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Abstract 
 

The past decade has brought significant advancements in seasonal climate forecasting.  

However, water resources decision support and management continues to be based 

almost entirely on historical observations and does not take advantage of climate 

forecasts.  This study builds on previous work that conditioned streamflow ensemble 

forecasts on observable climate indicators, such as the El Niño-Southern Oscillation 

(ENSO) and the Pacific Decadal Oscillation (PDO) for use in a decision support model 

for the Highland Lakes multi-reservoir system in central Texas operated by the Lower 

Colorado River Authority (LCRA).  In the current study, seasonal soil moisture is 

explored as a climate indicator and predictor of annual streamflow for the LCRA region.  

The main purpose of this study is to evaluate the correlation of fractional soil moisture 

with streamflow using the 1950-2000 Variable Infiltration Capacity (VIC) Retrospective 

Land Surface Data Set over the LCRA region. Correlations were determined by 

examining different annual and seasonal combinations of VIC modeled fractional soil 

moisture and observed streamflow. The applicability of the VIC Retrospective Land 

Surface Data Set as a data source for this study is tested along with establishing and 

analyzing patterns of climatology for the watershed study area using the selected data 

source (VIC model) and historical data. Correlation results showed potential for the use 

of soil moisture as a predictor of streamflow over the LCRA region. This was evident by 

the good correlations found between seasonal soil moisture and seasonal streamflow 

during coincident seasons as well as between seasonal and annual soil moisture with 

annual streamflow during coincident years. With the findings of good correlation 

between seasonal soil moisture from the VIC Retrospective Land Surface Data Set with 

observed annual streamflow presented in this study, future research would evaluate the 

application of NOAA Climate Prediction Center (CPC) forecasts of soil moisture in 

predicting annual streamflow for use in the decision support model for the LCRA.  
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1 Introduction  
 

The management of water resources has become an important issue due to the looming 

threat of water scarcity. To counter this dilemma, water managers need to make use of all 

hydrologic and meteorological information available to them, including climate forecasts. 

However, the current state of water resources decision-making relies to a large extent on 

historical streamflow observation records and heuristic methods that are geared towards 

tackling the traditional water resources issues of flood and drought (Hall and Dracup, 

1970). There is currently little application of probabilistic forecasts in water resources 

management and decision-making. Water system operators primarily rely on past 

experience, observations of current conditions, and professional judgment due to limited 

experience with hydrologic and meteorological forecasts (Lee, 1999). 

 

Basing water resources decisions on historical observations can be problematic in that 

climatic patterns of the past may not be the same as the future (Maidment, Ch.2, 1993), 

and the effect of long-term climate variability neglected. Other associated problems that 

result from this practice are heavy bias by recent outcomes on water resources decisions, 

and a lack of decision makers with pertinent experience because of changing objectives 

for system management and the downsizing of water management agencies. 

 

The inclusion of climate forecasts could assist in the decision-making process, but 

climate forecasts are not being used to the fullest extent possible for optimal water 

resources management. Water managers are skeptical about using seasonal climate 

forecasts due to their uncertainty (Conley et al., 1999; Institute for the Study of Planet 

Earth, 2000; Pagano et al., 2000, 2001, 2002), and the widespread perception that the 

quality of forecasts is generally poor (Changnon, 1990). Water managers are hesitant to 

apply new information and methods, like climate forecasts, that could expose them to 

greater liability. There is limited knowledge and understanding of climate processes and 

prediction capabilities among potential climate forecast users. Forecast users feel that 

they need two main questions answered regarding forecast accuracy: 1) What is the 
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probability that climate forecasts will warn of climate extremes? and 2) Given an 

increased likelihood of an event, what is the probability that it will actually occur? 

(Hartmann et al., 2002). Climate forecasts themselves are not without limitations that 

make water managers resistant to using them. Noise in climate signals, inaccuracies in 

forecasts, and the unpredictability of many aspects of the climate (Maidment, Ch.2, 1993) 

limit the potentially useful application of climate forecasts and prediction models. The 

perceived complexity involved in using forecasts and the lack of extensive records and 

forecasts hint at a need for developing new tools and management strategies to use 

forecasts advantageously. Developing these tools and strategies can also prove 

discouraging for water managers who may want to use climate forecasts. 

 

The use of climate forecasts would eliminate the need of decision makers to mostly 

depend on personal and professional judgment and experience, and reduce statistical bias 

attributed to recent and current meteorological and hydrological observations and 

conditions. This is now possible due to advancements and improvements in forecasting 

capabilities and can bring about better water resources management and water systems 

operation. The incorporation of climate forecasts in decision-making can provide lead-

time in managing and planning for climatic events. This would reduce the vulnerability of 

water managers and planners to the climate by being more informed and prepared 

(Hartmann et al., 2002). Climate forecasts improve on water resources planning and 

management by providing information that could assist in the allocation of water supplies 

to users, and maintain environmental flows (Piechota et al., 2001). 

 

Climate forecasts have been employed in various situations to yield successful results. 

The National Weather Service (NWS) possesses a NWS River Forecast System 

(NWSRFS) that utilizes the NWS Extended Streamflow Prediction (ESP) program. The 

ESP procedure was first used in California during the early 1970s by the NWS 

California-Nevada River Forecast Center (RFC) and the State of California. The NWS 

Hydrologic Research Laboratory began to develop an ESP program in 1975. Since then 

the ESP procedure and program have been used by RFCs in California-Nevada, the 

Colorado Basin, and Alaska. It was also used to assess severity of drought in 
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Washington, D.C. in 1977. Currently, it is being used nationwide. The ESP program 

became an essential part of the NWSRFS in 1984. This program aimed to provide more 

accurate probabilistic forecast information related to streamflow that can yield economic 

savings, reduced error in water management decisions, and input for multi-purpose 

reservoir operations (Day, 1985). ESP has been extended further to produce long-range 

streamflow forecasts by incorporating nonparametric statistical procedures with 

hydrologic models and data. Long-range forecasts can coincide with hydrologic and 

meteorological processes with significant persistence that has time scales up to a number 

of months. Evidence shows that climatic information can provide improvements to long-

range streamflow forecasts (Redmond and Koch, 1991). Results also suggest that soil 

moisture information is of more value than climate information for forecasting, although 

climate information is useful for long-range forecasting of water-balance variables (Smith 

et al., 1992).  

 

Another beneficial application of climate forecasts is the Coupled Model Project (CMP) 

that was founded at the National Meteorological Center (NMC) to develop a multi-season 

forecast system based on coupled ocean-atmosphere General Circulation Models 

(GCMs). Studies have shown that ocean-atmosphere interactions account for much of the 

climatic variability on seasonal and inter-annual time scales. Significant forecast skill was 

produced, with up to two seasons of lead-time according to the CMP (Ji et al., 1994). 

Also in the Colombia River basin, climate forecasts helped produce useful streamflow 

forecasts with a six-month lead. This lead-time has resulted in improved system operating 

performance for the Colombia River reservoir system. The use of long-lead forecast 

information improved hydropower production and consequently increased revenue 

(Hamlet et al., 2002). 

 

Specific climatic events tend to exhibit patterns and properties, some of which can 

depend on geographic location, that can allow for longer lead-time predictions. These 

behaviors and patterns are generally associated with particular climate indicators, and it 

has become evident that the use of climate indicators and predictors has assisted in the 

production of meaningful forecasts of streamflow. Climate indicators include: streamflow 
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persistence, soil moisture, land surface temperatures, and large-scale recurrent 

teleconnective patterns such as El-Niño Southern Oscillation (ENSO), Pacific Decadal 

Oscillation (PDO), Tropical Atlantic Variability (TAV), and North Atlantic Oscillation 

(NAO). These climatic indicators and predictors can provide long lead-times for 

streamflow forecasts with a better accuracy and prediction skill and therefore greatly 

improve upon the management of water resources. 

 

Climate indicators and predictors have been widely used to assist in climate forecasting. 

It has been found that the use and incorporation of ENSO and PDO into extended 

streamflow forecasts have increased prediction lead-times to about a year (Hamlet and 

Lettenmaier, 1999; Piechota et al., 2001). An example is a study conducted for long-

range streamflow forecasting using ENSO indicators (Southern Oscillation Index-SOI 

and Wright Sea Surface Temperatures-SSTs) as predictors of Spring-Summer runoff 

(Piechota and Dracup, 1999). In the country of Colombia, strong and significant 

correlations between ENSO and streamflow in certain rivers suggest the feasibility of 

streamflow predictions with a long lead-time (Gutierrez and Dracup, 2001). Rainfall and 

runoff forecasts in Australia using ENSO indicators have proven to be reliable and useful 

for local water resources management by forecasting streamflow (Chiew et al., 1998; 

Piechota et al., 1998). 

 

Another type of indicator that has been used as a climate indicator in examining climate 

change (in Lebanon) is soil moisture (Bou-Zeid and El-Fadel, 2002). In many regions, 

soil moisture itself has great persistence as a climatic indicator and therefore is being 

studied to determine its potential as a climate indicator and predictor. Previous work 

(O’Connell, 2002), which this current work expands on, dealt with the manipulation of 

teleconnective patterns as climate indicators and predictors. Several of the potential 

predictors examined by O’Connell, such as SOI and NAO, were weakly correlated with 

streamflow and suggested modest potential for streamflow prediction. In O’Connell’s 

work, recommendations were made to investigate other possible climatic predictors for 

the same purpose. The next step in climate forecasting is using soil moisture not only as a 
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climate indicator but also as a climate predictor to promote the use of climate forecasts 

for streamflow prediction. 
Equation Chapter 2 Section 1 
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2 Background 
 

This chapter discusses the objectives and motivations of the overall project and the 

specific objectives of this research. The collaborating Lower Colorado River Authority 

(LCRA) is described and the geographic location of this study in central Texas defined. 

Previous work by O’Connell (2002) is also highlighted, and connections between both 

research studies are mentioned.  

2.1 Objectives and Motivation 
 

The overall goal of the project is to improve the operation and management of a multi-

reservoir system in central Texas. This is to be done by incorporating climate indicators, 

which can also be used as predictors, and climate forecasts into a decision support model 

geared for the multi-reservoir system (see Figure 2.1). The decision support model aims 

to assist in the planning and management of the multi-reservoir system and is based on a 

stochastic (ensemble-based) model of the reservoir system (Watkins et al., 2000). The 

model predictions will supplement standard critical planning information. The model 

itself could reveal different decision results and evaluate them for a range of possible 

inflows (i.e., streamflow scenarios that are statistically similar to historical conditions). 

 

Climate indicators can add predictive skill to the decision support model for the 

improvement of the operation and management of the multi-reservoir system. Climate 

indicators include streamflow persistence, land surface temperature, soil moisture, and 

large-scale recurrent teleconnective patterns such as El Niño-Southern Oscillation 

(ENSO), Pacific Decadal Oscillation (PDO), Tropical Atlantic Variability (TAV), and 

North Atlantic Oscillation (NAO). These climate indicators could be used as long-lead 

indicators and predictors of regional streamflow. Previous studies have already shown an 

existing strong relationship between Southern Oscillation Index (SOI), temperature, and 

precipitation patterns in central Texas, where the multi-reservoir system is located 

(Ropelewski and Halpert, 1986; Piechota and Dracup, 1996). The overall project will 
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look at the usefulness of climate forecasts by assessing the value of seasonal and annual 

climate forecasts with respect to water resources management. The project intends to 

encourage water managers to utilize hydrologic and meteorological information that is 

readily available to them, such as seasonal climate forecasts, instead of just using 

historical observations. 

 

Figure 2.1: Decision Support Model (Watkins et al., 2000; Kracman, 2002) 

 

The specific objective of this thesis research is to explore soil moisture as a potential 

climate indicator and predictor of streamflow over the area of study in central Texas. 

Quantifying the correlation of soil moisture with streamflow over the study area will be 

used to evaluate the feasibility of soil moisture as a climatic predictor. Seasonal climate 

forecasts could then be used for the operation of the reservoir system by deriving optimal 

forecasts based on the streamflow correlations found using soil moisture. With the 

possible application of climate forecasts, the National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Center (CPC) forecasts of soil moisture 

anomalies should be evaluated for adjusting streamflow probabilities to use in the 

decision support system. 
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2.2 The Lower Colorado River Authority (LCRA) 
 

The multi-reservoir system in central Texas is managed by the Lower Colorado River 

Authority (LCRA). The LCRA is a water conservation and reclamation district that 

provides water supply and flood control to a 33-county area including the City of Austin 

and several rice irrigation districts along the Texas Gulf Coast. It produces wholesale 

power for a 53-county service area and provides water resources for lake recreation 

activities and in-stream flow maintenance. The LCRA also operates the Highland Lakes 

system in central Texas, a series of six lakes/reservoirs along with six dams in the Lower 

Colorado River Basin. As part of its duties, the LCRA fulfills multiple purposes in flood 

control, water supply, power, irrigation, recreation, and the environment. 

 

nr: near

 

Figure 2.2: The Lower Colorado River Watershed (O’Connell, 2002) 

 

The Colorado River of Texas runs from Southwest New Mexico, across Texas to the 

Matagorda Bay on the Gulf of Mexico. The river’s watershed covers 39,900 square miles, 

and the river itself flows an approximate 600 miles. The watershed contains a variety of 

land types that include the hilly central Texas area and the flat Coastal Plain. Land use 

varies as well, with areas of high development such as the City of Austin, smaller 
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residential and agricultural regions, wetlands, and community parks. Perennial rivers 

exhibit a large range of flows that subject the region to frequent droughts and flooding 

(Kracman, 2002). The Lower Colorado River starts in San Saba County (central Texas). 

It is legally separated from the upper segment of the river by legislation that gave the 

LCRA jurisdiction over the Lower Colorado River Watershed (see Figure 2.2) 

 

The Lower Colorado River Watershed is home to a series of six reservoirs, dams, and 

lakes known as the Highland Lakes system. The Owen H. Ivie Reservoir marks the 

upstream boundary of the Lower Colorado River, and is a dam with releases upon which 

the Lower Colorado River flows depend. The Lower Colorado River joins with the Pecan 

Bayou just below the Owen H. Ivie Reservoir, and as it progresses deeper into San Saba 

County it joins a major tributary, the San Saba River. The flow continues into Lake 

Buchanan, one of two lakes with capacity for water storage, which was formed by 

Buchanan Dam and has a capacity of approximately 918,000 acre-feet. Right below Lake 

Buchanan is the smaller Inks Lake at a capacity of 17,500 acre-feet. Downstream, the 

Lower Colorado River meets the Llano River and then flows into Lake Lyndon B. 

Johnson, a 138,500 acre-feet reservoir formed by Wirtz Dam. Lake Lyndon B. Johnson is 

followed by Starcke Dam, which formed Lake Marble Falls, the smallest of the six 

reservoirs (8,760 acre-feet). The river then reaches Lake Travis, which was created by the 

Mansfield Dam, a 748,502 acre-feet structure (Kracman, 2002). The Mansfield Dam is 

the only flood control structure for the Lower Colorado River Basin. The Pedernales 

River, an important tributary, flows into Lake Travis as well. Lake Travis itself, the other 

lake with capacity for water storage, holds 1,170,750 acre-feet, and with Lake Buchanan 

can hold about 2 million acre-feet of conservation storage. The sixth reservoir, Lake 

Austin (21,000 acre-feet) is right below Lake Travis and owes its formation to the Tom 

Miller Dam. The LCRA operates Lake Austin but does not own it; the dam is leased to 

the LCRA by the City of Austin. This region of the Lower Colorado River Basin from 

San Saba County to Lake Austin is considered the Texas Hill Country. 

 9



 
Figure 2.3: LCRA Districts (Kracman, 2002) 

 

Downstream of the Tom Miller Dam and out of the Highland Lakes system is Town 

Lake. Town Lake was formed by Longhorn Dam and is controlled by the City of Austin. 

The Lower Colorado River joins with other small tributaries south of Austin before 

reaching Matagorda Bay where outflows to the Gulf of Mexico average 2,600 cubic feet 

per second. Near the downstream end of the river, on the Texas Gulf Coastal Plain, an 

abundance of agricultural land resides. These agricultural lands are composed primarily 

of rice farms that require generous supplies of water. The water demand of rice farming is 

met by four main irrigation districts (see Figure 2.3) in this region: Lakeside, Garwood, 

Pierce Ranch, and Gulf Coast. Over half the water releases go to irrigation districts (see 

Figure 2.4). 
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Figure 2.4: Division of Water Releases (LCRA, n.d.) 

 

The LCRA’s initial goals were to moderate droughts and floods. With the construction of 

the dams and the Highland Lakes system these goals were better realized, as well as 

providing a stable water supply and a source of hydroelectric power that encourages 

growth in the region. The LCRA strives to maximize and equalize benefits for its 

competing users by employing a water management plan. This plan gives consideration 

to private rights holders, recreational, environmental, and hydroelectric interests. It also 

caters to two types of customers, those who have firm contracts and those who sign 

yearly interruptible contracts. Firm water is diverted from storage under contract by the 

LCRA to high priority users (e.g. City of Austin, municipal and industrial entities) and is 

a guaranteed water right during repetition of drought of record. Interruptible water 

contracts are issued on a yearly basis (contracts signed in November) with the condition 

that water supplies may be interrupted in the event that firm water supplies risk depletion. 

Irrigation districts are the main customers of interruptible contracts. If the availability of 

interruptible water exceeds irrigation needs, other entities (mainly recreation) get some 

preference in the distribution of interruptible water. The LCRA currently uses beginning-

of-year storage levels to determine the amount of water available to meet firm and 

interruptible water demands in the coming year (Martin, 1991). The LCRA water 

management plan also gives consideration to recreation and tourism as part of the 
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LCRA’s public interest responsibilities (LCRA, 1999).  Twenty-five parks exist on 

LCRA-owned land and they receive over one million visitors per year. Tourism on the 

lakes in the Lower Colorado River Basin brings in over $90 million annually to the 

region (Kracman 2002). The LCRA also employs a drought management plan and a 

conservation plan, the latter of which targets large users (municipalities and irrigation 

districts) and aims to reduce demand, decrease water use, and increase crop yield in 

irrigation districts (LCRA, 1999). The LCRA has also invested interest in environmental 

concerns through voluntary monitoring programs and sewage disposal inspections, as 

well as examining pollutant sources. 

2.3 Previous Work 
 

This current work builds on previous research done by O’Connell (2002). Previous work 

focused on the generation and development of synthetic streamflow scenarios using 

historical streamflow data. It proposed the conditioning of streamflow ensemble forecasts 

on observable climate indicators for predictions. This incorporation of forecast data was 

to be used for inflows to the Highland Lakes multi-reservoir system in central Texas 

operated by the LCRA. It was also to be used in the associated decision support model. 

 

Inter-annual climate anomalies were investigated for their suitability as local streamflow 

predictors and climate indicators. The trends of three wide-scale teleconnection patterns, 

ENSO, NAO, and PDO, were considered as forecasters. The advantages of using these 

climate signals to predict streamflow for this multi-reservoir system were examined. 

ENSO and NAO were found to be the best candidates for forecasting in this region 

(central Texas). Streamflow persistence was also examined as a potential predictor. The 

combination of these three indicators was expected to improve the usefulness of the 

basin’s decision support system. 

 

Reasonable synthetic streamflow scenarios were generated and developed for the 

stochastic reservoir system model of the Lower Colorado River Basin by the software 

package SPIGOT (Grygier and Stedinger, 1999). An optimal linear combination of 

forecast indices including those related with ENSO and NAO was developed. The skill 
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(degree to which forecasts corresponded with observed historical flows) of each forecast 

was tested based on a ranked probability score. 

  

Results of the study showed that several of the potential predictors (SOI, NAO, and 

October flow) were weakly correlated with annual streamflow in the Lower Colorado 

River Basin. The streamflow indicators were able to improve the predictive ability of 

scenarios to a small degree using a method that incorporated nonparametric density 

estimation and Bayesian probability updating techniques. The optimal linear combination 

of ENSO and NAO predictors demonstrated a small improvement in ranked probability 

score. The persistence of December flows was strongly correlated with the subsequent 

annual streamflow. Unfortunately, the insufficient lead-time associated with it did not 

allow for the predictions to be practically beneficial (O’Connell, 2002). This previous 

work demonstrated the potential for management improvement of the multi-reservoir 

system with climate indicators/predictors and climate forecasts, but did not produce 

substantially effective results using the selected indicators. 
Equation Chapter 3 Section 1 
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3 Data 
 

The data utilized in furthering the project objective comes from two main sources: 

historical streamflow data obtained from the United States Geological Survey (USGS) 

records, and derived Retrospective Land Surface Data from the Variable Infiltration 

Capacity (VIC) hydrologic model. The science behind the VIC model is based on the 

fundamental principles of the hydrologic (water) cycle and the energy cycle. 

3.1 The Land Water and Energy Cycles 
 

The hydrologic cycle comprises the interactions and exchanges of water between the land 

surface and the atmosphere (see Figure 3.1). It continuously operates through a series of 

processes that are powered by the solar energy of the sun and gravity. The processes of 

evaporation and transpiration transport water from open water bodies, bare soil, and 

vegetation on the earth’s surface to the atmosphere, where it circulates as water vapor. 

Transpiration is the complex route water takes from deep root zone layers in the soil 

through trees and vegetation to reach the atmosphere as water vapor. This water vapor 

then precipitates to the land surface mainly in the form of rain or snow, where it may be 

intercepted by a vegetative canopy. If not intercepted, this form of water may either 

infiltrate into the earth’s soil, where it can recharge underlying groundwater, or advance 

on the land surface as runoff and possibly discharge back into water bodies. This water 

may then begin to evaporate or transpire and repeat the cycle again (Maidment, 1993). 

 

The hydrologic cycle is explicably tied to the energy cycle of the earth. The thermal 

equilibrium of the earth is maintained by the recycling of energy between the earth’s 

surface and atmosphere in the forms of radiant energy, sensible heat flux, and latent heat 

flux (see Figure 3.2). Sensible heat flux is heat transported by the processes of conduction 

and convection. Latent heat flux is the energy absorbed in the process of evaporating 

water. It is the latent heat that provides the key link between the water and energy cycles 

(Maidment, 1993). 
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Figure 3.1: The Hydrologic Cycle  

 

 

Figure 3.2: The Energy Cycle  

 15



3.2 Variable Infiltration Capacity (VIC) Model 
 

The generation of General Circulation Models (GCMs) depended on ‘bucket’ algorithms 

to represent land-surface hydrology, e.g. Budyko’s ‘bucket’ model (Manabe et al., 1965). 

The disadvantages of ‘bucket’ models are that they tend to simplify hydrologic processes 

too much and they do not directly consider vegetation, as well as assuming constant soil 

moisture capacity. One alternative was the application of biosphere-atmosphere models, 

but their limitation was the need to estimate too many parameters, and some of the data 

and methods needed for those parameters have not even been fully developed. Another 

problem with all these models is that they fail to account for is the inclusion of spatial 

variability in a GCM grid (primarily with respect to infiltration). Another alternative for 

GCMs that tackles these issues is the Variable Infiltration Capacity (VIC) water balance 

model. This model has its roots from the Nanjing model, named after the investigators 

who first suggested its usage for catchment rainfall-runoff modeling at the Water 

Resources Institute, Nanjing, People’s Republic of China (Institute of Hydrology, 1985; 

Chenlai, 1990). The original model was updated to include an evapotranspiration 

expression to assist in forecasting water supply for extended periods.  This VIC model 

estimates parameters of infiltration and evaporation, and a baseflow recession coefficient. 

The model is represented by a single soil layer and because of the nature of its spatial 

distribution, is represented by grids. It assumes that infiltration capacity, runoff 

generation, and evapotranspiration vary within a grid because of topography, soil, and 

vegetation variations. Hydrological processes are considered for each grid and based on 

the physical conditions on a given grid, meteorological parameters and variables are 

determined. Ultimately this preliminary form of the VIC model proved more dynamic 

than any ‘bucket’ model (Wood et al., 1992). 

 

The next practical application of this land surface hydrological model was a 

generalization of the single soil layer VIC model previously developed. The difference 

between it and earlier VIC models was the number of soil layers (two instead of one) and 

the explicit representation of vegetation in the surface energy flux. Two main soil layers 

exist in this version of the model: upper zone (Soil Layer 1) and lower zone (Soil Layer 
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2), in addition to a single canopy layer. The first soil layer exhibits dynamic soil column 

responses to rainfall events and its drainage proceeds directly to the second layer without 

being attributed to surface runoff. Slow-changing soil moisture behavior is characterized 

by Soil Layer 2, and it distinguishes subsurface flow by only responding to rainfall if soil 

layer 1 was completely wetted. An aerodynamic flux representation of latent and sensible 

heat fluxes is utilized: latent heat flux is computed and the surface temperature is solved 

for by incorporating the 2-layer model, energy balance, and soil thermal properties. With 

surface temperature found, sensible and ground heat fluxes can then be determined. This 

process is repeated at every time step. Each grid in the model is split into different land 

surface cover types and thus presents many types of vegetation. Hence a spatial 

distribution of soil capacities is available. The types of evaporation considered are 

canopy layer evaporation and transpiration associated with each vegetation class, and 

bare soil evaporation. Spatial variability in precipitation is not accounted for. Overall, 

good model performance existed with replicating stream flow and soil water budget 

simulation (Liang et al., 1994). 

 

Problems associated with the VIC-2L were: 1) Low soil moisture and underestimated 

evaporation in the upper layer due to no diffusion mechanism in the model to allow water 

movement upwards from the lower layer to the upper layer, and 2) Dynamic soil moisture 

behavior is not captured on the surface, as evidenced by underestimated soil water 

content. A modified version implemented corrective measures such as allowing soil 

moisture and water diffusion between layers and including a top thin layer above the 

upper layer. The results for the modified version included: 1) Soil moisture results were 

more realistic due to implemented diffusion parameterization; 2) The top thin layer was 

able to capture near-surface soil dynamics better than the upper layer by itself; and 3) The 

model was sensitive to soil layer depths, which should not be arbitrary but relevant to 

root distribution (Liang et al., 1996a). The incorporation of subgrid spatial variability of 

precipitation into the 2-layer VIC model provided additional improvements in model 

performance (Liang et al., 1996b). 
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A grid network version of the 2-layer VIC macroscale model (VIC-2L) was applied along 

with a routing model for streamflow prediction on the Weser River, Germany. The model 

grid was spaced on a rotated grid at 1/6 degree (~18 km), and the model itself ran off-line 

while comparing data on daily, monthly, and yearly time steps. Results determined that 

streamflow predictions were accurate, although important measurements such as that of 

soil thickness and moisture content were not considered (Lohmann et al., 1998). The term 

offline refers to model simulations that are driven by observed surface meteorological 

data (e.g. precipitation and temperature) and estimated radiative forcing that are not 

predicted by the land surface model. Offline models are also described as uncoupled, 

meaning the water and energy balances of the land surface are separate from the water 

and energy balances of the atmosphere. Online simulations, on the other hand, include the 

land surface scheme directly into the GCM. 

 

Some of the problems associated with the VIC-2L model that were found when a grid 

network version was run off-line (Nijssen et al., 1997) included the exclusion of 

groundwater recharge and drainage to streams, and the absence of an explicit mechanism 

for infiltration excess flow prediction, which subsequently led to poor model 

performance. The routing of the model also assumed that grid flow proceeded in one 

direction, an assumption that can prove erroneous depending on the nature of the 

subbasin. Soil moisture estimations using the VIC model have yielded a larger spatial and 

temporal range than other studies (e.g. climatology of Mintz and Serafini, 1992) as well 

as producing spatial and temporal soil moisture patterns that have compared well to soil 

moisture observations (Nijssen et al., 2001). These findings and developments on the 

VIC model have led to its current improvement for application in producing a useful data 

set. 
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3.3 Variable Infiltration Capacity (VIC) Retrospective Land 
Surface Data Set 

 

The VIC Retrospective Land Surface Data Set was developed to address the need for data 

sets that evaluate water balance components interaction over large regions for long 

periods. To create the data set, the model ran on a 3-hour time step with balanced water 

and energy budgets at each time step. It was visualized on a 1/8-degree grid spatial 

resolution (~140 km2) and it represented the entire continental United States. The data set 

spanned the period of January 1950 to July 2000, and the VIC model (VIC-3L) it was 

derived from utilized a 3-layer soil column (see Figure 3.3). The data set was produced 

using the VIC-3L model forced with observed meteorological data (precipitation, 

temperature, wind, vapor and air pressure, long and short wave radiation). The data set, 

unlike many other global and continental data sets, included the effects of varying soil 

properties. The fractional soil moisture monthly data accounted for necessary scaling up 

(matching) of volumetric soil moisture to represent relative wetness. This scaling up was 

necessary because the soil porosity of each grid cell is determined based on local soil 

texture and derived soil depths. Fractional soil moisture is equal to the volumetric soil 

moisture divided by the product of porosity and soil depth. In addition, the data set 

matched observed runoff quite well in large basins and therefore represented the surface 

water balance parameters (e.g. soil moisture) well (Maurer et al., 2002). 

 

The long data time span, the large geographical representation of data, and the 

uncommon use of a full energy balance formulation were key factors in deciding to 

incorporate the VIC Retrospective Land Surface Data Set as the main data source in this 

research. This data set was also specifically chosen to explore the potential of soil 

moisture as a climate indicator and predictor of streamflow over the LCRA region 

because of the good representation of water balance terms like soil moisture and the 

proper reproduction of relative wetness with scaled up fractional soil moisture. The 

matching of simulated and observed runoff of the data set also shows promise in using its 

soil moisture data for the purpose of streamflow prediction. 
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Figure 3.3: Retrospective Land Surface Data Set VIC Macroscale Hydrologic Model 
(http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html) 
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3.4 Streamflow Data 
 

 Observed streamflow data was obtained from USGS historical records and was used as a 

comparison to the VIC modeled data to show existing flow conditions in the study area 

(see Figure 3.4). The streamflow data used was in monthly format and collected from 

stream gages. The units of the streamflow data were converted from the USGS standard 

of cubic feet per second to acre-feet per month, the preferred units of the LCRA. Three 

stream gage sites were selected to obtain data based on the stream size, location, and the 

availability of historical data. These three stream gage sites were chosen due to the USGS 

not having enough stream gages at every ideal location along the Lower Colorado River 

Watershed, and due to some stream gages not having continuous records. The gage sites 

are located on the Colorado River near San Saba, the Llano River at Llano, and the 

Pedernales River near Johnson City (see Figure 3.5). The Colorado, Llano, and 

Pedernales Rivers flow into Lakes Buchanan, Lyndon B. Johnson, and Travis, 

respectively. Data from the three sites were available for 1915-1999, 1940-1999, and 

1940-1999, respectively. Therefore considering the time span of the VIC Retrospective 

Land Surface Data Set, the final study period was 1950-1999.  

 

The streamflow data from the gage sites was scaled up to account for parts of the 

watershed not represented by the sum of the three selected gages. Monthly flows were 

therefore scaled up according to the full drainage area of each lake the stream gages flow 

into, and were also adjusted to account for the operation of the Owen H. Ivie Reservoir. 

Details on the scaling up procedure can be found in O’Connell (2002). Accordingly, Lake 

Lyndon B. Johnson flows from the Llano River site were scaled up by 19%, and 

Pedernales flows were scaled up by 114%. The 8% scaling up factor found for the 

Colorado River gage was considered negligible compared to the adjustments made to 

account for the operation of the Owen H. Ivie Reservoir (O’Connell, 2002). 
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Figure 3.4: Distribution of Streamflow Data 

 

 
Figure 3.5: USGS Stream Gage Locations (O’Connell, 2002) Equation Chapter 4 Section 1
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4 Data Preparation 
 

This chapter gives an overview of the methods and programs used to manipulate the data 

from its original form to a data set useful for fulfilling the research goals. The 

transformation of the VIC data from its NetCDF format, incorporation of MATLAB, and 

the preparation of the data through ArcView GIS are included. 

4.1 NetCDF 
 

The Variable Infiltration Capacity (VIC) Retrospective Land Surface Data Set was 

archived in NetCDF (Network Common Data Form) format. NetCDF is software that: (1) 

stores and retrieves scientific data by acting as an interface for array-oriented data access, 

and (2) includes a freely distributed collection of libraries that provide interface 

implementations. The software is widely used by various research centers within the 

National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics 

and Space Administration (NASA), and the National Center for Atmospheric Research 

(NCAR), as well as other agencies and program centers. The software itself was 

developed at the University Corporation for Atmospheric Research (UCAR) Unidata 

Program Center in Boulder, Colorado. The Unidata NetCDF software package is 

available for downloading by users at no cost. NetCDF features self-describing data, with 

information about the data stored as attributes related to each respective variable. Data is 

described in a machine independent format that supports its creation, access, and sharing. 

Therefore, different types of computers can access data without the need for any data 

conversion or manipulation, just as data stored using a certain programming language 

may be retrieved using another programming language. Small subsets of data can be 

easily, efficiently, and directly accessed without reading or going through previous data. 

The NetCDF format allows for data to be readily accessed by the writer(s) and reader(s), 

encouraging data sharing between various researchers and disciplines. Data can be added 

to an existing NetCDF dataset without the need to redefine or copy the dataset since data 

storing is independent of the computer architecture, and hence reduces the effort related 

to dealing with data formats. 
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4.2 MATLAB Interface and Extraction 
 

The VIC Retrospective Land Surface Data was formatted in a monthly summary time 

step. The model derived water balance variables, acquired primarily for relevant research 

application, were fractional soil moisture (total soil column) and runoff. Other model-

derived meteorological water balance variables, obtained as supplemental data 

information, were the soil moisture and soil moisture tendencies for each respective layer 

(Layer 1, Layer 2, and Layer 3). To manipulate and display the data, it had to be 

extracted from its NetCDF form using compatible software. Of the available options for 

compatible software, a MATLAB interface was chosen due to the fact that it was easier 

to use and quicker to learn than other alternatives. MATLAB itself provides a powerful 

programming language that allows the user to compute and visualize data in a 

mathematically user-friendly and compliant environment. The specific MATLAB 

interface employed was the NetCDF Toolbox for MATLAB-5 

(http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html). 

This interface combines NetCDF-3 and MATLAB-5 to perform MATLAB operations on 

NetCDF entities. It is the improved and extended version of the MEXCDF interface with 

MATLAB-4; an interface that is now practically obsolete. The NetCDF Toolbox for 

MATLAB interface significantly simplifies operations on NetCDF files within MATLAB 

and primarily does so with the use of a NetCDF file browser that allows the user to 

preview the NetCDF files along with their attributes and characteristics before retrieving 

them. 
 

The VIC Retrospective Land Surface Data of interest stored in NetCDF format had 607 

time steps (each month being one time step, since it was monthly summary data), from 

January 1950 to July 2001, and encompassed 76,576 grids in the spatial representation of 

the continental United States. The data was stored in a matrix form. The average 

fractional monthly soil moisture combined all three soil layers and was represented as 

volumetric soil moisture divided by the product of porosity and soil depth, it has no 

quantitative units. The average monthly surface runoff rate was represented in units of 

kilograms per meter squared per second (kg/m2/s). Both these data had to be extracted 

 24



from their NetCDF format using MATLAB before any data manipulation could occur. 

This was done by developing and writing a comprehensive MATLAB code that outputted 

each respective data attribute (fractional soil moisture and runoff) along with its 

respective longitude and latitude spatial location. The data that was outputted was 

partitioned at ten-year intervals (1950-1999: 1950-1959, 1960-1969, etc.) to 

accommodate extraction of the large quantity of data. The data extracted using the 

MATLAB code was spatially based on the entire state of Texas. Since the Lower 

Colorado River Authority (LCRA) study region is near the center of Texas, using the 

entire state as a data boundary ensured that the necessary data was extracted. A longitude 

and latitude map locator was employed to determine the spatial boundaries of the state of 

Texas and hence their position in the stored data matrix, to allow for simple extraction via 

the MATLAB code. 
 

This extracted VIC modeled data was then stored and saved in ten-year segments along 

with the historical observed streamflow data. The observed streamflow data was specific 

to the LCRA region of interest. The time period of the observed data was from 1940 to 

1999. Since the VIC modeled data temporal range was from 1950 to 2001, the common 

time frame of 1950 to 1999 for both data sets defined the study period of the project. The 

observed streamflow data remained in its original units of 100 acre-feet. The VIC 

modeled runoff data units needed to be converted from a rate to a measure of volume. 

This conversion was done by multiplying the average monthly surface runoff rate by time 

(number of seconds in a given month) and area of each grid, as well as dividing by the 

density of water (~1,000 kg/m3). The VIC model estimates the 1/8-degree grid spacing to 

be equivalent to approximately 140 km2, but this is the average grid size over the 

continental United States. Selecting adjacent spatial grid points (where each grid point of 

data represents a point within the exact center of the given grid) from the extracted VIC 

data for the state of Texas, and using their longitude and latitude information and 

attributes, an average grid size of approximately 174 km2 (12.5 km by 13.9 km) was 

estimated. Since this area is more representative of Texas than the average grid size for 

the whole VIC data set (140 km2), it was selected as the average grid size for this study 

and was used for all area-related calculations (including the runoff rate unit conversion). 
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Figure 4.1: MATLAB Extraction Flowchart 
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4.3 ArcView GIS Reprojection and Manipulation 
 

The next step in refining the data to suit the specific needs of the project involved the 

usage of Geographic Information System (GIS) applications in the form of ArcView GIS. 

ArcView GIS is a versatile desktop GIS software with user-friendly graphical interface 

that allows for spatial and tabular data representation as maps, tables, and charts. It 

permits the user to input data, store it, and manage it, as well as transform it to create new 

information from existing data. ArcView GIS also provides handy tools for data editing, 

analyzing, visualizing, querying, and exploring.  
 

Previously created shapefiles for the geographic boundaries of Texas, State watersheds, 

and the LCRA watershed region were provided by O’Connell (2002). In order to make 

minor adjustments to exterior and interior boundaries, the LCRA watershed shapefile was 

duplicated through manual onscreen digitizing. This type of digitizing involved 

graphically ‘tracing’ the boundaries of the existing shapefile to produce a polygon of the 

same size and shape as the original watershed shapefile. Digitizing was done at a scale of 

1:10,000 to ensure an acceptable level of accuracy.  
 

Both VIC data sets (fractional soil moisture and runoff volume) were imported into 

ArcView and then displayed visually via the data’s locational attribute (longitude and 

latitude) as grid points representing the center of each grid. This grid point overlay and 

any data layer graphically visualized is referred to as a theme. Each respective data set 

was then promptly converted to and saved as a shapefile (ArcView’s file format). 

Importing the VIC fractional soil moisture and runoff volume data had to be done in ten-

year subsets, much like the ten-year intervals it was stored in, due to the number of 

records. To be able to bring these two different types of data (imported VIC data and 

duplicated LCRA shapefile) together for analysis, they needed to share the same 

geographic coordinate system. Therefore, the VIC data’s original geographic projection 

had to be georeferenced to that of the current LCRA watershed shapefile so that they 

would share the same geographic projection information (see Table 4.1). 
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 For the VIC fractional soil moisture and runoff volume data to be georeferenced to the 

coordinate system of the LCRA watershed shapefile, an ArcView extension tool named 

the MI DNR Projection Wizard was utilized. The MI DNR Projection Wizard reprojected 

the VIC data’s coordinate system to that of the LCRA watershed shapefile by inputting 

the georeference information of each coordinate system and the desired output 

geographic coordinate system.  

 

With both sets and types of data finally sharing the same geographic reference, analysis 

on the LCRA region with respect to the given data was able to commence. Analysis 

operations and commands in ArcView GIS that assist in data processing and theme 

enhancement include Dissolve (aggregating features with the same value for a specified 

attribute), Merge (appending features of two or more themes into a single theme), and 

Clip (using a clip theme like a cookie cutter on another overlaying theme). These tools 

are available via the Geoprocessing Wizard or Xtools extensions from within ArcView 

GIS. 

 

 LCRA Watershed Shapefile VIC Data 

Projection Lambert Conformal Conic Longitude/Latitude 

Spheroid GRS 1980 - 

1st Standard Parallel 27.417 - 

2nd Standard Parallel 34.917 - 

Central Meridian -100.000 - 

Reference Latitude 31.167 - 

False Easting 1,000,000 - 

False Northing 1,000,000 - 

Map Units Meters Decimal Degrees 

 

Table 4.1: Geographic Projection Information (Datum: NAD 1927) 

 

To check the reliability of the newly created duplicate LCRA watershed shapefile, a ten-

year fractional soil moisture subset (e.g. 1950-1959) was clipped with both the original 
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and duplicate LCRA watershed shapefile. The average fractional soil moisture for each 

location for that decade was computed with the aid of arithmetic operations on the 

existing attribute (average fractional soil moisture) by viewing the attribute table of the 

theme. The result was that each geographical location within the LCRA watershed had a 

single average fractional soil moisture value. Both files were then compared to determine 

whether there were statistical differences. By using the statistics summary option in 

ArcView for each watershed shapefile, it was determined that the number of grid points 

and the total average fractional soil moisture of the entire watershed were the same, 

therefore statistical integrity was preserved, and the digitizing accuracy of the duplicate 

shapefile was verified. 
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Figure 4.2: Reprojection of Shapefiles in ArcView GIS Flowchart 
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New LCRA 
Watershed Shapefile 

VIC Soil Moisture Shapefile 
(A 10-year Subset) 

1. Clipping of both LCRA 
Watershed Shapefiles (old 
and new) and VIC Soil 
Moisture 10-year Subset 
Shapefile  

2. Comparison of Average Soil 
Moisture of Clipped files 
using Arithmetic Tool in 
Attribute Table 

Figure 4.3: Reliability Check of New LCRA Watershed Shapefile Flowchart 
Equation Chapter 5 Section 1
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5 Analysis Results and Discussion 
All relevant analyses performed in this research are detailed in this chapter. The analyses 

include sensitivity analysis of LCRA Watershed, streamflow-runoff analysis, correlation 

analysis, and the establishing of climatology. The results of said analyses are presented 

and discussed in an interpretive manner relevant to the objectives of this study. 

5.1 Sensitivity Analysis of LCRA Watershed 
 

To prepare for sensitivity analysis, a procedure was repeated much like what was done to 

determine the reliability of the newly recreated LCRA shapefile (see section 4.3). The 

average fractional soil moisture for the entire study period (1950-1999) was calculated 

for each spatial location (grid point), thus giving each spatial location a single average 

fractional soil moisture value for the years 1950-1999. This geographical theme 

representation was saved as a shapefile in Arc View GIS for further use in the sensitivity 

analysis. 

 

The purpose of the sensitivity analysis was to test the effect on the total average 

fractional soil moisture within the LCRA watershed if the size of the watershed increased 

or decreased by a specified buffer size. This information will then enable us to choose an 

ideal final LCRA watershed size that takes into account attribute variability if it is 

significant. Variability across the watershed is not expected to be considerable but this 

analysis is necessary to verify that assumption. Attribute variability may be a factor to 

consider since the spatial grids used to represent the VIC-3L modeled data does not align 

exactly with the boundaries of the LCRA watershed. To facilitate the tasks of performing 

this analysis, an ArcView GIS extension tool called Xtools was put to use. Xtools 

primarily performs shape conversion functions, provides table management tools, and 

performs basic analysis functions (e.g. clipping, merging, buffering, etc.). 

 

The effect of size changes for the LCRA watershed was established by creating buffers 

around the original watershed size that projected both inside and outside with respect to 

the original watershed boundary. Xtools can create such buffers by offsetting a buffer 
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(inwards or outwards) by a certain distance from the original watershed boundary (Figure 

5.1).  

 

 

Figure 5.1: Buffer Display in ArcView 

 

Given the approximate size of the grid (12.5 km by 13.9 km), a 4-km buffer increment 

was selected. The increments increased from 4 to 24 km outside and inside the watershed 

clip boundary. The saved shapefile displaying the average fractional soil moisture grid 

points for 1950-1999 was then clipped with each successive buffer that was created 

including the original watershed clip. Using a statistical summary in the attribute table 

information, the number of grid points and average fractional soil moisture within each 

respective buffer polygon were determined. These results, along with the percent change 

in the average fractional soil moisture from the original watershed clip polygon, can be 

found in Table 5.1 and Figure 5.2. An increase in the buffer size leads to an increase in 

 32



the value of the average fractional soil moisture for each successive buffer size. The 

opposite effect is encountered with decreasing buffer sizes (Figure 5.2). 
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Figure 5.2: Average Fractional Soil Moisture Variation Bar Chart 

 

Buffer Size (km) No. of Grid Points in Buffer Average Fractional Soil Moisture % Change
-24 108 0.607 -2.820 
-20 125 0.612 -2.002 
-16 144 0.615 -1.430 
-12 167 0.620 -0.748 
-8 181 0.621 -0.590 
-4 202 0.622 -0.317 
0 232 0.624 0.000 
4 251 0.626 0.293 
8 282 0.628 0.640 
12 301 0.629 0.669 
16 325 0.629 0.821 
20 353 0.629 0.810 
24 379 0.630 0.838 

 

Table 5.1: Sensitivity Analysis Results 

 

In selecting the final size for the LCRA watershed shapefile, a few factors needed to be 

considered. An alteration in the original watershed size must be justified by a logical 

reason, such as a marked difference in the fractional soil moisture between successive 
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increasing and/or decreasing watershed buffers. Even if that is the case, then such a 

difference must be reasonably explained by providing supporting evidence (e.g. adjacent 

watersheds contributing to systematic soil moisture biases because of bordering streams 

and tributaries). The results indicated that the maximum percent change of average 

fractional soil moisture, based on the original watershed size, was small (~2.8 %). 

 

Negative (inward) buffers were neglected as an option for watershed size change since 

they reduced the number of grid points representing the LCRA watershed and excluded 

data points that actually fell within the watershed. Likewise, larger buffer sizes such as 

the 24-km buffer encompassed land area that fell well outside the watershed. Ultimately 

what was desired was the best representation possible of the LCRA region. For a grid to 

be considered in a buffer, its centroid (grid point) had to fall within the watershed region. 

With that in mind, it was decided to select either the  + 4-km buffer or the original 

watershed clip (0-km buffer). Since the grid is 12.5 km by 13.9 km, the distance from the 

center of the grid to its corners is 9.35 km (Figure 5.3). Therefore, if only part of an 

exterior grid fell within the 0-km buffer, then this grid would be included in the 

watershed if the + 4-km buffer was used. But since it was decided to only consider a grid 

if its centroid was within a given buffer, and no significant attribute variability was 

found, the original clip (0 km buffer) was selected as the best choice. 

 

Figure 5.3: Grid Analysis 
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5.2 Streamflow-Runoff Analysis 
 

The streamflow-runoff analysis provided an initial view at how well the VIC modeled 

data tracked observed data of the same characteristic (streamflow/runoff). It compared 

modeled runoff volume data obtained from the VIC data set to observed historical 

streamflow for the LCRA watershed region (Figure 5.4). The observed streamflow data 

units needed to be converted from 100 acre-feet to cubic meters, the units of the VIC 

runoff volume data, so that comparisons could be made. 

 

 
 

Figure 5.4: Streamflow-Runoff Time Series 

 

Graphical plots were produced, encompassing the study period of 1950-1999. One graph 

plotted monthly observed streamflow vs. monthly simulated runoff (Figure 5.5). The 

other graph plotted annual observed streamflow vs. annual simulated runoff (Figure 5.6). 

A linear watershed response was assumed to determine the correlation between the two 

parameters, and linear trend lines that passed through the origin were added. Ideally, 
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streamflow and runoff are meant to be the same type of hydrological parameter and 

should thus reflect each other proportionally (in a true zero scale where zero runoff 

equals zero streamflow). Hence the constraint of the linear trend line passing through the 

origin was applied. 

 

As shown in Figures 5.5 and 5.6, the correlations between the modeled and observed 

parameters for annual and monthly comparisons were found to be approximately 0.75 

and 0.80 respectively. Runoff and streamflow are technically the same parameter (albeit 

from two different sources), therefore in an ideal scenario the graphical results should 

produce a linear trend line with an equation of y = x. in this case the relationship is 

different than expected. It is evident that the volume magnitudes of modeled runoff and 

observed streamflow are not directly proportional to each other. The observed streamflow 

data is not necessarily underestimating streamflow since observed streamflow data was 

scaled up to account for key locations of the watershed that did not have gages (see 

section 3.4). Streamflow data from the gages was scaled up to represent the full drainage 

area of the flow-contributing lakes: Buchanan, Lyndon B. Johnson, and Travis 

(O’Connell, 2002).  

 

It is likely that the VIC modeled data is overestimating simulated runoff. The simulated 

runoff produced by the VIC model is considered the rainfall excess at each grid surface 

and does not account for baseflow (a separately modeled parameter). The simulated 

runoff used in this analysis is not routed but rather is a sum of all the grids within the 

watershed. This overestimation is likely due to the fact that the VIC-3L model used was 

not calibrated exclusively for the LCRA watershed. Despite the fact that the two 

parameters do not exactly match each other in a quantitative sense, they seem to follow a 

proportionate trend (evident from the resulting correlation coefficients). Overall, runoff 

and streamflow tracked each other well, giving confidence in the quality of the VIC 

Retrospective Land Surface Data Set as a data source for this research analysis. 
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Figure 5.5: Monthly Observed Streamflow vs. Monthly Modeled Runoff (1950-1999) 

 

 

 

Figure 5.6: Annual Observed Streamflow vs. Annual Modeled Runoff (1950-1999) 
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5.3 Soil Moisture Climatology 
 

Climatology refers to the setting up of an average temporal climate for the data set and 

study period from which certain data parameters can then be analyzed in reference to. 

Soil moisture climatology was established to quantify relationships that might exist 

between the modeled average fractional soil moisture and the observed (historically 

recorded) streamflow. Data trends and patterns were explored by considering fractional 

soil moisture and observed streamflow deviations from their temporal average. These 

deviations are called anomalies. The temporal periods of significance for forecasting 

purposes are annual and seasonal periods. Seasons were defined as Winter (January, 

February, March), Spring (April, May, June), Summer (July, August, September), and 

Fall (October, November, December).  

 

The annual fractional soil moisture climatology was determined by subtracting the 

average fractional soil moisture of the entire study period (1950-1999) from each year’s 

average fractional soil moisture value. This procedure was repeated for observed 

streamflow. Seasonal climatology repeated the same procedure using seasonal averages 

rather than annual averages. The magnitude and sign of the resulting values indicated the 

range of the anomalies. A positive value denoted a wetter than average year or season, 

and a negative value denoted a drier than average year or season. Time series of annual 

and seasonal anomalies of fractional soil moisture and observed streamflow were 

examined and plotted (see Figures 5.7-5.9). 
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Figure 5.7: Annual Average Fractional Soil Moisture Anomalies and 1010 Annual 

Aggregate Observed Streamflow Anomalies vs. Time (1950-1999) 

 

 

 

 

Figure 5.8: Seasonal Average Fractional Soil Moisture Anomalies and 1010 Seasonal 

Aggregate Observed Streamflow Anomalies vs. Time (1950-1999) 
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Figure 5.9: Seasonal Average Fractional Soil Moisture Anomalies and 1010 Annual 

Aggregate Observed Streamflow Anomalies vs. Time (1950-1999) 

 

The statistics obtained from the climatology revealed an approximately equal split 

between dry and wet periods. Climatology on fractional soil moisture yielded 27 wet 

years and 23 dry years, as well as 98 wet seasons and 102 dry seasons. Observed 

streamflow climatology produced 22 wet years and 28 dry years. Seasonal observed 

streamflow displayed a significant shift towards drier seasons with a resulting 143 dry 

seasons to 57 wet seasons. The soil moisture and streamflow patterns exhibited in the 

climatology plots seem consistent in their behavior in that an increase or decrease in 

fractional soil moisture was mirrored in observed streamflow. This behavior tends to be 

more obvious during the later period of 1950-1999 than in the beginning. Trend shifts are 

well represented between the anomalies of both parameters. These results demonstrate 

the potential of soil moisture as a climate indicator of streamflow over the LCRA region. 
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5.4 Correlation Analysis 
 

Correlation analysis of fractional soil moisture and observed streamflow was applied to 

different combinations of annual and seasonal time periods to evaluate soil moisture’s 

potential in predicting streamflow. The value of correlation between two parameters is 

determined by the correlation coefficient (see Equations 5.1-5.3) 
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Covariance (Cov(x,y)) and the correlation coefficient (ρx,y) measure how closely two 

variables are related in a linear manner. The range of the correlation coefficient is 

between 1 and –1. When the correlation coefficient value is between 0 and 1, both 

parameters are positively and linearly correlated. If the correlation coefficient is exactly 1 

then it is perfectly, linearly, and positively correlated. When the correlation coefficient 

value is between 0 and -1, both parameters are negatively and linearly correlated. If the 

correlation coefficient is exactly -1 then it is perfectly, linearly, and negatively correlated. 

If the value of the correlation coefficient is zero then both parameters are absolutely 

linearly uncorrelated. The further the correlation coefficient value is from zero, the more 

significant the linear correlation is, whether it be positive or negative. Only linear 
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correlation was tested since all graphical plots with fractional soil moisture and observed 

streamflow appeared linear in nature and assuming linearity was a simple first approach 

to use in this investigative study. All correlations were linear to maintain consistency 

between the various correlation combinations.  

 

The correlation coefficients calculated for temporal period combinations between 

fractional soil moisture and observed streamflow are in Table 5.2. For correlation 

between two parameters with a lag year (e.g. annual average soil moisture (t) vs. annual 

aggregate stream flow (t+1)), the leading years were 1950-1998 and the lagged years 

were 1951-1999. For seasonal lag correlations, all 50 years were used. 

 

To determine the statistical significance of the correlation coefficients calculated, the t-

test was applied. The null hypothesis for this test was that the correlation, r, of soil 

moisture and streamflow is equal to zero (H0: r = 0). A two-tailed (or two-sided) interval 

test was applied to determine whether the correlation coefficient values were either larger 

or smaller than the value denoted in the null hypothesis. For testing the significance of 

correlation, the t-statistic is given by: 
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 (Equation 5.4) 

 

Where: 

 

N = Data Population Size 

df  = N – 2 = Degrees of Freedom 

 

Performing a t-test on the data with the significance levels outlined for the correlation 

coefficients depended on quantiles of the t-distribution. The t-test was based on 49 or 50 

data points and 47 or 48 degrees of freedom. Three significance levels (α) were tested to 

verify the significance of the correlations found. For levels of 0.01, 0.05, and 0.1, t-values 
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needed to exceed 2.682, 2.011, and 1.678 respectively to be deemed statistically 

significant. 

 

Table 5.2 is organized by sets of different seasonal and annual fractional soil moisture 

correlations with various periods of observed streamflow. The six sets are mainly 

correlations of October, Fall, Winter, Spring, Summer, and Annual fractional soil 

moisture with observed streamflow respectively. The three highlighted colors in the table 

indicate to what degree of statistical significance a correlation may have. The color 

yellow indicates statistical significance at the 0.01 level, green indicates statistical 

significance at the 0.05 level, and blue indicates statistical significance at the 0.1 level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 43



Correlation t Statistically Significant?Set X Y 
 Coefficient value α = 0.01 α = 0.05 α = 0.1 

October Soil Moisture (t) Fall Streamflow (t+1) 0.083 0.575 No No No 
October Soil Moisture (t) Winter Streamflow (t+1) 0.227 1.615 No No No 
October Soil Moisture (t) Spring Streamflow (t+1) -0.049 0.339 No No No 
October Soil Moisture (t) Summer Streamflow (t+1) -0.193 1.362 No No No 
October Soil Moisture (t) Annual Streamflow (t) 0.451 3.500 Yes Yes Yes 
October Soil Moisture (t) Annual Streamflow (t+1) 0.038 0.262 No No No 

1 

October Soil Moisture (t) Fall Streamflow (t) 0.648 5.899 Yes Yes Yes 
Fall Soil Moisture (t) Winter Streamflow (t+1) 0.380 2.846 Yes Yes Yes 
Fall Soil Moisture (t) Spring Streamflow (t+1) 0.060 0.420 No No No 
Fall Soil Moisture (t) Summer Streamflow (t+1) -0.246 1.758 No No Yes 
Fall Soil Moisture (t) Fall Streamflow (t+1) 0.053 0.368 No No No 
Fall Soil Moisture (t) Annual Streamflow (t) 0.472 3.714 Yes Yes Yes 
Fall Soil Moisture (t) Annual Streamflow (t+1) 0.144 1.005 No No No 

2 

Fall Soil Moisture (t) Fall Streamflow (t) 0.716 7.104 Yes Yes Yes 
Winter Soil Moisture (t) Winter Streamflow (t+1) -0.047 0.327 No No No 
Winter Soil Moisture (t) Spring Streamflow (t) 0.189 1.335 No No No 
Winter Soil Moisture (t) Summer Streamflow (t) -0.321 2.346 No Yes Yes 
Winter Soil Moisture (t) Fall Streamflow (t) -0.029 0.202 No No No 
Winter Soil Moisture (t) Annual Streamflow (t) 0.290 2.099 No Yes Yes 
Winter Soil Moisture (t) Annual Streamflow (t+1) -0.149 1.046 No No No 

3 

Winter Soil Moisture (t) Winter Streamflow (t) 0.665 6.163 Yes Yes Yes 
Spring Soil Moisture (t) Winter Streamflow (t+1) -0.109 0.759 No No No 
Spring Soil Moisture (t) Spring Streamflow (t+1) -0.370 2.755 Yes Yes Yes 
Spring Soil Moisture (t) Summer Streamflow (t) -0.276 1.988 No No Yes 
Spring Soil Moisture (t) Fall Streamflow (t) -0.007 0.045 No No No 
Spring Soil Moisture (t) Annual Streamflow (t) 0.516 4.178 Yes Yes Yes 
Spring Soil Moisture (t) Annual Streamflow (t+1) -0.174 1.222 No No No 

4 

Spring Soil Moisture (t) Spring Streamflow (t) 0.559 4.673 Yes Yes Yes 
Summer Soil Moisture (t) Winter Streamflow (t+1) 0.041 0.283 No No No 
Summer Soil Moisture (t) Spring Streamflow (t+1) -0.342 2.518 No Yes Yes 
Summer Soil Moisture (t) Summer Streamflow (t+1) -0.113 0.791 No No No 
Summer Soil Moisture (t) Fall Streamflow (t) 0.249 1.782 No No Yes 
Summer Soil Moisture (t) Annual Streamflow (t) 0.609 5.318 Yes Yes Yes 
Summer Soil Moisture (t) Annual Streamflow (t+1) -0.193 1.360 No No No 

5 

Summer Soil Moisture (t) Summer Streamflow (t) 0.037 0.259 No No No 
Annual Soil Moisture (t) Winter Streamflow (t+1) 0.079 0.550 No No No 
Annual Soil Moisture (t) Spring Streamflow (t+1) -0.290 2.102 No Yes Yes 
Annual Soil Moisture (t) Summer Streamflow (t+1) -0.109 0.762 No No No 
Annual Soil Moisture (t) Fall Streamflow (t+1) 0.172 1.213 No No No 
Annual Soil Moisture (t) Annual Streamflow (t+1) -0.112 0.780 No No No 

6 

Annual Soil Moisture (t) Annual Streamflow (t) 0.578 4.911 Yes Yes Yes 
 
Table 5.2: Correlation Coefficients and Corresponding Statistical Significance 
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The t-test for significance of correlation assumes that the paired variables considered (soil 

moisture and streamflow) are sampled independently. But this t-test assumption is not 

accurate when considering that the two parameters in question are soil moisture and 

streamflow, two hydrologic variables that demonstrate persistence. To examine the 

persistence of soil moisture, its respective annual and seasonal (1-lag) autocorrelations 

were calculated and tabulated in Table 5.3. 

 

  Fractional Soil Moisture 
  Winter (t) Spring (t) Summer (t) Fall (t) Annual (t) 

Spring (t) 0.843237 - - - - 

Summer (t) - 0.75503 - - - 

Fall (t) - - 0.5114805 - - 

Winter (t+1) - - - 0.801 - 

Annual (t+1) - - - - 0.343697 
 

Table 5.3: Soil Moisture 1-Lag Autocorrelations 

 

Based on the correlation results obtained from the analysis, various correlation 

combinations with definitive trends were plotted in bar charts (see Figures 5.10-5.18). 

Correlation bar plots are arranged with correlation parameters on the x-axis in order of 

increasing lag time, followed by annual aggregate stream flow correlation. The t notation 

on the correlation bar plots refers to the current year and the t+1 notation refers to a 1-

year lag. The colored lines in the bar charts also denote the level of statistical 

significance. The yellow, green, and blue colors denote the same significance levels as in 

Table 5.2. 

 

Besides looking at seasonal and annual correlations, it was of interest to look at the 

correlation between October fractional soil moisture and various observed streamflow 

periods (see Figure 5.10). This would be useful to the LCRA since interruptible contracts 

for the next year are signed in November. If water managers had knowledge of the 

upcoming year’s streamflow, then those water contracts can be signed with greater 

confidence and reliability. However, as shown in Figure 5.10, the October soil moisture 
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which would be observable before signing contracts in November is significantly 

correlated only with the Fall streamflow and does not provide any predictive skill for 

annual or lagged seasonal streamflow. 

 

 
 

Figure 5.10: October Average Fractional Soil Moisture Correlations 

 

 
 

Figure 5.11: Winter Average Fractional Soil Moisture Correlations 
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Figure 5.12: Spring Average Fractional Soil Moisture Correlations 

 

Correlations between fractional soil moisture and observed streamflow are greatest 

during the same season of the same year and the correlations decrease as the lag increases 

(see Figures 5.11-5.14). Summer fractional soil moisture is the only exception to this 

trend. The behavior exhibited with Summer correlations is most likely attributed to the 

effect of convective thunderstorms that are active during the Spring and Summer in the 

area of the Gulf Coast. These storms may tend to produce an inverse relationship between 

soil moisture and runoff/streamflow. Convective rainfall that results from this 

phenomenon is mainly due to strong vertical air motions and is characterized by a warm 

and unstable air mass. This precipitation develops at a fast rate and as such can lead to 

surface flooding (Maidment, 1993). Summer (convective) thunderstorms are usually of 

high intensity and span a short duration (Fernandez et al., 1999). In effect, the soil cannot 

capture much of the precipitation that has been produced by the thunderstorm, and that 

precipitation goes directly into surface runoff. Due to the high temperatures and solar 

radiation of the Summer months, the little water that has been absorbed by the soil is 

evaporated quickly. With the exception of Summer, seasonal fractional soil moisture was 

generally a good indicator of seasonal streamflow over the LCRA region. Spring 

fractional soil moisture may provide additional forecast information. Not only was there 

good correlation between Spring soil moisture and observed streamflow within the same 
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year, there was also good correlation between both parameters with a 1-year lag (Figure 

5.12). This behavior was only apparent with the Spring fractional soil moisture. Since the 

Spring season promotes the greatest amount of surface runoff annually, it is likely for this 

significant correlation to be evident between two subsequent Spring seasons reflecting 

the persistence of interannual climate signals. 

 

 
Figure 5.13: Summer Average Fractional Soil Moisture Correlations 

 

 
 
 

Figure 5.14: Fall Average Fractional Soil Moisture Correlations 
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All temporally averaged values of fractional soil moisture annually and seasonally 

yielded a significant correlation with annual observed streamflow (see Figure 5.15). 

Consequently, seasonal and annual fractional soil moisture was a good indicator of 

annual observed streamflow over the LCRA region for coincident years. Correlation 

between fractional soil moisture and observed streamflow was significantly higher for 0-

year lag (within the same year) than for 1-year lag (the following year) as shown in 

Figures 5.15 and 5.16. Thus soil moisture does not appear useful as a predictor of annual 

streamflow at the 1-year lag. As will be discussed later, this highlights the need for 

skillful soil moisture forecasts that would enable 0-year lag prediction of streamflow. 

 

 

 

 
 

Figure 5.15: Annual Aggregate Observed Streamflow Correlations with 0-Year Lag 
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Figure 5.16: Annual Aggregate Observed Streamflow Correlations with 1-Year Lag 

 

Another trend found from the correlation analysis was statistically significant correlations 

obtained between soil moisture and streamflow in subsequent seasons (Figure 5.17). This 

type of correlation is useful for seasonal lead-time applications. The only exception to 

this trend is the poor correlation of Winter fractional soil moisture to Spring observed 

streamflow (0.189). 

 

 
 
 

Figure 5.17: Consecutive Seasons Soil Moisture Correlations 
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There also existed a statistically significant correlation between all seasons (except 

Summer) to the Summer seasons following them. As shown in Figure 5.18, Fall, Winter, 

and Spring fractional soil moisture exhibited significant correlations with Summer 

observed streamflow. Summer (and annual) fractional soil moisture did not correlate as 

well with Summer observed streamflow as the other seasons. In general, the Summer 

season did not present itself as a suitable period for the correlation of fractional soil 

moisture to observed streamflow. However, Summer fractional soil moisture had a 

statistically significant correlation (-0.342) with the following year’s Spring observed 

streamflow (see Figure 5.13).  

 

 

 
 

Figure 5.18: Summer Aggregate Observed Streamflow Correlations 

 

Although significant correlation coefficient values exist for fractional soil moisture and 

observed streamflow for the same temporal period, as lead-time between fractional soil 

moisture and observed streamflow correlation increases, the value of the associated 

correlation coefficient decreases rapidly. Thus, for water managers of the LCRA to utilize 

these coincident correlations, accurate soil moisture forecasts must be available. For 

example, a forecast of next season’s soil moisture could be used in predicting next 
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season’s streamflow. The soil moisture forecasts used in this manner need to be skillful 

and reliable in their application. Use of these forecasts would capitalize on the same-

season and same-year correlations, since 0-lags represent the highest correlation available 

between fractional soil moisture and observed streamflow for the LCRA watershed 

region.  Unfortunately, current soil moisture forecasts and outlooks have not reached a 

degree of precision necessary to be used in a dependable way, although positive steps 

have been taken in that direction (e.g. NOAA CPC forecasts). Water managers should 

ideally be able to use these soil moisture forecasts to predict soil moisture at a given 

period, and then with the correlation results found in this study predict the upcoming 

annual streamflow depending on the value of that correlation. The use of soil moisture 

forecasts will provide the necessary lead time in predicting streamflow that is needed for 

timely water resources management decisions. The preferred result for the decision 

making process is to have very high correlation between soil moisture and streamflow 

with long lead times. Forecasts of soil moisture could provide the lead time needed to 

assist water managers in their decision making process. In comparison to previous work 

and findings (O’Connell, 2002), the results regarding the use of soil moisture as a 

streamflow indicator are promising but also hinges on the progress of future work. This 

future work would look at the incorporation of soil moisture forecast into the streamflow 

prediction process as well as possibly recalibrating the VIC-3L model to the specific 

watershed of interest. Future work is discussed further in section 6.3. 
Equation Chapter 6 Section 1
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6 Summary and Conclusions 
This final chapter summarizes the thesis and provides final conclusions based on the 

results performed in the previous chapter. Suggested future work is also outlined as the 

next step in the overall project. 

6.1 Summary 
 

The objective of this study was to evaluate soil moisture’s potential as a viable climate 

indicator and predictor of streamflow over the Lower Colorado River Basin in central 

Texas. Future research will use soil moisture in conjunction with other climate indicators 

to be incorporated in a decision support model of the Highland Lakes multi-reservoir 

system. The goal is to assist water managers who sign annual interruptible water 

contracts to better project water supplies and needs for the coming year. 

 

In order to assess the value of soil moisture as a climate indicator and predictor of stream 

flow, a couple of data sets were used. Along with historical observed streamflow data, 

modeled fractional soil moisture and runoff data from the Variable Infiltration Capacity 

(VIC) Retrospective Land Surface Data Set were utilized in this study. The common time 

period and the study period between the observed and modeled data sets was 1950-1999. 

The VIC modeled data was extracted from its NetCDF format by MATLAB into 

ArcView so that it could be manipulated.  

 

Prior to correlation analysis, a sensitivity analysis was performed to check if changes in 

the VIC-3L model domain would affect the values and range of the attributes within the 

LCRA. If any changes occured with respect to soil moisture, attribute variability would 

have to be accounted for. A streamflow-runoff analysis was then done to observe how 

VIC modeled data and historical observed data would compare to each other. 

Climatology was then established for all different seasonal and annual combinations of 

fractional soil moisture and streamflow. Trends were viewed as deviations from a 

temporal average, denoted as anomalies. The next stage of the research was the 

correlation analysis, which determined the correlation values between fractional soil 
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moisture and streamflow for various annual and seasonal temporal combinations. This 

analysis was used to verify the potential skill in soil moisture as a predictor of streamflow 

over the LCRA watershed. 

6.2 Conclusions 
 

The results of the sensitivity analysis concluded that there were no significant changes in 

the average fractional soil moisture values in the LCRA watershed to justify a change in 

the VIC-3L model domain. Therefore, attribute variability was not an issue since no 

exterior watersheds or tributaries outside of the Highland Lakes reservoir system affected 

the physical properties within the watershed. The streamflow-runoff analysis verified that 

the modeled streamflow from the VIC Retrospective Land Surface Data Set tracked well 

with the observed historical streamflow data (correlation of about 0.75). This gives 

confidence in the choice of the VIC Retrospective Land Surface Data set as a data source 

for the study purposes. Visual comparison of the VIC modeled fractional soil moisture 

and observed historical streamflow time series confirmed the potential of soil moisture as 

a hydrologic indicator over the LCRA region. 

 

Some correlation patterns were found from the correlation analysis, with varying degrees 

of statistical significance. Significant correlation was apparent between all seasons 

(except Summer) to the Summer season that followed them. Also, there was significant 

correlation between subsequent seasons with the exception of a statistically- insignificant 

correlation between the Winter and Spring seasons. Besides these two trends, seasonal 

fractional soil moisture was found to be a good indicator of seasonal streamflow for 

coincident and subsequent seasons over the LCRA region. Also, seasonal and annual soil 

moisture were good indicators of annual streamflow for coincident years over the LCRA 

region. The analysis also showed that correlations between fractional soil moisture and 

streamflow decreased rapidly as the lead-time increased. Comparing fractional soil 

moisture and streamflow correlations at different lag times has demonstrated that a 

correlation between the two parameters was significantly higher for 0-year lag than for 1-

year lag. The same can be said for correlations between seasons. This finding highlights 

the value and need for accurate soil moisture forecasts.  
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6.3 Future Work 
 

The VIC-3L Model used to obtain the VIC Retrospective Land Surface Data Set was 

calibrated to represent the continental United States. It is possible to obtain better 

correlation and analysis results using a VIC-3L model calibrated specifically for the 

Lower Colorado River Basin. Applying an LCRA-calibrated VIC-3 model would give 

more information on the sensitivity of the results to the calibration of the VIC-3L model. 

To reduce the overestimation of modeled runoff through this calibration, a few physical 

parameters can be adjusted accordingly. Parameters such as infiltration rate and the 

amount of storage in the soil layers can be increased. The water diffusion between the 

soil layers can be increased in capacity and thus increase the amount of baseflow. 

 

Correlation analysis between soil moisture from the VIC Retrospective Land Surface 

Data Set and observed streamflow demonstrated the need for coincident (0-lag) soil 

moisture and streamflow temporal combinations to obtain significant correlation. Thus if 

soil moisture is to be used as a climate indicator and predictor of annual aggregate 

streamflow, then reliable forecasts of seasonal-to-annual soil moisture are needed. This 

leads to the necessary evaluation of the usefulness of applying National Oceanic and 

Atmospheric Administration’s (NOAA) Climate Prediction Center (CPC) forecasts of 

soil moisture anomalies for predicting streamflow for the LCRA watershed region. 

 

NOAA CPC climate forecasts or outlooks focus on portraying information of average 

temperature, total precipitation, and soil moisture (see Figures 6.1-6.3). Climate forecasts 

and outlooks provided by the CPC online include frequently updated evaluations that are 

easily accessible to users and indicate probability anomalies that are organized into 

discrete categories (e.g. wet, dry, normal). CPC outlooks are available in lead-times of 1-

2 weeks, monthly, and 3-month seasonal time periods.  
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Figure 6.1: Example of NOAA CPC Soil Moisture Outlook (Climate Prediction Center, 

n.d.) 

 

 
Figure 6.2: Example of NOAA CPC Precipitation Outlook (Climate Prediction Center, 

n.d.) 
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Figure 6.3: Example of NOAA CPC Temperature Outlook (Climate Prediction Center, 

n.d.) 

 

NOAA CPC seasonal climate outlooks have shown greater predictive skill than forecasts 

that project climatological probabilities based on historical data and have shown a skillful 

ranked probability score (over 20% improvement on climatology) for Southwest and Gulf 

Coast regions with long lead times (Hartmann et al., 2002). Furthermore, the need for 

forecasts to take into account user input (Stern and Easterling, 1999) in creating accurate, 

easy, and user-friendly outlooks is evident by the misinterpretation of CPC outlooks by 

even water and resource managers with technical backgrounds (Pagano et al., 2001). A 

common misinterpretation is mistaking probability anomalies on the CPC outlooks for 

actual quantities. Future research is needed to assess the usage of CPC forecast and 

outlook products to improve upon the findings of this work. This future research would 

also provide insight for the research community on the necessary skill and lead time 

required to make soil moisture forecasts useful in water resources management 

applications. 
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ArcView GIS was the program used to apply GIS operations on the extracted VIC 

Retrospective Land Surface Data Set. Besides the tasks performed on the VIC modeled 

data as explained in Section 4.3 in Chapter 4, other GIS applications are possible such as 

the visual display of watersheds (see Figure A.1) and the data points of interest (see 

Figure A.2). Another useful GIS program that performs similar functions to ArcView 

GIS is ArcMap. ArcMap utilizes the same type of operations available in ArcView for 

data manipulation. ArcMap also performs visual Kriging of data layers and/or data points 

(see Figure A.3). This type of Ordinary Kriging is labeled as a Prediction Map because 

what it essentially does is provide data on a layer in locations where previously there was 

no data. It is a useful visual to estimate the average of a given attribute over a given area. 

Kriging is displayed here for visual purposes and was not used as part of this study. 

 
Figure A.1: GIS Visual of the LCRA Watershed and VIC Data Layer on the State of 

Texas 

 
Figure A.2: GIS Visual of the LCRA Watershed and Overlaying VIC Modeled Data 

Points  
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Figure A.3: GIS Visual of Kriging on the LCRA Watershed 
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Appendix B 
Sample MATLAB Code 

used for 

VIC Data Extraction from NETCDF Format 
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