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ABSTRACT 
 

Green-tree retention under the conceptual framework of ecological forestry has the 

potential to provide both biomass feedstock for industry and maintain quality wildlife 

habitat. I examined the effects of retained canopy trees as biological legacies (“legacy 

trees”) in aspen (Populus spp.) forests on above-ground live woody biomass, understory 

plant floristic quality, and bird diversity. Additionally, I evaluated habitat quality for a high 

conservation priority species, the Golden-winged Warbler (Vermivora chrysoptera). I 

selected 27 aspen-dominated forest stands in northern Wisconsin with nine stands in 

each of three legacy tree retention treatments (conifer retention, hardwood retention, 

and clearcuts or no retention) across a chronosequence (4-36 years post-harvest). 

 

Conifer retention stands had greater legacy tree and all tree species biomass but lower 

regenerating tree biomass than clearcuts. Coniferous but not hardwood legacy trees 

appeared to suppress regenerating tree biomass. I evaluated the floristic quality of the 

understory plant assemblage by estimating the mean coefficient of conservatism (C). 

Mean C was lower in young stands than in middle-age or old stands; there was a 

marginally significant (p=0.058) interaction effect between legacy tree retention 

treatment and stand age. Late-seral plant species were positively associated with stand 

age and legacy tree diameter or age revealing an important relationship between legacy 

tree retention and stand development. 

 

Bird species richness was greatest in stands with hardwood retention particularly early in 

stand development. Six conservation priority bird species were indicators of legacy tree 

retention or clearcuts. Retention of legacy trees in aspen stands provided higher quality 

nest habitat for the Golden-winged Warbler than clearcuts based on high pairing 

success and nesting activity. 

 

Retention of hardwoods, particularly northern red oak (Quercus rubra), yielded the most 

consistent positive effects in this study with the highest bird species richness and the 

highest quality habitat for the Golden-winged Warbler. This treatment maintained stand 

biomass comparable to clearcuts and did not suppress regenerating tree biomass. In 

conclusion, legacy tree retention can enhance even-aged management techniques to 

produce a win-win scenario for the conservation of declining bird species and late-seral 
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understory plants and for production of woody biomass feedstock from naturally 

regenerating aspen forests. 
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CHAPTER 1. Introduction 
 

Research Overview 
 

Growth in foreign and domestic demand for fossil fuels and recent high fuel prices have 

brought increased attention to alternative sources of fuel such as plant-based ethanol 

and renewable biomass feedstocks. Ligno-cellulosic biomass from aspen (Populus spp.) 

presents an opportunity for producing an economically viable crop with high net energy 

yield while simultaneouly supporting diverse plant and wildlife communities. The 

management of aspen forests for such purposes, however, will require an evaluation of 

trade-offs between tree productivity for biomass and retention of habitat for associated 

biodiversity. This study assessed trade-offs between aspen forest biomass production 

and wildlife (specifically bird assemblages) habitat as influenced by legacy tree retention, 

also called green-tree retention. 

 

Biological legacies created by natural disturbances fill important ecological roles. Their 

retention in silvicultural prescriptions can create forest stand structure that emulates 

natural disturbances (Seymour et al. 2002, Lindenmeyer et al. 2006, Manning et al. 

2006). Legacy trees, remnant live overstory trees not removed during the last harvest 

rotation, are increasingly being retained in even-aged management prescriptions to 

more closely mimic the structure of naturally disturbed sites and to improve wildlife 

habitat diversity, to improve aesthetics, and to reduce soil erosion (Kohm and Franklin 

1997, Wisconsin Department of Natural Resources 2006). Clearcuts, or single-cohort 

stands, resemble infrequent catastrophic natural disturbance events where no canopy 

trees remain (Seymour et al. 2002). Aspen stands with legacy tree retention, or two-

cohort stands, most closely resemble the structure of relatively more common 

intermediate-severity disturbance events where individual and patches of residual trees 

survive (Seymour et al. 2002). The impact of legacy tree retention requires evaluation to 

determine if wildlife species benefit as intended, to estimate changes to woody biomass, 

and to understand the impacts on carbon storage in these forests. 

 

I will evaluate bird diversity, understory plant floristic quality, and woody plant 

productivity in 27 aspen forest stands in northern Wisconsin managed with one of three 
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silvicultural treatments (no legacy tree retention or clearcut, hardwood legacy tree 

retention, and conifer legacy tree retention) and across a chronosequence (4-36 years 

post-harvest). My goal is to understand how legacy tree retention in aspen forest stands 

affect relationships between stand-level tree productivity, understory plant floristic 

quality, andbird diversity and productivity for species of conservation concern (Figure 

1.1). 

  

Aspen forests provide an ideal study system that traditionally is harvested as a clearcut 

or coppice with the expectation that a near monotypic even-aged stand of young aspen 

will regenerate. Legacy tree retention, or green-tree retention, provides an alternative 

approach with the potential for being a win-win scenario that meets both biomass 

feedstock demand and bird conservation objectives. We hypothesized that legacy tree 

retention would not reduce stand productivity relative to a monotypic clearcut with no 

retention but that bird diversity and understory plant floristic quality would increase due 

to habitat for both early-seral associated species and some mature or late-seral forest 

associates. 

 

I selected birds as a focal taxonin this study because early seral forest bird populations 

are declining in the Great Lakes Region and across eastern North America (Askins 

1993, Hunter et al. 2001, Rich et al. 2005). The loss of early seral forest habitat due to 

maturation is frequently cited as a likely contributor to these declines (Litvaitis 1993, 

Trani et al. 2001). Aspen stands during the first ten years post-harvest are frequently 

utilized by shrubland bird species. Shrubland birds of eastern North America as a group 

have exhibited long-term population declines throughout their breeding range (Askins 

1993). 

 

In Chapter 2, my objective is to understand how legacy tree retention in aspen-

dominated forest stands affects stand-level tree productivity and bird assemblage 

diversity, composition, and relative abundance. Optimizing biomass production 

potentially presents a trade-off in terms of reduced habitat quality for some bird species.  

 

Repeated harvest of secondary forests has resulted in decreasing understory plant 

diversity in northern forests in the Great Lakes region (Rooney et al. 2004). In Chapter 3, 
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I evaluate the potential for legacy trees to reduce the negative impact of intensive forest 

harvesting, such as clearcutting, on disturbance-sensitive or late-seral understory plant 

species. Additionally, I hypothesized that legacy trees would produce a life-boating effect 

for some late-seral understory plant species and speed recovery of these species 

following harvest. 

 

The Golden-winged Warbler (Vermivora chrysoptera) is a high conservation concern 

species that breeds in high densities in young aspen stands (Roth and Lutz 2004). The 

Golden-winged Warbler Working Group (GWWG) has identified the need to evaluate 

management practices that may generate quality breeding habitat as its top research 

priority (Buehler et al. 2007). In addition, the GWWG Breeding Grounds Management 

Committee listed developing timber harvest prescriptions that promote high-quality 

breeding habitat as its second highest priority. In Chapter 4, I identify the characteristics 

of aspen stands that produce high quality habitat for this species and that can be 

incorporated into commercial timber prescriptions. 

 

The Golden-winged Warbler has often been identified as a forest edge associate (e.g. 

Confer et al. 2011). The design of this study provides a unique opportunity to better 

understand how this species reacts to edges of recently harvested aspen forest stands. 

In Chapter 5, I examine the difference in spatial orientation of male territories and female 

nest site selection which may suggest harvested stand edge preference or avoidance 

behavior. I hypothesize that the presence of at least intermediate densities of legacy 

trees would reduce the birds’ use of these edges created by nearby mature forest. 

 

Outcomes of this investigation include management recommendations to: 1) optimize 

both tree productivity for biomass feedstock production and biological diversity in aspen 

stands and 2) provide high quality habitat for bird species of conservation concern that 

depend on young forest habitat. 

 

Animal Handling 
 

Some of the research presented herein required the safe capture and handling of wild 

birds. My animal-handling procedures were authorized by Michigan Technological 
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University’s Institutional Animal Care and Use Committee (IACUC Protocol no. L0111 

and L0200). To our knowledge, no birds died as a result of this research. 

 

Dissertation Format 
 

The chapters of this dissertation are formated for publication in different ecological 

journals. For this reason, I have written the text in first-person plural given that multiple 

people contributed to the research and would be recognized as co-authors. Also the 

writing style and scope are geared for different journal audiences depending on the 

chapter. 
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Figure 1.1. Predicted relationships between ecological components in aspen forest 
stands with legacy tree retention. 
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Chapter 2. Legacy Tree Retention Provides Win-Win Scenario for 
Increasing Bird Species Richness and Stand Productivity in 
Aspen Forests 
 
Abstract 
 

With increasing interest in using forests as a source for bioenergy feedstock, aspen 

(Populus spp.) forests may play an important role in meeting this new demand. To 

balance forest biomass harvesting with the habitat requirements of wildlife species, 

green-tree retention under the conceptual framework of ecological forestry provides 

potential for meeting both needs. We examined the effects of retained trees as biological 

legacies (“legacy trees”) on above-ground live woody biomass and bird assemblage 

species richness, diversity, abundance, and composition in 27 aspen-dominated forest 

stands in northern Wisconsin. We selected nine stands in each of two legacy tree 

retention treatments (conifer retention and hardwood retention) and clearcuts (no 

retention) across a chronosequence (4-36 years post-harvest). Hardwood retention 

stands and clearcuts had similar above-ground live woody biomass for regenerating 

trees, legacy trees, and all trees combined with minimal suppression of regenerating 

trees. Conifer retention stands had greater legacy tree and all tree biomass but lower 

regenerating tree biomass than clearcuts. Coniferous but not hardwood legacy trees 

appeared to suppress regenerating tree biomass. Bird species richness was greatest in 

the hardwood retention treatment particularly early in stand development likely reflecting 

the important compositional and structural role of the large-diameter northern red oak 

(Quercus rubra) trees in this system. Six conservation priority bird species (Black-

throated Green Warbler, Setophaga virens; Brown Thrasher, Toxostoma rufum;Common 

Yellowthroat, Geothylpis trichas; Golden-winged Warbler, Vermivora chrysoptera; 

Mourning Warbler, Geothylpis philadelphia; White-throated Sparrow, Zonotrichia 

albicollis) were indicators of legacy tree retention or clearcuts with at least one species in 

each treatment suggesting that a mixture of these management strategies across the 

landscape may be necessary to aid declining species collectively. Legacy tree retention 

increased bird species richness with benefits to a group of conservation priority species, 

increased aspen forest biomass until 30 years post-harvest, and potentially maintained 

greater carbon stocks in young stands which could dampen carbon ecosystem fluxes 
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related to harvesting. This resulted in a win-win scenario for bird conservation and 

industries seeking woody feedstock from naturally regenerating forests. 

 
Introduction 
 

As fossil fuel prices increase, energy and fuel producers increasingly seek domestically 

produced sustainable fuel alternatives and are exploring use of a variety of feedstocks 

for the emerging bioenergy industry (Kszos et al. 2000, Dale et al. 2010). Aspen 

(Populus spp.) forests have the potential to play a major role (Johansson 2002, 

Richardson et al. 2002), given their cosmopolitan distribution in the northern 

hemisphere. Quaking aspen (Populus tremuloides) is the most widely distributed tree 

species in North America (Perala 1990), and the closely related European aspen 

(Populus tremula) has a similar broad temperate distribution across Eurasia (Worrell 

1993). 

 

Traditionally, aspen forests were clearcut with the tops and branches (i.e., residues or 

“slash”) left on site to decompose and provide nutrients to the naturally regenerating 

stand (Adams and Boyle 1981, Belleau et al. 2005). Bioenergy production is capable of 

using any plant material including these previously unused harvest residues as 

feedstock such that whole-tree harvest removal potentially provide increased economic 

returns relative to traditional cut-to-length operations (Adebayo et al. 2007, Becker et al. 

2009). Additionally, short-rotation fast-growing woody crop plantations (e.g. hybrid 

poplar) can produce high volumes of feedstock on shorter timeframes than naturally 

regenerating aspen stands (Ruark et al. 2006). These new management practices come 

with potential costs in the form of reduced biodiversity, soil quality, and environmental 

quality leading to concerns about their large-scale implementation (Cook and Beyea 

2000, Bockheim et al. 2005, Willyard and Tikalsky 2006, Firbank 2007, Flaspohler et al. 

2009). 

 

Ecological forestry promotes sustainable harvest of forests in such a way as to produce 

structural characteristics representative of naturally disturbed stands (Kohm and Franklin 

1997). It provides a conceptual framework for creating management prescriptions that 

balance economic needs with maintenance of ecological integrity in managed forests 
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(Kohm and Franklin 1997, Janowiak and Webster 2010). Ecological forestry principles 

and practices thus provide the opportunity for evaluating tradeoffs in aspen forest 

management. For example, green-tree retention has been promoted to protect 

disturbance-sensitive and late seral species and to increase structural diversity resulting 

in habitat for a more diverse bird assemblage when compared to traditional clearcutting 

(Hansen et al. 1995a, Rodewald and Yahner 2000, Rosenvald and Lohmus 2008, 

McDermott and Wood 2009). This silvicultural practice involves the retention of large-

canopy trees during a harvest such that they become biological legacies of the previous 

stand. These legacy trees thus have the potential for diversifying structural habitat for 

wildlife and providing a viable economic source of bioenergy biomass feedstock. 

 

Our objective was to evaluate tree productivity and wildlife response to two prescriptions 

for legacy tree retention (conifer retention and hardwood retention) relative to traditional 

clearcuts in aspen forests. Retained large-canopy legacy trees cast shade on woody 

regeneration and potentially reduce the amount of above-ground live woody biomass 

available for harvest (Huffman et al. 1999, Edgar and Burk 2001). We measured both 

the contribution of legacy trees to the total stand biomass and their impact on biomass of 

the regenerating woody vegetation. We predicted that legacy trees will increase total 

stand biomass relative to clearcuts throughout the chronosequences if regenerating 

trees are not suppressed. 

 

To evaluate wildlife response to these three prescriptions, we selected birds as our 

indicator group because they respond quickly to management and they include a large 

number of species with likely varying responses to management characteristics (Hansen 

et al. 1995b, Hutto 1998, Rodewald and Yahner 2000). For example, we predict that 

species associated with mature forests might be most abundant in stands with retention 

as opposed to species that prefer fully open canopy conditions that would be expected 

to be most abundant in young clearcuts. Thus there is the potential to identify groups of 

species that are indicators of the three harvest prescriptions. We expect species 

richness and diversity to be highest in young stands with legacy tree retention as these 

should attract species associated with both early and mature stages of stand 

development. 
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Hutto (1998) proposed the need for understanding which bird species occur in different 

land cover types particularly those resulting from specific land use and management 

practices. Through this understanding, we can identify bird species that can be 

indicators of a variety of forest types and characteristics resulting from specific 

management practices and not necessarily indicators of other species being present or 

abundant, a procedure which has been criticized (e.g. Niemi et al. 1997). Hutto (1998) 

suggested that surveying a broad list of landbirds would be preferred over a few high-

profile species. He identified the following reasons why landbirds are a good indicator 

group relative to other taxa or bird groups: 1) they are easily surveyed as a group, 2) 

have patterns of occurrence that are easily identified, and 3) will include a combination 

of species with positive and negative responses to specific management actions such 

that broad spatial scales must be considered for conservation of all species. Thus we 

propose to survey all landbird species but to identify those that are indicative of the three 

silvicultural prescriptions of interest in this study such that trade-offs can be evaluated. 

 

Methods 
 
Study Area 
We designed this study to compare three chronosequences of aspen-dominated forest 

stands in each of the following legacy tree retention treatments: conifer legacy tree 

retention, hardwood legacy tree retention, and traditional clearcut (i.e., no legacy tree 

retention). In 2006 we selected 27 aspen forest stands with nine in each retention 

treatment in northern Wisconsin (45  43’N, 89  32’W) ranging in age from 3-35 years 

post-harvest (Figure 2.1). We chose sites with similar soil types, primarily dry-mesic soils 

comprised of sandy loam and loamy sand (Soil Survey Staff 2011) within the Northern 

Highland Pitted Outwash (Bailey’s Subsection 212Jm) based on the Ecoregions of the 

United States (Bailey et al. 1994; Figure 2.1). For stands with a green-tree retention 

prescription, all trees were harvested except for those that were marked and all large-

diameter pine (Pinus spp.) and northern red oak (Quercus rubra) trees. This resulted in 

even-aged regeneration of primarily aspen species with retained canopy trees of varying 

ages. For stands with a clearcut prescription, all trees were harvested though 

occasionally scattered trees were retained for unknown reasons. 
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Tree Surveys 
We conducted tree surveys during one visit in either 2007 or 2008 at ten 0.1ha circular 

plots per stand. We randomly selected plot locations using the Random Points tool in 

ArcGIS version 9.2 (ESRI 2007) with the requirement that plots were at least 25m from 

the stand edge, logging roads, log landings, wetland inclusions, and each other. 

 

For each overstory tree greater than 10 cm dbh within the survey plot we recorded dbh, 

species, whether it was alive or dead, and whether it was a legacy tree based on having 

dbh greater than the surrounding regenerating trees. To sample saplings (i.e., trees or 

shrubs that were >1.37 m tall and <10 cm dbh), we established a 0.01 ha subplot 

centered on the 0.1 ha plot center. We only measured live individuals and recorded dbh 

and species for each one. Basal diameter at a height of 15 cm was measured for three 

saplings per species per subplot. Woody vegetation less than 1.37 m tall was not 

measured because it contributes negligible biomass to the stand total. In northern 

Wisconsin, Crow (1978) estimated above ground biomass for shrubs as 1.9% of the total 

stand woody biomass with 60% of this represented by Corylus cornuta, thus total stand 

woody biomass was probably not reduced by not including short woody biomass (less 

than 1.37 m tall). 

 

Stand Characteristics 
Aspen stand boundaries were acquired from the appropriate agency for publicly owned 

stands and were delineated from 2005 digital orthophotos for privately owned stands. 

Aspen stand area (ha) was calculated in ArcMap version 10.0 (ESRI 2010). 

 

We estimated stand age based on trees regenerating since the last harvest by collecting 

core and cookie (a 1-2 cm section of the tree trunk) samples from aspen trees in each 

tree survey plot. If the regenerating trees were generally smaller than 10 cm dbh, we 

selected three dominant or codominant aspen trees per species present in the 0.01 ha 

sapling plot and collected a cookie at a basal height of 15 cm. If the regenerating trees 

were generally larger than 10 cm dbh, we cored one dominant or codominant aspen tree 

per species per 0.1 ha plot. All legacy trees were cored. We collected two perpendicular 

cores at dbh and mounted them on boards. Tree age was determined based on 

examination of tree rings in the cookie and core samples (Speer 2010). We added one 
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year to the age for all cored trees because we assumed that the first year’s growth was 

likely less than 1.37m high given the relatively poor soils present. This assumption 

produced a conservative estimate of tree age given that some trees, esp. suppressed 

conifers, potentially took more than one year to reach a height of 1.37m. We averaged 

aspen tree ages across each stand to estimate stand age. We combined legacy tree 

ages from across each stand to calculate mean legacy tree age. 

 

To describe general stand structural characteristics, we measured three variables 

(canopy closure, foliage height richness, and visual obstruction) at two sample points at 

a distance of 10m to the southeast and northwest from the tree plot center point. Canopy 

closure (%) was estimated using a spherical densitometer. Foliage height richness was 

an index (range of 0-16) of the number of 1-m intervals touching foliage along a 15m tall 

extension pole. A 16th interval was included that represented foliage that would have 

contacted the pole if we were able to extend it to the canopy height. Visual obstruction 

(%) was a horizontal measurement of understory vegetation height-density using a 3m x 

0.5m density board divided into 0.1m x 0.1m squares of alternating black and white 

squares (Noon 1981). The percentage of squares obscured by vegetation was averaged 

for readings from 10-m in the cardinal directions. Contrary to Noon (1981), the density 

board was positioned at the sample point while the observer moved to the cardinal 

directions. This modification was necessary given the difficulty and slowness of moving 

the density board through the dense shrub layer. 

 

Bird Surveys 
We established two 250-m length transects in each aspen stand and conducted surveys 

twice per breeding season during the period of 26 May to 2 July. Transects were 

randomly placed such that the end points were a minimum of 25 m from the stand or 

clearcut edge and had a minimum width of 150 m without overlapping the stand or 

clearcut edge. Transect survey distance was unlimited but with the requirement that all 

recorded individuals occurred within the stand or clearcut boundaries. To avoid counting 

migrants, the earliest survey date each year was determined based on the absence of 

migrants during practice surveys conducted until only resident species remained. 

Surveys began approximately 15 minutes before sunrise and were completed by 10:00 
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AM CDT. We conducted surveys only when winds were below 19 km/hr and when there 

was no precipitation or dense fog. 

 

We conducted line transect surveys in 2007-2009 using a double-observer dependent 

approach adapted from a similar point count methodology (Nichols et al. 2000). This 

method required a two-person team with one person designated the “primary” observer 

and the other the “secondary” observer who remained within 3m of one another during 

the survey. The primary reported all observations to the secondary who followed behind 

the primary, recorded the data, and added observations missed by the primary. Two 

stands were surveyed each morning, and the observers switched roles at the second 

stand surveyed each morning. On the second round of survey visits each year, the 

observer roles were the opposite of the first survey visit such that each observer was 

primary once for every transect and stand surveyed each year. We tallied each bird 

species by transect and compared transect survey maps to remove suspected duplicate 

observations. 

 

Data Analysis 
Results reported in the text are mean±se where se is the standard error of the mean. 

 

Stand Characteristics 

Based on tree measurements, we calculated tree density and basal area (m2/ha) for 

overstory trees and legacy trees in the 0.1 ha plot and sapling density in the 0.01 ha plot. 

From this data we also calculated the proportion of overstory trees, legacy trees, and 

saplings that were hardwoods relative to conifers. 

 

Stand age-classes were created to simplify data presentation and for some categorical 

analyses. Aspen stands were grouped into three age-classes (relatively young, middle-

age, and old) based on their sequence in the chronology for each legacy tree treatment. 

 

Whole-tree above-ground live biomass was estimated using published species-specific 

allometric equations developed for trees and shrubs located in the Great Lakes, eastern 

United States, and adjacent areas of Canada. We used biomass equations from Perala 

and Alban (1994) and Ter-Mikaelian and Korzukhin (1997) for overstory trees and from 
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Grigal and Ohmann (1977), Roussopoulos and Loomis (1979), Smith and Brand (1983), 

and Perala and Alban (1994) for saplings. For saplings lacking basal diameter 

measurements in our dataset, we estimated missing values based on a species specific 

regression of dbh and basal diameter from the measured individuals. When more than 

one regional biomass equation was available, we averaged biomass estimates from two 

independent equation sources. Woody biomass was summed by legacy trees, 

regenerating trees (i.e., tree and tall shrub growth since the last harvest), and all trees 

(i.e., the sum of legacy trees and regenerating trees). 

 

Bird Relative Abundance 
Bird names follow the convention of The American Ornithologists’ Union (2011) and all 

scientific names appear in Table 2.1. We classified species as conservation priority if 

they were categorized as one or both of the following: 1) continental concern species, 

regional concern species, continental stewardship species, or regional stewardship 

species in Bird Conservation Region 12 (BCR 12: Boreal Hardwood Transition) by 

Partners in Flight (Panjabi et al. 2005), and 2) State Wildlife Action Plans’ Species of 

Greatest Conservation Need in Michigan, Minnesota, or Wisconsin representing the US 

portion of BCR 12 (Eagle et al. 2005, Wisconsin Department of Natural Resources 2005, 

Minnesota Department of Natural Resources 2006). 

 

Species relative abundance (individuals/transect) was not adjusted for detectability as 

this was not possible for many species with small sample sizes (Nichols et al. 2000). 

Given that only 8% of individuals were added by the secondary observer, abundance 

adjustments due to detectability would likely be minor. We used the combined 

observations of the two observers to calculate relative abundance for each transect. We 

added the transect relative abundance values from the two transects to calculate relative 

abundance for each species in each stand. 

 

Though we know detectability for each species likely decreased with increasing distance 

from the transect (Buckland et al. 2001), we assumed the detection function was similar 

for each species across stands allowing a reliable comparison of relative abundance 

among treatments and across the chronosequences. Varying habitat characteristics 

among stands especially those associated with stand development would be the most 
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likely reason for detectability to not be constant and thus violate this assumption (Bibby 

and Buckland 1987). We tested this assumption by comparing three stand structural 

characteristics (canopy closure, visual obstruction, and foliage height richness) among 

legacy tree retention treatments and by age-classes as a two-way analysis of variance in 

SigmaStat version 3.5 (Systat 2006). 

 

To display species relative abundance patterns among legacy tree retention treatments 

and across the stand age chronosequences, we stacked the total relative abundance of 

the ten most abundant species from all surveys. We used the maximum relative 

abundance for each species observed for each stand in each year and totaled these 

values across the three survey years (Venier and Pearce 2005). 

 

Bird Richness and Diversity 
We calculated species richness (S; number of species observed), Shannon’s Diversity 

Index (H’; H’=- pi log pi where pi is importance probability of species i), Shannon’s 

Evenness (E; E=H’/ln(S)), and Simpson’s Diversity Index (D; D=1- pi
2) using the Row 

and Column analysis tool in PC-ORD version 5.0 (McCune and Mefford 2002). We 

selected the maximum relative abundance among the two survey visits each year 

(Venier and Pearce 2005) and averaged the maximum abundance among the three 

survey years for the richness and diversity analyses. We compared these richness and 

diversity metrics among legacy tree retention treatments in Minitab 16 Statistical 

Software (2010; version 16.1.1) using the General Linear Model tool to conduct an 

analysis of covariance with stand age as the covariate. In this analysis, we used a log 

transformation of stand age to meet the assumptions of a linear model. For post-hoc 

tests, we used Tukey’s method. 

 0.10. 

 

Bird Assemblage Composition 

To evaluate differences in bird assemblage composition based on stand characteristics, 

we conducted a non-metric multidimensional scaling (NMS) ordination. We ran the 

ordination in autopilot mode set to slow and thorough and using the Sorenson (Bray-

Curtis) distance measure in PC-ORD (McCune and Mefford 2002). We constructed joint 

plots using the stand and bird species ordination scores. Displayed species or stand 
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points are considered compositionally more similar the closer they are together. We 

correlated stand characteristics measured with the ordination axes to identify 

mechanisms for observed compositional patterns. We included variables with r2

the joint plots. 

 

To identify bird species associated with specific combinations of age-class and legacy 

tree treatment, we conducted an indicator species analysis in PC-ORD. We did not use 

this analysis to imply that a single bird species was indicative of a suite of bird species 

(Niemi et al. 1997) but rather to identify species with a strong association with specific 

silvicultural prescriptions and stages of stand development (Dufrêne and Legendre 1997, 

Carignan and Villard 2002, Venier and Pearce 2005). We totaled maximum abundance 

estimates across the three survey years and only included species with at least 10 

observations (Venier and Pearce 2005). This reduced the number of species to 45. 

Importance values were calculated for nine age-class and legacy tree treatment 

combinations and ranged from 0 to100 with 100 being a perfect indicator. To determine 

the statistical significance of the maximum indicator value among groups for each 

species, we used a Monte Carlo test with 5000 iterations. We reported the species with 

p-  

 
Results 
 
Stand Characteristics 
Stand areas ranged from 13.6-58.3 ha (Table 2.2). Above-ground live woody biomass 

for legacy trees was significantly greater in conifer retention stands (36.6±6.1 10,000 

kg/ha) than in clearcuts (1.4±0.5 10,000 kg/ha) and hardwood retention stands (14.5±3.7 

10,000 kg/ha; F1,23=17.69, p

significantly lower for conifer retention stands (18.3±4.5 10,000 kg/ha) relative to 

clearcuts (27.8±8.1 10,000 kg/ha) but neither were different from hardwood retention 

stands (28.3±8.2 10,000 kg/ha; F1,23=5.10, p=0.015). Total tree biomass was significantly 

greater for conifer retention stands (54.9±6.0 10,000 kg/ha) relative to clearcuts 

(29.2±8.4 10,000 kg/ha) but neither were different from hardwood retention stands 

(42.8±7.4 10,000 kg/ha; F1,23=8.82, p  
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Legacy tree biomass was constant across the legacy tree retention chronosequences 

(F1,23=0.01, p=0.924, adjusted R2=55.6) and represented a large proportion of biomass 

relative to regenerating trees in aspen stands with retention particularly early in stand 

development (Table 2.3, Figure 2.2). By around 25-30 years post-harvest, the clearcuts 

accumulated about the same total all tree biomass as the stands with retention thus 

reducing the benefits of the legacy trees at that point (Figure 2.2). 

 

Most legacy tree biomass was comprised of eastern white pine (Pinus strobus; 

29%±7%), red pine (Pinus resinosa; 20%±6%), and northern red oak (37%±9%; Table 

2.4). As expected, most of the regenerating tree biomass (75%±1%) was comprised of 

the two aspen species (Table 2.4). 

 

Visual obstruction was higher in young (79%±3%) and middle-aged (86%±3%) stands 

than in old stands (67%±3%; F2,18=10.380, p=0.001) but there was no legacy tree 

retention treatment effect (p=0.638) or interaction effect (p=0.859). Foliage height 

richness was lower in young stands (2.8±0.4) than in middle-age (5.3±0.4) or old stands 

(5.8±0.4; F2,18=15.981, p 1); there was a marginal legacy tree retention treatment 

effect (p=0.081) but no interaction effect with age-class (p=0.390). Canopy closure 

varied by stand age-class (F2,18=19.801, p

(F2,18=4.849, p=0.021), and their interaction (F2,18=3.122, p=0.041). Among young 

stands, clearcuts (47.0±5.7) had lower canopy closure than conifer retention stands 

(81.8±5.7). Among hardwood retention stands and clearcuts, young stands (62.8±5.7 

and 47.0±5.7, respectively) had lower canopy closure than middle-age (91.2±5.7 and 

79.5±5.7, respectively) and old stands (92.9±7.0 and 92.1±4.9, respectively). Canopy 

closure and foliage height richness were significantly correlated (rP=0.848, p

These structural characteristic differences among retention treatments and stand age-

classes suggested that bird detectability was likely not constant among stands. 

 

Bird Relative Abundance 
Most bird observations were based on audio cues alone (84.3%) with the remaining 

sightings based on either visual observation alone (5.5%) or combined audio and visual 

observation (10.2%). We observed 7450 individual birds representing 71 species of 

which 28 species (39%) were identified as conservation priority (Table 2.1). In addition, 
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we observed one phenotypic hybrid, Brewster’s Warbler (Vermivora chrysoptera x V. 

cyanoptera), that was excluded from our analyses. Also, we removed two suspected late 

migrants (one Black-throated Blue Warbler (Setophaga caerulescens) and one Wilson’s 

Warbler (Cardellina pusilla) from the analyses. 

 

The two most abundant species were Chestnut-sided Warbler (Setophaga pensylvanica; 

n=585; 11.7% of all species observations) and Ovenbird (Seiurus aurocapilla; n=571; 

11.4% of all species observations) with the former declining in unadjusted relative 

abundance with increasing stand age nearly proportionately to the increase in 

unadjusted relative abundance of the Ovenbird with increasing stand age (Table 2.1, 

Figure 2.3). 

 

Of the sixteen conservation priority species (Table 2.1) with at least 10 observations 

among the three survey years, American Woodcock (Scolopax minor) and Northern 

Flicker (Colaptes auratus) reached their highest unadjusted relative abundance in young 

conifer retention stands. Chestnut-sided Warbler, Eastern Towhee (Pipilo 

erythrophthalmus), Golden-winged Warbler (Vermivora chrysoptera), Mourning Warbler 

(Geothlypis philadelphia), and Yellow-bellied Sapsucker (Sphyrapicus varius) reached 

highest unadjusted relative abundance in young hardwood retention stands. Brown 

Thrasher (Toxostoma rufum), Common Yellowthroat (Geothlypis trichas), Nashville 

Warbler (Oreothlypis ruficapilla), Purple Finch (Carpodacus purpureus), and White-

throated Sparrow (Zonotrichia albicollis) reached their highest unadjusted relative 

abundance in young clearcuts. Rose-breasted Grosbeak and Veery reached their 

highest relative abundance in middle-age hardwood retention stands. Ruffed Grouse 

reached its highest relative abundance in middle-age conifer retention stands, and 

Black-throated Green Warbler was most abundant in old conifer retention stands. Single-

tree and small patch blowdown in two old stands (conifer retention stand at age 25 and 

clearcut at age 27) likely resulted in an increase in relative abundance of species, such 

as Chestnut-sided Warbler and White-throated Sparrow, typically associated with young 

stands (Figure 2.3). 
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Bird Richness and Diversity 
Based on the analysis of covariance with stand age as the covariate, species richness 

was significantly greater in aspen stands with hardwood legacy tree retention than in 

clearcuts but stands with conifer legacy tree retention were not different from either 

treatment (F2,23=5.84, p=0.009; Figure 2.4). For Shannon’s Diversity Index, we observed 

a significant legacy tree retention treatment effect (F2,23=3.42, p=0.050) but the post-hoc 

tests suggested no difference between treatments (Figure 2.4). Shannon’s Evenness 

(p=0.601) and Simpson’s Diversity Index (p=0.390) did not differ among treatments 

(Figure 2.4). -hoc tests resulted in marginally significant 

higher species richness and Shannon’s Diversity Index for both legacy retention 

treatments relative to clearcuts. 

 

Diversity of conservation priority species did not differ by legacy tree retention treatment 

(p=0.570-0.967). The four richness and diversity metrics for all species declined 

significantly with increasing log of stand age consistently among legacy tree retention 

treatments (F1,23=14.53-69.85, p R2=32.1-73.3; Figure 2.4). Similarly, 

conservation priority species declined significantly with increasing log of stand age for all 

richness and diversity metrics (F1,23=31.2-59.6, p R2=52.2-68.8) except 

for Shannon’s evenness (F1,23=0.33, p=0.570, adjusted R2=0.00). 

 

Bird Assemblage Composition 
The NMS ordination resulted in a two-dimensional solution with a final stress of 16.13 

and most of the variance (0.852) represented by Axis 2. Of the 16 stand characteristics 

(not including stand area) (Table 2.2), stand age, proportion of hardwoods in the 

overstory, and legacy tree dbh were significantly correlated with Axis 2 (Table 2.5). 

Young aspen stands were spatially grouped (as indicated by circles in Figure 2.5) by 

legacy tree retention treatment suggesting there were consistent differences in bird 

assemblages among treatments early in stand development. Middle-age and old stands 

were not consistently grouped suggesting that bird assemblages were less distinctive 

later in stand development (Figure 2.5). 

 

We identified 13 bird species as indicators of stand age-class and legacy tree treatment 

of which six were conservation priority. Seven of the 13 species were associated with 
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hardwood legacy tree retention, one with conifer legacy tree retention, and five with 

clearcuts (Table 2.6). Eleven species including five of the six conservation priority 

species were indicators of young stands (Table 2.6). In the NMS ordination, the indicator 

species in young stands were spatially grouped by legacy tree retention treatment in 

accordance with the ordination position of the stands in these treatments (Figure 2.5). 

 

Discussion 
 
Stand Productivity in Relation to Legacy Tree Retention 
Conifer and hardwood legacy trees represented a large proportion of the biomass in 

aspen stands with retention particularly early in stand development. The biomass 

benefits of the legacy trees became negated by around 30 years post-harvest when the 

clearcuts accumulated about the same biomass as the stands with retention. This 

convergence was due to regenerating tree biomass increasing but legacy tree biomass 

remaining constant across the legacy tree retention chronosequences. The constant 

legacy tree biomass with increasing stand development was likely due to highly variable 

initial retention basal area and biomass at the time of the last harvest. Though legacy 

trees likely increased in biomass since the last stand harvest, the space for time 

substitution was unable to reflect this. 

 

Conifer but not hardwood legacy trees appeared to suppress aspen growth and 

biomass. Given that the three dominant legacy tree species (red pine, eastern white 

pine, and northern red oak) have similar light tolerance, we might not expect a heavier 

shading effect by the conifers (Baker 1949, Messier et al. 1998). However sunlight 

penetrates deeper into conifer canopies relative to broad-leaf canopies (Walker and 

Kenkel 2000), thus we might expect greater suppression of regenerating trees under 

broad-leaf legacy trees relative to conifer legacy trees. However, the more important 

difference between broad-leaf and coniferous legacy trees may relate to the spring leaf-

off period for deciduous, broad-leaf trees. 

 

The leaf-off period for deciduous, broad-leaf canopies such as that dominated by 

northern red oak (Quercus rubra) may provide an adequate early spring window of near 

full sun penetration when regenerating aspen may be highly productive (Prévost and 
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Pothier 2003). In comparison, evergreen coniferous canopies provide perpetual shade 

despite the greater solar penetration through the canopy that may not be sufficient for 

regenerating aspen that requires near full sun conditions. Additionally, the generally 

higher density of legacy trees and higher canopy closure in the stands with conifer 

retention may have contributed to the observed suppression of the regenerating trees. It 

was unclear if the aspen biomass in the stands with conifer retention would eventually 

“catch up” to the other two treatments. A longer chronosequence was needed in the 

conifer retention treatment to provide insight into the answer. 

 

If the carbon stored in legacy trees was proportionate to their biomass, then legacy trees 

have great capacity to reduce the carbon flux relative to traditional clearcutting. 

Additionally forest stands comprised of conifers and diverse mixes of tree species can 

store more carbon than monotypic broad-leaved forests (Bravo et al. 2008). Similarly, 

Edgar and Burk (2001) identified their most productive aspen stands in Minnesota as 

vertically stratified aspen-balsam fir-paper birch mixtures. Bravo et al. (2008) suggested 

several reasons for the greater carbon storing capacity of mixed forests including 

differences in stem and crown configuration between species, differences in forest 

structure, and differences in root biomass. Without legacy trees, our stands would be 

dominated by aspen species with a diverse minority of other, primarily broad-leaved 

species. Conifer species can store a greater among of carbon per unit biomass than 

broad-leaved trees (Bravo et al. 2008). Though pine species in our study suppressed the 

regenerating tree biomass, they potentially have greater carbon storage capacity than 

oaks. Thus retention of conifers might be encouraged if carbon storage is the primary 

management goal. 

 

Bird Species and Assemblage Response to Legacy Tree Retention Treatments 
The legacy trees likely increased the structural complexity in young forests by creating a 

two-aged, two-storied forest stand rather than an even-aged, one-story aspen clearcut. 

As the regenerating trees reached the height of the legacy trees, the stand became one-

storied thus the structural effects of the legacy trees were likely reduced. Across the 

chronosequences bird species assemblage differences were noted due to legacy tree 

compositional differences, particularly the ratio of large diameter overstory hardwoods to 

conifers. Bird species richness was greatest in the hardwood retention treatment 
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particularly early in stand development likely reflecting the important compositional and 

structural role of the large-diameter oak trees in this system. Though bird species 

richness in stands with conifer retention did not statistically differ from the other two 

treatments, it does suggest that it produced an intermediate effect that included the 

attraction of certain species (e.g. Black-throated Green Warbler) that were rare or absent 

in other treatments, a biologically important result. 

 

Other studies examining effects of green-tree retention on forest birds have generally 

found an increase in bird richness, diversity and density for many species as compared 

to clearcut stands (Merrill et al. 1998, Rodewald and Yahner 2000, Harrison and Kilgo 

2004, McDermott and Wood 2009) though exceptions exist (Atwell et al. 2008). Not all 

bird species responded the same to these treatments but consistent patterns observed 

included a positive response by early successional species to young retention stands 

and a positive response by some mature forest associates though often with reduced 

densities relative to uncut forest (Rodewald and Yahner 2000, Harrison and Kilgo 2004, 

McDermott and Wood 2009). Our results are consistent with these studies. 

 

In our study, differences in forest stand characteristics among stand age-classes and 

legacy tree retention treatments indicated that detectability of different bird species and 

individuals within species likely varied among our aspen stands. Foliage height richness 

was lower and visual obstruction was higher in young stands relative to old stands. The 

lower foliage height richness in young stands was likely a reflection of the short height of 

the regenerating trees and the rarity of encountering legacy trees with the extension 

pole. Canopy closure increased with increasing stand age and overall was the lowest in 

young clearcuts. Thus, the regenerating woody vegetation in young stands was dense, 

short, but with a relatively more open canopy. As the canopy closed with age, the 

understory became more open due to reduced light penetration. 

 

This structural shift from a dense understory to a more open one likely reduced our 

ability to detect individuals and perhaps certain species with the greatest 

underestimation of relative abundance being in young stands (Bibby and Buckland 

1987). By adjusting relative abundance values for detectability we would expect that the 

differences we observed between young and old stands would become more extreme 
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with the greatest change in clearcuts and the smallest change in the conifer retention 

stands due to the more closed canopy. Our unadjusted relative abundance data 

represent a conservative estimate of the differences between age-classes and legacy 

tree retention treatments and thus likely represented true differences. 

 

Of the 28 conservation priority species that we observed, six were indicator species for 

combinations of stand age-classes and legacy tree retention treatments. Five of these 

indicator species (Brown Thrasher, Common Yellowthroat, Golden-winged Warbler, 

Mourning Warbler, and White-throated Sparrow) were associated with young aspen 

stands. An additional seven conservation priority species with at least ten observations 

in our study reached their highest abundance in young stands. The decreasing number 

of conservation priority species relative to stand development may be a reflection of the 

overall importance of young forest habitat for many declining bird species (Askins 1993, 

Hunter et al. 2001, Trani et al. 2001). 

 

Brown-headed Cowbird (Molothrus ater) was an indicator of young hardwood retention 

stands though only seven of the 14 total individuals were observed in these stands 

among the three survey years. This low relative abundance suggests that nest 

parasitism rates were likely low which is consistent with other studies in extensive, 

relatively unfragmented forested landscapes (Robinson et al. 1995, Hanski et al. 1996, 

Chace et al. 2005). 

 

Conifer retention stands had high legacy tree biomass but low regenerating tree biomass 

compared to clearcuts. Though bird species richness was not different relative to the 

other two treatments, some bird species (e.g. Black-throated Green Warbler, Pine 

Warbler (Setophaga pinus), and Yellow-rumped Warbler (Setophaga coronata)) reached 

their highest unadjusted relative abundance in this treatment and the bird assemblage 

composition differed particularly early in stand development. In our study, the absence or 

low density of pines in a stand meant the near absence of these bird species. 

 

Coniferous forest associations of Black-throated Green Warblers vary considerably 

across their breeding range (Collins 1983, Morse and Poole 2005) such that some 

studies have found an association with pines in the western Great Lakes region (e.g. 
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Collins 1983) and others have not (e.g. Beals 1960). In our study, the Black-throated 

Green Warbler (Setophaga virens) was an indicator of old conifer retention stands which 

supported their association with conifers and middle-aged to mature forests including 

mixed deciduous-coniferous forests as observed by Morse and Poole (2005). 

 

Conservation priority birds were neither associated entirely with one legacy tree 

retention treatment nor one stand age-class. This emphasizes the conclusions of others 

that forest managers need a landscape perspective to provide a diverse range of forest 

age-classes and forest types to accommodate the full suite of declining forest bird 

species (Back 1979, Hutto 1998, Janowiak and Webster 2010). 

 

Conclusions 
 

Hardwood retention stands and clearcuts had similar above-ground live woody biomass 

for regenerating trees, legacy trees, and all trees combined with minimal suppression of 

regenerating trees. Hardwood retention stands also had higher bird species richness 

than the other two retention treatments. Several high conservation priority species 

associated with hardwood retention will benefit including the Golden-winged Warbler 

(see Chapter 4), a species recently petitioned for protection under the Endangered 

Species Act (U.S. Fish and Wildlife Service 2011). The dominant legacy tree species in 

this treatment was the northern red oak, a mast producing species important to many 

wildlife species (Tubbs et al. 1987, Johnson 1994, McShea et al. 2007). 

 

Legacy tree retention can increase bird species richness with benefits to a group of 

conservation priority species, increase aspen stand biomass until 30 years post-harvest, 

and maintain greater carbon stocks in young stands which could dampen carbon 

ecosystem fluxes related to harvesting. This results in a win-win scenario for bird 

conservation and industries seeking woody feedstock from naturally regenerating 

forests. 
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Figure 2.1. Twenty-seven aspen forest stands within the Northern Highland Pitted Outwash 
(Bailey’s Subsection 212Jm). The three counties (Vilas, Oneida, and Lincoln) where these stands 
occur in northern Wisconsin are indicated in the inset map. 
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Figure 2.2. Above-ground live woody biomass for 27 aspen forest stands with estimates for 
legacy trees, regenerating trees (including tall shrubs), and their sum presented as all trees. 
Stands are identified by their legacy tree retention treatment (clearcut, conifer retention, and 
hardwood retention). Biomass was estimated based on regional allometric equations. 
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Figure 2.3. Total abundance of the ten most abundant bird species in 27 aspen forest stands in 
northern Wisconsin. For each stand, the total abundance for each species represents a three-
year sum of the maximum relative abundance from each year and the stand age is the three-year 
mean. Vertical lines are guides for approximate alignment of the three legacy tree retention 
chronosequences. Arrows indicate stands with blowdown that created small-diameter canopy 
gaps. Bird species alpha codes are: OVEN=Ovenbird, BCCH=Black-capped Chickadee, 
REVI=Red-eyed Vireo, VEER=Veery, NAWA=Nashville Warbler, RBGR=Rose-breasted 
Grosbeak, CSWA=Chestnut-sided Warbler, WTSP=White-throated Sparrow, INBU=Indigo 
Bunting, and MOWA=Mourning Warbler. 
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Figure 2.4. Mean bird species richness (S), Shannon’s Diversity Index (H’), Shannon’s Evenness 
(E), and Simpson’s Diversity (D) trends relative to stand age and three legacy tree retention 
treatments (clearcut, conifer retention, and hardwood retention) in 27 aspen forest stands in 
northern Wisconsin. Bird data were collected along two 250m line transects in each stand 
surveyed twice annually during 26 May to 2 July. Plotted values represent a mean of the three 
survey years, 2007-2009.  



35 
 

 
 
Figure 2.5. NMS ordination plots of 27 aspen forest stands and 71 bird species versus stand 
structural gradients. Stand variables are described in Table 2. Aspen stands are categorized 
based on their age-class (young, middle-age, and old) and legacy tree retention treatment 
(clearcut, conifer retention, and hardwood retention); the three surveys for each stand are 
connected with successional vectors. Young stands in each retention treatment are circled to 
indicate compositional similarity. Bird species identified as indicators of specific combinations of 
stand age-class and treatment are identified with alpha codes (ALFL=Alder Flycatcher, 
AMGO=American Goldfinch, AMRO=American Robin, BAWW=Black-and-white Warbler, 
BHCO=Brown-headed Cowbird, BRTH=Brown Thrasher, BTNW=Black-throated Green Warbler, 
COYE=Common Yellowthroat, DOWO=Downy Woodpecker, GWWA=Golden-winged Warbler, 
INBU=Indigo Bunting, MOWA=Mourning Warbler, and WTSP=White-throated Sparrow).
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Table 2.4 
Legacy tree and regenerating tree (including tall shrubs) composition as a percent 

(mean±1 se) of total above ground live woody biomass for 27 aspen forest stands in 
northern Wisconsin, 2007-2008. 

Species Regenerating Trees Legacy Trees 
Populus spp.a 75±1 5±3 

Acer rubrum 8±2 6±4 

Quercus rubra 5±1 37±9 

Betula papyrifera 3±1 1±1 

Corylus spp.b 3±1 nac 

Prunus serotina 2±0 <1 

Abies balsamea 1±0 1±11 

Pinus strobus 1±0 29±7 

Pinus resinosa <1 20±6 

Total  98 99 
aIncludes both Populus tremuloides and Populus grandidentata 
bIncludes both Corylus cornuta and Corylus americana 
cNot applicable 
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Table 2.5 
Pearson correlations between non-metric multidimensional scaling ordination axes and 

stand variables for 27 aspen forest stands in northern Wisconsin, 2007-2009. The 
coefficient of determination is presented for each axis in parentheses. 

 
Axis 1  
(0.041) 

 Axis 2  
(0.852) 

Variable r r2  r r2 
Stand Age (years)a 0.298 0.089  0.878 0.771 

Visual obstruction (%) -0.367 0.135  -0.233 0.054 

Legacy tree density (stems/ha)b -0.055 0.033  0.008 0.000 

Legacy tree diameter at breast height (cm)c -0.016 0.000  0.424 0.180 

Proportion of overstory trees that are 
hardwoodsd -0.282 0.079  0.488 0.239 

Proportion of sapling trees that are 
hardwoods -0.358 0.128  -0.201 0.040 

aCorrelated with canopy closure (r=0.72), foliage height diversity (r=0.72), overstory tree 
density (r=0.86), overstory tree basal area (r=0.79), overstory tree diameter (r=-0.59), 
sapling density (r=-0.85), sapling diameter at breast height (r=0.64) 
bCorrelated with legacy tree basal area (r=0.85) 
cCorrelated with legacy tree age (r=0.69) 
dCorrelated with proportion of legacy trees that are hardwoods (r=0.80)
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Table 2.6 
Indicator species analysis importance values (IV) by legacy tree treatment and stand 

age-class (years; in 2007) for 27 aspen forest stands with and without legacy tree 
retention, northern Wisconsin, 2007-2009. Only species with probability (p) values equal 
to or less than 0.050 are included. Species in each treatment-age group are sorted by 

highest indicator value. Species not in bold font had nearly equally high indicator values 
(within 75% of the maximum group indicator value) in one or more of the other groups, 
thus only species in bold font are good indicators for one treatment-age group. Species 

with asterisks are categorized as conservation priority. See Table 2.1 for species 
scientific names. 

Species 
Treatment & Age-class 
of Maximum IV IV p 

Common Yellowthroat* Clearcut–Young (4-7 yrs) 51.2 0.027 

Alder Flycatcher Clearcut–Young (4-7 yrs) 47.3 0.015 

Brown Thrasher* Clearcut–Young (4-7 yrs) 42.9 0.043 

White-throated Sparrow* Clearcut–Young (4-7 yrs) 34.6 0.018 

American Robin Clearcut–Young (4-7 yrs) 33.0 0.009 

    

Brown-headed Cowbird Hardwood Retention–Young (4-7 yrs) 50.0 0.028 

American Goldfinch Hardwood Retention–Young (4-7 yrs) 48.5 0.004 

Downy Woodpecker Hardwood Retention–Young (4-7 yrs) 46.2 0.049 

Golden-winged Warbler* Hardwood Retention–Young (4-7 yrs) 43.9 0.023 

Indigo Bunting Hardwood Retention–Young (4-7 yrs) 34.0 0.006 

Mourning Warbler* Hardwood Retention–Young (4-7 yrs) 33.5 0.007 

    

Black-and-white Warbler 
Hardwood Retention–Middle-age (11-
21 yrs) 30.2 0.046 

    

Black-throated Green Warbler* Conifer Retention–Old (20-36 yrs) 56.5 0.027 
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CHAPTER 3. Canopy Trees as Biological Legacies Aid in 
Recovery of Late-seral Understory Plant Species in Managed 
Aspen Forests 
 

Abstract 
 
The decline of late-seral and disturbance-sensitive understory plants in managed forests 

has prompted the use of forestry practices such as retention of live, canopy trees 

(“legacy trees”) in commercial, even-aged forest management to protect native plant 

diversity. We compared aspen (Populus spp.) forests harvested with legacy tree 

retention to clearcuts across a chronosequence (8-40 years post-harvest) to determine if 

legacy trees increased understory plant diversity and floristic quality. We selected 27 

aspen stands with nine in each of three harvest treatments: 1) no legacy tree retention or 

clearcut, 2) conifer legacy tree retention, and 3) hardwood legacy tree retention. 

Understory plant species richness, diversity, and evenness did not vary by harvest 

treatment or by stand age. Mean coefficient of conservatism (C) was lower in young 

stands than middle-age or old stands; there was a marginally significant (p=0.058) 

interaction effect between legacy tree retention treatment and stand age. Mean C was 

initially lower in stands with legacy tree retention than in clearcuts, but with stand 

development, mean C in stands with legacy tree retention exceeded that for clearcuts. 

Mean C for clearcuts remained relatively constant across the chronology suggesting that 

late-seral species were slow to germinate or invade. Late-seral plant species were 

positively associated with stand age and legacy tree diameter or age thus lending 

support for the importance of the relationship between legacy tree retention and stand 

development. Our data suggest that legacy tree retention may enhance traditional even-

aged management techniques in aspen forest by conserving late-seral understory 

plants. 

 

Introduction 
 

Native understory plant diversity is declining in managed forests due to the decrease of 

habitat specialists and increase of habitat generalists resulting in increased 

compositional similarity (Rooney et al. 2004). This pattern highlights a general trend 

toward forest community homogenization that has prompted the need for forestry 
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practices that protect native plant diversity. Ecological forestry provides the framework 

around which silvicultural treatments may be crafted to provide elements in managed 

forests associated with natural disturbances (Kohm and Franklin 1997). The retention of 

biological legacies, pre-disturbance structures that persist post-disturbance, is a central 

concept in this framework (Franklin et al. 2007). 

 

Aspen forests are important commercially across the northern hemisphere as feedstock 

for the paper and pulp industry and has attracted interest from the emerging bioenergy 

industry (Ragauskas et al. 2006). Aspen stands are regenerated with even-aged 

management techniques, generally a coppice or clearcut harvest (Perala 1977). 

Retention of live, canopy trees as biological legacies (“legacy trees”) is recommended as 

an element of improving upon traditional even-aged forest management (Franklin et al. 

2000, Franklin et al. 2007, Rosenveld and Lohmus 2008). As a practice this is referred to 

by a variety of names including legacy-tree retention, green-tree retention, variable 

retention, live-tree retention, partial harvest, even-aged management with reserves, or 

two-aged forest management. 

 

Our objective was to assess changes in understory plant diversity, composition, and 

floristic quality in response to conifer and hardwood legacy tree retention relative to 

clearcuts in aspen forest stands across a chronosequence. Plant and forest ecologists 

have long explored the plant diversity and compositional effects of forest management 

but assessment of floristic quality in forests is relatively new (Francis et al. 2000, 

Spyreas and Matthews 2006, Wolff et al. 2008). Floristic Quality Assessment offers an 

assemblage-wide technique to determine if compositional changes tend toward 

historically undisturbed, intact forest (Swink and Wilhelm 1994). Though based on a 

subjective, qualitative species scoring method, this technique provides a quantitative tool 

to measure plant assemblage quality (Swink and Wilhelm 1994). 

 

Bradbury (2004) offered three hypotheses to explain the influence of aggregated legacy 

tree retention on understory plant richness and diversity in boreal forests. These ideas 

could be adapted to predict effects of dispersed retention patterns and partially 

influenced our competing hypotheses in this study. First, based on successional niche 

theory and an understanding of resource characteristics, young stands with retention 
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represent an intermediate level of disturbance producing a high diversity of niches for a 

spectrum of early- to late-seral species resulting in the highest potential species richness 

and diversity earlier in stand development due to increases in both resource quantity and 

heterogeneity (Pacala and Reese 1998, Bartels and Chen 2010). The legacy tree 

retention effect will be greatest in young and middle-age stands but the effect will be 

reduced in old stands without retention and as aspen regeneration reaches the legacy 

tree canopy resulting in a reduction in niche diversity following canopy closure. Second, 

diversity may be lower in stands with retention given that conditions are suboptimal for 

both late-seral species and pioneering species and only benefitting species adapted to 

partial sun or shade conditions. Third, based on Hubell’s Unified Neutral Theory that 

predicts no net gain in species richness or diversity through time though composition 

may change due to stochastic processes, we would predict no change in species 

diversity due to either stand development or legacy tree retention (Hubell 2001). 

 

In regard to plant composition, we hypothesize that dispersed legacy trees will provide 

environmental conditions needed for persistence, invasion, and increased abundance of 

late-seral understory plant species earlier in stand development than would occur in the 

absence of legacy trees in aspen clearcuts. We predict that plant assemblage floristic 

quality and composition of young aspen stands with legacy trees will be similar to old 

aspen stands without legacy tree retention. 

 

Past studies investigating ecological effects of legacy tree retention have focused 

primarily on the selection of specific tree species thus additional research was 

recommended to identify other important legacy tree characteristics such as age and 

size (Rosenveld and Lohmus 2008). By measuring a variety of legacy tree and retention 

characteristics including tree age and size, we can make recommendations to foresters 

for selection of legacy trees and to create stand characteristics for the protection of 

disturbance-sensitive plant species in commercially managed aspen forests. 
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Methods 
 
Study area 
In 2006, we selected 27 aspen-dominated forest stands in Oneida, Vilas, and Lincoln 

Counties, Wisconsin (45  43’N, 89  32’W) based on constructing a chronosequence of 

regenerating aspen stand developmental stages for nine stands in each of three legacy 

tree retention treatments: no legacy tree retention or clearcut, hardwood legacy tree 

retention, and conifer legacy tree retention (Figure 3.1). In this selection process, we 

minimized other stand differences such as soil type, landscape context, and 

management history. Climatically, this area averages 760-890 mm of annual 

precipitation and has an average annual temperature of 4-5 C with a 125-155 day 

freeze-free period (NRCS 2011). 

 

All aspen stands were located within Subsection 212Jm (Northern Highland Pitted 

Outwash) of Province 212 (Laurentian Mixed Forest) based on the Ecoregions of the 

United States (Bailey et al. 1994; Figure 3.1). The study area fell within the boundaries 

of Major Land Resource Area 94D, Northern Highland Sandy Drift, in Soil Survey Region 

#10 (NRCS 2011). Based on mean percent of stand area, a majority of soils (~90%) 

were either sandy loam or loamy sand with the remaining ~10% being primarily sand 

(Soil Survey Staff 2011). Most soils were Entic or Alfic Haplorthods of the soil order 

Spodosols with the most common soil types being Padus-Pence Sandy Loam (21%), 

Keweenaw Sandy Loam-Vilas Loamy Sand Complex (17%), and Sayner Loamy Sand 

(15%; Soil Survey Staff 2011). These well- to excessively-drained soils were a product of 

glacial deposits in the form of outwash plains (Croswell, Rubicon, Vilas, Sayner, and 

Karlin series), loamy drift over sandy outwash (Pence and Padus series), and sediment 

or till on moraines and drumlins (Keweenaw series; NRCS 2011). 

  

At the time of selection, aspen stand ages ranged from 3-35 years following the last 

clearcut harvest. Aspen stands in the region are typically harvested at around 45-60 

years or as early as 35 years on poor quality soils and thus stands older than 40 years 

post-harvest were not included in the study (Perala 1977, WDNR 2011). We classified 

aspen stands into young, middle-age, or old age-classes based on order of stand ages 

within the chronosequence for each legacy tree retention treatment. Timber harvest 
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prescriptions called for removal of all aspen and tree species other than large-diameter 

(>12.7 cm diameter at breast height, dbh) oak (northern red oak, Quercus rubra) and 

pine (most often Pinus strobus and Pinus resinosa; C. Dalton pers. comm.). Retention 

pattern was not specified in the prescription, though most residual trees were generally 

dispersed, with several stands containing some residual tree aggregates that were a 

consequence of their spatial arrangement prior to harvest and not due to the 

prescription. Aspen stands were dominated by Populus tremuloides and Populus 

grandidentata and included other abundant regenerating species especially Acer 

rubrum, Amelanchier spp., Prunus serotina, Quercus rubra, and Betula papyrifera. The 

dominant tall shrubs (>1.37m) were Corylus cornuta, Corylus americana, and Prunus 

virginiana. Stand area ranged from 13.6 to 58.3 ha. 

 

Field Methods 
Ten 0.1-ha circular plots were randomly distributed within each stand without 

overlapping logging roads or other areas with ongoing vehicular disturbance. Random 

points were generated using the Generate Random Points tool using Hawth’s Tools 

extension (Version 3.26; Beyer 2004) in ArcGis 9.2 (ESRI 2007). To minimize variability 

due to conditions other than legacy tree retention treatment and aspen stand 

characteristics, plots were placed at least 25m from: 1) the stand edge to minimize 

influence on understory vegetation by adjacent forest stands, 2) logging roads and log 

landings due to known differences in species diversity and composition compared to 

locations away from these areas (Wolf et al. 2008), and 3) one another to maintain 

independence. All herbaceous species and woody species less than 1m tall excluding 

tree seedlings were included in the understory plant survey. Surveys were conducted on 

one visit during 28 June - 20 September 2009 or 4-24 July 2010 during the part of the 

year when it was deemed possible to identify all understory species present. 

 

Within each 0.1-ha circular plot, all herbaceous and target woody species were recorded 

as present. At 5m from plot center, a 1-m2 subplot was placed at each heading of 30 , 

150 , and 270  for a total of three subplots per plot. Within each subplot, the percent 

cover for each species present was estimated on a continuous scale from 1-100%; 

species with cover <1% were classified categorically as “trace”.  
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For correlation with the ordination axes, we identified variables that reflected possible 

survey-related bias, environmental conditions, and stand characteristics which 

potentially affected understory plant assemblage composition and abundance. We 

selected one variable that represented potential bias in the data due to survey timing, 

the mean Julian date for the survey at each stand. We included one environmental 

variable, mean Palmer Drought Severity Index (PDSI), which is a good indicator of 

regional soil moisture conditions (Szép et al. 2005). We used this as indication of 

establishment conditions that may favor certain plant species over others. We averaged 

the PDSI for Wisconsin Climatic Division 2 (north-central Wisconsin) for the primary 

growing season months of May through Sept for the first two years following the most 

recent aspen harvest. 

 

We selected three variables, canopy closure, foliage height richness, and visual 

obstruction, representing the structural characteristics of stand vegetation. These were 

measured at two subplots positioned at 10m from plot center to avoid trampling the 

understory plants measured in the subplots positioned at 5m from plot center within each 

0.1ha circular plot. We measured canopy closure using a spherical densiometer. Foliage 

height richness was used as an index of vertical vegetation diversity using an extension 

pole marked with 1-m increments; vegetation contacting the pole was noted at each 1-m 

increment up to 15m and in an additional category combining all increments above 15m, 

the height of the pole. Visual obstruction was measured for shrub and understory 

vegetation height-density using a 3m x 0.5m density board divided into 0.1m x 0.1m 

squares of alternating black and white squares (Noon 1981). The percentage of squares 

obscured by vegetation was averaged for readings from 10-m in the cardinal directions. 

Contrary to Noon (1981), the density board was positioned at plot center while the 

observer moved to the cardinal directions. This modification was necessary given the 

difficulty and slowness of moving the density board through the dense shrub layer. 

 

Within each 0.1ha circular plot, we recorded the following data for all overstory trees 

taller than 1.37m and greater than 10cm dbh: species, live vs. dead, dbh, and whether 

each was a biological legacy. A 0.01 ha circular plot was nested within the 0.1ha plot to 

measure sapling-sized woody vegetation, i.e., woody plants taller than 1.37m with a 

diameter at breast height less than 10cm. From these data, we calculated the following 
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variables for use in the ordination analysis: overstory tree density, overstory tree basal 

area, mean overstory tree dbh, proportion of hardwoods in the overstory, sapling 

density, legacy tree density, legacy tree basal area, mean legacy tree dbh, proportion of 

hardwood legacy trees, mean sapling dbh, and proportion of hardwood saplings. 

 

To determine stand age, based on the regenerating aspen, and legacy tree age, we 

collected a sample of tree cores and cookies (a 1-2 section of tree trunk) at each stand. 

If aspen were generally larger than 10cm dbh in a stand, we removed two perpendicular 

cores per tree at a height of 1.37m for one co-dominant or dominant tree per aspen 

species present per plot. If aspen were generally smaller than 10cm dbh in a stand, we 

clipped three aspen saplings per species present in the 0.01ha sapling plot and collected 

a cookie at a basal height of 15cm for each tree clipped. Growth rings were counted for 

each tree core or cookie and then averaged across the stand to establish stand age 

since the last harvest. We cored all legacy trees present on each plot, counted the 

growth rings for each tree, and then averaged the ages to determine mean legacy tree 

age for each stand. 

 

Plant Species Characteristics 
For species included in the ordination, we classified each by forest seral association. We 

used geographically relevant field guides (e.g., Fassett 1997), web resources (e.g., 

USDA 2012), and scientific literature to appropriately classify each plant species. For 

some species, seral association was stated in this literature. For other species, seral 

association was determined based on light tolerance, plant community association, 

disturbance tolerance, forest stand age of maximum frequency and/or abundance, or a 

combination of these factors. Early-seral species were associated with full sun, open and 

disturbed plant communities, and/or declined in abundance with forest stand 

development. Late-seral species were associated with shade, mature forests, and/or 

increased in abundance with stand development. Mid-seral species were divided into 

early-mid seral or mid-late seral categories. Early-mid seral species were associated 

with full to partial sun and/or open to open woods vegetation communities. Mid-late seral 

species were associated with partial shade to full shade, woods, and/or a tendency to be 

found across a broad age range of closed canopy forest. Generalist species were 

associated with tolerance for a broad range of light conditions, both woods and open 
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vegetation communities, and/or similar frequency and abundance across all forest stand 

ages. 

 

For each plant species present, we reported the coefficient of conservatism value from 

UWSP (2012). According to UWSP (2012), these values were developed based on 

survey results from 12 plant experts and finalized by a core group of six ecologists using 

the methods of Swink and Wilhelm (1994) and Wilhelm and Masters (1995). The 

coefficient of conservatism was used for floristic quality assessment of sites and has 

values on a scale from zero to ten that represents the probability that a species was 

found in a non-degraded natural community that represents a pre-European settlement 

condition. Invasive or weedy species with no likely association with an unaltered natural 

community were assigned a value of “0” and species that were certainly associated with 

undegraded natural communities were assigned a value of “10”. Non-native plant 

species introduced to Wisconsin were not given a value in the UWSP (2012) database, 

but we assigned these species a value of “0” to down-weight the means in our analyses 

(Spyreas et al. 2012). 

 

Data Analysis 
Species with less than 1% cover (“trace”) at the subplot level were assigned a value of 

0.01% such that they could be included in analyses of cover as a continuous variable. All 

plant cover estimates were averaged by plot and then by stand. This “average-of-plots” 

method emphasizes frequently occurring species which may give a more realistic 

assessment of floristic quality by reducing the influence of rare or outlier species 

(Spyreas et al. 2012). 

 

Understory Plant Diversity and Floristic Quality of Aspen Forest Stands 

Understory plant species richness (S) was the total of all species (native and introduced) 

present at the plot scale. Shannon’s Diversity Index (H’; where H’=- pi log pi and pi= the 

importance probability of species i), Shannon’s Evenness (E; where E=H’/ln (S)) and 

Simpson’s Diversity Index (D; where D=1-  pi
2) for understory plants were calculated for 

each aspen stand based on cover data collected at the subplot scale using the Row and 

Column Summary tool in PC-ORD Version 5 (McCune and Mefford 2002). To assess 

floristic quality of the aspen stands, we calculated the mean coefficient of conservatism 
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(C), also called the modified Floristic Quality Index (Rooney and Rogers 2002), and the 

Floristic Quality Index (FQI; Spyreas et al. 2012)). FQI was a product of mean C for a 

stand and the square root of the number of species observed or S (Spyreas et al. 2012). 

We conducted a two-way analysis of variance (ANOVA) using SigmaStat Version 3.5 

(Systat 2006) to determine statistically significant differences in these diversity and 

floristic quality variables among three stand age-classes and the three legacy tree 

retention treatments. All variances for response variables were found to be normally 

distributed using the Kolmogorov-Smirnov test and were equal using Levene’s Median 

test among groups; thus, no transformations were necessary. 

 

Understory Plant Composition of Aspen Forest Stands 

To evaluate understory plant compositional relationships with aspen stand and 

environmental characteristics, we used a non-metric multidimensional scaling (NMS) 

ordination using PC-ORD Version 5 (McCune and Mefford 2002). We ran the NMS 

procedure using the Sorenson distance measure in autopilot mode and the “slow and 

thorough” thoroughness setting. We selected the lowest dimensionality based on the 

best solution that notably improved the final stress. In other words, additional dimensions 

beyond the first were added only if they reduced the final stress by five or more. We 

generated joint plots for plant species and aspen stands using the two axes with the 

largest coefficients of determination. Displayed species or stand points are considered 

compositionally more similar the closer they are together. We reduced the set of 18 

stand, environmental, and survey-related variables by examining Pearson correlations. 

Among the variables with correlations of 0.6 or more, we selected the variables that 

were likely representative of an underlying relationship. Based on the reduced set of 

eight variables, we selected those with r2

to construct a joint plot. 

 

To identify plant species indicative of the three legacy tree retention treatments, we used 

an indicator species analysis in PC-ORD version 5.0 (McCune and Mefford 2002). We 

used the Monte Carlo Test set on the default of 1000 runs to identify species with a 

significant maximum importance value for a particular treatment relative to the 

importance value for randomized groups. The proportion (p) of randomized trials with an 

indicator value equal to or greater than the observed indicator value was deemed 
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significantly different at 0.050, though species with proportions between 0.050 and 0.100 

were considered marginal indicators. 

 

Results 
 
Across aspen stands, we identified 195 understory plant species of which 170 were 

native and 25 (7 Graminoids and 18 forbs) were introduced to Wisconsin (Appendix A). 

  

Understory Plant Diversity of Aspen Forest Stands 
Understory plant richness, diversity, and evenness did not vary by stand age-class, 

legacy tree retention treatment, or their interaction (Table 3.1). 

 

Floristic Quality of Aspen Forest Stands 
The mean C was significantly lower for early-seral stands than for mid- and late-seral 

stands but did not vary for legacy tree retention treatments though there was a 

marginally significant interaction effect with stand age-class (Table 3.1). FQI did not vary 

by stand age-class, legacy tree retention treatment, or their interaction (Table 3.1). Plant 

species classified as mid-late seral, late-seral, and generalists had significantly higher 

mean C than early-seral species (Table 3.2). 

 

Understory Plant Coverage and Compositional Patterns in Aspen Forest Stands 
The coverage of some plant species had clear relationships with stand development 

(Table 3.3). In particular, we only observed Comandra umbellate ssp. umbellate and 

Rubus flagellaris in young clearcuts. Oryzopsis asperifolia, Pedicularis canadensis, 

Pteridium aquilinium var. latiusculum and Vaccinium spp., reached their highest 

coverage in young stands and declined with stand development. Osmunda claytoniana 

was the only species with observations restricted to middle-age stands. Maianthemum 

racemosum reached highest coverage in middle-age stands especially those with 

retained canopy trees. Species with coverage that increased with stand development 

included Trientalis borealis ssp. borealis, Waldsteinia fragaroides ssp. fragaroides, 

Cornus canadensis, and Gaultheria procumbens. 
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Retention of canopy trees affected plant species presence and coverage (Table 3.3). 

Several species (Aralia nudicaulis, Eurybia macrophylla, Maianthemum canadense, 

Rubus allegheniensis, Uvularia sessilifolia, Waldsteinia fragaroides ssp. fragaroides) 

reached higher coverage earlier in stand development in the presence of retained 

canopy trees (Table 3.3). We only observed Clintonia borealis in stands where canopy 

trees were retained (Table 3.3). Some species (e.g., Rubus allegheniensis) also dropped 

to relatively low coverage earlier in stand development in the presence of retained 

canopy trees (Table 3.3). 

 

We summarized means, standard errors, and ranges by legacy tree retention treatment 

for all survey-related, environmental, and aspen stand variables used to correlate NMS 

ordination results (Table 3.4). Pearson correlations among these variables resulted in a 

reduced suite of variables used in the NMS ordination. Stand age was correlated with 

canopy closure (r=0.72), foliage height diversity (r=0.72), overstory tree dbh (r=0.86), 

overstory tree basal area (r=0.79), overstory tree diameter (r=-0.59), sapling density (r=-

0.85), sapling dbh (r=0.64). Legacy tree density was correlated with legacy tree basal 

area (r=0.85). Legacy tree dbh was correlated with legacy tree age (r=0.69). The 

proportion of overstory hardwoods was correlated with the proportion of hardwood 

legacy trees (r=0.80). 

 

The NMS ordination resulted in a three dimensional solution with a final stress of 9.234. 

Axis 3 of the ordination had the largest coefficient of determination (0.391) and was 

positively correlated with three aspen stand characteristics, stand age (r=0.590), 

proportion of hardwoods in the overstory (r=0.472), and legacy tree dbh (r=0.387) 

collectively representing 72.1% of the variation represented by this axis (Table 3.5). Axis 

2 had the second largest coefficient of determination (0.321) and was positively 

correlated with the Palmer Drought Severity Index for the two years of stand 

establishment (r=0.323) and was negatively correlated with the proportion of overstory 

hardwoods (r=-0.373; Table 3.5). Axis 1 had the smallest coefficient of determination 

(0.182) and was poorly correlated with all survey-related, stand, and environmental 

variables (r=-0.281-0.285; Table 3.5). 
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Based on aspen stands with r -harvest) were 

-harvest) were positively 

associated with axis 3 (Figure 3.2a, b). Middle-age and old stands with a hardwood 

overstory were positively associated with a hardwood overstory or a dry establishment 

period following harvest. In contrast, young stands and stands with a coniferous 

overstory were positively associated with a relatively high proportion of conifers in the 

overstory or had a moist establishment period following harvest (Figure 3.2a, b). Eleven 

stands (73% with legacy tree retention and 91% middle-age or old) were positively 

correlated and nine stands (44% with legacy tree retention and 78% young) were 

negatively correlated with legacy tree dbh (Figure 3.2a, b). The remaining seven stands 

had a weakly negative association (r<0.2). The only positively correlated young stand, 

though a weak relationship, was in the conifer legacy tree retention treatment. 

 

Early-seral and late-seral plant species generally had diametrically opposed associations 

with stand and environmental variables based on axes 2 and 3 of the NMS ordination 

(Figure 3.2a, c). Early-seral plant species were associated with aspen stands that were 

young, had a high proportion of conifer legacy trees or conifers in the overstory, had 

relatively small-diameter legacy canopy trees, and had relatively moist conditions at the 

time of establishment following harvest (Figure 3.2a,c). The ten late-seral plant species 

were associated with aspen stands that were old (9 spp.), had a high proportion of 

hardwoods or hardwood legacy trees in the overstory (7 spp.), had relatively large-

diameter legacy canopy trees (10 spp.), and had relatively droughty conditions at the 

time of establishment following harvest (7 spp.; Figure 3.2a, c). Streptopus lanceolatus 

var. longipes, Trientalis borealis ssp. borealis, and Aralia nudicaulis were associated 

with moist establishment and/or relatively large conifer legacy trees. Oxalis montana was 

most strongly associated with a high proportion of hardwoods in the overstory or as 

legacy trees. Dryopteris intermedia, Polygonatum pubescens, Brachyelytrum erectum, 

and Monotropa uniflora were associated with overstory hardwoods and old stands. 

Huperzia lucidula and Maianthemum racemosum were most associated with old stands 

especially those with large legacy trees. 

 

The indicator species analysis identified Maianthemum canadense, a mid- to late-seral 

species, as the only significant indicator of conifer legacy tree retention (Table 3.6) 
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though several other species were marginally significant (Cornus canadensis, Eurybia 

macrophylla, and Lathyrus venosus). Three species (Hepatica nobilis var. obtuse, 

Symphyotrichum ciliolatum, Vaccinium myrtilloides) were significant indicators of aspen 

stands without legacy tree retention and five other species were marginally significant 

(Table 3.6). No species were indicative of hardwood legacy tree retention. 

 

Discussion 
 
Understory plant diversity in aspen stands 
We found no relationship between plant diversity and either stand age or legacy tree 

retention treatment. The lack of a relationship may be affected by persistence of plant 

species following harvest and site conditions. Many forest plant species, regardless of 

forest type, persist following overstory removal with reduced abundance or density 

followed by eventual recovery to pre-harvest levels (Hughes and Fahey 1991, Crowell 

and Freedman 1994, Ruben et al. 1999, Sullivan et al. 2001, Aikens et al. 2007). Given 

that our youngest stands had at least six years of post-harvest recovery, early 

differences in diversity, if they existed, may have disappeared by the time of our surveys. 

 

A review of studies that explored response of herbaceous plant species abundance and 

richness to dispersed and aggregated legacy tree retention produced inconsistent 

results (Rosenvald and Lohmus 2008). The reviewers attributed the variation in 

response to site specific characteristics such as forest type, percent canopy removal, 

soil characteristics, and number of pioneer species that invaded following harvest 

(MacDonald and Fenniak 2007, Rosenvald and Lohmus 2008). The latter two 

characteristics potentially contributed to the lack of relationship between plant diversity 

and retention treatments in our study. 

 

In Michigan, understory plant diversity and composition in aspen clearcuts changed 

relative to mature forest on mesic sites but not on dry-mesic sites (Roberts and Gilliam 

1995). Our results were consistent with this finding given that our aspen stands were 

dry-mesic with the oldest stands being younger than the mature forests in the Roberts 

and Gilliam (1995) study thus presenting even less of an age contrast across stands. We 

did not sample logging roads and log landings where many pioneering early-seral 
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species occur in greatest abundance such that this group may have increased diversity 

had these areas been included in our sampling design (Wolf et al. 2008). Also, 

differences in diversity related to varying retention in forest stands may be difficult to 

detect except at larger spatial scales (MacDonald and Fenniak 2007). 

 

According to Hubell’s (2001) Unified Neutral Theory model of zero-sum ecological drift, 

species richness and diversity within a community remain relatively constant though the 

membership by individual species and their abundance within a trophic level changes 

through time. Wiegmann and Waller (2006) found support for this model in shifting 

understory plant assemblage patterns of upland forests over a fifty-year period in 

northern Wisconsin. The lack of change in diversity metrics among legacy retention 

treatments and stand age in our study may be explained by this theory. 

 

Effect of legacy tree retention on floristic quality and late-seral plant species  
In terms of floristic quality of the plant communities, mean C but not FQI differed among 

stand age-classes and retention treatments. Mean C may be a better metric than FQI for 

assessing floristic quality given that our stand areas varied (Matthews et al. 2005), and 

this variable reduced the confounding influence of species richness (Rooney and Rogers 

2002). The marginally significant interaction effect between stand age-class and legacy 

tree retention treatment suggested there was a weak treatment effect that was 

dependent upon the seral age-class of the aspen stand. Increasing the stand sample 

size may have produced a stronger treatment effect especially in the interaction. 

Nevertheless, this was consistent with our conclusion from the NMS ordination that 

stands with larger or older legacy trees had similar species composition as did the 

relatively old aspen stands in this study. 

 

Overstory and legacy tree composition, particularly presence of conifers, influenced 

understory plant composition. Similarly, in Alberta, plant associations differed between 

forests managed with variable retention containing conifers and broadleaf forest 

(MacDonald and Fenniak 2007). Eight clearcut aspen stands in our study were divided 

into two groups with strong opposing associations to the proportion of hardwood in the 

overstory. Each group potentially reflected influence from the forest overstory 

composition prior to harvest with one group having a significant coniferous component 
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and the other not. MacDonald and Fenniak (2007) identified soil and forest structural 

characteristics pre- and post-harvest that differentiated plant communities in broadleaf 

forest from those in forests containing conifers. 

 

PDSI at the time of stand establishment and the proportion of hardwoods in the 

overstory had opposite and potentially confounding influences on plant composition. 

Other studies have shown that drought conditions can decrease cover and alter 

dominance among understory plant species present in fields (Sandor et al. 2003), alter 

plant composition in secondary forests (Hutchinson et al. 1999, Yurkonis and Meiners 

2006), and increase tree seedling mortality rates in savannas (Faber-Langendoen and 

Tester 1993). Thus it is likely that given the dry-mesic, well-drained soil conditions of our 

stands that drought conditions during early stages of plant invasion and recovery 

following harvest influenced plant composition. For early-seral species, relatively moist 

growing seasons potentially improved establishment conditions particularly in clearcuts 

and open areas of stands with legacy tree retention where soil temperatures and solar 

radiation exposure were relatively extreme (Childs and Flint 1987). Both PDSI during 

stand establishment and the proportion of conifers in the overstory may positively relate 

to moist environmental conditions favoring establishment of certain species. Beatty 

(1984) found that eastern hemlocks (Tsuga canandensis) in eastern deciduous forests 

influenced composition of understory plants due to higher soil moisture content and 

other soil characteristics near individual hemlock trees. Conifers in our study may have 

similarly influenced soil moisture and thus plant composition; however we did not 

measure microclimate characteristics associated with individual legacy trees. 

 

We observed higher mean C in aspen stands where the plant assemblage composition 

included more mid-late to late-seral plant species that generally were scored with higher 

coefficients of conservatism than early-seral species. The weak interaction effect 

between stand age and retention treatment likely indicated the importance of legacy 

trees in middle-age to old aspen stands for retention or invasion of late-seral species. 

Wiegmann and Waller (2006) identified 21 understory plant species that were declining 

in frequency across northern Wisconsin forests over a 50-year period. We observed that 

five (Aralia nudicaulis, Clintonia borealis, Eurybia macrophylla, Uvularia sessilifolia, and 

Waldsteinia fragaroides ssp. fragaroides) of these species responded positively to 
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legacy tree retention and two (Cornus canadensis and Eurybia macrophylla) were 

indicators of stands with conifer retention. Two species (Huperzia lucidula and Orthilia 

secunda) were rare in our study and only associated with stands with legacy tree 

retention. 

 

The response of late-seral plant species to legacy tree retention has been inconsistent 

across other studies. For example, in Douglas fir (Pseudotsuga menziesii) stands in the 

Pacific Northwest, frequency and cover of late-seral plants increased due to retention 

(North et al. 1996) in contrast to a lack of response by late-seral species to green-tree 

retention in boreal forests of Fennoscandia (Vanha-Majamaa and Jalonen 2001). The 

key reason cited for lack of late-seral species response to retention in the latter study 

included the need for a greater level of retention (>50 trees/ha). In support of this idea, 

early-seral plants were indicators of 25% canopy retention in boreal forest and late-seral 

plants were indicative of forests with 75% canopy retention or uncut control forests in 

Alberta (MacDonald and Fenniak 2007). Our results suggested that legacy tree size and 

age may be more important than retained tree density or basal area which may partially 

explain the inconsistent results elsewhere. 

 

We identified two possible mechanisms explaining the greater importance of legacy tree 

size or age than legacy tree density or basal area. First, large legacy trees may have a 

greater life-boating effect than small legacy trees by better protecting understory plants 

from impact from the harvest machinery. Second, large legacy trees may have a greater 

influence on microclimate conditions than smaller legacy trees such that late-seral 

understory plant species either invade or establish earlier post-harvest or recover in 

abundance faster due to more favorable environmental conditions. If late-seral plants 

became established from the seed bank rather than by surviving harvest or by invasion, 

then we might expect the pattern of mean C that we observed with stand development. 

There would be three conditions needed for this pattern to develop for late-seral plant 

species: 1) parental plants (visible above-ground structures) disappeared following 

harvest, 2) seed remained viable in the soil for at least six years (the youngest stand age 

at the time of surveys), and 3) seed germination was delayed because microclimate 

conditions were initially unsuitable following harvest but became suitable later in stand 

development. Given the increased shading by the retained legacy trees, the resultant 
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microclimate conditions may become suitable for germination of seed for late-seral 

species earlier in stand development than in clearcuts with full sun exposure. 

 

If any of these three conditions were not met, then late-seral plants would need to invade 

following harvest. We would then expect that mean C would to be higher in the stands 

with legacy tree retention than in clearcuts among young stands. Instead, mean C was 

initially lower in stands with legacy tree retention than in clearcuts, but over time mean C 

in stands with legacy tree retention exceeded that for clearcuts. Mean C for clearcuts 

remained relatively constant across the chronology suggesting that late-seral species 

were slow to recover or invade. These trends support the second proposed mechanism 

that the legacy trees eventually allowed for earlier invasion or recovery of late-seral 

species. Additionally, this may explain rejection of our hypothesis that young stands with 

legacy tree retention had similar floristic quality as old clearcuts. Though legacy tree 

retention increased floristic quality in aspen stands, its role was most prevalent later in 

stand development when floristic quality in stands with retention surpassed that in the 

clearcuts among the older stands in our study. 

 

Conclusions 
 

Legacy tree retention was an improvement over traditional clearcutting in aspen forest 

by conserving late-seral understory plants. Given that the legacy tree retention pattern in 

our stands was more dispersed than aggregated, it is possible that retention of legacy 

trees in aggregates or patches may have produced a life-boating effect allowing for 

greater retention and faster recovery of late-seral species (Aubry et al. 2009). Future 

research should explore the potential for aggregated patterns of retention in aspen 

forests to have even greater benefits for late-seral understory plants. 

 

Retention of non-aspen species requires consideration for their potentially impact on 

aspen regeneration. Retaining too much canopy cover can result in reduced aspen 

regeneration (Perala 1977), though some reduction in initial sucker density due to partial 

shading from retained legacy trees may increase early growth of the suckers (Stone et 

al. 2001). Given that the size or age of the retained trees were more important than 

retained tree density or basal area, foresters can create retention prescriptions that 
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benefit late-seral understory plant species without compromising aspen regeneration. 

Our results indicate that increasing the retention density of young or small legacy trees 

in a prescription likely would not compensate for large, old legacy trees. However, 

foresters can initially retain relatively small canopy trees and continue to retain them in 

future harvests to eventually attain the benefits of large legacy trees. 
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Figure 3.1. Study area depicting 27 aspen forest stands within the Northern Highland Pitted 
Outwash (Bailey’s Subsection 212Jm) and in a three-county area of northern Wisconsin. The 
inset identifies the location of these three counties (Vilas, Oneida, and Lincoln) within Wisconsin 
and the Midwestern United States. 
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Figure 3.2. NMS ordination plots of 27 aspen forest stands (B) and 130 understory plant species 
(C) versus environmental and stand structural gradients (A). All plant species present within 
subplots for which cover was estimated were included in the ordination. Environmental and stand 
structural variables are described in Table 3.4. Aspen stands are categorized based on their age-
class (young, mid, and old) and legacy tree retention treatment (CR=conifer legacy tree retention, 
HR=hardwood legacy tree retention, NR=no legacy tree retention or clearcut). Plant species are 
categorized based on their predetermined seral association. Late-seral species are indentified 
with alpha codes (ARNU=Aralia nudicaulis L., BRER=Brachyelytrum erectum, DRIN=Dryopteris 
intermedia, HULU=Huperzia lucidula, MARA=Maianthemum racemosum, MOUN=Monotropa 
uniflora, OXMO=Oxalis montana, POPU=Polygonatum pubescens, STLA=Streptopus lanceolatus 
var. longipes, TRBO=Trientalis borealis subsp. borealis). 
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Table 3.2 
Mean±1 se understory plant species coefficient of conservatism (C) by forest seral 

association classification for aspen forest stands in northern Wisconsin, 2008-2009. 
Seral Associationa n          C 
Early 48 2.73±0.36 Ab 

Early-mid 15 4.93±0.43 AB 

General 31 5.29±0.36 B 

Mid-late 26 6.12±0.24 B 

Late 10 6.50±0.31 B 
aDetermined for each species using field guides, web resources, and/or scientific 
literature. 
bH4=44.023, p -Wallis One Way Analysis of Variance on Ranks; 
multiple comparisons were conducted using Dunn’s Method and seral groups that were 
significantly different from one another are indicated by different letters.
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Table 3.5 
Pearson correlations between non-metric multidimensional scaling ordination axes and 

environmental, survey-related, and stand variables for aspen forests in northern 
Wisconsin, 2008-2009. The coefficient of determination is presented for each axis in 

parentheses. 

 
Axis 1  
(0.182) 

 Axis 2  
(0.321) 

 Axis 3  
(0.391) 

Variable r r2  r r2  r r2 
Stand Age (years)a -0.178 0.032  -0.183 0.033  0.590 0.348 
Julian date of survey -0.226 0.051  0.126 0.016  -0.296 0.087 
Palmer Drought Severity 
Index during two years 
of post-harvest 
establishment 

-0.281 0.079 

 

0.323 0.104 

 

-0.205 0.042 

Visual obstruction (%) 0.228 0.052  0.112 0.013  -0.016 0.000 
Legacy tree density 
(stems/ha)b 0.036 0.001  -0.060 0.004  0.075 0.006 

Legacy tree diameter at 
breast height (cm)c 0.227 0.051  0.040 0.002  0.387 0.150 

Proportion of overstory 
trees that are 
hardwoodsd 

0.012 0.000 
 

-0.373 0.139 
 

0.472 0.223 

Proportion of sapling 
trees that are hardwoods 0.285 0.081  -0.078 0.006  -0.052 0.003 

aCorrelated with canopy closure (r=0.72), foliage height diversity (r=0.72), overstory tree 
density (r=0.86), overstory tree basal area (r=0.79), overstory tree diameter (r=-0.59), 
sapling density (r=-0.85), sapling diameter at breast height (r=0.64). 
bCorrelated with legacy tree basal area (r=0.85). 
cCorrelated with legacy tree age (r=0.69). 
dCorrelated with proportion of legacy trees that are hardwoods (r=0.80). 
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Table 3.6 
Understory plant species that were indicators of legacy tree retention treatments based 
on indicator species analysis for 27 aspen forest stands in northern Wisconsin, 2008-

2009. Only species with p-  Asterisks indicate species that 
were introduced to Wisconsin. 

Species 

Legacy 
Tree 

Retention 
Group 

Indicator 
Value 

Randomized 
Group 

Indicator 
Value 
Mean 

Randomized 
Group 

Indicator 
Value 

Standard 
Deviation p 

Indicators of aspen clearcuts 

Danthonia spicata 52.8 36.8 10.79 0.090 

Hepatica nobilis var. obtusa 41.9 21.3 8.96 0.028 

Hieracium aurantiacum* 48.5 34.9 8.88 0.080 

Lycopodium clavatum 45.4 25.9 10.11 0.061 

Oryzopsis pungens 36.3 22.5 9.75 0.100 

Symphyotrichum ciliolatum 55.7 40.6 7.15 0.035 

Vaccinium myrtilloides 59.4 43.5 8.50 0.048 

     

Indicators of aspen stands with conifer legacy tree retention 

Cornus canadensis 58.2 40.2 10.80 0.072 

Eurybia macrophylla 49.6 42.6 5.12 0.096 

Lathyrus venosus 37.9 21.0 9.48 0.086 

Maianthemum canadense 68.6 52.6 7.75 0.027 
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CHAPTER 4. Legacy Trees in Aspen Clearcuts Improve Nest 
Habitat Quality for Golden-Winged Warblers  
 

Abstract 
 

Residual canopy trees as biological legacies in harvested aspen stands may mimic 

characteristics of naturally disturbed forests. We investigated the effects of legacy tree 

retention in young aspen (Populus spp.) forest stands on the quality of nest habitat for 

the Golden-winged Warbler (Vermivora chrysoptera), a species of conservation concern 

that is dependent upon recently disturbed forest and shrub habitats. Habitat quality was 

assessed by evaluating male density, male pairing success, percent of successful nests, 

daily nest survival, and productivity in young aspen stands (4-7 years post-harvest) with 

retained conifer legacy trees (n=3), retained hardwood legacy trees (n=3), and without 

legacy trees or clearcuts (n=3). Male pairing success was higher in stands with legacy 

trees (~75%) than in clearcuts (10%). In similarly aged regenerating aspen forests, only 

one nest was found in clearcuts. The percent of successful nests, daily nest survival 

rate, and productivity did not vary between stands with conifer legacy trees and stands 

with hardwood legacy trees. Retention of legacy trees in young aspen stands provided 

higher quality nest habitat than clearcuts based on high pairing success resulting in high 

nesting activity. Male density was an excellent indicator of pairing success (pseudo 

R2=0.976). For nest habitat to be occupied by a cluster of nesting pairs, land managers 

must consider the roles of both habitat characteristics and conspecific attraction. Aspen 

stands harvested for nest habitat should support at least four territorial males at a 

minimum density of 0.2 males/ha for a breeding cluster to have approximately 75% of 

males successfully paired. High male densities (>0.2 males/ha) were achieved by 

retaining at least 13 legacy trees/ha with at least nine as hardwood species and 

hardwoods with a mean di  

 

Introduction 
 

One of the tenets of ecological forestry is the use of natural disturbance-based 

management strategies that promote ecological resilience (Drever et al. 2006, North and 

Keeton 2008). Biological legacies, such as scattered live trees, in post-disturbance 
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environments fill important ecological roles, and their retention may allow silvicultural 

treatments to more closely emulate natural disturbances (Seymour et al. 2002, 

Lindenmeyer et al. 2006, Manning et al. 2006). Legacy canopy trees as individuals or 

patches in managed aspen (Populus spp.) forests are known to increase bird diversity 

(Merrill et al. 1998) and benefit certain bird habitat-guilds or individual species in other 

forest communities (Hansen et al. 1995a, Schiek and Hobson 2001, Tittler et al. 2001, 

Lefort and Grove 2009). The impact of legacy canopy trees on bird habitat quality using 

demographic or physiological variables has been investigated using proxies for quality 

such as nest success (Titler and Hannon 2000, Duguay et al. 2001, Stuart-Smith and 

Hayes 2003) and body condition in the post-breeding season (McDermott and Wood 

2010). Such demographic traits are generally accepted as better indicators of habitat 

quality than abundance or density estimates alone (Van Horne 1983). Most previous 

research has found that nest predation across the bird community was not higher in 

stands harvested with retention relative to unharvested stands and did not vary with the 

density of retained trees (Titler and Hannon 2000, Duguay et al. 2001, Stuart-Smith and 

Hayes 2003). Only Duguay et al. (2001) reported species-specific nest success for five 

passerine species with higher predation rates in harvested stands with retained trees 

versus unharvested stands for one species, Acadian Flycatcher (Empidonax virescens). 

 

We investigated the impact of legacy canopy tree retention, also called green-tree 

retention, in young aspen stands on a high conservation priority migratory songbird, the 

Golden-winged Warbler (Vermivora chrysoptera), during the breeding season. This 

species is dependent on disturbance events in forest ecosystems to create appropriate 

breeding habitat; the species’ recent declines have been blamed in part on the 

maturation of forests in eastern North America (Confer et al. 2011). The Golden-winged 

Warbler, like other shrubland-dependent species, likely evolved to utilize forest openings 

regenerating with shrubs and young trees created by natural disturbances such as wind, 

fire, and beaver activity in forested landscapes (Hunter et al. 2001, Lorimer 2001). These 

openings likely contained both live and dead legacy canopy trees in varying densities 

with scattered individuals and patches depending on the intensity of the disturbance 

(Foster and Boose 1992, Frelich 2002; Figure 4.1a). Retention of legacy canopy trees in 

harvested even-aged forest stands, i.e., green-tree retention, has been proposed as a 
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silvicultural practice that mimics this natural disturbance pattern (Seymour et al. 2002, 

Lindenmeyer et al. 2006; Figure 4.1b). 

 

An estimated 76% of the global population of Golden-winged Warblers breeds in the 

Boreal-Hardwood Transition Bird Conservation Region (Blancher et al. 2007). Thus, 

management practices that create high quality breeding habitat in this region are critical 

to the species’ future. Regenerating aspen forests supported the highest relative 

abundance of Golden-winged Warblers among several habitat types occupied by 

Golden-winged Warblers in northern Wisconsin (Martin et al. 2007). Among regenerating 

aspen stands, Golden-winged Warbler abundance or density was quite variable 

suggesting that not all stands are equally attractive and that stand characteristics may 

explain differences in use and quality (Roth and Lutz 2004, Martin et al. 2007). Our 

objectives were to: 1) evaluate effects of legacy tree retention and legacy tree type on 

nest habitat quality for Golden-winged Warblers in young aspen stands using a 

combination of density, pairing success, nest survival, and productivity 2) determine if 

male density reflects habitat quality based on demographic indicators, and 3) 

recommend aspen forest silvicultural guidelines for foresters and land managers 

interested in providing high quality nest habitat for Golden-winged Warblers. 

 

Methods 
 

Study Area 
We selected nine young aspen-dominated forest stands in Oneida and Vilas Counties, 

Wisconsin (45  43’N, 89  32’W) in an area defined by glacial moraines and outwash 

plains (Figure 4.2). Soils were characterized as sand, sandy loams, or loamy sands and 

ranged from moderately well drained to excessively drained (Soil Survey Staff 2010). 

Three stands were selected for each of three treatments: 1) aspen stands with no legacy 

tree retention or clearcut, 2) aspen stands with conifer retention, and 3) aspen stands 

with hardwood retention. Stands ranging from 17-44 ha in area and were commercially 

harvested using green-tree retention guidelines between 1997 and 2002 thus the 

regenerating aspen was 4-7 years-old (mean±se; 5±0) at the start of the study in 2007. 

Timber harvest prescriptions called for removal of all aspen and most tree species 

except those that were marked and all large diameter pine (Pinus spp.) and oak 
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(Quercus spp.; C. Dalton pers. comm.). Aspen stands were dominated by Populus 

tremuloides and Populus grandidentata and included other abundant regenerating 

species especially Acer rubrum, Amelanchier spp., Prunus serotina, Quercus rubra, and 

Betula papyrifera. The dominant shrubs were Rubus spp. and Corylus spp. All sites were 

selected without prior knowledge of Golden-winged Warbler occupancy. 

 

Field Methods 
Golden-winged Warbler territory and nest surveys were conducted 10 May-2 July 2007, 

19 May-21 July 2008, 19 May-15 July 2009, and 16 May-3 July 2010. We captured and 

banded 88% of territorial adult male and 9% of adult female Golden-winged Warblers 

among all sites. Adults were targeted for capture using mistnets with tape playback 

(Kubel and Yahner 2007) and then given a unique color band combination including a 

silver U.S. Fish & Wildlife Service band for individual identification. In subsequent years, 

resighted birds were used to calculate annual return rates. 

 

To determine territorial male densities in nest habitat, we mapped locations for all 

territorial males using a modification of the protocol of Robbins (1970). Surveys for the 

same individual or stand were conducted at least three days apart. When possible, we 

used teams of two observers with one observer recording locations on a map and 

marking song perches while the second observer tracked the bird. Because of the dense 

vegetation, it was difficult to continually track a bird and thus considerable time was 

spent checking bands to make sure the same individual was resighted before resuming 

the survey. An identifiably unique individual was tracked until the observer(s) completed 

a full circuit of the bird’s territory such that the bird primarily began using marked perch 

trees. Unbanded males prior to capture were identifiable by unique song characteristics, 

favorite song perches, discrimination from banded neighboring males, or other 

characteristic behaviors. We did not survey males into the fledgling period. All perches 

were flagged and coordinates were collected later with a handheld Trimble XM 

Geographic Positioning System. From these locations, we used minimum convex 

polygons to delineate territorial boundaries. Not all males were intensively mapped with 

each stand visit but at a minimum, the presence-absence of each male was noted within 

previously known territorial boundaries. Territorial male densities were calculated based 
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on the number of territories for males observed on at least eight visits per harvested 

stand area. 

 

Pairing success was defined as a territorial adult male observed interacting with an adult 

female (e.g. copulation or a male following a female) on two or more occasions though 

every attempt was made to document male visitation to a nest or fledglings (Askins et al. 

2007). Contrary to Askins et al. (2007), we deemed one observation of a female with a 

male as inadequate due to occasional “prospecting” behavior by females especially early 

in the breeding season or following nest failures. Pairing success was generally 

determined incidentally to nest searching which was conducted in every territory and 

represented dozens of person hours of observation per territory often with multiple 

observers present. Territorial males without females were visited on most site visits 

throughout the nesting season until nesting activity was largely completed for most other 

pairs, and thus we had high confidence that these males did not acquire social mates. 

However, in stands with high male densities, we were conservative in our assignment of 

pairing success because we could not always differentiate unbanded females especially 

near territorial boundaries and other complicating issues such as females leaving their 

territory for extra-pair copulations (EPCs) and when females switched social mates or 

territories following nest failure. Extra-pair copulations are common in other Golden-

winged Warbler populations (up to 55% of nests) so males without social mates may 

have sired offspring (Vallender et al. 2007). We did not determine paternity for nestlings 

so we could only define pairing success based on behavioral observations. 

 

Nests were located by searching the entire stand for females exhibiting nesting behavior, 

adults feeding nestlings, and good potential nest sites within male territories. After egg 

laying was completed, nests were monitored every three days or sooner if the predicted 

fledging date fell before the next routine visit. Fledging was considered successful based 

on observation of fledglings, banded adults carrying food, or substantial fecal material on 

the rim of the nest or on nearby perches. 

 

To determine legacy tree basal area and density at the stand scale, we randomly 

established ten 1000-m2 circular plots separated by at least 30 m in each stand. These 

plots were visited 19 May-14 August 2008. We defined legacy trees as trees that were 
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retained during the most recent harvest rotation and were identified as live trees with 

diameter at breast height (DBH) at least 5 cm greater than the DBH of surrounding 

regenerating aspen trees and that were at least 1m taller than surrounding regenerating 

aspen trees in order to be used as a song perch. For each tree with DBH>10 cm, we 

recorded species, DBH, and whether it was alive or dead. To estimate regenerating tree 

stem density, a 100-m2 nested plot was centered at the same point as the 1000-m2 plot. 

were calculated and averaged across each stand. 

 

Data Analysis 
 

Aspen Clearcut Characteristics 
Comparisons of legacy tree characteristics and regenerating aspen stem densities 

among legacy tree retention treatments were conducted using One Way Analysis of 

Variance (ANOVA) using SigmaStat version 3.5 (Systat 2006). We used the Holm-Sidak 

test for multiple comparisons between treatments because it is more powerful than other 

tests such as Tukey and Bonferroni (Systat 2006). A simple linear regression was 

performed in SigmaStat to relate legacy tree density to legacy tree basal area. Both 

variables were log transformed to meet normality and equal variance assumptions for 

the residual errors. 

 

Golden-winged Warbler Demographic Characteristics and Legacy Tree Retention 

Effects 
Differences in territorial male numbers and densities between legacy tree retention 

treatments and years were determined using Two Way ANOVA for normally distributed 

datasets using SigmaStat (Systat 2006). Both of these dependent variables were 

transformed using square root transformation and the Holm-Sidak test was used for 

post-hoc comparisons. The Holm-Sidak test was used because it is a more conservative 

approach than other tests such as the Student-Newman-Keuls test (Systat 2006). The 

difference in male pairing success among legacy tree retention treatments was 

evaluated using a Chi-square test. The nest success (i.e. percent of successful nests) 

difference among legacy tree retention treatments by year and pooled across years was 
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evaluated using Fisher’s Exact Test due to at least one cell in the contingency table 

having an expected value less than five. 

 

To determine if daily nest survival rate (DSR) varied by year and legacy tree retention 

treatment, we used Program MARK version 5.1 (White and Burnham 1999). We 

compared six a priori models to evaluate whether daily nest survival varied by: 1) year, 

2) site, 3) legacy tree retention treatment, 4) year and legacy tree retention treatment, 

and 5) year and site as compared to 6) an intercept only model. All models were 

constructed using constant survival through the nesting season. Independent variables 

were coded as dummy variables. We used MARK to apply an information theoretic 

approach to evaluate the models using Akaike Information Criterion for small sample 

sizes (AICc). Models with an AICc difference of two or less of the best model were 

considered equivalent models (Anderson 2008). Models with AICc differences between 

four and seven of the best model were given considerably less support for inference of 

results (Burnham and Anderson 2002). Model deviance was calculated in MARK. 

 

Productivity was calculated as the number of fledglings per nesting territory based on 

procedures in Kubel and Yahner (2008). A nesting territory was defined as a territory for 

which we found at least one active nest during the course of a nesting season; we never 

found more than one successful nest per territory. In SigmaStat (Systat 2006), the 

difference in productivity between legacy tree retention treatments was determined using 

Kruskal-Wallis Analysis of Variance on Ranks due to a non-normal distribution, and the 

Tukey test was used for the post-hoc comparisons. 

 

Male Density as an Indicator of Habitat Quality 
To evaluate whether territorial male density was a good measure of habitat quality in 

aspen forest stands, we correlated territorial male Golden-winged Warbler density to 

pairing success among stands. We explored a variety of regression functions to fit this 

data by year and by the mean across years in SigmaPlot 9.0 (Systat 2004). For the 

yearly datasets, an exponential transformation of pairing success and a square root 

transformation of male density was required to meet normality and equal variance 

assumptions for the regression errors. A three-parameter sigmoid function consistently 

provided the best fit of the data among datasets and was used in a nonlinear regression 
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procedure (NLMIXED) in SAS. We used a Newton-Raphson fitting algorithm which is a 

derivative dependent method as recommended by SAS (Schabenberger 2011). 

Parameter start values were based on the fitted line parameters produced by SigmaPlot. 

Individual males were treated as a random effect. Pseudo-R2 values were calculated 

with the following formula recommended by Schabenberger (2011): pseudo-R2=1-Sum 

of Squares(Residual)/Sum of Squares(TotalUncorrected). 

 

To identify the minimum number of territorial males per stand needed to produce the 

highest relative pairing success, we fitted a nonparametric general additive model using 

the GAM procedure in SAS to produce a smooth relationship that is the best fit of the 

data. We selected the generalized cross validation function (GCV) to optimizing the 

amount of smoothing from the data (Craven and Wahba 1979). 

 

Male Density and Aspen Clearcut Characteristics 

We selected variables a priori that might influence Golden-winged Warbler use or 

densities based on past studies. Stand age (i.e., regenerating aspen age) was selected 

as a proxy for successional stage given that peak Golden-winged Warbler use is thought 

to occur between 2 years and 10 years post-clearcutting in aspen forests (Roth and Lutz 

2004, Martin et al. 2007). Regenerating aspen stem density has been found to be 

among the most important variables differentiating aspen stand use and preference 

among different early successional community types in Wisconsin (Roth and Lutz 2004, 

Martin et al. 2007). 

 

Given our prediction that the presence of legacy trees will increase Golden-winged 

Warbler densities, we included variables that would describe stand-scale legacy tree 

characteristics such as mean basal area of legacy trees by group (hardwood species, 

coniferous species, and all species) and mean stem density of legacy trees by the same 

groups. 

 

The Golden-winged Warbler feeds by gleaning or probing for insects amongst foliage 

and spends a majority of its time foraging in the upper quarter of tree and shrub 

canopies in breeding habitat (Ficken and Ficken 1968). The Golden-winged Warbler’s 

propensity to probe particularly by inserting its bill into curled leaves, leaf clusters, buds, 
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and flowers suggests that hardwood species may offer greater foraging opportunities 

than conifers (Ficken and Ficken 1968). In general, Airola and Barrett (1985) found that 

migrant species were more likely to forage in deciduous trees compared to coniferous 

trees in mixed-conifer forests. Thus the proportion of hardwood to conifer legacy trees 

might be important in evaluating habitat quality and thus male density. 

 

We selected tree size based on mean DBH as a variable given males frequent use of 

tall, canopy trees for song perches and foraging (Ficken and Ficken 1968, Rossell 

2001). Bent (1963) noted that the species’ preferred food is Lepidopteron larvae 

obtained from large trees. Moth larvae from Family Tortricidae (commonly referred to as 

leaf-roller caterpillars) are favored (Bent 1963, Will 1986) and for which the most 

commonly used host plants are cotyledons, though the three most common legacy tree 

species in the current study are each known host plants for 18-21 Tortricid species 

(Brown et al. 2008). Will (1986) noted that these larvae were most frequently extracted 

from aspen, hawthorn (Crataegus spp.), maple (Acer spp.), and alder (Alnus spp.) which 

are all broad-leaved, deciduous species. These studies did not indicate presence of 

conifers so it is unclear if broad-leaved, deciduous trees are the preferred foraging 

substrate when conifers are present as an alternate choice. 

 

We used Pearson correlation to reduce the set of variables where correlation coefficients 

 The final set of variables included year, stand age, 

and mean values of regenerating aspen density, legacy tree stem density, conifer legacy 

tree size, hardwood legacy tree size, and proportion of hardwood to conifer legacy tree 

stem density. Nine models were developed to explain differences in male density across 

the aspen stands based on our literature review. 

 

Male density may not be independent between years given that nearly half of all males 

returned to the same stand from one year to the next. To account for this, year was 

treated as a random effect in our linear mixed effect models. Non-linear mixed effects 

candidate models were evaluated using program R (version 2.9.1; The R Foundation for 

Statistical Computing) and package nlme. For model-selection we used AICc and 

package AICcmodavg to rank the candidate models. We fitted the models using the 

maximum likelihood procedure to generate the AICc rankings. We refitted the models 
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using the restricted maximum likelihood procedure to estimate parameter values. For 

nested models considered competitive based on the differences in AICc, final parameter 

values and confidence intervals were estimated using the model averaging procedure in 

package AICcmodavg which was based on the recommendations of Burnham and 

Anderson (2002). 

 

To determine the minimum values or thresholds for legacy tree characteristics needed to 

achieve high male densities, we explored the correlation of each independent variable to 

mean male density in SigmaPlot. A three parameter sigmoidal function consistently 

provided the best fit of the data among datasets and was used in a nonlinear regression 

procedure (NLIN) in SAS. Parameter start values were based on the fitted line 

parameters produced by SigmaPlot. Individual males were treated as a random effect. 

Pseudo-R2 values were calculated as described above. 

 

Results 
 

Aspen Stand Characteristics 
In the conifer legacy tree retention treatment, the legacy trees were primarily Pinus 

strobes (55%), Pinus resinosa (23%), Quercus rubra (13%), and Abies balsamea (5%). 

In the hardwood legacy tree retention treatment, the legacy trees were primarily Quercus 

rubra (93%), Pinus resinosa (3%), and Pinus strobes (2%). In clearcuts, though legacy 

trees were rare as expected, they were Quercus rubra (31%), Pinus resinosa (23%), and 

Abies balsamea (23%). 

 

Legacy tree density was significantly higher in stands with conifer retention, lowest in 

clearcuts, and intermediate in stands with hardwood retention (Table 4.1). Not 

surprisingly, conifer legacy tree density and basal area were highest in stands with 

conifer retention (Table 4.1). Legacy tree density and basal area were highly correlated 

(Adj. R2=0.916, F=88.291, P

(density)=1.420+(0.571*log(basal area)). Legacy tree size (mean DBH) and regenerating 

aspen stem density did not vary by legacy tree retention treatment (Table 4.1). Most 
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Golden-winged Warbler Demographic Characteristics and Legacy Tree Retention 

Effects 
We mapped territories for 36 males in 2007, 32 males in 2008, 31 males in 2009, and 32 

males in 2010. Male return rates were 44% in 2008, 51% in 2009, and 51% in 2010; no 

females were resighted though only four were banded in 2007-09. No territorial Blue-

winged Warblers (Vermivora cyanoptera) were observed. We observed one territorial 

phenotypic hybrid, a Brewster’s Warbler (V. chrysoptera x V. cyanoptera), in 2007 that 

returned in 2008 to defend the same territory; we did not include this individual in any 

analyses.  

 

Among the four survey years, there were more territorial males and a higher density of 

territorial males in stands with conifer or hardwood retention than in clearcuts (Table 

4.2). The number of territorial males was not affected by the survey year (F3,24=0.107, 

p=0.955) or an interaction effect between year and treatment (F6,24=0.534, p=0.777). 

Similarly, male density neither varied by year (F3,24=0.032, p=0.992) nor by interaction 

between year and treatment (F6,24=0.345, p=0.906). However, given the rate of return for 

males between years, there was potentially some lack of independence. Despite this, we 

feel that the clear difference in male density between stands with legacy trees versus 

clearcuts was biologically significant. 

 

Male pairing success across years was much higher in the conifer and hardwood 

retention treatments with conservative estimates of 68% and 71% respectively (Table 

4.2). Pairing success was low for males in the clearcuts with only one male of eight 

individuals with 10 opportunities (10%) successfully acquiring a mate across four years. 

This particular male acquired a female during his third breeding season defending the 

same territory (i.e., one male with three opportunities for acquiring a mate). 

 

We found 50 Golden-winged Warbler nests over four years (Table 4.2). Only one nest 

was found in clearcuts despite considerable time spent searching for both females and 

nests. Nests were located by behavioral cues usually by observing females (65%), 

searching likely nest sites (20%), and by luck (15%). Of the 25 nests that failed, 56% 

were depredated and 44% were abandoned. No double-brooding was observed. The 
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percentage of successful nests was similar between stands with hardwood legacy trees 

and stands with conifer legacy trees (Table 4.2). 

 

Nest DSR was 0.975±0.015 in 2007, 0.977±0.013 in 2008, 0.971±0.014 in 2009, and 

0.960±0.012 in 2010. DSR was similar between the conifer (0.968±0.010) and hardwood 

retention (0.967±0.010) treatments. The DSR for the one nest among clearcuts was 

1.000±0.000. Based on a 24-day nest cycle, nest success was estimated at 0.46 for the 

conifer retention, 0.45 for the hardwood retention, and 1.00 for the no retention legacy 

tree treatments. 

 

Of the models assessed to explore the effects of year, site, and legacy tree treatment on 

DSR, site was an improvement over the null (intercept only) model though both the 

intercept only model and legacy tree treatment model were competitive (Table 4.3). This 

suggests that nest survival did not vary by year but that site and legacy tree retention 

treatment explained some of the variation in DSR. Though DSR appeared to be lowest 

in 2010, this was not significant despite a 42% reduction in the percent of successful 

nests in 2010 (33%) compared to 2007-2009 (mean of 57%). Removal of the one nest in 

c=2.01) suggesting that the slight 

difference in DSR (0.001) between stands with conifer retention and stands with 

hardwood retention may be important though it seems doubtful that this would produce 

significant differences in nest productivity. In fact, productivity did not vary by legacy tree 

retention treatment and was consistently 2.2 fledglings/nesting territory between the two 

treatments with legacy tree retention when four nests abandoned due to research-

related causes were removed (Table 4.2). 

 

Male Density as an Indicator of Habitat Quality 
Pairing success related significantly to male density in all years (pseudo R2=0.885-

0.994, P<0.001) and for mean values among years (pseudo R2=0.976, P<0.001) (Table 

4.4, Figure 4.3). The probability of a male successfully finding a mate was >40% when 

four or more territorial males were present at a male density above 0.1 individuals/ha, 

the inflection point in the sigmoid curve (Figures 4.3 and 4.4). Pairing success was 

individuals/ha, the asymptote of the curve (Figure 4.3). 
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Male Density and Aspen Clearcut Characteristics 
The most parsimonious model explaining male densities in aspen forest stands included 

legacy tree density and hardwood legacy tree size (Table 4.5). The second best model 

was considered competitive and included the same two variables with the addition of the 

proportion of hardwood and conifer legacy trees (Table 4.5). Male densities increased 

with increasing legacy tree density, hardwood legacy tree size, and the proportion of 

legacy trees comprised of hardwood species (Table 4.6). Mean male density reached an 

asymptote when hardwood legacy tree size was 16 cm DBH (Table 4.7). Mean male 

densities increased notably above a legacy tree density threshold at 13 stems/ha (Figure 

4.5), the point where the relationship first reached an asymptote (Table 4.7). Similarly, 

the asymptote for the relationship between male density and hardwood legacy tree 

density was first reached at around nine stems/ha for hardwood legacy tree density 

(Table 4.7). There was a marginally significant relationship between male density and 

conifer legacy tree density with an asymptote at three stems/ha suggesting that Golden-

winged Warblers were tolerant of conifer presence as long as a minimum density of 

hardwood legacy trees was retained (Table 4.7). At relatively low legacy tree densities, a 

male densities (Figure 4.5). If stands have a high proportion of conifer legacy trees 

(>70%), retaining a minimum of nine hardwood trees/ha was necessary to attract high 

male densities (Figure 4.5). 

 

Discussion 
 

Male Density Indicates Habitat Quality 
Because we expected that male density alone would be an inadequate indicator of 

habitat quality, we also examined male pairing success, nest survival, and nest 

productivity as part of our evaluation. Pairing success in our study was comparable to 

the 42-80% rate reported for a Golden-winged Warbler population in central Michigan 

(Will 1986). For the closely related Blue-winged Warbler in a study in Connecticut 

(Askins et al. 2007), pairing success (54%) and nesting activity were higher in small 

habitat patches (supporting 1-2 territories) relative to large habitat patches (potentially 

supporting 2+ territories). However, their study sites were separated by as little as 10m 
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of forest, suggesting that sites or potential habitat may not be independent from a social 

contact perspective and thus conspecific attraction could be occurring among sites. 

 

Contrary to our expectations, male density appeared to be an excellent indicator of 

pairing success. Similarly, Perot and Villard (2009) found that Ovenbird (Seiurus 

aurocapilla) territory density was a good indicator of productivity. In our study, only one 

male in four years acquired a mate and then successfully nested in a clearcut. Thus low 

male numbers and densities were indicative of low pairing success and low nesting 

probability. Male densities above 0.2 males/ha appear to indicate consistently high 

pairing success and nesting activity. Male densities indicate habitat quality but defining 

optimal habitat quality for Golden-winged Warbler likely requires an understanding of a 

combination of habitat characteristics and social behavior as suggested for other species 

(Ahlering and Faaborg 2006). 

 

Legacy Tree Retention Improves Habitat Quality 
DSR did not vary by year despite a 42% drop in the percentage of successful nests in 

2010 compared to 2007-2009. A larger annual sample size may have produced a 

significant year effect. According to the multimodel inference results, legacy tree 

retention treatment contributed to explaining DSR despite the small difference between 

the two treatments with legacy trees. This somewhat puzzling result was possibly due to 

the difference in how the data were analyzed and presented. DSRs were presented as 

pooled estimates among stands in each legacy treatment whereas the nest survival 

analysis in MARK used individual nests to model the effect of legacy tree treatment. 

DSR may vary by an interaction of site and legacy tree treatment that was not modeled 

in this analysis and that was not apparent in how we presented the DSR results. In 

addition, given that only three sites comprise each legacy tree treatment, it is possible 

that one or two sites could be driving the legacy treatment result and thus might explain 

why the site model was ranked as the best. A detailed DSR analysis of all site specific 

characteristics including stand geometry, legacy tree characteristics, and habitat 

structure were beyond the scope of this study but would likely produce results that would 

better explain DSR variation. Based on the pooled results among sites in a legacy tree 

treatment, the small differences between the number of successful nests, DSR, and 
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productivity suggests that legacy trees (particularly the difference between hardwoods 

vs. conifers) have little impact on nesting success. 

 

The most striking result of the demographic characteristics was the overall poor quality 

of clearcuts based on low male densities and low pairing success resulting in little 

nesting activity. Retention of legacy trees in aspen stands provided higher quality nest 

habitat based on relatively high pairing success (70%) and nearly identical DSR and 

productivity for Golden-winged Warbler nests as was found in aspen clearcuts in 

Pennsylvania (Kubel and Yahner 2008). 

 

We have demonstrated the importance of legacy trees for improving habitat quality from 

the perspective of territorial male densities and pairing success. Other studies have 

documented the importance of scattered mature trees for Golden-winged Warbler 

occupation (Huffman 1997, Cumming 1998) and others have suggested that increasing 

scattered mature trees across large patches of open habitat potentially could improve 

occupancy especially away from transitional edges between open and mature forest 

habitat (Patton et al. 2010). 

 

Golden-winged Warblers preferred residual canopy trees (> 6m tall) over shrub-sapling 

layer song perches (< 6m tall) in Minnesota aspen forests (Back 1982). This preference 

for large canopy trees as song perches was also documented for this species in 

mountain wetlands in North Carolina (Rossell 2001). A majority of song perches (78%) 

were in the upper 25% of the tree crown; and this positioning was thought to optimize 

vocal display and attraction of a mate, an idea supported by acoustic research 

(Henwood and Fabrick 1979, Mathevon and Aubin 1997). 

 

We speculate that retaining legacy trees in aspen stands mimics the appearance of 

forests disturbed by wind and other weather events that provided suitable nest habitat 

for Golden-winged Warblers. Moderately severe natural disturbances often did not fell all 

canopy trees in the disturbed area and left behind a combination of injured and healthy 

trees (Figure 4.1). The canopy was opened up enough to allow dense shrub 

development and the patchiness characteristic of Golden-winged Warbler territories. 

Clearcuts where no legacy trees were retained likely resemble rare, severe natural 
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disturbances where no trees are left standing and appear to be less attractive to Golden-

winged Warblers. 

 

Conspecific Attraction Effects Habitat Occupancy 
The inability of males to attract female mates at low densities and the corresponding rare 

instances of nesting suggest that there was also a social, conspecific attraction 

component to habitat occupancy. We documented that low densities of territorial males 

or the presence of only one or two territorial males at a site were not indicative of 

breeding activity or viable breeding habitat given the low likelihood of attracting a female 

social mate. Other studies have suggested that the Golden-winged Warbler appears to 

occur as loose aggregations or clusters (Confer and Knapp 1981, Klaus and Buehler 

2001, Bulluck and Harding 2010). Confer (1992) reported that these clusters often 

include 2-6 or more pairs and that 10-15 ha of suitable habitat would be necessary to 

support six pairs. Across the four years of this study, the five sites that consistently had 

both males with pairing success above 50% and consistent annual nesting activity had 

at least four territorial males present each year. Thus, in addition to density, a minimum 

number of territories (0.1 territories/ha) may also be important for stability of breeding 

clusters. This suggests that either females are selective of locations with some minimal 

male density threshold or, due to lack of success in retaining females at a site, 

prospecting males are quickly rejecting territories and searching for sites more attractive 

to females. This pattern is indicative of a couple hypotheses that may explain the 

association of pairing success with territorial densities or clustering behavior. 

 

The first hypothesis, posed by Brown et al. (1995) was based on evidence that most 

species are not evenly distributed across a landscape but instead form many “cool 

spots” where a species occurs in low abundance and a few “hot spots” where the 

species exists in high abundance. Further, they found that populations persisted long 

beyond the typical lifespan or generation time of the species owing to some unidentified 

ecological processes. Muller et al. (1997) proposed an alternate hypothesis where 

conspecific attraction may account for the persistence of hot spots. They proposed that 

females may be more attracted to habitat with high densities of males rather than low 

densities and thus settlement patterns may be based on a combination of habitat and 

conspecific characteristics. Further, they found that older more experienced males may 
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be more attractive to females than isolated naïve males. A dispersing or second year 

male with no breeding experience may be greatly influenced by conspecifics as an 

indicator of habitat quality. Older males can use their knowledge from previous nesting 

attempts and territories to select quality habitat. This may involve returning to a territory 

they defended in previous breeding seasons or selecting a neighboring territory deemed 

to be higher quality. Thus older males are less influenced by conspecifics than are 

young males. Our result of individual male pairing success as a function of the number 

of males present offers possible support for this hypothesis. As the number of males 

present exceeded five, an individual male’s pairing success declined. This was 

potentially due to there being more young inexperienced males in larger populations that 

were unable to attract social mates. 

 

The social mate attraction hypothesis suggests that sexual selection favors male 

aggregation and thus the clustering behavior of males will be more attractive to females. 

Clusters may be characterized by older males in better physical condition and thus may 

be more attractive to females. This would suggest that females prefer clusters of males 

rather than solitary males due to increased opportunity for EPCs particularly with high 

quality males. With the advent of genetic fingerprinting, many monogamous bird species 

were more promiscuous than previously thought such that females may be selecting 

clusters of males where they have multiple opportunities for EPCs (Wagner 1993, Tarof 

and Ratcliffe 2004). The hidden lek hypothesis adds that females seek matings from 

central or “hot shot” males and that the EPCs benefit the female in some way such as 

genetically. 

 

The evolution of hidden leks includes several potential models, one of which is a female 

selection model which seems most consistent with our observations (Fletcher and Miller 

2006). This model predicts that females prefer clusters of males and avoid solitary 

males. Reasons for this behavior include the opportunity to appraise relative male quality 

among a group and the likelihood that average male quality will increase with increasing 

aggregation size. This model also predicts that larger aggregations provide increased 

opportunity for EPCs which is a common practice in Golden-winged Warblers (Vallender 

et al. 2007). Our results best fit the female selection model though this should be 

examined more closely. 
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To understand the persistence of breeding clusters between years, we must also 

consider site fidelity and annual adult survival rates. Murray and Gill (1976) reported a 

conservative return rate of 60% for Golden-winged Warblers in Michigan as compared to 

a mean return rate of 49% in our study. In other regions of the breeding range, male 

return rates were higher with 75% in Ontario and 85% in Tennessee (Bulluck 2007). 

From a meta-analysis of site fidelity for shrubland birds of eastern North America, 

Schlossberg (2009) estimated a mean site fidelity rate of 38% for shrubland birds in 

general and 40% for Golden-winged Warblers specifically. Thus Golden-winged 

Warblers in our study have relatively average site fidelity compared to other species but 

lower site fidelity than Golden-winged Warbler populations in other parts of the breeding 

range. This could be an indication of lower quality breeding habitat or alternatively it 

could suggest a difference in habitat availability. In areas of the breeding range where 

there is little nest habitat in the landscape and where new nest habitat is generated 

infrequently, site fidelity and occupancy persistence may be higher and for longer 

duration than in regions where new nest habitat is more ubiquitous and consistently 

generated in the landscape (i.e. disturbance is common and more predictable; Donner et 

al. 2010). The relatively low site fidelity rate in our population may suggest that the 

likelihood of breeding cluster persistence was lower in our study area than elsewhere in 

the breeding range. This may be due to relative higher abundance of nest habitat and its 

frequent generation in the landscape. Additionally, other factors such as nest success 

from the previous year and habitat succession into an undesirable condition may also 

account for differences in site fidelity or occupancy rates (Haas 1998, Amarasekare and 

Possingham 2001). 

 

Annual adult survival rates have been estimated in Tennessee (see Bulluck 2007) and 

could play an important role in breeding cluster persistence especially for sites where the 

number of pairs in a cluster was near the low critical threshold. For example, one site in 

our study had a cluster of breeding pairs for the first two years but did not in the last two 

years though floating males were observed. In the first year, there were two after-

second-year males and two after-hatch-year males. In the second year, two of the 

banded males returned plus the addition of an unbanded second-year male. In the third 

and fourth years, no banded birds returned and only a floater was observed. If the two 
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after-second-year males from the second year died the following non-breeding season, 

then there may have been no veteran males to recreate the cluster in the third year thus 

leading to the collapse of that breeding cluster. This suggests that small clusters of 

Golden-winged Warblers were potentially less stable or indicative of habitat quality 

decline and thus less persistent than larger population clusters, though this idea should 

be tested with greater replication. 

 

Studies of other warbler species have found that pairing success increased as habitat 

patch area increased (Burke 1998, Butcher 2011). We did not find that nest habitat area 

restricted pairing success given that much of the clearcut areas were unoccupied where 

there were low male densities. Regardless of the mechanism, when low densities (<0.2 

males/ha) and small populations (three or fewer territorial males) are present additional 

evidence of pairing and reproductive success should be documented when evaluating 

habitat quality. 

 

Recommendations for Managing High Quality Habitat 
Habitat management at a site should be conducted with a specific Golden-winged 

Warbler population goal in mind, specifically attracting a breeding cluster comprised of at 

least four territorial males at a minimum density of 0.2 males/ha. Stands that support one 

or two territorial males will not likely result in nesting activity. Though stand area was not 

an important variable in predicting male density, nest habitat should be extensive 

enough to attain the population goal. The smallest area of nest habitat required per 

territorial male among stands with at least four males was 2.2 ha/male suggesting that at 

least 9 ha of nest habitat was required to support a population cluster. Confer and Knapp 

(1981) found that most Golden-winged Warbler territories were located in 10-50 ha 

habitat patches. Confer (1992) suggested that 10-15 ha might be close to the optimal 

patch size in old field habitats. Thus a minimum of 9-10 hectares of nest habitat seemed 

to be preferred by Golden-winged Warblers among these studies. However, at 

moderately low densities like our recommended minimum male density of 0.2 males/ha, 

at least 20 ha of suitable habitat may be necessary to support a breeding cluster. Thus 

land managers could assess male densities at other similarly managed sites in the area 

to determine the likely male density range that they can expect. 
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Kubel (2005) found that a minimum area of 1.0 ha was sufficient to attract breeding pairs 

though clearcuts were only 100m apart such that males were likely able to detect one 

another between clearcuts (Kubel and Yahner 2007). Similarly Roth and Lutz (2004) 

found that habitat area distributed as one large clearcut or two to three smaller clearcuts 

in close proximity attracted high densities of territorial males. Thus managers have some 

flexibility in how they configure nest habitat patches. 

 

The support we found for a social mate attraction hypothesis (specifically a female 

selection model) as driven by habitat characteristics suggests focusing creation of new 

nest habitat near areas where clusters of breeding pairs currently exist. Bulluck and 

Harding (2010) found that the probability of Golden-winged Warblers occupying a nest 

habitat patch was higher when other occupied patches were in close proximity. This 

suggests that a strategy where land managers either expand the area of existing nest 

habitat or create new nest habitat in close proximity to existing populations is likely to be 

occupied. Creating nest habitat where there are no or few breeding pairs in proximity 

may have low probability of occupancy and pairing success would likely be low if only 

one or two territorial males arrive. More research especially with experimental 

manipulation is needed to better understand the spatial and temporal interplay of habitat 

vegetation characteristics and conspecific attraction in defining optimal habitat quality 

and also should include an examination of the roles of site fidelity and annual adult 

survival for persistence of optimal breeding habitat for this high conservation priority 

species. 

 

Land managers, especially foresters, have a great opportunity for creating high quality 

Golden-winged Warbler nest habitat in aspen forests within the species’ breeding range. 

For the Golden-winged Warbler, not all aspen clearcuts are created equal. When 

quantifying habitat for this species, it is important to also consider quality of habitat, in 

this case, the quality of the aspen forest. Retaining canopy trees can increase habitat 

quality in an even-aged harvest in aspen forest. 

 

Based on the range of legacy tree densities observed for the aspen clearcuts in this 

study, we did not find an upper density limit where Golden-winged Warbler densities 

declined. However, there was a lower limit around 13 trees/ha (or 0.9 m2/ha) where there 
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was a notable increase in male density and also male pairing success. Huffman (1997) 

recommended a residual basal area of 4.6 m2/ha or approximately 20% residual canopy 

cover in aspen forests in Minnesota. They also observed that Golden-winged Warbler 

numbers declined and the composition of the bird community shifted at around 9.2 m2/ha 

or approximately 40% residual canopy cover. This suggests that optimal residual basal 

area and density for Golden-winged Warbler is likely higher than our minimum 0.9 m2/ha 

and 13 trees/ha minimum threshold. 

 

The high proportion of hardwood to coniferous legacy trees was likely only important 

where legacy tree density was low thus stands with a high proportion of conifer legacy 

trees was acceptable if the minimum of 12 hardwood legacy trees/ha was retained. 

Retained trees should have an The dominant hardwood legacy 

tree was northern red oak (93%) and it is unclear what role this species, as compared to 

other hardwood species, has in attracting Golden-winged Warblers to a site. 

 

Anecdotally, males spent much time singing and foraging in the canopies of large oak 

trees (personal observation). On sites where retention of oak is not an option, retention 

of other hardwood species may be adequate but we have no data on the relative 

attractiveness of oak to other species. In reclaimed mine habitat in Kentucky, black 

locust (Robinia pseudoacacia) was an important forage tree and planting new trees was 

recommended to improve habitat quality (Patton et al. 2010). In New York, Ficken and 

Ficken (1968) identified apple (Pyrus malus), black cherry (Prunus serotina), and 

hawthorn as the principal species utilized for foraging. Thus it is likely that there are a 

variety of hardwood species that could be retained or planted in open, shrub habitats 

that Golden-winged Warblers would find attractive and retention options will depend on 

which species are locally available, abundant, and tolerant of removal of the surrounding 

canopy. 

 

For our study, the dominant legacy trees were northern red oak, eastern white pine, and 

red pine. Care should be taken when selecting trees for retention as some species will 

not tolerate the post-harvest exposure and will die or fall within the first few years after 

clearcutting. In our study, paper birch was occasionally retained but rarely survived the 

first years of post-harvest exposure (Roth, personal observation). Ideal legacy tree 
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species such as pines are deep rooted, and healthy dominant individuals will be more 

likely to withstand windthrow (Franklin et al. 1997). Based on research in British 

Columbia, managers were encouraged to select trees with low height-diameter ratios 

and deep, sparse crowns (Scott and Mitchell 2005). 

 

Habitat management should be evaluated to determine if Golden-winged Warblers are 

responding as expected to specific prescriptions. From our results, we found that male 

density based on a minimum of number of territorial males was a good indicator of 

habitat quality when minimum thresholds were well understood. Given that nest 

searching or even establishing pairing success requires considerable time, personnel, 

and financial resources, we find it fortunate that male density has the potential to be a 

reliable metric of habitat quality for this species in young aspen stands and possibly in 

other vegetation communities occupied by Golden-winged Warblers. 
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Figure 4.1. (A) Blowdown caused by a thunderstorm down burst in a northern hardwood-hemlock 
(Tsuga canandensis) stand in northern Wisconsin. (B) Commercially-managed aspen stand 
with retention of hardwood legacy trees, primarily northern red oaks, in northern Wisconsin. 
Photos courtesy of Christopher Webster. 
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Figure 4.2. Nine aspen forest stands in Oneida and Vilas Counties, Wisconsin. Each stand is 
labeled by treatment: nr=no legacy tree retention or clearcut, cr=conifer legacy tree retention, and 
hr=hardwood legacy tree retention. 
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Figure 4.3. Golden-winged Warbler male pairing success was a three-parameter sigmoid function 
of male density (See Table 4.4 for equations). Data was not transformed for easier interpretation 
and followed a similar pattern among years. A minimum threshold of 0.1 males/ha appeared to be 
necessary for pairing success to be greater than 40% (the inflection point of the curve 
representing the mean male density across years) and a minimum of 0.2 males/ha consistently 
supported pairing success around 75% (the density where the asymptote of the curve 
representing the mean male density across years was reached). 
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Figure 4.4. Probability of an individual male Golden-winged Warbler’s pairing success as a 
function of the number of territorial males in an aspen forest stand based on the spline from a 
general additive model. Dashed lines indicate the standard error (0.135) of the spline. A minimum 
threshold of four males appeared to be necessary to support relatively high pairing success 
(>60% probability). 
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Figure 4.5. Golden-winged Warbler territorial male densities in nine aspen forest stands were 
related to three legacy tree characteristics: legacy tree density, proportion of hardwood and 
conifer legacy trees, and size of hardwood legacy trees. Based on Figure 4.3, a minimum density 
of 0.10 males/ha was needed to obtain >40% pairing success. Large, hardwood legacy trees 
were an important characteristic of aspen forest stands above the minimum male density goal, 
particularly at low legacy tree densities. 
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Table 4.1 
Legacy tree characteristics and regenerating aspen stem density (mean±1 se) in young 

aspen forest stands in three legacy tree retention treatments in Oneida and Vilas 
Counties, Wisconsin, 2008. Significant differences based on alpha=0.05 between 

treatments in the post-hoc test comparisons are indicated by different letters. 
 Legacy Tree Treatment   
 No Retention 

or Clearcut 
(n=3) 

Conifer 
Retention (n=3) 

Hardwood 
Retention 

(n=3) 

F2,6 p 

Legacy Tree Density (stems/ha) 
Conifers 2.67±1.45 A 86.00±2.08 B 2.33±0.67 A 1012.113 <0.001 
Hardwoods 4.00±2.00 16.33±9.39 31.33±9.82 2.981 0.126 
All Species 6.67±2.60 A 102.33±10.48 B 33.67±9.62 C 34.919 <0.001 
      
Legacy Tree Basal Area (m2/ha) 
Conifers 0.18±0.13 A 6.10±1.65 B 0.23±0.10 A 28.292a <0.001 
Hardwoods 0.03±0.02 0.57±0.42 2.08±1.08 2.506 0.162 
All Species 0.21±0.15 A 6.67±2.06 B 2.31±1.02 AB 6.077 0.035 
      
Legacy Tree Size (dbh, cm) 
Conifers 26.72±6.57 27.83±3.82 34.31±5.65 0.562 0.597 
Hardwoods 9.80±2.18 A 16.71±2.76 AB 25.18±3.60 B 7.027 0.027 
All Species 12.17±3.46 A 26.15±2.89 B 26.34±3.03 AB 6.712 0.029 
      
Mean Regenerating Aspen Density (stems/ha) 
All Species 1280±184 769±112 1005±320 1.322 0.335 

aBased on a square root transformation of conifer basal area. 
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Table 4.2 
Demographic characteristics for Golden-winged Warblers (Vermivora chrysoptera) in 

young aspen forest stands without legacy tree retention or clearcuts, with conifer legacy 
tree retention, and with hardwood legacy tree retention in northern Wisconsin. Significant 

differences based on =0.05 between treatments in the post-hoc test comparisons are 
indicated by different letters. 

 Legacy Tree Retention Treatment    

 

No 
Retention 

(n=3) 

Conifer 
Retention 

(n=3) 

Hardwood 
Retention 

(n=3) Test Statisticdf p 
Mean Number of Territorial Males, mean±se 
2007 0.7±0.7 A 5.3±0.7 B 6.0±1.2 B    
2008 0.7±0.3 5.0±1.2 5.0±0.6    
2009 0.7±0.3 4.3±2.2 5.3±0.3    
2010 1.3±0.3 4.0±2.1 5.7±1.2    
All Yearsa 0.8±0.2 A 4.7±0.7 B 5.5±0.4 B F2,24 15.915  
       
Mean Territorial Male Density, individuals/ha; mean±se 
2007 0.02±0.02 0.24±0.08 0.27±0.10    
2008 0.03±0.02 0.22±0.08 0.22±0.07    
2009 0.04±0.02 0.22±0.11 0.23±0.05    
2010 0.07±0.03 0.20±0.10 0.23±0.03    
All Yearsa 0.04±0.01 A 0.22±0.04 B 0.24±0.03 B F2,24 10.569  
       
Male Pairing Success Rate (total territorial males) 
2007 0% (2) 81% (16) 67% (18)    
2008 0% (2) 67% (15) 67% (15)    
2009 0% (2) 62% (13) 75% (16)    
2010 25% (4) 58% (12) 76% (17)    
All Years 10% (10) 68% (56) 71% (66) 2

, df=2 14.65 0.001 
       
Number of Nests (% successfulb) 
2007 0 (0%) 7 (71%) 3 (67%) Fisher’s  1.000 
2008 0 (0%) 6 (60%) 3 (67%) Fisher’s  1.000 
2009 0 (0%) 6 (75%) 7 (57%) Fisher’s  1.000 
2010 1 (100%) 6 (17%) 11 (40%) Fisher’s  0.273 
All Years 1 (100%) 25 (55%) 24 (52%) Fisher’s  0.671 
       
Productivity, number of fledglings/nesting territoryb 
All Yearsc 5.0±0.0 2.2±0.5 2.2±0.5 H2 1.67 0.434 

aANOVA test statistics based on a square root transformation of the dependent variable. 
bCalculation does not include four nests removed due to research-related abandonment. 
cKruskal-Wallis ANOVA on Ranks performed and Tukey Test used for post-hoc pairwise 
multiple comparisons. Due to small sample sizes of successful nests by legacy tree 
treatment, data were pooled across years. 
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Table 4.3 
Model-selection results for models of nest survival (S) for Golden-winged warbler daily 

nest survival rates in aspen forest stands without legacy tree retention or clearcuts (n=3), 
with conifer legacy tree retention (n=3), and with hardwood legacy tree retention (n=3) in 
Oneida and Vilas Counties, Wisconsin, 2007-2010. Four nests that were abandoned due 

to research-related causes were removed from this analysis. 
Model Ka AICc c wi Deviance 

S(site) 6 149.59 0.00 0.36 137.46 

S(intercept only) 1 149.94 0.35 0.31 147.93 

S(legacy tree treatment) 2 150.50 0.91 0.23 146.49 

S(site + year) 8 153.53 3.93 0.05 137.30 

S(year) 4 154.90 5.31 0.03 146.84 

S(legacy tree treatment + year) 5 154.97 5.38 0.02 144.88 
aNumber of model parameters. 
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Table 4.4 
Nonlinear models relating Golden-winged Warbler (Vermivora chrysoptera) territorial 
male pairing success to male density in aspen clearcuts without legacy tree retention 

(n=3), with conifer legacy tree retention (n=3), and with hardwood legacy tree retention 
(n=3) in Oneida and Vilas Counties, Wisconsin. Both dependent and independent 

variables were transformed in the four yearly models to meet assumptions of normality 
and equal variances of the errors. 

Year Model F p 
Pseudo- 

R2 

2007 exp(Male Pairing Success2007) = 
2.390/(1+exp(-(sqrt(Male Density2007)-0.097)/0.215)) 47.64 <0.001 0.960 

2008 exp(Male Pairing Success2008) = 
2.351/(1+exp(-(sqrt(Male Density2008)-0.151)/0.197)) 36.14 <0.001 0.948 

2009 exp(Male Pairing Success2009) = 
5.273/(1+exp(-(sqrt(Male Density2009)-0.748)/0.466)) 99.53 <0.001 0.980 

2010 exp(Male Pairing Success2010) = 
3.742/(1+exp(-(sqrt(Male Density2010)-0.449)/0.333)) 64.72 <0.001 0.970 

Mean 
of All 
Years 

Male Pairing SuccessMean = 
0.743/(1+exp(-(Male DensityMean-0.088)/0.024)) 80.63 <0.001 0.976 
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Table 4.5 
Selection results for linear mixed effects models of Golden-winged Warbler (Vermivora 

chrysoptera) territorial male density in aspen stands without legacy tree retention or 
clearcuts (n=3), with conifer legacy tree retention (n=3), and with hardwood legacy tree 
retention (n=3) in Oneida and Vilas Counties, Wisconsin, 2007-2010. Year was treated 

as a random effect in each model. 

Model Ka AICc c wi Deviance 

Density(Legacy Tree Stem Density + 

log(Hardwood Legacy Tree Size)) 
5 -59.259 0.000 0.566 35.629 

Density(Legacy Tree Stem Density + 

Proportion of Hardwood & Conifer Legacy 

Trees + log(Hardwood Legacy Tree Size)) 
6 -58.703 0.556 0.429 36.800 

Density(Legacy Tree Stem Density + 

Proportion of Hardwood & Conifer Legacy 

Trees) 
5 -48.438 10.821 0.003 30.219 

Density(Legacy Tree Stem Density + 

Proportion of Hardwood & Conifer Legacy 

Trees+ Conifer Legacy Tree Size) 
6 -46.983 12.276 0.001 30.940 

Density(Legacy Tree Stem Density + 

Conifer Legacy Tree Size) 
5 -46.880 12.379 0.001 29.440 

Density(Legacy Tree Stem Density) 4 -44.122 15.136 0.000 26.706 

Density(Regenerating Aspen Density) 4 -39.515 19.744 0.000 24.402 

Density(.) 3 -38.068 21.190 0.000 22.409 

Density(Stand Age) 4 -35.586 23.672 0.000 22.438 
aNumber of model parameters.  
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Table 4.6 
Average beta estimates and 95% confidence intervals for parameters based on the top 
models in Table 5 receiving AICc weights for Golden-winged Warbler densities in aspen 
forest stands with and without legacy tree retention (n=9) in Oneida and Vilas Counties, 

Wisconsin, 2007-2010. 
  95% Confidence Interval 
Parameter  Lower Upper 
Intercept -0.172 -0.628 0.283 

log (Hardwood Tree Size) 0.160 0.090 0.231 

Legacy Tree Stem Density 0.001 0.000 0.002 

Proportion of Hardwood & Conifer Legacy Trees 0.097 -0.033 0.226 
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Table 4.7 
Nonlinear models relating Golden-winged Warbler (Vermivora chrysoptera) mean 
territorial male density to three legacy tree density characteristics in aspen stands 

without legacy tree retention or clearcuts (n=3), with conifer legacy tree retention (n=3), 
and with hardwood legacy tree retention (n=3) in Oneida and Vilas Counties, Wisconsin. 

Independent 
Variable Model F p 

Pseudo-
R2 

Legacy Tree Density 
(LTD) 

Mean Male Density=  
0.205/(1+exp(-(LTD-11.164)/0.168)) 14.39 0.001 0.753 

Hardwood Legacy 
Tree Density (HLTD) 

Mean Male Density =  
0.229/(1+exp(-(HLTD-8.6941)/0.725)) 17.09 0.002 0.832 

Conifer Legacy Tree 
Density (CLTD) 

Mean Male Density = 
0.190/(1+exp(-(CLTD-0.661)/0.406)) 4.52 0.056 0.693 

Hardwood Legacy 
Tree Size (DBH) 

Mean Male Density =  
0.0.267/(1+exp(-(DBH-13.977)/0.278)) 20.39 0.002 0.911 
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CHAPTER 5. Behavioral and Demographic Measures of Edge 
Effect Reveal Contradictory Patterns for a Migratory Shrubland 
Songbird 
 

Abstract 
 

The Golden-winged Warbler (Vermivora chrysoptera) has frequently been referred to as 

a shrubland-forest edge associate. Clearcutting aspen (Populus spp.) forest creates a 

distinct shrub habitat edge, often defined by older adjacent forest. We examined the 

influence of scattered legacy canopy trees in aspen forests managed with green-tree 

retention on habitat spatial use by male and female Golden-winged Warblers during the 

breeding seasons of 2007-2010. In northern Wisconsin, we selected nine young aspen 

stands with three in each of the following legacy canopy tree retention treatments: no 

legacy tree retention or clearcut, conifer legacy tree retention, and hardwood legacy tree 

retention. We mapped male territories to examine two response variables, the 

percentage of male locations in the young aspen stands vs. adjacent habitat and 

whether male territories overlap the stand edge. Both response variables indicated 

higher male use of the harvested stand interior vs. the stand edge. Male behavioral 

patterns suggested that edges were used less or were avoided as the percent of interior 

harvested stand area increased and as the density of residual canopy trees increased 

within the harvested stand. Females choose nest sites, so we used nest site selection as 

an indicator of female avoidance or attraction to harvested stand edges. Median nest 

distance (67m; n=50) into the harvested stand from the edge was greater than the 

expected median distance compared to a random point distribution (51m). Nest 

predation did not explain female preference for nesting toward the harvested stand 

interior and was higher toward the interior of stands with hardwood legacy tree retention 

but unrelated to edge distance in stands with conifer legacy tree retention. A combined 

approach of using behavioral and demographic metrics for evaluating edge effects 

produced contradictory conclusions about edge avoidance or association for this species 

due to site context. The role of scattered trees, e.g. legacy trees in young aspen stands, 

to optimize usage of large patches of nesting habitat should be an important 

consideration for Golden-winged Warbler habitat management and conservation 

planning. 
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Introduction 
 

The Golden-winged Warbler (Vermivora chrysoptera) is a high conservation priority 

migratory songbird for which information is needed to describe quality breeding habitat 

and to create habitat management recommendations for land managers (Buehler et al. 

2007). The Golden-winged Warbler nests in young forests and shrublands in forested 

landscapes of the eastern United States and Canada and has been historically 

associated with forest edge habitat (Confer et al. 2011). Over eighty years ago, H.O. 

Green provided a historical account of Golden-winged Warbler nesting habitat in eastern 

Massachusetts: “For their summer home these birds prefer the border of deciduous 

woods, where tall trees give plenty of shade, to an adjacent clearing with a growth of 

briers, bushes and grass, and the nest is usually placed just outside the line of the forest 

proper, but within the shade of the trees (p. 209; Forbush 1929).” Collins et al. (1982) 

reported that the Golden-winged Warbler was associated with deciduous edge 

vegetation though no specific edge metrics were included in their habitat measurements 

so the edge association seems speculative. DeGraaf et al. (1991) listed the special 

habitat requirements of Golden-winged Warbler as brushy edge habitats or openings. 

 

Descriptions of Golden-winged Warbler territories also frequently mention a forest edge 

or border (Ficken and Ficken 1968, Gill and Murray 1972, Confer et al. 2011). Studies 

specifically investigating territorial characteristics also identify forest edge as a key 

component (Rossell et al. 2003, Confer et al. 2003). Rossell (2001) found that Golden-

winged Warblers preferred tall trees near forest edges (0.6m from edge) compared to 

randomly selected tall trees (2.3m from edge). Though this was a statistically significant 

difference, it seems that the habitat studied generally did not have many trees greater 

than 3m from the forest edge, given that the mean distance for random trees was 

2.3±0.6m. Frech and Confer (1987) mentioned that territories may extend up to 20m into 

adjacent forest. 

 

Golden-winged Warbler nesting habitat is generally characterized by the following 

components: 1) dense herbaceous cover, 2) patches of shrubs, and 3) tall trees often at 

the territory border (Confer et al. 2011). Nests are located on the ground and frequently 

at or near the edge between the relatively recently disturbed open-habitat and mature 
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forest (Ficken and Ficken 1968, Will 1986, Demmons 2000, Kubel 2005, Patton et al. 

2010). 

 

Based on this evidence, it is not surprising that the Golden-winged Warbler has received 

the label as a forest edge associate (e.g. Hanowski et al. 2006, Bowen et al. 2007, 

Patton et. al. 2010) though this label has been found unwarranted in many other shrub-

scrub bird species (Schlossberg and King 2008). We suggest that the Golden-winged 

Warbler’s association with forest edges is not a universal characteristic of habitat 

selection in this species and is partly an artifact of two ways that past study areas were 

chosen. First, some studies were conducted in patches of habitat too small to allow 

territories to occur away from edges. For example, Kubel (2005) studied aspen clearcuts 

in Pennsylvania that were cut as 1-ha blocks with little or no “interior” habitat. Roth and 

Lutz (2004) observed that 10% of Golden-winged Warbler territories within aspen 

clearcuts did not include the clearcut edge and speculated that this was due to 

continuous shrub cover across the clearcuts along with the fact that some clearcuts were 

large enough (>55 ha) for territories to be located away from edges. They speculated 

that if patches of continuous habitat were large enough, Golden-winged Warblers would 

not be restricted to the edges. 

 

A second pattern of past studies was that they were located in the eastern USA and 

Canada where the focus has been on abandoned farmland (or, similarly, reclaimed 

minelands in the Appalachians) surrounded by forest or on wetland-forest ecotones. 

Roth and Lutz (2004) suggested that these past studies have focused on habitats where 

the pattern of woody succession and encroachment would result in rings of habitat 

around the field periphery where woody vegetation encroaches from the forest 

boundary. Confer (1992) suggested that the middle of large fields may not provide the 

forest edge usually part of territories thus implying that trees are generally absent in the 

field interior. Similarly, in wetland-forest ecotones, trees and shrubs are sometimes more 

prevalent at the wetland edge adjacent to forest and decrease in cover as the site 

grades toward wetter soil and eventually into deeper water where herbaceous vegetation 

becomes dominant and trees are absent. Based on these successional patterns, 

Golden-winged Warbler territories would be expected to occur in the forest-shrub 
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ecotone particularly in the absence of tall canopy trees and shrubs in the field or wetland 

interior. 

 

Here, our objective was to evaluate Golden-winged Warbler spatial use of breeding 

habitat when breeding pairs are presented with large, continuous patches such that 

adequate area is available for birds to choose territories near or far from the edge of 

recently harvested aspen stands. Commercially managed aspen (Populus spp.) stands 

provide an ideal system to investigate breeding territory selection because the size of 

the habitat patch and the retention pattern of tall trees can be controlled. Golden-winged 

Warblers are known to be present in high densities in young aspen clearcuts in northern 

Wisconsin (Roth and Lutz 2004, Martin et al. 2007). Typical timber harvest prescriptions, 

such as clearcutting, for aspen forest usually creates a distinct edge between the 

regenerating aspen and surrounding forest that is usually older and thus contains tall 

trees. Newly harvested aspen stands provide all of the critical nesting habitat 

components including dense herbaceous cover and patches of shrubs and regenerating 

aspen trees continuously throughout the clearcut area (Roth and Lutz 2004). 

 

One potential difference between silvicultural prescriptions for aspen forest is whether or 

not tall canopy trees are retained during the timber harvest, also called green-tree 

retention. We hypothesized that when tall trees are found throughout a large timber 

harvest, Golden-winged Warbler territories and nests will be found throughout the stand. 

In contrast, when the only tall trees are found in an adjacent forest stand, i.e., at the 

harvest area edge, we expected to find territories restricted to the harvested stand 

edges. Similarly, Patton et al. (2010) suggested that the lack of residual mature trees in 

a reclaimed mine area may restrict Golden-winged Warbler use to the edges adjacent to 

mature forest and proposed a similar hypothesis as ours. They suggested that by 

increasing the number of scattered mature trees across mine lands away from the 

mature forest edge could increase use of mine lands in places where Golden-winged 

Warblers are currently absent. Specifically, we evaluated the effects of legacy tree 

retention on spatial use by both male and female Golden-winged Warblers in young 

aspen stands and identify the mechanisms for observed spatial patterns. We also 

hypothesized that nest success is unrelated to nest distance to the stand edge based on 

a similar study system in Minnesota (Hanski et al. 1996). 
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Methods 
 
Study area 
We selected nine young aspen-dominated forest stands in Oneida and Vilas Counties, 

Wisconsin (45  43’N, 89  32’W; Figure 5.1) in an area defined by glacial moraines and 

outwash plains. We selected stands with similar soil types, tree composition, structural 

characteristics, and management history. Soils were characterized as sand, sandy 

loams, or loamy sands and ranged from moderately well drained to excessively drained 

(Soil Survey Staff 2010). Three aspen stands were selected for each of three legacy tree 

retention prescriptions: 1) no legacy tree retention or clearcut, 2) conifer legacy tree 

retention, and 3) hardwood legacy tree retention. Aspen stands were dominated by 

Populus tremuloides and Populus grandidentata and included other abundant 

regenerating species especially Acer rubrum, Amelanchier spp., Prunus serotina, 

Quercus rubra, and Betula papyrifera. The dominant shrubs were Rubus spp. and 

Corylus spp. Legacy trees were primarily Pinus strobus, Pinus resinosa, and Quercus 

rubra. Stands ranging from 17-48 ha were commercially harvested between 1996 and 

2001 thus the regenerating aspen was 4-7 years-old at the start of the study in 2007. 

Timber harvest prescriptions called for removal of all aspen and most other tree species 

with retention of large diameter pine and oak species. Clearcuts contained a small 

number of scattered legacy trees that were retained for unknown reasons. All sites were 

selected without prior knowledge of Golden-winged Warbler occupancy. 

 

Field Methods 
Golden-winged Warbler territory and nest surveys were conducted 10 May-2 July 2007, 

19 May-21 July 2008, 19 May-15 July 2009, and 16 May-3 July 2010. We captured 

unbanded territorial adult male Golden-winged Warblers and a few adult females across 

all sites. Males were targeted for capture using mistnets with tape playback (Kubel and 

Yahner 2007) and then given a unique color band combination including a silver U.S. 

Fish & Wildlife Service band for individual identification. 

 

Other studies have used male territory placement to evaluate spatial relationships of 

forest passerines relative to forest edges (Kroodsma 1984, King et al. 1997). We 

mapped locations for all territorial males using a modification of the protocol by Robbins 
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(1970). Surveys for the same individual or stand were conducted at least three days 

apart. When possible, we used teams of two observers with one observer recording 

locations on a map and marking perches while the second observer tracked the bird. 

Because of dense vegetation, it was difficult to continually track a bird and thus 

considerable time was spent checking bands to make sure the same individual was 

resighted before resuming the survey. Unique individuals were tracked until the 

observer(s) completed a full circuit of the bird’s territory such that the bird primarily 

began using marked perch trees. Mapping continued on subsequent visits until the male 

was primarily using marked perch trees. Unbanded males prior to capture were 

identifiable by unique song characteristics, favorite song perches, discrimination from 

banded neighboring males, and/or other characteristic behaviors. We did not survey 

males into the fledgling period. All perches were flagged and coordinates were collected 

later with a handheld Trimble XM Geographic Positioning System (GPS). Only males 

present on a minimum of eight site visits spanning a minimum of 22 days were included 

in analyses. Based on the GPS locations, we used the Hawth’s Tools Extension in 

ArcMap (ESRI 2010) to generate minimum convex polygons to delineate territorial 

boundaries. Male locations were identified as at or beyond the harvested stand edge if a 

point was within a 5m buffer of the stand edge or outside of the stand boundary. The 5m 

buffer was chosen given that a Trimble XM GPS has an accuracy of 1-3m thus this 

would capture any positioning errors (see www.Trimble.com for equipment 

specifications). 

 

Nests were located by searching the entire stand for females exhibiting nesting behavior, 

adults feeding nestlings, and good potential nest sites within male territories. Nests 

found during nest building were not revisited until it was likely that the nest had a 

complete clutch of eggs to avoid abandonment by the female (Confer et al. 2011). Only 

nests with at least one egg were included in analysis; nests abandoned prior to egg 

laying were omitted. After nests were no longer in use, we used the GPS to collect the 

nest site coordinates. 

 

To determine legacy tree density in young aspen stands, we randomly established ten 

1000-m2 circular plots in each stand separated by at least 30 m. We defined legacy trees 

as trees that were retained during the most recent harvest rotation and were identified as 
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live trees with diameter at breast height (DBH) at least 5 cm greater than the DBH of 

surrounding regenerating aspen trees. BH and 

classified as emergent. These plots were visited 19 May-14 August 2008. For each tree 

we recorded species, DBH, and whether it was alive or dead. Dead 

trees were not included in the analyses. 

 

Harvested stand boundaries were acquired through one of three methods. Wisconsin 

Department of Natural Resources provided shapefiles of stand boundaries for state-

owned lands. For sites with no electronic data, we delineated the boundary from a digital 

orthoquad photo for stands with clear boundaries; and for stands where boundaries 

could not be delineated with this method, we used the GPS to map the boundary in the 

field. 

 

Data Analysis 

Means and standard errors of the mean are reported as mean±1 se. 

 

Territorial Male Spatial Behavior 

To determine if the percentage of male locations at or beyond the harvested stand edge 

and territories overlapping the edge varied by legacy tree retention treatment, we 

conducted a one-way analysis of variance (ANOVA) in SAS version 9.2 (SAS Institute 

Inc. 2008). Year effects were evaluated using ANOVA for male locations and chi square 

for territory placement. To assess the mechanisms for the observed spatial differences 

in male spatial use, we treated each male’s observations independently as a random 

effect due to the potential lack of independence between observations for the same male 

in different years. The percent of territorial male locations at or beyond the harvested 

stand edge is a continuous variable and thus we used a general linear mixed effects 

modeling procedure (GLIMMIX) with individually identified males (i.e., color-banded) as 

the random effect in SAS version 9.2 (SAS Institute Inc. 2008). Across the four years, 

there were 132 territory records for 91 distinct males. Of these, 12 territories included the 

harvested stand edge adjacent to another aspen forest of similar enough age and 

structure to be deemed indiscernible by the birds and thus were not indicated as 

overlapping an edge in the analyses. 
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Male territory placement relative to the stand edge was a binary variable (0=no overlap 

with edge or “interior”, 1=overlap with edge) so we used a nonlinear mixed effects 

modeling procedure (NLMIXED) with individual males as the random effect in SAS. 

Sample sizes were the same as for the GLIMMIX procedure. Initial parameter values 

were derived from output of the GLIMMIX procedure, though a grid was used for the 

random effects variance. Differences in parameters between territories at the stand edge 

versus the stand interior were performed using a Mann-Whitney Rank Sum test given 

that the variables were not normally distributed. 

 

We used a multimodel inference approach to evaluate the suite of nine a priori models 

for each male dataset (Burnham and Anderson 2002). The best model for each dataset 

was identified based on the smallest Akaike Information Criterion score adjusted for 

small sample sizes (AICc) though models with an AICc value within 2.0 were considered 

competitive. AICc values and their associated log-likelihood scores were generated by 

the NLMIXED and GLIMMIX procedures in SAS. The parameter statistics for the best 

models were generated by these same procedures. 

 

The nine a priori models were based on a literature review and our hypothesized role of 

legacy trees as an important habitat component. Model variables included stand interior 

area (Batary and Baldi 2004), percent interior area (i.e., stand interior area/stand 

area*100; Batary and Baldi 2004), edge density (i.e., harvested stand perimeter-to-area 

ratio; Spanhove et al. 2009a), legacy tree density (stems/ha), size of legacy trees (i.e., 

mean DBH), and year. Legacy tree size was only used in models that also included 

legacy tree density because legacy trees must be present in order for their size to be a 

factor. Legacy tree basal area was highly correlated with legacy tree stem density (Adj. 

R2=0.916, F=88.291, P  based on a log transformation of both variables and was 

not included as a separate model. 

 

Geometric values for stand interior area, percent interior area, and edge density were 

calculated in ArcMap. Interior area was defined as being 50m from the harvested stand 

edge based on this generally being the distance that explains edge-related nest 

predation impacts (Batary and Baldi 2004). All territories and male locations regardless 

of position within a stand were attributed the variable values of that stand. 
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Nest Placement and Predation Rates 
To determine if female Golden-winged Warblers avoided nesting near edges, we 

compared nest distances to random distances from the harvested stand edge. We used 

the Create Random Point tool within ArcMap to generate the random points with the 

same number of random points as there were nests for each aspen stand. We used 

ModelBuilder to generate 30 and 50 iterations of random point sets. Thus the total 

number of random points in a set was equal to the total number of nests found across all 

four years of the study. We used the Near tool in ArcMap to measure the distance 

between nests or random points and the nearest stand edge. There was no difference in 

the number of random points in five distance categories between 30 and 50 iterations so 

the means were considered converged. The range of distances for each category was 

determined based on equal division of random points into five categories. Given that the 

random point data was not normally distributed, differences in median distances to edge 

for nests and random points were compared using a nonparametric Mann-Whitney Rank 

Sum Test. To determine whether nest sites were concentrated at varying distance, we 

used a chi square analysis to compare observed nest distances to expected random 

point distances in the five discrete distance categories. 

 

Nest predation is one mechanism that may influence whether birds choose to nest near 

or far from clearcut edges (Lahti 2001). Nest predation rates were based on Mayfield 

(1961), and exposure days were calculated based on the first date of eggs or nestlings 

observed in the nest until nest failure or fledging of nestlings. The nest period was 24 

days based on 4 days for egg laying, 11 days for incubation, and 9 days for the nestling 

period (Bulluck and Buehler 2008). Based on nests with known hatch and fledge dates 

(n=5), our nestling period was 9 days rather than 10 days as in Bulluck and Buehler 

(2008). Mean clutch size was 4.6±0.1 (median=5) and incubation was assumed to begin 

on the day that the last egg was laid. To test the hypothesis that nest failure due to 

predation of eggs or nestlings is related to distance from the harvested stand edge, we 

fitted a simple logistic regression to the data with nest success (0) or failure due to 

predation (1) as the dependent variable and distance to stand edge as the independent 

variable using SigmaStat 3.5 (Systat 2006). Nests that were abandoned or had unknown 

outcomes were omitted from this analysis. The simple logistic regression model used 

was:  
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0 1 (EDGE_DISTANCE) 

 

0 is the Y- 1 is the regression coefficient. The likelihood ratio test 

was used to evaluate the overall model. The Hosmer-Lemeshow test was used to 

evaluate goodness-of-fit. 

 

Results 
 

We marked 462 territorial male locations in 2007, 311 locations in 2008, 304 locations in 

2009, and 332 locations in 2010. Only 11% of these locations were at the edge of the 

harvested stands or in adjacent mature forest. There was no year effect for the 

percentage of territorial male locations at or beyond the harvested stand edge 

(F3,128=1.29, p=0.28) and male locations related significantly to legacy tree retention 

treatments (F2,129=5.17, p=0.007; Table 5.1). Edge density was the most parsimonious 

model explaining the variation in male locations though the percent of interior stand area 

was also considered a competitive model (Table 5.2). These variables were highly 

correlated (Pearson r=-0.91) and likely reflect similar information about harvested stand 

geometry. The percentage of male locations at the edge increased as edge density 

increased and as interior stand area became smaller (Table 5.3, Figure 5.2). Harvested 

stands with edge density >125 had large standard errors; the two with the longest error 

bars had small sample sizes for number of territories (n=2 and 4). 

 

We mapped territories for 36 males in 2007, 32 males in 2008, 31 males in 2009, and 33 

males in 2010. Thirty-two (24%) of these territories included the harvested stand edge 

based on at least one male location at or beyond the stand edge. There was no year 

effect for the percentage of territories that included the stand 2=0.592, df=3, 

p=0.90) and these differed by legacy tree retention treatment (F2,27=4.519, p=0.02; Table 

5.1). Examples of minimum convex polygons for two aspen forest stands, one is a 

clearcut (Figure 5.3a, b) and the other a stand with conifer legacy tree retention (Figure 

5.3c, d), show the typical spatial relationship of territories to harvested stand edge. 

Territories overlapping the stand edge had significantly higher edge density and legacy 

tree size than territories in the stand interior (Table 5.4). Interior territories were 
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associated with significantly higher stand interior area and higher legacy tree density 

than edge territories (Table 5.4). Of these, the combination of legacy tree density and 

legacy tree size best explained the difference in likelihood of a territory being at the edge 

or toward the interior of the harvested stand (Table 5.2). 

 

We found and monitored 50 Golden-winged Warbler nests across four years, 2007-2010 

(Table 5.5). Median nest distance from stand edge (67m) was significantly greater than 

for random points (51m; U=52350.0, p=0.049). There were fewer nests than expected 

within 39.8m of the stand edge and more nests than expected at 63.2-233.6m from the 

stand edge ( 2=12.08, df=4, p=0.017; Figure 5.4). 

 

Successful nests were closer to the stand edge than depredated nests (p=0.002, n=41; 

Table 5.6). Successful nests averaged 51±7m from the edge compared to depredated 

nests that averaged 91±10m. When the nests were analyzed by legacy tree treatment 

(omitting clearcuts as there was only one nest), the observed relationship was similar 

between nests in stands with hardwood legacy tree retention (p=0.016, n=20; Table 5.6) 

and nests in stands with conifer legacy tree retention (p=0.040, n=20; Table 5.6). 

 

Discussion 
 

Spatial Use by Territorial Males 
Male spatial behavior provided evidence for stand edge avoidance. Males were found 

less frequently at the edges when there was a large enough interior in the harvested 

area, with relatively low edge density, for them to defend a territory away from edges. 

This supports the hypothesis of Roth and Lutz (2004) that given a large enough patch of 

continuous habitat, Golden-winged Warblers distributed their territories throughout the 

site including the harvested stand interior and without concentration at the edges. 

However, our study had a much higher ratio of males with interior territories (63-76%) 

compared to the 10% reported in Roth and Lutz (2004). This suggests that a large 

interior area for territories to be positioned away from the clearcut edge is inadequate 

alone but that other clearcut characteristics contribute to explaining the spatial patterns 

observed. 
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Whether a territory overlapped the harvested stand edge or not was best explained by 

the stem density and size of legacy trees. Though the size of legacy trees was 

statistically different between territories at the edge versus the interior, the 1 cm 

difference in mean diameter was not likely meaningful from the birds’ perspective. Thus 

legacy tree density was more likely to be driving the relationship. Legacy tree densities 

in stands with legacy tree retention supported a majority of territories in the interior as 

compared to clearcuts where most males had territories at the edge. The conifer 

retention treatment had the highest stem density and, as expected, the clearcut 

treatment had the lowest stem density; stem density in the hardwood retention treatment 

was intermediate. This is consistent with observed differences in spatial territory patterns 

observed between legacy tree retention treatments. 

 

The combination of large interior area with low edge density and scattered canopy trees 

(e.g. stands with legacy tree retention) was necessary for territories to occur throughout 

a large site. Our results also suggest that creation of breeding habitat with high edge 

density is not necessary if legacy trees are retained throughout the stand during aspen 

cutting which is an important consideration for other forest birds that may be edge 

sensitive. Our data suggest that large patches of breeding habitat can be created as 

long as legacy trees are retained throughout the site. Though the behavioral evidence 

suggests that harvested stands with interior area > 2 ha (i.e. >1 ha of suitable nest 

habitat more than 50m from harvested stand edges) and retention of legacy trees may 

be preferred, an understanding of demographic characteristics such as nest success or 

fledgling survival is necessary to evaluate the overall quality of habitat. 

 

Spatial Use by Nesting Females 
Our nest site selection data suggested that Golden-winged Warblers either preferred to 

nest away from harvested stand edges or that the spatial arrangement of suitable nest 

sites varied between sites. Nest sites were frequently located near logging roads and 

may contribute to the observed patterns (Figure 5.5). Anecdotally, logging road location 

may account for the location of the seven nests within 10m of the harvested stand edge. 

Six of these were from the same site where the main logging road delineates the 

southern edge of the harvest area (Figure 5.5b) and provides many of the best nesting 

sites at the road margins. The rest of this stand either contained dense aspen with low 
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herbaceous cover or extensive herbaceous cover lacking shrubs in large oak openings. 

The other stands in the study appreared to provide suitable nest sites at both the 

harvested stand edge and throughout the rest of the harvest interior area providing birds 

with a greater selection of nest sites at varying distances. 

 

Our results differ from other nesting studies for this species where nests were generally 

located at or near the edge between the open, shrubby habitat and adjacent mature 

forest (Ficken and Ficken 1968, Will 1986, Demmons 2000, Kubel 2005, Patton et 

al.2010). Kubel (2005) is the only other Golden-winged Warbler nest study in aspen 

clearcuts where nesting distance to forest edge (mean of 9.9m) was measured; clearcut 

area was 1.0 ha so nest placement would necessarily be within 50m of the edge. 

Rodewald and Vitz (2005) found that seven of eight shrubland birds, including the 

closely related Blue-winged Warbler (Vermivora cyanoptera), tended to avoid clearcut 

edges bordered by mature forests based on mist net capture locations. They rejected 

spatial variation in food resources and habitat characteristics as explanations for the 

observed edge avoidance and proposed nest predation as a possible mechanism. 

 

Nest predation in our study was higher toward the interior of aspen stands with 

hardwood legacy tree retention. However, this result is based on a small number of 

nests (n=11) across three distance categories spanning nearly 200m so results should 

be interpreted cautiously. Nevertheless, other bird studies found a similar pattern of 

lower nest predation near clearcut-mature forest edges (Storch 1990), in forest 

fragments bounded by terrestrial habitat (Small and Hunter 1988), and in forest-farmland 

edges with the use of artificial nests (Santos and Telleria 1992, Spanhove et al. 2009b). 

Also, our results were consistent with known patterns of edge effects on avian nest 

success due to two key characteristics of our study identified as important by Batary and 

Baldi (2004): 1) use of natural, ground nests and 2) the hardwood legacy tree retention 

treatment being applied to harvest deciduous forest. Woodward et al. (2001) 

investigated the relationship between natural nest placement and nest predation rates at 

varying distances to edge in shrublands adjacent to forest and found either no 

relationship between the two metrics with distance to edge (three species) or that 

preferred nest placement distances were correlated with low predation rates (two 

species) suggesting that some species may select nest sites based on accurate 
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knowledge of nest predation risk. Our results from the aspen stands with hardwood 

retention suggest that Golden-winged Warblers may not be selecting nest sites based on 

nest predation risk or that this risk is spatially and/or temporally inconsistent. 

 

If nest predation is indeed higher toward the interior of harvested stands with hardwood 

legacy tree retention, additional study is needed to understand the mechanism for this 

pattern. Based on six other ground nesting songbirds at the same sites, no relationship 

was found between nest predation rate and distance to harvested stand edge for all 

species combined (p=0.721) or for individual species (p=0.16-0.78; Roth unpublished 

data) which is consistent with other studies in similar study systems using natural nests 

(Yahner and Wright 1985, Yahner 1991) and artificial nests (Ratti and Reese 1988, 

Rudnicky and Hunter 1993, Hanski et al. 1996). We hypothesize that the observed nest 

predation pattern was a result of Golden-winged Warblers selecting nest sites with 

characteristics that were different from other species and this put them at higher risk of 

nest predation by a specific predator or predator guild (i.e., avian versus mammalian). 

Perhaps nest sites with relatively high herbaceous vegetation and low shrub cover 

resulted in higher predation rates (Chasko and Gates 1982) and attracted a specific nest 

predator species that is associated with the same microhabitat preferences and with 

higher abundance in the harvested stand interior. 

 

Hansson (1994) found that there is a difference between the vertebrate community in 

large clearcuts versus adjacent mature forest with at least one small mammal (Microtis 

agrestis) being more abundant in clearcut interiors than at the edges. He hypothesized 

that low nest predation rates near clearcut edges may be a result of high rates of 

predation by owls on small mammals. The relative role of specific mammalian nest 

predators is context dependent and varies by availability and abundance of alternate 

prey species (Angelstam et al. 1984), relative influence of direct (predation) and indirect 

(competition with other predators) pathways (Schmidt et al. 2001), patch size (Arango-

Velez and Kattan 1997), forest stand age (King et al. 1998), and composition and 

relative abundance of species within the predator community (Nour et al. 1993). Also, 

pulses in mast production for oaks (Schmidt 2003, Schmidt and Ostfeldt 2008) and pines 

(Huhta et al. 1996, King et al.1998) are known to influence nest success and predator 

population dynamics, and the asynchronous mast pulses of oaks and pines may factor 
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into the observed treatment difference though it is not likely the sole predictor of nest 

predation given that other ground nesting songbirds did not show the same inverse 

relationship with edge distance. Identification of the primary predators for Golden-winged 

Warbler nests and information about their spatial, temporal, and interspecific interactions 

are critical to understanding the species-specific patterns of nest predation observed in 

this study and may be a better approach to understanding nest predation dynamics 

(Lahti 2001). 

 

We found no relationship between nest predation and distance to edge in harvested 

aspen stands with conifer legacy tree retention and yet we did find such a relationship 

among stands with hardwood legacy tree retention. This suggests that in otherwise 

similar habitat types, the type of legacy tree may influence patterns of nest predation. As 

others have concluded, site context is critical to understanding predation rate patterns 

(Lahti 2001, Chalfoun et al. 2002). 

 

We hypothesized that the lower use of edges and the higher than expected nest 

placement away from edges was due to higher nest predation rates near the harvested 

stand edges. We reject this given that there was no relation to edge distance in one 

legacy tree treatment and an inverse relationship between nest predation and proximity 

to edge in the other. The latter case suggests that the harvested aspen edge may 

provide higher quality habitat in hardwood legacy tree retention sites and contradicts the 

male behavioral metric results indicating that territorial males have a spatial preference 

for the interior of harvested stands. The quality of edge habitat appears to be context 

dependent even for sites such as ours that were selected for similar structural 

characteristics, landscape context, and management history. A notable difference 

between stands was the composition of the legacy trees, with the conifer legacy tree 

retention sites dominated by pines and the hardwood legacy tree retention sites 

dominated by oaks. Another difference between clearcuts was legacy tree density which 

may affect microhabitat conditions for nest predators. These two variables should be 

considered in future research and their effects on nest predation and nest predator 

dynamics. 
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Conclusions 
 

Our findings suggest that labeling the Golden-winged Warbler as an edge associate is 

overly simplistic given that this species’ relationship with habitat edges varies with site 

characteristics. Labeling any species as edge-associated should be done cautiously and 

only with an understanding of both behavioral and demographic characteristics. The 

implications are that apparent edge avoidance or association by shrub-scrub bird 

species depends on habitat context and can be inconsistent among different 

demographic metrics. It is critical to understand this for the Golden-winged Warbler 

given its high conservation status and the need to understand conditions for providing 

optimal breeding habitat quality. Conservation planning for this species should consider 

the role of legacy tree retention and nesting habitat geometry in forest management 

recommendations. Contrary to some past guidance (Confer 1992), creating habitat with 

a distinct forest-shrub edge or a high density of mature forest edge is not necessary to 

provide nesting habitat for this species. 
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Figure 5.1. Nine aspen forest stands in Oneida and Vilas Counties, Wisconsin. Each stand is 
labeled with treatment: nr=no legacy tree retention or clearcut, cr=conifer legacy tree retention, 
and hr=hardwood legacy tree retention. 
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Figure 5.2. Percentage of Golden-winged Warbler male territory locations on or beyond the aspen 
forest stand edge as relates to edge density. Standard errors bars reflect low sample sizes for the 
number of territories in two stands with the longest error bars or the greater variability in male 
locations due to higher edge density in the case of the other three stands. 
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Figure 5.3. Golden-winged Warbler territories mapped in 2007-2010 in an aspen clearcut (Photos 
A and B) and in an aspen stand with conifer legacy tree retention (Photos C and D). Territories 
are projected on a digital orthoquad air photo from 2005 for clearer harvest boundaries and easier 
identification of legacy trees. Note that the clearcut does contain a cluster of legacy trees on the 
east side and a few scattered trees elsewhere that appear to attract territorial males to these 
areas in addition to using the clearcut’s edge. The territories in the stand with conifer legacy trees 
do not include the edge of the harvested area. For this site, the southernmost point of the 2009 
territory in the southwest corner is actually 10m north of the harvest boundary and does not 
overlap it as it appears on the map. 
  

A 
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Figure 5.4. Golden-winged Warbler nest locations were farther from the harvested stand edge 
than we expected based on random points ( 2=12.08, df=4, p=0.017). 
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Figure 5.5. Golden-winged Warbler nest site locations relative to harvested aspen forest 
boundaries are depicted in the above maps. Aspen stands and nests are projected on a digital 
orthoquad air photo from 2008. Map A is a typical stand with conifer legacy tree retention where 
all nests were located away from the edge though several were near logging roads. Map B is a 
stand with hardwood legacy retention where nests were located primarily near the stand edge 
along the main logging road marking the southern harvest boundary.  
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Table 5.1 
Mean±1 se percent of Golden-winged Warbler (Vermivora chrysoptera) male locations at 
or beyond the harvested stand edge and territories that overlap the stand edge for aspen 

forest clearcuts (n=3), stands with conifer legacy tree retention (n=3), and stands with 
hardwood legacy tree retention (n=3) in Oneida and Vilas Counties, Wisconsin. There 
was no year effect for the percentage of territories that included the harvested stand 

2=0.592, df=3, p=0.90) and for the percentage of territorial male locations at or 
beyond the harvested stand edge (F3,128=1.29, p=0.28). 

Legacy Tree Retention 
Treatment 2007 2008 2009 2010 All Years 
Male Locations at or beyond Harvested Stand Edgea 

Conifer Retention 3 ±2 0±0 0±0  1±1  1±1 Ab 

Hardwood Retention 5 ±1  14 ±7  5±2  7±3  8±2 B 

Clearcut or No Retention 28 ±15  7 ±7  0±0  6±6  8±4 AB 

     F2,129=5.17, 
p=0.007 

Territories that Overlap the Harvested Stand Edgec 

Conifer Retention 33±21  25±21 7±26  25±26 24±7 A 

Hardwood Retention 33±21  39±21 39±21 38±21 37±8 AB 

Clearcut or No Retention 100±36 50±26 50±26 83±21 69±16 B 
     F2,27=4.519, 

p=0.02 
aExperimental units are the individual males. 
bMultiple comparisons using Holm-Sidak are indicated by letters; treatments with the 
same letter are not different from one another. 
cExperimental units are the harvested stands. 
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Table 5.2 
Nine a priori models explaining variation in territorial Golden-winged Warbler (Vermivora 

chrysoptera) male locations and territory placement in aspen forest clearcuts (n=3), 
stands with conifer legacy tree retention (n=3) and stands with hardwood legacy tree 

retention (n=3) in Oneida and Vilas Counties, Wisconsin, 2007-2010. Models are listed 
from best to worst with the top two models for each dependent variable considered 

competitive as most parsimonious based on the smallest AICc value. Model statistics 
were generated using the GLIMMIX procedure for territorial male locations and the 
NLMIXED procedure for territory placement using SAS; individual males were the 
random effect in both procedures. The NLMIXED models used a binary dependent 

variable, territory placement, with territories either overlapping the harvested stand edge 
(1) or not overlapping the harvested stand edge (0). 

Model Ka AICc c 
Akaike 
Weight 

-2 Log 
Likelihood 

Dependent Variable: Percent Male Locations at or beyond Harvested Stand Edge 
Edge Density 3 -182.49 0.00 0.610 -186.6 
Percent Interior Area 3 -181.11 1.38 0.306 -185.2 
Legacy Tree Density + Legacy 
Tree Size 4 -177.41 5.08 0.048 -181.5 

Intercept 2 -176.13 6.36 0.025 -180.2 
Legacy Tree Density 3 -172.69 9.80 0.005 -176.8 
Interior Stand Area 3 -172.02 10.47 0.003 -176.1 
Edge Density+Legacy Tree 
Density +Legacy Tree Size 5 -170.39 12.10 0.001 -174.5 

Legacy Tree Density + Edge 
Density 4 -169.53 12.96 0.001 -173.6 

Year 3 -162.57 19.92 0.000 -166.7 
      
Dependent Variable: Territory Placement overlaps Harvested Stand Edge  
Legacy Tree Density + Legacy 
Tree Size 4 104.8 0.0 0.559 96.5 

Percent Interior Area 3 105.3 0.5 0.436 99.1 
Edge Density 3 115.3 10.5 0.003 109.1 
Legacy Tree Density + Edge 
Density 4 116.7 11.9 0.001 108.4 

Edge Density+Legacy Tree 
Density +Legacy Tree Size 5 118.7 13.9 0.001 108.2 

Interior Stand Area 3 137.2 32.4 0.000 131.0 
Legacy Tree Density 3 137.7 32.9 0.000 131.5 
Intercept 2 154.6 49.8 0.000 146.3 
Year 3 152.4 47.6 0.000 146.2 

aNumber of model parameters. 
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Table 5.3 
Statistical model parameter estimates for the most parsimonious models explaining 

variation in territorial Golden-winged Warbler (Vermivora chrysoptera) male locations 
and territory placement in aspen forest clearcuts (n=3), stands with conifer legacy tree 
retention (n=3) and stands with hardwood legacy tree retention (n=3) in Oneida and 

Vilas Counties, Wisconsin, 2007-2010. The top two models for territorial male locations 
and territory placement are included and are based on the smallest AICc values for 

competing models. Coefficient statistics were generated using the GLIMMIX procedure 
for territorial male locations and the NLMIXED procedure for territory placement using 

SAS. 
 Coefficient se t P 

0 1(Edge Density) 
0 -0.1499 0.0427 -3.51 0.0007 
1 0.0017 0.0004 4.78 <0.0001 

     
0 1(Percent Interior Area) 

0 0.1553 0.0251 6.19 <0.0001 
1 -0.0024 0.0005 -4.67 <0.0001 

     
0 1 2(Legacy Tree Size)+random 

effect(MaleID) 
0 -11.7912 3.9820 -2.96 0.0036 
1 -0.0255 0.0285 -0.89 0.3740 
2 32.9956 51.2745 0.64 0.5210 

random effect variance 1576.89 0563.42 1.01 0.3150 
     

0 1 (Percent Interior Area)+random effect(MaleID) 
0 24.9440 6.4178 3.89 0.0002 
1 -0.5975 0.1428 -4.18 <0.0001 

random effect variance 199.88 174.12 1.15 0.2531 
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Table 5.4 
Mean±1 se aspen forest stand parameters for Golden-winged Warbler (Vermivora 
chrysoptera) territories that included the harvested stand edge and those that were 

interior from the edge for aspen forest clearcuts (n=3), stands with conifer legacy tree 
retention (n=3), and stands with hardwood legacy tree retention (n=3) in Oneida and 

Vilas Counties, Wisconsin, 2007-2010. A Mann-Whitney Rank Sum test was performed 
for each variable due failure to meet the assumption of a normal distribution. 

Stand Parameter 
Edge 

Territories 
Interior 

Territories U P 
Edge Density (m/ha)a 144.0±4.8 108.3±2.4 633.5 <0.001 

Stand Interior Area (ha)b 9.8±1.0 15.7±0.9 2377.5 <0.001 

Stand Interior Area (%)c 41.4±1.6 54.0±0.9 2380.5 <0.001 

Legacy Tree Density (stems/ha) 37.7±5.5 67.7±4.1 2209.5 0.001 

Legacy Tree Size (DBH; cm) 15.0±3.5 14.0±2.6 1165.5 0.019 
a=harvested stand perimeter length/harvested stand area. 
bBased on a 50-m interior buffer of the harvested stand edge. 
c=harvest stand interior area/harvest stand area x100. 
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Table 5.5 
Daily nest predation rates for 41 of 50 active Golden-winged Warbler (Vermivora 

chrysoptera) nests divided into five distance to harvested stand edge intervals in aspen 
forest clearcuts (n=3), stands with conifer legacy tree retention (n=3) and stands with 
hardwood legacy tree retention (n=3) in Oneida and Vilas Counties, Wisconsin, 2007-

2010. Eight nests were abandoned and one had unknown outcome, and thus they were 
not included in Probability of Daily Nest Predation calculations. 

aA nest became active upon laying of the first egg. 
bBased on Mayfield (1961); nest period was 24 days. 
  

    Probability of Nest Predationb 

Stand Edge 
Distance (m) 

No. of 
Active 
Nestsa 

No. 
Successful 

Nests 

No. 
Predated 

Nests HR CR NR 
All 

Sites 

0.0-18.7 8 6 1 0.208 
(n=7) 

NA 
(n=0) 

NA 
(n=0) 

0.208 
(n=7) 

18.8-39.8 4 3 0 0.000 
(n=2) 

0.000 
(n=1) 

0.000 
(n=1) 

0.000 
(n=4) 

39.9-63.3 10 4 4 0.585 
(n=4) 

0.563 
(n=4) 

NA 
(n=0) 

0.688 
(n=8) 

63.4-97.1 16 8 5 0.837 
(n=4) 

0.279 
(n=9) 

NA 
(n=0) 

0.451 
(n=13) 

97.2-233.6 12 2 7 0.761 
(n=3) 

0.933 
(n=6) 

NA 
(n=0) 

0.884 
(n=9) 
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Table 5.6 
Logistic regression model coefficients and test statistics relating Golden-winged Warbler 

(Vermivora chrysoptera) nests that failed due to nest predation (0=successful, 
1=predated) to distance to harvested stand edge in aspen forest clearcuts (n=3), stands 
with conifer legacy tree retention (n=3) and stands with hardwood legacy tree retention 
(n=3) in Oneida and Vilas Counties, Wisconsin, 2007-2010. There was only one nest in 
the clearcut treatment so a separate analysis using logistic regression was not possible. 
       Likelihood 

Ratio Test 
Hosmer & 
Lemeshow 

Test 

Predictor  SE 
Wald’s 

2 df P 

e  

(odds 
ratio) 2 P 2 P 

All Nests (n=41)      9.519 0.002 5.202 0.736 

0) -2.252 0.818 7.578 1 0.006 0.105     

Edge distance 
1) 

0.027 0.010 6.968 1 0.008 1.028     

           

Nests in Conifer Retention Sites (n=20)   4.208 0.040 11.805 0.160 

0) -2.778 1.503 3.415 1 0.065 0.062     

Edge distance 
1) 

0.030 0.017 3.187 1 0.074 1.030     

           

Nests in Hardwood Retention Sites (n=20)  5.828 0.016 6.809 0.557 

0) -2.092 1.003 4.352 1 0.037 0.123     

Edge distance 
1) 

0.032 0.016 4.176 1 0.041 1.033     
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CHAPTER 6: Conclusion 
 

Summary of Research Conclusions 
 

Green-tree retention under the conceptual framework of ecological forestry can provide 

for both biomass feedstock for industry and quality wildlife habitat. I examined the 

influence of retained canopy trees as biological legacies (“legacy trees”) in aspen 

(Populus spp.) forests on above-ground live woody biomass, understory plant floristic 

quality, and species richness of bird assemblages. Additionally, I evaluated habitat 

quality for a high conservation priority species, Golden-winged Warbler (Vermivora 

chrysoptera). I selected 27 aspen-dominated forest stands in northern Wisconsin with 

nine stands in each of two legacy tree retention treatments (conifer retention and 

hardwood retention) and clearcuts (no retention) across a chronosequence (4-36 years 

post-harvest). 

 

Conifer retention stands had greater legacy tree and total overstory tree biomass but 

lower biomass of regenerating aspen than clearcuts. Though conifer canopies allow 

greater solar penetration (Walker and Kenkel 2000), they also produced perpetual year-

round shade as compared to stands with hardwood retention dominated by a deciduous 

broad-leaf species. Stands with oak legacy trees have an early spring leaf-off period 

when regenerating aspen can be productive. Additionally, stands with conifer retention 

had higher retained legacy tree densities on average than in stands with hardwood 

retention. Thus stands with high densities of conifer legacy trees may cast a greater area 

of shade than stands with relatively lower densities of oak legacy trees. The relative 

influences of legacy tree density and composition on regenerating aspen can be 

assessed in future analyses. 

 

I evaluated the floristic quality of the understory plant assemblage by estimating the 

mean coefficient of conservatism (C), an index of how closely the assemblage 

resembled an undisturbed native community. Mean C was lower in young stands (6-9 

years post-harvest) than middle-age (13-23 years post-harvest) or old (22-39 years post-

harvest) stands; there was a marginally significant (p=0.058) interaction effect between 

legacy tree retention treatment and stand age. Late-seral plant species were positively 
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associated with stand age and legacy tree diameter or age thus suggesting that large-

diameter legacy trees can produce suitable understory conditions for these species that 

are typically associated with later stages of stand development. Mean C in young stands 

was highest in aspen clearcuts and was driven largely by shade intolerant species with 

above average C values. Mean C remained constant with stand development in 

clearcuts but increased with stand development in stands with legacy tree retention. This 

pattern may be due to late-seral species with above average C values dispersing from 

adjacent unharvested older forests. Alternatively,the pattern may be due to delayed 

regeneration from the seed bank following the demise of parental individuals 

immediately during and after harvest. Such species would need to have viable seeds in 

the soil at least 6-years-old post-harvest, the beginning of plant surveys for the youngest 

stands in this study. The retention of large, canopy trees could provide hospitable 

germination conditions (i.e. shade and a cooler, moister microclimate) earlier in stand 

development than in clearcuts. 

 

Early in aspen stand development, bird species richness was greatest in stands with 

hardwood retention, lowest in clearcuts, and intermediate in stands with conifer 

retention. Six conservation priority birds were indicators of legacy tree retention or 

clearcuts with at least one species in each treatment. Retention of legacy trees in aspen 

stands provided higher quality nest habitat for Golden-winged Warbler than clearcuts 

based on high pairing success resulting in high nesting activity. 

 

Retention of hardwoods, particularly northern red oak, yielded the most consistent 

positive effects over traditionally clearcutting with no retention as indicated by: 1) higher 

bird species richness, 2) higher quality habitat for Golden-winged Warbler, and 3) 

comparable stand biomass compared to clearcuts without suppressing regenerating tree 

biomass. Though composition of legacy trees was generally more important than their 

density, though there is a point where density can reduce aspen growth (Perala 1977), 

the size of legacy trees was important in influencing both bird and understory plant 

assemblage composition in addition to Golden-winged Warbler use. Large legacy trees 

in young aspen stands produced compositionally similar results as relatively old stands. 

These large diameter trees resulted in greater bird species richness by providing habitat 

that attracted some mature forest species to young aspen stands that would not 
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ordinarily be present in young, traditional aspen clearcuts comprised entirely of small-

diameter at breast height) was an important characteristic of high quality habitat for 

Golden-winged Warblers. 

 

Legacy tree retention can enhance even-aged management techniques and produce a 

win-win scenario for the conservation of declining bird species and late-seral understory 

plants and for production of woody biomass feedstock from naturally regenerating aspen 

forests. This should not imply that green-tree retention should replace traditional 

clearcutting. The latter potentially produces higher quality habitat for some bird species 

than green-tree retention. Green-tree retention should be considered in stands where 

aspen is mixed with other tree species that are resistant to windthrow and thus 

appropriate as legacy trees. Non-aspen trees cannot be retained where they do not exist 

and in these cases, traditional clearcutting is likely a more practical option. 

 

At the landscape-scale, forests should be managed using a variety of silvicultural 

practices, including green-tree retention, to diversify forest structure, forest types and 

ages, and tree composition. This should be implemented in a strategic pattern across 

the landscape to create long-term balance to maintain habitat for a broad suite of forest 

wildlife species, to provide a sustainable harvest of timber and feedstock for the forest 

products and bioenergy industries, and to maintain forest health. 

 

Future Research and Publication Considerations 
 
In this study, there were three common species of legacy trees retained in aspen forests: 

white pine (Pinus strobus), red pine (Pinus resinosa), and northern red oak. What is the 

future of these legacy tree species in aspen forests? Given that deer browse can be high 

in some forests, regeneration of some tree species may be in doubt (Horsley et al. 2003, 

Randall and Walters 2011). Additionally, climate change is predicted to influence habitat 

suitability for many tree species resulting in loss of some species from their current 

range (Iverson et al. 2008). Thus, foresters may not have the same tree species to retain 

in future timber harvest rotations once the existing legacy trees die or are harvested. I 
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did not present the age structure of the common legacy tree species though this is a 

subject I could address in future publications. 

 

In terms of forest stand biomass, I focused on live above-ground woody biomass. I did 

not estimate below-ground woody biomass which may differ between legacy tree 

retention treatments and vary with stand development. This is potentially important from 

the perspective of below-ground carbon storage and sequestration, an important 

component to understanding how forests factor into global carbon and climate models 

(Gough et al. 2008). 

 

I compared deciduous legacy trees to coniferous legacy trees but was unable to 

compare the importance of different species of legacy trees within these two groups in 

terms of their potentially differing effects on bird assemblages, Golden-winged Warbler 

use, etc. Retention of spruce (Picea spp.) and fir (Abies spp.) on sites with moister, 

richer soils may attract a different suite of bird species than retention of pine on drier, 

poorer soils (Beals 1960). In the case of Golden-winged Warbler management, the 

emerging body of research investigating habitat quality suggests that deciduous trees 

are critically important (Roth et al. 2012); however it is unclear how important different 

deciduous tree species are relative to each other in this context. If land managers have a 

choice, are certain tree species more important for retention in forests or planting in 

reclamation/restoration projects? Perhaps species composition is not as important as 

structure. Providing scattered large deciduous trees in a landscape with a high 

proportion of deciduous, broad-leaf forest may be adequate for creating high quality 

Golden-winged Warbler habitat. 

 

When measuring habitat for birds, demographic characteristics tend to best reflect 

habitat quality. Though Golden-winged Warbler pairing success, nest success and 

productivity were used to evaluate habitat quality for this species, similar information for 

the other bird species observed in this study would provide a better picture of how the 

bird assemblage is responding as a whole. Though I collected this information, I was 

unable to present it here but hope to do so in future publications. 
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Appendix A 
 

Table A.1 
Understory plants present in 27 aspen forest stands in northern Wisconsin, 2008-2009. 

Asterisks indicate species that are introduced to Wisconsin. 
Scientific Namea Common Namea Cb 
Ferns   
Adiantum pedatum L. northern maidenhair 7 
Athyrium filix-femina (L.) Roth ssp. angustum (Willd.) R.T. 
Clausen common ladyfern 5 

Dryopteris carthusiana (Vill.) H.P. Fuchs spinulose woodfern 7 
Dryopteris cristata (L.) A. Gray crested woodfern 7 
Dryopteris intermedia (Muhl. ex Willd.) A. Gray intermediate woodfern 7 
Gymnocarpium dryopteris (L.) Newman western oakfern 7 
Onoclea sensibilis L. sensitive fern 5 
Osmunda cinnamomea L. cinnamon fern 7 
Osmunda claytoniana L. interrupted fern 6 
Pteridium aquilinum (L.) Kuhn var. latiusculum (Desv.) 
Underw. ex A.Heller western brackenfern 2 
   
Fern Allies   
Huperzia lucidula (Michx.) Trevis. shining clubmoss 7 
Lycopodium annotinum L. stiff clubmoss 7 
Lycopodium clavatum L. running clubmoss 6 
Lycopodium dendroideum Michx. tree groundpine 7 

Lycopodium hickeyi W.H. Wagner, Beitel & Moran Pennsylvania 
clubmoss 7 

Lycopodium lagopus (Laest. ex Hartm.) Zinserl. ex Kuzen one-cone clubmoss 8 
Lycopodium obscurum L. rare clubmoss 7 
Lycopodium tristachyum Pursh deeproot clubmoss 7 
   
Forbs   
Achillea millefolium L. common yarrow 1 
Actaea pachypoda Elliott white baneberry 6 
Actaea rubra (Aiton) Willd. red baneberry 7 
Agrimonia gryposepala Wallr. tall hairy agrimony 2 

Anaphalis margaritacea (L.) Benth. western pearly 
everlasting 3 

Anemone cylindrica A. Gray candle anemone 6 
Anemone quinquefolia L. var. quinquefolia  wood anemone 6 
Antennaria neglecta Greene field pussytoes 3 
Apocynum androsaemifolium L. spreading dogbane 2 
Aquilegia canadensis L. red columbine 5 

Arabis drummondii A. Gray Drummond's 
rockcress 6 

Arabis glabra (L.) Bernh. tower rockcress 5 
Aralia nudicaulis L. wild sarsaparilla 6 
Asclepias exaltata L. poke milkweed 7 
Calystegia spithamaea (L.) Pursh low false bindweed 4 
Campanula rotundifolia L. bluebell bellflower 5 
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Table A.1, continued 
Scientific Namea Common Namea Cb 
Cerastium arvense L. field chickweed 4 
Cerastium fontanum Baumg. emend Jalas ssp. vulgare 
(Hartm.) Greuter & Burdet* big chickweed 0 

Cerastium nutans Raf. nodding chickweed 0 
Cirsium vulgare (Savi) Ten.* bull thistle 0 
Clinopodium vulgare L. wild basil 3 
Clintonia borealis (Aiton) Raf. bluebead 7 
Comandra umbellata (L.) Nutt. ssp. umbellate  bastard toadflax 6 
Comarum palustre L. purple marshlocks 8 
Conyza canadensis (L.) Cronquist var. canadensis Canadian horseweed 0 
Corallorhiza maculate (Raf.) Raf. summer coralroot 7 
Corallorhiza trifida Chatelain yellow coralroot 7 
Cynoglossum virginianum L. var. boreale (Fernald) 
Cooperr. wild comfrey 8 

Doellingeria umbellate (Mill.) Nees parasol whitetop 6 
Epilobium ciliatum Raf. fringed willowherb 3 
Erigeron annuus (L.) Pers. eastern daisy fleabane 0 
Erigeron philadelphicus L. Philadelphia fleabane 2 
Eurybia macrophylla (L.) Cass. bigleaf aster 4 
Euthamia graminifolia (L.) Nutt. var. graminifolia flat-top goldentop 4 
Fragaria vesca L. ssp. americana (Porter) Staudt  woodland strawberry 3 
Fragaria virginiana Duchesne Virginia strawberry 1 
Galeopsis tetrahit L.* brittlestem hempnettle 0 
Galium boreale L. northern bedstraw 5 
Galium triflorum Michx. fragrant bedstraw 5 

Helenium flexuosum Raf.* purplehead 
sneezeweed 0 

Helianthus hirsutus Raf. hairy sunflower 5 

Helianthus strumosus L. paleleaf woodland 
sunflower 4 

Hepatica nobilis (Pursh) Steyerm. var. obtusa  roundlobe hepatica 3 
Hieracium aurantiacum L.* orange hawkweed 0 
Hieracium piloselloides Vill.* tall hawkweed 0 
Hieracium scabrum Michx. rough hawkweed 6 
Hieracium umbellatum L. narrowleaf hawkweed 6 

Hypericum perforatum L.* common St. 
Johnswort 0 

Iris versicolor L. harlequin blueflag 5 
Lactuca biennis (Moench) Fernald tall blue lettuce 3 
Lathyrus venosus Muhl. ex Willd. veiny pea 6 
Leucanthemum vulgare Lam.* oxeye daisy 0 
Linnaea borealis (Forbes) Hultén ssp. americana ex R.T. 
Clausen twinflower 9 

Lobelia inflata L. indian-tobacco 2 

Lycopus americanus Muhl. ex W. Bartram american water 
horehound 4 

Lysimachia ciliata L. fringed loosestrife 5 
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Table A.1, continued
Scientific Namea Common Namea Cb 

Lysimachia quadrifolia L. whorled yellow 
loosestrife 6 

Maianthemum canadense Desf. Canada mayflower 5 

Maianthemum racemosum (L.) Link feathery false lily of the 
valley 5 

Melampyrum lineare Desr. narrowleaf cowwheat 7 
Mitchella repens L. partridgeberry 6 
Monarda fistulosa L. ssp. fistulosa  wild bergamot 3 
Monotropa hypopithys L. pinesap 7 
Monotropa uniflora L. indianpipe 5 
Orthilia secunda (L.) House sidebells wintergreen 7 
Osmorhiza claytonia (Michx.) C.B. Clarke Clayton's sweetroot 5 
Oxalis montana Raf. mountain woodsorrel 8 
Oxalis stricta L. common yellow oxalis 0 
Pedicularis canadensis L. Canadian lousewort 8 
Plantago major L.* common plantain 0 
Polygala paucifolia Willd. gaywings 7 
Polygonatum biflorum (Walter) Elliott smooth soloman's seal 4 
Polygonatum pubescens (Willd.) Pursh hairy soloman's seal 6 
Potentilla norvegica L. Norwegian cinquefoil 0 
Potentilla recta L.* sulphur cinquefoil 0 
Potentilla simplex Michx. common cinquefoil 2 
Prenanthes alba L. white rattlesnakeroot 5 
Prunella vulgaris L. common selfheal 1 
Pseudognaphalium macounii (Greene) Kartesz Macoun's cudweed 2 
Pseudognaphalium obtusifolium (L.) Hilliard & B.L. Burtt 
ssp. obtusifolium  rabbit-tobacco 3 

Pyrola chlorantha Sw. greenflowered 
wintergreen 7 

Pyrola elliptica Nutt. waxflower shinleaf 6 
Ranunculus hispidus Michx. bristly buttercup 6 
Rumex acetosella L.* common sheep sorrel 0 
Sanicula marilandica L. Maryland sanicle 5 
Silene vulgaris (Moench) Garcke* maidenstears 0 
Smilax ecirrhata (Engelm. ex Kunth) S. Watson upright carrionflower 5 
Solidago canadensis L. Canada goldenrod 1 
Solidago gigantea Aiton giant goldenrod 3 
Solidago hispida Muhl. ex Willd. var. hispida hairy goldenrod 6 
Stachys palustris L. marsh hedgenettle 5 
Streptopus lanceolatus (Aiton) Reveal var. longipes 
(Fernald) Reveal  twistedstalk 7 

Symphyotrichum ciliolatum (Lindl.) A. Löve & D. Löve Lindley's aster 4 

Symphyotrichum cordifolium (L.) G.L. Nesom common blue wood 
aster 6 

Symphyotrichum laeve (L.) Á. Löve & D. Löve var. laeve smooth blue aster 6 
Symphyotrichum lanceolatum (Willd.) G.L. Nesom white panicle aster 4 
Taraxacum officinale F.H. Wigg.* common dandelion 0 
Thalictrum dioicum L. early meadow-rue 7 
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Table A.1, continued
Scientific Namea Common Namea Cb 
Trientalis borealis subsp. borealis Raf. starflower 7 
Trifolium aureum Pollich* golden clover 0 
Trifolium pretense L.* red clover 0 
Trifolium repens L.* white clover 0 
Trillium grandiflorum (Michx.) Salisb. white trillium 6 
Uvularia sessilifolia L. sessileleaf bellwort 6 
Verbascum thapsus L.* common mullein 0 
Veronica officinalis L.* common gypsyweed 0 
Veronica serpyllifolia L. thymeleaf speedwell 0 
Vicia americana Muhl. ex Willd. ssp. americana  American vetch 4 
Viola adunca Sm. hookedspur violet 6 
Viola canadensis L. Canadian white violet 7 
Viola labradorica Schrank alpine violet 4 
Viola pubescens Aiton downy yellow violet 5 
Viola renifolia A. Gray white violet 7 
Viola sororia Willd. common blue violet 3 
Waldsteinia fragarioides (Michx.) Tratt. ssp. 
fragarioides  

Appalachian barren 
strawberry 6 

   
Graminoids   
Agropyron repens (L.) Gould* quackgrass 0 
Agrostis gigantea Roth* redtop 0 
Agrostis hyemalis (Walter) Britton, Sterns & Poggenb. winter bentgrass 4 
Brachyelytrum erectum (Schreb. ex Spreng.) P. Beauv. bearded shorthusk 7 
Bromus ciliatus L. fringed brome 7 
Calamagrostis canadensis (Michx.) P. Beauv. bluejoint 5 
Carex arctata Boott ex Hook. drooping woodland sedge 5 
Carex brunnescens (Pers.) Poir. ssp. sphaerostachya 
(Tuck.) Kalela  brownish sedge 7 

Carex communis L.H. Bailey var. communis  fibrousroot sedge 6 
Carex deweyana Schwein. var. deweyana  Dewey sedge 7 
Carex intumescens Rudge greater bladder sedge 5 

Carex leptonervia (Fernald) Fernald nerveless woodland 
sedge 6 

Carex pedunculata Muhl. ex Willd. longstalk sedge 7 
Carex pensylvanica Lam. Pennsylvania sedge 3 
Carex projecta Mack. necklace sedge 4 
Carex scoparia Schkuhr ex Willd. var. scoparia broom sedge 4 
Carex tonsa (Fernald) E.P. Bicknell shaved sedge 4 
Carex tuckermanii Dewey Tuckerman's sedge 8 
Cinna latifolia (Trevis. ex Goepp.) Griseb. drooping woodreed 7 
Danthonia spicata (L.) P. Beauv. ex Roem. & Schult. poverty oatgrass 4 
Dichanthelium clandestinum (L.) Gould* deertongue 0 
Dichanthelium depauperatum (Muhl.) Gould starved panicgrass 4 
Dichanthelium latifolium (L.) Gould & C.A. Clark broadleaf rosette grass 7 
Elymus repens (L.) Gould* quackgrass 0 
Festuca subverticillata (Pers.) Alexeev nodding fescue 4 
Juncus bufonius L. toad rush 3 
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Table A.1, continued 
Scientific Namea Common Namea Cb 
Juncus bufonius L. toad rush 3 
Juncus greenei Oakes & Tuck. Greene's rush 7 
Luzula acuminata Raf. var. acuminata  hairy woodrush 6 
Muhlenbergia frondosa (Poir.) Fernald wirestem muhly 3 
Oryzopsis asperifolia Michx. roughleaf ricegrass 6 
Oryzopsis pungens (Torr. ex Spreng.) Dorn mountain ricegrass 8 
Panicum capillare L. witchgrass 1 
Phleum pratense L.* timothy 0 
Poa alsodes A. Gray grove bluegrass 5 
Poa compressa L.* Canada bluegrass 0 
Poa pratensis L.* Kentucky bluegrass 0 
Schizachne purpurascens (Torr.) Swallen false melic 7 
Scirpus cyperinus (L.) Kunth woolgrass 4 
   
Shrubs and Subshrubs   
Alnus viridis (Chaix) DC. ssp. crispa (Aiton) Turrill mountain alder 8 
Arctostaphylos uva-ursi (L.) Spreng. kinnikinnick 7 
Chimaphila umbellata (L.) W. Bartram ssp. cisatlantica 
(S.F. Blake) Hultén pipsissewa 8 

Comptonia peregrine (L.) J.M. Coult. sweetfern 4 
Cornus canadensis L. bunchberry dogwood 7 

Diervilla lonicera Mill. northern bush 
honeysuckle 6 

Epigaea repens L. trailing arbutus 7 
Gaultheria procumbens L. eastern teaberry 6 
Ilex verticillata A. Gray common winterberry 7 
Rosa acicularis Lindl. ssp. sayi (Schwein.) W.H. Lewis prickly rose 6 
Rosa carolina L. Carolina rose 4 
Rubus allegheniensis Porter Allegheny blackberry 2 
Rubus flagellaris Willd. northern dewberry 3 
Rubus hispidus L. bristly dewberry 4 
Rubus idaeus L. ssp. strigosus (Michx.) Focke grayleaf red raspberry 3 
Rubus pubescens Raf. dwarf red blackberry 7 
Spiraea alba Du Roi var. alba white meadowsweet 4 
Toxicodendron rydbergii (Small ex Rydb.) Greene western poison ivy 2 
Vaccinium angustifolium Aiton lowbush blueberry 4 
Vaccinium myrtilloides Michx. velvetleaf huckleberry 6 
   
Vines   
Amphicarpaea bracteata (L.) Fernald American hogpeanut 5 

Clematis occidentalis (Hornem.) DC. var. occidentalis western blue 
virginsbower 8 

Polygonum cilinode Michx. fringed black bindweed 1 
Smilax tamnoides L. bristly greenbrier 5 

aScientific names, common names, and authority followed the convention of USDA 
(2012) and subspecies and variety names were identified in UWSP (2012). 
bCoefficient of Conservatism; C values were obtained from UWSP (2012). Introduced 
species did not have a C value but were given a value of zero for our analyses. 
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