions are

simulated for all benchmarks. The first 2-billion instructions of CPU2000 benchmarks are

simulated for access reordering studies.

3.4.2 Main Memory Access Behaviors of Simulated Benchmarks

It is desirable, and even necessary, to know the memory access pattern of the benchmarks

that will be used in the studies of SDRAM address mapping and access reordering.

Figure 3.6 shows the total number of read memory accesses and write memory accesses

for the first 2-billion simulated instructions of SPEC CPU2000 benchmarks (except for

sixtrack). The data are obtained by the revised M5 simulator using the baseline ma-

chine configuration as listed in Table 3.2. Because main memory accesses are cache misses,

the number of main memory accesses are significantly fewer than the number of executed

load/store instructions after being filtered by the caches.

Among 25 benchmarks, gcc, mcf, swim, mgrid, applu, art, facerec, ammp and lucas

are the most memory intensive benchmarks. Benchmark ammp has the most number of main

memory accesses, about one main memory access every 14 instructions. These memory

intensive benchmarks are expected to show more significant performance differences than

other less memory intensive benchmarks when the proposed SDRAM address techniques

and access reordering mechanisms are applied.

Figure 3.7 shows the read write ratio in percentage. The most accesses of gcc and apsi

are writes, while eon and ammp have little writes. The average read write ratio of simulated

SPEC CPU2000 benchmarks is 58/42. Read write ratio can be used in memory access

scheduling to make scheduling decision as Chapter 5 will discuss. Other characteristics of

main memory access stream, such as localities, will be presented in Chapter 4 during the

studies of SDRAM address mapping.

3.4 Benchmarks 59

g
zi

p

vp
r

g
cc

m
cf

cr
a
ft

y

p
a
rs

e
r

e
o
n

p
e
rl

b
m

k

g
a
p

vo
rt

e
x

b
zi

p
2

tw
o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

a
p

p
lu

m
e
sa

g
a
lg

e
l

a
rt

e
q

u
a
k
e

fa
ce

re
c

a
m

m
p

lu
ca

s

fm
a
3
d

a
p

si

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
u

m
b

e
r

o
f

A
cc

e
ss

e
s

x1e8

Read
Write

Figure 3.6: Total number of main memory accesses of SPEC CPU2000 benchmarks

g
zi

p

vp
r

g
cc

m
cf

cr
a
ft

y

p
a
rs

e
r

e
o
n

p
e
rl

b
m

k

g
a
p

vo
rt

e
x

b
zi

p
2

tw
o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

a
p

p
lu

m
e
sa

g
a
lg

e
l

a
rt

e
q

u
a
k
e

fa
ce

re
c

a
m

m
p

lu
ca

s

fm
a
3

d

a
p

si

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e

Read
Write

Figure 3.7: Main memory accesses read write ratio of SPEC CPU2000 benchmarks

60 Chapter 3 Methodology

3.5 Validation

This section briefly discusses the method which is used to validate the implementations of

simulation modules and proposed techniques, as well as the method to verify simulation

results.

3.5.1 Validating the Implementations

Both the SDRAM module v1.0 and v2.0 are capable of generating various trace files and

detailed debug information, which are used to validate the implementations of both the

SDRAM module and proposed techniques.

Figure 3.8 illustrates a segment of an SDRAM bus transaction trace file of benchmark

gzip, which is generated by the revised M5 simulator v1.1 with the SDRAM module v2.0

using the configuration shown in Table 3.2, except that the SDRAM device has a 3-3-

3 timing. The trace file records the bus transactions happened on the SDRAM address

bus and data bus at each memory cycle. Numerous information are recorded, including the

memory cycle, transaction type, and the information about the access which the transaction

is associated with, such as access ID, type and access’s SDRAM address.

This segment shows the bus usages of channel0 from memory clock 331 to 365. During

this period of time, access42 to access46 are scheduled. Access42 to access44 are directed to

the same bank (bank0 of rank0), while access45 and access46 are directed to another bank

(bank0 of rank2). Because the bank in ordering scheduling is used, accesses within the same

banks are scheduled in order but accesses between different banks can be interleaved. For

example, access46 goes to a different bank as access43 and access44, the data transaction

of access46 fits perfectly in the interval between access43 and access44.

By carefully examining the profiles of these transactions, all timing constraints are found

to have been met, therefore the simulation module works correctly.

3.5 Validation 61

Tick Access ID Type,Rk,Bk,Rw,Co Address bus Access ID Data bus
--
 331: Access #42 (MemRead,0,0,8,1816) Precharge Access #41 DataRead
 332: Access #41 DataRead
 333:
 334: Access #42 (MemRead,0,0,8,1816) RowActivate
 335: Access #45 (MemRead,2,0,16,1160) ColRead
 336:
 337:
 338: Access #45 DataRead
 339: Access #42 (MemRead,0,0,8,1816) ColRead Access #45 DataRead
 340: Access #45 DataRead
 341: Access #45 DataRead
 342: Access #43 (MemRead,0,0,10,1696) Precharge Access #42 DataRead
 343: Access #42 DataRead
 344: Access #42 DataRead
 345: Access #43 (MemRead,0,0,10,1696) RowActivate Access #42 DataRead
 346:
 347:
 348: Access #43 (MemRead,0,0,10,1696) ColRead
 349:
 350:
 351: Access #43 DataRead
 352: Access #46 (MemRead,2,0,16,1168) ColRead Access #43 DataRead
 353: Access #44 (MemRead,0,0,8,0) Precharge Access #43 DataRead
 354: Access #43 DataRead
 355: Access #46 DataRead
 356: Access #44 (MemRead,0,0,8,0) RowActivate Access #46 DataRead
 357: Access #46 DataRead
 358: Access #46 DataRead
 359: Access #44 (MemRead,0,0,8,0) ColRead
 360:
 361:
 362: Access #44 DataRead
 363: Access #44 DataRead
 364: Access #44 DataRead
 365: Access #44 DataRead

Figure 3.8: Example of SDRAM bus transaction trace file

3.5.2 Verifying the Simulation Results

Statistic variables are used in simulations to collect information such as execution time or

row hit rate. Some statistics are made to be redundant. For example, the SDRAM module

v2.0 has the statistics for the total number of accesses received, as well as the total number

of occurrences of row hit, row empty and row conflict. The summary of row hits, row

empties and row conflicts should be equal to the total number of access received. By doing

cross checking of these redundant statistics, the simulation results are verified.

62 Chapter 3 Methodology

Chapter 4

SDRAM Address Mapping

SDRAM address mapping translates a physical address of a requested memory block into

an SDRAM address to locate the block in the main memory. Due to SDRAM’s nonuniform

access latency, the locations of the memory blocks result in various access latencies, therefore

SDRAM address mapping impacts the performance. This chapter studies SDRAM address

mapping techniques and proposes the bit-reversal address mapping. Simulation results

show that bit-reversal address mapping outperforms existing SDRAM address mapping

techniques through exploiting parallelism and reducing row conflicts.

4.1 Localities in Main Memory Access Stream

Due to the manner in which programs are created, hot sports in data structures are usu-

ally exhibited, such as arrays and stacks where data are stored in consecutive locations in

the memory and are likely to be accesses successively, leading to spatial locality in data

references. Also data in these hot spots tend to be reused frequently, leading to temporal

locality in data references. On the other hand, programs normally are executed sequen-

tially, thus instructions are read from the memory one by one. Meanwhile, the same sets

of instructions (i.e. procedures) are likely to be called again in the near future. Therefore

63

64 Chapter 4 SDRAM Address Mapping

spatial and temporal locality exist in memory references to program instructions as well.

The memory hierarchy is designed to exploit these localities of memory references. For

example, a copy of recently accessed data is kept in a cache which has a shorter access

latency than the main memory. When the data is accessed again as implied by temporal

locality, the cache provides a fast access to the data. Spatial locality is also exploited by the

cache. When a data is loaded into the cache, adjacent data falling into the same cache line

are also loaded into the cache at the same time. Therefore when these adjacent data are

needed in the near future according to spatial locality, they can be accessed quickly from

the cache.

With the existence of caches, main memory accesses are all cache misses from the lowest

level cache1. Does the main memory access stream still contain temporal and spatial locality

especially after being filtered by caches? The following two sections perform statistical

analysis on the main memory access stream and answer this question.

For the following studies of main memory access stream localities, a revised SimpleScalar

v3.0d with the SDRAM module v1.0 is used, as introduced in Section 3.2. The simulated

machine has the same configuration as shown in Table 3.1. The simulator generates trace

files which contain the sequence of main memory accesses of SPEC CPU2000 benchmark

suite with a maximal one billion simulated instructions and reference input sets. The results

presented in Section 4.1.1 and Section 4.1.2 are averaged across all simulated benchmarks.

4.1.1 Temporal Locality in Main Memory Access Stream

Memory block reuse distance is used here to refer to the number of accesses between two

memory accesses that request to the same memory block. In other words, reuse distance

presents temporal locality by showing how often a memory block will be reused.

Figure 4.1 shows distances for various sizes of memory blocks from 64-byte to 16KB

1Main memory accesses from other devices such as DMA controllers are not considered in this thesis,
although they are just other sources of main memory access streams

4.1 Localities in Main Memory Access Stream 65

0 10 20 30 40 50
Reuse Distance (Number of Accesses)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e
64KB
32KB
16KB
4KB
1KB
256B
128B
64B

Figure 4.1: Memory block reuse distance

based on SPEC CPU2000 benchmarks. The simulated machine has 64-byte L2 cache line

size and 16KB effective SDRAM row size2. 4KB is a typical virtual page size although

virtual paging is absent for the simulations presented in this section.

For cache line size memory blocks (64B), it is highly unlikely that they will be reused

within 50 accesses because they are still resident in the cache. For SDRAM row size memory

blocks (16KB), approximately 77% of accessed rows will be accessed again within the next

10 accesses. 87% of accessed rows will be reused within the next 50 accesses. This illustrates

that temporal locality is available in the main memory access stream even after the filtering

effects of two levels of cache.

4.1.2 Spatial Locality in Main Memory Access Stream

Normally memory blocks are allocated sequentially either in the virtual address space when

virtual paging is present, or in the physical address space when virtual paging is absent. So

far there is no virtual paging used in the simulations, thus the term address is referred to

2An effective SDRAM row is a logical row concatenating the same index rows across all devices within a
rank, which equals to the row size of each individual bank multiplied by the number devices in the rank.

66 Chapter 4 SDRAM Address Mapping

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
Physical Address Bit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b

il
it

y
o
f

C
h

a
n

g
e

Figure 4.2: Address bits change probability between adjacent main memory accesses

a physical address unless other specified.

Due to the sequential allocation, addresses of two memory blocks that are spatially close

to each other will have the most identical bits in the higher order address bits. The more

different higher order address bits two memory blocks have, the more far away they are in

address space.

Based on the same trace files used in Section 4.1.1, the probability of change of each

physical address bit between two temporally adjacent main memory accesses is studied and

shown in Figure 4.2. Due to the access granularity of 64-byte (a cache line size), the lowest

6-bit physical address bits (bit{5:0}) are fixed at zero, therefore they have zero probability

to change. From Figure 4.2, the lower order physical address bits (except for the lowest

6-bit) generally have a higher statistical probability of change from access to access than

the higher order address bits.

This confirms the availability of spatial locality in main memory access stream, be-

cause spatially close memory blocks are likely to be accessed temporally together and their

addresses are only different in the lower order address bits.

4.1 Localities in Main Memory Access Stream 67

4.1.3 Exploiting Localities with SDRAM Device

Both temporal and spatial locality are available in main memory access stream after being

filtered by two level caches as shown in Section 4.1.1 and Section 4.1.2. The question is how

SDRAM address mapping techniques can efficiently exploit these localities.

With flat SDRAM address mapping, as described in Section 2.6, memory blocks are allo-

cated sequentially in SDRAM address space, filling from the smallest components (columns)

to the biggest components (channels).

Using the OP policy, temporal locality and spatial locality within SDRAM rows can

be captured by SDRAM sense amplifiers. As introduced in Section 2.1, sense amplifiers

function like a row cache. As long as the row containing the previously accessed data is

still in the sense amplifiers, subsequent memory accesses, either requesting the same data

(temporal locality) or adjacent data (spatial locality), result in row hits and fast access.

However, when a program accesses data crossing the boundary of SDRAM rows, spatial

locality may cause row conflicts and degrade performance. Consider if there is no spatial

locality at all above SDRAM rows, the probability of an access to be a row conflict (going

to a different row of the same bank as the previous access) is given in Equation 4.1, where

n is the total number of banks and m is the total number of rows in each bank.

Prow conflict =
1
n
× m− 1

m
(4.1)

When spatial locality presents, the probability of row conflict is greatly increased because

adjacent rows within a bank are likely to be accessed temporally together.

The nonuniform characteristic of SDRAM device results in a situation where the objec-

tive is to maintain temporal and spatial locality within SDRAM rows meanwhile destroy

spatial locality above SDRAM rows. SDRAM address mapping techniques, especially the

bit-reversal address mapping to be presented in the next section, preserve SDRAM row

68 Chapter 4 SDRAM Address Mapping

locality and convert harmful spatial locality into bank parallelism which can be exploited

to reduce access latency through interleaving.

4.2 Bit-reversal Address Mapping

Based on the observation that the lower order physical address bits have higher probabilities

of change for temporally adjacent accesses than the higher order bits, and the discussion

about locality with SDRAM in Section 4.1.3, the bit-reversal SDRAM address mapping is

hereby proposed [58].

Bit-reversal address mapping maps channel, rank, bank and the higher order bits of

row index in a reversed order from the highest order physical address bits, as illustrated in

Figure 4.3. Channel index is not available in a single channel configuration. Compared to

the flat address mapping, as shown in Figure 2.8, bit-reversal address mapping adds an extra

step on top of flat address mapping, which reverses the v-bit highest physical address bits,

then interprets the reversed physical address to an SDRAM address in the same manner

that flat address mapping does.

Ch

Bank Row Column ByteRankCh

Bank’Row’ Column ByteRank’ Row

v

Figure 4.3: Bit-reversal SDRAM address mapping

The total number of reversed bits v is called the depth of reversal, which will be shown

to have impacts on performance in Section 4.3.1. The lower order bits of row index, column

index and byte index are mapped from the lowest order physical address bits at the same

positions.

4.2 Bit-reversal Address Mapping 69

4.2.1 Philosophy of Bit-reversal Address Mapping

The objective of bit-reversal address mapping is to achieve the greatest reduction in access

latency through changing access distribution in SDRAM address space.

Observations of Section 4.1.2 show that the lower order physical address bits change

more frequently than higher order physical bits from access to access. These lower order

physical bits which have the highest probability of change are mapped as column index,

as most existing address mapping methods do. While row index are mapped from those

physical address bits that are mostly unlikely to change. As a result, with high probabilities,

the addresses of two adjacent accesses only differ on the column indexes. When that happens

these two accesses fall in to the same row, resulting row hits and short access latency.

The address bits that have the next highest probability to change are used as indexes

for components bigger than row, i.e. channel, rank and bank. Therefore adjacent accesses,

which do not fall into the same row as described above, are most likely to be directed into

different channels/ranks/banks. Especially with multiple channels, distributing accesses to

different channels balances the load to each channel.

Bit-reversal address mapping preserves row hits thus locality within SDRAM rows can

be captured by SDRAM sense amplifiers. For potential row conflicts, bit-reversal address

mapping distributes them into different banks, therefore harmful spatial locality above

SDRAM rows are converted into bank parallelism, which can be exploited to reduce access

latency through interleaving accesses to different banks.

4.2.2 Hardware Implementation

The hardware implementation of bit-reversal address mapping is straightforward. In an em-

bedded system with a fixed amount SDRAM installed and a separate memory controller,

bit-reversal address mapping can be accomplished with routing traces between the micro-

processor and the memory controller on the PCB. In a desktop system designed to support

70 Chapter 4 SDRAM Address Mapping

flexible SDRAM modules and various processors, the memory controller can manage bit-

reversal address mapping. The operation of reversing v-bit highest order physical address

bits does not introduce any significant gate delay, as required by some other address map-

ping techniques. Bit-reversal address mapping costs very little to implement and has only

one parameter (the depth of reversal v) to set, yet improves system performance significantly

as Section 4.3 will present.

4.3 Performance Evaluation

The performance of bit-reversal address mapping is evaluated through a revised Sim-

pleScalar v3.0d with the SDRAM module v1.0 as introduced in Section 3.2. The con-

figuration of the baseline machines is listed in Table 3.1. Bit-reversal address mapping is

compared with existing address mapping methods, including page interleaving, rank inter-

leaving, permutation-based page interleaving and Intel’s 925X chipset address mapping, as

introduced in Section 2.6.1. Table 4.1 summarizes all simulated SDRAM address mapping

techniques.

Table 4.1: Simulated SDRAM address mapping techniques

Address mapping Address bits from the highest to the lowest
Flat Channel, rank, bank, row, column and byte index
Page interleaving Channel, rank, row, bank, column and byte index [69, 66]
Rank interleaving Channel, row, rank, bank, column and byte index [58]
Permutation-based
page interleaving

Same as page interleaving with bank index XORed with
row index [77]

Intel’s 925X chipset Same as page interleaving with reordered row index bits
and bank index bits [27]

4.3.1 The Depth of Reversal

Bit-reversal address mapping has one parameter, the depth of reversal, which is studied first

to find out the impact of the parameter before comparing bit-reversal with other address

4.3 Performance Evaluation 71

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Depth of Reversal

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

256KB L2
512KB L2
1024KB L2
2048KB L2

Figure 4.4: The depth of reversal with various L2 cache sizes

mapping techniques.

Simulations with various depths of reversal and L2 cache sizes are performed with 1

billion maximal instructions for each benchmark. Depth of reversal varies from 2 to 17,

meanwhile L2 cache size changes from 256KB to 2048KB. Execution time of each combi-

nation is normalized to a baseline (depth of 2 with 256KB L2) for each benchmark. Then

execution times are averaged crossing all simulated benchmarks. Results are shown in

Figure 4.4.

With a 256KB L2 cache, bit-reversal with a depth of 16 reduces the execution time

more than 28% over the depth of 2 with the same size L2. As L2 cache size increases, the

depth that has the shortest execution time reduces. With a 2048KB L2 cache, depth 13

reduces the execution time by 22%, excluding the improvement achieved by the enlarged

cache size. The depths that yield the best performance improvement for each cache size are

summarized in Table 4.2.

The third line of Table 4.2 shows that the performance improvement attributable to bit-

reversal decreases as L2 cache size increases. This is because bit-reversal address mapping

can only reduce latency of main memory accesses which are L2 cache misses. A larger

72 Chapter 4 SDRAM Address Mapping

Table 4.2: The depth having the shortest execution time under various cache sizes

L2 cache size 256KB 512KB 1024KB 2048KB
Depth having shortest execution time 16 15 14 13
L2 cache tag width 17 16 15 14
Improvement over depth 2 with same L2 28% 25% 23% 22%

L2 cache results in fewer main memory accesses. Therefore, bit-reversal is more useful for

systems that do no have a large L2 cache, such as embedded systems.

Assuming a set associative L2 cache using physical address (physically indexed and

physically tagged), according to Figure 2.7, L2 cache tag width can be calculated using

Equation 4.2, where memory size is the size of total physical memory. Given that the

simulated machine has a 16-way L2 cache and 2GB physical memory, cache tag width of

each L2 cache is also listed in Table 4.2.

cache tag width = log2(memory size)− log2(
cache size

cache associativity
) (4.2)

Based on simulation results, the depth of reversal which yields the lowest average exe-

cution time is one less than the L2 cache tag width, as shown in Equation 4.3.

depth of reversal = lowest level cache tag width− 1 (4.3)

Equation 4.3 is learned from experiments. Here is an explanation of the relationship

between depth of reversal and L2 cache tag width. Given a write-back n-way associativity

L2 cache, when a conflict miss occurs, the cache controller first writes the dirty cache line

back to main memory (or write buffer if applicable), then reads a new cache line from main

memory and loads it into the same cache line. The read and write memory access during a

conflict miss have the identical cache set index but different cache tags. If bit-reversal maps

channel, rank and bank index from the address bits corresponding to the identical cache set

4.3 Performance Evaluation 73

ChBank’Row’ Column ByteRank’

Cache Set Index Block OffsetCache Tag

v

t

Figure 4.5: Relationship between depth of reversal and cache tag width

index, and maps row index from those cache tag bits, as illustrated in Figure 4.5, then the

read and write access pair due to a cache conflict miss will be directed to different rows of

the same bank, resulting in a row conflict. Therefore depth of reversal should not exceed

tag width of the lowest level cache.

Another advantage of mapping read write pairs into different banks is that memory

access scheduling could be easier and more efficient if reads and writes are separate. Because

SDRAM devices (except for DDR2) usually have different profiles of read transactions and

write transactions on the address/data buses, mixing reads and writes to the same bank

may introduce idle bus cycles due to the difference between read write profiles as well as

other timing constraints such as tWTR as shown in Table 2.1.

According to Equation 4.2 and Equation 4.3, the most desired depth of reversal can

be easily derived from obtainable information, including the total size of main memory,

the lowest level cache size and its associativity. Therefore a flexible implementation of bit-

reversal address mapping that supports various processors and auto configuring the depth

of reversal is feasible.

For the following simulation results, a depth of 15 is used because the baseline machine

has a 512KB L2 cache. Although the selected depth of reversal delivers the best perfor-

mance crossing all simulated benchmarks, it may not be the best depth for each individual

benchmark.

74 Chapter 4 SDRAM Address Mapping

4.3.2 Remapped Physical Address Bits Change Pattern

In Section 4.1.2, bits change probabilities of physical address are shown in Figure 4.2. To

illustrate the impact of address mapping, a remapped physical address is created back from

an SDRAM address. A remapped physical address is recomposed, from the highest order

bits to the lowest order, by SDRAM channel, rank, bank, row, column and byte index, just

like in a reversed way of translating a physical address into an SDRAM address using the

flat address mapping as shown in Figure 2.8. Using remapping physical address, impacts of

various SDRAM address mapping techniques can be easily examined and compared.

According to baseline machine configuration (Table 3.1), the highest 2 bits (bit{30:29})

of a remapped physical address are rank index. The next highest 2 bits (bit{28:27}) are

bank index, followed by 13 bits row index (bit{26:14}) and 11 bits column index (bit{13:3}).

The lowest 3 bits are byte index (bit{2:0}). There is no channel index due to the single

channel configuration. The lowest 6 bits (bit{5:0}) of the remapped physical address are zero

because of memory access granularity which equals to a 64B cache line size. Figure 4.6 shows

bits change probabilities of remapped physical address after applying simulated SDRAM

address mapping techniques.

For flat address mapping, bit change pattern of remapped physical address is identical

to that of physical address. Therefore Figure 4.6(a) is the same as Figure 4.2.

With page interleaving address mapping, bank index (bit{28:27}) has a high probability

of change from access to access, meaning accesses are distributed well between banks, as

shown in Figure 4.6(b). However, because rank index (bit{30:29}) is still unlike to change,

memory accesses are only distributed well between banks inside a rank, but not crossing

different ranks.

Similar to page interleaving, permutation-based page interleaving and Intel’s 925X

chipset address mapping, as shown in Figure 4.6(c) and Figure 4.6(d) respectively, both

have high probabilities of change for bank index (bit{28:27}) but lower probabilities for

4.3 Performance Evaluation 75

(a) Flat

28 24 20 16 12 8 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b

il
it

y
o
f

C
h

a
n

g
e

(b) Page interleaving

28 24 20 16 12 8 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Permutation-based

28 24 20 16 12 8 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b

il
it

y
o
f

C
h

a
n

g
e

(d) Intel’s 925X chipset

28 24 20 16 12 8 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(e) Rank interleaving

28 24 20 16 12 8 4 0
Remapped Physical Address Bit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b

il
it

y
o
f

C
h

a
n

g
e

(f) Bit-reversal

28 24 20 16 12 8 4 0
Remapped Physical Address Bit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.6: Remapped physical address bits change probability between adjacent
main memory accesses

76 Chapter 4 SDRAM Address Mapping

rank index (bit{30:29}). Therefore their address bit change patterns are similar to that of

page interleaving.

Due to the XOR operation as introduced in Section 2.6.1.4, permutation-based page

interleaving has a more evenly change pattern throughout bank index bits than page inter-

leaving and Intel’s 925X chipset. Intel’s 925X chipset swaps the two highest row index bits

(bit{26-25}) [27]3. However, the row index bit order has no effects on the performance.

With rank interleaving and bit-reversal address mapping, both rank index and bank

index have high probabilities of change, as illustrated in Figure 4.6(e) and Figure 4.6(f).

Temporally successive memory accesses are likely to be mapped into different banks not

only intra ranks but also crossing different ranks, enabling bank parallelism.

Differences between rank interleaving and bit-reversal are, first, rank interleaving does

not change bit order of row index bits. However, changing bit order of row index bits

has no impacts on performance. Second and most important, rank interleaving maps all

row index from the highest address bits, as shown Figure 2.10. While bit-reversal, as

shown in Figure 4.3, uses depth of reversal to control how many row index bits are mapped

from the highest address bits with the considerations of cache conflict misses, as discussed

in Section 4.3.1. Therefore bit-reversal address mapping will be shown to have a better

performance than rank interleaving in Section 4.3.6.

4.3.3 Access Distribution in SDRAM Space

Bit-reversal address mapping attempts to map temporally adjacent accesses to different

banks crossing all available ranks and channels, thus an even distribution of accesses in the

SDRAM address space is expected. Figure 4.7 shows the average percentage of memory

accesses directed to each bank across all simulated benchmarks. The simulated machine

has a total of 16 banks which are shown in different colors.
3The row index bit order of Intel’s 925X chipset various between different memory modules [27]. Swapping

the two highest row index bits is only applicable to the memory configuration used in the simulations.

4.3 Performance Evaluation 77

Flat Page Permu Intel925 Rank BitRev
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rc

e
n

ta
g

e

Figure 4.7: Address distribution across all banks

Flat address mapping represents the original memory access distribution in the physical

address space, which is determined by program’s organization, such as loading text segment,

data segment and stack segment into different locations. As shown in Figure 4.7, with flat

address mapping only 4 banks have memory accesses and one bank has 84% of total accesses,

leaving the rest 12 banks unused.

Page interleaving, permutation-based page interleaving and the Intel’s 925X chipset

address mapping distribute memory accesses evenly intra ranks as previously discussed. As

shown in Figure 4.7, the 4 banks that have the most accesses belong to the same rank.

Although these 4 banks share accesses quite equally, memory accesses to different ranks are

still unbalanced.

Rank interleaving and bit-reversal both achieve an evenly distributed memory accesses

to all available banks. As most performance improvements of computer systems are made

by parallelism, i.e. pipeline and superscalar processors, rank interleaving and bit-reversal

enable the parallelism available in main memory and therefore improve the performance.

78 Chapter 4 SDRAM Address Mapping

4.3.4 Row Hit and Row Conflict

While evenly distributed accesses enable bank parallelism, localities existing in memory

access stream can also be exploited by SDRAM address mapping.

As introduced in Section 2.1.3, a memory access could be a row hit, row empty or

row conflict, depending upon the current state of the bank which the access is directed to.

Row conflicts can be further divided into two subcategories, hard row conflict and soft row

conflict. A hard row conflict is a row conflict that immediately follows the previous access

which it conflicts with. If there are any accesses directed to other banks between a row

conflict and the previous access it conflicts with, then this row conflict is a soft row conflict.

The difference is that the latency of a soft row conflict can be partially or completely

hidden by the other accesses between the soft row conflict and the previous access. However

the latency of a hard row conflict can not be hidden. Figure 4.8 illustrates examples of soft

row conflict and hard row conflict.

R3C0

D0
B0R0

R4 C4P4

D2
B0R0

D3
B0R1

D4
B2R2

C2 C3P3C1

D1
B2R0

Row hit Hard row
conflict

Soft row
conflict

Access0
B0R0

Access1
B2R0

Access2
B0R0

Access3
B0R1

Access4
B2R2

R0

Row
empty

Row
empty

R1

t0 t1 t2 t3 t4t3'

Px
Bank precharge

of access x
Rx

Rwo activate
of access x

Cx
Column access

of access x
Dx Data transfer

of access x

t

Figure 4.8: Hard row conflict and soft row conflict

Five accesses arrive in order at t0 to t4, as shown in the top of Figure 4.8. Given that

the SDRAM device in this example has a 2-2-2 (tCL-tRCD-tRP) timing and all accesses are

scheduled in the same order as they arrive, their actual bus transactions are shown on the

4.3 Performance Evaluation 79

bottom of Figure 4.8. Access0, access2 and access3 are directed to bank0, while access1

and access4 are directed to bank2. Assuming access0 and access1 are row empties, then

access2 is a row hit, access3 and access4 are row conflicts. Because access3 conflicts with

access2 and there is no other accesses between them, access3 is a hard row conflict. On the

other hand, access4 conflicts with access1 too, but due to the existence of other accesses

(access2 and access3) directed to a different bank, access4 is a soft row conflict.

Please note that access3 arrives at t3, but it can not start the bank precharge until the

previous access (access2) completes at t3′. This is because the bank they both access can

not be precharged until the data transfer of the previous access finishes. The bank precharge

and row activate of access4 are interleaved well with transactions of access3, therefore the

latency of access4 is largely overlapped with the latency of access3.

The reason of separating hard row conflicts from soft row conflicts is that the penalty of

hard row conflict can not be hidden by interleaving accesses to different banks. Thus hard

row conflicts have more negative impacts on performance. Figure 4.9 shows the average

row hit and hard row conflict rate crossing all benchmarks for simulated address mapping

techniques.

Compared to flat, all simulated SDRAM address mapping techniques significantly in-

crease row hit rate and reduce hard row conflict rate. Column index, which is the only

difference between the addresses of row hits, is intact during address mapping, thus row

hits are not affected by address mapping. Hard row conflicts are contiguous accesses whose

addresses have identical rank and bank index but different row indexes. With address map-

ping, especially bit-reversal address mapping, rank and bank index are mapped from address

bits that have high probabilities to change between contiguous accesses, therefore potential

row conflicts are most likely to be mapped into unique banks or ranks. Because bit-reversal

has the most evenly distributed accesses over all banks, as shown in Figure 4.7, it achieves

the most reduction in hard row conflicts among simulated address mapping techniques.

80 Chapter 4 SDRAM Address Mapping

Flat Page Permu Intel925 Rank BitRev
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rc

e
n

ta
g

e

Soft conflict/empty
Hard conflict
Row hit

Figure 4.9: Row hit and hard row conflict rate

As shown in Figure 4.9, bit-reversal address mapping greatly reduces the hard row

conflict rate from page interleaving’s 27% to 6%, resulting in a 78% reduction in hard row

conflicts over page interleaving. As a result of reduction in row conflicts, the row hit rate

increases. Bit-reversal increases the row hit rate from page interleaving’s 43% to 66%, a

53% improvement. Rank interleaving also increases the row hit rate to 59% and reduces

the hard row conflict rate to 12% due to its evenly distributed accesses.

4.3.5 Access Latency and Bus Utilization

The major objective of this thesis is to reduce the observed main memory access latency.

Figure 4.10 shows the average memory access latency in CPU cycles crossing all simulated

benchmarks. The reduced latency is a direct result of increased row hit rate, because row

hits have the shortest latency as presented in Section 2.1.3. Bit-reversal reduces the average

memory access latency from page interleaving’s 142 CPU cycles to 101 cycles, which is the

shortest access latency among all simulated address mapping techniques. Rank interleaving

achieves the second shortest access latency of 110 CPU cycles.

Figure 4.11 shows the average SDRAM bus utilization. As row hit rate increases, there

4.3 Performance Evaluation 81

will be fewer bank precharge and row activate transactions. Consequentially the number

of idle cycles of data bus, which are spent waiting for bank precharge and row activate

transactions to complete, is also reduced. Bit-reversal address mapping improves SDRAM

data bus utilization from paging interleaving’s 24% of to 29%, yielding the maximal data

bus utilization as well as the best effective memory bandwidth among simulated address

mapping techniques.

Flat Page Permu Intel925 Rank BitRev
0

50

100

150

200

250

C
P

U
 C

yc
le

s

Read
Write
Overall

Figure 4.10: Average main memory access latency in CPU cycles

Flat Page Permu Intel925 Rank BitRev
0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

Address bus
Data bus

Figure 4.11: Average SDRAM address and data bus utilization

82 Chapter 4 SDRAM Address Mapping

4.3.6 Execution Time

Execution time is the most important metric for performance evaluation. Figure 4.12 shows

the execution time of all simulated benchmarks under various address mapping techniques.

Execution times of different address mapping techniques are normalized to page interleave

for each benchmark. Flat address mapping is now shown here because it is inefficient and

has not been used by any real systems. The average execution times for each address

mapping across all benchmarks are shown in the rightmost columns. Bit-reversal address

mapping shown in the figure has a depth of 15 as discussed in Section 4.3.1.

g
zi

p

vp
r

g
cc

m
cf

cr
a
ft

y

p
a
rs

e
r

e
o
n

p
e
rl

b
m

k

g
a
p

vo
rt

e
x

b
zi

p
2

tw
o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

a
p

p
lu

m
e
sa

g
a
lg

e
l

a
rt

e
q

u
a
k
e

fa
ce

re
c

a
m

m
p

lu
ca

s

fm
a
3
d

a
p

si

a
ve

ra
g

e0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

Permu
Intel925
Rank
BitRev

Figure 4.12: Normalized execution time of various address mapping

Among 25 simulated SPEC CPU2000 benchmarks, bit-reversal only increases the execu-

tion time of two benchmarks, galgel and ammp, by 4% and 2% respectively. This is because

the specified depth of reversal (15) is selected to achieve the minimal average execution time

over all benchmarks. Depth of 15 may not yield the shortest execution time for benchmark

galgel and ammp.

4.3 Performance Evaluation 83

For the rest 23 benchmarks, bit-reversal address mapping does a very good job in re-

ducing execution time. It reduces the execution time by more than 10% for 12 benchmarks

over page interleaving. For some benchmarks, including gcc, gap, swim, mgid and facerec,

the reductions of execution time are more than 30%. On average, bit-reversal reduces the

execution time by 14% over page interleaving.

Rank interleaving also achieves a 11% reduction of execution time on average over page

interleaving. Rank interleaving outperforms bit-reversal on some benchmarks, such as gcc,

galgel, lucas and etc. Again, this is because the depth of 15 used in the simulations may

not be the best performed depth for these benchmarks.

Intel’s 925X chipset address mapping achieves the exactly same performance as page in-

terleaving. According to Figure 2.13 and the memory configuration used in the simulations,

the only difference between Intel’s 925X chipset and page interleaving is the swapping of

the 2 highest row index bits [27]. As discussed in Section 4.3.2, the bit order of row index

has no effects on performance. Therefore, given the simulated memory configuration, Intel’s

925X chipset virtually uses the same address paging as page interleaving.

Due to the XOR operation, permutation-based page interleaving achieves an average of

2% performance improvement over page interleaving. For some benchmarks, such as gcc

and apsi, permutation-based page interleaving reduces the execution time by 10% over

page interleaving.

Based on the simulation results, bit-reversal achieves the best performance among all

address mapping techniques examined. Bit-reversal address mapping creates an evenly dis-

tributed accesses over all available banks, enables the parallelism provided by main memory.

By interleaving accesses directed to different banks, access latencies are partially hidden and

thus reduced. Bit-reversal address mapping also attempts to direct potential row conflicts

into unique banks. The increased row hit rate leads to greater row locality, which is ex-

ploited by SDRAM sense amplifiers to further improve the performance.

84 Chapter 4 SDRAM Address Mapping

4.4 Address Mapping Working under Other Techniques

SDRAM Address mapping techniques enables bank parallelism and exploits row locality to

reduce memory access latency. SDRAM controller policy as discussed in Section 2.3 has

impacts on how the SDRAM row locality is exploited. The operating system virtual paging

also affects the distribution of memory accesses in memory space. The effects of SDRAM

controller policy and the OS virtual paging system, as well as how SDRAM address mapping

techniques perform when working in conjunction with them are studied in this section.

4.4.1 Address Mapping with Controller Policy

After an access completes, the SDRAM controller makes the decision whether to leave the

accessed row open or not subjected to the controller policy, as described in Section 2.3. Two

static controller policies, OP and CPA, are commonly used and can be selected through

the BIOS. For example, enabling a BIOS option, called SRAM Page-Mode, selects the OP

policy, which keeps the activated row open and allows fast access to the same row [71]. The

program is expected to contain significant row locality in main memory access stream in

order to take the advantage of the OP policy. Otherwise the OP policy will result in frequent

row conflicts. For programs that have little locality in main memory access stream, the CPA

policy, which closes each accessed row and precharges the bank automatically, can change

potential row conflicts into row empties, alleviating the penalty caused by row conflicts.

The controller policy that yields the best performance largely depends on an appli-

cation’s memory access pattern. In Section 3.2.1.3, an ideal dynamic controller policy,

Dynamic Upper Bound (DYN-UPB), is introduced. The DYN-UPB policy uses future ac-

cess information only available in simulations to select the most appropriate policy for each

access. If the next access is known to be a row hit, then the OP policy is chosen; otherwise,

the CPA policy is chosen. The OP policy is used for all previous simulation results. Impacts

of the CPA and DYN-UPB policy are hereby evaluated.

4.4 Address Mapping Working under Other Techniques 85

Page Permu Intel925 Rank BitRev
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

OP
CPA
DYN-UPB

Figure 4.13: Address mapping techniques under controller policies

Figure 4.13 shows the execution times corresponding to the OP, CPA and DYN-UPB

controller policy under different address mapping techniques. The execution times are

normalized to page interleaving with the OP policy, then averaged crossing all benchmarks,

to illustrate the effects of both address mapping techniques and controller policy.

For each controller policy, bit-reversal address mapping reduces the execution time by

14% over page interleaving with the OP policy, by 8% with the CPA policy and 13% with

the DYN-UPB policy. Other address mapping techniques, such as rank interleaving and

permutation-based page interleaving, also show consistent performance improvements with

different controller policies. This means that address mapping techniques can work together

with various controller policies to achieve a maximal reduction of execution time.

Also from Figure 4.13, the OP policy constantly outperforms the CPA policy because

most SPEC CPU2000 benchmarks exhibit significant locality in main memory access. As

an ideal dynamic controller policy, the DYN-UPB policy has the best performance and gives

an upper bound on performance improvement that a predictive dynamic controller policy

could provide. One dynamic controller policy predictor proposed by Ying Xu uses a history

based predictor to make the decision and has shown some performance improvements [74].

86 Chapter 4 SDRAM Address Mapping

4.4.2 Address Mapping with Virtual Paging

The previously simulated machine does not incorporate virtual paging system. Embedded

systems frequently do not incorporate virtual paging, whereas most PC operating systems

do support virtual paging, which can significantly impact memory access distribution.

In Section 3.2.1.4, a preliminary virtual paging system is introduced and implemented

into the simulator. Two page allocation algorithms, sequential allocation and random allo-

cation, are implemented. With sequential allocation pages are allocated sequentially from

the lowest address to the highest address. Random allocation allocates pages across all

available physical pages completely randomly. Impacts of virtual paging system with these

two page allocation algorithms on SDRAM address mapping are hereby studied.

The simulated machine for virtual paging studies has the same configuration as the

baseline machine shown in Table 3.1, except for the size of main memory. 2GB main

memory is replaced by 512MB, which consists of two ranks of eight 256Mbit technology

(32Mx8) SDRAM devices. The reason of reducing main memory size is to limit the size of

the page table. The virtual page size is 4KB. Page swapping is unnecessary because 512MB

memory is large enough for all simulated benchmarks and only one benchmark is simulated

at a time.

Figure 4.14 shows the average execution times of simulated address mapping techniques

under different virtual paging systems. Execution times are normalized to page interleaving

with no virtual paging to show both the impacts of address mapping techniques and virtual

paging system. When virtual paging is absent, bit-reversal reduces the execution time

by 14% over page interleaving. With the sequential allocation virtual paging, bit-reversal

reduces the execution time by 6%. However, when the random allocation virtual paging

is used, all simulated address mapping techniques including the flat show less than 2%

performance difference.

This is because spatial locality is partially destroyed during virtual to physical address

4.4 Address Mapping Working under Other Techniques 87

Page Permu Intel925 Rank BitRev
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

None
Sequential
Random

Figure 4.14: Address mapping techniques under virtual paging systems

translation, depending upon the page allocation algorithm used. A random allocation al-

gorithm places pages randomly and thus evenly over all SDRAM banks. Therefore only

spatial locality inside virtual pages is preserved. Any spatial locality above the size of vir-

tual pages (4KB) is completely destroyed by the random page allocation algorithm, leaving

little performance improvement space to SDRAM address mapping.

Bit-reversal address mapping has been shown working well with no virtual paging as well

as with virtual paging using sequential page allocation. SDRAM address mapping technique

has little effects on performance with the random allocation virtual paging system. Page

placement in a modern operating system will likely fall somewhere between the random and

sequential allocation. Therefore SDRAM address mapping, especially the bit-reversal, will

still be able to improve performance, although the performance gain contributed will be

less significant and non-deterministic dependent upon the actual page placement.

An intelligent page allocation algorithm that is aware of main memory structure and

nonuniform access latency could achieve a better performance than the sequential or ran-

dom allocation. Obviously that requires the incorporation with the compiler and/or the

operating system, and will be a part of future work of this thesis.

88 Chapter 4 SDRAM Address Mapping

Chapter 5

Access Reordering Mechanisms

Conventional memory controllers serve memory request in the same order as they received.

While the in order scheduling is easy to implement, it is obviously inefficient considering

the nonuniform characteristics of main memory and the fact that modern processors always

have a set of accesses to choose from. Access reorder mechanisms attempt to schedule

outstanding memory accesses in an order that will increase row locality, therefore resulting

in a reduced overall execution time. The proposed burst scheduling is presented, which

clusters row hits into bursts to maximize the utilization of SDRAM buses. Design space

of burst scheduling is exploited and optimizations are proposed. The performance of burst

scheduling is examined and compared with existing access reordering mechanisms. Finally

the combination of access reordering mechanisms and SDRAM address mapping techniques

is studied.

5.1 Philosophy of Burst Scheduling

In a packet switching network, data are encapsulated in packets which are commonly com-

posed by header and payload (data). The effective throughput of the network is usually

less than the theoretical network bandwidth because a fraction of the bandwidth is used

89

90 Chapter 5 Access Reordering Mechanisms

Access0 Access1 Access2 Access3 Access4

P0 R0 C0 C1 C2 C3 C4

Burst (payload)Overhead

Figure 5.1: Creating bursts from row hits

to transmit packet header. One way to increase the throughput is to use large packets.

Because the fraction of the overhead due to packet header reduces as packet sizes increase,

large packets usually result in high throughput.

Consider a main memory access, if the bank precharge, row activate and column access

transactions are considered as the overhead of a packet, and the actual data transaction is

considered as the payload, then the above theory about packet switching network can also

be used in memory access scheduling, which is a larger payload will result in a higher data

bus utilization.

The data transaction size of each memory access is usually equal to the lowest level

cache line size, so a large payload can be created from multiple data transactions from

different accesses. As show in Figure 5.1, accesses that are directed to the same row of the

same bank are selected from all available outstanding accesses and clustered together to

form a burst. With a OP controller policy, data transactions of the accesses inside a burst

can be performed on back to back cycles, resulting in a large payload and a high data bus

utilization. The size of bursts can grow as newly arrived accesses join existing bursts which

are being scheduled. The larger a burst is, the higher data bus utilization it has.

One drawback of using large packets in a packet switching network is the slow response

time. Especially when variable sized packets are allowed, small packets will experience long

latency if they follow large packets. This issue becomes worse in burst scheduling where the

size of a burst can increase dynamically. Starvation may occur to small bursts when new

5.1 Philosophy of Burst Scheduling 91

(a) Without burst interleaving

(b) With burst interleaving

Access0 Access5 Access6 Access7 Access1 Access2 Access3 Access4

Access0 Access3 Access2 Access6Access1 Access5 Access4 Access7

Burst A of Bank0 Burst B of Bank1 Burst C of Bank2

Figure 5.2: Interleaving bursts from different banks

accesses keep joining a burst being scheduled. The solution is to interleave bursts.

As shown in Figure 5.2, three bursts are created from eight accesses directed to three

different banks. Without burst interleaving, access5, access6 and access7 that arrive later

join burstA and are scheduled earlier than the accesses in burstB and burstC, resulting

in long latencies to those older accesses of small bursts, as illustrated in Figure 5.2(a).

BurstB and burstC could be starving if burstA keeps increasing. To reduce the latency to

old accesses and prevent starvation, three bursts are interleaved as shown in Figure 5.2(b).

Latency of older accesses (access1 to access4) are reduced. While burst interleaving does

not affect the data bus utilization, it allows different sized bursts from unique banks to be

served in relatively equal opportunity, preventing starvation.

Burst interleaving needs to be performed carefully as bubble cycles may be introduced.

For example, DDR2 devices require a rank-to-rank turnaround cycle to be inserted between

two data transactions from different ranks [30]. Therefore interleaving bursts between dif-

ferent ranks will cause significant rank-to-rank turnaround cycles and degrade the perfor-

mance. Also, read accesses and write accesses usually have different profiles. Additional

timing constraints, such as tWTR as shown in Table 2.1, need to be met when mixing reads

and writes. Therefore interleaving reads and writes may also cancel the performance gained

92 Chapter 5 Access Reordering Mechanisms

by burst scheduling.

Existing access reordering mechanisms, including the row hit scheduling and Intel’s out

of order scheduling, also attempt to combine row hits to exploit row locality and improve

bus utilization. However, their row hit first policy is more like a best effect in creating a

large burst. There is no guarantee that data transactions of selected row hits are transferred

in back to back cycles.

5.2 Evolution of Burst Scheduling

As introduced in Section 2.7.3, previous studies have proposed access reordering mecha-

nisms for stream-oriented systems [56, 25, 41, 55], web servers [54], network processors [22],

embedded systems [36, 33] and other applications [79, 39, 46, 34]. Chipset manufacturers

also have proprietary memory access scheduling solutions [57]. Motivated by the memory

wall, the studies of access reordering mechanisms examine these existing access reorder-

ing mechanisms with the goals of exploiting their best characteristics and addressing their

shortcomings.

5.2.1 Preliminary Study

The first study of access reordering mechanisms is to explore the design space of the row hit

access scheduling as introduced in Section 2.7.3.2. As shown in Figure 2.17, with the row

hit scheduling, outstanding memory accesses are stored in unique bank queues and selected

with a row hit first reordering policy. A global scheduler chooses one access from all bank

queues using a bank selection policy such as round robin.

The design space is explored by using various reordering policies as well as bank selection

policies. Reordering policy determines the access scheduling order within each bank, while

accesses from different banks are chosen subjected to bank selection policy. Table 5.1 lists

some of the possible reordering policies and bank selection polices.

5.2 Evolution of Burst Scheduling 93

Table 5.1: Possible reordering policies and bank arbiter policies

Reordering policies
Oldest first Memory accesses leave queue in order
Row hit first Row hit access first
Most dependent Access having the most dependent instructions first

Bank selection policies
Round robin Round robin style (same as least recently used)
Most recently used The most recently used bank first
Longest queue The bank having the longest queue first
Shortest queue The bank having the shortest queue first
Most dependent The bank having the most dependent instructions first
Random Randomly select bank

Preliminary simulation results show that reordering policy has impacts on performance.

However, bank selection policies expect for the round robin policy do not show any signif-

icant performance improvements. This is because listed bank selection policies rely solely

on bank queue information to make bank selecting decisions, they may miss the chances to

interleave accesses from different banks.

For example, with the most recently used policy, the selector attempts to schedule

all pending accesses from one bank before switching to another bank. It does not take

advantage of any bank parallelism. The reason why the round robin policy performs well is

that adjacently scheduled accesses are from different banks therefore they can be interleaved

to hide latency.

Based on the preliminary study, the bank selector needs to consider SDRAM device

state, device timing constraints as well as bus usages in order to achieve a good performance,

leading to a two-level scheduling.

5.2.2 Burst Scheduling: A Two-level Scheduler

An improved access reordering mechanism uses a two-level scheduler. Firstly, access re-

ordering are performed inside access queues at the access level. This is done by applying

94 Chapter 5 Access Reordering Mechanisms

reordering policies to control how accesses enter and/or leave the queues. Secondly, bus

transactions belonging to access selected from different banks are scheduled at the bus

transaction level with considerations of SDRAM device state and bus contentions. Various

access queue structures and reordering policies were considered for access level scheduling;

there are also different scheduling algorithms for bus transaction level scheduling.

The advantage of a two-level scheduler is that at each level different information are

used to make scheduling decisions. For example, access level scheduling could consider the

potential row hit and row conflict, trying to creating more row hits by reordering accesses in

the queue; while transaction level scheduling could focus on how to interleave transactions

between different banks to maximize the bus utilization.

Burst scheduling, as Section 5.3 will introduce in details, is a two-level scheduler. At the

access level, burst scheduling clusters row hits within each bank to create bursts. At the

transaction level, it uses a sophisticated bus transaction scheduler to schedule transactions

of different accesses with the goal to maximize data bus utilization while maintaining burst

structure. Burst scheduling also treats reads and writes differently at both levels through

unique read and write queues and different priorities.

5.2.3 Optimizations to Burst Scheduling

As the studies of access reordering continue, optimizations are proposed to burst scheduling,

including read preemption, write piggybacking and burst threshold.

As originally conceived in burst scheduling, when the scheduling process of an memory

access starts, it can not be interrupted until all required transactions are scheduled. As

mentioned in Intel’s out of order scheduling, a write access could be interrupted by a

read access to reduce the read latency [57]. This technique, known as read preemption, is

employed in burst scheduling to prioritize read accesses.

As reads are aggressively prioritized over writes, writes begin to impact the performance,

5.3 Details of Burst Scheduling 95

due to the more frequent occurrence of write queue saturation, which may cause CPU

pipeline stalls. Another optimization, called write piggybacking, is hereby proposed. Write

piggybacking attempts to append qualified writes at the end of read bursts to exploit row hit

in writes and prevent write queue saturations without significantly increasing read latency.

Read preemption and write piggybacking will be found working well individually but

they may conflict with each other on some benchmarks when working together. Therefore a

threshold is introduced to make a tradeoff between two optimizations in order to achieve a

performance improvement crossing all benchmarks. These optimizations, read preemption,

write piggybacking and burst threshold will be discussed in details in Section 5.3.2.2.

5.3 Details of Burst Scheduling

As introduced in Section 2.7.2, the SDRAM data bus is more critical than the address bus

due to access granularity and increased timing constraints. Based on existing access reorder-

ing mechanisms, burst scheduling is designed to increase the row hit rate and maximize the

SDRAM data bus utilization.

Burst scheduling creates bursts by clustering outstanding accesses directed to the same

rows of the same banks. Accesses within a burst, except for the first one, are row hits

and only require column access transactions. Data transactions from these accesses can be

transferred back to back without any idle cycles on the SDRAM data bus, resulting in a

high data bus utilization. Individual accesses that do not belong to any existing bursts are

treated as bursts containing single access. Bursts within a bank are sorted based on the

arrival time of the first access to prevent starving these single access bursts or small bursts.

Newly arrived accesses can join existing bursts even when the bursts are being scheduled.

A large or an increasing burst may delay bursts with in the same bank or from other banks,

increasing the latency of old accesses in other bursts. Therefore bursts are interleaved

between different banks to give relatively equal opportunity to each burst, reducing latency

96 Chapter 5 Access Reordering Mechanisms

to old accesses of small bursts. When bursts to multiple banks are interleaved, accesses

except for the first one of each burst are still row hits. Thus the high data bus utilization

can still be maintained. Considerations must be taken when interleaving bursts to avoid

bubble cycles on the data bus due to timing constraints, i.e. rank-to-rank turnaround cycles.

5.3.1 Hardware Structure

Figure 5.3 shows the structure of burst scheduling, which consist of the memory access

queue and the SDRAM bus transaction scheduler, as introduced in Section 3.3.2.

Bank0
Arbiter

SDRAM Bus Transaction Scheduler

Read
Write

Bank1
Arbiter

BankN
Arbiter

Memory accesses

SDRAM transactions

Shared
access

pool

Shared write
data pool

Write data

Figure 5.3: Structure of burst scheduling

Memory accesses directed to the same bank are stored in unique read queue and write

queue. All read queues and write queues share a global access pool and a write data pool is

used to store the data associated with writes. Both read and write queues are implemented

in linked lists, therefore there are no limits on queue length as long as the shared access

pool and the write data pool are not full. Accesses are organized in bursts in read queues.

An extra field in the data structure of the list element is used to indicate bursts. Depending

5.3 Details of Burst Scheduling 97

on the row index of the access address, upon arrival new reads will join existing bursts or

new bursts will be created and appended at the end of the read queues. There are bank

arbiters at each bank deciding whether a read or a write will be scheduled next. At each

memory cycle, the SDRAM bus transaction scheduler choices one access from all accesses

selected by bank arbiters and performs the corresponding transaction of that access based

the state of SDRAM device.

5.3.2 Scheduling Algorithm

The scheduling algorithm of burst scheduling is composed of three subroutines: first, access

enter queue subroutine; second, bank arbiter subroutine; third, SDRAM bus transaction

scheduler subroutine. These subroutines could be transformed into Finite State Machine

(FSM) for incorporation into the SDRAM controller.

5.3.2.1 Access enter queue subroutine

Figure 5.4 shows the access enter queue subroutine, which is called when new accesses enter

the queues. Because the write queue serves as a write buffer to allow reads to bypass

writes, reads upon arrival need to search the write queue for possible hits1. A write queue

hit occurs when a read requests the data at the same location as a preceding write. The

data from the latest write (if there are multiple) will be forwarded to the read such that the

read can complete immediately. Reads that are missed in the write queue enter the read

queue. If a read is directed to the same row as an existing burst, the read will be appended

to that burst. Otherwise, a new burst composed of the single new read will be created and

appended to the read queue. Bursts in the read queue are sorted by the arrive time of

the first access of each burst. All writes enter the write queue in order and are completed

immediately from the view of the CPU.

1Although write queue hits happen very unfrequently due to the small size of the write queue, reads have
to check with the write queue for possible hits to guarantee the correctness of program execution.

98 Chapter 5 Access Reordering Mechanisms

New access

Is access
a read?

Hit in the
write queue?

Forward the latest
write data to the read

Read completes
Send read response

Existing
burst in read

queue?

Append the read to the
existing burst

Create a new burst
 and append it to the

read queue

Return

Append the access to
the write queue

Write completes
Send write response

Yes

Yes

Yes

No

No

No

Figure 5.4: Access enter queue subroutine

5.3.2.2 Bank arbiter subroutine

As introduced in Section 3.3.2.1, each bank has one ongoing access, which is the access for

which transactions are currently being scheduled, but have not yet been completed. The

bank arbiter selects the ongoing access from either the read queue or the write queue. Reads

are generally prioritized over writes. Writes are selected only when there are no outstanding

reads in the read queue, when the write queue is full or when doing write piggybacking.

The algorithm is given in Figure 5.5.

As mentioned in Section 5.2.3, there are optimizations available to burst scheduling.

These optimizations are implemented in bank arbiter subroutine. The bank arbiter has

two options, read preemption and write piggybacking. Read preemption allows a newly

arrived read to interrupt an ongoing write. The read becomes the ongoing access and starts

immediately, therefore the read will have a shorter latency. Read preemption will not affect

the correctness of execution; the preempted write is moved back to the write queue and will

5.3 Details of Burst Scheduling 99

SDRAM cycle

Is ongoing
access NULL?

No

Return

Yes

Is the write
queue full?

Ongoing access =
the oldest write

Write queue
> threshold?

The last read
burst ends?

Row hit in
write queue?

Ongoing access =
the oldest row hit write
(write piggybacking)

Yes

No

Write queue
not empty?

Read queue
empty?

Ongoing access =
the oldest write

Ongoing access =
the first read of the

next burst (if available)

Yes

Yes

Yes

No

No

No

Yes

Yes

No

No

Is ongoing
access a write?

Read queue
not empty?

Write queue
< threshold?

Reset ongoing access

Ongoing access =
the first read of the

next burst
(read preemption)

Yes

Yes

Yes

No

No

No

Figure 5.5: Bank arbiter subroutine

100 Chapter 5 Access Reordering Mechanisms

be restarted later.

The major functionality of the write queue, besides hiding the write latency and reducing

write traffic [63], is to allow reads to bypass writes. The write queue capacity is determined

by the size of shared write data pool as shown in Figure 5.3. Due to M5’s implementation,

when the write queue reaches its capacity, main memory can not accept any new accesses

even if there are still rooms in the shared access pool, causing a possible CPU pipeline stall.

Write piggybacking is designed to prevent write queue saturation by piggybacking qual-

ified writes at the end of bursts. The writes being appended must be directed to the same

row as the burst, so that they will not disturb the continuous row hits created by the burst.

Write piggybacking is implemented by searching for qualified writes in the write queue at

the end of each burst. If there are no such writes available, the next burst will be started.

There may be idle cycles on the data bus between the last read and the first write in a burst

due to the difference in read and write profiles. Write piggybacking can greatly reduce the

probability of write queue saturation and also exploit the row locality from writes.

Read preemption and write piggybacking may conflict with each other, i.e. a piggy-

backed write may be preempted by a new read. A threshold is introduced to allow the bank

arbiter to have better control over read preemption and write piggybacking. When the

write queue occupancy is less than the threshold, read preemption is enabled. Otherwise,

write piggybacking is enabled. Section 5.4.6 will have a detailed study of the threshold and

determine the threshold which results in the shortest execution for simulated benchmarks.

5.3.2.3 SDRAM bus transaction scheduler subroutine

An SDRAM transaction is considered as unblocked when all timing constraints are met, as

introduced in Section 3.3.2.2. At each memory cycle, the SDRAM bus transaction scheduler

selects one ongoing access from all banks whose next transaction is unblocked and schedules

that transaction.

5.3 Details of Burst Scheduling 101

Table 5.2: SDRAM transactions priority table (1: the highest, 8: the lowest)

Type Transaction Same bank Same rank Other ranks

Read
Bank Precharge 5 5 5
Row activate 5 5 5

Column access 1 2 7

Write
Bank Precharge 6 6 6
Row activate 6 6 6

Column access 3 4 8

A priority table, as shown in Table 5.2, is used to select the ongoing access containing

the next unblocked transaction to be performed. Among all unblocked transactions, column

accesses within the same rank as the last access performed by the scheduler have the highest

priorities (priority 1 and 2).

Column accesses from different banks of the same rank are interleaved to create burst

interleaving as illustrated in Figure 5.2, so that bursts from different banks are equally

served, preventing starvation. The high data bus utilization can be maintained because

interleaved accesses are still row hits.

Bank precharge and row activate transactions have the next highest priorities as they

do not require SDRAM data bus resource therefore can be overlapped with ongoing column

access transactions. The scheduler has priorities set to finish all bursts within a rank before

switching to another rank to avoid the rank-to-rank turnaround cycles required by DDR2

devices [30]. Column accesses from different ranks thus have the lowest priority. At each

category, read transactions always have higher priorities than write transactions. An oldest

access first policy is used to break ties.

Based on the scheduling priority in Table 5.2, the subroutine of the SDRAM bus trans-

action scheduler is shown in Figure 5.6. In case there are no unblocked transactions from

any accesses, the scheduler will switch to the bank which has the oldest access and starts

the first transaction of the oldest access when it becomes unblocked.

102 Chapter 5 Access Reordering Mechanisms

SDRAM cycle

Last bank
has unblocked
 col access?

No

Return

Yes

Last rank
has unblocked
 col access?

Yes

No

Unblocked
precharge or row

activate?

Yes

Schedule the
unblocked col access

Schedule the oldest
unblocked col access

Schedule the oldest
unblocked precharge

or row activate

Scheduled
access has
completed?

Last bank/rank =
scheduled access’s

target bank/rank

No

Yes
Send access response

Last bank/rank =
the bank/rank that has

the oldest access

No

Return

Figure 5.6: SDRAM bus transaction scheduler subroutine

5.3.3 Program Correctness

Burst scheduling will not affect program correctness. There are three types of data hazards

or data dependencies: Read after Write (RAW), Write after Read (WAR) and Write after

Write (WAW) [61]. Reads are checked in the write queues for hits before entering the read

queues. If a read hits in the write queue, the latest data will be forwarded from the write

to the read, so read after write (RAW) hazards are avoided. Within bursts, writes are

always piggybacked after reads which have previously checked the write queue for read hits.

That avoids write after read (WAR) hazards. When piggybacking, the oldest write will be

selected first. Writes directed to the same rows are scheduled in program order, therefore

write after write (WAW) hazards are also avoided.

5.4 Performance Evaluation 103

5.4 Performance Evaluation

Performance of burst scheduling is evaluated and compared to existing access reordering

mechanisms through a revised M5 simulator v1.1 with the SDRAM module v2.0, as intro-

duced in Section 3.3.2. The simulated machine configuration is listed in Table 3.2. Access

latency, row hit/conflict rate, bus utilization and execution time are used as the major

metrics in performance evaluation.

5.4.1 Simulated Access Reordering Mechanisms

Besides bank in order scheduling (BkInOrder), three existing access reordering mechanisms

are also simulated, including the row hit scheduling (RowHit) [56], Intel’s out of order

memory access scheduling (Intel) [57] and Intel’s scheduling with read preemption option

(Intel RP). Table 5.3 summarizes all simulated access reordering mechanisms.

Table 5.3: Simulated access reordering mechanisms

BkInOrder In order scheduling intra banks, round robin inter banks
RowHit Row hit first intra bank, round robin inter banks [56]
Intel Intel’s out of order memory access scheduling [57]
Intel RP Intel’s out of order memory access scheduling with read preemption
Burst Burst scheduling
Burst RP Burst scheduling with read preemption
Burst WP Burst scheduling with write piggybacking
Burst TH Burst scheduling with a static threshold (52)

As introduced in Section 2.7.3.2, the row hit scheduling uses unified access queues for

each bank. The oldest access directed to the same row as the last access to that bank is

selected first. Accesses from different banks are scheduled in a round robin fashion.

Intel’s out of order memory scheduling, as introduced in Section 2.7.3.8, features unique

read queues per bank and a single write queue for all banks. Reads are prioritized over writes

to minimize read latency. Once an access is started, it will receive the highest priority so

that it can finish as quickly as possible to reduce the degree of reordering [57]. Not proposed

104 Chapter 5 Access Reordering Mechanisms

in the original patent, Intel’s access scheduling with read preemption, which allows reads

to interrupt ongoing writes as described in Section 5.3.2.2, is also simulated.

As discussed in Section 5.3, burst scheduling with read preemption (Burst RP) allows

reads to preempt writes. Burst scheduling with write piggybacking (Burst WP) carries qual-

ified writes as piggybacks at the end of bursts. Burst scheduling with threshold (Burst TH)

uses an experimentally selected threshold to switch dynamically between read preemption

and write piggybacking. The simulation results of Burst TH to be presented in Section 5.4.6

show that Burst TH with a static threshold of 52 delivers the best performance for the sim-

ulated benchmarks, thus this threshold will be used for the experiments comparing access

reordering mechanisms.

5.4.2 Row Hit Rate and Row Conflict Rate

Row hits require only one column transaction and result in shorter latencies than row emp-

ties and conflicts, as introduced in Section 2.1.3. Therefore access reordering mechanisms,

such as the row hit scheduling, attempt to prioritize row hits over row empties and conflicts.

As row empties and conflicts are postponed, chances are they may result in more row hits

as new accesses arrive. Figure 5.7 shows the average row hit, row conflict and row empty

rate crossing all simulated benchmarks.

All out of order access reordering mechanisms are able to increase row hit rate compared

to BkInOrder. Among them, RowHit, Burst WP and Burst TH have the highest row hit

rates (59-60%) and lowest row conflict rate (33-35%). As a comparison BkInOrder has a

42% row hit rate and a 52% row conflict rate. Intel and Burst without write piggybacking

have lower row hit rates although they are still better than BkInOrder. The reason is

that in contrast to Intel and Burst which only search row hits in the read queues, RowHit,

Burst WP and Burst TH seek row hits in both the read queues and the write queues.

With the OP policy, row empties only happen after SDRAM auto refreshing as banks

5.4 Performance Evaluation 105

B
k
In

O
rd

e
r

R
o
w

H
it

In
te

l

In
te

l_
R

P

B
u

rs
t

B
u

rs
t_

R
P

B
u

rs
t_

W
P

B
u

rs
t_

T
H

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rc

e
n

ta
g

e

Row empty
Row conflict
Row hit

Figure 5.7: Average row hit, row conflict and row empty rate

are precharged after refreshing. With read preemption, an ongoing write interrupted by a

read may have precharged the bank while having not yet initiated the row activate, causing

the preempting read to be a row empty. Therefore Intel RP, Burst RP and Burst TH have

increased row empty rates.

5.4.3 Access Latency

When a read request is issued to the main memory, all in-flight instructions dependent upon

this read request are blocked until the requested data is returned. Write requests, however,

can complete immediately because no data needs to be returned. Therefore, one of the

design goals of access reordering mechanisms is to reduce read latency.

Figure 5.8 shows the averaged read latency and write latency obtained by simulated

access reordering mechanisms crossing all benchmarks. Compared to bank in order, all out

of order access reordering mechanisms reduce read latency by a range of 20% to 47%; while

all write latencies except for that of the row hit scheduling are increased by 54% to 280%.

106 Chapter 5 Access Reordering Mechanisms

(a) Read Latency

B
k
In

O
rd

e
r

R
o
w

H
it

In
te

l

In
te

l_
R

P

B
u

rs
t

B
u

rs
t_

R
P

B
u

rs
t_

W
P

B
u

rs
t_

T
H

0

10

20

30

40

50

60

70

80

90
S

D
R

A
M

 C
yc

le
s

(b) Write Latency

B
k
In

O
rd

e
r

R
o
w

H
it

In
te

l

In
te

l_
R

P

B
u

rs
t

B
u

rs
t_

R
P

B
u

rs
t_

W
P

B
u

rs
t_

T
H

0

100

200

300

400

500

600

S
D

R
A

M
 C

yc
le

s
Figure 5.8: Access latency in SDRAM clock cycles

The row hit scheduling treats reads and writes equally and exploits row locality in both

reads and writes, thus it reduces read and write latency and achieves the lowest write latency

among all simulated access reordering mechanisms.

Intel and burst scheduling prioritize reads over writes. They reduce read latency at the

cost of increase in write latency. Burst RP has the lowest read latency because reads are not

only prioritized over writes but also allowed to preempt ongoing writes. Read preemption

helps Intel’s scheduling to reduce read latency as well. While read preemption makes write

latency even longer, write piggybacking greatly reduces write latency for Burst WP because

write are served faster and more row hits from writes are exploited through bursts.

To better understand the relationship between read and write latency, cumulative distri-

butions of access latency and distributions of outstanding accesses for the swim benchmark

are shown in Figure 5.9. Figure 5.9(a)(b) illustrates the percentage of accesses which expe-

rience a given latency. Figure 5.9(c)(d) shows the percentage of time which a given number

of accesses are outstanding in main memory. For easy reading only 0% to 99% of cumulative

distributions and 0% to 25% of normal distributions are shown in the figures.

The row hit scheduling slightly increases the number of outstanding accesses compared

5.4 Performance Evaluation 107

(a) Read Latency

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

(b) Write Latency

0 500 1000 15002000 2500 3000 3500 4000 4500
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

(c) Outstanding Reads

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

0.25

BkInOrder
RowHit
Intel
Intel_RP
Burst
Burst_RP
Burst_WP
Burst_TH

(d) Outstanding Writes

0 10 20 30 40 50 60 70
Number of Accesses

0.00

0.05

0.10

0.15

0.20

0.25

Figure 5.9: Cumulative distribution of access latency and distribution of outstanding
accesses for the swim benchmark

to bank in order to allow row hits (both in reads and writes) to be served first. Intel

and burst scheduling have large number of outstanding writes in the write queue due to

postponed writes. Burst is more aggressive in prioritizing reads over writes than Intel’s.

As a result, Intel and burst scheduling cause write queue saturation 24% and 46% of time

respectively for the swim benchmark. Read preemption reduces the number of outstanding

reads but causes the write queue saturating even more frequently, i.e. Burst RP causes

write queue saturation 70% of time.

Prioritizing reads over writes can improve system performance as read latency which has

impacts on performance is reduced. However, postponing writes increases the probability

of write queue saturation, which may result in CPU pipeline stalls and cancel out the

performance improvement gained by reduced read latency. Write piggybacking is hereby

108 Chapter 5 Access Reordering Mechanisms

employed to empty writes from the write queue without causing an undo increase in read

latency. Consequently, Burst WP only causes write queue saturation 2% of time. Burst TH

with a threshold of 52 makes a tradeoff between reducing read latency and preventing write

queue saturation, resulting in a 9% write queue saturation rate. Therefore Burst TH yields

the best performance as following sections will show.

5.4.4 SDRAM Bus Utilization

The SDRAM bus utilization, which is the percentage of time that the bus is occupied, is

shown in Figure 5.10. While there is less than 2% difference in address bus utilization among

all simulated access reordering mechanisms, the data bus utilization varies in a range from

22% to 29%, which confirms that the data bus is more critical than the address bus. Given

the simulated DDR2 PC2-6400 SDRAM, Burst TH achieves the highest data bus utilization

of 29%, therefore increases the effective memory bandwidth from 1.4GB/s (BkInOrder) to

1.9GB/s, resulting in a 32% improvement.

B
k
In

O
rd

e
r

R
o
w

H
it

In
te

l

In
te

l_
R

P

B
u

rs
t

B
u

rs
t_

R
P

B
u

rs
t_

W
P

B
u

rs
t_

T
H

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

Address bus
Data bus

Figure 5.10: SDRAM bus utilization

5.4 Performance Evaluation 109

5.4.5 Execution Time

Previous sections show that access reordering mechanisms can increase row hit rate and

reduce access latency, therefore speedups in program executions are expected. Execution

time of each individual benchmark under simulated access reordering mechanisms are ex-

amined in this section. For comparison, execution times are normalized to BkInOrder, as

shown in Figure 5.11.

g
zi

p

vp
r

g
cc

m
cf

cr
a
ft

y

p
a
rs

e
r

e
o
n

p
e
rl

b
m

k

g
a
p

vo
rt

e
x

b
zi

p
2

tw
o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

a
p

p
lu

m
e
sa

g
a
lg

e
l

a
rt

e
q

u
a
k
e

fa
ce

re
c

a
m

m
p

lu
ca

s

fm
a
3
d

a
p

si

a
ve

ra
g

e0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

RowHit
Intel
Intel_RP
Burst
Burst_RP
Burst_WP
Burst_TH

Figure 5.11: Execution time of access reordering mechanisms

RowHit achieves an average 11% reduction of execution time compared to BkInOrder.

Intel and Burst (without read preemption and write piggybacking) reduce the execution

time by 8% and 9% respectively. Read preemption alone contributes an average of 2%

improvement on top of Intel and Burst. Write piggybacking alone contributes other 3%

improvement on top of Burst, resulting in a total of 12% reduction of execution time by

Burst WP. Burst TH which combines read preemption and write piggybacking through

a static threshold of 52 yields the best performance among all simulated access reordering

110 Chapter 5 Access Reordering Mechanisms

mechanisms, achieving a 14% reduction in execution time crossing all simulated benchmarks,

which equals to a 4% improvement over RowHit, 7% and 4% improvement over Intel and

Intel RP respectively.

Read preemption and write piggybacking have a varied impact dependent upon bench-

mark characteristics. For mcf, parser, perlbmk and facerec, read preemption contributes

much greater performance improvement compared to write piggybacking. For the remain-

der of the benchmarks, write piggybacking generally results in more improvement than read

preemption. Especially for gcc and lucas, Burst WP achieves 14% and 28% reduction in

execution time respectively.

It is desirable to take advantage of both read preemption and write piggybacking to

achieve a maximal performance improvement. A static threshold is employed to dynamically

switch between read preemption and write piggybacking as introduced in Section 5.3.2.2.

The next section will show how this threshold affects the performance and how the optimized

threshold is determined.

5.4.6 Threshold of Read Preemption and Write Piggybacking

Read preemption and write piggybacking have been shown to perform well on some bench-

marks but not on all benchmarks. Which one has greater impact on performance is largely

dependent on the memory access patterns of benchmarks. For example, allowing a critical

read having many dependent instructions, to preempt an ongoing write may improve the

performance. However, completing the ongoing write may prevent CPU pipeline stalls due

to a saturated write queue, therefore improving the performance as well.

When the write queue has low occupancy, read preemption is desired to reduce read

latency by allowing reads to bypass writes. When the write queue approaches its capacity,

write piggybacking can keep the write queue from saturation. Therefore read preemption

and write piggyback can be switched dynamically based on the write queue occupancy:

5.4 Performance Evaluation 111

(a) Read Latency

B
u

rs
t

W
P

T
H

8
T

H
1

6
T

H
2

4
T

H
3

2
T

H
4

0
T

H
4

8
T

H
5

2
T

H
5

6
T

H
6

0
R

P

0

10

20

30

40

50

S
D

R
A

M
 C

yc
le

s

(b) Write Latency

B
u

rs
t

W
P

T
H

8
T

H
1

6
T

H
2

4
T

H
3

2
T

H
4

0
T

H
4

8
T

H
5

2
T

H
5

6
T

H
6

0
R

P

0

100

200

300

400

500

600

S
D

R
A

M
 C

yc
le

s

Figure 5.12: Access latency of burst scheduling with various thresholds

B
u

rs
t

W
P

T
H

8

T
H

1
6

T
H

2
4

T
H

3
2

T
H

4
0

T
H

4
8

T
H

5
2

T
H

5
6

T
H

6
0

R
P

0.90

0.92

0.94

0.96

0.98

1.00

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

Figure 5.13: Execution time of burst scheduling with various thresholds

when the write queue occupancy is less than a certain threshold, read preemption is enabled;

otherwise, write piggybacking is enabled.

To determine the threshold that yields the best performance, simulations with various

thresholds are performed and the results are shown in Figure 5.12 and Figure 5.13. The

execution times are averaged crossing all benchmarks and normalized to Burst. As the

threshold increases, read latency first decreases because there are more reads resulting in

shorter latencies by preempting writes. From threshold 40 read latency starts increasing

112 Chapter 5 Access Reordering Mechanisms

(a) Read Latency

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

(b) Write Latency

0 500 1000 1500 2000 2500
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

(c) Outstanding Reads

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

0.25

Burst
WP
TH8
TH16
TH24
TH32
TH40
TH48
TH52
TH56
RP

(d) Outstanding Writes

0 10 20 30 40 50 60 70
Number of Accesses

0.00

0.05

0.10

0.15

0.20

0.25

Figure 5.14: Cumulative distribution of access latency and distribution of outstand-
ing accesses for the swim benchmark with various thresholds

mainly due to CPU pipeline stalls caused by increased occurrences of write queue saturation.

Write latency increases as expected as the threshold increases. Execution time is determined

by both read latency and write latency. According to Figure 5.13, the threshold 52 yields

the lowest execution time crossing simulated benchmarks.

Using the same example swim benchmark as in Section 5.4.3, cumulative distribution of

access latency and distribution of outstanding accesses with various thresholds are shown

in Figure 5.14. Note that Burst RP and Burst WP are equivalents to Burst TH64 and

Burst TH0 given that the write queue size is 64.

From Figure 5.14, Burst RP has fewer outstanding reads than other thresholds, however,

read latency of Burst RP is slightly higher than others. This is because when there are fewer

reads in the read queue, there are less chances for row hits to occur. In order for burst

5.4 Performance Evaluation 113

(a) Read Latency

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

(b) Write Latency

0 500 1000 1500 2000 2500 3000
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

(c) Outstanding Reads

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

0.25

Burst
WP
TH8
TH16
TH24
TH32
TH40
TH48
TH52
TH56
RP

(d) Outstanding Writes

0 10 20 30 40 50 60 70
Number of Accesses

0.00

0.05

0.10

0.15

0.20

0.25

Figure 5.15: Cumulative distribution of access latency and distribution of outstand-
ing accesses for the parser benchmark with various thresholds (Read
preemption contributes most)

scheduling to create larger bursts and increase row hits, the read queue should contain a

certain number of outstanding reads, and these reads should be served at a rate that will

not deplete the read queue too quickly.

As the threshold increases from 0 to 64, the peak value of outstanding writes increases

as well, as shown in Figure 5.14. The write buffer saturation rate is below 7% when the

threshold is less than 48. The saturation rate increases to 14% at threshold 56 then jumps

to 70% at threshold 64 (Burst RP). The earlier write piggybacking is enabled, the less

frequently the write queue saturation will occur.

Figure 5.15 and Figure 5.16 show two other benchmarks, parser and lucas. Among

all benchmarks simulated, read preemption contributes the most performance improvement

114 Chapter 5 Access Reordering Mechanisms

(a) Read Latency

0 50 100 150 200 250 300 350 400
0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

(b) Write Latency

0 1000 2000 3000 4000 5000 6000
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

(c) Outstanding Reads

0 5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25

Burst
WP
TH8
TH16
TH24
TH32
TH40
TH48
TH52
TH56
RP

(d) Outstanding Writes

0 10 20 30 40 50 60 70
Number of Accesses

0.00

0.05

0.10

0.15

0.20

0.25

Figure 5.16: Cumulative distribution of access latency and distribution of outstand-
ing accesses for the lucas benchmark with various thresholds (Write
piggybacking contributes most)

over Burst on parser, while write piggybacking contributes the most on lucas.

As shown in Figure 5.15, Burst RP (TH64) has the lowest read latency compared to

other thresholds. Burst RP does have one of the highest write latencies, however, it does

not cause too much write queue saturations, which only happens 5% percent of time. Low

read latency and acceptable write queue saturation rate explain why Burst RP has the best

performance among all thresholds on parser. And obviously the performance of parser is

largely depends on the read latency.

As shown in Figure 5.16, Burst RP is able to keep the number of outstanding reads

of benchmark lucas below 5 for 95% of time, resulting in a relative short read latency.

However, the write queue saturates at 78% of time due to read preemption. A lower

5.5 Adaptive Threshold Burst Scheduling 115

threshold reduces the write queue saturate rate. Apparently lucas is more sensitive to

write latency, therefore Burst WP achieves the lowest execution time among all thresholds.

5.5 Adaptive Threshold Burst Scheduling

A static threshold of 52, as shown in Figure 5.13, results in the shortest execution time

crossing simulated benchmarks. Intuitively a static threshold may not deliver the best

performance for each individual benchmark, because memory access pattern various between

benchmarks and program behavior also alters when execution phase changes. A preliminary

study of performance impacts of an adaptive threshold is hereby performed.

Figure 5.17 confirms the above statement that a static threshold may not work best

for each benchmark. Execution times are normalized to burst scheduling without read

preemption and write piggybacking. To better illustrate the effect of the threshold, 9

benchmarks that show less than 2% difference in execution time under various thresholds

are not shown in Figure 5.17.

Among the 16 benchmarks shown, 7 benchmarks exhibit a declining trend in execution

time as the threshold increases. This means a higher threshold helps to improve the per-

formance on these benchmarks by allowing more reads to preempt writes. Contrarily 12

benchmarks have a significantly increased execution time with Burst RP (threshold 64),

meaning that turning write piggybacking completely off will degrade the performance.

Based upon the above observations, an adaptive threshold should be able to find a

threshold which is best suited to program behavior, allowing reads to prioritize writes

meanwhile preventing write queue saturation which may cause CPU pipeline stalls. While

program behavior varies between benchmarks, memory access pattern also changes when a

benchmark transits between phases of execution. Thus an adaptive threshold should also

be able to seek out the threshold appropriate to changes in program memory access pattern

relatively quickly.

116 Chapter 5 Access Reordering Mechanisms

g
zi

p

g
cc

m
cf

p
a
rs

e
r

p
e
rl

b
m

k

g
a
p

b
zi

p
2

w
u

p
w

is
e

sw
im

m
g

ri
d

a
p

p
lu

m
e
sa a
rt

fa
ce

re
c

lu
ca

s

a
p

si

a
ve

ra
g

e0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

WP
TH8
TH16
TH24
TH32
TH40
TH48
TH52
TH56
TH60
RP

Figure 5.17: Burst scheduling with various static thresholds on selected benchmarks

5.5.1 Performance Improvement Space of Adaptive Threshold

While an upper bound of performance improvement that an adaptive threshold can con-

tribute may be difficult, if not impossible, to be obtained, evaluating various thresholds

for each individual benchmark gives one possible estimation of performance improvement

which an adaptive threshold could contribute.

As shown in Figure 5.17, if the threshold is individually selected for each benchmark, the

average reduction of execution time over Burst is 9.2%, which is 0.5% greater than the 8.7%

reduction of execution time achieved by Burst TH (threshold 52). For some benchmarks

such as gcc and parser, threshold 32 and threshold 64 outperform Burst TH by 2.2%

and 2.1% respectively, meaning an adaptive threshold could improve performance more

significantly on these two benchmarks.

However, the above performance estimation of an adaptive threshold only considers the

5.5 Adaptive Threshold Burst Scheduling 117

overall difference in memory access pattern between benchmarks. The variety of access

pattern when a program transits between execution phases is not considered. Therefore,

a well designed adaptive threshold burst scheduling should be able to contribute more

performance improvement than the above estimation.

5.5.2 History-based Adaptive Threshold

The proposed history-based adaptive threshold is one possible adaptive threshold algorithm.

Using history information, history-based adaptive threshold adjusts the threshold on the

fly to catch up program’s read write ratio.

A history record of received and scheduled accesses, including the total number of re-

ceived as well as scheduled reads and writes in a given sized history window, is maintained

during runtime and used to periodically update the threshold.

Figure 5.18 illustrates the algorithm of history-based adaptive threshold. Received read

rate and scheduled read rate are calculated based on history information using Equation 5.1

and 5.2. When received read rate is greater than scheduled read rate, more reads then writes

are accumulated in the access queue. In this case, the threshold is increased by one, allowing

more reads to preempt writes. If the received read rate is smaller than scheduled read rate,

writes are queuing in the write queue. To prevent write queue saturation, the threshold is

decreased by one, allowing writes to be piggybacked with bursts. Special consideration is

given to write queue saturation, because it may cause CPU pipeline stall and degrade the

performance. If the write queue is saturated and its overall saturation rate is greater than a

preset value (5%), the threshold will be reduced by 50%. This promotes write piggybacking

and alleviates the penalty of write queue saturation quickly.

received read rate =
received reads

received reads + received writes
(5.1)

scheduled read rate =
scheduled reads

scheduled reads + scheduled writes
(5.2)

118 Chapter 5 Access Reordering Mechanisms

1: if new access received or access scheduled then
2: update access history

end if
3: if time to update threshold then
4: if write queue is saturated and

write queue saturation rate > 5% and
threshold/2 > min threshold then

5: threshold = threshold/2
6: else if received read rate > scheduled read rate and

threshold < max threshold then
7: threshold = threshold + 1
8: else if received read rate < scheduled read rate and

threshold > min threshold then
9: threshold = threshold− 1

end if
end if

Figure 5.18: A history-based adaptive threshold algorithm

History-base adaptive threshold has two parameters, history length (l) and update in-

terval (i). Information of the last l received accesses and the last l scheduled accesses are

maintained in two circular buffers respectively. Circular buffers are employed because of

their filter effect which smoothes out accidental changes in access pattern. Threshold is up-

dated at every i memory cycles or every i memory accesses. A small i means the algorithm

is sensitive to short-term changes in the access pattern, while a large i results in a better

tracking of long-term access pattern changes.

5.5.2.1 Performance of History-based Adaptive Threshold

A performance comparison between static threshold Burst TH52 and the proposed history-

based adaptive threshold are shown in Figure 5.19. In the figure, Burst AT128 64(c) is

referred to the history-based adaptive threshold with a history length of 128 and an update

interval of 64 memory cycles. The letter in the last parenthesis denotes the unit of the

update interval. A ‘c’ means memory cycle and a ‘m’ means received memory access.

5.5 Adaptive Threshold Burst Scheduling 119

g
zi

p

g
cc

m
cf

p
a
rs

e
r

p
e
rl

b
m

k

g
a
p

b
zi

p
2

w
u

p
w

is
e

sw
im

m
g

ri
d

a
p

p
lu

m
e
sa a
rt

fa
ce

re
c

lu
ca

s

a
p

si

a
ve

ra
g

e0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

Burst_TH52
Burst_AT128_64(c)
Burst_AT512_64(c)
Burst_AT128_1024(c)
Burst_AT128_64(m)
Burst_AT512_64(m)
Burst_AT128_1024(m)

Figure 5.19: Burst scheduling with static and adaptive threshold on selected bench-
marks

As a limited exploitation of the design space, the history length is increased to 512 with

Burst AT512 64(c|m). In another scenario, the update interval is enlarged to 1024 with

Burst AT128 1024(c|m). Both memory cycle and memory access are used as update unit.

As shown in Figure 5.19, Burst AT128 64(c) and Burst AT512 64(c) are able to outper-

form Burst TH52 on selected benchmarks, including gcc, gap, mesa and art, although the

performance improvements are trivial. For the rest benchmarks, Burst TH52 still holds the

best performance. On average, a long history and a long update interval both degrade the

performance, meaning a sensitive and frequently updated threshold is desired.

Switching the update unit from memory cycle to memory access does not help improving

the performance. This because the average arrival interval between memory accesses are

generally larger than a memory cycle. Using memory access as the update unit results in a

slower updating.

120 Chapter 5 Access Reordering Mechanisms

5.5.2.2 Distribution of the Adaptive Threshold

Figure 5.20 shows the distribution of the adaptive threshold on four selected benchmarks,

on which the adaptive threshold has better performance then Burst TH52. As shown in

Figure 3.7(a), benchmark gcc has 94% of writes. As a result, 60% of time the threshold of

gcc is 0, which means read preemption is disabled and write piggybacking is enabled for

the most of time, allowing writes to be served quickly. In contrary to gcc, benchmark art

has 83% of read accesses. Therefore the threshold of art, as shown in Figure 5.20(d), is

pushed to the upper side, allowing reads to preempt writes.

(a) gcc

0 10 20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

Burst_AT512_64(c)

(b) gap

0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Burst_AT512_64(c)

(c) mesa

0 10 20 30 40 50 60 70
Threshold

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
e
rc

e
n

ta
g

e
 o

f
T

im
e

Burst_AT512_64(c)

(d) art

0 10 20 30 40 50 60 70
Threshold

0.00

0.05

0.10

0.15

0.20

0.25
Burst_AT512_64(c)

Figure 5.20: Adaptive threshold distribution on selected benchmarks

Benchmark gap and mesa have mixed read and write accesses. When the program

transits its execution phases, the main memory access stream alternates between read in-

tensive and write intensive. The adaptive threshold is able to catch up this transition and

5.6 Access Reordering Combines with Address Mapping 121

move toward to the direction which will match program’s read write rate, as illustrated in

Figure 5.20(b)(c).

Although numerous adaptive threshold experiments have been performed, the proposed

history-based adaptive threshold does not deliver a better performance than the static

threshold on average. However, an improved or fine-tuned adaptive threshold algorithm

should have the potential to outperform the static threshold at the cost of increased com-

plexity.

5.6 Access Reordering Combines with Address Mapping

SDRAM address mapping techniques, as presented in Chapter 4, attempt to distribute

accesses evenly among all banks, therefore enabling bank parallelism and reducing potential

row conflicts. Simulation results shown in Chapter 4 are obtained by a revised SimpleScalar

v3.0d with the SDRAM module v1.0 using an in order memory access scheduler.

Access reordering mechanisms studied in this Chapter do not affect access distribution.

Instead, access reordering mechanisms change the order in which memory accesses are exe-

cuted to increase and exploit row locality. SDRAM address mapping and access reordering

use different approaches to address the same issue of long main memory access latency.

Therefore these two techniques are hereby combined to examine whether they can achieve

a performance improvement when working together which is greater than the performance

improvements each technique can contribute individually.

Using the revised M5 simulator v1.1 with the SDRAM module v2.0 and the same baseline

machine configuration as shown in Table 3.2, five SDRAM address mapping techniques and

four access reorder mechanisms, a total of 20 combinations, are simulated. The results

are shown in Figure 5.21. Execution time of each combination is normalized to paging

interleaving with bank in order scheduling and averaged crossing all simulated benchmarks.

122 Chapter 5 Access Reordering Mechanisms

Page Permu Intel925 Rank BitRev

Address Mapping

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

BkInOrder
RowHit
Intel
Burst_TH

Figure 5.21: Access reordering working in conjunction with address mapping

5.6.1 Performance Variation of SDRAM Address Mapping

Before examining the combined performance of SDRAM address mapping and access re-

ordering, the performance of SDRAM address mapping techniques are found differently in

Figure 5.21 as the previous results shown in Figure 4.12 of Chapter 4. This performance

variation is mainly due to numerous variances between the two simulation environments

and configurations as explained below.

SDRAM address mapping studies, presented in Chapter 4, use a revised SimpleScalar

v3.0d with the SDRAM module v1.0, while studies of access reordering use by a revised M5

simulator v1.1 and the SDRAM module v2.0. The two simulated machines have different

configurations as shown in Table 3.1 and Table 3.2 respectively. Such differences include

simulated CPU, DDR 400 SDRAM vs. DDR2 800 SDRAM, single channel vs. dual channel

and etc. In addition, the in order memory access scheduler used by the SDRAM module

v1.0, as discussed in Section 3.2.1.2, differs from any access reordering mechanisms simulated

in this chapter using the SDRAM module v2.0.

However, the biggest difference is the memory channel configuration. Although a dual

5.6 Access Reordering Combines with Address Mapping 123

(a) Channel 0

Page Permu Intel925 Rank BitRev
0

1

2

3

4

5

6
N

u
m

b
e
r

o
f

A
cc

e
ss

e
s

x1e8 (a) Channel 1

Page Permu Intel925 Rank BitRev
0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

A
cc

e
ss

e
s

x1e8

Figure 5.22: Access distribution in a dual channel system

channel main memory is used in simulations whose results are shown in Figure 5.21, the

effective usage of the two channels are totally dependent upon the selected address mapping,

given no virtual paging system. Figure 5.22 illustrates the main memory access distribution

of two channels. According to the memory configuration, each channel has 16 banks, which

are shown in different colors in Figure 5.22. The raw numbers of accesses directed to each

bank are shown in the figure. Please note access reordering mechanisms do not affect access

distribution, thus Figure 5.22 represents any simulated access reordering mechanisms.

From Figure 5.22, page interleaving, permutation-based page interleaving and rank in-

terleaving address mapping only utilize one channel. Intel’s 925X chipset and bit-reversal

address mapping have roughly balanced loads to each channel. However, the symmetric

dual channel mode is used by Intel’s 925X chipset, as illustrated in Figure 2.13, while bit-

reversal uses dual channels asymmetrically. With symmetric dual channel mode, two 64-bit

memory channels are clustered to create one logic 128-bit channel, doubling the available

memory bandwidth. Appendix A does a comparison between single channel, asymmetric

dual channel and symmetric dual channel. Simulation results of Appendix A show that

asymmetric dual channel achieves an average of 6% performance improvement over single

124 Chapter 5 Access Reordering Mechanisms

Table 5.4: Top five combinations of address mapping and access reordering

Rank Access mapping Access reordering Performance improvement
1 Bit-reversal Row hit scheduling 20.6%
2 Intel’s 925X chipset Burst scheduling 19.8%
2 Intel’s 925X chipset Row hit scheduling 19.8%
4 Bit-reversal Burst scheduling 18.2%
5 Intel’s 925X chipset Intel’s scheduling 18.1%

channel, while symmetric dual channel outperforms asymmetric dual channel and achieves

a 13% performance improvement, as illustrated in Figure A.1.

The difference in channel usages explains why Intel’s 925X chipset address mapping

generally outperforms other address mapping techniques as shown in Figure 5.21.

5.6.2 Combined Performance

According to Figure 5.21, among 20 combinations of various address mapping techniques

and access reordering mechanisms, the top five combinations which have the shorted ex-

ecution time crossing all simulated benchmarks are listed in Table 5.4. The performance

improvement is measured by comparing the execution time of each combination to that of

page interleaving with bank in order scheduling.

The best combination is bit-reversal address mapping with the row hit scheduling, which

reduces the average execution time by 20.6% over page interleaving with bank in order

scheduling. When used individually, both bit-reversal address mapping and burst scheduling

(with static threshold 52) achieve the best performance among simulated address mapping

techniques and access reordering mechanisms respectively. When combined, bit-reversal

and burst scheduling achieve a 18.2% reduction in average execution time.

Intel’s 925X chipset address mapping performs well in the simulations presented here

mainly due to its symmetric dual channel mode, as discussed in Section 5.6.1. Bit-reversal

address mapping is expected to have a better performance when symmetric dual channel

5.6 Access Reordering Combines with Address Mapping 125

mode is in use. Despite its simplicity, the row hit access scheduling performs well when com-

bined with various address mapping techniques, which makes the row hit access scheduling

a good choice for situations where resource (chip area) is limited.

While there is no guarantee that the combination is optimal, bit-reversal address map-

ping and burst scheduling can work together constructively to achieve a significant reduction

in execution time over conventional techniques.

The simulated machine does not have virtual paging system. As virtual paging system

may destroy spatial locality as discussed in Section 4.4.2, SDRAM address mapping may

contribute less performance improvements when virtual paging is in use. However, access

reordering mechanisms will catch up and continue to improve the performance.

126 Chapter 5 Access Reordering Mechanisms

Chapter 6

Conclusions and Future Work

As the performance gap between microprocessors and main memory continues to increase,

the main memory access latency remains a factor limiting system performance. SDRAM

address mapping and access reordering mechanisms are two techniques that can efficiently

reduce main memory access latency. The proposed bit-reversal address mapping and burst

scheduling have been shown through simulations to favorably compare with existing address

mapping techniques and access reordering mechanisms. From the results presented in this

thesis, conclusions of this research work are drawn. Future work are briefly discussed and

promising avenues for future study are presented.

6.1 Main Memory Issue and Research Goal

In the last decades, the rate of improvement in microprocessor speed exceeded the rate of

improvement in memory speed. As the performance gap between microprocessors and main

memory continues to increase, eventually system performance would be entirely determined

by memory speed, which is also known as “hitting the memory wall” [73].

The limiting factors of memory are bandwidth and latency. Memory bandwidth is

a problem which can be largely solved by increasing resources, such as increasing data

127

128 Chapter 6 Conclusions and Future Work

bus width, bus clock frequency, doubling data clocking rate and using multiple channels.

Memory access latency, on the other hand, is more difficult to address. In a typical desktop

computer with a 2.5GHz or faster CPU, a main memory access typically takes hundreds

even thousands of CPU cycles to complete.

There are techniques used to address the latency issue of memory accesses. For instance,

caches built with fast SRAM devices are commonly used to reduce the traffic to the slow

main memory therefore reduce the average latency of memory accesses. Also an out-of-

order execution processor can hide the latency of a memory access by executing subsequently

independent instructions. Other techniques attempt to improve the performance of SDRAM

devices, i.e. adding a cache on the SDRAM device to reduce the average SDRAM access

latency. The research goal of this thesis is to reduce the observed main memory access

latency without any modifications to microprocessors or SDRAM devices.

6.1.1 Characteristics of Modern SDRAM Devices

Due the 3-D structure (bank, row and column), SDRAM devices have nonuniform access

latencies. An access to an SDRAM device could be a row hit, row empty or row conflict, and

each would experience a different latency. Modern SDRAM devices have two key features:

multiple internal banks and row cache (sense amplifiers). Multiple internal banks allow

accesses to different banks to be executed simultaneously, subject to timing constraints.

Row cache keeps the most recently accessed row data so that subsequent accesses to the

same row will be row hits and have short latencies.

To create a main memory hierarchy, multiple SDRAM devices are first concatenated

to create ranks in order to fill the main memory data bus. Multiple ranks compose a

channel, which is then duplicated to create multi-channel configuration. Multiple channels

and multiple banks inside each channel provide parallelism in main memory which can be

exploited to reduce memory access latency. To access a memory block in the main memory,

6.1 Main Memory Issue and Research Goal 129

the address of the requested memory block needs to be translated into an SDRAM address,

which consists of channel index, rank index, bank index, row index, column index and byte

index. This translation process, as well as the mechanism used to optimize for reduced

latency or power consumption, is known as SDRAM address mapping.

6.1.2 Main Memory Access Stream Properties

With the existence of caches, main memory accesses are actually cache misses. A statistical

study of main memory access stream presented in Section 4.1 shows that spatial locality and

temporal locality are available in main memory access streams, even after being filtered by

caches. As shown in Figure 4.2, lower order address bits are more likely to change between

temporally adjacent accesses, implying spatial locality. In Figure 4.1 memory blocks are

shown to be reused in the near future, leading to temporal locality.

SDRAM row cache (sense amplifiers) can capture spatial locality and temporal locality

within SDRAM rows. Accesses to an open row result in row hits, which have the shortest

possible access latency. However, as spatial locality continues beyond SDRAM rows, adja-

cent SDRAM rows within the same bank are likely to be accessed one by one, causing a

series of row conflicts therefore degrading the performance.

6.1.3 Techniques to Reduce Main Memory Access Latency

Because of the nonuniform access latency of SDRAM devices, an application’s memory

access pattern has a significant impact upon execution time. Studies show that the memory

access stream contains spatial and temporal locality. And parallelisms are available in

main memory, which may encompass multiple channels and multiple banks. Locality and

parallelism are not fully exploited by current SDRAM controllers.

SDRAM address mapping techniques exploit the parallelism provided by main memory

by distributing memory accesses evenly to all available SDRAM banks, meanwhile reducing

130 Chapter 6 Conclusions and Future Work

potential row conflicts. Access reordering mechanisms attempt to create more row hits by

changing the order that memory accesses are executed.

6.2 Conclusions of Bit-reversal SDRAM Address Mapping

SDRAM address mapping is a protocol of interpreting physical address bits into an SDRAM

address. Address mapping can change the locality presented in the access stream therefore

impacts the available parallelism, latency and performance.

Based on the observation that lower physical address bits have statistically higher prob-

ability to change between accesses then higher order bits, as shown in Figure 4.2, the

bit-reversal address mapping reverses the higher order physical address bits, such that the

indexes for large components of main memory (such as channel, rank and bank) are mapped

from the physical bits that are most likely to change from access to access. Unlike tradi-

tional page interleaving, which only interleaves accesses between internal banks of SDRAM

devices, the bit-reversal address mapping attempts to distribute accesses evenly across the

entire SDRAM space.

Like other SDRAM address mapping techniques, the bit-reversal uses the lowest order

physical address bits which have the highest probability of change as column index, so that

spatial locality within SDRAM rows can be captured by the SDRAM row cache, maximizing

row hits. On the other hand, bit-reversal directs potential row conflicts to different banks,

converting spatial locality above the SDRAM row size, which can cause row conflicts as

discussed in Section 4.1.3, into bank parallelism.

6.2.1 Depth of Reversal

A further study shows that during a cache conflict miss, the new cache line to be loaded

into the cache and the cache line (assuming it is dirty) to be written back into the main

memory have the same cache index but different cache tags. These read/write access pair

6.2 Conclusions of Bit-reversal SDRAM Address Mapping 131

during cache conflict misses may cause row conflict as discussed in Section 4.3.1. To address

this issue, the depth of reversal is introduced. Identified through experiments, the depth

of reversal that yields the shortest execution time across all benchmarks should be one

less than the width of the lowest level cache tag, based on the simulation results shown in

Figure 4.4.

6.2.2 Performance of Bit-reversal Address Mapping

Using a revised SimpleScalar v3.0d simulator and the SDRAM module v1.0, the bit-reversal

address mapping along with other existing address mapping techniques are evaluated on

the SPEC CPU2000 benchmark suite. The bit-reversal address mapping with the depth

15 is compared with existing address mapping techniques, including page interleaving,

permutation-based page interleaving, Intel’s 925X chipset and rank interleaving. According

to Figure 4.12, the bit-reversal address mapping achieves a 14% of reduction in execution

time over page interleaving across all simulated benchmarks. Bit-reversal also outperforms

permutation-based page interleaving, Intel’s 925X chipset and rank interleaving by 12%,

14% and 3% respectively.

6.2.3 Bit-reversal under Controller Policies and Virtual Paging

Limited studies of the effects of virtual paging and SDRAM controller policies are performed.

The bit-reversal address mapping interacts constructively with static or dynamic SDRAM

controller policies to further reduce the memory access latency, as illustrated in Figure 4.13.

DYN-UPB policy provides a theoretical upper bound on the performance improvement

which a dynamic controller policy could achieve.

As shown in Figure 4.14, virtual paging may reduce the performance improvement con-

tributed by address mapping. This is because virtual paging may disturb the locality

presented in main memory access stream. The bit-reversal address mapping works well

132 Chapter 6 Conclusions and Future Work

with no virtual paging or sequentially allocated virtual paging. Locality is completely lost

due to random page allocation, therefore all address mapping techniques simulated show

little difference with randomly allocated virtual paging.

Bit-reversal address mapping is easy to implement and requires no modification to

SDRAM devices or processors. Nevertheless, it is an effective technique to exploit both lo-

cality in the main memory access stream and parallelism between SDRAM banks/channels.

The bit-reversal address mapping works well with various controller policies and is especially

useful in embedded systems which do not incorporate virtual paging.

6.3 Conclusions of Burst Scheduling Access Reordering

Access reordering mechanisms change the order that memory accesses are executed to re-

duce the observed access latency. One necessity of access reordering mechanisms is to have

multiple memory accesses pending at the main memory, which is common with an out-of-

order execution superscalar processor. Unlike SDRAM address mapping techniques which

distribute potential row conflicts to different banks to reduce row conflict rate, access re-

ordering mechanisms attempt to create row hits or avoid row conflicts by selecting accesses

from all pending accesses.

6.3.1 Key Features of Burst Scheduling

Memory scheduling techniques improve system performance by changing the sequence of

memory accesses to increase row hits and avoid row conflicts, therefore reducing average

memory access latency. Inspired by existing academic and industrial access reordering

mechanisms, burst scheduling access reordering mechanism is hereby being proposed with

the goal of improving performance of existing access reordering mechanisms and addressing

their shortcomings.

6.3 Conclusions of Burst Scheduling Access Reordering 133

• A Two-level Scheduler

Burst scheduling is a two-level scheduler performing access scheduling at both memory

access level and SDRAM transaction level. Access level scheduling takes place at the

bank queues, where access execution order within each bank is determined by the

bank arbiter. Whether an access is a row hit, row conflict or row empty is determined

after access level scheduling. Then accesses from different banks are sent to the bus

transaction scheduler, where transactions belonging to different ongoing accesses are

interleaved. The bus transaction scheduler performs a fine-tuned transaction level

scheduling. It considers SDRAM devices state and handles bus contentions with the

goal of maximizing data bus utilization.

• Read Bursts

Within each bank, accesses are stored in unique read queue and write queue. Accesses

in the read queue are organized in bursts, which is composed by accesses to the same

row of the same bank. Bursts in the read queue are sorted by the arrival time of the

head access of each burst.

• Reads Prioritize Writes

The write queue is fully associative, it functions like a write buffer, allowing reads

to bypassing writes and forwarding data from writes to subsequent reads in case the

reads requesting the same memory blocks as the previous writes.

• Burst Interleaving

Bursts contains all row hits, whose data transactions can be performed on the data

bus in back to back cycles. While scheduling an entire burst, the data bus reaches the

maximal utilization which may result in long latency to accesses belonging to bursts

from other banks. Therefore bursts from different banks are carefully interleaved.

High data bus utilization can be maintained with burst interleaving.

134 Chapter 6 Conclusions and Future Work

6.3.2 Improvements to Burst Scheduling

Two improvements, read preemption and write piggybacking, are made to burst scheduling.

Read preemption allows reads to interrupt ongoing writes to reduce read latency. Write

piggybacking appends qualified writes at the end of bursts to exploit row hits in writes as

well as prevent write queue saturation which may cause CPU pipeline stalls. Subject to a

static threshold read preemption and write piggybacking are switched dynamically based

on the write queue occupancy to achieve an improved reduction of execution time by these

two improvements. Further performance improvements may be obtained at the cost of

extra complexity by using an adaptive threshold algorithm, which updates the threshold

periodically when the program is running based on certain criteria, such as read write ratio.

6.3.3 Performance of Burst Scheduling

Using a revised M5 simulator v1.1 with the SDRAM module v2.0, burst scheduling access

reordering is examined and compared to existing access reordering mechanisms, including

bank in order scheduling, the row hit scheduling and Intel’s out of order memory scheduling.

The performance contributions of read preemption and write piggybacking are studied and

identified. The threshold that yields the best performance is determined by experiments.

As shown in Figure 5.11, burst scheduling with a threshold of 52 achieves an average of 14%

reduction in execution time over bank in order scheduling for all simulated SPEC CPU2000

benchmarks. Burst scheduling also outperforms the row hit scheduling and Intel’s out of

order scheduling by 4% and 7% respectively.

The combined performance of access reordering and SDRAM address mapping are ex-

amined in Section 5.6. The burst scheduling works constructively with the bit-reversal

address mapping, achieving an 18% reduction in execution over bank in order scheduling

with page interleaving address mapping. The best combination is the bit-reversal address

mapping with the row hit scheduling, which reduces the execution time by 21%.

6.4 Future Work 135

6.4 Future Work

While the studies presented in this thesis of SDRAM address mapping techniques and access

reordering mechanisms are complete, there are further improvements and future work to

this research, which are briefly discussed in this section.

6.4.1 Future Study of Access Reordering Mechanisms

Burst scheduling with a static threshold works well on average, as shown in Figure 5.11.

However, Figure 5.17 illustrates that individually selected thresholds for each benchmark

can yield an even better performance then that of a static threshold. An adaptive threshold

can automatically match differences in memory access patterns between benchmarks as well

as changes of each benchmark during execution phase transitions. Although the proposed

history-based adaptive threshold algorithm, as discussed in Section 5.5.2, does not outper-

form the static threshold on average, a more advanced adaptive threshold algorithm should

have the potential to deliver improved performance over the static threshold, at the cost of

increased complexity.

Modern microprocessors have a memory controller integrated on the CPU die to in-

crease memory bandwidth and reduce main memory access latency. Because of the tighter

connection between integrated memory controller and the CPU, more instruction level in-

formation is obtainable to the memory controller. Access reordering mechanisms can take

advantages of this additional information. For example, with current burst scheduling, the

read accesses of a burst are scheduled in the same order as they are issued. If an access can

be identified as more critical that others, i.e. the access has more dependent instructions,

then it can be promoted inside the burst to reduce the latency. Similarly the sequence of

bursts within banks can also be reordered to reduce latency to critical data. Bursts within

the same bank could be sorted by some mechanisms other that the arrival time of the

first access of each burst. For example, the number of critical accesses of each burst could

136 Chapter 6 Conclusions and Future Work

be used to sort the bursts. However, considerations need to be taken into account when

performing such inter burst reordering to prevent starvation.

One of the previous studies shows that thread-aware SDRAM access scheduling schemes

may improve the overall system performance by up to 30% on memory-intensive applica-

tions [78]. Thread level information, such as the number of outstanding memory accesses

of each thread, reorder buffer occupancy and the issue queue occupancy, could also be

considered when making access scheduling decisions.

6.4.2 Dynamic SDRAM Controller Policy

The study of SDRAM controller policy, as presented in Section 4.4.1, shows that a dynamic

controller policy can outperform static controller policies. To make the decision of whether

or not to leave the accessed row open, a dynamic controller policy requires the future

information of the next access to the same bank. There are two possible ways to obtain the

future access information.

With an out-of-order execution superscalar processor, the memory controller is likely

to have multiple outstanding memory accesses waiting in the access queue. Therefore, the

controller can search the access queue to obtain the information of future accesses when it

is the time to make the decision. With burst scheduling, the boundaries of bursts give an

indication of when it is appropriate to close the open row and precharge the bank. During

a burst, the accessed row should always be left open; when a burst completes, most likely

the first access of the next burst will be directed to a different row. Therefore with burst

scheduling the memory controller should only perform autoprecharges at the end of bursts.

If the next access is not available at the time to make the decision, i.e. when a burst

completes, there are no more accesses/bursts to this bank in the access queue. Then a

controller policy predictor could be used to make a prediction. Proposed by Xu, a dynamic

controller policy predictor uses history information to predict whether the next access to

6.5 Afterward 137

the bank would be a row hit or a row conflict [74]. The design and implementation of such

dynamic controller policy predictor are undergoing.

6.4.3 Intelligent Data Placement through Software

The proposed SDRAM address mapping and access reordering mechanisms use hardware

approaches to reduce main memory access latency. Compiler and operating system also have

significant impacts on the performance of memory subsystem. As discussed in Section 4.4.2,

the operating system has impacts on access distribution in memory space through virtual

paging system. With the knowledge of main memory organization, the operating system

could intelligently place virtual pages in the memory space to exploit bank parallelism and

increase row locality. Theoretically virtual paging system could be as effective as SDRAM

address mapping techniques in evenly distributing accesses to all banks. In contrast to

SDRAM address mapping techniques which are static, virtual paging system is capable of

dynamically changing data placement to match program behavior changes during runtime.

6.5 Afterward

Four years of research work on memory optimization techniques have demonstrated that

system performance can be significantly improved through enabling bank parallelism and

exploiting locality in main memory access streams, which have not been fully exploited by

conventional memory controllers.

As shown in Table 1.1, the SDRAM device timing keeps increasing in terms of cycles as

SDRAM devices and CPUs evolve, resulting in even longer main memory access latency in

CPU cycles. Therefore, the memory optimization techniques that have been studied herein,

including but not limited to SDRAM address mapping techniques and access reordering

mechanisms, will provide even more significant performance improvement in the future

than are given by the simulations presented in this thesis.

138 Chapter 6 Conclusions and Future Work

Appendix A

Dual SDRAM Channels

Prior to 2003, most memory controllers were located on the north bridge and had a single

64-bit data channel configuration. As the speed gap between the processor and the main

memory increases, the main memory becomes a bottleneck of system as introduced in

Chapter 1. Dual channel technology was first introduced by Intel to address the issue of the

bottleneck [68]. A dual channel memory controller utilizes two 64-bit data channels, creating

a logical 128-bit data channel and doubling the amount of available memory bandwidth.

With two channels working simultaneously, the bottleneck effect is alleviated. As of 2006,

modern processors such as AMD Athlon 64 and Opteron [5], IBM Power5 [62] have the

memory controller integrated on the CPU die to reduce the memory latency.

A.1 Asymmetric and Symmetric Dual Channel

Dual channel-enabled chipsets, such as Intel 925X chipset [27], can have two modes, asym-

metric dual channel and symmetric dual channel.

With asymmetric dual channel, two channels work independently. Each channel can

serve one memory access at the same. With symmetric dual channel, two channels are

clustered to create a logical channel doubling the width of the data bus. In order to use

139

140 Appendix A Dual SDRAM Channels

symmetric dual channel mode, memory modules installed in each channel must be identical

in terms of size, specification and device organization. Each memory access is served by

both channels, e.g. the first half of memory block is provided by channel0 while channel1

provides the second half. How memory blocks are strode on two channels depends on the

actual implementation.

Asymmetric dual channel provides greater parallelism than symmetric dual channel.

When channel0 is serving an access, another access can be issued to channel1 and get

served immediately, reducing access latency. Symmetric dual channel, on the other hand,

provides better data throughput. Due to the doubled bandwidth, it takes half time to

transfer requested memory blocks, yielding a high data throughput, although the latency

of memory accesses is not directly affected.

A.2 Performance of Dual Channel

Performance of single channel, asymmetric dual channel and symmetric dual channel are

compared. Table A.1 lists the major differences between these three configurations. Other

configurations are identical to the M5 baseline machines as shown in Table 3.2. Symmetric

dual channel is simulated using a 128-bit single channel. Note that dual channel modes have

twice amount of memory than single channel. Bit-reversal address mapping with depth of

14 is used in order to create balanced loads to each channel.

Figure A.1 shows the execution time of asymmetric dual channel and symmetric dual

channel. Execution times of tow dual channel configurations are normalized to single chan-

nel in order to illustrate the effect of channel configuration.

Generally a dual channel configuration results in a better performance than a single

channel configuration. The only exception is gcc with which asymmetric dual channel in-

creases the execution time by 31% over single channel. Asymmetric dual channel reduces

the execution time by 6% crossing all benchmarks compared to single channel. Symmetric

A.2 Performance of Dual Channel 141

Table A.1: Configuration of single channel and two modes of dual channels

SingleChan AsymDualChan SymDualChan
SDRAM device PC2-6400 DDR2 SDRAM
Channel number 1 2 1
Data bus width 64-bit 64-bit 128-bit
Burst length 8 8 4

Total bank number 16 32 16
Total memory size 2GB 4GB 4GB

Total memory bandwidth 6.4GB 12.8GB 12.8GB
SDRAM Address mapping Bit-reversal with depth 14

Access reordering Burst scheduling with threshold 52

g
zi

p

vp
r

g
cc

m
cf

cr
a
ft

y

p
a
rs

e
r

e
o
n

p
e
rl

b
m

k

g
a
p

vo
rt

e
x

b
zi

p
2

tw
o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

a
p

p
lu

m
e
sa

g
a
lg

e
l

a
rt

e
q

u
a
k
e

fa
ce

re
c

a
m

m
p

lu
ca

s

fm
a
3

d

a
p

si

a
ve

ra
g

e0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

AsymDualChan
SymDualChan

Figure A.1: Execution time of asymmetric dual channel and symmetric dual channel
(normalized to single channel)

142 Appendix A Dual SDRAM Channels

dual channel outperforms asymmetric dual channel, reducing an average of 13% of execu-

tion time over single channel. While symmetric dual channel has better performance than

asymmetric dual channel on average, on some benchmarks asymmetric dual channel does

perform better than symmetric dual channel, such as mgrid and lucas.

A previous study by Zhichun Zhu and et al. shows that organizing each channel as an

independent one may outperform combining them as a single logic channel by up to 90%

on 8-channel DDR SDRAM systems [78].

Multiple SDRAM channels certainly alleviate the bottleneck effect cased by the main

memory bandwidth. Channel configuration is determined by the way that channel index

is mapped from physical address bits during SDRAM address mapping as discussed in

Section 2.6. System performance is largely dependent upon channel organization as well as

program’s memory access pattern.

Appendix B

SDRAM Power Consumption

Memory power consumption becomes more and more concerned in system design, especially

for some embedded systems. DDR2 SDRAM devices provides high data bandwidth with

lower system power than DDR. However, it is not always easy to determine the power

required by the memory device from a data sheet alone.

There are technical notes providing tools and techniques to estimate memory power con-

sumption in a given system [3, 4]. A memory power consumption module for DDR/DDR2

device is implemented and integrated into the SDRAM module v2.0 based on these technical

notes.

B.1 SDRAM Power Components

SDRAM power is composed of background power, activate power, read/write power, I/O

and termination power and refresh power. As a preliminary study of SDRAM power con-

sumption, power derating, voltage supply scaling and frequency scaling are not considered.

Also SDRAM devices are never put into power-down mode.

143

144 Appendix B SDRAM Power Consumption

B.1.1 Background Power

During normal operation, SDRAM device always consumes one of four background powers

depending on whether all banks are precharged or one or more banks are activated, as well

as whether the device is in power-down mode or standby mode, as summarized in Table B.1.

Table B.1: SDRAM background powers

P (PRE PDN) In power-down mode with all banks precharged
P (PRE STBY) In standby mode with all banks precharged
P (ACT PDN) In power-down mode with one or more banks activated
P (ACT STBY) In power standby mode with one or more banks activated

Background powers can be calculated by multiplying the IDD values by the voltage

applied to the device VDD, as shown in following equations. Where IDD2P/IDD2N is

precharge power-down/standby current, IDD3P/IDD3N is active power-down/standby cur-

rent, which can be found in device data sheets.

P (PRE PDN) = IDD2P × VDD (B.1)

P (PRE STBY) = IDD2N × VDD (B.2)

P (ACT PDN) = IDD3P × VDD (B.3)

P (ACT STBY) = IDD3N × VDD (B.4)

Due to the assumption that all SDRAM devices are always in standby mode, the background

power of an SDRAM device is composed of precharged standby power Psys(PRE STBY)

and activated standby power Psys(ACT STBY), which can be calculated using Equa-

tion B.5 and Equation B.6 respectively, where BNK PRE% is the percent of time that all

banks of the SDRAM device are precharged.

Psys(PRE STBY) = P (PRE STBY)×BNK PRE%

B.1 SDRAM Power Components 145

= IDD2N ×BNK PRE%× VDD (B.5)

Psys(ACT STBY) = P (ACT STBY)× (1−BNK PRE%)

= [IDD3N × (1−BNK PRE%)]× VDD (B.6)

B.1.2 Active Power

Row activates and bank precharges always appear in pairs, although there may be one

or more column accesses between them. A row activate decodes the row index, activates

the specified row and transfers the data from the SDRAM array to the sense amplifiers.

Significant amount of current is used during a row activate. A bank precharge restores the

data from the sense amplifiers into the SDRAM array and prepares the bank for the next

row activate. Active power which is consumed by row activate and bank precharge pairs

can be calculated by Equation B.7.

P (ACT) = [IDD0− IDD3N × tRAS + IDD2N × (tRC − tRAS)
tRC

]× VDD (B.7)

Where tRAS is the minimal interval between a row activate and the following bank precharge,

tRC is the minimal interval between two adjacent row activates. IDD0 is the current op-

erating one row activate and bank precharge. Background current IDD3N and IDD2N

need to be subtracted from IDD0 to identify the power consumed by row activate and bank

precharge.

Equation B.7 is correct only when there is no contention on the SDRAM buses and

the row activates are scheduled at the minimum tRC specified in the data sheet. In real

systems, however, row activates could be scheduled closer than tRC when multiple banks are

interleaving, or greater than tRC in order to meet other timing constraints. A scaling factor

tRRDsch is introduced, which is the average scheduled row activates interval. P (ACT) can

be easily scaled by a ratio of the actual tRRDsch to the data sheet value tRC to represent

146 Appendix B SDRAM Power Consumption

the actual active power, as shown in Equation B.8.

Psys(ACT) = P (ACT)× tRC

tRRDsch

= [IDD0− IDD3N × tRAS + IDD2N × (tRC − tRAS)
tRC

]× VDD × tRC

tRRDsch

=
IDD0× tRC − IDD3N × tRAS − IDD2N × (tRC − tRAS)

tRRDsch
× VDD (B.8)

B.1.3 Read/Write Power

When a bank is activated, one or more column accesses (reads or writes) can access the row

data. Read/write power is the power for transferring data on the data bus. The associated

read/write current is IDD4R/IDD4W . When calculating read/write power, background

currents need to be subtracted because they have already been counted in background

powers. Read/write power can be calculated using Equation B.9 and Equation B.10. Where,

read cycles and write cycles are the actual number of read or write cycles that are used to

transfer data on the data bus.

Psys(RD) = (IDD4R− IDD3N)× read cycles

total cycles
× VDD (B.9)

Psys(WR) = (IDD4W − IDD3N)× write cycles

total cycles
× VDD (B.10)

B.1.4 I/O and Termination Power

Besides Psys(RD) and Psys(WR), I/O power and termination power also contribute to

the total power for column accesses. The actual I/O power and termination power vary

depending on system configuration and need to be calculated individually. Detailed dis-

cussion about I/O power and termination power can be found in Micron technical note

“Calculating Memory System Power For DDR2” [4]. Table B.2 summarizes the typical I/O

and termination power consumption for a 2-DIMM configuration DDR2 system [4], which

B.1 SDRAM Power Components 147

Table B.2: Typical I/O and Termination Power Consumption

P (RD) 1.5mW Output driver power when driving the bus
P (WR) 0mW Power when terminating a write to the SDRAM
P (RDoth) 13.1mW Power when terminating a read from another SDRAM
P (WRoth) 14.6mW Power when terminating write data to another SDRAM

are used in the simulations.

Equation B.11 and Equation B.12 calculate the actual I/O power and termination power.

Where num DQR and num DQW are the number of signals for reads or writes. For ex-

ample, given a x8 device with differential strobe enables (DQS/DQS#), num DQR include

8 DQ and 2 DQS signals for a total of 10, whereas num DQW totals 11 including the ad-

dition data mask. P (RD) and P (WR) are only consumed during data transfer on the data

bus therefore they need to be scaled by actual data bus utilization. Two additional terms,

termRDsch% (rate of terminating read data from another SDRAM) and termWRsch%

(rate of terminating write data to another SDRAM), are required to cover termination

cases for data to/from another SDRAM. To simplify the calculation, fixed values of 15%

for termRDsch% and 5% for termWRsch% are used in the simulations.

Psys(DQ) = P (RD)× num DQR× read cycles

total cycles
(B.11)

Psys(TERM) = P (WR)× num DQW × write cycles

total cycles
+

P (RDoth)× num DQR× termRDsch% +

P (WRoth)× num DQW × termWRsch% (B.12)

B.1.5 Refresh Power

SDRAM devices need to be periodically refreshed to retina data integrity. Current IDD5

is consumed if an SDRAM device is being refreshed at minimum refresh-to-refresh interval,

tRFC . Refresh operations are normally distributed evenly over time at a refresh interval

148 Appendix B SDRAM Power Consumption

of tREFI , which is equal to the refresh period (64ms typically) divided by the number of

SDRAM rows [30]. Background current IDD3N is deducted from IDD5 to calculate only

the power due to refresh. Refresh power can be calculated using Equation B.13.

Psys(REF) = (IDD5− IDD3N)× tRFC

tREFI
× VDD (B.13)

B.2 Total SDRAM Power

Total SDRAM power consumption is the sum of all power components, as shown in Equa-

tion B.14. Note that Equation B.14 is for a single SDRAM device. To calculate the total

power of a memory system that consists of multiple channels, multiple ranks per chan-

nel and multiple SDRAM devices per rank, the result needs to be multiplied by the total

number of SDRAM devices in the system.

Psys(TOT) = Psys(PRE STBY) + Psys(ACT STBY) + Psys(ACT) + Psys(RD) +

Psys(WR) + Psys(DQ) + Psys(TERM) + Psys(REF) (B.14)

Figure B.1 shows the memory power consumption breakout. The simulated machine has

a dual symmetrical channel configuration as shown in Table A.1. Each channel contains

two ranks of PC2-6400 DDR2 SDRAM device.

On average main memory requires 13.3W of power, excluding the power required by

the memory controller. 53% of total power is consumed by background power, which is

composed by activated standby power 3.5W (26%) and precharged standby power 3.6W

(27%). The next largest power component is active power, required by row activate and

bank precharge, consuming 3.2W power (24%). Due to the fixed values of termRDsch%

and termWRsch% used in the simulations, termination power is identical on all benchmarks

and the value (1.7W) is only for reference. Read/Write and DQ power together consume

B.2 Total SDRAM Power 149

g
zi

p

vp
r

g
cc

m
cf

cr
a
ft

y

p
a
rs

e
r

e
o
n

p
e
rl

b
m

k

g
a
p

vo
rt

e
x

b
zi

p
2

tw
o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

a
p

p
lu

m
e
sa

g
a
lg

e
l

a
rt

e
q

u
a
k
e

fa
ce

re
c

a
m

m
p

lu
ca

s

fm
a
3
d

a
p

si

a
ve

ra
g

e0

5

10

15

20
P

o
w

e
r

(W
)

REFRESH
TERM
DQ
WRITE
READ
ACTIVATE
ACT_STBY

PRE_STBY

Figure B.1: Main memory power consumption

0.7W power (5%) and refresh requires 0.5W power (4%).

Based on Figure B.1, more than half of memory power is consumed by background

power. This is partially because that memory devices are never put into power-down mode

in the simulation. With power-down mode, memory devices consume significantly less

power. For an instance, simulated DD2 device consumes 7mA current in power-down mode

with all bank precharged vs. 55mA current in standby mode. The SDRAM controller

could use power-down mode to save power when there are no outstanding accesses in main

memory. However, it takes time (specified by tXARD or tXARDS) for an SDRAM device to

exit power-down mode [30]. Memory access will experience a longer latency if the device is

in power-down mode when the access arrives. Therefore, trade off must be made between

performance and power saving.

150 Appendix B SDRAM Power Consumption

B.3 Power Consumption vs. Energy Consumption

To illustrate the effects of memory optimization techniques on memory power consumption

as well energy consumption, the average power consumption and energy consumption of

three channel configurations as discussed in Appendix A are shown in Figure B.2 and

Figure B.3 respectively.

Switching from single channel to dual channels generally doubles the memory power

consumption. Power consumption of symmetric dual channel (13.3W) is slightly higher

than that of asymmetric dual channel (12.9W), as shown in Figure B.2.

According to Figure A.1 symmetric dual channel and asymmetric dual channel can

reduce the execution time by 13% and 6% respectively. Because energy is a product of power

and time, symmetric dual channel actually consumes less energy (6.8J) than asymmetric

dual channel (8J), as confirmed by Figure B.3.

B.3 Power Consumption vs. Energy Consumption 151

g
zi

p

vp
r

g
cc

m
cf

cr
a
ft

y

p
a
rs

e
r

e
o
n

p
e
rl

b
m

k

g
a
p

vo
rt

e
x

b
zi

p
2

tw
o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

a
p

p
lu

m
e
sa

g
a
lg

e
l

a
rt

e
q

u
a
k
e

fa
ce

re
c

a
m

m
p

lu
ca

s

fm
a
3
d

a
p

si

a
ve

ra
g

e0

5

10

15

20

P
o
w

e
r

(W
)

SingleChan
AsymDualChan
SymDualChan

Figure B.2: Power consumption of various SDRAM channel configurations

g
zi

p

vp
r

g
cc

m
cf

cr
a
ft

y

p
a
rs

e
r

e
o
n

p
e
rl

b
m

k

g
a
p

vo
rt

e
x

b
zi

p
2

tw
o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

a
p

p
lu

m
e
sa

g
a
lg

e
l

a
rt

e
q

u
a
k
e

fa
ce

re
c

a
m

m
p

lu
ca

s

fm
a
3

d

a
p

si

a
ve

ra
g

e0

10

20

30

40

50

60

70

80

90

E
n

e
rg

y
(J

)

SingleChan
AsymDualChan
SymDualChan

Figure B.3: Energy consumption of various SDRAM channel configurations

152 Appendix B SDRAM Power Consumption

Bibliography

[1] SimOS The Complete Machine Simulator. http://simos.stanford.edu.

[2] The M5 Simulator System. http://m5.eecs.umich.edu.

[3] Calculating Memory System Power for DDR. Technical Report TN-46-03, Micron
Technology, Inc., 2003.

[4] Calculating Memory System Power for DDR2. Technical Report TN-47-04, Micron
Technology, Inc., 2004.

[5] Advanced Micro Devices. AMD Athlon 64 Processor Product Data Sheet, September
2006.

[6] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi, and
Steven K. Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, July 2006.

[7] Nathan L. Binkert, Erik G. Hallnor, and Steven K. Reinhardt. Network-Oriented
Full-System Simulation using M5. In Proceedings of the Sixth Workshop on Computer
Architecture Evaluation using Commercial Workloads (CAECW), 2003.

[8] Doug Burger and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0. SIGARCH
Comput. Archit. News, 25(3):13–25, 1997.

[9] Dave Bursky. Fast DRAMs Can Be Swapped for SRAM Caches. Electronic Design,
pages 55-56, 60-67, July 1993.

[10] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C.
Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. Impulse: Building
a Smarter Memory Controller. In HPCA ’99: Proceedings of the 5th International
Symposium on High Performance Computer Architecture, page 70, Washington, DC,
USA, 1999. IEEE Computer Society.

[11] Chris Weaver. Pre-compiled little-endian Alpha ISA SPEC2000 binaries.

153

154 BIBLIOGRAPHY

[12] Daniel Citron. MisSPECulation: Partial and Misleading Use of SPEC CPU2000 in
Computer Architecture conferences. In ISCA ’03: Proceedings of the 30th Annual
International Symposium on Computer Architecture, pages 52–61, New York, NY, USA,
2003. ACM Press.

[13] Richard Crisp. Direct Rambus Technology: The New Main Memory Standard. IEEE
Micro, 17(6):18–28, 1997.

[14] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer Architec-
ture: A Hardware/Software Approach. Morgan Kaufmann, 1998.

[15] Vinodh Cuppu and Bruce Jacob. Concurrency, latency, or system overhead: which
has the largest impact on uniprocessor DRAM-system performance? In ISCA ’01:
Proceedings of the 28th Annual International Symposium on Computer Architecture,
pages 62–71, New York, NY, USA, 2001. ACM Press.

[16] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge. High-Performance
DRAMs in Workstation Environments. IEEE Trans. Comput., 50(11):1133–1153, 2001.

[17] Vinodh Cuppu, Bruce L. Jacob, Brian Davis, and Trevor N. Mudge. A Performance
Comparison of Contemporary DRAM Architectures. In ISCA ’93: Proceedings of the
26th Annual International Symposium on Computer Architecture, pages 222–233, 1999.

[18] William J. Dally and John W. Poulton. Digital Systems Engineering. Cambridge
University Press, 1998.

[19] Brian T. Davis. Modern DRAM Architectures. PhD thesis, Dept. of Computer Science
and Engineering, the University of Michigan, 2001.

[20] Robert Dennard. Field-Effect Transistor Memory. US Patent 3387286, 1968.

[21] Wi fen Lin. Reducing DRAM Latencies with an Integrated Memory Hierarchy Design.
In HPCA ’01: Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, page 301, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.

[22] Jahangir Hasan, Satish Chandra, and T. N. Vijaykumar. Efficient Use of Memory
Bandwidth to Improve Network Processor Throughput. In ISCA ’03: Proceedings of
the 30th Annual International Symposium on Computer Architecture, pages 300–313,
New York, NY, USA, 2003. ACM Press.

[23] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2002.

[24] Sung I. Hong, Sally A. McKee, Maximo H. Salinas, Robert H. Klenke, James H. Aylor,
and Wm. A. Wulf. Access Order and Effective Bandwidth for Streams on a Direct
Rambus Memory. 9(13):80–89, January 1999.

BIBLIOGRAPHY 155

[25] Ibrahim Hur and Calvin Lin. Adaptive History-Based Memory Schedulers. In MICRO
37: Proceedings of the 37th annual International Symposium on Microarchitecture,
pages 343–354, Washington, DC, USA, 2004. IEEE Computer Society.

[26] IBM. IBM Power Architecture. http://www.ibm.com/chips/power/.

[27] Intel Corporation. Intel 925X and 925XE Express Chipset Datasheet, November 2004.

[28] Intel Corporation. Intel 965 Express Chipset Family Datasheet, July 2006.

[29] IPRS. International Technology Roadmap for Semiconductors, 2003.

[30] Jeff Janzen. DDR2 Offers New Features and Functionality. DesignLine, 12(2), Micron
Technology, Inc., 2003.

[31] JEDEC. Joint Electronic Device Engineering Council. http://www.jedec.org/.

[32] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Computers.

[33] Jungeun Kim and Taewhan Kim. Memory Access Optimization Through Combined
Code Scheduling, Memory Allocation, and Array Binding in Embedded System Design.
In DAC ’05: Proceedings of the 42nd annual conference on Design automation, pages
105–110, New York, NY, USA, 2005. ACM Press.

[34] Jochen Liedtke, Marcus Völp, and Kevin Elphinstone. Preliminary Thoughts on
Memory-bus Scheduling. In EW 9: Proceedings of the 9th workshop on ACM SIGOPS
European workshop, pages 207–210, New York, NY, USA, 2000. ACM Press.

[35] SimpleScalar LLC. SimpleScalar 3.0d. http://www.simplescalar.com/.

[36] Chun-Gi Lyuh and Taewhan Kim. Memory Access Scheduling and Binding Considering
Energy Minimization in Multi-bank Memory Systems. In DAC ’04: Proceedings of the
41st annual conference on Design automation, pages 81–86, New York, NY, USA, 2004.
ACM Press.

[37] Mark Malek. Compiler Optimized Memory Page Placement for Reducing DRAM La-
tency. Master’s thesis, Dept. of Computer Science, Michigan Technological University,
November 2005.

[38] Jack A. Mandelman, Robert H. Dennard, Gary B. Bronner, John K. DeBrosse, Rama
Divakaruni, Yujun Li, and Carl J. Raden. Challenges and Future Directions for the
Scaling of Dynamic Random-Access Memory (DRAM). IBM Journal of Research and
Development, 46(2-3):187–222, 2002.

[39] Binu K. Mathew, Sally A. McKee, John B. Carter, and Al Davis. Design of a Parallel
Vector Access Unit for SDRAM Memory Systems. In HPCA ’00: Proceedings of the
Sixth International Symposium on High-Performance Computer Architecture, pages
39–48, 2000.

156 BIBLIOGRAPHY

[40] Scott McFarling. Combining Branch Predictors. Technical Report TN-36, June 1993.

[41] Sally A. McKee, William A. Wulf, James H. Aylor, Maximo H. Salinas, Robert H.
Klenke, Sung I. Hong, and Dee A. B. Weikle. Dynamic Access Ordering for Streamed
Computations. IEEE Trans. Comput., 49(11):1255–1271, 2000.

[42] Micron Technology, Inc. Micron 512Mb: x4, x8, x16 DDR SDRAM Datasheet, 2005.

[43] Micron Technology, Inc. Micron 512Mb: x4, x8, x16 DDR2 SDRAM Datasheet, 2006.

[44] Sun Microsystems. UltraSPARC T1 Processor. http://www.sun.com/processors/-
UltraSPARC-T1/.

[45] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8), April 1965.

[46] Steven A. Moyer. Access ordering and effective memory bandwidth. Technical Report
CS-93-18, Computer Science Department of University of Virginia, April 1993.

[47] NEC. 64M-bit Virtual Channel SDRAM Datasheet, October 1998.

[48] Ray Ng. Fast Computer Memories. IEEE Spectrum, pages 36-39, October 1992.

[49] NVIDIA. NVIDIA nForce4 SLI Media and Communications Processors Intel Edition.
http://www.nvidia.com/page/nforce4 sli.html.

[50] David A. Patterson. Latency Lags Bandwidth. Communications of the ACM,
47(10):71–75, 2004.

[51] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation. Addison-Wesley Pro-
fessional, 2005.

[52] Charles Price. MIPS IV Instruction Set, Revision 3.2. MIPS Technologies, Inc., Sep-
tember, 1995.

[53] Betty Prince. High Performance Memories: New Architecture DRAMs and SRAMs -
Evolution and Function. John Wiley & Sons, 1999.

[54] Scott Rixner. Memory Controller Optimizations for Web Servers. In MICRO 37:
Proceedings of the 37th annual International Symposium on Microarchitecture, pages
355–366, Washington, DC, USA, 2004. IEEE Computer Society.

[55] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo Lopez-
Lagunas, Peter R. Mattson, and John D. Owens. A Bandwidth-efficient Architecture for
Media Processing. In MICRO 31: Proceedings. 31st Annual ACM/IEEE International
Symposium on Microarchitecture, pages 3–13, 1998.

BIBLIOGRAPHY 157

[56] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens.
Memory Access Scheduling. In ISCA ’00: Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 128–138, New York, NY, USA, 2000.
ACM Press.

[57] Hemant G. Rotithor, Randy B. Osborne, and Nagi Aboulenein. Method and Apparatus
for Out of Order Memory Scheduling. Patent US 2005/0091460 A1, Intel Corporation,
April 2005.

[58] Jun Shao and Brian T. Davis. The Bit-reversal SDRAM Address Mapping. In SCOPES
’05: Proceedings of the 9th International Workshop on Software and Compilers for
Embedded Systems, pages 62–71, September 2005.

[59] John Paul Shen and Mikko H. Lipasti. Modern Processor Design: Fundamentals of
Superscalar Processors. McGraw-Hill Professional, 2004.

[60] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Con-
cepts. John Wiley & Sons, 2004.

[61] Deszö Sima, Terence Fountain, and Péter Kacsuk. Advanced Computer Architectures:
A Design Space Approach. Addison-Wesley, 1997.

[62] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. POWER5
System Microarchitecture. IBM J. Res. Dev., 49(4/5):505–521, 2005.

[63] Kevin Skadron and Douglas W. Clark. Design Issues and Tradeoffs for Write Buffers. In
HPCA ’97: Proceedings of the 3rd IEEE Symposium on High-Performance Computer
Architecture, page 144, Washington, DC, USA, 1997. IEEE Computer Society.

[64] Standard Performance Evaluation Corporation. SPEC CPU95 Benchmark Suites ,
August 1995.

[65] Standard Performance Evaluation Corporation. SPEC CPU2000 V1.2, December 2001.

[66] V. Stankovic and N. Milenkovic. Access Latency Reduction in Contemporary DRAM
Memories. Facta Univ. Ser.: Elec. Energ., 17(1), April 2004.

[67] K. U. Stein, A. Sibling, and E. Doering. Storage Array and Sense/Refresh Circuits for
Single-Transistor Memory Cells. In IEEE J. Solid-State Circuits, pages 336–340. IEEE
Computer Society, 1972.

[68] Infineon Technologies and Kingston Technology. Intel Dual-Channel DDR Memory
Architecture White Paper, September 2003.

[69] Rokicki Tomas. Indexing Memory Banks to Maximize Page Mode Hit Percentage and
Minimize Memory Latency. Technical Report HPL-96-95, Hewlett-Packard Laborato-
ries, June 1996.

158 BIBLIOGRAPHY

[70] VIA Technologies, Inc. VIA KT880 North Bridge Data Sheet, September 2004.

[71] Adrian Wong. Breaking Through the BIOS Barrier: The Definitive BIOS Optimization
Guide for PCs. Prentice Hall, 2004.

[72] Wayne A. Wong and Jean-Loup Baer. Dram caching. Technical Report UW-CSE-97-
03-04, Department of Computer Science and Engineering of University of Washington,
February 1997.

[73] Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications of the
Obvious. SIGARCH Comput. Archit. News, 23(1):20–24, 1995.

[74] Ying Xu. Dynamic SDRAM Controller Policy Predictor. Master’s thesis, Dept. of
Electrical and Computer Engineering, Michigan Technological University, April 2006.

[75] Tse-Yu Yeh and Yale N. Patt. A Comparison of Dynamic Branch Predictors that
Use Two Levels of Branch History. In ISCA ’93: Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages 257–266, 1993.

[76] Lixin Zhang, Zhen Fang, Mide Parker, Binu K. Mathew, Lambert Schaelicke, John B.
Carter, Wilson C. Hsieh, and Sally A. McKee. The Impulse Memory Controller. IEEE
Trans. Comput., 50(11):1117–1132, 2001.

[77] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A Permutation-based Page Inter-
leaving Scheme to Reduce Row-buffer Conflicts and Exploit Data Locality. In MICRO
33: Proceedings of the 33rd annual ACM/IEEE international symposium on Microar-
chitecture, pages 32–41, New York, NY, USA, 2000. ACM Press.

[78] Zhichun Zhu and Zhao Zhang. A Performance Comparison of DRAM Memory System
Optimizations for SMT Processors. In HPCA ’05: Proceedings of the 11th International
Symposium on High-Performance Computer Architecture, pages 213–224, Washington,
DC, USA, 2005. IEEE Computer Society.

[79] Zhichun Zhu, Zhao Zhang, and Xiaodong Zhang. Fine-grain Priority Scheduling on
Multi-channel Memory Systems. In HPCA ’02: Proceedings of the 8th International
Symposium on High-Performance Computer Architecture, page 107, Washington, DC,
USA, 2002. IEEE Computer Society.

	Reducing main memory access latency through SDRAM address mapping techniques and access reordering mechanisms
	Recommended Citation

	Contents
	List of Tables
	List of Figures
	Introduction
	Memory Lags Microprocessor
	Hitting the Memory Wall
	Goal of This Thesis
	Contributions
	Terminology and Assumptions
	Organization

	Background and Related Work
	Modern SDRAM Device
	SDRAM Device Structure
	Access SDRAM Device
	SDRAM Access Latency

	Locality and Parallelism
	SDRAM Controller and Controller Policy
	Main Memory Hierarchy
	Address Bits Representation
	SDRAM Address Mapping
	Existing Address Mapping Techniques
	Dual Channel Configurations

	Access Reordering Mechanism
	Memory Access Scheduling
	Design Issues
	Existing Access Reordering Mechanisms

	Other SDRAM Optimization Techniques
	The Impulse Memory System
	SDRAM Controller Policy Predicator
	Adaptive Data Placement

	Methodology
	Methodologies Used in the Thesis
	SimpleScalar Simulation Environment
	SDRAM Simulation Module v1.0
	Revised SimpleScalar Baseline Machine Configuration

	M5 Simulation Environment
	Switching from SimpleScalar to M5 Simulator
	SDRAM Simulation Module v2.0
	Revised M5 Baseline Machine Configuration

	Benchmarks
	Number of Instructions to Simulate
	Main Memory Access Behaviors of Simulated Benchmarks

	Validation
	Validating the Implementations
	Verifying the Simulation Results

	SDRAM Address Mapping
	Localities in Main Memory Access Stream
	Temporal Locality in Main Memory Access Stream
	Spatial Locality in Main Memory Access Stream
	Exploiting Localities with SDRAM Device

	Bit-reversal Address Mapping
	Philosophy of Bit-reversal Address Mapping
	Hardware Implementation

	Performance Evaluation
	The Depth of Reversal
	Remapped Physical Address Bits Change Pattern
	Access Distribution in SDRAM Space
	Row Hit and Row Conflict
	Access Latency and Bus Utilization
	Execution Time

	Address Mapping Working under Other Techniques
	Address Mapping with Controller Policy
	Address Mapping with Virtual Paging

	Access Reordering Mechanisms
	Philosophy of Burst Scheduling
	Evolution of Burst Scheduling
	Preliminary Study
	Burst Scheduling: A Two-level Scheduler
	Optimizations to Burst Scheduling

	Details of Burst Scheduling
	Hardware Structure
	Scheduling Algorithm
	Program Correctness

	Performance Evaluation
	Simulated Access Reordering Mechanisms
	Row Hit Rate and Row Conflict Rate
	Access Latency
	SDRAM Bus Utilization
	Execution Time
	Threshold of Read Preemption and Write Piggybacking

	Adaptive Threshold Burst Scheduling
	Performance Improvement Space of Adaptive Threshold
	History-based Adaptive Threshold

	Access Reordering Combines with Address Mapping
	Performance Variation of SDRAM Address Mapping
	Combined Performance

	Conclusions and Future Work
	Main Memory Issue and Research Goal
	Characteristics of Modern SDRAM Devices
	Main Memory Access Stream Properties
	Techniques to Reduce Main Memory Access Latency

	Conclusions of Bit-reversal SDRAM Address Mapping
	Depth of Reversal
	Performance of Bit-reversal Address Mapping
	Bit-reversal under Controller Policies and Virtual Paging

	Conclusions of Burst Scheduling Access Reordering
	Key Features of Burst Scheduling
	Improvements to Burst Scheduling
	Performance of Burst Scheduling

	Future Work
	Future Study of Access Reordering Mechanisms
	Dynamic SDRAM Controller Policy
	Intelligent Data Placement through Software

	Afterward

	Dual SDRAM Channels
	Asymmetric and Symmetric Dual Channel
	Performance of Dual Channel

	SDRAM Power Consumption
	SDRAM Power Components
	Background Power
	Active Power
	Read/Write Power
	I/O and Termination Power
	Refresh Power

	Total SDRAM Power
	Power Consumption vs. Energy Consumption

	Bibliography

