
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2011

Parallel algorithm for solving integer linear programs Parallel algorithm for solving integer linear programs

David O. Torrey Jr.
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Mathematics Commons

Copyright 2011 David O. Torrey Jr.

Recommended Citation Recommended Citation
Torrey, David O. Jr., "Parallel algorithm for solving integer linear programs", Master's report, Michigan
Technological University, 2011.
https://digitalcommons.mtu.edu/etds/549

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Mathematics Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151507537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F549&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F549&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F549&utm_medium=PDF&utm_campaign=PDFCoverPages

A Parallel Algorithm for Solving IntegerLinear Programs
ByDavid O. Torrey, Jr.

A ReportSubmitted in partial ful�llment of the requirementsfor the degree ofMASTER OF SCIENCE IN MATHEMATICAL SCIENCES
Mihigan Tehnologial University2011
Copyright ©2011 David O. Torrey, Jr.

This report, �A Parallel Algorithm for Solving Integer Linear Programs�, is herebyapproved in partial ful�llment of the requirements for the Degree of MASTER OFSCIENCE IN MATHEMATICAL SCIENCES.
Mathematial SienesSignatures:

Report Advisor Donald L. KreherDepartment Chair Mark S. GokenbahDate

AbstratLinear programs, or LPs, are often used in optimization problems, suh as improvingmanufaturing e�ieny or maximizing the yield from limited resoures. The mostommon method for solving LPs is the Simplex Method, whih will yield a solution, ifone exists, but over the real numbers. From a purely numerial standpoint, it will bean optimal solution, but quite often we desire an optimal integer solution. A linearprogram in whih the variables are also onstrained to be integers is alled an integerlinear program or ILP. It is the fous of this report to present a parallel algorithm forsolving ILPs. We disuss a serial algorithm using a breadth-�rst branh-and-boundsearh to hek the feasible solution spae, and then extend it into a parallel algorithmusing a lient-server model. In the parallel mode, the searh may not be truly breadth-�rst, depending on the solution time for eah node in the solution tree. Our searhtakes advantage of pruning, often resulting in super-linear improvements in solutiontime. Finally, we present results from sample ILPs, desribe a few modi�ations toenhane the algorithm and improve solution time, and o�er suggestions for futurework.

5

AknowledgmentsI would like to thank Mihigan Tehnologial University for o�ering the opportunityto take lasses for free as an employee. Without that, I would not have reahed thepoint where I even onsidered pursuing an advaned degree.To my urrent employer, ThermoAnalytis, my thanks for the funding and workshedule �exibility to allow me time to omplete my degree. Had it not worked out,I may have dropped the idea in its early stages.To my advisor, Dr. Kreher, thank you for enouraging me to ontinue in the areaof disrete mathematis and for putting up with a non-traditional graduate studentwho worked, shall we say, at his own pae. You didn't give up on me when I expetedyou to, and that helped me stay the ourse.And �nally, to my wife Katie, thanks for taking up the slak on evenings andweekends, goading me into working when I didn't want to while still making sure thekids knew who I was, and putting up with desriptions of mathematial onepts,algorithmi nuanes, and programming subtleties in exruiatingly vivid detail. Iouldn't have survived it without your support.

7

Contents
Contents 9List of Tables 11List of Figures 11Listings 121 Introdution, Notation, and Bakground 131.1 Simplex Method . 141.2 Linear Relaxation . 172 Existing Methods 213 Serial Implementation 233.1 Tableau . 233.2 Solution Tree . 233.3 Queuing . 243.4 Feasibility . 273.5 Pruning the Searh . 274 Parallel Implementation 294.1 Parallel Methods . 294.2 Client-Server . 304.3 Traversal of the Solution Spae . 314.4 De�ning �Done� . 335 Empirial Analysis and Conlusions 355.1 Tabulation of Results . 365.2 Case 1: Cube . 375.3 Case 2: House . 395.4 Depth-�rst Enhanement . 415.5 Conlusions . 429

6 Future Projets 436.1 Improving Linear Relaxation Methodology 436.2 Drill Often . 436.3 Multiple Solutions . 446.4 Optimized Queuing . 446.5 Optimize the Choie of Fixed Variables 446.6 Matrix Routines . 456.7 Network Routines . 456.8 Other Parallel Methods . 45Referenes 47Referenes 47A Code Listings 49A.1 Overview . 49A.2 Usage . 50A.3 Parallel Solver . 51A.4 Pre-proessing Sripts . 95

10

List of Tables
4.1 Client-Server Protool . 315.1 10.5 unit ube results . 385.2 100.5 unit ube results . 385.3 100.5 x 200.5 x 300.5 unit box results . 385.4 Minimize Z = −100x1 − 10x2 − x3 over 100.5 unit ube 385.5 House 1 results . 405.6 House 2 results . 40
List of Figures
1.1 Graphial representation of Example 3 183.1 Example solution tree . 243.2 Pruned solution tree . 274.1 Labeled solution tree . 325.1 Nodes heked by drill . 41

11

ListingsA.1 Make�le . 51A.2 main. 52A.3 master. 54A.4 lient. 67A.5 solver. 72A.6 drill. 76A.7 phases. 79A.8 queue. 85A.9 utils. 87A.10 solver.h . 92A.11 queue.h . 94A.12 mps2mat . 95A.13 optimize . 98

12

Chapter 1Introdution, Notation, andBakgroundLinear programs are often used to optimize manufaturing e�orts or maximize theuse of limited resoures. For example, a fatory might like to maximize their output,pro�t, or e�ieny given onstraints suh as the ost of raw materials, time requiredto produe various produts, and the pro�tability of eah part. The solution to suha problem is the quantity of eah produt desired, and the maximized target �gure.Given a set of limited resoures, a set of possible produts or goals, and the ostof building eah produt or ahieving eah goal, a linear program will produe theoptimum quantities of produt[6℄.De�nition 1. Let A = [aij] be an m× n matrix where aij ∈ R, c ∈ R
n and b ∈ R

mbe vetors. Then a linear program (LP) is de�ned as �nding X ∈ R
n suh that wemaximize Z = cT X, subjet to AX ≤ b [6℄.Example 1. The set of equalities in the following linear program an be visualized asthe solid ube with edge length 10.5, having one orner at the origin. For simpliity,we hoose to maximize the sum of the oordinates:maximize Z = x1 + x2 + x3

x1 ≤ 10.5

x2 ≤ 10.5

x3 ≤ 10.5

−x1 ≤ 0

−x2 ≤ 0

−x3 ≤ 0An obvious solution to the problem is Z = 31.5, whih ours at x1 = x2 = x3 = 10.5.13

In matrix form, we an state the problem as follows:
A =

1 0 0
0 1 0
0 0 1
−1 0 0

0 −1 0
0 0 −1

, b =

10.5
10.5
10.5

0
0
0

, c =

1
1
1

The solution X is alled feasible if it satis�es AX ≤ b, and optimal if there is noother feasible solution yielding a larger value of Z = cT X.Clearly, depending on the tightness of the onstraints, there may be multiple fea-sible solutions. There may even be multiple feasible solutions that yield the sameoptimal objetive funtion value (pro�t, for example). With fewer variables and on-straints, it is quite often possible to generate a feasible solution simply by inspetion,though it may not neessarily be optimal. For more ompliated linear programs, orfor omputerized appliation, we need a generalized method.1.1 Simplex MethodThe most ommon method for solving LPs is the simplex method. In order to takeadvantage of it, the problem statement is onverted into standard form [6℄. Surplusand slak variables are added to the inequalities, hanging them to strit equalities andadding the ondition that xi ≥ 0; and Z is negated so that the goal is minimization.The de�nitions of feasible and optimal are appropriately reworded to re�et standardform. It is this standard form that our program expets as input.De�nition 2. Standard Form Let A, c, b, and X be de�ned as before. We addvariables s1, . . . , sm to produe A′ = [A|Im], c′ = [c|0 . . .], X ′ = [x|s] and de�ne Z ′ =
[−Z|0 . . .] suh that the problem an be stated as �nding X suh that we minimize
Z ′ = c′T X, subjet to A′X = b and xi ≥ 0 [6℄.It is onvenient to represent A, b, and c as a onsolidated tableau, for purposes ofvariable passing and data management. We de�ne the tableau as:Tableau :=

A b

cT 0

 (1.1)
14

Example 2. Example 1, adjusted to standard form would be:
minimize Z = −x1 − x2 − x3

x1 + s1 = 10.5

x2 + s2 = 10.5

x3 + s3 = 10.5

xi ≥ 0, si ≥ 0

The orresponding tableau is:

1 0 0 1 0 0 10.5
0 1 0 0 1 0 10.5
0 0 1 0 0 1 10.5
−1 −1 −1 0 0 0 0

Note the absene of expliit onstraints for xi ≥ 0, as they are implied by stan-dard form. Stritly speaking, any original xi's whih were unrestrited would requiresubstitution of xi = x′

i − x′′

i where x′ ≥ 0, x′′ ≥ 0 to ensure non-negative values forall variables. For simpliity, we are assuming the original variables all had impliednon-negativity onstraints. Also note the addition of slak variables si and the re-sulting identity submatrix in the tableau. This tableau is the input for the simplexalgorithm.The top-level of the simplex algorithm itself onsists of three phases, desribed15

here in pseudo-ode: [6℄Algorithm 1.1.1: Simplex(Tableau, nV ars, nEqs)
Unbounded← false
Infeasible← falsePhase0(Tableau, nV ars, nEqs)if Infeasiblethen {output ("Program is infeasible after phase 0")returnPhase1(Tableau, nV ars, nEqs)if Infeasiblethen {output ("Program is infeasible after phase 1")returnPhase2(Tableau, nV ars, nEqs)if Unboundedthen {output ("Program is unbounded after phase 2")return
Z ← −Tableau[nEqs + 1, nV ars + 1]for j ← 1 to nV arsdo X[j]← 0for i← 1 to nEqsdo X[pivots[i]] = Tableau[i, nV ars + 1]return (X, Z)The phases themselves are desribed as follows. For a more thorough disussionand sample oding of all three phases, see [6℄.Phase 0: Find a basi solution, or show that the program is infeasible. This solutionmay not meet the added onstraint xi ≥ 0.Phase 1: Create a basi feasible solution from the basi solution, if neessary, orshow that the program is infeasible. This solution meets all the onstraints, butmay not be optimal.Phase 2: Improve the basi feasible solution (minimize Z) to get the �nal solution,or show that the program is unbounded.The simplex algorithm as presented so far will yield a solution, if one exists,over the real numbers, xi ∈ R. From a purely numerial standpoint, it will bean optimal solution, though others may exist with the same Z for di�erent valuesof X. Quite often, however, we desire an integer solution. In the simple fatoryase above, it would be di�ult and not partiularly useful to produe a fration of16

various produts. In other appliations, partiularly ombinatorial or graph theoryappliations, the problem itself may simply be disrete, and thus an integer solutionto the model is appropriate. However, the simplex method alone does not provide adeterministi algorithm for �nding integer solutions.A linear program in whih the variables X are also onstrained to be integersis alled an integer linear program (ILP). It is the fous of this report to present aparallel algorithm for solving ILPs.1.2 Linear RelaxationAn obvious integer solution to Example 2 is Z = −30, ourring at x1 = x2 =
x3 = 10. We note that the funtion de�ning Z is a simple oordinate sum, andhoose the largest integer oordinates that satisfy all onstraints. This example issimple, however, and in pratie, the integer solution is not always so obvious (oreven neessarily near the real solution). Another obvious method would be to hekall feasible integer ombinations, but suh an exhaustive searh on the solution spaewould be impratial for larger problems.To �nd integer solutions to a linear program in general, we an use the onept oflinear relaxation. We �x some initial assignment x1, . . . , xi to be integers but �relax�the integer onstraint and allow the remaining xi+1 . . . xm to be any real value, andsolve the remaining program. We an take advantage of the fat that any integersolution of the original problem is also a solution over the reals. In fat, for a giveninitial assignment, the best possible integer solution an be no better than the bestpossible real one. Furthermore, if during the initial phase of the searh, we �nd aninteger solution (i.e. where the remaining xi+1, . . . , xn happen to be found to beintegers), we then have an upper bound on the optimal value of Z. Continuing in thesearh, we an ignore ases where the real solution has a Z value greater than ourbound (reall that we are minimizing Z). We may further improve our bound withnew integer solutions, and our hope is that this allows for signi�ant pruning of thesearh.Applying this method to Example 2, we would begin by setting x1 = 0 (theminimum value for x1), adjusting the tableau, and solving the remaining LP. Thiswould yield the solution (0, 10.5, 10.5) with Z = −21. We proeed by setting x1 = 1and repeating the proess. At x1 = 10, we have Z = −31 and at x1 = 11 the problembeomes infeasible.Note that we haven't found any integer solutions yet (all so far involve x2 =
x3 = 10.5), and thus annot prune the searh. We start over with x1 = 0, but also set
x2 = 0. We adjust the tableau and solve to �nd the solution Z = −10.5 at (0, 0, 10.5).This round of linear relaxation, setting two variables at a time, ontinues until theproblem yields Z = −30.5 at (10, 10, 10.5).The last round begins by setting all three variables to be integers, and rangingthrough the feasible values. Obviously, all solutions in this round will be integer ones,17

but the proess has resulted in an exhaustive searh. We did not �nd any integersolutions until the last round of linear relaxation, and although our hope is to avoidthis, it does also depend on the struture of the problem to some extent.We present another example, showing how the tableau is a�eted by the linearrelaxation:Example 3. Consider the following ILP, given �rst in equation form, then in ourstandard tableau form with slak variables:
4x− 5y ≤ 10

x + 12y ≤ 48

x, y ≥ 0maximize y

4 −5 1 0 10
1 12 0 1 48
0 −1 0 0 0

This an be easily visualized in two dimensions as interseting lines. We want tominimize −y (or, more intuitively, maximize y). Drawing this out is straightforward,and we an shade the region representing the inequalities so as to visualize the feasiblesolution spae. Clearly, the optimal solution is (x, y) = (0, 4), where the objetivefuntion takes on the value Z = −y = −4.
 4x−5y = 10

x + 12y = 48Z = −y
at y = 2

Figure 1.1: Graphial representation of Example 3To generalize the proess, we'll denote the variables as x1 = x, x2 = y, x3, and x4,where the latter two are the slak variables. Applying our proess of linear relaxation,we would start by setting x1 = 0 and solving the remaining LP over the reals. Thetableau with x1 = 0 is simply:

−5 1 0 10
12 0 1 48
−1 0 0 0

18

We apply the standard simplex algorithm to get x2 = 4 and Z = −4. Thishappens to be an integer solution, and so we know that the �nal Z will be at most
−4. Being an integer solution, we do not need to iterate on x2 for x1 = 0 either.Continuing to iterate, setting x1 = 1, we get this tableau:

−5 1 0 6
12 0 1 47
−1 0 0 0

Applying the simplex algorithm, we get x2 ≈ 3.92 and Z = −3.92. This is notan integer solution, but also has a larger Z value, and thus we won't need to iterateon x2 for x1 = 1. Without the pruning, and only the two variables, that would haveresulted in an exhaustive searh.We now ontinue with x1 = 2, 3, . . . until the LP with tableau

−5 1 0 10− 4x1

12 0 1 48− x1

−1 0 0 0

beomes infeasible. It is infeasible when x1 = 7. For eah iterative hoie for x1,there were no more integer solutions, and eah suessive value of Z beame larger.Had we not stumbled on an integer solution at x1 = 0, and thus set an upper boundon Z, the proess would ontinue by iterating on x2 for eah x1 = 0, 1, 2, . . . , 6.Of ourse, it is also possible that an ILP has no solution beause it is eitherunbounded or infeasible over the reals, but that an be found out by �nding thesolution over the reals �rst. In our parallelization method, that initial run over thereals is also neessary for other reasons, as we will see later in Setion 3.4.Finally, the �worst� senario for an integer linear program would be one wherethere is a real solution, but no integer solutions. In this ase, the searh will notbe pruned and we end up with an exhaustive searh. In a majority of appliations,however, this is probably the least likely ase, while it may be more ommon intheoretial problems. 19

Linear relaxation an be desribed programmatially as a reursive proess:Algorithm 1.2.1: LinearRelaxation(Tableau, nV ars, nEqs, X, nF ixed)omment: status variables
Done← false
Found← false
Prune← falseomment: set up the new tableaufor i← nFixed + 2 to nV arsdo {for j ← 1 to nEqs + 1do newTableau[i− 1][j]← Tableau[i][j]omment: substitute for the new �xed variableif nFixed = nV arsthen Done← true
nFixed← nFixed + 1
X[nFixed]← 0while Prune = false and Done = false
do

newTableau← SubTableau(Tableau, nV ars, nEqs, X, nF ixed)
(X, Z)← Simplex(newTableau, nV ars− 1, nEqs)if Infeasiblethen Prune← trueelse if Unboundedthen {

Done← 1return (false)else if IntegerSolution(X)then

omment: hek for improvementif !Found or (Z < ZB)then

ZB = Z
XB = X
Prune← true
Found← trueLinearRelaxation(Tableau, nV ars, nEqs, X, nF ixed)

X[nFixed]← X[nFixed] + 1return (Found)

20

Chapter 2Existing MethodsMuh of the prior work on suh algorithms ourred in the late 1980s through the late1990s, with muh general parallelization researh going bak to the 1970s. It is unlearwhether the speed improvements in hardware, the massive parallelization possiblewith today's omputer systems, or simply that urrent algorithms are adequate tosolving today's ILPs led to the gap in researh sine the late 1990s.Many papers referene [7℄, whih overs the broader topi of Integer and Combina-torial Optimization in general. Chapter II.4, setion 2 outlines the basi approah wetake here, and de�nes some theoretial optimizations for breaking up problems andhoosing branhing variables, suh as �degradations� and �penalties�. We took a dif-ferent approah to breaking up the work, while following later, less omputationally-intensive methods for branhing.Also in 1988, [3℄, a parallel solution that ahieved super-linear e�ieny on sev-eral test problems using a hybrid branh-and-bound and utting-plane method waspresented. At eah node of the tree, the problem was split into two sub-problems ando�ered bak in sort of a queue. It is not lear to us if there is any optimization in thehoie of branhing variables, or spei�ally how a node is �fathomed�. In this model,there is a notion of a master proess in the sense that one proessor performs ertainsetup and pre-alulation, while the rest of the algorithm depends on set of sharedresoures, termed the �monitor�. Our algorithm is similar, but inorporates a ded-iated master proess whih maintains ontrol over the work queue and assimilatesthe results from the lient proessors. We similarly left out potential optimizations ofvariable hoie and branhing priorities initially, in an e�ort to ahieve simple proof-of-onept and implementation. Many suggestions for improving our approah arelisted in Setion 6.The 1993 survey paper [5℄ provides a high-level overview of the onepts involvedin branh-and-bound parallelism in general, of whih the ILP is a subset. Our odefalls into the "Parallelism of type 2" lassi�ation, and is a �Strategy on request��Asynhronous Single Pool� design, in the terminology of this survey. We have amaster proess, but the lients build the branh-and-bound tree, adding work whileiterating at eah node. The master may later remove work as obsolete, whih is how21

we hope to ahieve super-linear improvements in performane.In 1997, [1℄ builds on the general algorithm in [7℄ and largely follows the treestruture and hybrid method of [3℄. The authors inorporate the use of �penalties�from [7℄ in order to better optimize the hoie of branhing variable, but agrees withthat soure that many ommerial solvers have abandoned suh alulations as theyhave proven to be omputationally-intensive for larger problems.Finally, muh of the struture and methodology of our algorithm follows losely tothat presented in [6℄ from 2005. In partiular, our method inorporates Bland's Anti-yling Rule to avoid yling while onverging on a solution. This rule is appliableto the general simplex algorithm, and is not partiular to ILPs or linear relaxation.

22

Chapter 3Serial ImplementationThe serial implementation is essentially a branh-and-bound searh on the feasiblesolutions over the integers. We hope that the searh an be pruned by taking advan-tage of the previously-mentioned onepts within the simplex algorithm and linearrelaxation.3.1 TableauWe took advantage of indexing onventions in the C programming language, wherebyan array of length n is referened by indies [0, . . . , n− 1], to allow the use of a singletableau variable for all phases of the simplex algorithm[6℄. The desription given inFigure 1.1 forms the bulk of a simple doubly-indexed array, but with the upper leftentry from A in ell (1, 1) instead of (0, 0). Row 0 and olumn 0 are used in Phase 1 tostore the additional osting variables and optimal value funtion. There is somewhatof a trade-o� between simpliity in funtion alls by passing a single tableau variableversus omplexity in indexing during matrix operations due to the dual-use of thearray.3.2 Solution TreeThe solution spae for the searh an be viewed as a tree with levels l = 0 . . .m [7℄.At eah level l ≥ 1, we reate a node for eah feasible value of xl, given the valuesthat have already been set higher in the tree for x1 . . . xl−1. A sample tree is given asFigure 3.1. The top node, l = 0, has no real meaning in this model as far as assigningany value to any xi.At eah node, we use linear relaxation with x1 . . . xl as integers and solve for theremaining xl+1 . . . xn using the simplex method. There are four possible results, andwe employ a deision tree with baktraking:1. If the program is unbounded at any point, then the entire original problem is23

unbounded and we are done. We have hosen integers for X0 and beause theprogram is unbounded at this stage, an hoose any integers we wish for somepartiular xi, i > l.2. If the program is infeasible, we an prune the searh below that node, as nofeasible solutions exist for that partiular value of xl. We baktrak and ontinuethe searh on a di�erent branh of the tree. [7℄3. At this point, the program has a solution, so we hek to see if it happens to beinteger. If so, we have a bound on Z. If this is an improvement on an existingbound (or if we have no existing bound), we keep the value.Regardless, for an integer solution, we also prune the searh. Below this node,we know the best solution and we know it to be integer.4. If the solution is not integer, we simply add nodes below for values of xl+1 aslong as l < n, and ontinue searhing the tree.5. One we have exhausted all feasible solutions (l = n), we baktrak up to thenearest level with unsolved nodes.We also refer to these nodes as �ases�, whih abstrats it away from a tree andmakes the transition to an optimized parallel algorithm a bit more intuitive later.We refer to the level of relaxation in a ase by indiating the number of variablesexpliitly set to be integers, as in a �2-variable ase� or �5-variable ase�.There are a few aspets of this serial algorithm worth overing in greater detail.3.3 QueuingWe used queuing rather than a true tree struture in the serial implementation, be-ause it simpli�ed the later onversion to parallel. The queue starts out with a singlenode, and the algorithm pushes additional nodes onto it as more feasible ases arefound. The algorithm terminates when the queue is empty, and if we have an integersolution at that point, it is the optimal one.
x3 = 1

x2 = 0

x3 = 1

x2 = 1

x3 = 1

x2 = 2

x1 = 0

x3 = 1

x2 = 2

x3 = 1

x2 = 3 . . .

x1 = 1 . . .

no assignments
Figure 3.1: Example solution tree24

The net e�et of the queuing is that the overall searh is breadth-�rst, while eahase generates more ases one level deeper. Our laim is that this allows for fasterpruning of the searh by providing a broader distribution of work early in the searh.Quite often, �xing relatively few variables as integers in a linear program will resultin the entire solution being integer[7℄.Finally, the queuing model allowed for simpler memory management in the atualode. Dynami alloation of queue nodes for ases and a linked-list for the queueitself obviate knowing the size of the tree in advane.The desription given in Algorithm 1.2.1 is a depth-�rst searh. Algorithm 3.3.1shows the modi�ed pseudo-ode for linear relaxation using a queue, thereby hangingthe proess to breadth-�rst. The GetCase() and PutCase() funtions simply takedata from the queue (a �pop�) or plae data on the queue (a �push�), and the queueitself uses a linked-list to model a �rst-in-�rst-out (FIFO) stak. The atual queuemanagement ode an be found in the appendix.

25

Algorithm 3.3.1: QueuedLinearRelaxation(Tableau, nV ars, nEqs, Queue)
Done← false
Prune← falsewhile (nFixed, X, Zcase)← GetCase(Queue)

do

omment: don't bother unless there is possible improvementif Found and (Zcase ≥ Zfound)then Prune← true
nFixed← nFixed + 1
X[nFixed]← 0while Prune = false and Done = false

do

newTableau← SubTableau(Tableau, nV ars, nEqs, X, nF ixed)
(X, Z)← Simplex(newTableau, nV ars− 1, nEqs)if Infeasiblethen Prune← trueomment: Infeasible here means look no further on this branhelse if Unboundedthen {

Done← 1returnomment:Unbounded anywhere is unbounded, period. We are done.else if IntegerSolution(X)then

omment: hek for improvementif !Found or (Z < Zbest)then

Zbest = Z
Xbest = X
Prune← true
Found← trueelse if nFixed 6= nV arsthen PutCase(Queue, nF ixed, X, Z)omment:We have more potential, queue for later

X[nFixed]← X[nFixed] + 1return
26

3.4 FeasibilityAt eah level of the tree, we enumerate feasible values of xl � that is, values of xl forwhih there exists a solution to the relaxed problem having �xed integer values for
x1, . . . , xl and real values for xl+1, . . . , xn. This is not as obvious as it sounds, for weannot just start at xl = 0 and stop when we reah our �rst infeasible result. It'squite possible that the feasible range for xl is something like 2 ≤ xl ≤ 10, for example.To get around this, we again take advantage of the simplex solution over the reals.At the previous level l − 1, we solved for the remaining variables, inluding xl, overthe reals. Let xlR represent the optimum real value of xl for a given ase. To �ndthe possible range of integers for assignment to xl, then, we split the work into tworanges: upward from ⌈xlR⌉ and downward from ⌊xlR⌋. This is done to more e�ientlylimit the range of eah variable: had we started at xi = 0, we would need to iterateupward until the LP �rst beomes feasible, then ontinue until it is not. We ontinuetrying eah integer value until the solution on the remaining variables is infeasible.In pratie, one of the two ases generated is often infeasible from the start beausethe optimal real value is near or at a boundary onstraint.3.5 Pruning the SearhPruning of the searh depends on �nding an integer solution. It is quite possible thatthe searh for a given program might not prune until very late, or indeed, not at all(no integer solution). In the initial phase, before any bounds have been found, we doget values for the real solution. Those values are another bound, but in this serialimplementation, are not used. It may be possible to take advantage of them to alimited extent for imposing a priority on the queue.Again viewing the solution spae as a tree, where level l of the tree onsists ofnodes orresponding to all feasible values of xl for the set values of x1 . . . xl−1, pruningis done in the literal arboreal sense. For example, onsider the sample tree given inFigure 3.1, and suppose that setting x1 = 0, x2 = 2 makes the problem infeasible.Obviously, there is no point in ontinuing down that branh. The searh is prunedat that node, utting o� the tree below that point, yielding Figure 3.2. The searhwould then ontinue with the node x1 = 1.
x3 = 1

x2 = 0

x3 = 1

x2 = 1 x2 = 2 infeasiblex1 = 0

x3 = 1

x2 = 2

x3 = 1

x2 = 3 . . .

x1 = 1 . . .

Figure 3.2: Pruned solution tree27

With the use of a queue to store ases for later evaluation, pruning the tree forinfeasibility amounts to not pushing the ase under urrent evaluation onto the queue.Further pruning an happen if we enounter an integer solution. That solutionprovides an upper bound on Z, and we further prune branhes of the tree that have
Z values whih annot improve on that bound. With the queue struture in thissituation, a ase is pulled o�, found to have no improvement over the known Zbound, and simply dropped.

28

Chapter 4Parallel ImplementationIn the parallel implementation, we break down the program struturally to allowthe use of multiple proessors. Again, the intention is to speed up pruning of thesearh. At the very least, we should ahieve a linear improvement in the speed of thesearh itself. The appropriate method for a given problem depends on the quantityof the data, the type and omplexity of the algorithm, and the amount of bandwidthrequired for data aess and ommuniation.4.1 Parallel MethodsParallel algorithms take advantage of problem struture in order to speed up proess-ing by spreading the work over multiple ompute nodes. There are several generalmethods to aomplish this, overed brie�y here. All methods redue to e�etivelybreaking up the dataset to be onsidered in some fashion (termed "grain size"), andestablishing an appropriate ommuniation and ontrol system between proessingnodes (the "topology") [4℄.One simple form is to manually break up the problem. This may be a matterof giving a subset of data to be proessed to eah of several ompute nodes, thenomparing the results. Testing and analysis problems may fall into this ategory,and the unmodi�ed serial algorithm is employed in parallel on eah dataset. Thismethod has a large grain size and the advantage of not having to develop a speializedparallel algorithm, but only a�ords a linear improvement on speed. There is noommuniation neessary between ompute nodes in this model.Shared memory parallelization often relies on numerial methods to perform largealulations in parallel. Part of the algorithm itself breaks down the model or data,rather than having to do it manually, and all proessing nodes aess the single datasetdiretly [4℄. This method is generally limited to speialized hardware, often a singlephysial mahine with several CPUs and an larger amount of memory. This methodis by far the fastest, beause memory aess is at loal bus speeds, and beause ofthe generally small-grain breakdown of data. However, it is limited in salability29

by the physial spei�ations of the mahine, in partiular the bandwidth availablefor inter-node ommuniation. Larger systems may take advantage of speialized, oreven ommodity, network onnetions in order to extend the parallelization to otherphysial mahines. Examples of programming libraries and ompilers for this modelinlude MPI (Message Passing Interfae) and UPC (Uniform Parallel C).A reent example of speialized hardware for shared-memory appliations is theGPU � Graphis Proessing Unit. One simply dediated to running a omputer'sgraphial display, modern GPUs are designed with broader omputation in mind.Units with upwards of 400 proessor nodes are not unommon, and there is worktoward standard programming interfaes underway. The proessing nodes are simple,and very spei�ally designed for small-grain algorithms.Distributed memory parallelization lies at the other end of the spetrum, whereeah proessing node has its own dediated exlusive memory, and runs a opy of thealgorithm. The individual nodes an either negotiate among themselves, as in theshared-memory model, or there may be a dediated "master" node handing out worksets to other nodes for atual proessing. A lient-server algorithm is an exampleof the latter, and o�ers somewhat of a middle-ground when the problem spae hasobvious disrete bloks of omputational work. A master server distributes pieesof work at the request of several lients, giving the advantage of sale over severalphysial mahines. The limiting fator here is the speed of ommuniation betweenthe master and eah lient, while the salability is only limited by the how manylients the master an trak. MPI is also appliable in this model, as it allows generiommuniation between ompute nodes, independently from any shared hardwareresoures suh as memory.4.2 Client-ServerIn our problem, we have a tree struture in whih eah node in the tree requiresrunning the simplex algorithm on a matrix and omparing the results with those ofother nodes (a deidedly large grain size). The amount of data required to desribea ase is minimal (simple topology) and together with the initial tableau desribesan independent hunk of omputation work, thus the lient-server model suits it verywell. MPI may be a good hoie for ommuniation, but it is simpler to implementthe �rst version with a straightforward text-based network ommand protool and asingle master node. In addition, given the speed of the simplex algorithm on largeLPs, we expet a majority of algorithm time to be taken in the omputation ratherthan the ommuniation.In our algorithm, the master initially distributes opies of the original data, andthen hands out ases, aepts the results and handles potential searh pruning, whilethe lients run the simplex algorithm. The only signi�ant omputation the masterdoes is for the initial ase, to �nd out if the problem is infeasible or unbounded, orelse determine the optimal real value of x1.30

This model has been suessfully used in many high-pro�le ommunity-proessinge�orts, inluding Seti�Home[2℄ and Folding�Home[8℄. In our ode, the networkommuniation onsists of simple text-based protool. The master proess is started�rst, and given a �le name and number of lients to expet. The �le ontains thematrix desription of the linear program. As eah lient onnets to the master, it isimmediately given a opy of that �le, and then waits to be issued a ase. The rest ofthe proess is ontrolled by a simple protool using the ommand set in Table 4.1.Table 4.1: Client-Server ProtoolCommand Issued by De�nition Response(s)request lient Client requests a asefrom the master forproessing Master responds with`ase', `done', or `wait'ase nFixed XlR ZlR master Master gives a ase tolient Client proesses aseand returns resultswith `results'done master All ases have beenhandled Client disonnets andexitswait master Master tells lient towait a predeterminedamount of time Client waits a pre-determined time, thenrepeats the original re-questbye lient Client announes in-tention to disonnet Master removes lientfrom list and re-distributes work asappropriateresults lient Client announes re-sults of proessing Master queues,prunes, or stopsproessing as appro-priate4.3 Traversal of the Solution SpaeThe parallel implementation, when ombined with the queue struture for the solutiontree, produes a traversal that is really neither depth-�rst, nor breadth-�rst. Considerthe depth-�rst labeling of the tree in Figure 4.1.A depth-�rst searh would traverse it in lexiographial order, from node A to nodeV. The queue struture in the serial implementation, however, e�etively produes abreadth-�rst searh, beginning with A, N, and then B, F, J,In the parallel implementation, eah lient works at one node evaluating feasibleases to reate nodes below it, just as in the serial version. Depending on the feasibility31

C D EB G H IF K L MJA P Q RO T U VSNα

Figure 4.1: Labeled solution treeof eah node and the time it takes to solve eah ase, however, the lient that puta ase on the queue might very well not be the one that ends up heking it later.Eah lient will traverse in a somewhat random pattern, but sine all lients usethe same work queue, all feasible ases are eventually handled. For example, twolients running through the tree in Figure 4.1 might evaluate ases as follows, where
Q designates a possible work queue at various points:1. Q = [α]: CPU1 gets the single initial ase, iterates on x1, and produes nodesA and N (Q = [AN]). By the time CPU1 is done iterating, CPU2 has alreadystarted on A, so CPU1 ontinues at N, iterating on x2, and produes O and S.2. Meanwhile, CPU2 started out idle, waiting for work. One the queue started to�ll, it was assigned node A, and produed nodes B, F, and J. Combined withthe work CPU1 is produing, the queue ould be just about any interleaving ofB, F, J, and O, S, suh as Q = [BOFSJ].3. Whihever lient ompletes its run on x2 �rst would get node B, iterate on

x3, and produe C, D, and E. The other lient might get node O (as in thepossible Q given above), and the resulting queue ould be something like Q =
[FSJCDPQER].4. . . . and so on, with eah lient pulling the next available piee of work from thequeue, and the results of all lients being pushed onto the queue in the order ofgeneration.Note that in step 3, it is possible that node O might ome up for proessingbefore nodes F and J, thus the searh is not exatly breadth-�rst. Nodes F and J willget handled in the order in whih they were queued, provided no improved boundon Z has been found in the meantime. If suh a bound has been found, any nodehaving a higher optimal Z value over the reals would be pruned when it omes up foronsideration, saving proessing time. It is worth mentioning in partiular that thispotential bound might be found by any one of the lients, but a�ets all lients from32

that point onward. The master keeps trak of these bounds and integer solutions,and heks future ases against them when handing out work to its lients.4.4 De�ning �Done�One onern with the ombination of queued ases to represent a solution spae,and lient-server ommuniation to distribute work, is how to know when the entirealgorithm is �done�. Obviously, this happens when there is no more work to beproessed, however, that is not neessarily equivalent to having an empty queue.Rather, we are done when the queue is empty and all work distributed to lients hasbeen ompleted and reported. This is redundant in the serial model, sine there isessentially one lient, but important in the parallel one.Initially, the queue only has one ase, and all lients request work. As we sawin the desription in setion 4.3, only one lient gets anything to proess, and theother lients must wait, rather than exit � there will likely be plenty of work one weknow the feasible range of x1. We aomplish this by keeping trak of the ase wehave assigned to eah lient in a separate array, and are �done� when the main workqueue and lient work array are empty. We also gain some robustness in the abilityto reassign ases, should a lient disonnet without reporting its results.A seondary issue with ompletion onerns the simplex algorithm itself. Underertain irumstanes, the simplex algorithmmay yle � that is, it does not terminateon a solution, but rather ontinues in an endless yle. One ommon method toounter this is to apply Bland's Rule[6℄, whereby pivots are hosen by spei� riteriaduring phases II and III, guaranteeing that the algorithm will not yle.

33

Chapter 5Empirial Analysis and ConlusionsIn the ourse of this projet, several hurdles were enountered in stages. In earlyruns, it beame lear that zero-one matries, suh as those found in many graph theoryproblems, did not lend themselves to the work breakdown used here. Spei�ally, eahvariable did not have muh of a feasible range, and a feasible ase would generate onlyone or two (xi+1 ∈ {0, 1}) ases for further investigation. Also, these problems seemedto exhibit a tendeny to arrive at an integer solution very early and with little or noroom for improvement, and not atually test out the branhing and parallelization ofthe solver.Finding example problems proved to be muh more di�ult than expeted. Thereare a few example problems and problem sets mentioned in the referenes [1, 3℄,but the format neessitated a onversion utility in order to prepare the LP for oursolver, and a ode hange to the solver itself in order to better handle slak variables.Furthermore, the sample problems were given as general LPs, and as suh did not listan integer solution (or indeed, if one even existed). On one run of suh an LP, thework queue onsumed all available memory over the span of two days, and rashedthe master node � without so muh as a token integer solution. The best alternativewas to ontrive examples with veri�able integer solutions, suh as the ube, box, andhouse problems disussed below.Motivated by the long run-times of the older sample problems (where it is notlear an integer solution even exists), we went ahead and implemented some simplequeuing and relaxing optimization ideas, but found them not as helpful as expeted.More are mentioned in setion 6. The results were surprising at �rst, but obviousupon further inspetion. One may expet that plaing an ordering on the queue,suh as by bound, would improve solution time. In pratie, though, this resulted ina depth-�rst searh. While solving a relaxed ase with �xed variables x1 . . . x3, forinstane, there are likely several feasible values for x4 that have very similar bounds.Queuing these ases based on those bounds would result in the master handing outnodes farther down this branh of the solution tree, rather than more broadly arossit. Along with this behavior, the simple linked-list struture employed for the queuequikly beame umbersome while adding ases for future onsideration, due to the35

linear nature of traversal while omparing bounds. An alternate data struture ouldavoid this, and allow further evaluation of queue prioritization. An index into thequeue based on the sorting riteria would prelude a full linear searh, but a binarytree might be a better hoie to allow faster insertions.On the linear relaxation side, it seemed likely that di�erent olumn orderings ofthe tableau might a�et solution time. We wrote a pre-proessor that looks at threeriteria: a�et on Z (smallest non-zero ci), number of appliable onstraints (rows of
A where Aij 6= 0), and level of onstraint (smallest ratio of Aij to bi for a given i).The rationale for the �rst is to maximize the e�et on Z in hope that it will leadto early pruning. For the latter two, we hope to look �rst at variables with smallerfeasible ranges (or more onstraints), and get a broad view of possible Z values earlyin the run.Finally, the input format itself was modi�ed slightly to allow the spei�ation ofwhih xi must be integers. This was done to allow distintion of atual programvariables from slak variables (whih are not generally subjet to the integer require-ment), but has the added bene�t of making the solver able to handle mixed integerlinear programs (MILPs) as well as ILPs.5.1 Tabulation of ResultsIn eah example problem, we optimized the olumn order several ways for omparisonof various methods. The notations under the "PreP" olumn, suh as "zr", indiatethe sorting method applied to the tableau olumns, as disussed earlier, where "z"sorts by the largest e�et a given xi has on Z, "" sorts by the number of onstraintsin whih xi appears, and r sorts by the smallest ratio of Aij/bi for onstraints in whih
xi appears. Thus, the notation "zr" means the tableau olumns were sorted �rst byz, then by , then by r. Similarly, a minus sign in front of any sort letter indiatesthe sort was reversed for that riterion.We ran the example problems under varying number of proessors, from 1 to 8,to gauge the e�et of parallelization. As a hek for possible variation in run-time,we ran versions (CPUs and pre-proessing) of a few ases several times and found theperformane results very onsistent. The system used for the runs was a quad-oreIntel i7 920 running at 2.67GHz, and having 6GB of main memory. The quad-oreCPU had hyperthreading enabled, making it appear as though it were an 8-oreCPU with (at least for our use) orresponding performane. Both master and lientproesses were run on the same mahine, due to the relatively small CPU-load of themaster and low memory-usage of the lients.The metris traked and reported are number of lients (Cl), number of asesqueued (Qd), number of ases o�ered to lients (Of), number rejeted (Rj), numberpruned (Pr), and elapsed time (Et). As aggregate measurements of e�ieny, wede�ne algorithm time (At) to be Cl ∗ Et, and rate of ases per seond (Rt) to be
Qd/Et. We expet linearity for Et and Rt, proportional to the number of proessors.36

We expet a relatively onstant value for Rt/Cl for a given LP, dependent on thesize of the tableau (and thus, number of pivots). The ases presented here have smalltableaus, as the parallel algorithm employed is more greatly a�eted by the tree sizerather than the number of pivots.5.2 Case 1: CubeThis problem is the tableau given as Example 2. Due to the symmetry in this problem,none of the pre-proessing sorts have any e�et. Results are summarized in Table 5.1.Of note, there were no ases rejeted until 4 lient proessors were employed; andthe improvement in solving rate (Rt) was not linear. This is a relatively small LP,with a small solution spae. By hanging the right-hand side of the onstraints tobe 100.5 instead of 10.5, we should see longer solution times and better linearity.Results are shown in Table 5.2, and indeed, the solving rate is quite linear. However,the time-to-solution (At) from one to two proessors was super-linear, and did notimprove muh with the addition of more proessors. This super-linearity is a by-produt of the queuing, where some 3-variable ases were onsidered before �nishingall 2-variable ones, and is what we hope will happen to improve solution time.As mentioned above, the symmetry of this problem defeats two of the pre-proessor'ssorting riteria. If we now further modify the LP to have di�ering right-hand sidevalues, we an test the ratio sorting, "r". The reverse sort is denoted with a "-r"in the table. Eah variable still only appears in a single onstraint, and all variableshave the same oe�ient in Z, so the "z" and "" sortings have no e�et. Visually, weare simply hanging our ube to a box whose dimensions are 100.5, 200.5, and 300.5.Results are given in Table 5.3, and we see sorting by the minimum ratio generallyimproved solution time and resulted in fewer queued ases. This makes sense, as theuse of linear relaxation on this LP results in an exhaustive searh of the solutionspae. If we start with the variable having the largest feasible range (i.e. the longestside of the box), and work bakwards to the variable with the smallest range (andreall that ases are split into up- and down-ranges), we end up onsidering at least
2 ∗ 300 ∗ 200 = 120000 ases (in a single-proessor run). If, as with the "r" sorting,we start with the variable having the smallest range, we end up onsidering just over
2 ∗ 100 ∗ 200 = 40000 ases.To test the "z" sort, we revert to the plain larger ube, and modify the oe�-ients in Z. These results are summarized in Table 5.4, but most of the performanedi�erenes resulted from the algorithm iterating through a list of integer solutions inthe ase of "-z", due to the relatively small hange indued in the value of Z by the
xi having the smallest oe�ient.

37

Table 5.1: 10.5 unit ube resultsPreP Cl Qd Of Rj Pr Et At Rtnone 1 266 26 0 240 6.36 6.36 41.72 266 26 0 240 4.68 9.36 56.64 232 26 17 205 3.17 12.7 72.98 226 30 20 196 2.58 20.6 87.2Table 5.2: 100.5 unit ube resultsPreP Cl Qd Of Rj Pr Et At Rtnone 1 20606 206 0 20400 420 420 49.12 5306 56 75 5250 55.7 111 95.24 4916 56 270 4860 26.9 108 1838 4906 59 275 4847 14.4 115 341Table 5.3: 100.5 x 200.5 x 300.5 unit box resultsPreP Cl Qd Of Rj Pr Et At Rtr 1 40806 206 0 40600 825 825 49.52 10508 56 74 10452 108 215 97.64 9716 56 470 9660 50.9 204 1918 9702 57 477 9645 26.5 212 366-r 1 121606 606 0 121000 2456 2456 49.52 11314 58 72 11256 116 232 97.74 10304 56 376 10248 53.8 215 1918 9718 58 669 9660 26.5 212 367Table 5.4: Minimize Z = −100x1 − 10x2 − x3 over 100.5 unit ubePreP Cl Qd Of Rj Pr Et At Rtz 1 20606 206 0 20400 420.4 420.4 49.02 5308 56 74 5252 55.7 111.4 95.34 4916 61 270 4855 27.0 108.0 182.08 4904 58 276 4846 14.4 115.5 339.5-z 1 20606 504 0 20102 434.1 434.1 47.52 5390 412 2962 4978 64.6 129.3 83.44 5004 412 3155 4592 31.4 125.6 159.48 4994 412 3160 4582 16.7 133.6 299.038

5.3 Case 2: HouseAs a slightly more ompliated test ase, we produed the "house". Again, able to bevisualized in three dimensions where the familiar (x, y, z) orrespond to (x1, x2, x3)in the LP, this �gure resembles a house in the x − y plane, and has a slanted fae.We have hosen two funtions for Z. In the �rst LP, designated �House 1�, the realsolution is at the house's peak (4, 9.5, 1.5) with Z = −9.5, while the integer solutionis just below it at (4, 9, 2) with Z = −9. These results are seen in Table 5.5. Theseond LP, designated �House 2�, has a real solution at the top of the right wall
(7.5, 8.1875, 0) with Z = −88.75, while the integer solution is still near the peak at
(5, 9, 0) with Z = −87.5. These results are given in Table 5.6. This is a simpleexample of where the integer solution is not intuitively near the real solution.Example 4. Tableau for House 1:

T =

1 0 0 1 0 0 0 0 7.5
−3 8 0 0 1 0 0 0 64

3 8 0 0 0 1 0 0 88
0 1 1 0 0 0 1 0 11
1 0 0 0 0 0 0 −1 .5
0 −1 0 0 0 0 0 0 0

Example 5. For House 2, we hange Z to be nearly parallel to one of the onstraints:
T =

1 0 0 1 0 0 0 0 7.5
−3 8 0 0 1 0 0 0 64

3 8 0 0 0 1 0 0 88
0 1 1 0 0 0 1 0 11
1 0 0 0 0 0 0 −1 .5

−3.1 −8 0 0 0 0 0 0 0

39

Table 5.5: House 1 resultsPreP Cl Qd Of Rj Pr Et At Rtrz 1 16 8 0 8 0.6 0.6 24.82 16 8 0 8 1.3 2.6 12.14 16 8 0 8 1.3 5.3 12.18 16 8 0 8 1.3 10.6 12.1zr 1 22 4 0 18 0.6 0.6 36.62 22 4 0 18 1.0 2.1 21.14 22 4 0 18 1.0 4.2 21.28 22 4 0 18 1.0 8.3 21.2

Table 5.6: House 2 resultsPreP Cl Qd Of Rj Pr Et At Rtrz 1 16 10 0 6 0.8 0.8 20.92 16 10 0 6 1.0 2.1 15.44 16 10 0 6 1.0 4.2 15.38 16 10 0 6 1.0 8.3 15.4zr 1 22 4 0 18 0.6 0.6 36.62 12 4 5 8 1.2 2.4 10.04 10 4 6 6 1.2 4.8 8.38 10 4 6 6 1.2 9.6 8.3
40

5.4 Depth-�rst EnhanementThe �nal enhanement onsidered for this solver was an attempt to quikly �nd aninteger solution that may be near the real one. Any suh solution will allow pruningof the tree, and an only help improve solution times.We all this method a drill, and it is essentially a binary depth-�rst searh downeither side of the real solution. It is run �rst and only one, by injeting a speial aseinto the queue as the �rst ase. The rest of the queued work then follows as desribedpreviously. It is binary in the sense that at eah level l it follows two paths to thenext level down, setting xl = ⌈xlR⌉ and xl = ⌊xlR⌋. It only generates bounds basedin integer solutions (if found), and does not reate further ases for queuing. Onethe lient proessor running the drill has �nished, it joins the other lients workingon the rest of the queue as usual.Using the house in Example 4, the solver would onsider only x1 = 3 and x1 = 4 atthe �rst level. At the next level for x1 = 4, it would only look at x2 = 9 and x2 = 10,and so on, until all integer variables have been �xed, or no solution is found. If aninteger bound is found, the master will be able to prune the queue for subsequentproessing.In Figure 5.1, we show this proess graphially. The nodes in bold indiate theatual relaxed solution found. For instane, at x1 = 3 and x2 = 9, the algorithmarrives at x3 = 2 without having to expliitly set x3 to be an integer. The nodesin parentheses are shown for ompleteness to indiate where a non-integer solutionexists, but are not visited by the drill beause they are not integer-valued. Nodeswhih are struk-through are infeasible.
x3 = 1 x3 = 2

x2 = 9 (x2 = 9.125) x2 = 10

x1 = 3

x3 = 1 x3 = 2

x2 = 9 (x2 = 9.5) x2 = 10

x1 = 4

Figure 5.1: Nodes heked by drillThe drill would examine every integer node in the tree in Figure 5.1, and would�nd the integer solutions at (3, 9, 1), (3, 9, 2), (4, 9, 1), and (4, 9, 2). All have Z = −9,whih sets a nie upper bound for minimizing Z. In fat, all of these solutions areoptimal integer solutions for this partiular ILP, and the subsequent algorithm willnot improve on them, but will instead prune most of the tree.In many LPs, this method atually �nds the optimal integer solution beause ithappens to be near the optimal real solution. In the ase of the house in Example5, it does not, beause the integer solution has x1 = 5, while the drill proess would41

only onsider x1 = 7 and x1 = 8. However, the drill does �nd an integer solution at
(7, 8, 0) with Z = −8, whih provides a fairly tight bound for the �nal solution. Thus,any integer solution will improve the solver time by providing a bound for pruningearly in the run.5.5 ConlusionsWithout a large number of example ILPs, it is di�ult to draw many solid onlusionsabout the e�ieny or e�etiveness of the algorithm in this approah. Out of the sixexamples reated and analyzed, most showed super-linear improvements in solutiontime going from one to two proessors. However, the examples were all 3-dimensional,and this may be due to timing alone. Any 3-variable ase (one where 3 variables arebeing set to integer values) queued will result in an integer solution, and thus, anupper bound on Z. If suh a ase is queued prior to other 2-variable ases, andprodues a relatively tight bound on Z, this ould drastially redue solution time.The pre-proessing options showed some promise, with the greatest di�ereneseen in Table 5.3. Again, however, this may have been a by-produt of the simple3-dimensional examples. The pre-proessing for that example was type "r", andessentially aused an exhaustive searh to iterate through variables with narrowerfeasible ranges �rst.The drill onept showed the most promise in ahieving reliably super-linear per-formane overall. It does not take long to run, beause of its limited sope, and anyresulting bound may drastially inrease pruning and redue solution time. Further-more, it may be that suh a searh often disovers the optimal integer solution, ifit ommonly lies near the real solution. In this sense, the advantage of a parallelalgorithm over a serial one would at best boil down to the ability to onsider moreases per seond � a linear improvement in the �nal searh.

42

Chapter 6Future ProjetsSeveral ideas ame to mind as the example ode was produed, requiring what ouldbe signi�ant modi�ation to large amounts of the ode, and not diretly in line withthe purpose of this report. They are listed here as possibilities for future work anddevelopment of the parallel algorithm.6.1 Improving Linear Relaxation MethodologyThe onepts behind linear relaxation are straightforward; however, in pratie, thereare some aveats from an e�ieny standpoint. At eah level of the tree, we needto use a submatrix Al of A as well as adjust b for the �xed values X0. The proessbehind the simplex algorithm is destrutive � it alters the entries in the tableau whilesolving � thus we need to preserve A somehow. The obvious method is to opy Aand make the hanges, but this beomes quite ine�ient for programs with largenumbers of variables and/or onstraints. The vast majority of the opied data hasn'thanged sine the last opy. The time spent opying may rise proportionally to thetime spent solving, due to the matrix manipulation routines, but overall there isroom for improvement in setting up eah ase. A areful transition from one aseto another, searhing depth-�rst, may yield a solver routine that referenes the datathat has hanged separately, while still preserving the original matrix in its entirety.Essentially, this pushes the funtionality of SubTableau() down into the simplexalgorithm itself and trades ine�ieny for some additional omplexity.6.2 Drill OftenOur implementation of the drill was a single run at the beginning of the work queue.We noted that in Example 5 the integer solution was not near enough to the realsolution to be found by the drill proess. It may be desirable to run the drill morethan one, from di�erent starting points, in an attempt to establish a bound for Z.The riteria for subsequent drilling ould be based on the number of ases proessed,43

the elapsed run-time, or some de�nition of distane from the oordinates used inthe initial run. This would likely be most useful when no integer bound has beenestablished, or when the existing bound is not resulting in signi�ant pruning.6.3 Multiple SolutionsIt is possible to have multiple optimal solutions to a linear program. This simplyamounts to having several X sets yielding the same value for Z. Consider the 2-variable problem in Setion 1.2, had the upper bound been simply x2 = 4. Thesimplex algorithm, as implemented here, does not provide for multiple optimal so-lutions, and instead just produes the �rst suh solution it �nds. There are knownmethods for �nding multiple solutions that ould be inorporated if required [7℄.Depending on the appliation, the user may wish to have the �rst solution, allsolutions, or only a subset of solutions with ertain extra onditions satis�ed. In thelatter instane, the program ould o�er alternatives and allow the user to hoose thediretion to take.6.4 Optimized QueuingThe queue implemented here is a simple FIFO � First-In, First-Out. A few modi-�ations were tested, but the improvements were minimal and short-lived. Simplyprioritizing on the upper bound led to a depth-�rst searh, while trying to guaranteea pure breadth-�rst searh aused performane problems one the queue beame verylarge.Still, while the algorithm skips ases whose bounds have already been superseded(one an integer solution is found), there may be room for improvement prioritizingases. The queue might take the form of an index into the existing queue struture,or an entirely di�erent struture suh as a balaned binary tree. Either should requireonly modi�ation of the PutCase() and GetCase() routines. New ases are as-signed some sort of sore, and inserted into the tree where appropriate. Examinationof various soring methods might result in an improved algorithm, being one in whihthe pruning has a greater limiting e�et on the searh.Suggestions for soring methods to test inlude ordering by Z, ordering by l (whihhappens to a large extent already, impliitly by design), and ordering by the numberof possible values for a given xi (asending or desending).6.5 Optimize the Choie of Fixed VariablesOur ode simply starts �xing variables at x1, and proeeds in order as far as it needsto go. Aording to [7℄, there are some heuristis that may be employed in hoosingwhih variables to �x �rst. The internal manipulation to ahieve this may require44

signi�ant oding, however, the user an also manually reorder variables if he or sheis aware of any bene�t to a spei� ordering.6.6 Matrix RoutinesIn this ode, we wrote our own matrix manipulation. The operations are simple, beinglargely just pivoting and produing submatries, but the use of a matrix manipulationlibrary suh as BLAS or LAPACK may still realize a performane improvement. Inaddition to time, suh libraries may employ memory-optimized storage for matries,reduing the footprint of larger linear programs. The hange in oding to do thiswould be signi�ant, as the use of suh libraries likely involves speialized data typesand funtion alls.6.7 Network RoutinesThe atual lient-server protool and supporting ode was a soure of several par-tiularly nagging bugs. In hindsight, it would have been worthwhile to investigateexisting lient-server modules to see if one ould be adapted, rather than develop ourown, eduational though the proess was. The end result, however, was quite �exible,where lients an ome and go as they please, and the master automatially adjustsand re-queues work appropriately. Our protool is also simple and ASCII-based,allowing easy debugging of the interations.6.8 Other Parallel MethodsThe original hoie of a lient-server model seems to be appropriate, however, itmay still be worthwhile to examine other methods. There may be other areas ofthe ode whih ould be further parallelized, suh as matrix manipulation. Shared-memory models for the queue might produe performane improvements over that ofthe network protool. Using MPI in plae of expliit sokets might allow for di�erent�exibility and additional robustness.

45

Referenes[1℄ J. Libano Alonso, H. Shmidt, and V. N. Alexandrov, Parallel branh and boundalgorighms for integer and mixed integer linear programming problems under pvm,Reent advanes in parallel virtual mahine and message passing interfae, 4thEuropean PVM/MPI Users' Group Meeting 1332 (1997), 313�320.[2℄ D. Anderson and D. Werthimer, Seti�home projet,http://setiathome.berkeley.edu.[3℄ R. Boehning, R. Butler, and B. Gillett, A parallel integer linear programmingalgorithm, European Journal of Operational Researh 34 (1988), 393�398.[4℄ G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solvingproblems on onurrent proessors, volume 1, Prentie Hall, 1988.[5℄ B. Gendron and T. G. Craini, Parallel branh-and-bound algorithms: Survey andsynthesis, Operations Researh Vol. 42, No. 6 (1994), 1042�1066.[6℄ W. Koay and D. Kreher, Graphs, algorithms, and optimization, Chapman &Hall/CRC, 2005.[7℄ G. L. Nemhauser and L. A. Wolsey, Integer and ombinatorial optimization, Wiley& Sons, 1988.[8℄ V. Pande et al., Folding�home projet, http://folding.stanford.edu/.

47

http://setiathome.berkeley.edu
http://folding.stanford.edu/

Appendix ACode Listings
A.1 OverviewThe ode omprising the pre-proessor and parallel algorithm, inluding the drillroutine, is presented here. The pre-proessor and onversion utility for the MPSformat were written in Perl, while the parallel algorithm itself was written in C. Forthe latter, a Make�le is inluded. The C ode ompiles into a single exeutable whihats as a master or lient, depending on the ommand line invoation.Individual �les are as follows:Make�le used to ompile the algorithm ode, by typing "make"lient. lient portion of the algorithmdrill. drill routinesmain. initial program logi to hek syntax and invoke master or lient odemaster. master portion of the algorithmphases. phases of the simplex algorithmqueue. queue management routinesqueue.h de�nitions and funtion templates for the queuesolver. main solver routine whih handles ases and invokes the simplex algorithmon themsolver.h de�nitions and funtion templates for algorithmutils. misellaneous �le and matrix routinessolver resulting single exeutable 49

mps2mat onvert MPS format to our formatoptimize optimize olumn order in a tableauA.2 UsageUsage of the exeutables, where italiized ommand-line arguments are optional:solver -m �lename numlientsInitiate a solver run as the master. f ilename is the name of the �le ontainingthe ILP. numlients is optional, but if given, the master waits until that manylients have onneted before beginning the run.solver - hostnameInitiate a solver run as a lient. hostname is the name of the master mahineto onnet to.solver -f �lenameInitiate a solver run only for overall feasibility. Only runs a single simplexinstane. f ilename is the name of the �le ontaining the LP.mps2mat -revost mps�le > mat�leConvert the MPS format found in mps�le to our tableau format and put theresult inmat�le. If the optional -revost is given, take the ost (Z) row to be thenegative of that found in mps�le. The MPS format did not have a mehanismto speify whether to maximize or minimize a given LP, leaving the hoie upto the operator.optimize method mat�le > newmat�leRe-order olumns inmat�le bymethod and put the resulting tableau in newmat�le.method is any ombination and order of 'z', '', and 'r', suh as 'zr', 'rz', et...

50

A.3 Parallel SolverListing A.1: Make�leCFLAGS=−gLDFLAGS=−lmde f au l t : s o l v e rs o l v e r : main . o l i e n t . o master . o s o l v e r . o phases . o u t i l s . o queue . o d r i l l. omain . o : main . s o l v e r . hmaster . o : master . s o l v e r . h l i e n t . o : l i e n t . s o l v e r . hs o l v e r . o : s o l v e r . s o l v e r . hd r i l l . o : d r i l l . s o l v e r . hphases . o : phases . s o l v e r . hu t i l s . o : u t i l s . s o l v e r . hqueue . o : queue . queue . h l ean :rm −f ∗ . l og ∗ . o s o l v e rta r : p a r a l l e l . t a r . gzp a r a l l e l . t a r . gz : ∗ . ∗ . h Make f i l eta r v f z p a r a l l e l . t a r . gz ∗ . ∗ . h Make f i l e

51

Listing A.2: main.#inlude " s o l v e r . h"FILE ∗LOG, ∗IN , ∗OUT;int MASTER;int phase ;int ∗optX , ∗ f i x ed ;int found = 0 ;double best = 0 ;int f i leRows , f i l e C o l s ;int main (int arg , har ∗argv [℄){ har f i l ename [2 5 6 ℄ , logname [2 5 6 ℄ ;int i , m in l i e n t s ;// de ide master vs . l i e n ti f (((arg < 3) && ! strmp (argv [1 ℄ , "−")) | | ((arg < 3) && ! strmp (argv [1 ℄ , "−m"))) {f p r i n t f (s tde r r , "USAGE: %s {−m f i l ename # l i e n t s | − hostname}\n" ,argv [0 ℄) ;f p r i n t f (s tde r r , "\ t s e t up master (−m) or l i e n t (−) proe s s \n") ;} else {s t r py (f i l ename , argv [2 ℄) ;s t r py (logname , f i l ename) ;s t r a t (logname , argv [1 ℄) ;s t r a t (logname , " . l og ") ;LOG = fopen (logname , "w") ;stamp ;i f (! strmp (argv [1 ℄ , "−f ")) { // f e a s i b i l i t y hek on lydebug (" f e a s i b i l i t y hek\n") ;f e a s i b i l i t y (argv [2 ℄) ;} else i f (! strmp (argv [1 ℄ , "−")) { // we have a hostname , beome l i e n t and j o i ndebug ("beoming l i e n t \n") ; l i e n t (argv [2 ℄) ; // pass the hostname} else { // must be the masterdebug ("beoming master\n") ;m in l i e n t s = 0 ;i f (arg > 3) m in l i e n t s = a to i (argv [3 ℄) ;52

master (argv [2 ℄ , m in l i e n t s) ; // pass the f i l enamei f (found) {p r i n t f (" I n t e g e r s o l u t i on found : \ n") ;for (i =0; i < f i l eCo l s −1; i++) {p r i n t f ("\tX[%d ℄ = %d\n" , i +1, optX [i ℄) ;}p r i n t f ("\tZ = %f \n" , best) ;} else {p r i n t f ("No i n t e g e r s o l u t i o n s found\n") ;}}f l o s e (LOG) ;}e x i t (0) ;} // main

53

Listing A.3: master.#inlude " s o l v e r . h"int q s i z e = 0 ;int feas_only = 0 ;queue ∗q ;int f e a s i b i l i t y (har ∗ f i l ename){ int r ;feas_only = 1 ;r = master (f i l ename , 0) ;p r i n t f ("done with f e a s i b i l i t y . \n") ;return (r) ;}int master (har ∗ f i l ename , int min l i e n t s){ double ∗∗ tab , ∗∗ i n i t t a b ; // t a b l e auint ∗prows ; // p i v o t olumn by rowint vars ; // number o f v a r i a b l e sint eqs ; // number o f i n e q u a l i t i e sint r , r ;ase_t ∗up_ase , ∗dn_ase , ∗dr_ase ;FILE ∗ fp ;// now f i g u r e out i n i t i a l ase over the r e a l sstamp ;fp = fopen (f i l ename , " r ") ;i f (fp) {tab = read_ f i l e (fp ,&eqs ,&vars) ;f l o s e (fp) ;} else {per ro r (f i l ename) ;e x i t (0) ;}stamp ;optX = mallo (vars ∗ s izeof (int)) ;54

for (r=0; r < vars ; r++) {optX [r ℄ = 0 ;}// p r i n t f (" i n i t i a l t a b l e au :\ n") ;// p r i n t_ ta b l e (tab , eqs , vars) ;// syn th reads and s t a r t s o l v i n gp r i n t f (" s e t t i n g up i n i t i a l ase \n") ;q = newqueue () ;prows = mallo ((eqs+2) ∗ s izeof (int)) ;for (r=1; r<= eqs ; r++) prows [r ℄=−1;up_ase = mallo (s izeof (ase_t)) ;dr_ase = mallo (s izeof (ase_t)) ;dn_ase = mallo (s izeof (ase_t)) ;up_ase−>numfixed = dn_ase−>numfixed = dr_ase−>numfixed = 0 ;up_ase−>f i x ed = dn_ase−>f i x ed = dr_ase−>f i x ed = NULL;up_ase−>nextvar = dn_ase−>nextvar = dr_ase−>nextvar = 0 ;up_ase−>d i r e t i o n = 1 ;dn_ase−>d i r e t i o n = −1;dr_ase−>d i r e t i o n = 0 ;up_ase−>tableau = dn_ase−>tableau = dr_ase−>tableau = NULL;// ompute r e a l s o l u t i o n us ing up_ase f o r nowsubtab leau (tab , eqs , vars , up_ase) ;r = simplex (up_ase−>tableau , prows , eqs , vars) ;stamp ;i f (r == FOUND) {p r i n t f ("program has r e a l s o l u t i on \n") ;for (r = 1 ; r <= eqs ; r++) {i f (prows [r ℄ != −1) {p r i n t f ("\tX[%d ℄ = %f , Z ont r ib %f \n" , prows [r ℄ , up_ase−>tableau [r ℄ [vars +1℄ ,up_ase−>tableau [r ℄ [vars+1℄ ∗ tab [eqs +1℄ [prows [r ℄ ℄) ;}i f (prows [r ℄ == 1) {up_ase−>nextvar = up_ase−>tableau [r ℄ [vars +1℄ ;dn_ase−>nextvar = up_ase−>tableau [r ℄ [vars +1℄ ;dr_ase−>nextvar = up_ase−>tableau [r ℄ [vars +1℄ ;55

}}p r i n t f ("\tZ = %f \n" , up_ase−>tableau [r ℄ [vars +1℄) ;p r i n t f (" i n i t i a l X[1 ℄ = %.3 f \n" , up_ase−>nextvar) ;up_ase−>bound = dn_ase−>bound = −up_ase−>tableau [r ℄ [vars +1℄ ;#ifdef USE_DRILL// put d r i l l ase on the queueputase (q , dr_ase) ; q s i z e++;#endif// put two ases on the queue , s earh ing in oppo s i t e d i r e t i o n s .putase (q , up_ase) ; q s i z e++;putase (q , dn_ase) ; q s i z e++;// i n i t i a l t a b l e au was j u s t f o r r e a l s o l u t i o n . not needed f o r queue.for (r=0;r<=eqs ; r++) f r e e (up_ase−>tableau [r ℄) ;up_ase−>tableau = NULL;i f (! feas_only) { // s t a r t the queuep r i n t f ("wai t ing f o r onne t i ons . . . \ n") ;r = queuemgr (tab , m in l i e n t s) ;p r i n t f ("done s o l v i ng . \n") ;}} else { // we ' re done ea r l yi f (found) { // we found an opt ima l i n t e g e r s o l u t i o n somewhereputs (" i n t e g e r s o l u t i on found") ;p r i n t f ("\tZ = %f \n" , best) ;for (r=0; r < vars ; r++) {p r i n t f ("\tX_%d = " , r+1) ;p r i n t f ("%d\n" , optX [r ℄) ;}} else i f (r == UNBOUNDED) { // program was unboundedputs ("program i s unbounded") ;} else i f (r == INFEASIBLE) { // program was i n f e a s i b l e56

puts ("program i s i n f e a s i b l e ") ;} else { // shouldn ' t g e t t h i s f a rputs (" un sp e i f i e d e r r o r ") ;}}return (0) ;}int queuemgr (double ∗∗ tab , int min l i e n t s) {int s , s2 , addr len ;har hostname [2 5 6 ℄ , ∗ inaddr , ∗ args ;strut sokaddr_in addr , addr2 ;strut hostent ∗host ;strut addr in fo ∗ address ;FILE ∗ fp ;har buf [2 5 6 ℄ , mdline [2 5 6 ℄ ;int done ;fd_set fd s ;int i , j ;ase_t ∗CASE, ∗upnew , ∗dnnew ; l i en t_t ∗ l i e n t ;int l i n t , numl i ents ;int l i e n t r , ass igned , vars , r ;double l i e n tZ ;queue ∗q ;node ∗n ;int r , on ;int ases_queued , ases_of fe red , ases_pruned , a s e s_re j e t ed ;double rate_queued ;strut t imeva l runstart , runstop ;suseonds_t runtime ;ases_queued = q s i z e ; // i n i t i a l asea s e s_o f f e r ed = ases_pruned = ase s_re j e t ed = 0 ;runs ta r t . tv_se = 0 ;// s e t up the se rve r soke t and s t a r t l i s t e n i n gp r i n t f (" s e t t i n g up master soke t \n") ;gethostname(hostname , s izeof (hostname)) ;i f ((s = soke t (PF_INET,SOCK_STREAM,0)) < 0) {pe r ro r (" soke t () ") ; 57

e x i t (errno) ;}p r i n t f (" g e t t i n g address f o r hostname '%s '\n" , hostname) ;i f (! (host = gethostbyname ((har∗) hostname))) {pe r ro r ("gethostbyname () ") ;e x i t (er rno) ;}/∗ i f (g e t a dd r i n f o (hostname , NULL, NULL, &address)) {perror (" g e t a dd r i n f o () ") ;e x i t (errno) ;}
∗/ p r i n t f (" on f i g soke t \n") ;addr . s in_fami ly = AF_INET;addr . s in_port = htons ((unsigned short)SOLVER_PORT) ;mempy((har∗)&addr . sin_addr . s_addr , host−>h_addr_list [0 ℄ , host−>h_length) ;on = 1 ;s e t sokopt (s , SOL_SOCKET, SO_REUSEADDR, &on , s izeof (on)) ;p r i n t f (" b ind ing to soke t \n") ;i f (bind (s , (strut sokaddr∗)&addr , s izeof (addr)) <0) {// i f (b ind (s , address−>ai_addr , address−>ai_addrlen) <0) { l o s e (s) ;pe r ro r ("bind () ") ;e x i t (er rno) ;}stamp ;p r i n t f (" l i s t e n i n g f o r onne t i ons\n") ;i f (l i s t e n (s , 1)) {pe r ro r (" l i s t e n () ") ;e x i t (er rno) ;}stamp ;// ge t t imeo fday (&runs ta r t ,NULL) ; l i n t = 0 ; numl i ents = 0 ; a s s i gned = 0 ;q = newqueue () ;done = 0 ;while (! done) {/∗ Now we have a onnet ion . Let ' s t a l k . . .
∗ 1) b u i l d up s e l e t () fd_sets , hek f o r read b l o k i n g58

∗ 2) read a r e qu e s t and proe s s i t f o r eah l i e n t
∗/ // f g e t s (buf , 255 , s t d i n) ; // unomment to a l l ow manual on t r o l o fi n t e r a t i o n si f (l i n t) {p r i n t f ("Cl : : Sz/Qd/Of : : Rj/Pr/ Ib : : Et Rt %d : : %d / %d / %d : : %d / %d / %d : : %d %.0 f \ r " ,numl ients , q s i z e , ases_queued , ases_of fe red ,a s e s_re j et ed , ases_pruned ,(int) best , runstop . tv_se − runs ta r t . tv_se ,(double) ases_queued / (double) (runstop . tv_se − runs ta r t . tv_se)) ;}FD_ZERO(&fds) ;// p r i n t f (" adding l i s t e n e r soke t to l i s t \n") ;FD_SET(s ,& fds) ; // add the l i s t e n e r soke ti f (m in l i e n t s && (l i n t >= min l i e n t s) && ! runs ta r t . tv_se) {gett imeofday(&runstart ,NULL) ;}i f (l i n t >= min l i e n t s) for (n = q−>f i r s t ; n ; n = n−>next) { l i e n t = n−> ;i f (l i e n t) {// p r i n t f (" adding l i e n t %d to l i s t \n" , l i e n t−>linum) ;FD_SET(l i e n t−>fd , &fds) ;}}s e l e t (FD_SETSIZE, &fds , NULL, NULL, NULL) ;i f (FD_ISSET(s ,& fds)) {debug ("adding new l i e n t \n") ; l i e n t = mal lo (s izeof (l i en t_t)) ;s2 = aept (s , (strut sokaddr∗)&addr2 ,&addr len) ;inaddr = inet_ntoa (addr2 . sin_addr) ;59

 l i e n t−>fd = s2 ; l i e n t−>addr = addr2 ; l i e n t−>inaddr = (har∗) strdup (inaddr) ; l i e n t−>CASE = NULL;i f (! (fp = fdopen (s2 , " r "))) {pe r ro r (" fdopen () f o r read ") ; l o s e (s2) ;e x i t (er rno) ;} else { l i e n t−>in = fp ;s e tbu f (l i e n t−>in , NULL) ;}i f (! (fp = fdopen (dup(s2) , "w"))) {pe r ro r (" fdopen () f o r wr i t e ") ; l o s e (s2) ;e x i t (er rno) ;} else { l i e n t−>out = fp ;s e tbu f (l i e n t−>out , NULL) ;}f p r i n t f (LOG, " onnet ion from '%s '\n" , inaddr) ; l i e n t−>linum = l i n t++;pu t l i e n t (q , l i e n t) ; numl i ents++;// s p i t t a b l e au in o r i g i n a l format to l i e n tf p r i n t f (l i e n t−>out , "%d %d\ r\n" , l i n t , numl i ents) ;f p r i n t f (l i e n t−>out , " begin \ r \n") ;f p r i n t f (l i e n t−>out , "%d %d\ r\n" , f i leRows , f i l e C o l s) ;for (i = 0 ; i <= f i l eRows ; i++) {for (j = 1 ; j <= f i l e C o l s ; j++) {f p r i n t f (l i e n t−>out , "%f " , tab [i ℄ [j ℄) ;}f p r i n t f (l i e n t−>out , "\ r \n") ;}f p r i n t f (l i e n t−>out , "end\ r \n") ;60

f f l u s h (l i e n t−>out) ;} // add l i e n tfor (n = q−>f i r s t ; n ; n = n−>next) { l i e n t = n−> ;i f (l i e n t && FD_ISSET(l i e n t−>fd , &fds)) {// p r i n t f (" hand l ing l i e n t %d (%s) :\n" , l i e n t−>linum , l i e n t−>inaddr) ;f g e t s (buf , 255 , l i e n t−>in) ;s t r t ok (buf , "\n\ r ") ;// p r i n t f ("\ t r e e i v e d '%s '\n" , bu f) ;i f (! strnmp(buf , " r eque s t " , 7)) { // l i e n t r e qu e s t s ase// p r i n t f ("\ t l i e n t r e qu e s t s ase \n") ;i f (l i e n t−>CASE) {// p r i n t f ("\ t f r e e i n g prev ious ase \n") ;f r e e (l i e n t−>CASE−>f i x ed) ;f r e e (l i e n t−>CASE) ; l i e n t−>CASE = NULL;ass igned−−;}// grab one from the queue and r e l a y i t to l i e n t// i t ' s p o s s i b l e the queue i s empty , but we ' re not doneCASE = geta se (q) ; i f (CASE) qs i z e−−;// prune as we gowhile (CASE && found && (best <= CASE−>bound)) {f r e e (CASE−>f i x ed) ;f r e e (CASE) ;ases_pruned++;CASE = geta se (q) ; i f (CASE) qs i z e −−;}i f (CASE) {f p r i n t f (l i e n t−>out , " ase %d %l f %d %l f \ r \n" , CASE−>numfixed ,CASE−>nextvar , CASE−>d i r e t i on , CASE−>bound) ;f f l u s h (l i e n t−>out) ; 61

for (i = 0 ; i < CASE−>numfixed ; i++)f p r i n t f (l i e n t−>out , "%d " , CASE−>f i x ed [i ℄) ;f p r i n t f (l i e n t−>out , " end\ r \n") ;f f l u s h (l i e n t−>out) ; l i e n t−>CASE = CASE;as s i gned++;ase s_o f f e r ed++;} else i f (! a s s i gned) { // the work queue i s r e a l l y empty// p r i n t f ("\ t in fo rming l i e n t we are done\n") ;f p r i n t f (l i e n t−>out , "done\ r \n") ;f f l u s h (l i e n t−>out) ;} else {// p r i n t f ("\ t t e l l i n g l i e n t to wait , a s s i gned = %d\n" , a s s i gned) ;f p r i n t f (l i e n t−>out , "wait \ r \n") ;f f l u s h (l i e n t−>out) ;}} else i f (! strnmp (buf , " r e s u l t s " , 7)) { // l i e n t has r e s u l t s// p r i n t f ("\ t l i e n t has r e s u l t s \n") ;CASE = l i e n t−>CASE;// format : " r e s u l t s f l a g Z−va lue " then "X−va lue s "// i f r e s u l t s have po t en t i a l , t a ke them , o the rw i s e s k i p// f l a g = INFEASIBLE/UNBOUNDED/FOUND/INTFOUNDr = s s an f (buf , " r e s u l t s %d %l f \ r \n" , & l i e n t r , & l i e n tZ) ;i f (l i e n t r == INFEASIBLE) { // do noth ingf p r i n t f (l i e n t−>out , " thanks\ r \n") ; f f l u s h (l i e n t−>out) ;} else i f (l i e n t r == UNBOUNDED) { // we ' re done , e n t i r e l yf p r i n t f (l i e n t−>out , " thanks\ r \n") ; f f l u s h (l i e n t−>out) ;done++;} else i f (l i e n t r == FOUND) { // hek aga ins t p o s s i b l e i n tso ln , maybe aept
62

i f (! found | | (best > l i e n tZ)) { // aept un l e s s noimprovement p o s s i b l ef p r i n t f (l i e n t−>out , " aepted \ r \n") ; f f l u s h (l i e n t−>out) ;// make 2 new ases (up and down) and put work on queue// CASE−>numfixed i s what we gave . new−>numfixed shou ldinrementupnew = mallo (s izeof (ase_t)) ;dnnew = mallo (s izeof (ase_t)) ;upnew−>numfixed = dnnew−>numfixed= CASE−>numfixed+1;upnew−>f i x ed = mallo (upnew−>numfixed ∗ s izeof (int)) ;dnnew−>f i x ed = mallo (upnew−>numfixed ∗ s izeof (int)) ;upnew−>bound = dnnew−>bound = l i e n tZ ;// opy in what we o r i g i n a l l y gave the l i e n tfor (i = 0 ; i < CASE−>numfixed ; i++) {upnew−>f i x ed [i ℄ = CASE−>f i x ed [i ℄ ;dnnew−>f i x ed [i ℄ = CASE−>f i x ed [i ℄ ;}// read the next f i x e d value , and the f o l l ow i n g r e a l va luef s a n f (l i e n t−>in , "%d %l f " , &(upnew−>f i x ed [upnew−>numfixed −1℄) , &(upnew−>nextvar)) ;dnnew−>f i x ed [dnnew−>numfixed −1℄ = upnew−>f i x ed [upnew−>numfixed −1℄ ;dnnew−>nextvar = upnew−>nextvar ;upnew−>d i r e t i o n = 1 ;dnnew−>d i r e t i o n = −1;putase (q , upnew) ; q s i z e++; ases_queued++;i f (dnnew−>nextvar > 0 . 0) {putase (q , dnnew) ; q s i z e++; ases_queued++;} else {f r e e (dnnew−>f i x ed) ;f r e e (dnnew) ;}f g e t s (buf , 255 , l i e n t−>in) ; // read r e s t o f l i n e (CR/NL mostl i k e l y)} else {f p r i n t f (l i e n t−>out , "nothanks\ r \n") ; f f l u s h (l i e n t−>out) ;a s e s_re j e t ed++; 63

}} else i f (l i e n t r == INTFOUND) { // hek aga ins t i n t so ln ,maybe keepi f (! found | | (best > l i e n tZ)) { // aept un l e s s noimprovement p o s s i b l e// must be ∗ i n t e g e r ∗ improvement to matterf p r i n t f (l i e n t−>out , " aepted \ r \n") ; f f l u s h (l i e n t−>out) ;f s a n f (l i e n t−>in , "%d" , &vars) ;i f (! l i e n t−>CASE−>d i r e t i o n) { // d r i l l r e s u l t sfor (i = 0 ; i < vars ; i++) {f s a n f (l i e n t−>in , " %d" , &optX [i ℄) ;}f g e t s (buf , 255 , l i e n t−>in) ; // read ' end ' l i n e} else {for (i = 0 ; i < CASE−>numfixed ; i++) {optX [i ℄ = CASE−>f i x ed [i ℄ ;}for (; i < vars ; i++) {f s a n f (l i e n t−>in , " %d" , &optX [i ℄) ;p r i n t f ("X[%02d ℄ = %2d , \ t " , i , optX [i ℄) ;}f g e t s (buf , 255 , l i e n t−>in) ; // read ' end ' l i n e// p r i n t f ("\n") ;}best = l i e n tZ ;found++;} else {f p r i n t f (l i e n t−>out , "nothanks\ r \n") ; f f l u s h (l i e n t−>out) ;} 64

}} else i f (! strnmp (buf , "bye" , 3)) { // l i e n t i s e x i t i n g// p r i n t f ("\ t l i e n t e x i t i n g \n") ;f l o s e (l i e n t−>out) ;f l o s e (l i e n t−>in) ;// p r i n t f ("\ t l o s e d f i l e d e s r i p t o r s f o r l i e n t \n") ;i f (l i e n t−>CASE) { // did not f i n i s h i t s workload , requeue// p r i n t f ("\ t r equeu ing e x i s t i n g ase \n") ;putase (q , l i e n t−>CASE) ; q s i z e++;ass igned−−;}f r e e (l i e n t) ; n−> = NULL; numl ients−−;} else {p r i n t f ("\n\ tunreogn ized input '%s '\n\ tdropping l i e n t %d\n" , buf, l i e n t−>linum) ;i f (l i e n t−>CASE) {// p r i n t f ("\ t r equeu ing e x i s t i n g ase \n") ;putase (q , l i e n t−>CASE) ; q s i z e++;ass igned−−;}f r e e (l i e n t) ; n−> = NULL; numl ients−−;}}}// we are done when there are no more l i e n t s and no more worki f (! numl i ents && ! q s i z e) done++;gett imeofday(&runstop ,NULL) ;}p r i n t f ("\ nalgor ithm ompleted normal ly\n") ;runtime = (runstop . tv_se − runs ta r t . tv_se) ∗ 1000000 + runstop .tv_use − runs ta r t . tv_use ; 65

p r i n t f ("queued %d , o f f e r e d %d , r e j e t e d %d , pruned %d\n" , ases_queued, ases_of fe red , a s e s_re je t ed , ases_pruned) ;p r i n t f (" t o t a l main loop time %d miroseonds \n" , runtime) ;// s ea r ha b l e l o g l i n erate_queued = (double) ases_queued ∗ 1000000;rate_queued /= (double) runtime ;f p r i n t f (LOG, "STATS %d,%d,%d,%d,%d ,%.1 l f ,%.1 l f ,%.1 l f \n" , min l i en t s ,ases_queued , ases_of fe red , a s e s_re j et ed , ases_pruned ,(double) runtime /1000000 .0 , (double) runtime / 1000000.0 ∗ min l i en t s ,rate_queued) ;return (0) ;}

66

Listing A.4: lient.#inlude <s i g n a l . h>#inlude " s o l v e r . h"stat i FILE ∗IN , ∗OUT;int l i e n t (har∗ master) {double ∗∗ tab ; // t a b l e auint ∗prows ; // p i v o t olumn by rowint vars ; // number o f v a r i a b l e sint eqs ; // number o f i n e q u a l i t i e sint ∗ i n t r e q ;int r , , r ;strut s i g a t i o n s i ga t , o l d s i g a t ;s i g s e t_t s i g s e t ;// trap s i g n a l s f o r lean e x i t from masters igemptyset(& s i g s e t) ;s i g a t . sa_handler = &terminate ;s i g a t . sa_mask = s i g s e t ;s i g a t . s a_f l ag s = 0 ;s i g a t . s a_re s to r e r = NULL;s i g a t i o n (SIGTERM, &s iga t , &o l d s i g a t) ;s i g a t i o n (SIGINT , &s iga t , &o l d s i g a t) ;// minimal i n i t i a l setup , g e t t a b l e au and parameterstab = i n i t i a l_ s e t u p (master ,&eqs ,& vars) ;// p u l l out s l a k v a r i a b l e f l a g s from row 0i n t r e q = (int ∗) mal lo (vars ∗ s izeof (int)) ;for (= 1 ; <= vars ; ++) {i n t r e q [−1℄ = tab [0 ℄ [℄ ? 1 : 0 ;p r i n t f (" va r i ab l e %d %s requ i r ed to be i n t e g e r \n" , , i n t r e q [−1℄ ? "i s " : " i s not ") ;}// p r i n t f (" i n i t i a l t a b l e au :\ n") ;// p r i n t_ ta b l e (tab , eqs , vars) ;prows = mallo ((eqs+2) ∗ s izeof (int)) ;for (r=0; r < eqs + 2 ; r++) prows [r ℄ = −1;// syn th reads and s t a r t s o l v i n gp r i n t f (" s o l v i ng . . . \ n") ;r = s o l v e r (tab , prows , eqs , vars , i n t r e q) ;p r i n t f ("done s o l v i ng . \ n") ; 67

return (0) ;}ase_t ∗ r e qu e s t a s e () // ge t a ase from the master{ har resp [2 5 6 ℄ ;ase_t ∗CASE;int i , blank , done ;fd_set fd s ;resp [0 ℄ = 0 ;done = 0 ;do {// p r i n t f (" r e qu e s t i n g ase \n") ;f p r i n t f (OUT, " reque s t \ r \n") ; f f l u s h (OUT) ;// p r i n t f (" read ing response from master\n") ;f g e t s (resp , 255 , IN) ;s t r t ok (resp , "\ r \n") ;// p r i n t f (" se rve r sa id '%s '\n" , resp) ;i f (! strnmp (resp , " ase " , 4)) { // we ' ve got work to do . . .done = 1 ;} else i f (! strnmp(resp , "wait " , 4)) { // we need to wai t f o r work// p r i n t f (" wa i t ing f o r work from master\n") ;s l e ep (1) ;} else {done = 2 ;}} while (! done) ;i f (done == 2) {f p r i n t f (OUT, "bye\ r \n") ; f f l u s h (OUT) ;return (NULL) ;}// read r e s u l t s and re turn a ase_t∗68

CASE = mallo (s izeof (ase_t)) ;s s an f (resp , " ase %d %l f %d %l f " , &(CASE−>numfixed) , &(CASE−>nextvar), &(CASE−>d i r e t i o n) , &(CASE−>bound)) ;CASE−>f i x ed = mallo (CASE−>numfixed ∗ s izeof (int)) ;for (i =0; i < CASE−>numfixed ; i++) {f s a n f (IN , "%d" ,&(CASE−>f i x ed [i ℄)) ;}// p r i n t f ("\ ngot ase : f i x e d = %d , nextvar = %l f , d i r e t i o n = %s , bound= %l f \n" , CASE−>numfixed , CASE−>nextvar , (CASE−>d i r e t i o n == 1 ? "up" : "down") , CASE−>bound) ;f g e t s (resp ,255 , IN) ; // ath EOL harsreturn (CASE) ;}int announe (ase_t∗ CASE, int r , int vars , double ∗X, double Z) //announe a s o l u t i o n to the master{ int i , r 2 ;har resp [2 5 6 ℄ ;// p r i n t f (" announing r e s u l t s to s e rve r \n") ;r2 = 0 ;f p r i n t f (OUT, " r e s u l t s %d %f \ r \n" , r , Z) ;f f l u s h (OUT) ;f g e t s (resp , 255 , IN) ;// p r i n t f (" se rve r sa id '%s '\n" , resp) ;i f (! strnmp (resp , " aepted " ,8)) {r2++;i f (!CASE−>d i r e t i o n) { // t h i s was j u s t a boundf p r i n t f (OUT, "%d" , vars) ;for (i = 0 ; i < vars ; i++) {i f (i < CASE−>numfixed) f p r i n t f (OUT, " %d " , CASE−>f i x ed [i ℄) ;else f p r i n t f (OUT, " %.0 f " , round (X[i ℄)) ;}f p r i n t f (OUT, "end\ r\n") ; // t r a i l i n g ' end ' f o r syn} else i f (r == FOUND) { 69

f p r i n t f (OUT, "%d %l f \ r \n" , (int)X[CASE−>numfixed −1℄ , X[CASE−>numfixed ℄) ;// p r i n t f (" sending new ase X[%d ℄ = %d (next = %f) \n" , CASE−>numfixed−1, (i n t)X[CASE−>numfixed −1℄ , X[CASE−>numfixed ℄) ;} else { // must be INTFOUND (s ine the se rve r i s i n t e r e s t e d)// p r i n t f (" sending i n t e g e r so lu t i on , %d vars s t a r t i n g wi th %d\n" ,vars , CASE−>numfixed−1) ;f p r i n t f (OUT, "%d" , vars) ;for (i = CASE−>numfixed −1; i < vars ; i++) {f p r i n t f (OUT, " %.0 f " , round (X[i ℄)) ;// p r i n t f ("X[%d ℄ = %.0 f \ t " , i , round (X[i ℄)) ;}f p r i n t f (OUT, "end\ r\n") ; // t r a i l i n g ' end ' f o r synp r i n t f ("\n") ;}f f l u s h (OUT) ;}return (r2) ;}double ∗∗ i n i t i a l_ s e t u p (har ∗hostname , int ∗eqs , int ∗ vars) //i n i t i a l i z e our opy o f the t a b l e au and parameters{ int s , linum , numl i ents ;har buf [2 5 6 ℄ ;strut sokaddr_in addr ;strut hostent ∗host ;i f ((s = soke t (PF_INET,SOCK_STREAM,0)) < 0) {pe r ro r (" soke t () ") ;e x i t (er rno) ;}i f (! (host = gethostbyname (hostname))) {pe r ro r ("gethostbyname () ") ;e x i t (er rno) ;}addr . s in_fami ly = AF_INET;addr . s in_port = htons ((unsigned short)SOLVER_PORT) ;70

mempy(&addr . sin_addr . s_addr , host−>h_addr_list [0 ℄ , host−>h_length) ;p r i n t f (" onnet ing to '%s '\n" , hostname) ;i f (onnet (s , (strut sokaddr ∗) &addr , s izeof (addr)) < 0) {pe r ro r (" onnet () ") ;e x i t (er rno) ;}i f (! (IN = fdopen (s , " r "))) {pe r ro r (" fdopen () f o r read ") ;e x i t (errno) ;}i f (! (OUT = fdopen (dup(s) , "w"))) {pe r ro r (" fdopen () f o r wr i t e ") ;e x i t (er rno) ;}s e tbu f (IN ,NULL) ;s e tbu f (OUT,NULL) ;MASTER = s ;p r i n t f (" read ing i n i t i a l tab leau \n") ;f s a n f (IN , "%d %d" , &linum , &numl i ents) ;p r i n t f (" I am l i e n t %d o f %d\n" , linum , numl i ents) ;return (r e ad_ f i l e (IN , eqs , vars)) ;}void terminate (int signum) {p r i n t f ("SIGTERM aught , terminat ing l i e n t \n") ;f p r i n t f (OUT, "bye\ r \n") ; f f l u s h (OUT) ;e x i t (0) ;}

71

Listing A.5: solver.#inlude " s o l v e r . h"int s o l v e r (double ∗∗ tab , int ∗prows , int eqs , int vars , int ∗ i n t r e q){ double ∗∗mytab ;ase_t ∗CASE, ∗new ;double ∗X, Z ;int myvars , r , r , , newx , i s o l , keepranging ;int s t a r t x ;X = mallo (vars ∗ s izeof (double)) ;while (CASE = reque s t a s e ()) {r = UNKNOWN;for (r=0; r < vars ; r++) X[r ℄ = 0 ;// a ' ase ' i s a s e t o f f i x e d X va lue s known to onta in// f e a s i b l e s o l u t i o n s f a r t h e r down the t r e e (i . e . f i x i n g more// X va lue s) . Here , we take a ase , and f i x one more X, at// s e v e r a l va lue s s t a r t i n g from 0 , r e a t i n g more ases .//// l i n e a r op t imi za t i on be ing l i n e a r by d e f i n i t i o n , we know tha t// one a g iven X va lue makes the program i n f e a s i b l e , we an// s top t r y i n g in t h a t d i r e t i o n .//// we a l s o know tha t the program i s e n t i r e l y unbounded i f// ∗any∗ unbounded ase i s found , so we drop out immediate lys t a r t x = (int) e i l (CASE−>nextvar) ;i f (CASE−>d i r e t i o n == −1) startx −−;keepranging = (s t a r t x >= 0) ;i f (CASE−>d i r e t i o n)for (newx = s ta r t x ; keepranging && (newx >= 0) ; newx += CASE−>d i r e t i o n) {// rea t e new ase , f i x i n g one more olumnnew = mallo (s izeof (ase_t)) ;new−>numfixed = CASE−>numfixed+1;new−>f i x ed = mallo (new−>numfixed ∗ s izeof (int)) ;new−>d i r e t i o n = CASE−>d i r e t i o n ;for (=0; < CASE−>numfixed ; ++) new−>f i x ed [℄ = CASE−>f i x ed [℄ ;new−>f i x ed [new−>numfixed −1℄ = newx ;// p r i n t f ("\n−−−\nhek ing ase , f i x e d = (") ;p r i n t f (" f i x ed = (") ;for (=0; < new−>numfixed ; ++) {72

p r i n t f ("%d " , new−>f i x ed [℄) ;}p r i n t f (") %l f \ r " ,CASE−>bound) ;new−>tableau = NULL;subtab leau (tab , eqs , vars , new) ;mytab = new−>tableau ;myvars = vars − new−>numfixed ;// p r i n t f (" i n i t i a l sub−t a b l e au (%d f r e e vars) : \n" ,myvars) ;phase = 0 ; // f o r p r i n t_ ta b l e ()// p r i n t_ ta b l e (mytab , eqs , myvars) ;r = simplex (mytab , prows , eqs , myvars) ;i f (r == FOUND) {// grab X and ZZ = −mytab [eqs +1℄ [myvars+1℄ ; // the por t i on from ∗ t h i s ∗s u b t a b l e aufor (=new−>numfixed ; <= myvars ; ++) X[℄ = 0 ;for (r=1; r <= eqs ; r++) {i f (prows [r ℄ != −1) {X[new−>numfixed + prows [r ℄ − 1 ℄ = mytab [r ℄ [myvars+1℄ ;}}for (=0; < new−>numfixed ; ++) { // " f i x e d " por t i onX[℄ = (double) new−>f i x ed [℄ ;// Z += tab [eqs +1℄[℄ ∗ X[℄ ;}// ompare and s t o r enew−>bound = Z ;// hek f o r i n t e g e r s o l u t i o n si s o l = 1 ;for (r=new−>numfixed ; r < vars ; r++) {i f (i n t r e q [r ℄ && ((X[r ℄ − f l o o r (X[r ℄)) > EPSILON)) {// p r i n t f ("X[%d ℄ i s not q u i t e i n t e g e r \n" , r) ;i s o l = 0 ; 73

}}i f (i s o l) {r = INTFOUND;p r i n t f ("\nFOUND INTEGER SOLUTION: Z = %d\n" , (int) round (Z)) ;}#ifdef ADD_SLACKannoune (new , r , vars−eqs ,X, Z) ;#else announe (new , r , vars ,X, Z) ;#endif} // FOUND so l u t i o n// do we keep go ing ?// s top on in t e g e r s o l u t i o n found// i f (r == INTFOUND) keeprang ing = 0 ;// s top on unbounded , a lwaysi f (r == UNBOUNDED) keepranging = 0 ;// s top i f pa s t known f e a s i b l ei f (r == INFEASIBLE) keepranging = 0 ;for (=0; < eqs + 2 ; ++) f r e e (new−>tableau [℄) ;f r e e (new−>tableau) ;f r e e (new−>f i x ed) ;f r e e (new) ;} // f o r new Xelse {d r i l l (tab , prows , eqs , vars , i n t r eq ,CASE) ; // d r i l l i n s t ead o f sweepp r i n t f ("\n") ;}// p r i n t f ("\n−−−\ndonerang ing X_%d\n\n" , CASE−>numfixed+1) ;f r e e (CASE−>f i x ed) ;f r e e (CASE) ; // unommenting t h i s seems to wreak havo wi th g l i b , noidea why .} // wh i l e 74

p r i n t f ("\ n f i n i s h ed a l l a s e s \n") ;return r ;} // s o l v e r

75

Listing A.6: drill.#inlude " s o l v e r . h"int d r i l l d e p t h = 0 ;int d r i l l (double ∗∗ tab , int ∗prows , int eqs , int vars , int ∗ i n t r eq ,ase_t ∗CASE){ double ∗∗mytab ;ase_t ∗new ;double ∗X, Z ;int myvars , r , r2 , r , , newx , i s o l , keepranging , k e e pd r i l l i n g ;int s t a r t x ;X = mallo (vars ∗ s izeof (double)) ;r = UNKNOWN;for (r=0; r < vars ; r++) X[r ℄ = 0 ;// a ' ase ' i s a s e t o f f i x e d X va lue s known to onta in// f e a s i b l e s o l u t i o n s f a r t h e r down the t r e e (i . e . f i x i n g more// X va lue s) . Here , we take a ase , and f i x one more X, at// s e v e r a l va lue s s t a r t i n g from 0 , r e a t i n g more ases .//// l i n e a r op t imi za t i on be ing l i n e a r by d e f i n i t i o n , we know tha t// one a g iven X va lue makes the program i n f e a s i b l e , we an// s top t r y i n g in t h a t d i r e t i o n .//// we a l s o know tha t the program i s e n t i r e l y unbounded i f// ∗any∗ unbounded ase i s found , so we drop out immediate lys t a r t x = (int) e i l (CASE−>nextvar) ;keepranging = (s t a r t x >= 0) ;k e e pd r i l l i n g = (d r i l l d e p t h < vars) ;for (newx = s ta r t x ; (newx > 0) && (newx >= startx −1) ; newx−−) {// rea t e new ase , f i x i n g one more olumnnew = mallo (s izeof (ase_t)) ;new−>numfixed = CASE−>numfixed+1;new−>f i x ed = mallo (new−>numfixed ∗ s izeof (int)) ;for (=0; < CASE−>numfixed ; ++) new−>f i x ed [℄ = CASE−>f i x ed [℄ ;new−>f i x ed [new−>numfixed −1℄ = newx ;// p r i n t f ("\n−−−\nhek ing ase , f i x e d = (") ;p r i n t f ("depth %d f i x ed = (" , d r i l l d e p t h) ;for (=0; < new−>numfixed ; ++) {p r i n t f ("%d " , new−>f i x ed [℄) ;76

}p r i n t f (") %l f \ r " ,CASE−>bound) ;new−>tableau = NULL;subtab leau (tab , eqs , vars , new) ;mytab = new−>tableau ;myvars = vars − new−>numfixed ;// p r i n t f (" i n i t i a l sub−t a b l e au (%d f r e e vars) : \n" ,myvars) ;phase = 0 ; // f o r p r i n t_ ta b l e ()// p r i n t_ ta b l e (mytab , eqs , myvars) ;r = simplex (mytab , prows , eqs , myvars) ;i f (r == FOUND) {// grab X and ZZ = −mytab [eqs +1℄ [myvars+1℄ ; // the por t i on from ∗ t h i s ∗s u b t a b l e aufor (=new−>numfixed ; <= myvars ; ++) X[℄ = 0 ;for (r=1; r <= eqs ; r++) {i f (prows [r ℄ != −1) {X[new−>numfixed + prows [r ℄ − 1 ℄ = mytab [r ℄ [myvars+1℄ ;}}for (=0; < new−>numfixed ; ++) { // " f i x e d " por t i onX[℄ = (double) new−>f i x ed [℄ ;}// ompare and s t o r enew−>bound = Z ;// hek f o r i n t e g e r s o l u t i o n si s o l = 1 ;for (r=new−>numfixed ; r < vars ; r++) {i f (i n t r e q [r ℄ && ((X[r ℄ − f l o o r (X[r ℄)) > EPSILON)) {i s o l = 0 ;}} 77

i f (i s o l) {r = INTFOUND;r2 = announe (new , r , vars ,X, Z) ;i f (! r2) k e e pd r i l l i n g = 0 ; // se rve r had b e t t e r bound} else {new−>nextvar = X[new−>numfixed ℄ ;}} // FOUND so l u t i o n// do we keep go ing ?// s top on unbounded , a lwaysi f (r == UNBOUNDED) keepranging = 0 ;// s top i f pa s t known f e a s i b l ei f (r == INFEASIBLE) keepranging = 0 ;// d r i l l d owni f (k e e pd r i l l i n g) {new−>d i r e t i o n = 0 ;d r i l l d e p t h++;d r i l l (tab , prows , eqs , vars , i n t r eq , new) ;d r i l l d ep th −−;}for (=0; < eqs + 2 ; ++) f r e e (new−>tableau [℄) ;f r e e (new−>tableau) ;f r e e (new−>f i x ed) ;f r e e (new) ;} // f o r new Xreturn r ;} // s o l v e r
78

Listing A.7: phases.#inlude " s o l v e r . h"extern FILE ∗LOG;int s implex (double ∗∗ tab , int ∗prows , int eqs , int vars){ int r = 0 ;// phase 0 − row−redue to f i n d b a s i s s o l u t i o n// p r i n t f (" s t a r t i n g phase 0\n") ;i f (phase0 (tab , prows ,&eqs , vars)) {p r i n t f ("program i s i n f e a s i b l e a f t e r phase 0\n") ;r = INFEASIBLE ;} else {// p r i n t f (" phase 0 omplete : \n") ;// p r i n t_ ta b l e (tab , eqs , vars) ;// phase 1 − make b a s i s s o l u t i o n f e a s i b l e// p r i n t f (" s t a r t i n g phase 1\n") ;i f (r = phase1 (tab , prows , eqs , vars)) {i f (r == INFEASIBLE) {// p r i n t f (" program i s i n f e a s i b l e a f t e r phase 1\n") ;pr int_table (tab , eqs , vars) ;} else {// p r i n t f (" program i s unbounded a f t e r phase 1\n") ;}} else {// p r i n t f (" phase 1 omplete : \ n") ;pr int_table (tab , eqs , vars) ;// phase 2 − op t imi ze f i n a l s o l u t i o n// p r i n t f (" s t a r t i n g phase 2\n") ;i f (phase2 (tab , prows , eqs , vars)) {// p r i n t f (" program i s unbounded a f t e r phase 2\n") ;r = UNBOUNDED;} else { 79

// p r i n t f (" phase 2 omplete : \n") ;// p r i n t_ ta b l e (tab , eqs , vars) ;r = FOUND;} // phase 2} // phase 1} // phase 0return (r) ;} // s implexint phase0 (double ∗∗ tab , int ∗prows , int ∗rows , int o l s){ int r , , i , j , r ;int l ook ing ;phase=0;// f i nd and p i v o t on the f i r s t non−zero entry f o r eah olumnfor (r = 1 ; r <= ∗ rows ; r++) {// debug f ("\ t l o o k i n g f o r p i v o t in row %d\n" , r) ;for (=1; (<= o l s) && ! tab [r ℄ [℄ ; ++);i f (> o l s) { // we have ze ro s on the l e f ti f (tab [r ℄ [o l s +1℄) { // but non−zero on the r i g h tr = 1 ;} else { // en t i r e row i s zero , drop i tf p r i n t f (LOG, "row %d i s a l l zeros , redu ing rank and o l l a p s i n g tab leau rows\n" , r) ;f r e e (tab [r ℄) ;for (i=r+1; i <= (∗ rows)+1; i++) {tab [i −1℄ = tab [i ℄ ;}(∗ rows)−−;r−−; 80

}} else { // we have a p i v o t (r ,)pivot (tab , prows ,∗ rows , o l s , r ,) ;}}return (0) ;} // phase0int phase1 (double ∗∗ tab , int ∗prows , int rows , int o l s){ int r , ;int i ;double min ;int rmin ;phase=1;// do we even need a phase 1? f i n d most n e ga t i v e RHS value , p i v o t onphase1 olumnmin = 0 ;rmin = 0 ;for (i =1; i<= rows ; i++) {i f (tab [i ℄ [o l s +1℄ < min) {min = tab [i ℄ [o l s +1℄ ;rmin = i ;}}i f (! rmin) {f p r i n t f (LOG, "no phase 1 requ i r ed \n") ;return 0 ;}// s e t up ex t ra row (use r=0) and olumn (use =0)for (i =1; i <= rows ; i++) { 81

tab [i ℄ [0 ℄ = (tab [i ℄ [o l s +1℄ < −EPSILON ? −1 : 0) ;}tab [0 ℄ [0 ℄ = 1 ;for (i =1; i<= o l s ; i++) {tab [0 ℄ [i ℄ = 0 ;}tab [0 ℄ [o l s +1℄ = 0 ;// f p r i n t f (LOG, " i n i t i a l phase 1 t a b l e au :\ n") ;pr int_table (tab , rows , o l s) ;// p r i n t f (" i n i t i a l p i v o t i n g on (%d , 0) : \ n" , rmin) ;pivot (tab , prows , rows , o l s , rmin , 0) ;pr int_table (tab , rows , o l s) ;for (=1; <= o l s ; ++) {i f (tab [0 ℄ [℄ < −EPSILON) { // f i nd minimum ra t i o and p i v o t t he re// p r i n t f ("\ t l o o k i n g at o l %d\n" ,) ;// s k i p n e ga t i v e and zero e n t r i e s in olumn for (r=1; (r <= rows) && (tab [r ℄ [℄ < EPSILON) ; r++);i f (r > rows) return (UNBOUNDED) ;min = tab [r ℄ [o l s +1℄ / tab [r ℄ [℄ ; // i n i t i a l minimum ra t i ormin = r ; // i s on t h i s rowr++; // s k i p to next rowfor (; r <= rows ; r++) { // hek the r e s t o f olumn i f ((tab [r ℄ [℄ > EPSILON)&& (tab [r ℄ [o l s +1℄ / tab [r ℄ [℄ < min)) {// on ly p o s i t i v e (r ,) e n t r i e s are ons ideredmin = tab [r ℄ [o l s +1℄ / tab [r ℄ [℄ ;rmin = r ;}}// p r i n t f (" p i v o t i n g on (%d,%d) where min = %f \n" , rmin , , min) ;pivot (tab , prows , rows , o l s , rmin ,) ;// p r i n t_ ta b l e (tab , rows , o l s) ; = 0 ; 82

}}i f (tab [0 ℄ [o l s +1℄) {return (INFEASIBLE) ;}return (0) ;} // phase1int phase2 (double ∗∗ tab , int ∗prows , int rows , int o l s){ phase=2;int i , r , ;double min ;int rmin ;for (=1; <= o l s ; ++) {i f (tab [rows+1℄ [℄ < −EPSILON) { // f i nd minimum ra t i o and p i v o tt he re// f p r i n t f (LOG," found ne ga t i v e os t entry in olumn %d = %f \n" , ,tab [rows+1℄[℄) ;// f i n d f i r s t p o s i t i v e entry in olumnfor (r=1; (r <= rows) && (tab [r ℄ [℄ < EPSILON) ; r++);// i f none , problem i s unboundedi f (r > rows) return (UNBOUNDED) ;// f p r i n t f (LOG,"\ t f i r s t p o s i t i v e entry i s in row %d = %f \n" , r , tab [r℄ [℄) ;// e l s e , s t a r t wi th t h a t row as having the minimum ra t i omin = tab [r ℄ [o l s +1℄ / tab [r ℄ [℄ ;rmin = r ;r++;// ont inue l o o k i n g f o r row wi th minimum ra t i ofor (; r <= rows ; r++) {i f ((tab [r ℄ [℄ > EPSILON) && (tab [r ℄ [o l s +1℄ / tab [r ℄ [℄) < min){ 83

min = tab [r ℄ [o l s +1℄ / tab [r ℄ [℄ ;rmin = r ;}}// f p r i n t f (LOG,"\ tmin r a t i o i s %f , p i v o t in (%d,%d)\n" ,min , rmin ,) ;// f p r i n t f (LOG,"%d %d : : (os t ,%d) = %f , row %d => %f / %f = %f \n" ,rmin , , , tab [rows+1℄[℄ , rmin , tab [rmin ℄ [o l s +1℄ , tab [rmin ℄ [℄ ,min) ;pivot (tab , prows , rows , o l s , rmin ,) ; = 0 ;}}return (0) ;} // phase2

84

Listing A.8: queue.#inlude " s o l v e r . h"extern FILE ∗LOG;queue ∗newqueue (){ queue ∗q ;q = mallo (s izeof (queue)) ;q−>f i r s t = NULL;q−>l a s t = NULL;return (q) ;}void ∗ ge t a s e (queue ∗q){ void ∗next = NULL;node ∗oldq ;i f (q && q−>f i r s t) {// pop the queueoldq = q−>f i r s t ;q−>f i r s t = oldq−>next ;i f (q−>f i r s t) q−>f i r s t −>prev = NULL;next = oldq−> ;f r e e (oldq) ;}return (next) ;}int putase (queue ∗q , void ∗){ node ∗n ;i f (q) {// rea t e new queue noden = mallo (s izeof (node)) ; 85

n−> = ;// push ase on the end// empty queue?i f (! q−>f i r s t) {q−>f i r s t = n ;q−>l a s t = n ;n−>prev = NULL;n−>next = NULL;} else {q−>la s t−>next = n ;n−>prev = q−>l a s t ;n−>next = NULL;q−>l a s t = n ;}} else {debug (" f a i l e d push : queue not de f ined . \ n") ;}return (0) ;}int pu t l i e n t (queue ∗q , void ∗){ return (putase (q ,)) ;}

86

Listing A.9: utils.#inlude " s o l v e r . h"extern FILE ∗LOG;void stamp (){return ;time_t t ;time(&t) ;debug (time(&t)) ;puts (time (&t)) ;}double ∗∗ r e ad_ f i l e (FILE ∗TAB, int ∗rows , int ∗ o l s){ int r , ;//FILE ∗TAB;double ∗∗ tab ;har l i n e [2 5 6 ℄ ; // ou ld be a problem fo r long l i n e s b e f o r e ' beg in 'int s l a k = 0 ;do {f s a n f (TAB, "%s " , l i n e) ;} while (! f e o f (TAB) && strmp (l i n e , " begin ")) ;i f (f e o f (TAB)) {f p r i n t f (s tde r r , " e r r o r read ing f i l e \n") ;e x i t (−1) ;}f s a n f (TAB, "%d %d",& fi leRows ,& f i l e C o l s) ;
∗ rows = f i l eRows ; ∗ o l s = f i l e C o l s ;f p r i n t f (LOG, " read ing %d rows o f %d olumns\n" , f i leRows , f i l e C o l s) ;f f l u s h (LOG) ;#ifdef ADD_SLACKs l a k = ∗ rows − 1 ; // need s l a k v a r i a b l e f o r eah equat ion#endif 87

// a l l o a t e the t a b l e au// ' rows ' i n l u d e s the va lue fun t i on . add two more f o r p i v o t s andphase1f p r i n t f (LOG, " a tua l mal lo () i s %d rows o f %d olumns\n" , f i l eRows+2,f i l e C o l s+1+s l a k) ; f f l u s h (LOG) ;tab = mallo (((∗ rows)+2) ∗ s izeof (double∗)) ;for (r=0; r <= (∗ rows)+1; r++)tab [r ℄ = mal lo (((∗ o l s)+1+s l a k) ∗ s izeof (double)) ;for (r=0; r <= ∗ rows ; r++) {// debug f (" read ing row %d\n" , r) ;for (=1; <= ∗ o l s+s l a k ; ++) {// debug f ("\ t o l %d\n" ,) ;// o l 0 = 0 o l [1 . . vars ℄ = read , o l [1+ s l a k . . 2∗ s l a k ℄// o l [1 . . vars ℄ = read from f i l e// o l [vars+1 . . vars+s l a k ℄ = 1 f o r a l l rows but l a s t// o l [l a s t ℄ = read from f i l ef s a n f (TAB, "%l f " ,&tab [r ℄ [℄) ;// p r i n t f ("% l f " , tab [r ℄ [℄) ;}// p r i n t f ("\n") ;}do {// f g e t s (l i ne ,255 ,TAB) ;f s a n f (TAB, "%s " , l i n e) ;} while (! f e o f (TAB) && strmp (l i n e , "end")) ;f g e t s (l i n e , 255 ,TAB) ;// f l o s e (TAB) ; // don ' t l o s e i t here , s ine we didn ' t open i tou r s e l v e s// ad j u s t f o r a t ua l number o f e qua t i ons (rows−1) and v a r i a b l e s (o l s
−1)(∗ rows)−−;(∗ o l s)−−;#ifdef ADD_SLACK

∗ o l s += s l a k ;#endif 88

f p r i n t f (LOG, " read %d rows , %d o l s from f i l e , added %d s lak , new eqs/ vars = %d/%d\n" ,f i leRows , f i l eCo l s , s lak , ∗rows , ∗ o l s) ; f f l u s h (LOG) ;return (tab) ;} // r ead_ f i l e ()void pr int_table (double ∗∗ tab , int rows , int o l s){ return ;i f ((o l s > 60) | | (rows > 30)) {p r i n t f (" t ab l e too l a r g e f o r d i s p l ay\n") ;return ;}int r , ;// p r i n t t a b l e aufor (r=(phase == 1 ? 0 : 1) ; r <= rows+1; r++) {for (=(phase == 1 ? 0 : 1) ; <= o l s +1; ++) {f p r i n t f (LOG,FORMAT, tab [r ℄ [℄) ;}f p r i n t f (LOG, "\n") ;}} // p r i n t_ ta b l eint pivot (double ∗∗ tab , int ∗prows , int rows , int o l s , int prow , intpo l){ int r , ;double pval , val , d e l t a ;// f p r i n t f (LOG," p i v o t i n g t a b l e au o f s i z e (%d,%d) on e l l (%d,%d)\n" ,rows , o l s , prow , po l) ;// p r i n t_ ta b l e (tab , rows , o l s) ;i f (! tab [prow ℄ [po l ℄) { 89

f p r i n t f (LOG, "annot p ivot on a zero va lue") ;return(−1) ;}// s a l e the p i v o t row i t s e l f f i r s tpval = tab [prow ℄ [po l ℄ ;for (=0; <= o l s +1; ++)tab [prow ℄ [℄ /= pval ;for (r=0; r <= rows+1; r++) {va l = tab [r ℄ [po l ℄ ;i f (r != prow) for (=0; <= o l s +1; ++) {// f p r i n t f (LOG, "\ t t a b [%d ℄[%d ℄ = %.1 f " , r , , tab [r ℄ [℄) ;tab [r ℄ [℄ −= tab [prow ℄ [℄ ∗ va l ;d e l t a = fabs (tab [r ℄ [℄ − round (tab [r ℄ [℄)) ;i f (d e l t a < EPSILON) tab [r ℄ [℄ = round (tab [r ℄ [℄) ;// f p r i n t f (LOG, " −−> %.1 f \n" , tab [r ℄ [℄) ;}// avo id rounding i s s u e s// tab [r ℄ [p o l ℄ = (r == prow ? 1 : 0) ;// f p r i n t f (LOG, "\n") ;}prows [prow ℄ = po l ;// f p r i n t f (LOG,"\ t a f t e r : \n") ;// p r i n t_ ta b l e (tab , rows , o l s) ;// f p r i n t f (LOG, "\ tnew ob j va lue = %f \n" , tab [rows+1℄[o l s +1℄) ;} // p i v o tint subtab leau (double ∗∗ tab , int eqs , int vars , ase_t ∗ adj){ // make a opy o f the t a b l e au f o r p i v o t i n g .// eqs & vars d e s r i b e tab// adj on ta ins in format ion on how many olumns to s k i p (numfixed)int r , ;int rows , o l s ;// doub le ∗∗ t ; 90

rows = eqs + 2 ; // one f o r phase1 , one f o r Z o l s = vars + 1 ; // one f o r RHS, one f o r phase1// p r i n t f (" numfixed = %d , su b t a b l e au s i z e i s %d rows , %d o l s \n" , adj−>numfixed , rows , o l s) ;// i f (ad j) o l s −= adj−>numfixed ;i f (adj−>tableau) p r i n t f ("adj−>tableau i s not nu l l \n") ;adj−>tableau = (double∗∗) mal lo (rows ∗ s izeof (double∗)) ;// i f (adj−>tab l e au == ENOMEM) perror (" f i r s t mal lo () in su b t a b l e au ()f a i l e d ") ;for (r=0; r < rows ; r++) {adj−>tableau [r ℄ = mal lo ((o l s +1) ∗ s izeof (double)) ;for (= o l s ; ; −−) {// f p r i n t f (LOG," ad j u s t i n g (%d,%d) f o r f i x e d = %d\n" , r , , (ad j ? adj−>numfixed : 0)) ;i f (! adj | | ! adj−>numfixed) { // su b t a b l e au i s e n t i r e t a b l e auadj−>tableau [r ℄ [℄ = tab [r ℄ [℄ ;} else i f (<= adj−>numfixed) { // ompensate on RHS fo r f i x e dvarsadj−>tableau [r ℄ [o l s−adj−>numfixed ℄ −= tab [r ℄ [℄ ∗ adj−>f i x ed [
−1℄ ;} else { // s h i f t remaining un f i x ed vars to the l e f tadj−>tableau [r ℄ [−adj−>numfixed ℄ = tab [r ℄ [℄ ;}}}pr int_table (adj−>tableau , eqs , vars − adj−>numfixed) ;return (0) ;} // su b t a b l e au

91

Listing A.10: solver.h#inlude <std i o . h>#inlude <s t d l i b . h>#inlude <s t r i n g . h>#inlude <errno . h>#inlude <math . h>#inlude <sys / types . h>#inlude <sys / soke t . h>#inlude <netdb . h>#inlude <sys / s e l e t . h>#inlude <arpa/ i n e t . h>#inlude <sys / time . h>#inlude <time . h>#inlude "queue . h"#define MAX_CLIENTS 255#define SOLVER_PORT 11221#define SOLVER_PORT_STR "11221"//#de f i n e USE_DRILL 1extern double ∗∗ r e ad_ f i l e (FILE∗ , int ∗ , int ∗) ;extern void pr int_table (double∗∗ , int , int) ;extern int subtab leau (double∗∗ , int , int , ase_t ∗) ;extern int master (har∗ , int) ;extern ase_t ∗ r e qu e s t a s e () ;extern int announe (ase_t ∗ , int , int , double∗ , double) ;extern double ∗∗ i n i t i a l_ s e t u p (har∗ , int ∗ , int ∗) ;extern int queuemgr (double∗∗ , int) ;extern int s o l v e r (double∗∗ , int ∗ , int , int , int ∗) ;extern int s implex (double∗∗ , int ∗ , int , int) ;extern int phase0 (double∗∗ , int ∗ , int ∗ , int) ;extern int phase1 (double∗∗ , int ∗ , int , int) ;extern int phase2 (double∗∗ , int ∗ , int , int) ;extern int pivot (double∗∗ , int ∗ , int , int , int , int) ;extern void stamp () ;extern void terminate (int) ;// f o r rounding to zero#define EPSILON 1e−5// per− e l l format#define FORMAT "%6.2 f "extern FILE ∗LOG; 92

extern int MASTER;extern int phase , f i leRows , f i l e C o l s ;extern int found ;extern double best ;extern int ∗optX , ∗ f i x ed ;extern queue ∗q ;#define UNKNOWN 0#define INFEASIBLE 1#define UNBOUNDED 2#define FOUND 3#define INTFOUND 4#define debug (x) f p r i n t f (LOG, x) ; f f l u s h (LOG) ;#define debugf (x , y) f p r i n t f (LOG, x , y) ; f f l u s h (LOG) ;

93

Listing A.11: queue.h// work queuetypedef strut {int numfixed ;int ∗ f i x ed ;double nextvar ;int d i r e t i o n ;double bound ;double ∗∗ tab leau ;} ase_t ;// l i e n t queuetypedef strut {strut sokaddr_in addr ;har ∗ inaddr ;int fd ;FILE ∗ in , ∗out ;ase_t ∗CASE;int l inum ;} l i en t_t ;typedef strut queue_node_t node ;strut queue_node_t {void ∗ ;node ∗prev , ∗next ; ;} ;typedef strut {node ∗ f i r s t , ∗ l a s t ;} queue ;extern void ∗ ge t a s e (queue ∗) ;extern int putase (queue ∗ , void ∗) ;extern int pu t l i e n t (queue ∗ , void ∗) ;extern queue ∗newqueue () ;#define isempty (Q) (! (Q && Q−>f i r s t))
94

A.4 Pre-proessing SriptsListing A.12: mps2mat#!/ usr / b in / p e r l$ard = undef ;$rows = $o l s = 0 ;$minmax = 1 ; # minimize by d e f a u l ti f ($ARGV[0 ℄ eq '−r evo s t ') {$minmax = −1; # problem needs to have os t row rever sedsh i f t �ARGV;}LINE :while ($ l i n e = <>) {homp $ l i n e ;i f ($ l i n e =~ /^\s+/) { # sub− l i n enext LINE unless $ard ;i f ($ard eq 'ROWS') {($ r e l , $rname) = sp l i t (" " , $ l i n e) ;$rnames{$rname} = $rows++;# we want a l l on s t r a i n t s to be "="# so add s l a k v a r i a b l e s , −1 f o r ">=", 1 f o r "<="$sname = " s l a k $rname" ;$ s l a k s {$rname} = −1 i f ($ r e l eq 'G') ;$ s l a k s {$rname} = 1 i f ($ r e l eq 'L ') ;$names{$sname} = $o l s++ i f ($ s l a k s {$rname }) ;$ r e l s {$rname} = 1 ;# remember the os t row$ r e l s {$rname} = $minmax i f ($ r e l eq 'N ') ;$ostrname = $rname i f ($ r e l eq 'N ') ;} e l s i f ($ard eq 'COLUMNS') {($name , $pa i r s) = sp l i t (" " , $ l i n e , 2) ;�pairs = sp l i t (" " , $pa i r s) ;$names{$name} = $o l s++ unless exists ($names{$name}) ;95

while ($rname = sh i f t �pairs) {$ o e f f = sh i f t �pairs ;$ o e f f ∗= $ r e l s {$rname } ;$mat [$rnames{$rname } ℄ [$names{$name } ℄ = $ o e f f ;$sname = " s l a k $rname" ;$mat [$rnames{$rname } ℄ [$names{$sname } ℄ = $ s l a k s {$rname} i f ($ s l a k s {$rname }) ;}} e l s i f ($ard eq 'RHS ') {�pairs = sp l i t (" " , $ l i n e) ;sh i f t �pairs unless($#pa i r s % 2) ; # dummy p l a e ho l d e r s t r i n gwhile ($rname = sh i f t �pairs) {$rhs = sh i f t �pairs ;$rhs ∗= $ r e l s {$rname } ;$mat [$rnames{$rname } ℄ [$ o l s ℄ = $rhs ;}}} else {$ard = (sp l i t (" " , $ l i n e)) [0 ℄ ;}}print STDERR " f i n a l matrix s i z e , i n l ud i ng os t and RHS i s $rows rows by $ o l s o l s \n" ;$ o l s++; # to aount f o r RHS olumnprint "begin \n$rows $ o l s \n" ;ROW:for $r (0 . . $rows−1) {�row = () ;COL:for $ (0 . . $o l s −1) {$va l = $mat [$r ℄ [$ ℄ ; 96

$va l = 0 unless $va l ;push �row , $va l ;}$ r l i n e = join (' ' ,�row) ;i f ($rnames{$ostrname} == $r) { # pr in t the os t row l a s t$ o s t l i n e = $ r l i n e ;} else {print $ r l i n e . "\n" ;}}print $ o s t l i n e . "\nend\n" ;exit 0 ;

97

Listing A.13: optimize#!/ usr / b in / p e r l# op t imi ze a t a b l e au based on var ious r u l e s .# move more " important " olumns to the l e f t :# ∗ proe s s l a r g e r e n t r i e s in the os t row f i r s t (a f f e t s Z)# ∗ olumns wi th smal l r a t i o s o f RHS to olumn entry (l i m i t s range)# ∗ olumns wi th a l a r g e number o f non−zero e n t r i e s (more on s t r a i n t s)# read in t a b l e au f i l eloal $order = sh i f t �ARGV;�l ines = <>;homp �lines ;sh i f t �lines ; # beginpop �lines ; # end($rows , $ o l s) = sp l i t (" " , sh i f t �lines) ;# onver t to doubly−indexed arrayforeah $r (0 . . $rows) {$row = sh i f t �lines ;�row = sp l i t (" " , $row) ;push �tab , [�row ℄ ;}# rea t e t ranspose so we an do olumn opsforeah $r (0 . . $rows) {foreah $ (0 . . $o l s −2) { # sk i p RHS$trans [$ ℄ [$r ℄ = $tab [$r ℄ [$ ℄ ;}}�sorted = sort opt imize �trans ;# now transpose again to ge t f i n a l r e s u l tforeah $r (0 . . $rows) {foreah $ (0 . . $o l s −2) {$tab [$r ℄ [$ ℄ = $sor t ed [$ ℄ [$r ℄ ;}} 98

print "begin \n$rows $ o l s \n" ;print join (" " , �{$tab [$_℄ }) . "\n" for (0 . . ($rows)) ;print "end\n" ;sub opt imize {�a = �{$a } ;�b = �{$b } ;# os t row en t r i e s$aost = $a[$#a ℄ ;$bost = $b[$#b ℄ ;# non−zero entry ount$ant = salar grep { $_ } �a;$bnt = salar grep { $_ } �b;# minimum ra t i o$aminrat = undef ;$bminrat = undef ;foreah $r (1 . . $rows−1) { # sk i p s l a k v a r and os t rows (f i r s t andl a s t)$rhs = $tab [$r ℄ [$o l s −1℄ ;$arat = $a [$r ℄ ? $rhs /$a [$r ℄ : undef ;$brat = $b [$r ℄ ? $rhs /$b [$r ℄ : undef ;$aminrat = $arat i f (defined $arat && (($arat < $aminrat) | | ! defined($aminrat))) ;$bminrat = $brat i f (defined $brat && (($brat < $bminrat) | | ! defined($bminrat))) ;}my �sort = sp l i t (// , $order) ;my %so r t s = (i => ($b [0 ℄ <=> $a [0 ℄) , # fo r e i n t e g e r v a r i a b l e s to the l e f tr => ($aminrat <=> $bminrat) ,z => (($aost && $bost) ? ($aost <=> $bost) : 0) | | # both non−zero , s t r a i g h t ompare($aost ? −1 : 0) | | # non−zero aost , zero bos t($bost ? 1 : 0) , # vie−versa => ($bnt <=> $ant)) ;my $r = 0 ;foreah $s (' i ' , �sort) {$r = $r | | $ s o r t s { $s } ; 99

}#pr in t "minrat = $aminrat/$bminrat , ount = $ant/$bnt , o s t = $aost ,$bos t \n" ;#pr i n t " r = $r \n\n" ;return $r ;return (($bminrat <=> $aminrat) | | # min RHS r a t i o(($aost && $bost) ? ($aost <=> $bost) : 0) | | # both non−zero ,s t r a i g h t ompare($aost ? −1 : 0) | | # non−zero aost , zero bos t($bost ? 1 : 0) | | # vie−versa($bnt <=> $ant) | | # simple on s t r a i n t ount0) ;}

100

	Parallel algorithm for solving integer linear programs
	Recommended Citation

	Contents
	List of Tables
	List of Figures
	Listings
	Introduction, Notation, and Background
	Simplex Method
	Linear Relaxation

	Existing Methods
	Serial Implementation
	Tableau
	Solution Tree
	Queuing
	Feasibility
	Pruning the Search

	Parallel Implementation
	Parallel Methods
	Client-Server
	Traversal of the Solution Space
	Defining ``Done''

	Empirical Analysis and Conclusions
	Tabulation of Results
	Case 1: Cube
	Case 2: House
	Depth-first Enhancement
	Conclusions

	Future Projects
	Improving Linear Relaxation Methodology
	Drill Often
	Multiple Solutions
	Optimized Queuing
	Optimize the Choice of Fixed Variables
	Matrix Routines
	Network Routines
	Other Parallel Methods

	References
	References
	Code Listings
	Overview
	Usage
	Parallel Solver
	Pre-processing Scripts

