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Abstract 
 

 The monolithic integration of dissimilar microsystems is often limited by 

conflicts in thermal budget. One of the most prevalent examples is the fabrication of 

active micro-electromechanical systems (MEMS), as structural films utilized for 

surface micromachining such as polysilicon typically require processing at 

temperatures unsuitable for microelectronic circuitry. A localized annealing process 

could provide for the post-deposition heat treatment of integrated structures without 

compromising active devices. This dissertation presents a new microfabrication 

technology based on the inductive heating of ferromagnetic films patterned to define 

regions for heat treatment. Support is provided through theory, finite-element 

modeling, and experimentation, concluding with the demonstration of inductive 

annealing on polysilicon inertial sensing structures. Though still in its infancy, the 

results confirm the technology to be a viable option for integrated MEMS as well as 

any microsystem fabrication process requiring a thermal gradient. 
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Chapter 1: Localized Annealing in Microsystem Fabrication 
 

Technologies for localized heating have been applied to microsystem fabrication 

with moderate success, but limitations often exist with respect to flexibility in design and 

process, maximum temperature, and degree of localization. This chapter introduces the 

motivation for the process development presented in this document. Although numerous 

applications exist, the investigation is concentrated foremost on the annealing of 

polysilicon micromechanical structures for the purpose of monolithic integration with 

electronic circuitry, an industrially relevant problem that requires very high temperatures 

yet considerable localization and flexibility in order to minimize the impact to device 

development. A summary is first given of the typical challenges associated with 

integration in Section 1.1, followed by an analysis of several leading integrated or 

CMOS-compatible technologies from both industrial and academic facilities in Section 

1.2. Section 1.3 presents alternate methods for localized heating and other types of 

selective processes for comparison with that to be presented in this dissertation, 

specifically with respect to the primary application. Finally, some additional applications 

that could benefit from these types of technologies are briefly discussed in Section 1.4 as 

opportunities for future research. 

 
1.1: Overview of CMOS-MEMS Integration 

 
 As semiconductor devices continue to advance in capacity and complexity, one of 

the key objectives that researchers pursue is miniaturization. This includes not only 

enhancing the capability to produce smaller features but also developing means by which 

dissimilar components can be combined onto a single chip with minimal unused space. 

Design tradeoffs, contaminant materials, and conflicts in thermal budget can all introduce 
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difficulty to the latter, and as a result the cost of integration often outweighs the spatial 

benefit. In the field of microelectromechanical systems (MEMS), monolithic fabrication 

is one of the most prevalent challenges in the development of active devices. Films 

deposited for surface micromachined structures typically require a high temperature 

deposition or a post-deposition anneal in order to relieve intrinsic stress and therefore 

prevent strain-induced curvature upon release. Conversely, electronic circuitry such as 

that used in complementary metal-oxide semiconductor (CMOS) or bipolar CMOS 

(BiCMOS) technologies is often incompatible with elevated temperatures. One of the 

most preferred microstructural materials is silicon, which poses no contamination risk 

and also has highly favorable and well-characterized mechanical and electrical properties. 

Of particular favor for industrial MEMS is fine-grained polycrystalline silicon, or 

polysilicon; smaller, more numerous grains (e.g., thickness/size~20) enhance isotropicity 

in mechanical and electrical properties [Srikar, et al., 2002; Painter, et al., 2003] and 

furthermore help to facilitate the manufacture of small-featured devices [Kahn, et al., 

1996] with repeatable properties [Guckel, et al., 1988]. Material properties are highly 

dependent upon fabrication conditions, but polysilicon typically has a Young’s modulus 

in the vicinity of 160GPa [Senturia, 2001 (pp. 193-6); Bustillo, et al., 1998], and resonant 

structures can be produced with measured quality factors exceeding 100,000 [Bustillo, et 

al., 1998]. Obtaining the desired morphology with low stress, preferably tensile in order 

to prevent structural buckling, requires deposition or annealing around or above 1000oC 

[French, et al., 1996; Guckel, et al., 1988]. Once fabricated, however, standard circuitry is 

typically assigned an upper limit of around 450oC, above which aluminum- or copper-

based interconnect layers begin to deteriorate in quality, exhibiting increasing resistance 
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often accompanied by diffusion into the surrounding dielectrics [Sedky, et al., 2001; 

Franke, et al., 2003]. Furthermore, temperatures above those used in the formation of 

transistor junctions can result in further dopant diffusion, thus altering concentration 

profiles. As a result, the CMOS integration problem presents a formidable challenge that 

is important to resolve, particularly in industrial applications where efficient use of 

silicon area can yield a significant cost savings. 

 Integrated MEMS technologies are divided into three classifications based on the 

order in which components are fabricated: post-CMOS, MEMS-first, and interleaved. 

Post-CMOS processing has obvious thermal consequences as all high temperature 

MEMS procedures are performed after the temperature-sensitive electronics have been 

produced. Nevertheless, it is the preferred option of many device engineers for the simple 

reason that the more complex CMOS fabrication can be done at a dedicated foundry and 

passivated to protect the circuitry from relatively unclean MEMS processing. The 

opposite is a MEMS-first method, which solves the thermal issue of the former but has 

drawbacks related to contamination as the substrate is subject to additional handling and 

exposure to MEMS materials prior to CMOS processing. Measures taken to protect the 

circuitry may result in mechanical design limitations. Interleaved technologies attempt to 

reconcile some of the advantages and disadvantages of post-CMOS and MEMS-first 

processes through the selective fabrication of CMOS and MEMS devices and materials in 

an alternating fashion. This commonly entails performing initial dopant diffusions in the 

CMOS region, depositing structural layers in the MEMS region, completing the CMOS 

interconnects, and finally releasing the MEMS structures [Lewis, et al., 2003; Nunan, et 

al., 2000]. The potential exists to reduce processing steps by performing certain 
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procedures simultaneously such as dopant activation and mechanical annealing. These 

types of technologies are often highly specific to a particular device and process, 

rendering design modification for subsequent generations less straightforward. As with 

MEMS-first, contamination concerns remain prevalent. Integrated micromechanical 

devices have been successfully mass-produced through technologies of all three types. 

Examples of each are provided with more detail in the next section.  

 
1.2: Integrated MEMS Technologies 

 
 In the absence of a localized annealing method, CMOS-first technologies require 

all micromechanical fabrication procedures to be performed at relatively low 

temperatures or for very brief time durations. One solution to this problem is the use of 

bulk micromachined structures. Figure 1.1 shows a sample structure fabricated via 

Cornell University’s initial Single Crystal Reactive Etching and Metallization 

(SCREAM) process. SCREAM technologies are based on structural formation using deep 

reactive ion etching (DRIE) followed by structural release through isotropic chemical 

etching. A silicon dioxide layer deposited by thermal oxidation and/or plasma-enhanced 

chemical vapor deposition (PECVD) protects the trench sidewalls from further etching 

during release. Thermal oxidation, if used, also helps to improve the sidewall quality. The 

authentic SCREAM technology requires masking steps both to define trench locations as 

well as to provide for electrode patterning [Zhang, et al., 1991]. A later version, called 

SCREAM-I, eliminates the latter by performing release etching prior to electrode 

deposition and allowing some metal to accumulate on the floor of the now-opened 

trenches [Shaw, et al., 1993]. This version has a trade-off, however, in that it increases 

the parasitic capacitance from device to substrate since the metallic surface can store 
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more surface charge. Substantial modifications were made after the process was licensed 

for commercial application by EG&G Sensors of Singapore (later acquired by Temic 

Automotive). The most significant drawback to the process, difficulty in isolating 

structures from the remainder of the substrate, is overcome through the use of silicon 

dioxide “buss-bars” in which additional trenches are formed prior to the structure near 

desired anchoring regions, undercut below and on three sides to eliminate contact to the 

bulk in all directions except that which connect to the structure, thermally oxidized, and 

refilled via low pressure chemical vapor deposition (LPCVD) [Sridhar, et al., 1998]. This 

modification doubles the complexity of the process but renders it much more practical for 

device fabrication. Etch rates and timings remain extremely critical, however, and design 

flexibility is somewhat limited. Another commercialized process utilizing the substrate as 

a structural material is the Dissolved Wafer Process (DWP) developed at the University 

of Michigan. Licensed by spin-off company Integrated Sensing Systems (ISSYS), the 

DWP involves the electrostatic bonding of silicon and glass (silicon dioxide) wafers for 

device encapsulation and the removal of the excess silicon. Several variations of the 

process have been published, including one in which the wafer is thinned to the desired 

device thickness through chemical-mechanical polishing (CMP), for example 120µm 

[Chae, et al., 2002], and the original in which a deep boron diffusion prior to bonding 

defines the shape of the structure and serves as an etch stop region in ethylene diamine 

pyrocatechol (EDP) solution [Gianchandani, et al., 1992; Chavan, et al., 2000]. Anodic 

bonding is commonly done at temperatures in the range of 300oC to 500oC with an 

applied voltage in the range of 800V to 1000V and therefore can be a CMOS-compatible 

procedure with respect to temperature [Gianchandani, et al., 1992; Juan, et al., 1996]. The 
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Figure 1.1: Illustrative structure describing the initial version of Cornell University’s 
SCREAM Process [Zhang, et al., 19911].  
 

 
Figure 1.2: Cross-section of integrated pressure sensor fabricated from the University of 
Michigan Dissolved Wafer Process [Chavan, et al., 20002]. 
 
 
boron diffusion step, however, utilizes temperatures in the vicinity of 1200oC and 

therefore technologies of the second type are classified as interleaved. Bonding pads and 

interconnects can be formed on either wafer, and metal islands are often used to provide 

for inter-wafer signal transport. The image in Figure 1.2 shows a cross-section of an 

integrated pressure sensor fabricated via an interleaved DWP. A heavily doped etch stop 

region protects the 2P/2M BiCMOS region during device release [Chavan, et al., 2000]. 

Overall, the different DWP varieties offer a wide range of design and fabrication 

capabilities extending from the very simple to the fairly complex, and the thickness of the 

sensing structures is of virtually no limit. Viewpoints differ on the most desirable form of 

silicon for micromachining purposes. Single-crystalline silicon requires no heat treatment 

for reducing intrinsic stress and also exhibits higher electrical conductivity than 

                                                 
1 ©1991 IEEE 
2 ©2000 IEEE 
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polysilicon due to the absence of grain boundary scattering, but it lacks the mechanical 

isotropicity of fine-grained polysilicon. The impact of crystalline anisotropy on 

microstructural properties places boundaries on design capabilities and performance, 

particularly when applied to more complex devices such as gyroscopes or multi-axis 

sensors. For this reason, the vast majority of industrial inertial sensors are fabricated 

using polysilicon structures. 

 For CMOS-first surface micromachined devices, alternative structural materials to 

polysilicon remain under investigation. Considerable effort has been devoted to the study 

of polycrystalline germanium and/or silicon-germanium alloys due to the lower melting 

points and overall reduced thermal requirements of germanium with respect to silicon. 

Researchers at the University of California at Berkeley have demonstrated CMOS-

compatible processing of structures made from both n-type poly-germanium and p-type 

poly-Si0.35Ge0.65 with SiO2 and poly-Ge sacrificial layers, respectively [Franke, et al., 

2003]. Ge and SiGe alloys have been reported to exhibit somewhat degraded mechanical 

properties with respect to pure silicon such as lower quality factor (Franke achieved 

maximum values of 30,000 for poly-Ge and 15,000 for poly-SiGe as compared to 80,000 

or higher for poly-Si) and Young’s Modulus (132 for poly-Ge as compared to 173 for 

poly-Si). Nevertheless, this is largely compensated for by excellent material and thermal 

compatibility (937oC melting point for Ge as compared to 1415oC for Si) as well as 

opportunities for self-alignment due to the inability of germanium to nucleate on silicon 

dioxide [Li, et al., 1999]. Other research endeavors have focused on electrodeposited 

metallic structures fabricated through techniques such as sputter deposition or LIGA 

(LIthographie or lithography, Galvanoformung meaning electrodeposition, and 
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Abformung meaning molding). A well-known sputter-based technology is that utilized by 

Texas Instruments (TI) to fabricate their Digital Micromirror Device (DMD), an 

integrated projection display [Van Kessel, et al., 1998]. This two-metal (2M) CMOS-first 

process consists of four aluminum layers, one electrical and three structural, with deep-

UV hardened photoresist used to form the air gaps necessary for motion. Each mirror 

measures 16µm square, and arrays ranging in size from 800x600 to 1280x1024 are 

manufactured. Largely developed in Germany, LIGA processing involves the formation 

of micromolds using thick photoresist or polyimide followed by an electroplating 

procedure, as shown in Figure 1.3. High aspect ratio metallic structures have been 

fabricated for purposes ranging from inertial sensors and microturbines to reusable forms 

for use in injection molding [Bacher, et al., 1995]. In the United States, significant 

research in metallic microstructures has primarily been concentrated at the University of 

Wisconsin at Madison, where their High Aspect Ratio Microsystems Technology 

(HARMST) process includes refinements such as high-energy photon bombardment for 

thicker photoresist structures and planarization to compensate for unequal 

electrodeposition rates in regions of different sizes [Guckel, 1998]. Electrodeposited 

metallic structures are advantageous for use in high aspect ratio devices in that they form 

rapidly at CMOS-compatible temperatures with relatively low stress. Plastic deformation 

is of concern for metallic structures, however, and devices are subject to fatigue over 

cyclic loading. A third class of integratable microstructural materials has been pioneered 

at Carnegie Mellon University in which structures are comprised by composites of silicon 

dioxide and one or more metallic layers. CMOS devices are fabricated in a foundry, 

typically using an Agilent three-metal process through the MOSIS service, with the 



 9 

 
Figure 1.3: Illustration of LIGA processing showing the use of a thick photoresist (or 
other material) mold to define the shape of an electrodeposited metallic structure [Ueno, 
et al., 19971]. 

 
Figure 1.4: Illustration of the Carnegie Mellon CMOS-MEMS three-metal aluminum 
process demonstrating the use of the third metal layer to mask the shape of the 
microstructure [Zhang, et al., 19992]. 
 

silicon dioxide insulating layers filling the structural region and the metal mask set 

designed such that the interconnects lie within the structure as desired and the top metal 

layer provides a hard mask to define the shape of the device as shown in Figure 1.4. The 

structure is then released using an anisotropic trenching etch through the oxide followed 

by an isotropic release etch in the substrate. This process has the advantage of simplicity 

but the disadvantages of a lower Young’s modulus than either polysilicon or poly-

germanium [Luo, et al., 2002; Franke, et al., 2003] and, more importantly, significant 

out-of-plane curling that varies with temperature due to non-uniformity in structural 

composition. The researchers compensate for this problem by attaching sensing structures 

to a rigid frame such that the curl of moving electrodes is parallel to the curl of thicker 

structures of lower stress, eliminating the need for an outer frame but introducing the 

trade-offs of increased moisture sensitivity and stiction susceptibility [Luo, et al., 2002].   

                                                 
1 ©1997 IEEE  
2 ©1999 IEEE 
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 In summary, existing post-CMOS integration technologies tend to focus on the 

use of alternate materials to polysilicon. The range of trade-offs is vast, but in each case 

the process is specific to a particular material or class of materials and therefore 

flexibility in processing and, more particularly, technological upgrades, is restricted. The 

inductive annealing process introduced in Chapter 2 is applicable to nearly any type of 

device whether made of polysilicon, germanium, or otherwise, and can be applied in a 

wide range of configurations to suit different purposes, as will be shown.  

 Perhaps the most highly recognized MEMS-first technology is the Sandia 

Modular, Monolithic MEMS (M3EMS) process. Sandia approaches the aforementioned 

difficulties in MEMS-first CMOS fabrication by burying micromechanical structures in a 

depression as shown in Figure 1.5(a). This trench is formed using an anisotropic etchant 

to render a shape similar to that shown, with a depth slightly greater than the height of the 

structure. Beginning with a silicon nitride foundation, one or more layers of polysilicon 

are deposited with sacrificial silicon dioxide layers providing support and anchoring 

 

 
Figure 1.5(a): Illustration of Sandia’s M3EMS process showing mechanical polysilicon 
structure formed within wafer recess with polysilicon stud(s) transporting signals to 
electronics at surface [Allen, et al., 19981]. 
                                                 
1 ©1998 IEEE 
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(b) 

 
(c)

Figure 1.5(b,c): Cross-section of Sandia rotary actuator (b) fabricated using SUMMIT-V 
process (c) consisting of five polysilicon layers with intermediate sacrificial oxides 
[Krygowski, et al., 19991].  
 

locations. With a high degree of flexibility, M3EMS structures can vary from a single-

level 6µm accelerometer as presented in Allen, et al., 1998, to a five-level rotary actuator 

like that of Figure 1.5(b) fabricated using the five-level Sandia Ultra-planar Multi-level 

MEMS Technology (SUMMiT-V) illustrated in Figure 1.5(c) [Krygowski, et al., 1999]. 

As the structures are formed, polysilicon studs are simultaneously built for the purpose of 

signal transport between mechanical and electrical devices. Just prior to sealing off the 

depression with a nitride layer, thermal annealing is done in order to ensure stability of 

the region during any high-temperature CMOS processing steps. Surface quality is of 

particular importance in order to keep CMOS fabrication unaffected, and CMP steps are 

used following certain oxide depositions, particularly those near the surface, so that the 

planarized wafers can be sent to a dedicated foundry. The micromechanical devices 

remain supported until after CMOS completion, at which point a masking step removes 

the nitride layer over the structure and a sacrificial etch releases it for operation. The 

M3EMS and SUMMIT technologies have a key advantage in that a wide range of 

polysilicon devices can be fabricated such as sensors, actuators, and gear trains, and as a 

                                                 
1 ©1999 IEEE 
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result licensing agreements have been reached with various manufacturers, including 

Fairchild Semiconductor [Sandia, 2002], microsystem investment firm Ardesta [Ardesta, 

2001], software developer Microcosm Technologies [Coventor, 2001], and Sandia’s own 

spin-off company MEMX [MEMX, 2003]. A tedious approach to high aspect ratio 

processing, SUMMIT requires numerous, lengthy CMP procedures that are undesirable 

for industrial applications due to the added cost and reduced wafer throughput. This is 

exacerbated with increasing device thickness as additional metal layers are added. 

Furthermore, caution must be exercised in order to avoid contamination of the wafer 

surface, which may exclude certain materials from being used in MEMS devices and/or 

fabrication procedures. Despite these potential drawbacks, for the production of both 

simple and complex polysilicon structures the Sandia process is a respected technology. 

 As was mentioned in Section 1.1, interleaved technologies often exhibit a 

fabrication sequence in which transistor junctions are completed initially, followed by 

deposition and optional annealing of the structural film(s), circuitry metallization and 

passivation, and finally structural definition and release. The Analog Devices (ADI) 

Integrated MEMS (iMEMS) process utilizes exactly this format [Lewis, et al., 2003]. 

Producing perhaps the largest volume of inertial sensors for both automotive and 

consumer markets, ADI produces relatively thin (2-4µm) LPCVD polysilicon structures 

and maintains transistor junction areas sufficiently large so as not to be significantly 

impacted by structural deposition procedures. As with most interleaved technologies, the 

specific details used in the fabrication of each individual device are highly customized 

and therefore enhancements remain difficult to realize. Furthermore, the structural 

thickness limitation remains strict due to increasing intrinsic stress, and though ADI has 
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directed considerable effort into optimizing the polysilicon deposition process [Nunan, et 

al., 2000], it has become apparent that iMEMS is being phased out. As device complexity 

continues to increase, ADI has begun presenting devices fabricated through various 

experimental technologies, most notably the Modular-MEMS process, illustrated in 

Figure 1.6. Shown in several different interleaved variations [Yasaitis, et al., 2003; 

Bhave, et al., 2003] as well as in a MEMS-first format [Palaniapan, et al., 2003; Kung, 

1996], structural layers are deposited through one or more LPCVD polysilicon steps and 

removed from the substrate except for in the structural region. Device layers and the 

sacrificial layer at the surface are optionally planarized via CMP. The remainder of the 

wafer is covered with an epitaxial silicon layer, deposited such that the nucleation rate in 

the non-MEMS region is considerably higher, with a thickness at or slightly above the 

height of the structural module, and CMP planarization ensures a smooth, level surface. 

Circuitry is then fabricated in the high-quality non-structural regions, passivated, and 

finally the structure is defined if not so already and released. This new process ensures a 

clean surface for BiCMOS processing while simultaneously providing for its modularity, 

thus substantially increasing design flexibility. While structural thicknesses published 

have only reached 6µm thus far [Yasaitis, et al., 2003], removing the polysilicon from the 

remainder of the wafer helps to reduce the impact of film stress to the wafer. A second, 

also highly successful, genre of interleaved technologies is made up of the “epipoly” 

processes. Initially introduced for inertial sensor fabrication by the Robert Bosch 

Corporation [Offenberg, et al., 1995] and later developed in a similar form by ST 

Microelectronics [Galayko, et al., 2002], epipoly technologies make use of silicon 

epitaxy above a patterned silicon dioxide layer and polysilicon seed layer in order to 
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Figure 1.6: Illustration of Analog Devices Modular-MEMS process showing circuit area 
fabricated at surface of epitaxial MEMS encapsulation layer [Palaniapan, et al., 20031]. 
 

 
Figure 1.7: Illustration of Bosch epi-poly process demonstrating simultaneous, selective 
deposition of monocrystalline and polycrystalline silicon for use in transistor and 
transducer regions, respectively [Offenberg, et al., 19952]. 
 
 
simultaneously form both monocrystalline and polycrystalline regions. As shown in 

Figure 1.7, the transducer polysilicon extends upward and outward from the seeded 

region. A buried diffusion layer provides for electrical connectivity to the structure as 

well as electrostatic biasing of other regions. Once the epitaxial deposition is complete, 

fabrication of the active devices takes place at the planarized surface of the single-

crystalline region. Following CMOS passivation, the polycrystalline region is trenched to 

define the shape of the structure, and finally the silicon dioxide layer is dissolved to 

release the device. Bosch utilizes its epipoly process to produce its entire line of inertial 

sensors with recent publications describing both linear [Reichenbach, et al., 2003] and 

rotational [Funk, et al., 1999] devices with published thicknesses reaching 11µm. 

Structures are nearly free of intrinsic stress due to the high deposition temperatures, for 

example 1180oC was used to form the tri-axial linear accelerometer described in 
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Reichenbach, et al., 2003, and deposition rates are on the order of 1.5µm/minute 

[Partridge, et al., 2001]. The resulting grain structure is extremely coarse, however, 

resulting in high surface roughness and low electrical conductivity despite in-situ doping, 

and as a result both CMP and doping procedures are required. Achieving uniform ex-situ 

doping of thick structures is difficult, however, and non-uniformity in the final dopant 

concentration has been reported to generate some compressive curvature, particularly for 

thicker structures. Tethers are designed such that compressive stress is converted to 

tensile in order to prevent buckling during device operation, but nevertheless a limit is 

placed on proof mass dimensionality [Offenberg, et al., 1995]. Bosch has worked closely 

with researchers at the Fraunhofer Institute and the University of Freiberg to characterize 

and further refine the polysilicon quality [Lange, et al., 1996; Wagner, et al., 2003] and 

today has what is arguably the best technology in the industrial market. 

The technologies evaluated in this section each exhibited unique strengths and 

weaknesses, summarized in Table 1.1, and it is likely that there exists no perfect 

integrated fabrication process. While university-based processes utilize a wide range of 

structural materials, the top-ranking manufacturers remain dedicated to polysilicon 

despite its thermal drawbacks. It is clear that a low-impact localized annealing method 

could be of considerable benefit to the microsystems industry with the capability to 

provide for modularity with optimum design flexibility. 

 
1.3: Selective Modification of Microsystem Properties 

 
 Realization of the opportunities afforded by localized heating is not a unique 

conception. In recent years, several different methods to selectively manipulate the 

properties of microsystem devices and materials have been under investigation. The 



 16 

TABLE 1.1 

SUMMARY OF INTEGRATED CMOS-MEMS TECHNOLOGIES 
Technology Company/ 

University 
Type Advantages Disadvantages 

SCREAM Cornell Post-CMOS Simple, few masking 
steps 

Bulk micromachined, 
limited flexibility, 
substrate isolation difficult 

DWP U-Michigan Post-CMOS or 
Interleaved 

Highest available 
thicknesses 

Bulk micromachined 

Poly-Ge or 
Poly-SiGe 

UC-Berkeley various Self-alignment, 
lower temperatures 
than Poly-Si 

Lower Young's Modulus 
than Poly-Si, still requires 
elevated temperatures 

DMD Texas 
Instruments 

Post-CMOS Low-stress 
structures 

Plastic deformation and 
fatigue concerns, aspect 
ratio limitations 

HARMST UW-Madison Post-CMOS Low-stress 
structures, high 
aspect ratios 

Plastic deformation and 
fatigue concerns 

Composite 
Laminates 

Cornell Post-CMOS Simple, uses CMOS 
processing for film 
depositoin 

Lowest Young's Modulus, 
curvature problems severe 
and difficult to correct 

M3EMS + 
SUMMIT 

Sandia MEMS-First Flexible Numerous CMP steps, 
aspect ratio limitations, 
contamination concerns 

iMEMS Analog 
Devices 

Interleaved Highly optimized 
polysilicon 
processing 

Customized processes 
difficult to upgrade, aspect 
ratio limitations 

Modular 
MEMS 

Analog 
Devices 

Interleaved or 
MEMS-First 

Flexible, capable of 
modularity 

Aspect ratio limitations 

Epi-Poly Bosch Interleaved Low-stress HAR 
structures, above-
average flexibility 

Coarse grains require extra 
doping, causes issues with 
uniformity and curvature 

 

focused absorption or dissipation of energy has been reported for applications such as 

wafer bonding and polysilicon annealing. Like the technology presented in this 

document, some are based upon resistive heating with currents obtained either through 

direct contact or electromagnetic coupling to specific regions or materials. Others make 

use of high-energy laser beams, either in continuous or pulsed modes to single or 

multiple targets. A third class attempts to modify material properties through light 

alloying with specific materials in order to obtain the desired results with reduced thermal 

requirements. Research in these areas has primarily been done at academic facilities, and 

at the present time all methods either have limiting disadvantages or require further 
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refinements that have kept them from being adopted by industry. Nevertheless, the 

continually increasing interest in resolving the CMOS-MEMS integration challenge 

reflects its industrial relevance. 

 Wafer-scale resistive heating methods have been successfully demonstrated with 

currents generated in either metals or semiconductors. The majority of published 

techniques of this type have been concentrated on wafer bonding applications. In 1999, 

researchers at the California Institute of Technology published a method by which silicon 

dies were bonded together through the microwave heating of thin gold films [Budraa, et 

al., 1999]. Test samples 5mm in width were each prepared, prior to dicing, with 150Ǻ-

thick chromium and 1200Ǻ-thick gold films forming a 2mm-wide square ring above a 

3mm-wide, 100µm-deep recess. Two dies were stacked such that the gold regions were in 

contact, and a 2.45GHz electromagnetic field was applied at power levels of 100-300W 

in a high-vacuum ambient (approximately 25µTorr) to prevent plasma formation. 

Temperature measurements were not provided, but leak tests on the results verified bond 

hermeticity. This research led to the founding of Altadena-based (California) Microwave 

Bonding Instruments (MBI) which continues to publish experimental and simulation 

results pertaining to the bonding of various types of substrates using microwave heating 

methods [Clendenin, et al., 2003; Budraa, et al., 2004]. A year after this study was 

published, researchers at the University of Michigan reported a fusion wafer bonding 

technique in which currents were applied through direct contact to line-shaped 

“microheaters” which also provided the bonding region on the device wafer [Cheng, et 

al., 2000]. Silicon-Pyrex fusion was achieved through the heating of 5µm-wide, 1.1µm-

thick polysilicon heaters fabricated on the silicon wafer to approximately 1300οC for five 
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minutes with an applied pressure of 1MPa. The quality of the resulting bond was further 

enhanced by the local softening of the glass, and SEM imaging verified that the two 

materials were completely merged. In the same publication, the technique was applied to 

silicon-gold eutectic bonding in which 5µm-wide, 0.5µm-thick gold resistors were heated 

to approximately 800oC, again for five minutes and at 1MPa, and once more the bond 

was shown to be thorough. This work was subsequently expanded upon at the University 

of California at Berkeley, where Pyrex-Pyrex and Pyrex-polycarbonate wafer bonding 

was performed with currents inductively applied to gold “bonding rings” [Cao, et al., 

2002]. The rings varied in size from 1-1.2mm in diameter, 6µm thick, and 100−200µm 

wide. Using a 10-15MHz power supply, temperatures in excess of 1000oC were induced 

with as little as 500W. Bonding was achieved is one minute or less, and again hermeticity 

was verified. The use of insulating wafers simplified the process requirements as the 

electrical resistivities of insulators prevent efficient inductive heating, and it is certain 

that the maintenance of localization would be much more difficult with semiconducting 

wafers as will be discussed further in the next chapter. At nearly the same time, 

researchers at the University of Wisconsin also began to publish results on wafer bonding 

[Thompson, et al., 2002] as well as dopant activation [Thompson, et al., 2001; 

Thompson, et al., 2003] using their electromagnetic induction heating (EMIH) 

technology. This research focused on electromagnetic coupling directly to silicon wafers, 

making use of the larger volume of the substrate to overcome the lower conductivity with 

respect to metals. Magnetic fields with frequencies of 13.56MHz, 2.45GHz, and 30.5GHz 

were applied using a spiral coil for the former and resonant cavities for the latter two, and 

temperatures were measured with optical pyrometry. Direct silicon-silicon bonding 



 19 

without the use of an intermediate layer required a temperature of 1000oC, and this was 

achieved at both 13.56MHz and 2.45GHz with power levels in the range of 900-1300W 

[Thompson, et al., 2002]. Wafers of both 50mm and 75mm diameter were thoroughly 

bonded within five minutes, and knife-edge delamination testing confirmed that the wafer 

stacks shattered before separating. Due to electromagnetic skin effects, induced 

temperatures were at a maximum at the wafer edges, and in the case of the radio 

frequency (RF) bonding of 75mm wafers a gradient was observed such that the 

temperature at the center was only approximately 780oC. Bonding was nevertheless 

found to be complete, and the authors hypothesized that RF electric fields present at the 

bonding interface may have enhanced reaction kinetics such that the temperature 

requirement was reduced. The authors have similarly published results on the use of 

EMIH for dopant activation, making use of its high efficiency to demonstrate the utility 

of the rapid rate of temperature increase to achieve shallow dopant activation [Thompson, 

et al., 2003]. The next generation of active devices requires enhanced control over 

junction depths, and rapid drive-in processes such as rapid thermal annealing (RTA) are 

becoming necessary in order to achieve sufficient dopant activation with limited 

diffusion. The researchers utilized the process to perform “spike annealing,” a ~zero-

second anneal in which the power was increased at a fixed rate until the target 

temperature was reached and then immediately removed. Using the 2.45GHz power 

supply, temperatures were ramped at a rate of 125oC/s to 950oC and 1050oC in order to 

activate beam-line boron implants. The environmental oxygen content was reduced to 

100ppm thorough nitrogen purging, thus limiting surface oxidation as well as oxygen-

enhanced diffusion. Under optimized conditions, “box-shaped” profiles, ideal for CMOS 
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source/drain regions, were obtained with depths below 30nm and resistivities of less than 

600Ω/square, resulting in junctions suitable for 100nm technologies. Resistive-based 

heating techniques offer many of the advantages of RTA processes with further benefits 

of increased efficiency and the capability for localization to specific regions or materials. 

Those based on electromagnetic induction are arguably more convenient as they do not 

require wafer probing to provide the means for energy generation. The adaptation of this 

relatively old manufacturing process to modern semiconductor fabrication continues to 

generate increasing interest and, pending further investigation, may become an enabling 

technology for new types of MEMS devices, integrated or otherwise. 

 The utilization of single- or pulsed-mode laser beams has been under 

investigation as an alternative to heat treatment for polysilicon thin films. The majority of 

research in this area has been directed toward thin-film transistor (TFT) applications such 

as active matrix liquid crystal displays (AMLCDs) for both the recrytallization of as-

deposited amorphous silicon [Kuriyama, 1995] and dopant activation [Peng, et al., 2003]. 

Experimentation has shown laser-based methods to be highly successful in reducing 

thermal requirements, which not only facilitates monolithic integration with other 

circuitry but also enables the use of alternate substrates to quartz. The potential for the 

generation of stresses and stress gradients is high; shallow pulse depths and temperature 

gradients result in vertical non-uniformity, and the extremely rapid rate of cooling can 

exacerbate thermal expansion mismatch with the underlying layer(s) [Parr, et al., 2002]. 

Instruments of short wavelength and/or small pulse duration tend to be favored as they 

provide for maximum localizability, and consequently technological advancement of 

laser-based processes in microsystems fabrication is largely contingent upon the 
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development of the laser technologies themselves. At the present time, considerable 

research is being devoted to the characterization of excimer laser processing as their 

resolution capability is suitable for microsystem applications [Holmes, 2001]. Excimer 

lasers emit radiation in the ultraviolet spectrum using a gas discharge. Their operation in 

the recrystallization of structural materials was recently reported by researchers at the 

University of California at Berkeley [Sedky, et al., 2004]. Using a KrF device with a 

248nm wavelength, 38ns pulse width, and energy densities in the range of 120-

790mJ/cm2, relationships between various parameters of deposition and annealing were 

investigated for poly-SiGe films. TEM imaging showed the depth of energy penetration 

to be limited to approximately 0.8µm, indicating the utility of the process in maintaining 

localization for CMOS compatibility but at the same time revealing a constraint that may 

prevent its promotion to thick films. The researchers partially addressed this by 

depositing SiGe bilayers in which the lower amorphous layer was subjected to a laser-

induced recrystallization which subsequently altered the properties of the second layer. 

Through fine-tuning of laser energies as well as SiGe compositions and thicknesses, 

crystalline behavior was manipulated such that the stress gradients of the primary and 

secondary layers canceled to produce curvature-free structures. The thickest annealed 

films shown were cantilever beams consisting of a 1.4µm-thick Si60Ge40 foundation 

deposited at 400oC and annealed at 320mJ/cm2 with a 1.4µm-thick Si44Ge56 top layer. For 

the high aspect ratio structures targeted by industry, however, achieving gradient-free 

anneals will likely require a complex procedure consisting of multiple laser procedures 

during the film deposition process, though future research may prove otherwise. Methods 

to control the rate of recrystallization will likely be required as the rapid melting and 
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solidification typically encountered with a laser-based anneal tend to result in a relatively 

coarse grain structure, desirable for TFT applications where conductivity is of high 

importance but less so for MEMS applications which benefit from the isotropicity of 

fine-grained structural materials. This has also been reported to generate voids in the 

grain structure [Peng, et al., 2003]. Thus there are several stress-related concerns 

affiliated with laser-based annealing. It is a relatively unexplored field, however, and 

should not be ruled out as a contender for the next revolutionary technology in the 

MEMS industry.  

 A third class of technologies, also largely developed for the TFT industry, takes 

advantage of silicon interactions with specific metals to lower the temperature 

requirements for recrystallization. Depending on the mode of operation, these processing 

techniques are referred to as metal-induced crystallization (MIC) or metal-induced lateral 

crystallization (MILC). The most commonly used reagent is nickel, and it has been 

shown that at moderately elevated temperatures (typically at or slightly above 500oC) the 

NiSi2 particles from the interface are able to diffuse through the as-deposited amorphous 

silicon, both vertically and laterally, breaking bonds along the way. At these moderately 

elevated temperatures, the broken bonds can be made to crystallize into an ordered lattice 

using the single-crystalline substrate as a seed [Kawazu, et al., 1990; Hayzelden, et al., 

1993]. Maximum silicon film thicknesses, therefore, are dependent upon the reagent 

diffusivity at a given annealing temperature. Patterning of the metallic films allows for 

selectivity. Although the lateral rate of diffusion must be taken into consideration for the 

characterization of resolution capabilities, the significant reduction in thermal 

requirements renders this field of technologies very appealing. Researchers at the Hong 
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Kong University of Science and Technology have suggested the adaptation of MILC to 

integrated sensor fabrication [Wang, et al., 2000-1; Wang, et al., 2001]. Publications 

demonstrate pressure sensors consisting of high-quality polysilicon piezoresistors with 

diaphragms made of a low temperature oxide (LTO) and SixNy film stack. The 400nm-

thick silicon resistors are deposited in amorphous form via LPCVD at 550oC and are 

furnace annealed at 500-550oC using a 5nm-thick nickel film. To achieve results 

comparable with their benchmark 620oC LPCVD polysilicon, however, the authors 

recommend following up with a brief high-temperature anneal, e.g. 1000oC for 30 

minutes. Other MIC/MILC variations in the literature include the use of pulsed RTA to 

expedite crystallization times [Leung, et al., 2001] and a hybrid process in which an 

excimer laser enhances annealing results [Murley, et al., 2001]. While metal-induced 

processes still require slightly higher temperatures than are recommended for post-CMOS 

fabrication with aluminum interconnects, changing metals or even light alloying may 

enable full integration. The resulting films are prone to anisotropic crystallinity as the 

grains tend to be long and narrow, extending toward the metal-silicon interface. This 

affects both mechanical and electrical properties, with the former being of particular 

concern for high aspect ratio MEMS structures. Uniform annealing of thick films has not 

been shown to date and would likely require either significantly elevated temperatures to 

enhance diffusion or possibly composite structures consisting of thin metal layers (e.g., 

5nm of nickel) spaced vertically throughout the structural layer (e.g., every 1µm). 

Annealed films do contain a small impurity concentration, though it is thought that the 

vast majority of metal atoms remain electrically inactive [Wang, et al., 2000-2]. The 

effect of gradients in both concentration and annealing quality on structural curvature will 
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require investigation. The ability to achieve localization through very simple and 

inexpensive means, however, is a clear advantage over the other techniques discussed.  

 The three different classifications of localization technologies examined in this 

section all exhibit the potential to solve the CMOS integration problem. Each imparts a 

unique set of challenges that must be overcome, but the processes are still in their infancy 

and will almost certainly advance with time and effort. The technology to be presented in 

this document is of the first type, is induction-based, and attempts to maximize 

localization through the use of specific materials for maximum magnetic coupling. It too 

requires further optimization before becoming suitable for industrial manufacturing, but 

the initial results show tremendous promise.  

 
1.4: Other Applications 

 
 The benefits of selective processing techniques remain at the present time largely 

unexplored in the microsystems industry. While structural annealing is the primary focus 

of the investigation under review, localization may be of use under any circumstance in 

which high-temperature processing is necessary [Bergstrom, et al., 2004]. For example, 

thin films that are in the process of being deposited or grown by either physical vapor 

deposition (PVD) or chemical vapor deposition (CVD) means could be locally annealed 

in-situ. Thermal treatment during the deposition or growth would enable local alteration 

of many material properties including mechanical stress, stress gradients, optical 

transmission, electrical conduction, and many other effects that are well documented in 

the literature. Also, deposition rates for CVD and thermally-driven processes, such as 

SiO2 growth from silicon, could be significantly altered (less so for PVD) by applying 

heat to certain regions while a reactive gas load is applied to the system, thus selectively 
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enhancing the rate of reaction. Researchers at the University of California at Berkeley 

have recently published results from a related technique in which resistive heat generated 

through directly applied currents is used to locally enhance the growth rate of PECVD 

polysilicon [Joachim, et al., 2003]. Similar capabilities exist for chemical-based etching 

processes such as Reactive Ion Etching (RIE) in which elevated temperatures could be 

used to selectively enhance reaction rates, possibly enabling film profiles not possible 

otherwise. New types of dopant profiles may also become available through selective 

control of diffusion rates; this may be of use in the development of active devices as well 

as for processes such as the Dissolved Wafer Process that make use of dopant-based etch 

stops. Ferromagnetic films deposited for Magnetic Random Access Memory (MRAM) 

often require a magnetic anneal, a low-temperature anneal in the presence of a constant 

magnetic field, in order to establish the uniaxial anisotropy required for digital data 

storage capability [Jun, et al., 2004]. CMOS-compatible temperature elevation could be 

achieved through inductive heating, either using a time-varying field separate from the 

constant poling field or a single field with both direct and alternating components, or 

through other localized means [Bergstrom, et al., 2007]. Finally, packaging techniques 

including wafer bonding could be done using methods such as inductively/resistively 

heated films or inductively/resistively melted solder. Some initial research in this area 

was discussed in Section 1.3. These examples are by no means exhaustive, but they 

demonstrate a portion of the wide range of opportunities afforded by selective processing 

technologies. It is likely that in the future such methods will not only enhance existing 

devices and fabrication methods as suggested here but also enable the creation of 

completely new types of systems and applications. 
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Conclusion 

 
 This chapter presented the motivation for research into a localized microstructural 

annealing technique. Existing methods utilized for monolithic CMOS integration were 

examined as well as various techniques presently under investigation for the selective 

modification of targeted materials and/or regions of a device. Opportunities for 

improvement were evident, specifically with respect to conflicting thermal budgets of 

dissimilar systems. The remainder of this dissertation presents the development of a new 

microfabrication process based on the induction heating of thin ferromagnetic films for 

the purpose of facilitating the modular integration of MEMS structures with CMOS 

circuitry. While actual CMOS devices were not used, localization is shown via the 

presence of annealed and unannealed devices in close vicinity on a single substrate, with 

the unannealed devices understood to represent an active region. Chapter 2 provides a 

more focused discussion on the direction chosen for this research and the theoretical 

advantages expected as a result of intentional differences in material properties. This is 

followed with the demonstration and characterization of the capabilities of the inductive 

annealing process through both finite-element modeling (Chapter 3) and experimentation 

(Chapters 4 and 5). Finally, Chapter 6 presents the initial development of a high aspect 

ratio accelerometer fabrication technology, with a full device designed and simulated, in 

hopes of eventually incorporating inductive annealing into the process. The overall 

objectives of this dissertation were to provide convincing evidence that the process could 

provide an industrially acceptable solution to the CMOS-MEMS integration problem and 

to lay the foundation for its eventual incorporation into the fabrication of functional, 

integrated devices.  
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Chapter 2: Theory of Induction Heating 
 
 Induction heating is a technique commonly utilized in metallurgical industries to 

modify the properties of materials, particularly iron-based metals. An alternative to 

ambient heating, it has the advantage of allowing the localized generation of thermal 

energy in specific regions of a device through differences in the properties of the 

constituent materials and manipulation of the behavior of the applied magnetic field. For 

this reason, induction heating has several potential applications in microelectronic and 

microsystem fabrication, though its use has traditionally been limited to crystal growing 

[Ciszek, 1985] and susceptor heating [Rafferty, et al., 2002] until recently, as was 

discussed in Section 1.3. The approach under investigation takes advantage of the higher 

magnetic permeabilities of ferromagnetics with respect to typical microsystem materials 

in order to enhance process compatibility among monolithically integrated microsystems 

with conflicting thermal budgets. The selective heating of regions on a wafer can provide 

substantial flexibility in the design and fabrication of each individual system as well as 

reduce the overall size of the integrated device. This chapter discusses the theory and 

requirements behind this technology, beginning with justification through basic 

electromagnetic principles in Section 2.1 and continuing with opportunities for 

localization through differences in material properties in Section 2.2. Section 2.3 

concludes the chapter with the proposal of the inductive annealing technology to be 

presented in this dissertation, with a discussion of the anticipated advantages and 

limitations as well as considerations for achieving the desired heat and localization results 

for the annealing of polysilicon microstructures in a CMOS-compatible environment. 
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2.1: Electromagnetic Fundamentals 

 
Induction heating is the combined result of two primary behaviors, eddy current 

heating and hysteresis heating. Eddy current heating typically receives greater mention 

and in most applications is the more significant factor [Tudbury, 1960 (pp. 1-12 – 1-13); 

Rudnev, et al., 1997 (p. 782)]. Heat generation is a strong function of frequency, 

magnetic permability, and electrical conductivity, and is exhibited in all materials to 

different degrees. Hysteresis heating, on the other hand, is limited to the ferromagnetic 

set of materials and depends on the nature of their resistance to re-magnetization. This 

section presents the fundamentals of eddy current heating; hysteresis will be clarified in 

the next section. 

 When an object is located within a time-varying magnetic field, an electric field 

of the same frequency is induced according to Faraday’s law [Rudnev, et al., 1997 (p. 

780)], 

 
t

B
E

∂

∂
−=×∇ , (2.1) 

 
where E denotes the induced electric field (V/m) and B is the magnetic flux density (T) 

which is proportional to the magnetic field strength H (A/m) by the material’s 

permeability, µ (H/m) as per the magnetic constitutive relation. The electric field gives 

rise to eddy currents that propagate in circular paths perpendicular to the applied 

magnetic field, and resistive losses lead to heat generation. The region of maximum 

current density occurs at the outer edge of the material as a result of Lenz’s law which 

states that the induced currents generate secondary magnetic fields that act to oppose the 

primary, preventing a runaway condition and consequently causing the current magnitude 

to decay exponentially toward the center as [Rudnev, et al., 1997 (p. 796)] 
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Equation (2.2) defines the electromagnetic skin effect and reflects the magnitude of the 

current density Jr (A/m2) at a distance r (m) from the edge for a given peak current 

density J0, . This indicates that exp-1=63.2% of the eddy current magnitude lies within the 

first skin depth, and therefore exp-2=86.4% of the power dissipation. The skin depth, δ, 

for a good electrical conductor simplifies to [Balanis, 1989 (pp. 149-151)] 

 2/1)( −
= fπσµδ . (2.3) 

 
Materials that provide efficient energy coupling (i.e., higher electrical conductivity and 

magnetic permeability) tend to result in a narrower skin depth because the larger induced 

currents oppose the incident field more effectively, but a limit is reached at which the 

skin depth becomes so narrow that the effective resistance is high. Frequency selection 

thus plays an important role in process efficiency. Shen, et al., derived an expression for 

the heat generation in a hollow cylinder subject to a magnetic field applied parallel to its 

axis, thus producing eddy currents in the Φ-direction. The time-average induced power 

dissipation in the cylinder was shown to be approximately [Shen, et al., 1995] 

 2

2

)(1

)(
)(

2
0
adf

Hf
atdPIND

µσπ

µπ
σπ

+
=  (2.4)  

 
where the dimensions d, a, and t corresponded to the wall thickness, radius, and thickness 

of the cylinder (or film) in meters, the material properties µ and σ corresponded to its 

magnetic permeability (H/m) and electrical conductivity (1/Ω-m), and H0 was the applied 

magnetic field strength. For analysis, the wall thickness of the cylinder will be assumed 

to be equal to the skin depth, as it is in this outermost "shell" that the majority of the 

power generation takes place. Rearranging and simplifying the variables in (2.4) and 
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adding the subscript F to indicate a film property gives the simplified form 
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where the scaling factor 1.16 has been added to account for the portion of the power 

dissipation not generated inside the first skin depth. The equation reflects a two-part 

piecewise behavior, depending on the relationship between the skin depth and the radius 

of the heated cylinder. Dividing the equation into separate portions for aF>>δF and 

aF<<δF, the final result was 
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The two modes reflected the importance of the relationship between the radial dimension 

of the heated device and its skin depth, which was dependent on its electromagnetic 

properties and the frequency of the applied magnetic field. Heat generation always 

benefits from increased frequency and permeability, but the effect of increasing the 

electrical conductivity depends upon the mode in which the induction heating process is 

taking place. Limitations can also arise as a result of the nature of the device and the 

desired outcome of the process. Raising the frequency too high can lead to appreciable 

heating in non-targeted materials, reducing process selectivity. The literature suggests 

that for a given material the frequency is typically chosen so as to obtain an aF/δF ratio of 

two to four [Tudbury, 1960 (p. 1-71)]. Further frequency increase produces relatively 

little benefit in the target material compared to that in the others as it pushes them up the 

steeper slope of (2.6b), but, nevertheless, higher frequencies may be necessary if high 
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temperature is required from a small volume as is the case for the primary application 

described in this dissertation, polysilicon annealing.  

 The output power dissipated in an inductively heated material is not directly 

measurable, but the average power delivered by the induction power supply is typically 

displayed on the unit. Therefore, relationships were examined between the supply level 

and the induced temperature, the latter of which was available via infrared pyrometry as 

will be discussed in Chapter 4. The power delivered to the inductive coil is linearly 

related to that generated by the power supply, or  

 CS PP ∝ , (2.7) 

as the resonant tank circuit establishing the field frequency contains only linear 

components (see Section 4.2). Considering the coil-film system to be a form of 

transformer, the power applied to the coil is also expected to be proportional to that 

dissipated in the heated material. This can be shown empirically via the equation for the 

power stored in an inductor [Irwin, 1996 (p 262)],  

 
dt

di
LiPC = , (2.8) 

where L (H) is the inductance of the coil, i (A) is the time-varying current through the 

coil, and di/dt (A/s) is its rate of change. Assuming the current to be sinusoidal, as was 

the case for this research [Irwin, 1996 (p. 458)], 

 )cos()( wtIti = , (2.9) 

and therefore, 

 2IPC ∝ . (2.10) 
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The magnetic field induced in a solenoid is assumed to be uniform, if unperturbed, and 

oriented parallel to its central axis. Its value is approximately [Nave, 2005-5] 

 I
l

N
H

C

C=0  (2.11) 

where NC is the number of coil turns and lC is the physical length of the coil. Substituting 

(2.9) into (2.8) gives the result 

 2
0HPC ∝ . (2.12) 

Finally, since the power dissipation is also proportional to the square of H0, 

 INDC PP ∝ . (2.13) 

The power dissipation is also proportional to the ideal change in absolute temperature, 

which follows the behavior [Nave, 2005-4,6] 
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where the dissipated power is the quotient of the thermal energy, E (J), and time duration, 

t (s), with the former equal to the product of the mass, mF (kg), specific heat, sF (J/K), and 

temperature rise, ∆T (K). Assuming that the dimensions of the heated material are 

sufficiently large such that (2.6a) is valid, 
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Solving for ∆T, 
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and converting from film mass to volume via density, 
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where KPS is a constant of proportionality that relates the applied magnetic field to the 

supply power and will be determined experimentally in Section 4.4. The actual 

temperature induced is expected to deviate somewhat from the theoretical value as energy 

is transported away from the heated film via thermal conduction, convection, and 

radiation. These effects also help to provide for the establishment of a steady-state 

temperature for a given input power, provided that a thermal runaway condition is not 

encountered (see Chapter 4). Considerable effort was devoted throughout the course of 

this research toward the minimization of conduction across the wafer and convection to 

the ambient; radiation was necessary for temperature measurement. Specific 

considerations for the inductive heating of thin films such as temperature measurement 

and the relationships that govern the efficiency of heat generation are discussed in 

Section 2.3. 

 

2.2: Selectivity through Material Properties 

 
 Any material that conducts an electric current is capable of being inductively 

heated. As suggested by the equations of the previous section, however, some materials 

interact with magnetic fields more strongly than others. The magnetic behavior of a 

material is foremost determined by its uncompensated electron moments, primarily spin 

and secondarily orbital. As electrons accumulate in the valence band of an atom or 

molecule, it is energetically favorable according to Hund’s Rule for them to assume states 

with parallel spins until all such states are filled, at which point they begin to fill states of 
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the opposite spin, forming spin-up and spin-down pairs. Diamagnetic materials such as 

silicon and silicon dioxide are those with no unpaired electrons, and their behavior in the 

presence of a magnetic field is determined by orbital moments which rotate antiparallel 

as a result of Lenz’s Law, resulting in a small negative susceptibility and weak repulsion 

[Dobson, 2000; Eisberg, et al., 1985 (p. 493)]. Unpaired electrons, on the other hand, give 

a material an uncompensated spin moment whose magnitude overrides that of orbital 

moments and instead attempts to align parallel to an applied field. Materials classified as 

paramagnetic have at least one unpaired electron per atom or molecule and exhibit a 

small positive susceptibility. The degree of alignment can be estimated using Curie’s 

Law, [Eisberg, et al., 1985 (pp. 493-497)] 

 
T

H
CM = , (2.15) 

 
where M is the net magnetization (A/m), H is the field strength (A/m), T is the absolute 

temperature (K), and C is the material-specific Curie constant. The approximate magnetic 

susceptibility, χ, of a material is given by the ratio C/T and is related to the relative 

permeability, µr, through the relation  

 1−= rµχ . (2.16) 
 
As the field strength increases, the torque imparted upon the spin moments causes them 

to align more strongly. Equation (2.15) is only valid to the first order and does not reflect 

high-field limitations, nor does it remain accurate at very low temperatures. The predicted 

thermal behavior also breaks down in the case of metals as conduction band electrons are 

not affiliated with a particular atom and aligning forces are dominated by random thermal 

motion, resulting in lower susceptibilities as well as lower sensitivity to moderate 



 35 

temperature changes. Paramagnetics fail to retain magnetic alignment upon field removal 

as thermal agitation immediately randomizes dipole orientation.  

 The approach under investigation for localized annealing takes advantage of the 

superior magnetic properties of ferromagnetic materials. Of the presently known 

elements, ferromagnetic behavior is exhibited in iron, nickel, cobalt, and certain crystal 

forms of several rare earth metals at very low temperatures [Eisberg, et al., 1985 (p. 497); 

Wohlfarth, 1980 (pp. 188-189)]. Ferromagnetism is a consequence of paramagnetism 

under specific electron exchange conditions. It has been found that a system of 

indistinguishable fermions, the class of particles under which electrons fall, exhibits a 

wavefunction that is antisymmetric, a condition from which the Pauli exclusion principle 

is derived [Shankar, 1994 (pp. 263-265); Eisberg, et al., 1985 (p. 308)]. This entails that 

electrons from a multi-electron atom or an interacting set of atoms must have either a 

symmetric spatial function with antisymmetric spin, or an antisymmetric spatial function 

with symmetric spin. In the example of a two-electron system, the former and latter 

variations render solutions in one and three possible forms, respectively, which are 

referred to as the singlet and triplet states [Shankar, 1994 (pp. 403-405); Eisberg, et al., 

1985 (pp. 310-314)]. It can be shown that electrons in a triplet state (or a similar state in 

the case of a many-electron system), having an antisymmetric spatial component, exhibit 

nearly zero probability of having similar spatial coordinates, meaning that they exist 

further apart, though of course not sufficiently distant to become non-interacting. Singlet-

state electrons, however, have an additive-form spatial function that reflects a doubled 

likelihood of being found very close together. This phenomenon is not related to 

Coulomb interaction or any other classical event and is referred to as an exchange force 
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[Eisberg, et al., 1985 (p. 316)]. A symmetric spin function indicates parallel moment 

alignment, which is contrary to the standard antiparallel magnetic alignment classically 

anticipated. The term exchange energy denotes the energy difference in a system that 

results from exchange forces. Ferro- and antiferromagnetism are obtained from 

symmetric and antisymmetric exchange forces, respectively. Ferromagnetism occurs 

when atomic spacing and radii cause inter-atom electrons to interact such that those 

unpaired align in a parallel fashion. Figure 2.1 illustrates the concept of ferromagnetic 

domains in which a system is comprised of regions over which all magnetic moments are 

aligned in the same direction. In the absence of an applied field, the moment sum across 

all domains results in zero net magnetization. As the figure shows, however, applying a 

magnetic field of increasing strength causes quasi-parallel domains to become dominant, 

growing in size and reversing weaker domains until eventually saturation is reached. 

Strong field reinforcement in ferromagnetics results in larger susceptibility values than 

for paramagnetics. This magnetization is largely retained upon field removal due to the 

irreversibility of domain wall motion, provided that the material is not subject to a strong 

mechanical force or an elevated temperature [Eisberg, et al., 1985 (pp. 497-502)].  

 
Figure 2.1: Illustration of ferromagnetic domains showing the result of increasing 
magnetic field strength. Quasi-parallel domains become dominant and grow in size while 
moments rotate toward saturation [Eisberg, et al., 1985 (p. 502)1]. 

                                                 
1 Reprinted with permission from John Wiley & Sons, Inc. 
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Furthermore, a change or reversal in field direction reveals the reluctance of the electron 

moments and domain walls to move accordingly, a behavior referred to as magnetic 

hysteresis. Figure 2.2 illustrates typical hysteresis loops for a ferromagnetic material. As 

shown in Figure 2.2(a), the magnetization, M, initially increases rapidly with increasing 

magnetic field, H, until the material begins to approach saturation, at which point the plot 

levels off. The flux density, B, is related to the magnetization through the relationship 

indicated in Figure 2.2(b). Its region of greatest slope occurs in the unsaturated region of 

the curve, but even beyond saturation it continues to increase at a reduced rate as µ0H, the 

free-space relation. The plots also illustrate key terms that define a ferromagnet’s 

behavior. The coercivity or coercive force, HC, is the reverse field required to return a 

saturated material to zero flux density (B=0). This is related to but different from the 

intrinsic coercive force, HCI, which is the reverse field required to de-magnetize a 

material (M=0). Similarly, the remanent magnetization, Mr, and remanent induction or  

 

 
(a) 

 
(b)

Figure 2.2: Typical ferromagnetic hysteresis loops showing the effect of a magnetic field 
H on the (a) magnetization M, and (b) flux density B. Both variables initially increase in 
magnitude with magnetic field, but the magnetization eventually reaches a saturation 
level while the flux density continues to increase as µ0H [Elliott, 1998 (p. 630)1]. 

                                                 
1 Reprinted with permission from John Wiley & Sons, Inc. 
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Figure 2.3: Magnetization curves for single-crystalline iron, nickel, and cobalt, 
illustrating the magnetocrystalline anisotropy that occurs along different crystal planes. 
As the field strength increases in magnitude, the easy axis direction is the first to reach 
saturation, corresponding to the highest permeability values [Honda, 1926]. 
 
 
remanence, Br, are the respective magnetization and induction that remain once the field 

is removed. Finally, HSat is the field at which saturation is reached, and Ms is the 

saturation magnetization level. The actual shape of a material’s hysteresis loop depends 

upon its specific properties such as crystal structure, atomic and electronic spacing, and 

electronic interaction behavior. Certain crystal planes as well as material formation 

parameters can yield varying degrees of anisotropy and the establishment of magnetic 

easy and hard axes as illustrated in Figure 2.3. The magnetic easy axis is the direction 

along which the least amount of magnetic energy is required to reach saturation, whereas 

the hard axis is that which requires the strongest field is required to reach saturation. The 

figure shows the magnetization behavior for iron, nickel, and cobalt in their standard 

room-temperature crystalline structures (body-centered cubic, face-centered cubic, and 

hexagonal close packed, respectively) [Honda, 1926]. Since the slope of the B-H curve is 

by definition the magnetic permeability, µr is maximized in the easy axis direction. The 

physical dimensions of a ferromagnet and its crystals can also give rise to anisotropy. A 

magnetized material exhibits magnetic charges at its surface that give rise to an opposing 
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field. Structures or grains that are narrow will have a relatively stronger demagnetizing 

field than those that are wide. Thus if a material or its grains have different dimensions in 

different directions (as is usually the case for a thin film), a shape anisotropy will occur 

that encourages easy axis formation along the direction of greatest size. This may or may 

not be consistent with the magnetocrystalline anisotropy defined previously, and in many 

cases one phenomenon supersedes the other. Furthermore, thermal variations in 

electronic interactions can result in transitions from one mode to the other [IRM, 2005]. 

The area enclosed by a hysteresis loop, most specifically its width, is another significant 

factor in determining the applications for which a ferromagnet is best suited. A material 

with a narrow hysteresis loop is referred to as a soft magnet, indicating rapid switching 

and relatively easy reversal. Magnetically soft materials are used in the manufacture of 

high-speed devices such as transformers and electromagnets. A hard magnet, on the other 

hand, exhibits a larger coercive force and therefore retains its magnetization more  

 

 
(a) 

 
(b)

Figure 2.4: Illustration of the difference between (a) magnetically hard, and (b) 
magnetically soft materials. A hard magnet has a wide hysteresis loop and retains an 
applied magnetization more strongly than a soft magnet, which has a narrow hysteresis 
loop [Feynman, et al., 1989 (pp. 37-10, 36-7)1]. 
                                                 
1 Reprinted with permission from the California Institute of Technology. 
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effectively. Permanent magnets are made from magnetically hard materials. The concepts 

of magnetic hardness and softness are illustrated in Figure 2.4. The image in Figure 

2.4(a) shows a hysteresis loop for Alnico V, an alloy consisting of iron (51%), cobalt 

(24%), nickel (14%), aluminum (8%), and copper (3%), which is considered a hard 

magnet. Figure 2.4(b) shows a hysteresis loop for soft iron, a class of low-carbon steel 

materials, all of which form soft magnets [Feynman, et al., 1989]. A squareness ratio can 

be defined as the ratio between the zero-field remanence, Br, and the saturation 

magnetization, HSat. For memory and logic applications, a squareness ratio close to unity 

is desirable as it yields an optimal combination of logic state stability and rapid switching 

[Soohoo, 1985 (p. 243)]. 

 Similar to paramagnets, magnetic alignment in a ferromagnet generally degrades 

with temperature as is shown in the examples of Figure 2.5. Increasing random thermal 

motion ultimately produces a condition at which electronic interaction breaks down. Each 

ferromagnetic material exhibits a characteristic temperature, the Curie point, above which 

ferromagnetic behavior ceases in favor of simple paramagnetism with susceptibility again 

following Equation (2.15) with a temperature offset. The figure demonstrates that the 

effect of increased temperature is largely dependent upon the applied field strength. At 

moderate fields, elevated temperature tends to have relatively minimal impact until 

slightly below the Curie temperature, at which point magnetic properties degrade rapidly. 

Under low fields, however, temperature can actually enhance electronic interaction up to 

a certain point, but nevertheless the Curie limit remains unchanged. Material composition 

and purity, crystal phases and transformations, and external forces such as pressure can 

also influence thermal magnetic behavior. The Curie points for iron, nickel, and cobalt, 
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(a) 

 
(b) 

Figure 2.5: Effect of temperature on the magnetization characteristics of (a) nickel, and 
(b) FeZr alloys under different field conditions. The images illustrate the sharp decrease 
in susceptibility that occurs near the Curie temperature for all ferromagnetic materials 
[Arajs, 19651; Barandiaran, et al., 19942]. 
 

are 1034K (761oC), 631K (358oC), and 1400K (1127oC), respectively [Eisberg, et al., 

1985 (p. 500)]. 

 Closely related to ferromagnetism are antiferromagnetism and ferrimagnetism. 

The former can be observed in several rare earth metals and compounds such as MnO2 in 

which antiparallel alignment completely or almost completely cancels any net magnetic 

moment for the system. The latter can be observed in certain composites consisting of 

multiple ferromagnetics or antiferromagnetics in which an antiferromagnetic-like crystal 

forms such that the weaker set of moments only partially cancels the stronger, resulting in 

an overall magnetization similar to a ferromagnet but with slightly different 

electromagnetic behavior. These two forms of magnetism also reduce to paramagnetism 

above a critical temperature. Figure 2.6 summarizes the three types of magnetic behaviors  

                                                 
1 Reprinted with permission from the American Institute of Physics. Arajs, S., "Paramagnetic Behavior of 
Nickel just Above the Ferromagnetic Curie Temperature," Journal of Applied Physics 36. ©1965 American 
Institute of Physics.  
2 ©1994 IEEE 
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Figure 2.6: Illustration of electron alignment under (a) ferromagnetic, (b) 
antiferromagnetic, and (c) ferrimagnetic exchange conditions. Ferromagnetism occurs in 
systems with symmetric spin functions whereas antiferromagnetism and ferrimagnetism 
are results of antisymmetric spin functions [Eisberg, et al., 1985 (p. 503)1].  
 

derived from exchange interactions [Eisberg, et al., 1985 (p. 503)].  

 Hysteresis heating was mentioned in the beginning of Section 2.1 as one of the 

two primary factors contributing to an induction heating process. It is a result of the 

nonzero energy required to re-magnetize a ferromagnetic material upon a change in 

fieldstrength and/or direction. Under an alternating external field, the volumetric energy 

consumed per cycle is equal to the area enclosed by the hysteresis loop and is given by 

Warburg’s law as [Bozorth, 1993 (pp. 507-508)] 

 ∫= HdBE  (2.17) 
 
where the energy E is in Joules/m3. Power dissipation increases with both coercive force 

and saturation level, and therefore is generally largest for magnetically hard materials. 

The vast majority is converted into thermal energy, which can become non-negligible at 

high frequencies. As was mentioned previously, for most induction applications 

hysteresis heating is assumed less prevalent than eddy current heating and has been 

                                                 
1 Reprinted with permission from John Wiley & Sons, Inc. 
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neglected in the quantitative comparison of the inductive heating capabilities of different 

materials presented shortly. It also is excluded from the Finite Element Model (FEM) of 

Chapter 3 as hysteresis computation is beyond the capabilities of the ANSYS software 

utilized for this work. Nevertheless, it adds to the inductive heating efficiency of 

ferromagnetic materials and thus further increases their superiority over non-

ferromagnetics in terms of thermal energy generation. 

Equations (2.3) and (2.6) reflect the capability of an induction heating process to take 

advantage of differences in electromagnetic material properties in order to obtain heating 

selectivity. Power absorption due to eddy currents increases with permeability and load 

size, while the effect of conductivity depends on the region in which the process is 

operating. A simple comparison of the heating efficiencies of several common 

microsystem materials and ferromagnetics for a given field strength is presented in Table 

2.1. The effect of temperature on material properties, including Curie temperature, is 

neglected and the material properties shown are room temperature values. The 

dimensions used for radius, a, and thickness, t, are 0.5cm and 1µm, respectively. The 

transition frequency, fTRr, is defined as that at which the power dissipation begins to 

follow Equation (2.6b) instead of (2.6a), meaning that the effect of frequency on heating 

efficiency becomes enhanced and the process optimization can degrade quickly. The skin 

depth, δ, and power density, P/V, calculations of the rightmost two columns were all done 

at a frequency of 375kHz (the approximate frequency utilized during the majority of 

experimentation) using equations (2.3) and (2.6), respectively. The power dissipation 

values confirm that the ferromagnetic metals, which constitute the last six rows, have the 

capacity to produce thermal energy more efficiently than each of the microsystem  
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TABLE 2.1 

INDUCTIVE HEATING PROPERTIES OF SELECTED MATERIALS 
Material µr at 25C σ at 25C, 

Ω
−1
µm-1 

FTR,  
Hz 

δ at 
375kHz, 

µm 

P/V at 
375kHz, 
2kA/m,  
W/m3 

Aluminum 1.0000165 1 41.4 2 2.45E2 1.28E2 1.51E7 

Copper 0.99999454 1 64.8 2 1.56E2 1.02E2 1.21E7 

Germanium, intrinsic 0.9999884 1 2.13E-6 3 4.76E9 5.63E5 5.26E-6 

Germanium, 1015 cm-3 0.9999884 1 5.00E-5 4 2.03E8 1.16E5 2.55E-5 

Germanium, 1021 cm-3 0.9999884 1 1 4 1.01E4 8.22E2 9.73E7 

Gold 0.999972 1 48.8 2 2.08E2 1.18E2 1.39E7 

Molybdenum 1.000072 1 20.6 2 4.92E2 1.81E2 2.14E7 

Palladium 1.00054 1 10.2 2 9.93E2 2.57E2 3.05E7 

Platinum 1.000193 1 10.4 2 9.74E2 2.55E2 3.02E7 

Silicon, intrinsic 0.99999688 1 4.35E-10 3 2.33E13 3.94E7 7.51E-8 

Silicon, 1015 cm-3 0.99999688 1 2.5E-5 4 4.05E8 1.64E5 1.80E-5 

Silicon, 1021 cm-3 0.99999688 1 1 4 1.01E4 8.22E2 9.73E7 

Tantalum 1.000154 1 8.20 2 1.24E3 2.87E2 3.40E7 

Titanium 1.000151 1 2.56 2 3.96E3 5.14E2 6.08E7 

Tungsten 1.000053 1 20.7 2 4.89E2 1.81E2 2.14E7 

Cobalt, 99% 250 max 5 17.9 2 2.26 1.23E1 3.64E8 

Iron, 99% 6,000 max 6 11.7 2 1.44E-1 3.10 2.20E9 

Iron, 99.9% 350,000 max 6 11.7 2 2.47E-3 4.06E-1 1.68E10 

Nickel, 99% 600 max 5 16.2 2 1.04 8.34 5.92E8 

78 Permalloy 100,000 max 7 6.3 7 1.61E-2 1.04 1.23E10 

Supermalloy 800,000 max 7 1.7 7 7.45E-3 7.05E-1 6.68E10 

 

materials, both semiconducting and metallic, as a result of their larger magnetic 

permeabilities. This power difference can be enhanced by maximizing the volume of the 

heated ferromagnetic film compared to that of the microsystem metals. 

The data presented in Table 2.1 is highly idealized, and in actuality the effect of 

factors such as temperature, composition, and frequency on electromagnetic properties 

can be quite significant. Electrically, metallic resistivities decrease with temperature 

                                                 
1 CRC, 1999 (pp. 4-131 - 4-138). 
2 CRC, 1999 (pp. 12-45 - 12-47). 
3 Sze, 1981 (pp. 850-851). 
4 Sze, 1981 (pp. 32-33). 
5 Balanis, 1989 (p. 55). 
6 CRC, 1999 (pp. 12-117 - 12-125). 
7 CRC, 1989 (p. E-128). 
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while those of doped semiconductors increase. As was mentioned previously, magnetic 

susceptibilities are also impacted by temperature and ferromagnetic values may increase 

or decrease prior to rapid descent near the Curie points. Ferromagnetics can be 

inductively heated above their Curie temperatures, but the energy absorption efficiency 

drops considerably. The result is that more input power is required to continue raising the 

temperature, which is worsened by the simultaneous elimination of hysteresis heating. 

This places a limit on the temperature differential realizable within a composite sample, 

as the additional power required to heat a paramagnetized ferromagnetic can result in the 

generation of appreciable heating in the normal paramagnetics. The relationship between 

magnetic susceptibility, Curie temperature, and film dimensionality is important to the 

design of related devices and processes and is the reason that the experimental data 

presented in Chapter 4 utilizes films relatively large in area that often contain high 

concentrations of cobalt. The purity and crystal structure of a material also play a role in 

determining its magnetic behavior. The permeability values shown in Table 2.1 are 

theoretical maxima, meaning that they represent the maximum slopes on magnetization 

curves from crystals of high purity and relatively low strain. This signifies the criticality 

of the method of formation and/or annealing. Finally, the frequency of the applied field 

can lead to magnetic degradation if it is sufficiently high that lag in electron moment 

response becomes significant. This behavior again depends on the structural properties of 

a given material, and while some studies have shown a considerable decrease in 

permeability in the 10kHz range as a result of interaction with thermal oxide films, it is 

generally assumed that permeabilities remain reasonably unchanged until beyond 

100MHz [Bozorth, 1993 (pp. 798-803)]. 



 46 

Conclusion 

 

The electromagnetic theory behind induction heating was presented in this 

chapter. Through differences in material properties and process parameters, specific 

regions of a composite structure can be targeted for concentrated thermal energy 

generation. The simulations and experiments presented in the remainder of this 

dissertation are based on these principles and were used to develop a means by which 

microstructures can be locally annealed ex-situ without adversely affecting nearby active 

devices. The inductive heating of a thin film region is a new application of a well-

characterized metallurgical technology. The dimensions and fabrication methods of the 

heated materials, however, present several challenges not typically encountered in 

traditional induction heat-treating processes. Since the ferromagnetic films are formed 

through a physical deposition method, typically RF sputtering, their magnetic 

permeabilities are inferior to those of the corresponding bulk materials. The relatively 

small dimensions of the heated films influence the heat generation capability in multiple 

ways. Equations (2.6) indicate that the power absorbed is largely dependent upon both 

the film thickness and area, but the overall relationship between the volume and area is 

not immediately obvious. The volume of film directly affects its ability to absorb 

magnetic energy, and larger volumes allow the magnetic field to pass through more 

material. The area of the film, referring to the plane within which the eddy currents 

propagate, interacts with the skin depth and places a limitation on the efficiency of the 

process. From discussions that occurred during a May 2001 meeting at Inductoheat with 

induction heating professionals Valery Rudnev, Raymond Cook, and other experienced 

engineers, it was learned that the small dimensions of an inductively heated film could be 
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partially overcome by applying the magnetic fields perpendicular to the wafer, thus 

inducing the eddy currents to flow within a plane parallel to the surface. This allows the 

user to take advantage of the relatively large lateral dimensions of the film, typically on 

the millimeter scale, thus reducing the impact of the micron-scale thickness on the 

process. The frequency required to ensure that 3-4 skin depths occur within the surface 

dimensions is considerably reduced, increasing process selectivity while simultaneously 

decreasing the effect of field frequency on ferromagnetic properties. Test results have 

shown that it provides for the efficient heating of very thin films (~2µm) in the 100kHz 

range, allowing for the use of standard induction heating equipment. A drawback to this 

approach, however, is that thin film permeabilities are typically much lower in the 

perpendicular direction due to the reduced number of magnetic dipoles available for 

alignment reinforcement, and hysteresis measurements often resemble the sample hard-

axis diagram of Figure 2.4(a). Deposition of one or more surface films to adjust 

stress/strain parameters and/or a post-deposition measure such as magnetic annealing can 

help to improve these properties [Soohoo, 1965 (pp. 89-90)], though in general the in-

plane magnetic properties are still expected to be superior. 

 Perhaps the most difficult challenge that the technology development must 

overcome is the discrepancy between the volume of the heated film and that of the 

substrate. While silicon is not considered an induction-efficient material, its higher 

volume with respect to a thin film could result in significant eddy current heating 

nevertheless, particularly in the case of heavily doped wafers. This was observed during 

experimentation as is discussed in Chapter 4. Thus, wafers of low doping are preferred 

for this process, a potentially significant drawback since industrial manufacturers tend to 



 48 

prefer heavily doped wafers for CMOS processing to alleviate parasite latch-up 

conditions [Deferm, et al., 1988]. This limitation can be alleviated in part or in full 

through optimization of the ferromagnetic film deposition process in order to realize 

optimum magnetic properties. A second concern brought about by silicon wafers is the 

relatively high thermal conductivity. This means that thermal energy conducted into the 

wafer will rapidly spread laterally, reducing process localization. Barriers to heat 

transport are therefore an important part of a wafer-based localized heating technique. 

They further serve to increase process efficiency as they help to confine the annealing 

energy to the region within which it is needed. 
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Chapter 3: Process Development through Simulation 
 

 Modeling an induction heating process presents many challenges. Solutions 

employ both Maxwell's Equations and principles of heat transport. Material properties 

play a large role in determining induction heating efficiency, and many of those 

properties exhibit strong temperature dependence. Secondary items such as convection 

and radiation can be significant, as can the impact of magnetic hysteresis. This chapter 

presents the modeling work done using the ANSYS finite element modeling software to 

support the proof-of-concept of the inductive annealing process. Two different models 

are discussed, the first being a relatively simple induction heating simulation formed via 

code obtained from an ANSYS example, and the second being a more customized 

representation of the heating of a thin film in a vacuum ambient. The results shown are 

highly consistent with the theoretical analysis as pertaining to electromagnetics, but 

induced temperature values remain difficult to predict. Furthermore, the modeling of thin 

films presents obstacles with respect to element aspect ratio and memory allocation. The 

limitations of the model and suggestions for future revisions are discussed at the end of 

the chapter. 

 

3.1: Coupled Model Overview 

 

 An induction heating simulation requires modeling both electromagnetic and 

thermal behaviors. ANSYS provides two different methods to obtain coupled solutions: 

the direct method in which a single coupled-field element provides multiple degrees of 

freedom so as to perform a simultaneous solution, and the sequential method in which 

individual models are constructed for each system and applied sequentially with the 

output(s) of each iteration providing input(s) for the next [ANSYS Coupled-Field 
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Analysis Guide, Sec 1.2]. An induction heating problem compels the latter method due to 

the complex means by which the system response evolves, with its electromagnetic 

behavior changing as the temperature increases, thus requiring multiple iterations of the 

electromagnetic and thermal solutions [Ibid., Sec 2.1]. Each sub-model is separately 

optimized and stored in a physics environment, which contains all information related to 

element definitions, material properties, boundary conditions, solution options, and 

results [Ibid., Sec 2.2]. The mesh is common to both environments and switches between 

the two sets of element types as each environment is utilized. Figure 3.1 illustrates the 

sequential method of coupled-solution modeling. The physical model is built and meshed  

 

 
Figure 3.1: Flow chart illustrating sequential coupled-solution modeling in ANSYS. The 

model is first constructed with both physics environments created. The solution algorithm 

then consists of a loop in which the environments are individually called, with the 

coupled loads from the previous sub-solution applied as boundary conditions, until the 

user's criteria for completion have been satisfied [ANSYS Coupled-Field Analysis Guide, 

Sec 2.3
1
].  

                                                 
1 Image courtesy of ANSYS, Inc. 
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using the element types of the first physics environment, with the condition that the 

elements must be seamlessly convertible to those of the other environment (eg, from 8-

noded quadrilateral magnetic planar element to 8-noded quadrilateral thermal planar 

element), and each individual physics environment is written to its own file with all of the 

required information to perform the sub-solutions [Ibid., Sec. 2.3-2.4]. In the case of 

induction heating, the first solver provides for the generation of magnetic fields and flux 

densities, induced current densities, and resistive power loss densities based on an AC 

current in a magnetic coil. The second solver then converts the matrix of induced Joule 

heat values into one of temperatures, and it models heat propagation through the device 

via thermal conduction and transfer into the ambient via convection and radiation. The 

user specifies the amount of time that the thermal model simulates before re-evaluation of 

the electromagnetic fields, i.e., switching to the electromagnetic model and back, is 

required. This process repeats for the desired number of cycles. Execution of the 

simulation can be done either manually via the ANSYS graphical user interface, or with 

an input file containing commands from the ANSYS instruction set. The latter method is 

typically preferred, as otherwise the repeated conversion between the two environments 

becomes rather tedious. The two models presented in the next two sections are both code-

based. The full code for each is given in Appendix A, with Sections 3.2 and 3.3 dedicated 

to their explanations and presentation of results. 

 

3.2: ANSYS Example Induction Heating Model 

 

 The ANSYS Coupled-Field Analysis Guide is available on the Internet through 

multiple sources including the ANSYS website, the address for which can be obtained 

from the References chapter. ANSYS provided several example models to illustrate the  
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TABLE 3.1 

ELEMENT TYPES UTILIZED IN THE ANSYS EXAMPLE MODEL 

Description Element 

Number 

Electromagnetic 

Element Type 

Thermal 

Element Type 

Structure 1 Plane13 Plane55 

Coil and Air 2 Plane13 Null0 

Structure Surface 3 Null0 Surf151 

 

 

use of physics environments, one of which was an induction heating model [Ibid., Sec. 

2.10]. The code provided by ANSYS is duplicated in Appendix A.1, with additional 

comments provided for clarity.  In essence, the code constructed the model, set up the 

two physics environments, and then executed the simulation. During the building of the 

model, the designer(s) primarily defaulted to the electromagnetic element types and 

material properties, and then converted to their thermal counterparts once the 

electromagnetic physics environment had been defined. The model began with the typical 

first step of defining the element types, as this was required before meshing. The three 

element pairs utilized are summarized in Table 3.1. The heated structure, or billet, 

utilized the Plane13 and Plane55 element types. These are both two-dimensional, four-

noded planar elements that allow for axisymmetry, meaning that they can be utilized to 

form a three-dimensional model by rotating the two-dimensional model about the y-axis. 

This model, along with that presented in the next section, was an axisymmetric model as 

specified in the element type declarations. Plane13 provides for coupled-field solid 

elements that can be utilized for magnetic, electrical, thermal, and/or structural modeling 

but with limited degree-of-freedom combinations. Induced temperatures from Joule 

heating can be computed, but only at the post-processing stage, and thus transient thermal 

modeling is not enabled [ANSYS Element Reference, Element Library: Plane13]. 

Plane55, on the other hand, is strictly for thermal modeling and provides for thermal 
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conduction from one element to the next [Ibid., Element Library: Plane55]. The inductive 

coil and surrounding air had similar electromagnetic requirements to the heated structure, 

referring to the capacity for current conduction (impressed or induced) and magnetic field 

continuity, and thus also utilized Plane13 for the electromagnetic model. These 

components were not relevant to the thermal model, however, and thus were converted to 

the Null0, or non-simulated, element type in order to conserve memory and thus increase 

solver velocity [ANSYS Commands Reference, Command Dictionary: ET]. The third 

element type was formed only at the outer surface of the heated structure in order to 

enable the modeling of thermal radiation. Not utilized in the electromagnetic model, this 

was designated as a Surf151 element in the thermal model. A Surf151 element is overlaid 

onto the outer edge of a two-dimensional element. It can be considered a one-dimensional 

element but is in actuality two-dimensional because it utilizes a single, remote node 

called a space node to collect the radiated energy in the far field [ANSYS Element 

Reference, Element Library: Surf151]. 

 The next portion of the code provided variable definitions for both models. 

Parameters for structural dimensions (both), harmonic frequency and minimum skin 

depth (electromagnetic), transient time-stepping (thermal), and physics environment 

timing (both) were established. The axisymmetric structures were defined through a 

series of radii establishing distances from the y=axis, with an overall thickness dimension 

applied to the entire model. The calculation of the minimum skin depth established the 

minimal mesh dimension, as accurate simulation requires a minimum of 1-2 elements per 

skin depth [ANSYS Electromagnetic Field Analysis Guide, Section 3.5.1]. The value tinc 

set the time duration of each thermal simulation, and the value ftime set the total 
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simulation time; thus, their ratio determined the number of iterations of the simulation 

loop. 

 The model then defined the material properties for the electromagnetic 

simulation, specifically, the magnetic permeability and electrical resistivity values for the 

heated structure (material 2), magnetic coil (material 3), and surrounding air (material 1).  

Both properties for the billet were temperature-dependent, with the permeability 

decreasing and the resistivity increasing with increasing temperature. The other materials 

did not require temperature dependence since they were not included in the thermal 

simulation. 

 The structures were next constructed and meshed. Using the previously-defined 

radius variables, the billet, air gap between billet and coil, coil, and outer air region were 

built in the form of rectangles. Axisymmetric rotation during simulation later converted 

these into concentric rings; thus the model became a cylindrical billet surrounded by a 

single concentric coil loop, illustrated in Figure 3.2. Mesh sizing was done via keypoint 

selection. The mesh size in the heated structure was modulated from 1/2 of the minimum 

skin depth, calculated previously, at the outer edge to 40 skin depths at the inner edge 

(center of the the area attributes were established, associating each area number with the 

appropriate material number and element type. Once the two-dimensional solid meshing 

was complete, the space node was added at the origin and the single Surf151 radiation 

element was added to the outer edge element of the billet. The layout of the mesh is 

illustrated in two dimensions in Figure 3.3(a) and in three dimensions in Figure 3.3(b). 

The images show the linearly-graded mesh from the center to the edge of the heated 

structure. This provided for a sufficiently fine grid at the outer edge of the billet, where  
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Figure 3.2: Area plot of the ANSYS solid model illustrating the simulation of the four 

modeled regions as two-dimensional rectangles. The horizontal dimensions of the 

rectangles were defined in terms of radii from the center of rotation, or y-axis. The solver 

then rotated the model about the center to create the cylindrical billet and coil loop.  

 

 

the majority of heat generation takes place according to the skin effect (see Section 2.1), 

while conserving memory in the relatively uninteresting interior portion. With the model, 

material properties, and mesh fully defined, the electromagnetic physics environment was 

only missing its loads, boundary conditions, and solution options. The single load 

required was the current density through the coil cross-section, which was set to 

15E6A/m
2
 for a total current of 37.5A. The flux-normal boundary condition was applied 

to the y-axis, meaning that the z-component of the magnetic vector potential was set to 

zero on these nodes. This reflected the nature of the magnetic vector potential in the 

interior of a solenoid or current loop. The magnetic vector potential, A (T*m), is defined 

in terms of the magnetic field, H (A/m), as [Balanis, 1989 (p. 256)] 
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Figure 3.3(a): Elemental plot of the meshed ANSYS solid model. The billet was meshed 

such that the element size coincided with half the minimum required skin depth at the 

outer edge and 40 times the minimum skin depth at the inner edge. The remainder of the 

mesh was given elements 1mm in height and width. 

 

 
Figure 3.3(b):  Axisymmetric rotation of the meshed model, showing only the billet and 

coil. The model provided for the simulation of a cylinder slice; the temperature gradient 

from center to edge was assumed to be uniform throughout the billet thickness. 
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 xAH ∆=
µ

1
. (3.1) 

 

From Section 2.1, H was understood to be uniform through the cross-section of the coil, 

whether a solenoid or a single loop, and oriented along the vertical direction (parallel to 

the y-axis). This signified that A had a uniform curl and thus a circular shape. Solving for 

HY in cylindrical coordinates gives [Balanis, 1989 (p. 266)] 

 














∂

∂

−
∂

∂
=

φ

ρ

φ
ρ

ρµρ

A

A
Y

H )(
1

. (3.2) 

 

Since A was circular, its variation with φ was zero and the second interval can be 

neglected. Substituting the magnetic field through a current loop into HY [Nave, 2005-3], 
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where R (m) is the coil radius, the equation becomes 
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Integration with respect to the radial dimension, ρ, gives 

 ρ
µ

φ
R

I
A

4
=  (3.5) 

 

where µ (H/m) is the magnetic permeability of the medium, I (A) is the current through 

the solenoid, R (m) is the radius of the solenoid, and ρ (m) is the distance from its center. 

The equation indicates that the magnetic potential circulated about the axis of symmetry 

(y-axis), i.e., pointed in the z-direction on the x-y plane (normal to the page in the default 

two-dimensional view) and increased linearly with distance from the axis. Setting AZ to 

zero at the y-axis was thus a natural condition as the radius term was equal to zero;  
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Figure 3.4: Three-dimensional plot showing the magnitude of the z-component of the 

magnetic vector potential across the coil interior. The magnitude followed the predicted 

linear behavior in the air gap but was quickly reduced to approximately zero in the billet 

due to field cancellation from the skin effect. ANSYS used AZ as the primary degree of 

freedom from which the remainder of the magnetic behavior was derived [ANSYS 

Element Reference, Element Library: Plane13].  

 

 

furthermore, the line of symmetry provided no return path for the potential loop. Figure 

3.4 illustrates the magnitude of the z-component (or φ-component) of the magnetic vector 

potential as computed by ANSYS during the first iteration of the electromagnetic 

solution. Note that the magnitude in the air gap appeared to show a linear decrease 

toward the center. The cancelling fields generated within the billet, however, disrupted 

the linearity in ρ and furthermore produced an odd-looking result in which adjacent 

elements alternated between positive and negative decaying values, apparently the means 

by which ANSYS resolved the behavior of the magnetic material in an alternating 

magnetic field. The simulated values in the air gap were within an order of magnitude 
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from theory; Equation (3.5) predicted an AZ value of 1.01E-5 at the edge joining the billet 

and air gap, whereas ANSYS computed approximately 3E-6, which was lower by a factor 

of 3.37. Differences were attributed to non-ideality in field uniformity as compared with 

the assumptions made in the theoretical analysis, exacerbated by close proximity to the 

coil. With the boundary conditions thus fully defined, the code set up the solution as a 

harmonic analysis with a frequency of 150kHz, and lastly stored the electromagnetic 

physics environment for later use in the coupled solution.  

 The simulation code resumed with the conversion of the model from harmonic 

electromagnetic to transient thermal. The element types were first converted to their 

thermal counterparts. Next, the material properties relevant to the thermal simulation 

were defined, those being the thermal conductivity, enthalpy, and surface emissivity for 

the heated structure. The enthalpy values reflected the initial heat energy stored in the 

material. Enthalpy changes with temperature according to [Chang, 1994 (pp. 211-215)] 

 TmsH ∆=∆ . (3.6) 

 

where m refers to the mass (kg) of the heated sample, s (J/kg
o
C) is its specific heat, and 

∆T (
o
C) is its change in temperature. The conductivity and enthalpy were both assigned 

temperature dependence, with the former decreasing and the latter increasing with 

temperature. Finally, the initial conditions and solution options were established. The 

analysis type was defined, the temperature scale was set to Celsius, the far-field 

temperature was set to 25
o
C, and the range of time steps was provided. This information 

completed the requirements for the thermal model, and the thermal physics environment 

was stored. 
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  With both physics environments completed, the solution was executed via a do-

loop. The number of iterations was dependent upon the ratio of ftime, the total time of 

simulation, and tinc, the time duration of each thermal simulation. Beginning with the 

electromagnetic model, an if-else statement placed a uniform temperature of 100
o
C on 

the entire model for the first solution, and utilized the final temperature matrix from the 

previous thermal simulation for each subsequent solution, read in via the ldread 

command. Once the electromagnetic solution was completed, the model switched to the 

thermal environment. The ldread command was again utilized, this time for the purpose  

 

 
Figure 3.5: Output plot generated by ANSYS example simulation code showing the 

temperatures, in Celsius degrees, at the center (blue) and edge (purple) of the heated 

billet. The vast majority of heat generation took place at the outer edge, due the skin 

effect, whereas the gradual heat rise at the center was due to thermal conduction. 
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of reading in the most recent matrix of Joule heat values, and the thermal solution 

began/resumed execution until the time duration specified, time, had been reached. The 

final section of the code was focused on the display of the temperature data from the 

center and outer edge of the heated billet. Figure 3.5 shows the output plot generated 

upon the conclusion of the simulation. As expected, the outer edge (purple) heated much 

more quickly than the center (blue). The skin effect caused the vast majority of heat 

generation to take place at the edge, as expected, and the gradual temperature rise at the 

center was brought about by thermal conduction. This gradient can be manipulated by 

adjusting the power input to the coil, thus controlling the rate  

of rise at the edge, depending on the desired outcome of the heat treatment procedure. 

 Figures 3.6-3.10 illustrate some of the underlying behaviors within the simulation 

relevant to the theoretical analysis of Chapter 2. Those obtained from the electromagnetic 

simulation were computed using an ambient temperature of 100
o
C. Figure 3.6(a) shows 

the y-component of the magnetic field strength, HY, along the two-dimensional cross-

section. The field strength within the free space region was nearly uniform at 

approximately 38kA/m. Removing the billet from the model verified relatively good field 

uniformity (33kA/m < H < 38kA/m) within the entire region encircled by the coil. The 

close-up illustrated the deterioration of the field strength within the billet region, caused 

by the cancelling fields created by the induced eddy currents. Like the AZ plot in Figure 

3.4, the interior of the billet showed alternating regions of weak positive and negative 

values; this pattern was repeated in the flux densities and current densities as shown in 

the subsequent figures. The two-dimensional flux density plot in Figure 3.7(a) repeated 

the same basic pattern as the magnetic field strength. Multiplying the 38kA/m field 
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Figure 3.6: Contour plot showing the electromagnetic field magnitudes along the y-

direction, with a close up added of outer edge of heated billet. The magnetic field 

strength was approximately 38kA/m in free space, and deteriorated sharply after the first 

skin depth (two elements) inside the billet. 

 

strength by the free-space permeability, 4πE-7, gave an expected free-space flux density 

of 0.048T which was in agreement with the contour range in the "air gap" region shown 

in the figure. The ratio between the maximum flux density value, which occurred at the 

outer edge of the heated billet, and the free-space value was 147.3, reflecting the 

approximate magnetic permeability of the structure (actually 194.5 at 100
o
C). The three-

dimensional vector plot in Figure 3.7(b) helps to show the nature of the flux densities for 

the system as it was interpreted by the electromagnetic solver. The different flux 

magnitudes were illustrated by both the color and height variations of the vectors, which 

were displayed at each node. The relative flux density values, combined with differences  
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Figure 3.7: (a) Two-dimensional contour plot, and (b) three-dimensional vector plot 

showing the y-component of the electromagnetic flux density, BY, for the ANSYS model 

The close-up of the outer edge of the billet in (a) demonstrated the greater extent to which 

the magnetic material was polarized by the field. The color and height of the vectors in 

(b) further illustrated the relative flux density magnitudes at the different nodes. 



 64 

 
 

 
Figure 3.8: Representation of the induced current densities shown in (a) two dimensions, 

and (b) three dimensions. The values reflected both the impressed current density, applied 

to the coil, and the induced current density, generated in both the billet and surrounding 

air. Both the impressed and induced (eddy) currents propagated in a circular path about 

the axis of symmetry. 
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in electrical conductivity among the materials, were converted into a gradient of current 

density values as shown in Figures 3.8(a,b). The two-dimensional representation in (a) 

again described a similar behavior as the corresponding field and flux density plots, with 

the peak values occurring at the outer edge of the structure as expected and quickly 

decaying toward the center. Note that the current density at the outer edge was higher in 

magnitude than that at the coil. Recognizing the impact of differences in element sizes 

and their capability to offset density calculations, the actual current through the narrowest 

billet elements was manually calculated to be approximately half (17.2A) of that through 

the coil (37.5A). The relative impact on adjacent elements within the billet was 

negligible. Within the billet, the current density decayed to approximately 40% of its  

 

 
Figure 3.9: Two-dimensional contour plot showing the I

2
R power generation within the 

heated structure of the ANSYS example model. The power density magnitude decayed 

from that at the outer edge by approximately an order of magnitude in 1.5 skin depths, 

and by two orders of magnitude for each skin depth thereafter. 
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peak value after one skin depth (two elements), consistent with the skin effect equation 

which predicted a drop of 63%. The outermost current rings propagated in a direction 

opposite that of the coil due to the requirement of field cancellation as was discussed in 

Section 2.1. The ANSYS result was strange, however, in that although the current 

magnitudes decayed toward the center as expected, they switched direction after the first 

four elements (two skin depths), thus initiating the oscillatory pattern as exhibited in the 

other electromagnetic variables. Figure 3.9 shows the power density generated via I
2
R 

Joule heating. The quantitative analysis that follows will show that the power density 

within the billet was proportional to the square of the current density by a factor nearly 

identical to its resistivity. With a predicted decay rate of twice that of the current density 

(exp
-2
), the results were once again consistent with theory in that the power density 

magnitude dropped by an order of magnitude after 1.5 skin depths (3 elements) whereas 

theory predicted a 95% reduction at that location. The Joule heat values were the final 

piece of the electromagnetic puzzle; they were input directly into the thermal model to 

generate temperature values. Figures 3.10(a,b) show the final temperature distribution 

obtained after executing the full simulation provided by ANSYS. The results are 

consistent with the temperature-vs-time plot in Figure 3.5, in which the temperature 

ranged from a maximum of 743
o
C at the outer edge to a minimum of approximately 

240
o
C at the center. Increasing the simulation time further showed that the peak 

temperature failed to increase beyond 750
o
C, whereas the minimum temperature 

continued to slowly rise due to thermal conduction. Equalization was not attainable due 

to limitations in computer memory.  
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Figure 3.10: Contour plots shown in (a) two dimensions, and (b) three dimensions 

illustrating the final temperature distribution in the ANSYS model following the 

execution of the coupled simulation. After three seconds of heating, the temperature 

values ranged from 743
o
C at the outer edge to approximately 240

o
C at the center. 
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 In order to compare the results of the simulation with the theorized relationships 

of Section 2.1, variations of the model were executed in which selected adjustments were 

made to the field frequency, coil current density, magnetic permeability values, billet 

temperature, and billet dimensions. All purely electromagnetic models were executed 

assuming a uniform temperature of 100
o
C unless otherwise indicated, which was the 

starting temperature of the coupled simulation, and only one variable was altered at a 

time. Table 3.2 summarizes the results of varying the harmonic frequency from 50-

450kHz. The coil current density remained fixed at 1.5E7 A/m
2
 (or 37.5A) and all 

material properties and structural dimensions left at default. The magnetic field strength 

and magnetic flux density were unaffected by the changes in frequency, despite the 

change in element sizes within the billet due to the different SkinD calculations, thus 

confirming that the mesh was not a limiting factor in the simulation results. Figure 

3.11(a) shows a graph of the power dissipation values with respect to frequency, where 

the blue curve represented the peak power density as measured at the outer edge of the 

billet, and the pink curve represented the time-average power dissipation in the full 

structure. Equation (2.6a) predicted that the total power dissipation would vary inversely 

with the skin depth, which in turn varies inversely with the square root of frequency.  

 

TABLE 3.2 

VARIATION OF FREQUENCY VALUES IN THE ANSYS MODEL 

Frequency 

(kHz) 

Peak Current 

Density
*
 

(A/m
2
) 

Peak Power 

Density
*
 

(W/m
3
) 

Total 

Power
*
 (W) 

Temp at 

T=3s (
o
C) 

Time to 

700
o
C (s) 

50 4.25E8 3.39E10 209.8 614.1 3.8 

100 6.04E8 6.86E10 297.3 727.7 2.1 

150 7.42E8 1.04E11 364.4 743 1.45 

300 1.05E9 2.06E11 516 757.3 0.8 

450 1.29E9 3.10E11 632.5 765 0.55 

* Electromagnetic model was run assuming a uniform temperature of 100
o
C. 
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Solving the equation in terms of frequency, the total power dissipation, P (W), was 

expected to behave as  

 f
atH

P
σ

µπ
5.12

016.1
= . (3.7a) 

 

The power density values reported by ANSYS were given in terms of W/m
3
, reflecting 

the three-dimensionality of the axisymmetric simulation. The as-drawn two-dimensional 

elements were converted to volumetric entities through rotation about the y-axis, giving 

each element a total size of (2πa)*height*width. The widths of the elements (x-

dimension) within the billet were proportional to the maximum skin depth, with the width 

of the smallest element (the location of maximum power density) equal to 0.5δ, and the 

heights were all equal to 0.001m. The power density, PD, was predicted to vary as 
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where the factor 0.63 was added by recognizing that the power decayed as exp
-2r/δ

 and 

thus approximately 63%, or 1-exp
-(2*0.5δ/δ)

, of the power dissipation occurred in this 

outermost element. Microsoft Excel was utilized to fit a power regression to each of the 

two curves, and the resulting trends were confirmed to vary with f
1/2
 and f

1
, respectively. 

To analyze the coefficients, the values utilized by the simulation for material properties 

and structural dimensions were entered, along with the 38kA/m field strength obtained 

from Figure 3.6. The results, shown in Table 3.3, were in close proximity to the simulated 

values, with offsets of 1.20 and 1.27, respectively. The data was also utilized to examine 

the relationship between induced power density and induced current density. The graphed 

data is given in Figure 3.11(b). Since both terms were density values, their relationship 

was unaffected by element sizing. Fitting a power curve to the data, the variables were  
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Figure 3.11(a): Graph showing the impact of frequency on the induced power density 

(blue) and total power dissipation (pink). The total power varied with the square root of 

frequency as predicted by Equation (2.6a). The power density exhibited a linear behavior 

due to the simultaneous change in element size.  

 

 
Figure 3.11(b): Relationship between induced power density and induced current density 

for frequency values ranging from 50-450kHz. The power density varied as the square of 

the current density, with the constant of proportionality approximately equal to the 

resistivity of the heated structure (ρ=2.54E-7 Ω-m at 100
o
C). 
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Figure 3.11(c): Curves showing the variation in temperature rise with frequency for the 

example ANSYS model. The temperature after a three-second simulation (blue) exhibited 

a transition temperature at around 700
o
C, which was believed to be due to the Curie 

point. The time requirement to reach 700
o
C decreased (pink) had an exponent in close 

proximity to the theoretical value. 

 

confirmed to exhibit a squared relationship. Furthermore, the proportionality constant 

(2.20E-7) was almost identical to the resistivity of the steel billet (2.54E-7 Ω-m), thus 

confirming the I
2
R expectation. Lastly, the impact of field frequency on the results of the 

full coupled model was studied, with the results described in Figure 3.11(c). The blue 

curve shows the final temperature value after the three-second simulation, and the pink 

curve shows the time required to reach an edge temperature of 700
o
C. Based on Equation 

(2.14) and the trending of the power density (which the transient thermal model utilized 

to compute the temperature values) with the first power of the frequency, the anticipated 

behavior was expected to follow 

 
t

Tms
fPD

∆
∝∝ . (3.8) 
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Thus, for a constant time (i.e., 3 seconds) the temperature rise was expected to be linear 

with f, and for a constant temperature rise (i.e., ∆T=700-100
o
C), the time requirement 

was expected to vary inversely with f. As the figure shows, the temperature rise exhibited 

somewhat of a piecewise-linear result. This leveling off was likely caused by the sharp 

drop in permeability at approximately 720
o
C due to the billet having reached its Curie 

point; a similar transition was observed in this range for the other analyzed parameters. 

Within the relatively narrow temperature range, however, the trend showed good 

linearity. The time produced an exponent of -0.8789, relatively close to the -1.0 

expectation. The magnitudes of the coefficients were not analyzed, as the density and 

specific heat of the billet would have been required to compare them with Equation 

(2.14). The complete data set for the frequency analysis is summarized in Table 3.3. 

Overall, the induction heating trends followed the theoretical behavior with frequency 

very well, with all evaluated trends within 32% of the theoretical prediction. Thus, the 

analysis of Chapter 2 was well supported. 

 

TABLE 3.3 

THEORETICAL AND SIMULATED FREQUENCY TRENDS FOR THE ANSYS MODEL 

Variable Theoretical 

Exponent 

Simulated 

Exponent 

Theoretical 

Coefficient 

Simulated 

Coefficient 

Coefficient 

Offset 

Total Power vs 

Frequency 

0.5 0.502 1.10 

 

0.917 1.20 

Peak Power 

Density vs 

Frequency 

1 1.01 8.10E5 

 

6.40E5 1.27 

Peak Power 

Density vs Peak 

Current Density 

2 1.99 2.54E-7  

 

2.20E-7 1.15 

Peak 

Temperature vs 

Frequency 

1 1.00 N/A 9.88E-5 N/A 

700C Time vs 

Frequency 

-1 -0.879 N/A 119 N/A 
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TABLE 3.4 

VARIATION OF COIL CURRENT VALUES IN THE ANSYS MODEL 

Coil 

Current 

(A) 

Field 

Strength
*
 

(A/m) 

Peak Flux 

Density
*
 

(T) 

Peak 

Current 

Density
*
 

(A/m
2
) 

Peak 

Power 

Density
*
 

(W/m
3
) 

Total 

Power
*
 

(W) 

Temp 

at 

T=3s 

(
o
C) 

Time to 

700
o
C 

(s) 

18.75 18946 3.516 3.71E8 2.95E10 91.1 145.2 12 

37.50 37892 7.031 7.42E8 1.04E11 364.4 743 1.45 

75.00 75784 14.062 1.48E9 4.14E11 1547.6 805.2 0.15 

112.50 113676 21.093 2.23E9 9.32E11 3279.7 1108 0.05 

150.00 151568 28.124 2.97E9 1.66E12 5830.5 1696 0.02 

* Electromagnetic model was run assuming a uniform temperature of 100
o
C. 

 

The second set of variations focused on the current applied to the magnetic coil. 

The current densities were varied from 7.5E6A/m
2
 to 60E6A/m

2
, which equated to a 

range of 18.75-150A. The harmonic frequency and material properties were standardized 

at their default values. Table 3.4 summarizes the numerical results. In this case, the 

magnetic field strength and flux density values were affected, which was anticipated as 

per Equation (3.3). Figures 3.12(a) illustrates their simulated trends, with power curves 

again fitted by Microsoft Excel. Both the field and flux density exhibited a high degree of 

linearity with coil current, consistent with the equation. The anticipated coefficients for 

HY and BY were 

 
R

HY
2

1
→  (3.9a) 

 

 
R

BY
2

µ
→ , (3.9b) 

 

where R (m) represented the radius of the coil and µ (H/m) was the magnetic 

permeability of the heated billet. Substituting the values gave theoretical coefficients of 

28.6 and 6.98E-3, respectively, which were offset by factors of 34.5 and 26.9 from the 

simulated coefficients. Investigation into the means by which ANSYS computed the 
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magnetic field revealed that the magnitude was completely independent of the coil radius, 

and instead followed Equation (2.11), the equation for a solenoid coil, with 1 turn and a 

total length of 0.001m (the thickness of the ring), an unexpected result as the magnetic 

vector potential followed the equation for a single loop much more closely. The 

theoretical coefficients were thus changed to  

 
C

C
Y

N
H

l
→  (3.9c) 

 

 
C

C
Y

N
B

l

µ
→  (3.9d) 

 

where NC/lC evaluated to exactly 1000. The new coefficients yielded values of 1000 and 

0.244, respectively, both of which were very close to the simulated coefficients. The 

theoretical and simulated values for the exponents and coefficients are summarized in  

 

 
Figure 3.12(a): Graph of the magnetic field strength (blue) and magnetic flux density 

(pink) with varying current levels applied to the magnetic coil. Both dependent variables 

exhibited a linear relationship with coil current as anticipated, and their coefficients were 

well matched to the expected magnetic field in a solenoid. 
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Table 3.5. Figures 3.12(b,c) summarize the effect of coil current on the induced current 

and power values within the heated structure. The anticipated relationships were again 

derived from Equation (2.6a), combined with the skin depth relation (Equation (2.3)) and 

the formula for the field induced in a solenoid (Equation (2.10)). The anticipated 

behavior of the total power dissipation with respect to coil current, IC (A), was derived as 

 2
216.1

CI
t

aN
P

σδ

π
= , (3.10a) 

 

The relation for the peak power density was again obtained by dividing by the volume of 

the outermost billet element and scaling by 0.63 to account for skin depth, resulting in 

 2

22

216.1
63.0 CD I

t

N
P

σδ
= . (3.10b) 

 

Lastly, PD was replaced with J
2
ρ as per the analysis of Figure 3.11(b), giving the result 

 CI
t

N
J

δ

16.1*63.0
= . (3.10c) 

 

The power regressions fit to the curves in Figures 3.12(b,c) confirmed that the power and 

power density both varied with the square of the coil current whereas the induced current 

density varied linearly with IC. Substituting the values utilized to build the simulation 

yielded the coefficients shown in Table 3.5. All results were once again highly consistent 

with the simulation, with a maximum offset of 1.15 from the simulated value. Finally, the 

rate of temperature rise with increasing coil current is illustrated in Figure 3.12(d), where 

the temperature at the edge of the billet after three seconds is shown in blue and the time 

to reach an edge temperature of 700
o
C is shown in pink. Modifying Equation (3.8) using 

the squared relationship between coil current and power density gave the result 

 
t

Tms
IP CD

∆
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2  (3.11) 
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Figure 3.12(b): Relationship between the impressed coil current and the induced current 

density in the inductively heated ANSYS model. The two variables exhibited a linear 

relationship as predicted by Equation (3.11a) with a well-matched coefficient. Thus the 

coil-billet system could be considered a quasi-transformer. 

 

 
Figure 3.12(c): Graph showing the maximum induced power density at the outer edge of 

the heated billet (blue) and total dissipated power in the billet (pink) with respect to the 

impressed coil current. Both quantities varied with the square of the coil current, 

consistent with the theoretical prediction. 
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Figure 3.12(d): Variation in temperature rise in the heated structure with increasing 

current applied to the magnetic coil. The peak temperature in the billet three seconds into 

the simulation (blue) exhibited a parabolic shape at temperatures above 700
o
C. The time 

required to reach 700
o
C (pink) decayed as approximately IC

-3
.  

 

 

and thus the temperature and time curves were anticipated to vary with IC
2
 and IC

-2
, 

respectively. The graph shows that once again the peak temperatures followed the 

predicted shape for points above 700
o
C, with both linear and constant offsets, but 

exhibited a transition below this temperature, believed to be due to the ~720
o
C Curie 

temperature of the heated billet. The time requirement for the temperature to rise to 

700
o
C was found to vary inversely with the cube of the coil current rather than its square 

as predicted, not an exact match with theory but within reason. Again, the evaluation of 

the theoretical coefficients and comparison with simulation was beyond the scope of this 

work. The theoretical electromagnetic coefficients, however, were once again shown to 

be highly accurate. 
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TABLE 3.5 

THEORETICAL AND SIMULATED COIL CURRENT TRENDS FOR THE ANSYS MODEL 

Variable Theoretical 

Exponent 

Simulated 

Exponent 

Theoretical 

Coefficient 

Simulated 

Coefficient 

Coefficient 

Offset 

Magnetic Field 

vs Current 

1 1.00 1000 1010 0.990 

Flux Density 

vs Current 

1 1.00 0.244 0.188 1.23 

Current 

Density vs 

Current 

1 1.00 1.82E7 1.98E7 0.919 

Total Power vs 

Current 

2 2.00 0.296 0.258 1.15 

Peak Power 

Density vs 

Current 

2 1.95 8.42E7 9.48E7 0.888 

Peak Temp vs 

Current 

2 2 N/A 9.35E-2 N/A 

700C Time vs 

Current 

-2 -3.08 N/A 99.5E3 N/A 

 

 

 A key component of the thin film inductive annealing process was the 

manipulation of relative permeability values among the constituent materials of a 

microsystem device. Figures 3.13(a-c) illustrate the behavior of the variables of interest 

with respect to changes in magnetic permeability, where the temperature-dependent 

magnetic permeability values in the billet were scaled from one-fourth their original 

value to double, equating to 100
o
C relative permeability values of 48.6-389. The  

 

TABLE 3.6 

VARIATION OF MAGNETIC PERMEABILITY VALUES IN THE ANSYS MODEL 

Relative 

Permeability 

Factor 

Peak Flux 

Density
*
 

(T) 

Peak 

Current 

Density
*
 

(A/m
2
) 

Peak 

Power 

Density
*
 

(W/m
3
) 

Total 

Power
*
 

(W) 

Temp at 

T=3s (
o
C) 

Time to 

700
o
C (s) 

0.25 2.018 3.90E8 3.19E10 179.6 190.6 4.8 

0.5 3.816 5.41E8 5.84E10 255.3 718 2.7 

1 7.031 7.42E8 1.04E11 364.4 743 1.45 

2 13.97 1.05E9 2.06E11 516.3 757.4 0.75 

* Electromagnetic model was run assuming a uniform temperature of 100
o
C. 
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Figure 3.13(a): Variation in the magnetic field strength (blue) and the flux density at the 

outer edge of the heated billet (pink) with changes in magnetic permeability. The field 

strength showed little change, ranging from 37.7-38.2A/m over the 8X permeability 

range utilized. The flux density varied approximately linearly as was expected.  

 

frequency and coil current density were standardized at their default values, and the 

electrical conductivity was not modified. The data utilized to generate the graphs is 

provided in Table 3.6. The impact on the free-space magnetic field, shown in Figure 

3.13(a), was expected to be minimal if any. The slight decrease observed in field strength 

with increasing permeability was likely caused by the increased power consumption in 

the structure with respect to the free space ambient. The magnetic flux density, on the 

other hand, was expected to vary linearly with permeability as per the constitutive 

relation [Rudnev, et al., 1997 (p. 780)] 

  [ ] RHHB µµµ 0== . (3.12) 

 

The curves were plotted with respect to the relative magnetic permeability, µR, and thus a 

coefficient of µ0H=0.0478 was expected. The simulated result, shown in Table 3.7, was 
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approximately a factor of 1.15 higher and thus showed good agreement. The induced 

power and power density trends were expected to behave very similarly to those 

encountered for changes in harmonic frequency, as the frequency and permeability both 

impacted the skin depth (and thus power dissipation) in the same manner. Exchanging the 

variables µ and f in Equations (3.7) gave 

 
R

fatH
P µ

σ

µπ 0

5.12

016.1
=  (3.13a) 

 

 [ ] R

E

D fH
at

P

V

P
P µµπ

πδ
0

2

016.163.0
)2)(5.0(

63.063.0
=== . (3.13b) 

  

which evaluated to 30.6 and 4.06E8, respectively. Comparing these values with those 

obtained from Figure 3.13(b), the theoretical coefficients that were computed fell within a 

factor of 0.63 of the simulated values. The temperature trends were also expected to 

exhibit similar behaviors to those observed with respect to frequency, or 

 
t

Tms
P RD

∆
∝∝ µ . (3.14) 

 

Thus the permeability was predicted to vary linearly with temperature rise and inversely 

with time duration. The behaviors in Figure 3.13(c) exhibited almost identical patterns to 

those encountered in Figure 3.11(c), with the three-second temperature having good 

linearity in the region above ~700
o
C but falling off at lower temperatures, and the 700

o
C 

time requirement having an exponent relatively close to the predicted value. Overall, the 

results continued to help strengthen the link between theory and simulation, justifying the 

focus of the process development which was to utilize differences in magnetic 

permeability to establish a controllable temperature gradient on the surface of a 

semiconducting wafer. 
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Figure 3.13(b): Graph of the total time-average power dissipation (pink) and the peak 

power density at the outer edge of the heated structure (blue) in the ANSYS model vs 

relative permeability. Theoretical trends were very similar to those computed for 

frequency variation and were once again confirmed to be accurate. 

 

 
Figure 3.13(c): Illustration of the impact of the relative magnetic permeability on the rate 

of rise of the heated billet. The trend in temperature after a 3-second simulation (blue) 

was again shown exhibit a transition around 700
o
C, with ideal theoretical behavior only 

followed above the transition point. The trend in time duration to reach 700
o
C (pink) 

exhibited approximately the anticipated profile. 
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TABLE 3.7 

THEORETICAL AND SIMULATED PERMEABILITY TRENDS FOR THE ANSYS MODEL 

Variable Theoretical 

Exponent 

Simulated 

Exponent 

Theoretical 

Coefficient 

Simulated 

Coefficient 

Coefficient 

Offset 

Magnetic Field 

vs Permeability 

0 1 0 -1.46 N/A 

Flux Density vs 

Permeability 

1 1.00 4.78E2 5.50E2 0.869 

Total Power vs 

Permeability 

0.5 0.508 30.6 24.9 1.23 

Peak Power 

Density vs 

Permeability 

1 0.891 6.25E8 9.91E8 0.631 

Peak 

Temperature vs 

Permeability 

1 1 N/A 0.126 N/A 

700C Time vs 

Permeability 

-1 -0.893 N/A 157 N/A 

 

 

 All of the previous graphs of electromagnetic behaviors were obtained assuming a 

uniform 100
o
C ambient, which was the starting temperature of the coupled solution. To 

illustrate the changing properties with temperature, the steady-state electromagnetic 

solutions were obtained under temperatures from 100-900
o
C. Table 3.8 summarizes the 

data used to generate the plots in Figures 3.14(a,b). Figure 3.14(a) illustrates the decrease 

in edge flux density (blue) due to decreasing magnetic permeability, the relationship  

 

TABLE 3.8 

VARIATION OF AMBIENT TEMPERATURE VALUES IN THE ANSYS MODEL 

Ambient 

Temperature 

(
o
C) 

Skin Depth 

(m) 

Peak Flux 

Density (T) 

Peak Power 

Density
 

(W/m
3
) 

Total Power
 

(W) 

100 4.70E-5 7.031 1.04E11 364.4 

300 6.37E-5 7.045 1.07E11 456.1 

500 8.39E-5 6.425 1.01E11 519.5 

700 1.26E-4 4.31 6.97E10 496.8 

750 4.12E-4 0.4709 7.98E09 163.8 

800 1.35E-3 0.04822 7.83E08 50.61 

900 1.40E-3 0.04822 7.83E08 52.39 
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between which was shown to be linear in Equation (3.12). The skin depth (pink), on the 

other hand, depended upon both the magnetic permeability and the electrical 

conductivity, both of which decreased with increasing temperature. The impact of the 

Curie temperature at approximately 720
o
C was clearly visible and carried over into the 

dependent behaviors of power dissipation and peak power density, shown in Figure 

3.14(b). The total time-average power dissipation for the billet showed an initial increase 

in magnitude with temperature. This was because the gradual decrease in magnetic 

permeability and its skin depth impact was more than compensated for by the stronger 

decrease in electrical conductivity (see Equation (3.7a)). Once the Curie point was 

reached, however, the permeability fell sharply and the power dissipation followed. Since 

the peak power density at the outer edge was completely independent of conductivity as  

 

 
Figure 3.14(a): Graph showing the trends in flux density (blue) and skin depth (pink) in 

the heated billet of the ANSYS model vs temperature. The flux density decreased with 

increasing temperature due to the reduced magnetic permeability, and the skin depth 

simultaneously increased (enhanced further by the decreasing electrical conductivity).  
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Figure 3.14(b): Variation in power dissipation and peak power density vs temperature. 

The power dissipation (pink) initially rose due to the decreasing electrical conductivity 

but then quickly dropped when the skin depth rose sharply at the Curie temperature. The 

power density (blue) showed a very small initial rise with temperature but began to fall 

much earlier due to the simultaneous increase in element size. 

 

 

can be seen from Equation (3.7b), a permeability-based trend was produced almost 

identical to that of the magnetic flux density. Quantitative analysis of these behaviors is 

beyond the scope of this analysis and primarily reflected the unique material properties of 

the constituent material in the billet. However, the graphs are helpful in understanding the 

transitional nature of the three-second temperature trends shown in Figures 3.11(c), 

3.12(d), and 3.13(c).  

 Lastly, and perhaps most importantly, the scaling of the model to dimensions 

more typical of a thin film was examined. Equation (2.6a) suggested that the total power 

dissipation should vary linearly in both the thickness and radius of the billet. Substituting 

the default values utilized by the model, including the 38kA/m field strength, gave the 

anticipated relationships 



 85 

 [ ]taEP 746.2=  (3.15a) 

 

and 

 

 [ ]1106.1
)2)(5.0(

63.0
E

at

P
PD ==

πδ
. (3.15b) 

 

Equation (3.15b) indicates that the power dissipation density was expected to be 

independent of both the billet thickness and radius due to the cancelling effect of the 

element volume, and thus a constant value of 1.06E11 was forecast. Table 3.9 shows the 

data obtained by individually varying the billet thickness and radius values from 5µm-

1mm and 0.5cm-1.5cm, respectively, where the peak values in each range were those 

utilized in the default simulation. The values are plotted versus their respective dependent 

variables in Figures 3.15(a,b). The trends in total power dissipation both exhibited the 

linearity predicted by (3.15a). To analyze the coefficients, a=0.015 was substituted into 

the thickness-based trend, and t=0.001 was substituted into the radius-based trend. The 

calculated values, shown in Table 3.10, were within a factor of 0.967 of simulation. The 

trends in power density were indeed constant values as predicted, with an offset factor of 

 

TABLE 3.9 

VARIATION OF BILLET DIMENSIONS IN THE ANSYS MODEL 

V
ar
ia
b
le
 Value Peak 

Power 

Density
*
 

(W/m
3
) 

Total 

Power
*
 

(W) 

Temp at 

T=3s (
o
C) 

Time to 

700
o
C (s) 

5µm 1.04E11 1.82 743 1.45 

10µm 1.04E11 3.64 743 1.45 

100µm 1.04E11 36.4 743 1.45 

T
h
ic
k
n
es
s 

1mm 1.04E11 364.4 743 1.45 

0.5cm 1.03E12 121.1 773 0.9 

1.0cm 1.03E12 242.4 754 1.3 

R
ad
iu
s 

1.5cm 1.04E11 364.4 743 1.45 
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Figure 3.15(a): Impact of film thickness on induced power dissipation (pink) and peak 

power density (blue) values. The power dissipation varied linearly with thickness as 

predicted by Equation (3.15a), whereas the peak power density was independent of 

thickness as predicted by Equation (3.15b). 

 

 
Figure 3.15(b): Impact of film radius on induced power dissipation (pink) and peak 

power density (blue) values. The power dissipation varied linearly with thickness as 

expected, but the power density showed negligible variation. This unexpected result was 

caused by the conversion between two and three dimensions. 
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TABLE 3.10 

THEORETICAL AND SIMULATED DIMENSIONAL TRENDS FOR THE ANSYS MODEL 

Variable Theoretical 

Exponent 

Simulated 

Exponent 

Theoretical 

Coefficient 

Simulated 

Coefficient 

Coefficient 

Offset 

Total Power vs 

Thickness 

1 1 3.68E5 3.65E5 1.01 

Peak Power 

Density vs 

Thickness 

0 0 1.06E11 1.04E11 1.02 

Total Power vs 

Radius 

1 1 2.46E4 2.45E4 0.967 

Peak Power 

Density vs 

Radius 

0 0 1.06E11 1.04E11 1.02 

 

 

1.02 between theoretical and simulated values. Attempts were made to scale the radius 

values smaller than 5mm, but the model quickly broke down and was unrepairable with 

changes in element size. At a 1mm radius, for example, the magnetic field strength in free 

space, which should not have been impacted, more than doubled in magnitude whereas 

the flux density induced in the billet simultaneously deteriorated. It was evident that a 

billet radius of 20 skin depths or less was not possible to simulate with the existing 

model. This was not a concern, however, as the dimensions utilized in experimentation 

were typically on the order of 1-2cm. 

 In summary, the example ANSYS coupled-solver induction heating model was 

highly valuable in justifying the theoretical analysis of Chapter 2. The electromagnetic 

trends were all confirmed to a high degree of accuracy. This provided a basis from which 

the experimental results could be anticipated and/or explained. The model had 

limitations, however, for fully describing the envisioned inductive annealing process in 

that it only accounted for thermal conduction within a single material. Thus a more 

detailed structure was needed in order to assess permeability and temperature gradients 
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across multiple materials (eg, a film stack) as well as radiant energy loss from the 

relatively larger horizontal surface into the ambient. The model was also found to "blow 

up" under certain circumstances, such as can be seen in the data for the higher current 

values in Table 3.4. The blow-up was characterized by a rapid, uncontrolled rise in 

temperature. A similar effect was often encountered during experimentation, as will be 

shown in Chapter 4, but it was difficult to determine the ability of the model to predict 

the thermal runaway condition as there were many other contributing factors (such as the 

lack of an appreciable ambient into which thermal energy could spread). The customized 

thin film model presented in the next section also exhibited the blow-up condition under 

certain circumstances when the energy levels were raised too high.  

 

3.3: Thin Film Induction Heating Model  

 

 The ANSYS example induction heating model presented in the previous section 

provided justification for the theoretical equations of Chapter 2. Missing, however, was 

the simulation of a composite structure so as to illustrate the capability for selective 

heating and engineered temperature gradients. The thin film induction heating models 

presented in this section and the next attempted to resolve this through the establishment 

of thin film stacks above a silicon substrate. The simulation code for the first thin film 

model is provided in Appendix A.3. The instructions flow in a similar arrangement to 

those utilized in the ANSYS model. The first portion defined the axisymmetric layout of 

the components, which was done almost entirely via connected keypoints. The only 

exception was the magnetic coil, which was drawn as a hollow circle with dimensions 

attempting to replicate those of the solenoid used during experimentation. Note that only 

one turn of the coil was simulated in order to conserve simulation time and memory; the 
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190A coil current was multiplied by three to produce the same magnetic field. The solid 

model is pictured in Figure 3.16(a,b). The film stack formed three concentric circles 

about the y-axis, where the innermost was a 3µm-thick polysilicon film extending to a 

0.45cm radial dimension (9mm total diameter), the middle ring was a 7.3mm-thick 

NiFe19 film extending from 0.6-1.2cm, and the outermost ring was another 3µm-thick 

polysilicon film extending from 1.35-1.80cm. These were all patterned above a 500µm-

thick silicon substrate, with a 1µm-thick silicon dioxide base layer. The dimensions were 

chosen to coincide with the experiment presented in Section 5.2, in which a cluster of 

cantilever beams measuring 9x9mm was enclosed by a hollow NiFe19 ring with a 2.4cm 

outer diameter and a 1.2cm inner diameter. The ferromagnetic film was heated to 

approximately 840
o
C, and the resulting temperature gradient produced varying 

polysilicon morphologies at different distances from the ferromagnet. 

 The next section of the code was dedicated to the fragmentation of the model into 

a mesh suitable for simulation. Meshing was particularly challenging for a model of this 

type. Thin films form areas with high aspect ratios, meaning that their height/width (or 

width/height) ratios are significantly above unity. High aspect ratio elements, however, 

can lead to inaccuracy in the solution [ANSYS Modeling and Meshing Guide, Sec 7.5.7]. 

ANSYS issues a warning when it encounters an aspect ratio above 20. At this point, the 

solution may still be accurate, but the likelihood of a problem becomes increasingly 

likely beyond this point. Thus achieving an accurate solution for the thin film model 

required a relatively large number of elements. Larger element numbers translated 

directly into a larger model size, however, and thus the computational requirements as 

well as the simulation time were impacted. Furthermore, an additional constraint on  
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Figure 3.16(a): Area plot of the solid model with close-ups illustrating the layouts of the 

thin film regions. An axisymmetric model, the film layout formed three concentric rings 

above the oxide-covered substrate; the inner and outer rings formed polysilicon devices, 

and the middle ring was a heated NiFe19 film.  

 

Outer Poly

Inner Poly

NiFe19

Outer Poly

Inner Poly

NiFe19

 
Figure 3.16(b): Three-dimensional axisymmetric rotation of the thin film solid model 

showing only the substrate and film stack. The inner and outer poly rings (red) enclosed 

the inductively heated NiFe19 ring (blue) from which they received thermal energy.  
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model size was present due to the use of ANSYS' University Package which enabled the 

use of all simulation packages with a strict limitation on the node count. The original 

development of the model was hindered by a 16,000-node limit, which made the present 

model impossible to simulate. The recent upgrade to a 120,000-node package was the key 

enabling factor that rendered the model development successful. The meshing section of 

the code began with the electromagnetic element type definitions as illustrated in Table 

3.11. Plane53 and Plane77 were the 8-noded equivalent versions of the 4-noded Plane13 

and Plane55 elements utilized in the ANSYS example model. The other key difference 

was the addition of a row of infinite-surface elements (Infin110) around the outer edge of 

the model. This provided for an expansion of the free space region, thus allowing the 

model to seem larger than it was as-drawn. The material properties, defined in external 

files, were read in via the mpread command. The property values that were utilized are 

provided in Appendix A.2, along with their individual sources. The electromagnetic 

properties for the NiFe19 film were obtained from actual measurements of the RF-

sputtered thin film properties. The ambient was modeled after a 50mTorr vacuum, which 

was the ambient under which the majority of the experiments were performed. The mesh 

was generated on each area individually, beginning with the thin films and ending with 

the infinite ambient areas. The element size within the NiFe19 film was fixed at 4µm,  

 

TABLE 3.11 

ELEMENT TYPES UTILIZED IN THE THIN FILM  MODEL 

Description Element 

Number 

Electromagnetic 

Element Type 

Thermal 

Element Type 

Structure 1 Plane53 Plane77 

Coil and Air 2 Plane53 Null0 

Outer Edge 3 Infin110 Infin110 

NiFe19 Surface 4 Null0 Surf151 

 



 92 

Coil

Inner Poly Outer PolyNiFe19

Substrate

Oxide OxideOxide

Vacuum

Infinite Space

Coil

Inner Poly Outer PolyNiFe19

Substrate

Oxide OxideOxide

Vacuum

Infinite Space

 
Figure 3.17: Meshed thin film model showing the relative mesh sizes for the different 

components. The NiFe19 film was meshed to 4µm divisions throughout the entire 

structure, which provided more than sufficient resolution for the 94.9µm skin depth.  

 

 

provided more than sufficient resolution within the calculated 94.9µm skin depth. The 

meshed model is shown in Figure 3.17, where the three close-up images illustrate the 

relative mesh sizes for the different components. Lastly, the Surf151 line elements were 

generated on the top surface of the NiFe19 film. The esurf command was utilized to 

simultaneously generated the mesh and assigned the space node.  

 The loads and boundary conditions were essentially the same as those utilized in 

the ANSYS example model. The unique load to the entire model was once again the 

current density applied to the coil, which in this case was computed to deliver 

3*190=570A through the 24.1mm
2
 cross-section. The flux-normal boundary condition 

was also applied as before, meaning that the z-component of the magnetic vector 

potential was set to zero along the y-axis. The use of infinite surface elements around the 
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outer edge was a new feature, however; this required an additional boundary condition to 

designate the external infinite edge. A third condition was optionally utilized to fix the 

temperature behind or at the edge of the substrate, to simulate the effect of substrate 

temperature regulation. Finally, the harmonic frequency was defined at 375kHz, which 

was the frequency at which nearly all experimentation was done, and the electromagnetic 

physics environment was stored.  

 The electromagnetic simulation was tested before proceeding with the creation of 

the thermal physics environment. The plots in Figures 3.18-3.21 present the results 

specific to the room-temperature electromagnetic solution. The magnetic field produced 

by the coil was oriented along the y-direction through the center of the coil. The 

magnitude of HY is shown in Figure 3.18(a). From Equation (2.11), the theoretical value 

for a three-turn coil with 190A (or a one-turn coil with 570A) was 18.0kA/m., which was 

consistent with the region of the plot internal to the coil. Closer to the substrate, the field 

strength was reduced slightly to ~14kA/m due to the distance from the source. The effect 

of distance is illustrated more clearly in the vector plot of Figure 3.18(b). The heated 

structure was subject to a weakened field with some off-axis curvature in the x-direction, 

the latter of which increased considerably with distance from the central axis. The field 

strength in the vicinity of the substrate translated to a free-space magnetic flux density of 

0.0176T, which was in agreement with the free-space regions of the contour plots of 

Figures 3.19(a,b). The flux density behaviors within the ferromagnetic film were far less 

predictable than those encountered in the ANSYS example model, and were most likely 

caused by a combination of field curvature and anisotropy in the magnetic permeability. 

The measured relative permeability values of the NiFe19 films were 48.3 in the plane of  
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Figure 3.18(a): Contour plot showing the y-component of the magnetic field strength 

that was produced by the solenoid coil. The magnitude in the interior of the coil was 

consistent with the theoretical prediction of 18.0kA/m. 

 

NiFe19NiFe19

 
Figure 3.18(b): Vector plot showing magnetic field strength and orientation. The field 

passing through the NiFe19 film had a magnitude of ~14kA/m and had an appreciable 

component in the x-direction. 
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Figure 3.19(a): Contour plot showing the magnitude of the x-component of the magnetic 

flux density, with a close-up on the NiFe19 film. The curvature of the magnetic field, 

combined with the anisotropic permeability, rendered BX the dominant component. 
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Figure 3.19(b): Contour plot showing the magnitude of the y-component of the magnetic 

flux density, with a close-up on the NiFe19 film. Theory predicted a BY value of 0.277T 

for the given field strength, but the actual value was roughly equal to that of free space. 
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the film ρX=ρZ) and 15.8 in the normal direction (ρY). The measurement of these values is 

discussed in detail in Section 4.3. As the figures show, the flux density values produced 

in the simulated film had much stronger components in the x-direction than in the y-

direction, where the value of BY was essentially that of free space other than an anomaly 

at the interface. The peak value in BX was 0.492T, which corresponded to an effective 

permeability of 28.0. This was approximately equal to the mean of the two permeability 

values, 32.3 (ρXY), suggesting that the rotated alignment of the ferromagnetic domains 

was driven by the vector summation. Figure 3.20 shows the contour plot for JZ, the 

current density in the z-direction (or Φ-direction). JX and JY were not valid degrees of 

freedom in the two-dimensional model due to the unspecified element depth, but it was 

believed that the out-of-plane eddy currents were significant. The in-plane induced  
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NiFe19

 
Figure 3.20: Contour plot showing the induced current density within the thin film 

model. The values in the NiFe19 film reached a peak magnitude of 1.86E8 A/m
2
, 

whereas the peak magnitude in the substrate was below 1000A/m
2
. 
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Figure 3.21: Contour plot showing the relative power density dissipation in the thin film 

model. The ferromagnetic film reached a peak density value of 1.30E11 W/m
3
, which 

was at least six orders of magnitude higher than that in the substrate. 

 

 

currents were once again opposite the direction of the applied current, with the current 

density in the ferromagnetic film reaching a peak magnitude of 1.86E8 A/m
2
, the 

majority of the substrate falling within the 100-1000A/m
2
 contour, and the remainder of 

the model failing to exceed 100A/m
2
 (and was likely much lower). Note that the peak 

magnitudes of both JZ and BX did not occur exactly at the outer edge; this was believed to 

be a result of the non-uniformity in the magnetic field. Finally, the power density contour 

plot is shown in Figure 3.21. The NiFe19 film once again demonstrated considerable 

superiority over the other materials, including the substrate. Comparison against 

theoretical values was not straightforward, as the effective permeability value was 

uncertain. Table 3.12 shows a comparison of the calculated values using Equation (2.6a) 

to obtain the theoretical power, factoring out the element sizes to obtain the density, and  
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TABLE 3.12 

THEORETICAL AND SIMULATED ELECTROMAGNETIC QUANTITIES 

Variable Simulated 

Value 

Calculated 

using ρX 

Calculated 

using ρY 

Calculated 

using ρXY 

Power (W) 204.4 0.242 0.139 0.197 

Power Density 

(W/m
3
) 

1.30E11 2.05E10 6.68E9 1.36E10 

Current 

Density (A/m
2
) 

1.86E8 3.12E8 1.78E8 2.54E8 

 

dividing by the resistivity to obtain the square of the current density (which was shown in 

the previous section to be procedurally correct). The table shows that the theoretical 

power dissipation values were all offset by three orders of magnitude from the total 

simulated value, which was computed by ANSYS using the powerh command. The 

power density values were considerably closer, with only one order of magnitude 

between them. Converting these to current density values, however, yielded results that 

were surprisingly close to the JZ obtained from Figure 3.20, with ρY (which was 15.8) 

producing a theoretical value equal to 0.96 times the simulated value. The significance of 

these results was not entirely clear, but the close correlation of ρY with the JZ value 

suggested that the in-plane current density still followed the anticipated behavior but that 

the total power distribution was significantly affected by the unknown out-of-plane 

currents. Note that ANSYS was not capable of modeling hysteresis heating, and electric 

fields were not included as a degree of freedom, so all power dissipation should have 

been through eddy currents. Thus the theoretical model was only partially upheld in this 

more realistic scenario. 

 With the electromagnetic physics environment written and tested, the model 

generation continued with the establishment of the thermal physics environment. The 

conversion was essentially the same as was done in the ANSYS example model; the 
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element types were switched over to their thermal counterparts, and the boundary 

conditions specific to the thermal model were applied. The outermost edges of the infinite 

surface elements were once again designated as infinite boundaries and were assigned a 

constant 300K temperature. The optional temperature constraints on the back side and 

outer edge of the substrate were also available. Finally, the automated time-stepping 

options were defined to range from 10ms to 1ns, with a 1µs starting point, and the 

thermal physics environment was stored. 

The execution of the solution was modeled after the code from the ANSYS 

example model, in which a repeating do-loop sequentially performed the electromagnetic 

simulation, followed by the thermal simulation, for the specified number of iterations. 

One key difference, however, was that it was split into two separate loops, where the first 

was responsible for the simulation start-up and executed until simtime=1sec with 

increments of 50ms between electromagnetic re-evaluations, and the second drove the 

simulation to completion with 0.5s increments and the maximum time step of the thermal 

environment increased to 0.1s. This allowed the model to maintain accuracy during the 

critical formation stage but reduced the simulation time by several hours. At the 

conclusion of the simulation, specific nodes were selected (via the keypoints to which 

they were attached) for temperature evaluation. The plvar command was utilized to 

generate plots of the inner and outer edges of the ferromagnetic film and the nearest 

edges of the two polysilicon films. The locations of these sites are illustrated in Figure 

3.22. They were intended to illustrate the relative rates of temperature rise and the degree 

of thermal localization achieved by the structure. As the results will show, however, 

localization was limited by the high thermal conductivity of the substrate.  
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Figure 3.22: Illustration of the points of measurement for plotting in the charts of 

simulated temperature with respect to time. The four locations were intended to help 

illustrate the degree of localization obtained within the film stack. 

 

 The simulation was run under three different conditions: with no temperature 

constraints, with the back side of substrate constrained to 300K, and with the edge of 

substrate constained to 300K. The results of the unconstrained simulation are presented in 

Figures 3.23(a,b). The temperature plot in Figure 3.23(a) shows an initial temperature rise 

at approximately 230K/s that slowed down to 40K/s upon reaching the ~650K Curie 

temperature of the NiFe19 film. The final temperature after 10s peaked at 1008K, or 

735
o
C, with the maximum value occurring near the horizontal center of the film as 

indicated in Figure 3.23(b). The plots reflected a minimal degree of localization due to 

the high thermal conductivity of the silicon substrate. With temperatures of 

approximately 975K at the center and 955K at the edge, the temperature gradients 

evaluated to  

 cmK
cm

K
TInner /7.41

6.0

9751000
=

−
=∇  (3.16a) 
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Figure 3.23(a): Graph of temperature, in Kelvin, vs time following a 10-second run of 

the default, unconstrained thin film simulation. The rate of temperature rise slowed down 

as the ferromagnet reached its Curie temperature, which was at approximately 650K.  

 

 
Figure 3.23(b): Contour plot showing the final temperature distribution, in Kelvin, across 

the model after a 10-second coupled simulation of the thin film model without 

temperature constraints on the substrate. The high thermal conductivity of the silicon 

substrate prevented the creation of an appreciable temperature gradient. 
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and 

 cmK
cm

K
TOuter /1.58

775.0

9551000
=

−
=∇ . (3.16b) 

 

Thus there was considerable room for improvement, and the importance of preventing the 

thermal energy from being drawn into the substrate was clear. Figures 3.24(a,b) illustrate 

the effect of regulating the temperature at the back side of the substrate to 300K, 

presumably through a heat sink. As the chart of temperature vs time in Figure 3.24(a) 

shows, all four temperatures almost immediately stabilized to their permanent values, 

with the polysilicon regions fixed at 300K and the outer and inner NiFe19 regions at 

302K and 300.6K, respectively. This corresponded to gradients of 

 cmK
cm

K
TOuter /33.13

15.0

300302
=

−
=∇  (3.17a) 

 

and 

 cmK
cm

K
TInner /00.4

15.0

3006.300
=

−
=∇ . (3.17b) 

 

Thus regulating the substrate temperature helped to drive the process to a steady-state but 

created an excessive temperature draw on the ferromagnetic power source. This same 

effect was observed during experimentation, in which placing a heat sink behind the 

substrate prevented any measurable temperature changes from being induced. Finally, 

Figures 3.25(a-d) show the results of an attempted middle ground through the regulation 

of the temperature at the edge of the substrate. This configuration was representative of 

the wafer stage designed by MTU undergraduates for the custom inductive heating test 

system described in the next chapter when utilized without a heat sink. The primary 

difference was that the smaller sample size utilized in the simulation rendered the point of 

contact closer to the center than in reality. The temperature-vs-time plot in Figure 3.25(a) 

was quite unique; the four temperatures initially rose quite rapidly, but just as they began  
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Figure 3.24(a): Graph of temperature (K) vs time during a 6-second simulation of the 

thin film model with the back side of the substrate held at 300K. The result was a severe 

limitation on the induced temperatures due to the heat sinking of the entire structure. 

 

 
Figure 3.24(b): Contour plot showing the temperature distribution (K) across the model 

following a 6-second simulation with the back side of the substrate held at 300K. The 

thermal energy was prevented from spreading laterally, but the attainable temperature rise 

was severely reduced. 
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Figure 3.25(a): Graph of temperature (K) vs time during a 6-second simulation in which 

the outer edge of the substrate was held at 300K. The temperatures reached higher 

steady-state values than they did with the back side of the substrate fixed, but they were 

unable to overcome the lateral temperature gradient that was set up across the substrate. 

 

 

to stabilize, they each suddenly dropped back down and to approximately 10-15% below 

their peak values. To understand this phenomenon, contour plots at various time 

snapshots were obtained. Figure 3.25(b) shows a close-up on the ferromagnetic film at 

simtime=0.492s. The figure shows that heat generation initiated in a manner typical for 

the model, with the temperature rise initiating from the approximate center of the NiFe19. 

The maximum value at this time was 440K, approximately equal to that of the final 

distribution. The temperatures for each of the four curves reached their peaks at around 

1.58s; Figure 3.25(c) shows that by this time, the source of heat generation had shifted 

toward the far inside portion of the ferromagnet. At this point, the curves began sharply 

trending downward, retaining the same qualitative distribution but decreasing in 

magnitude as shown in Figure 3.25(d). The unusual behavior was thus the result of two 
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Figure 3.25(b): Contour plot showing the temperature distribution (K) in and around the 

NiFe19 film at simtime=0.49s with the outer edge of the substrate held at 300K. The early 

temperature distribution bore close resemblance to that of the unperturbed model. 

 

 
Figure 3.25(c): Contour plot showing the temperature distribution (K) in and around the 

NiFe19 film at simtime=1.58s with the outer edge of the substrate held at 300K. This was 

the time at which all temperature values peaked, and by this point the heat source had 

shifted to the inside portion of the NiFe19 ring. 
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Figure 3.25(d): Contour plot showing the temperature distribution (K) across the model 

at simtime=6s with the outer edge of the substrate held at 300K. The contours indicate 

that the temperature distribution retained the same shape as that shown in Figure 3.25(c). 

 

 

competing phenomena, similar in nature to that encountered when the back side of the 

substrate was regulated but with a different final outcome. At first, the inductively heated 

film and the 300K heat sink operated as separate sources. Once their ranges collided, 

however, the heat sink became dominant as it was capable of sinking an infinite amount 

of energy. The end result was that the 300K heat sink dominated the behavior in the outer 

portion of the structure, while the film retained control over the interior (note that the 

location of maximum temperature was still within the NiFe19 film and thus the 

temperature at the origin was slightly lower). The temperature gradients computed to 

 cmK
cm

K
TOuter /180

15.0

363390
=

−
=∇  (3.18a) 

 

and 
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−
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Once again, similar effects were observed during experimentation when the substrate was 

pinned at the edges. The strong lateral gradient that was established rendered a 

configuration of this type unusable for device application, however, as there would be 

considerable non-uniformity among devices. The persistent trade-off between process 

control and annealing temperature was often re-optimized as experimentation led to 

improved designs in the test samples and in the test system itself. The model presented in 

the next section shows various attempts at improving on the results of the original thin 

film model through thermal isolation, i.e., selective placement and dimensions of silicon 

dioxide layers. 

 

3.4: Thin Film Induction Heating Model with Thermal Isolation 

 

 Resolving the thermal isolation challenge was a critical factor in achieving the 

desired temperature gradients suitable for high-temperature annealing in the vicinity of 

temperature-sensitive CMOS components, and thereby realizing a successful technology. 

The model presented in this section drew from the results of the original thin film model 

presented in the previous section. The simulation code, presented in Appendix A.4, was 

essentially the same as that in Appendix A.3, which was described in detail previously. 

The only difference was the film stack in the heated structure. For this device, the 7.1µm 

ferromagnetic film was patterned directly above a 3µm-thick blanket polysilicon layer. 

The intent was to vary the thickness of the buried oxide in order to prevent the majority 

of the thermal energy from reaching the substrate, and to instead utilize the annealed 

polysilicon layer to provide the necessary thermal conduction within itself. Thermal  
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Figure 3.26(a): Area plot of the isolation film solid model designed to enhance thermal 

isolation. Blanket SiO2 and polysilicon films were formed above the substrate, and a 

NiFe19 film was patterned directly above the polysilicon. Trenches in the polysilicon on 

each side of the ferromagnet were intended to provide lateral isolation. 
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Figure 3.26(b): Three-dimensional rotational area plot showing the layout of the 

structure more clearly. The NiFe19 ring was of the same dimensions as those of the 

original thin film model. Three rows of trench rings were formed both inside and outside 

of the heated film. 
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Figure 3.27: Element plot of the isolation film solid model showing the relative sizes of 

the divisions. Mesh dimensions were the same as those utilized in the original thin film 

model, and ranged from 4µm in the NiFe19 film to 2mm in the infinite vacuum elements. 

 

 

isolation trenches were etched into the polysilicon in order to provide lateral containment. 

The solid model is shown in Figure 3.26(a), with close-ups showing the NiFe19 film in 

the center and the two sets of oxide-filled isolation trenches on each side. The three-

dimensional plot in Figure 3.26(b) helps to more clearly illustrate the layout of the 

structure. The NiFe19 film formed a ring about the y-axis that extended from 0.6-1.2cm 

in radius, the same as was utilized in the original thin film model. Its thickness was 

reduced slightly in order to coincide with the experimental results presented in Section 

5.3. On both sides of the ferromagnetic ring were three rows of oxide-filled trenches, 

each of which measured 20µm in width with 20µm spaces between them. Since the 

heated film was essentially unchanged, the electromagnetic properties presented in the 

previous section were still applicable, and thus only the temperature results from the  
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Figure 3.28: Illustration of the points of measurement for plotting in the charts of 

simulated temperature with respect to time for the isolation film model. The six locations 

were intended to help illustrate the degree of localization obtained within the film stack 

 

 

 
Figure 3.29(a): Graph of temperature (K) vs time during a 10s simulation of the isolation 

film solid model. The plot was nearly identical to that from the original thin film model, 

shown in Figure 3.23(a), as the high thermal conductivity of the substrate once again 

caused the model to be "flooded" with thermal energy. 
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Figure 3.29(b): Contour plot showing the temperature distribution, in Kelvin, across the 

model following a 10-second simulation with no thermal constraints placed on the 

substrate. The results were nearly identical to those from Figure 3.23(b). 

 

 

coupled solution will be presented. The points of temperature measurement for this 

model are shown in Figure 3.28. Figures 3.29(a,b) show the results of the simulation 

using only the default 1µm-thick base silicon dioxide layer with no temperature 

constraints on the substrate. The resulting temperature trends and distribution showed no 

appreciable difference from those obtained in the original model, as the simulation was 

once again controlled by the high thermal conductivity of the silicon substrate. Pinning 

the back side or outer edge of the substrate also produced identical results to the original 

model, indicating that it was still dominating the thermal gradient. 

To remove the contribution of the substrate to thermal conduction, the base SiO2 

film was increased in thickness to 20µm. While this excessive thickness was rather 

unrealistic for real-world applications, the intent was to simulate the effect of a more 
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effective thermal barrier such as an oxide/nitride/oxide film stack or other highly 

insulating material. Of the three configurations (unregulated, fixed substrate back side, 

and fixed substrate edge), the most interesting results were obtained with the back side of 

the substrate fixed at 300K. Figures 3.30(a,b) show the results obtained without any 

additional modifications. Although the improvement over the non-isolation counterpart of 

Figures 3.24(a,b) still left much to be desired, the magnitude of the temperature 

differential from ferromagnetic film to substrate climbed from 3K to 14K. Thus the 

substrate was still drawing considerable thermal energy out of the heated film, but it was 

theorized that this could be overcome by finding a balance between magnetic field energy 

and SiO2 thickness. The latter was immaterial to the power requirement as it provided a 

vertical temperature differential but not an energy sink, so analysis focused on varying 

the current density within the magnetic coil. In practice, increasing the field strength can 

be done through increased power (thus requiring a larger power supply) or through coil 

optimization (increased turns and/or decreased length - but note that higher resistance 

decreases the output current). The default current density was 2.36E7A/m
2
, which 

corresponded to a total current of 570A (equivalent to 190A through a three-turn coil). 

The result of increasing the current density by a factor of 10, to 2.36E8A/m
2
, is illustrated 

in Figures 3.31(a,b). The temperature curves in Figure 3.31(a) exhibited an initial 

instability, producing a square-wave trend. This behavior was encountered with all of the 

simulations that used the 300K back side boundary condition, more so with increasing 

coil current, but the results eventually converged toward final steady-state values. The 

contour plot from simtime=6s, shown in Figure 3.31(b), demonstrated good thermal 

isolation between the NiFe19 film and the substrate. The temperatures were assumed to  
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Figure 3.30(a): Graph of temperature (K) vs time for a 6-second simulation of the 

isolation film solid model with the back side of the substrate held at 300K and the SiO2 

thickness increased to 20µm. Although the temperature gradients were small, the relative 

improvement over the original simulation suggested that the direction might be fruitful. 

 

 
Figure 3.30(b): Contour plot showing the temperature distribution, in Kelvin, across the 

isolation model following a 6-second simulation with the back side of the substrate held 

at 300K and the base oxide thickness increased to 20µm. The thicker base oxide layer 

shielded nearly all of the thermal energy from the substrate. 
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Figure 3.31(a): Graph of temperature (K) vs time for a 6-second simulation of the 

isolation film solid model with the back side of the substrate held at 300K, a 20µm SiO2 

thickness, and the coil current increased by a factor of 10. The solution exhibited some 

instability but was converging toward a 250K differential between film and substrate. 

 

 
Figure 3.31(b): Contour plot showing the temperature distribution (K) across the 

isolation model following a 6-second simulation with the back of the substrate held at 

300K, a 20µm SiO2 thickness, and the coil current increased by a factor of 10. Nearly all 

of the energy was contained in the NiFe19 film, which had a peak temperature of 665K. 
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have reached their approximate steady-state values at the end of the 6-second simulation. 

With a steady-state maximum temperature of 665K, the simulation results demonstrated 

the capability to maintain a stable differential of 365K from film to substrate. The 

drawback, however, was that the lateral energy spread through the polysilicon film was 

minimal, and in fact insufficient energy reached the trench regions to enable the testing of 

their effectiveness. Despite having the same high thermal conductivity as the bulk silicon, 

the polysilicon film was relatively thin and apparently did not provide a good conduction 

path. Thus, another trade-off was revealed, suggesting the need for further design 

revision. Possible solutions include the use of thicker polysilicon films, enhancing the 

lateral thermal conduction using an additional layer, or patterning the inductively heated 

film directly above the polysilicon region to be annealed. Further adjustments to the coil  

 

 
Figure 3.32: Graph showing the relationship between the current density applied to the 

magnetic coil and the resulting induced steady-state temperatures. The temperature at the 

outer edge of the NiFe19 film (blue) and the maximum temperature within the film (pink) 

both varied linearly with current and thus were linear in magnetic field strength.  
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current yielded the same qualitative results, with the only difference being the numerical 

values. Figure 3.32 shows a graph of the induced temperatures with respect to the applied 

current density. Both the temperature at the outer edge of the NiFe19 film and the 

maximum steady-state temperature within the film were linear with current (and thus 

magnetic field strength). This was inconsistent with the theoretical prediction as well as 

the results of the ANSYS example simulation, both of which indicated the temperature 

values should vary with the square of the coil current. Closer examination of the impact 

on the various dependent parameters within the electromagnetic simulation showed that 

the power and power density values both varied with J
2
 as expected, so the discrepancy 

fell within the thermal model. The increase in directions available for the induced thermal 

energy to flow was the likely cause. The two linear trends suggested that an average 

temperature within the NiFe19 film (and thus the polysilicon below) of 1000
o
C could be 

reached using a current density of approximately 8E8A/m
2
, which corresponded to a 

magnetic field strength of 1.79E6 A/m. This was a factor of 99.7 above the present 1.8E4 

A/m field strength. Available power supplies from Ameritherm with the same frequency 

range reach up to 12kW in output power, a factor of four increase over that available 

from the Nova Star 3 utilized for experimentation [Ameritherm, 2007]. Thus the 

remaining factor of ~25 would have to come from optimization of the structural layout 

and magnetic coil. 

 

Conclusion 

 

This chapter presented the generation and results of three different finite-element 

models designed to simulate induction heating processes. The first model, developed by 

ANSYS, was highly idealized in that the heated structure was of relatively large 
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dimensions and was located completely in the interior of the solenoid, thus producing a 

magnetic field entirely oriented along the y-axis. Nevertheless, it provided a critical link 

to the theoretical equations of Chapter 2, with most simulated electromagnetic parameters 

falling within a factor of 1.27 of their theoretical counterparts, and it also provided a 

baseline from which the more complex thin film models were established. Development 

of the thin film models was focused on enhancing the controllable thermal energy 

gradients between the regions that were intended for heating and those that were not. 

Progress was made using silicon dioxide films as thermal barriers, but considerable room 

for improvement remained. The most successful results utilized unrealistically thick 

thermal barrier films and extremely high coil current levels, which suggested that further 

enhancements in process efficiency and energy containment were needed. Research into 

alternate barrier film materials and/or stacks will be a key component of the second 

generation of the process development. This will increase the thermal gradient 

capabilities, and thus the loss of energy to the surroundings. Combined with improved 

ferromagnetic film properties, success in this area will help to drive the success of the 

technology. 
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Chapter 4: Experimental Results 
 

 While the theoretical and computational analyses of the inductive annealing 

process seemed to suggest feasibility, it was only through experimentation that its 

practicality could be evaluated. Unexpected challenges were certain to arise, and several 

were indeed encountered during the early phase of testing. Much of the middle phase was 

spent examining methods to overcome these challenges, some of which resulted only in 

minor process changes while others placed limitations on device conditions. The possible 

solutions are by no means exhausted, however, and it is likely that continued research 

with fresh ideas could help to lift the constraints that presently exist. This chapter 

presents the highlights of the technology evolution to date. It begins with the initial 

proof-of-concept testing in Section 4.1. Based on the results of these and subsequent 

studies, a custom test system was assembled at MTU specifically targeting the efficient 

induction heating of thin ferromagnetic films. Section 4.2 details the construction and 

relevant features of the Bergstrom Electromagnetic Annealing Vacuum Induction System 

(BEAVIS). Process optimization also required a study into the magnetic properties of the 

various ferromagnetic films available for deposition with the Perkin Elmer 2400-8J 

sputtering system. The results of these measurements are presented in Section 4.3. 

Proceeding with three selected alloys, Section 4.4 examines the important relationships 

between film dimensions and heat generation, utilizing the various challenges 

encountered to drive the evolution of the inductive annealing process and corresponding 

designs. Overall, the data showed a continual trend toward a fully functional technology 

in which the CMOS integration problem could be overcome with minimal impact to 
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device design. While this has yet to be fully proven, it was clear that induction heating 

was a worthwhile direction for further research. 

 

4.1: Concept Verification 

 

Initial experimentation was performed at the Lepel induction heating test facility 

in Edgewood, New York, where various power supplies were available with frequencies 

ranging from tens of kHz to several MHz. The first test samples used to demonstrate the 

application of induction heating to ferromagnetic films consisted of 1µm-thick nickel 

films evaporated onto silicon wafers, masked in situ to yield circles approximately 2cm in 

diameter. The films yielded rapid, thorough heating to approximately 400
o
C at 

frequencies of a few MHz. Temperature measurement was done using a handheld 

infrared pyrometry gun. This confirmed that a magnetic field applied to a thin film could 

result in a measurable temperature elevation, but the research goals required 1000
o
C for 

polysilicon annealing. To determine whether this range of temperatures could be reached, 

a second set of samples was prepared containing rows of polysilicon cantilever beams 

above a 4” silicon substrate. The beams were made of undoped LPCVD polysilicon 

deposited at 625
o
C, producing films of high stress and stress gradient that, without 

annealing, would exhibit significant out-of-plane curvature [French, 2002]. The beams 

were patterned as indicated in Figure 4.1. Cobalt was selected to serve as the inductively 

heated film because its Curie temperature allows efficient heating at and above 1000
o
C 

and therefore could provide the thermal energy needed to initiate grain regrowth in 

polysilicon.  To prevent the cobalt from coming into contact with the silicon, which 

would result in the formation of cobalt silicides, a 100nm PECVD oxide film was 

deposited over the entire wafer, as the literature indicates it to be an effective barrier to  
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Figure 4.1: Cross-sectional diagram of polysilicon cantilever beams utilized in the 

second verification test. A timed etch of the underlying sacrificial silicon dioxide layer 

provided for beam anchoring
1
. 

 

 
Figure 4.2: Illustration of wafer partitioning into rectangular strips approximately 1cm x 

3cm in size. Half of each sample was covered with a 100nm cobalt film so as to produce 

adjacent annealed and unannealed regions. 

 

 

cobalt diffusion [Detavernier, et al., 2000]. A 100nm-thick cobalt film was evaporated 

onto one side of the wafer using a shadow mask. Finally, the wafer was partitioned into 

rectangular strips such that half of each strip was covered with cobalt and half was bare 

as is illustrated in Figure 4.2. Returning to Lepel, solenoidal coils were chosen so as to 

subject the samples to a strong, relatively uniform magnetic field with a dominant 

component in the z-direction. As was discussed in Section 2.3, the samples were oriented 

such that the eddy currents were induced in the r-f plane in order to reduce the 

dependence of the required frequency on the film thickness. Figure 4.3(a) shows a low-

temperature anneal in progress, evident by the discoloration spreading through the cobalt 

film, with the frequency and transmitted power at approximately 4.95MHz and 2kW, 

respectively. Thermally-sensitive paint indicated that the temperature had reached around

                                                 
1 Courtesy of Bishnu Gogoi. 
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(a) 

 
(b) 

Figure 4.3: Images of inductively heated cobalt films showing (a) a low-temperature 

anneal in progress in which heat generation was evident by the cobalt film discoloration 

and (b) the result of a high-temperature anneal in which the cobalt-covered side of the 

sample had deformed. All testing was done in ambient conditions. 

 

 

400
o
C. Figure 4.3(b) shows the outcome of increasing the coil power beyond 2kW, at 

which point the cobalt-covered side of the sample began to glow brightly and the process 

lost stability, reaching temperatures in excess of the silicon melting point, 1410
o
C, almost 

instantaneously. The unchanged shape of the low-temperature side of the sample verified 

that a thermal gradient had successfully been obtained. It was hypothesized that the loss 

of stability occurred as a result of the increasing generation of electronic carriers in the 

substrate under the cobalt which enabled the silicon to inductively heat more efficiently, 

leading to a thermal runaway condition. The considerable difficulty encountered in 

controlling the temperature beyond 400-500
o
C lends support to this theory. This 

suggested that wafer doping was a critical factor and that additional measures might be 

required such as heat-sinking the substrate or introducing additional thermal isolation in 

the vicinity of the microstructural areas. The doping level of the substrates used for this 
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experimentation was not characterized. 

In spite of the deformation that occurred at the edges of the high-temperature end 

of the samples, the structures located in their interior were left undamaged. After 

removing the cobalt in a piranha (50vol% H2SO4, 50vol% H2O2) solution, the oxide 

layers above and below the beams were etched in 5:1 buffered hydrofluoric acid (BHF) to 

expose and release them.  The samples were soaked in isopropyl alcohol, methanol, and 

then pentane following the sacrificial etch, but problems with stiction were still 

encountered as a result of the cantilever length. Nevertheless, the SEM images in Figure 

4.4 illustrate a clear difference between structures on opposite sides of the sample from 

Figure 4.3(b). The initial curvature due to the intrinsic stress gradient was effectively 

eliminated, and manually lifting the ends of the heat-treated beams from the substrate 

confirmed them to be flat. The impact of the anneal on the polysilicon surface texture is 

illustrated in the SEM images of Figure 4.5, where the change from a relatively coarse 

appearance to near uniformity suggests that significant regrowth had taken place. Both 

sets of SEM images were obtained using a JEOL 6400 system. This change in surface 

texture was quantified using a ADE Phase Shift white light interferometric microscope 

(IFM). Figure 4.6 shows the digitized profiles of the anchor regions, again showing a  

 

 
(a) 

 
(b) 

Figure 4.4: SEM images of cantilever beams from the (a) low-temperature and (b) high-

temperature ends of the same test sample. A significant reduction in the intrinsic stress 

gradient was evident as a result of the inductive anneal.  
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(a) 

 
(b) 

Figure 4.5: SEM images of the cantilever beam anchors illustrating a visible difference 

in the silicon grain structures between (a) the low-temperature and (b) the high-

temperature areas of the sample. 

 

 
(a) 

 
(b) 

Figure 4.6: Interferometric images of the beam anchor regions from the (a) low-

temperature region and (b) high-temperature region again reflecting an improvement in 

surface texture as a result of inductive annealing. The microscope interface software 

indicated that roughness values had been reduced by nearly two orders of magnitude. 

 

 

smoothed texture following heat treatment, and the IFM interface software determined 

that the RMS (Rq) and average (Ra) roughness values had decreased from 0.37µm and 

0.31µm, respectively, to 0.0072µm and 0.0034µm, a factor of nearly two orders of 

magnitude. Confirmation of changes in the grain structure and size was obtained through 
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XRD analysis using a Scintag XDS2000 Powder Diffractometer. Utilizing reference data 

provided by the National Bureau of Standards [NBS, 2001], scans were done for the three 

most prevalent angle-orientation pairs for polysilicon: <111> at 28.4429
o
, <220> at 

47.3036
o
, and <311> at 56.1221

o
.  Note that the angles given are actually equal to twice 

the diffraction angle. The full-width, half-maximum (FWHM) values generated for each 

of the three peaks, given in degrees, were then utilized to compute the average crystallite 

sizes according to the Scherrer formula, 

 
θ

λ

cos

9.0

B
Size =  (4.1) 

where λ (nm) is the x-ray wavelength, B (radians) is the FWHM value, or breadth, of the 

selected peak, and θ (radians) is the diffraction angle for that peak [Cullity, 1956 (p 

262)]. The proportionality constant is referred to as the shape factor or Scherrer constant 

and is commonly assigned the value of 0.9 based on the assumption of spherical 

crystallites. Crystallites and grains are not synonymous; crystallites exist within grains 

and are bounded by items such as grain boundaries, dislocations, and other various 

imperfections. Thus the average crystallite size provided a minimum value for the 

average grain size, with their proximity dependent upon material quality. Before 

calculations could be done, however, it was first necessary to make an adjustment to the 

FWHM values in order to account for any error introduced by the system. This was done 

using a characterized polysilicon reference sample known to be of large crystallite size. 

Based on recommendations made by Edward Laitila of the MTU Materials Science and 

Engineering Department, the offset adjustments were made as follows: 

 REFFWHM BBB −=1  (4.2a) 
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 22
2 REFFWHM BBB −=  (4.2b) 

 21BBBADJ =  (4.2c) 

where BFWHM is the as-measured FWHM value, BREF is the FWHM value of the 

corresponding peak from the reference data, and BADJ is the final, adjusted value to be 

utilized in Equation (4.1). The diffraction data was also utilized to compute the average 

lattice strain and stress as indicated by the difference between the measured diffraction 

angle from the ideal, relaxed value. The formula for lattice strain can be derived from 

Bragg’s law, 

 θλ sin2dn =  (4.3) 

where n is a integer, reflecting the requirement for an integral number of wavelengths 

between x-rays reflected from a sample in order to achieve constructive interference and 

thus maximum signal, and d (m) is the inter-atomic spacing [Nave-1, 2005]. Solving for d 

and substituting into the characteristic equation for strain, ε (m/m, or unitless) [REF], 

 
0

0

d

dd −
=ε  (4.4) 

the lattice strain can be related to the diffraction angle as 

 
θ

θθ
ε

sin

sinsin 0 −= . (4.5) 

Strain values can then be converted to stresses via multiplication by the Young’s 

Modulus; a value of 160GPa was used for all stress calculations as it represented a typical 

polysilicon Modulus [Senturia, 2001 (p. 196)]. Table 4.1 summarizes the data from XRD 

scans on the reference polysilicon sample and the annealed and unannealed test samples 

as well as the results of the calculations. The output waveforms generated by the 
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diffractometer are given in Figures 4.7(a) and 4.7(b). The data and plots show that 

annealing rendered all three peaks considerably narrower, consistent with increased grain  

 

TABLE 4.1 

X-RAY DIFFRACTION DATA AND CALCULATIONS FOR BEAM ANCHORS 

ID
 2θ, 

degrees 

BFWHM, 

radians 

BADJ, 

radians 

Scherrer Cry. 

Size, nm 

Strain, 

mm/m 

Stress, 

MPa 

28.4479 0.001290 - - - - 

47.3050 0.001417 - - - - 

R
ef
er
en
ce
 

56.1273 0.001370 - - - - 

28.5607 0.002878 0.002021 70.78 -3.619 -579.0 

47.4676 0.004136 0.003251 46.59 -2.607 -417.2 

U
n
an
n
ea
le
d
 

56.2768 0.003887 0.003026 51.97 -1.745 -279.2 

28.5212 0.001587 0.000524 273.3 -2.355 -376.8 

47.4054 0.002180 0.001124 134.7 -1.613 -258.0 

A
n
n
ea
le
d
 

56.2074 0.001977 0.000931 168.9 -0.9366 -149.9 

 

 

 
Figure 4.7(a): X-Ray Diffraction output plot obtained from the low-temperature region 

of a polysilicon beam sample. The plot illustrates the shapes and locations of the three 

dominant diffraction peaks, those being the [111], [220], and [311] orientations. 
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Figure 4.7(b): X-Ray Diffraction output plot showing the considerable narrowing of the 

diffraction peaks that occurred as a result of heat treatment. Note that the vertical scale 

was increased by a factor of three. 

 

 

sizes. Averaging the calculated crystallite sizes for the three measured orientations 

yielded final values of 56.45nm and 192.3nm for the as-deposited and heated structures, 

respectively. Stress and strain values also showed a measurable change. The average 

lattice strain dropped from 2.657mm/m to 1.635mm/m, a reduction of 38.5%, and stress 

was reduced from an average of 425.1MPa compressive to 261.6MPa compressive. 

Although these results indicated that anneal was not yet complete, with the polysilicon 

still exhibiting considerable compressive stress, they confirmed that the process had in 

fact produced a very significant change within a one-second time duration. Thus it had 

been shown that temperatures sufficient for polysilicon annealing could be reached 

through inductive coupling to ferromagnetic films and that the capability existed for 

thermal localization based on strategic film placement. The first of several challenges had 

been revealed, however, and process control would continue to impose difficulties 
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throughout the course of this research. The end result would be a limit placed upon the 

doping level of the substrate, though it was anticipated that continued research into 

improving ferromagnetic film properties would alleviate this requirement as maximizing 

coupling would help to prevent the silicon from becoming induction efficient. It was 

furthermore concluded that the process would benefit considerably from heating in a 

vacuum ambient, as the high ratio of surface area to thickness resulted in substantial 

convective losses. A moderate vacuum level would help to retain thermal energy as well 

as prevent film oxidation at high temperatures. Thus began the construction of a custom 

test system at MTU focused on the optimization of the induction heating of a thin film on 

a semiconducting wafer.  

 

4.2: Inductive Annealing Test System 

 

 The BEAVIS test system was installed in Room 312 of the Mining and Materials 

Building at MTU. Its construction began in the Fall of 2002 with the donation of a 

Norton Research Corporation (NRC) 3117 thermal evaporation system from the MTU 

Biomedical Engineering Department and the loan of an Ameritherm Nova Star 3 

induction heating system from Dr. Walter Milligan of the Materials Science and 

Engineering Department. The evaporation hardware was removed from the system and 

the pump stack was upgraded with newer mechanical and diffusion pumps, both 

manufactured by Varian. MDC pneumatic solenoids were installed for the foreline and 

roughing valves, and a toggle valve was plumbed into a compressed nitrogen line for 

chamber venting. The manual high-vacuum gate valve was left in place. Pressure 

transduction utilizes a NRC 563-P ionization gauge at the diffusion pump and Type 0531 
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thermocouple gauges on the chamber and foreline, with values displayed on a Granville-

Phillips 330 ion gauge controller and an MKS Type 286 controller, respectively.  

Several attempts were made before the induction coil was successfully installed 

within the vacuum chamber. The original intent was to place the Ameritherm remote heat 

station outside of the chamber and transport the inductive signal inside to the coil through 

custom feedthroughs consisting of hollow copper tubing to allow for cooling water 

passage. It was learned, however, that the excessive length of copper tubing, along with 

the many unavoidable bends, resulted in power losses that considerably reduced the 

heating capability of the coil. In the end, the heat station was disassembled and modified 

for mounting inside the chamber in order to minimize the distance to the coil.  

 

 
Figure 4.8: Full view of the BEAVIS test system showing the exterior layout. The 

system consisted of an induction power supply that operated a remote heat station within 

a vacuum chamber. It was constructed for the purpose of optimizing the induction heating 

of thin ferromagnetic films.  
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Instrumentation utilized to support the inductive heating process included a heat 

exchanger to provide cooling water for the power supply, heat station, and coil, a stepper- 

powered stage to allow for wafer scanning, and infrared pyrometry for temperature 

measurement. The system and its significant components are pictured in Figures 4.8-13. 

Figure 4.8 shows the complete system. To the right of the main vacuum system was the 

Ameritherm heat exchanger; to the left was a small desk with a computer, stepper 

controller, and pyrometer. The interior of the chamber is shown in Figure 4.9. It consisted 

of two effective zones; the front portion contained the coil and its supporting hardware, 

and the back portion contained the equipment associated more directly with the wafer. 

The components relevant to the induction aspect of the system are shown in Figure 4.10.  

 

 
Figure 4.9: Interior of the BEAVIS vacuum chamber illustrating the manner in which the 

various components interacted. The front half of the chamber contained the induction coil 

and associated hardware, while the back half contained the motorized stage, substrate 

holder, and infrared sensors. 
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(a) 

 
(b)

Figure 4.10: Ameritherm Nova Star 3 induction heating system consisting of the (a) 3kW 

self-tuning power supply and (b) remote heat station to which the coil was attached. The 

heat station was partially disassembled and mounted to an adjustable stand within the 

vacuum chamber. 

 

 

Figure 4.10(a) shows the Nova Star 3 power supply, which had a 3kW maximum output 

rating (though only 2kW was usually obtained) and self-tuning capability within the 50-

450kHz frequency range based on coil inductance and heat station capacitance; these two 

components were connected in parallel and made up a resonant tank circuit, a typical 

configuration for induction heating systems as it allows for the generation of large coil 

current values without requiring substantial supply currents and also minimizes the 

distance over which these currents must travel [Celem, 2005]. The heat station with its 

custom mounting stand is shown in Figure 4.10(b). It required two separate cooling water 

loops; one cooled the station itself while a second passed through the hollow copper coil. 

AC power was connected to each side of the station, with the two signals separated by a 

dielectric plate. Thus the heat station utilized six vacuum feedthroughs in total. The coil 

utilized throughout the course of this research was a three-turn solenoid measuring 1.25” 
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(a) 

 
(b) 

 

 
(c) 

Figure 4.11: Means by which the substrate was scanned around the coil. The wafer stood 

vertically on the (a) stepper-powered stage, which allowed for precise horizontal and 

vertical motion through signals generated by the (b) control circuitry. A computer 

program, shown in part in (c), provided the user interface. 

 

 

in length with a 1” inner diameter. While the coil remained in place, the wafer was 

scanned horizontally and vertically around it by means of a motorized stage, shown in 

Figure 4.11(a), which utilized two stepper motors operated by the control circuit in 

Figure 4.11(b). The board contained a Microchip Technology PIC16F873A 

programmable integrated controller (PIC) which was uploaded with coding that 

converted instructions from the user, given through a serial communications program 

such as Hyperterminal as shown in Figure 4.11(c), into the alternating series of outputs 

required to turn the steppers in the chosen direction. The stage was designed to allow for 

the complete scanning of wafers up to 8” in diameter. Its top surface provided for the  
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Figure 4.12: Alumina silicate (ceramic) substrate holder designed to secure the wafer 

vertically in front of the coil without placing restrictions on wafer diameter or heat 

sinking capability. Shown here is a 4” silicon wafer with 1cm
2
 FeCo films in an attempt 

to heat groups of polysilicon test structures. 

 

 

securing of the substrate holder, shown in Figure 4.12 with a 4” silicon wafer. Made of 

alumina silicate, a machineable ceramic, so as not to allow efficient inductive coupling, 

the substrate holder was triangular in shape with an adjustable arm that rotated on a pivot 

so as to also enable the heating of various wafer sizes. The substrate rested in a tapered 

channel so that a heat sink could be placed behind it if desired with a gravity-enhanced 

contact force. Finally, the monitoring of the temperatures being generated in the targeted 

and non-targeted regions of the substrate was an essential capability if thorough 

polysilicon heating was to be achieved without risking damage to the wafer as was 

encountered previously. This was accomplished using infrared pyrometry. Two light 

sensors, or collimators, were purchased from Multimode Fiber Optics and custom fiber 

optic feedthroughs were obtained through JT Ingram Sales and Marketing. All optics 
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(a) 

 
(b)

 

 
(c) 

Figure 4.13: Components utilized for temperature measurement during induction 

heating. The (a) light sensors were mounted to an adjustable support bar located behind 

the wafer as shown in (b). Fiber cables directed the optical signal to the (c) Luxtron 

pyrometer which sequentially displayed the corresponding temperature values. 

 

 

utilized on the system had a 600µm core and were intended to function within the 750-

1000nm wavelength range typical of infrared pyrometry with a 0.22 numerical aperture 

(NA). Pictured in Figure 4.13(a), the model LC-10 sensors allowed for focal point 

adjustment, enabling control over the spot size from which they collected thermal 

radiation. The spot size could be made smaller than 1mm if desired; it was set at 

approximately 1mm on each sensor for the fixed distance to the wafer. The pyrometry 
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sensors were mounted on a cantilevered bar as shown in Figure 4.13(b). Vertical bars 

located both in front of and behind the wafer provided tremendous flexibility in the 

securing of instrumentation components such as these through the various adjustments 

available in the number and placement of the secondary horizontal beams as well as the 

individual mounts specific to each device. The sensors were held in place with aluminum 

tubes that could slide forward or backward within the mounts and were located 

approximately halfway back within the tubes in order to help to shield them from external 

light sources. Together with the baseplate feedthroughs, optical fiber cable, also 

purchased from MultiMode, transmitted the light signals collected by the sensors to a 

Luxtron 100C Optical Fiber Temperature Control System, pictured in Figure 4.13(c). The 

Luxtron system read up to four channels and sequentially displayed the calibrated output 

of each activated signal. Its output temperature range was valid from 325-1900
o
C, 

indicating that it read 325
o
C at room temperature, and it had the capability for serial port 

communications, though this feature wasn’t utilized. 

Calibration of the temperature readout was a formidable challenge, consuming 

nearly an entire semester, in large part due to the failure of the original pyrometer which 

was subsequently replaced with the Luxtron. The test system was partially reconfigured 

in order to make room for two Model 5305-5 tungsten filament heat lamps manufactured 

by Research Inc. Since the lamps required both alternating power and cooling water, the 

coil was removed so that its power and water inputs could be utilized. The lamps were 

installed in front of the wafer using the same bar-beam apparatus as the pyrometry 

sensors. Their power level was modulated using a Staco Type 3PN1010 variable 

autotransformer rated for 140V and up to 10A. Once the setup was complete, a 
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SensArray 1501 Series 4” silicon wafer instrumented with a K-type thermocouple was 

placed in the wafer holder and connected through a thermocouple feedthrough to a 

Honeywell DC3003 readout display. Calibration was done under vacuum in order to 

protect the thermocouple, as it was only rated for 500
o
C under ambient conditions. The 

modified version of the test system is illustrated in Figure 4.14. A square ceramic sheet 

measuring approximately 6x6” was utilized to both absorb the radiant light with minimal 

reflection as well as to help prevent it from reaching the sensors as it greatly affected 

their reading. Since even a small reflection was found to influence the output, aluminum 

foil was utilized to further suppress the light. The features of the Luxtron pyrometer 

relevant to calibration were found through the main menu, which was accessed using the  

 

 
Figure 4.14: Modified version of the BEAVIS test system for pyrometry calibration. 

Heat lamps provide radiant energy on a square ceramic sheet which then transfers this 

energy to the thermocouple wafer behind it. Optical sensors measure the wafer 

temperature and are calibrated at the Luxtron pyrometer such that the thermocouple and 

pyrometry measurements correspond. 
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Figure 4.15: Diagram of the Luxtron menu hierarchy. The up/down arrows on the box 

moved between levels and the left/right arrows scrolled through the various options 

within a level. Calibration was done through the Input Setup menu using the Emissivity, 

Sensor Calib, and Sensor Factor options. 

 

 

arrows located on the lower right-hand side of the face. The menu hierarchy for the 

system is shown in Figure 4.15. The up/down arrows were used to move between levels, 

while the right/left arrows scrolled through the particular options within the selected 

level. The main options of interest were Emissivity, Sensor Calib(ration), and Sensor 

Factor located under the Input Setup heading. These values could be programmed 

independently of each other for each of the four channels. Emissivity is an indication of 

the degree to which a substance radiates or absorbs thermal energy. It ranges from 0-1 

and varies with factors such as material composition, crystallinity, surface finish, 
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temperature, and radiation wavelength. The influence it has on pyrometry accuracy can 

be understood from the Stefan-Boltzmann law, 

 )(
44
ASSRAD TTq −= εσ , (4.6) 

where qRAD (W/m
2
) is the radiated heated flux, kB (5.67E-8 W/m

2
K

4
) is the Stefan-

Boltzmann constant, eS is the emissivity, TS (K) is the surface temperature, and TA (K) is 

the ambient temperature [Rudnev, et al., 1997 (p. 777)]. It is nearly impossible to obtain a 

highly accurate emissivity value for a surface from the literature, as variations occur from 

manufacturer to manufacturer and can even be significant at different points on a single 

wafer. Fortunately, the effect of emissivity error is greatly minimized by the fact that the 

temperature is raised to the fourth power in Equation (4.6); thus when the pyrometer 

attempts to convert from the input Q value to an actual temperature, the offset portion is 

reduced to its fourth root. For example, if surface with an emissivity of 0.7 is at a 

temperature of 800
o
C but the pyrometer believes it to be 0.6, a 14% offset, it would 

compute approximately 831
o
C, a 3.9% offset. For the purposes of this experimentation, a 

31
o
C error would not cause significant problems, though for many other processes it 

would. Initial emissivity values were obtained from Sato who generated data on the 

emissivity of a polished silicon surface [Sato, 1967]. Sato’s famous graph is shown in 

Figure 4.16 and indicates the silicon emissivity to be fairly consistent with respect to 

temperature in the 750-1000nm wavelength range at around 0.65. It is important to note 

that this data was for a relatively thick sample (2mm) that was polished on both sides, 

and consequently some adjustments were required. A second offset term encountered in 

pyrometry is the sensor factor, which is an indication of the efficiency with which the 

various items in the optical circuit transmit light [Advanced Energy, 2002]. Energy is lost 
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Figure 4.16: Emissivity of polished silicon over temperature and wavelength of radiation 

with a phosphorous doping level of approximately 3E14 cm
-3
. The data indicates a nearly 

constant value in the wavelength range of interest for infrared pyrometry [Sato, 1967
1
]. 

 

 

at each junction, throughout the cables, and even at the sensor itself. The Luxtron system 

had the capability to automatically determine the sensor factors using the Sensor Calib 

feature which allowed the user to input a reference temperature provided that its value 

was known. Based on the emissivity and the previous sensor factor value, a new factor 

would be calculated such that the temperature reading matched the user-supplied value. 

Thus, the calibration was performed over several iterations in which the heat lamps were 

increased to full intensity, producing a thermocouple reading of approximately 550
o
C, 

and the exact measurement was supplied to the pyrometer for each of the two channels in 

use. As the temperature was gradually ramped down, the degree to which the readings 

began to deviate from the thermocouple was noted and the emissivity value was adjusted 

accordingly. The means by which the two sets of readings was observed is illustrated in 

Figure 4.17, in which the temperature was at its maximum value and the pyrometry 

readings had just been adjusted. Eventually, an emissivity value of 0.63 was settled upon 

                                                 
1 Image reprinted with permission from the Japanese Journal of Applied Physics. 
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Figure 4.17: Illustration of the pyrometry calibration procedure in which the 

thermocouple readout was displayed on the green-colored system above the computer 

monitor while the pyrometry readout was displayed on the tan-colored system to the left 

of the monitor. The pyrometer had just been supplied with the known reference 

temperature. 

 

 

with the resulting sensor factors for Channel 1 and Channel 2 determined to be 1.882 and 

1.579, respectively. Figure 4.18 contains a plot of the thermocouple reading and the two 

pyrometry readings over the calibration range utilized, 325-550
o
C. The results showed an 

error of less than 10
o
C over the 225

o
C span. While it would have been preferred to extend 

the upper temperature limit, pyrometry inherently increases in accuracy at higher 

temperatures as it is becomes less susceptible to interference from background radiation 

[Luxtron, 2004] and therefore it was concluded that the measurements should be 

acceptable over the desired range of polysilicon annealing temperatures.  

Accurate temperature monitoring was the final goal to be fulfilled for the first 

generation of the BEAVIS test system, reaching completion in August of 2005 and 
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Figure 4.18: Final results of pyrometry calibration showing a comparison of the 

thermocouple and pyrometry readings at various levels of the autotransformer. The 

pyrometry had a maximum error of –9
o
C to +1

o
C over the full range of calibration.  

 

 

concluding nearly three years of design, assembly, and modification. The author would 

like to express sincere gratitude to the many students and staff members who contributed 

to this effort. MTU research associates Michael Chase, Roland McKinstry, and John 

Miller, graduate student Thomas Wallner, and undergraduates Brian Choponis, Andrew 

Gross, Paul Klustaitis, Scott Mollard, Michael Oisten, Robert Simon, and Kevin Zeits 

assisted in various aspects of the system design and hardware installation. The 

experiments that were carried out during and after construction verified that the majority 

of the original objectives with respect to efficient induction heating had been achieved. 

The capability for further improvement still remained, with second-generation purchases 

likely including a larger power supply and a thermal imaging camera. Nevertheless, 

polysilicon annealing was demonstrated on the system as is shown later in this chapter.  
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4.3: Magnetic Properties of RF Sputtered Ferromagnetic Films 

 

 Ferromagnetic films deposited at MTU for induction annealing on the BEAVIS 

test system were primarily formed on a Perkin-Elmer 2400-8J RF sputtering system. The 

tool was acquired with four ferromagnetic targets: Ni, Ni83Fe17, Ni81Fe19, Fe49Co50V; two 

additional targets, Co and Ni45Fe55, were subsequently purchased. This assortment 

presented several alternatives, and consequently an investigation was done into the 

magnetic qualities of these materials in order to choose the best film for the process. Of 

particular interest were the permeability in the direction normal to the substrate and the 

ability to retain ferromagnetism at high temperatures. Referring to Figure 2.4, shown in 

Section 2.2 and obtained from Honda, et al., properties such as the saturation 

magnetization level, MSAT, and the applied field required to reach saturation, HSAT, could 

be anticipated for the pure elements while linear combinations were used to predict the 

approximate behavior of their alloys. The plots suggested that materials high in nickel 

and iron would saturate very quickly (HSAT-Ni ~ 100 Oe and HSAT-Fe ~ 200 Oe), while 

those high in cobalt would saturate relatively slowly (HSAT-Co ~ 4000 Oe). Saturation 

levels were expected to be highest for films high in iron and cobalt (MSAT-Fe ~ 1700 G and 

MSAT-Co ~ 1500 G), and lowest for those high in nickel (MSAT-Ni ~ 500 G). Examining the 

Curie temperature values given in Eisberg, et al., 1985 (p. 500), materials high in nickel 

should lose their ferromagnetic qualities at the lowest temperatures (TC-Ni = 358
o
C), those 

high in iron at moderate temperatures (TC-Fe = 761
o
C), and those high in cobalt at 

relatively high temperatures (TC-Co = 1127
o
C) [Honda, et al., 1926]. These initial 

parameters were all of qualitative value, but thin film properties are quite different from 

those of bulk materials and thus actual measurements were vital to process optimization. 
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The sputtered films were assumed to be mostly amorphous, and this was certain to have 

an impact on the degree to which magnetic dipoles interacted. In Raeburn, et al., 1978, a 

study was done in which amorphous and polycrystalline samples of iron were analyzed; it 

was found the saturation magnetization values were typically much lower for the 

amorphous samples, with a difference of as much as 50%. Much of the difference was 

likely a result of the lower density exhibited by an amorphous material; it was discussed 

in Chapter 2 that inter-atomic spacing is one of the critical factors in the determination of 

ferromagnetic properties. Raeburn, et al., suggested that possible explanations could 

include a change in the distribution of exchange interactions, a change in the density of 

states, and even an introduction of some antiferromagnetic coupling.  

Thin film magnetic measurements were obtained using a Princeton Measurements 

Vibrating Sample Magnetometer (VSM) at the University of Minnesota’s Institute for 

Rock Magnetism (IRM). This system allows for the characterization of a magnetic 

material’s hysteresis curve under ambient temperatures between 10K and 1025K (-261
o
C 

and 752
o
C) under applied fields of up to 1.8T in magnitude [Solheid, et al., 1995 (pp. 1, 

6)]. Data was obtained for each of the various sputtered films as well some additional 

sputtered alloys fabricated by alternating between two targets for specific time durations 

within a five-minute duty cycle. An electroplated nickel film was also produced for  

 

TABLE 4.2 

LSU/CAMD NICKEL ELECTROPLATING RECIPE 

Chemical Grams per liter of H2O 

NiSO4 300 

NiCl2 45 

H3BO4 45 

Sodium Saccharin 8 

Sodium Lauryl Sulfate 0.5 

Coumarin 0.5 
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comparison purposes, deposited according to the Louisiana State University (LSU) 

Center for Advanced Microstructures and Devices (CAMD) recipe indicated in Table 4.2. 

Many of the samples were formed in the presence of an applied magnetic field from one 

or more permanent magnets. Manufactured by Magnetic Component Engineering (MCE), 

each magnet measured 4” square with normal field strength in the range of approximately 

200-300 Gauss. It was anticipated that the magnet(s) would help to improve the magnetic 

quality of the films in the normal orientation by encouraging the adatoms to nucleate in a 

manner that aligned with the applied field, thus reducing the free energy. In addition, a 

few samples were subject to the photolithography process, as factors such as photoresist 

bake temperatures and photoresist-imparted stresses could potentially have an impact on 

magnetic properties. Half of these then underwent a two-hour magnetic anneal at 300
o
C 

in a nitrogen-ambient furnace using one of the same MCE magnets in order to determine 

whether this might be a useful method to improve properties beyond those of the as-

deposited films. All films were deposited above a silicon substrate 500µm in thickness 

with a 1µm thermally-grown silicon dioxide layer preventing silicon-metal interaction. 

Table 4.2 summarizes the conditions by which each sample was prepared and the results 

that were obtained. The entire data collection is presented graphically in Appendix B. 

The VSM generated raw data as the magnetic moment of the material in A*m
2
. 

Normalizing by the film’s volume provided the magnetization values in A/m. Flux 

density values were then obtained through the relation 

 )(0 MHB += µ  (4.7) 

where the flux density, B (Tesla), is proportional to the sum of the applied field, H (A/m), 

and the magnetization, M (A/m), by the permeability of free space, µ0 (H/m) [Balanis, 
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1989 (p. 54)]. The appendix contains plots of both the flux density and magnetization for 

each sample, with individual analyses provided in the figure captions. The initial 

magnetization curves exhibited a significant linear component (i.e., it appeared that the 

films failed to saturate) as a result of the non-negligible contribution of the silicon 

substrate. A linear equation was formed for each sample based upon the average slope in 

the saturation regions, with a y-intercept at the origin, and this was utilized to remove the 

non-ferromagnetic offset from the data. The outcome of this modification is illustrated in 

Figure 4.19; the Ni81Fe19 curve was flattened at the saturation regions and was otherwise 

minimally affected. This modified data was used to provide the values for Table 4.3. If 

saturation was obtained for a given sample and orientation, the saturation level was found 

by rounding the magnetization values to three significant figures and determining the  

 

 
Figure 4.19: Ni81Fe19 magnetization curves measured in the plane of the substrate. The 

first curve shows the magnetization calculated directly from the magnetic moment data. 

The non-zero slope in the saturation regions was a result of the non-ferromagnetic 

materials present in the sample, namely the substrate. The second curve shows the effect 

of subtracting the linear component from the data such that only the ferromagnetic film 

was characterized. 
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TABLE 4.3 

SUMMARY OF FERROMAGNETIC FILM PROPERTIES 

Normal to Substrate Parallel to Substrate 
M
at
er
ia
l 

Dep Field 

Dep Power 

Thickness 

Comments 

Sat/Max 

Value at 

25C, 

A/m 

Sat 

Field 

at 25C, 

A/m 

Max 

µR at 

25C 

% of 25C 

Sat Level 

at 700C 

(or max 

temp) 

Sat/Max 

Value at 

25C, 

A/m 

Sat 

Field 

at 25C, 

A/m 

Max 

µR at 

25C 

0 G 

700 W 

0.19 µm 

4.66E5 

(Sat) 

8.80E4 3.41 23.6% 

(at 500C) 

4.99E5 

(Sat) 

1.06E6 13.8 

0 G 

0.3 mA/mm
2
 

11.0 µm 

Electroplated  

4.55E5 

(Sat) 

5.27E5 5.25 0.637% 

(at 450C) 

4.80E5 

(Sat) 

3.29E5 53.4 

N
ic
k
el
 

400-550 G 

700 W 

2.8 µm 

4.79E5 

(Sat) 

6.28E5 4.82 1.09% 5.18E5 

(Sat) 

6.29E4 42.2 

0 G 

800 W 

0.20 µm 

1.08E6 

(Max) 

- 17.5 43.5% 1.28E6 

(Sat) 

2.97E4 64.5 

C
o
b
al
t 

400-550 G 

700 W 

2.4 µm 

1.09E6 

(Max) 

- 3.66 88.4% 1.30E6 

(Sat) 

4.89E5 34.4 

N
i 8
3
F
e 1

7
 0 G 

800 W 

0.18 µm 

6.49E5 

(Sat) 

7.17E5 10.2 4.62% 

(at 600C) 

21.6% 

(at 500C) 

6.55E5 

(Sat) 

1.44E5 41.9 

0 G 

800 W 

0.28 µm 

6.11E5 

(Sat) 

7.50E5 7.91 6.55% 

(at 600C) 

6.49E5 

(Sat) 

5.65E4 85.3 

N
i 8
1
F
e 1

9
 

 

400-550 G 

700 W 

2.1 µm 

5.86E5 

(Sat) 

8.94E5 14.3 0.576% 6.51E5 

(Sat) 

4.32E4 62.8 

0 G 

1000 W 

0.67 µm 

3.78E5 

(Sat) 

9.54E5 3.78 7.08% 4.12E5 

(Sat) 

8.19E5 26.8 

N
i 4
5
F
e 5

5
 

200-300 G 

500 W 

1.6 µm 

3.78E5 

(Sat) 

6.32E5 3.72 1.85% 4.14E5 

(Sat) 

1.71E5 21.3 
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0 G 

850 W 

0.20 µm 

1.11E6 

(Max) 

- 6.56 2.76% 1.26E6 

(Sat) 

1.58E5 29.7 

200-300 G 

700 W 

1.7 µm 

9.76E5 

(Max) 

- 6.57 96.9% 1.27E6 

(Sat) 

5.13E4 106 

400-550 G 

700 W 

3.0 µm 

9.43E5 

(Max) 

- 1.83 99.3% 1.26E6 

(Sat) 

3.52E4 112 

200-300 G 

300 W 

0.40 µm 

1.10E6 

(Sat) 

8.03E5 8.84 - 1.17E6 

(Sat) 

2.02E5 59.2 

200-300 G 

300 W 

0.40 µm 

Litho 

1.15E6 

(Sat) 

7.94E5 9.45 - 1.22E6 

(Sat) 

4.29E5 56.6 

F
e 4

9
C
o
5
0
V
 

200-300 G 

300 W 

0.40 µm 

Litho, 

Anneal 

1.24E6 

(Sat) 

9.54E5 4.05 - 1.28E6 

(Sat) 

2.54E5 44.0 

C
o
6
0
(N

i 8
1
F
e 1

9
) 4

0
 400-550 G 

700 W 

3.1 µm 

Alternate 

targets 

(3:00, 2:00) 

8.08E5 

(Max) 

- 3.08 70.5% 8.71E5 

(Sat) 

8.70E4 62.1 

(N
i 8
1
F
e 1

9
) 7
0
C
o
3
0
 400-550 G 

700 W 

2.8 µm 

Alternate 

targets 

(3:30, 1:30) 

9.66E5 

(Max) 

- 4.84 40.3% 1.01E6 

(Sat) 

2.33E4 95.9 

(F
e 4

9
C
o
5
0
V
) 7

0
N
i 3
0
 400-550 G 

700 W 

3.0 µm 

Alternate 

targets 

(3:30, 1:30) 

1.08E6 

(Max) 

- 4.51 26.7% 1.44E6 

(Sat) 

3.93E4 124 



 148 

overall mode; this eliminated the impact of random data fluctuations. The saturation field 

was then the applied field at which the magnetization reached 95% of the computed 

saturation level. For samples that did not reach saturation, the maximum overall 

magnetization was examined in lieu of a saturation value. In either case, permeabilities 

were computed at each data point by calculating the slope of the flux density (B-H) curve 

using three points before and after; the table shows the maximum value for each sample 

and orientation. Finally, the effect of elevated temperature on the magnetization normal 

to the substrate (the direction of interest for this research) was quantified with the ratio of 

the saturation/maximum level at maximum temperature, usually 700
o
C, to that at 25

o
C.  

Overall, the data reflected several interesting trends. All samples reached 

saturation when magnetized in the plane of the substrate, but many did not saturate in the 

normal direction. The effect of the applied magnetic field normal to the substrate during 

film formation was mixed, particularly at relatively high deposition power levels. Some 

samples exhibited permeabilities that increased in the normal direction but decreased in 

the in-plane direction, some exhibited the reverse behavior, others increased in both 

directions, while still others decreased in both. In general, however, the in-situ 

magnetized samples tended to saturate or approach saturation more rapidly than their 

non-magnetized counterparts. Examining the data set for Fe49Co50V, the most thoroughly 

analyzed material, reducing the deposition power apparently enabled the in-situ magnetic 

field to more strongly impact the process of film formation; the permeabilities in the 

normal direction were higher for the 300W samples than for those deposited at 700W, 

and the magnetization curves reached saturation whereas at 700W they did not. The data 

also seemed to suggest that both photolithography and magnetic annealing had minimal 
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impact on the film properties, and if anything the magnetic anneal reduced the film 

quality, likely due to film oxidation from residual oxygen in the nitrogen supply or 

possibly even nitridation.  

Comparing experiment with theory, the saturation levels were typically very close 

to those predicted by the Honda figures, though not unexpectedly the ternary alloys 

differed considerably as their interactions are more complex and the alloys were not fully 

uniform in composition. The conversion from either Oersteds or Gauss to A/m entails 

multiplication by 1000/4π (approximately 80), but differences between the cgs and MKS 

systems of units introduce an additional factor of 4π between the cgs magnetization, I, 

and its MKS counterpart, M, resulting in an overall conversion factor of 1000 [Reed, et 

al., 1983; Bozorth, 1993 (pp. 2-5)]). For example, Honda predicted nickel to saturate at 

around 500 G, or approximately 5E5 A/m. The values obtained from the three nickel 

samples ranged from 4.55E5 to 5.18E5, including both the parallel and normal 

orientations. It was anticipated that higher fields would be required in order to reach 

saturation due to the amorphous crystal structure of the films. In actuality, saturation 

fields showed a large degree of variation, ranging from slightly lower than that shown for 

the equivalent bulk material to up to two orders of magnitude higher, and defendable 

conclusions were difficult to make in this regard. The thermal properties of the samples, 

on the other hand, were in excellent agreement with expectations. The films comprising 

nickel as the primary alloy were the quickest to degrade in ferromagnetic quality. Cobalt 

and the iron-cobalt alloys, on the other hand, retained their properties very well, usually 

showing little to no reduction in saturation level or permeability over the full temperature 

range. Perhaps the most interesting behavior was that exhibited by the Ni45Fe55 alloy. As 
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the temperatures were increased, the saturation levels initially fell rapidly, more so than 

for the other NiFe alloys despite having a much higher iron content. By 300
o
C, the 

samples were nearly paramagnetic in nature, but then at 400
o
C a sudden increase in 

magnetization took place. Beyond this temperature, the values decreased as normal. This 

behavior repeated for multiple samples, with and without in-situ magnetization, and in 

both orientations. This suggests that a phase transformation may have been taking place 

in the Ni45Fe55 films, perhaps increasing their crystallinity. The next section will show 

that this particular alloy did not inductively heat as well as was expected. A magnetic 

anneal in which this phase change takes place might help to improve its capabilities. 

 This initial investigation into the magnetic properties of the RF sputtered 

ferromagnetic films produced significant information about their behavior. While 

engineering led to improvements in ferromagnetic quality normal to the substrate, it 

nevertheless remained true that the permeability values were far below expectation and 

further research in this area would be imperative to the success of the inductive annealing 

technology. The Ni81Fe19 films appeared to have the best permeability values and were 

expected to be the most likely to heat well since nickel has been found to yield films of 

high quality (low stress). The Fe49Co50V films, on the other hand, exhibited slightly 

reduced permeabilities but retained them to much higher temperatures. Subsequent 

research concentrated primarily on these two materials, henceforth referred to as NiFe19 

and FeCo, respectively, with a lesser investigation into the heating capabilities of the 

Ni45Fe55 (henceforth referred to as NiFe55) alloy which was still believed to have high 

potential. Examining these three materials more closely in the magnetic field range 

typical of that output by BEAVIS (see Section 3.2), linear regressions were fit for each 
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temperature value and low-field permeabilities were extracted from their slopes. The 

variation in permeability over temperature for the three alloys is shown in the plots of 

Figures 4.20(a,b). Normal to the substrate, NiFe19 exhibited an initial high permeability  

 

 
Figure 4.20(a): Relative permeability values for the three alloys of interest, normal to the 

substrate, extracted from the low-field VSM data. At each temperature, a linear 

regression was fit to the B-vs-H curve using only the values for which |H| < 1E4 A/m. 

 

 
Figure 4.20(b): Relative permeability values for the three alloys of interest, parallel to 

the substrate, extracted from the low-field VSM data. 
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that gradually decreased with temperature up to approximately 400
o
C and then began to 

fall more rapidly. FeCo, on the other hand, slowly increased in permeability up to 600
o
C 

with a sharp rise taking place at 700
o
C that suggested another possible phase 

transformation. In the plane of the substrate, FeCo maintained a relatively high 

permeability throughout the entire temperature range whereas NiFe19 started at a 

moderate level that again began to drop rapidly after 400
o
C. The low-field data for the 

NiFe55 alloy again showed surprisingly low permeability values with a phase 

transformation again occurring at around 400
o
C in both directions. In summary, the data 

showed that NiFe19 and FeCo were both promising materials for use in the inductive 

annealing process; the former exhibited the best magnetic properties in the lower half of 

the 25-1000
o
C temperature range whereas the latter exhibited the best properties in the 

upper half. The next two sections demonstrate polysilicon annealing with both alloys and 

compare their actual heating capabilities. 

 

4.4: Impact of Film Properties on Heat Generation 

 

 The relationship between the spatial dimensions of an object and its ability to 

convert energy from magnetic to thermal is reflected in Equations (2.5) of Section 2.1. 

The equations indicate that power generation increases linearly with the thickness of the 

sample, but thicker films have a drawback in that they tend to exhibit higher intrinsic 

stress which reduces conductivity and furthermore increases the likelihood of 

delamination. Like frequency, the effect of area is piecewise; the power generation 

initially increases as the third power of the radius until a quasi-saturation is reached, at 

which point the relationship becomes linear. The dimension at which this transition 

occurs is approximately equal to the skin depth, δ. Typically, induction heating processes 
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are designed such that the dimensions of the sample through which eddy currents 

propagate are several times larger than the skin depth (see Section 2.1), but process 

parameters such as low frequency or poor electromagnetic properties can render the 

reverse situation, in which case these dimensions become especially important. As was 

discussed in Section 4.1, however, larger surface areas can enhance power loss 

mechanisms such as convection and radiation. Thus the relationship between film area 

and overall volume is important to have thoroughly characterized. This section focuses 

on two alloys in particular, FeCo and NiFe19. The NiFe55 alloy was also studied to a 

small degree in order to determine whether the phase change discussed in the previous 

section could be of benefit. Table 4.4 summarizes the measured electromagnetic 

properties of these alloys and shows the calculated skin depth dimensions for each at 

375kHz, the approximate frequency at which testing was done (+/- 5kHz). This is the 

frequency selected by the Ameritherm self-tuning circuitry for the coil that was utilized, a 

three-turn, 1” (inner diameter) coil made of 1/4" (outer diameter) copper tubing, with a 

0.66µF tank capacitor. The permeabilities shown in the table are the maxima from the 

low-field values and were utilized to generate the plots in Figure 4.20(a). Resistivity 

measurements were obtained using an A&M Fell Model A four-point probe system. Skin 

depths were calculated using Equation (2.3). The skin depth values suggest that the  

 

TABLE 4.4 

MEASURED ELECTROMAGNETIC PROPERTIES FOR FOCUS MATERIALS 

Alloy Max. Low-Field 

Permeability 

25C Conductivity, 

Ω
−1
µm

-1
 

Skin Depth at 

375 kHz, µm 

FeCo 9.23 3.30 148.9 

NiFe19 15.8 5.92 84.98 

NiFe55 2.63 2.52 319.3 

Au 1 18.1 193.2 

Cr 1 1.24 738.1 
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NiFe19 alloy should heat with the highest efficiency, at least at room temperature. 

However, the high-temperature VSM data in the previous section indicated that it would 

also be the quickest to lose its heating efficiency as temperatures increase. For this 

reason, it was hypothesized that the FeCo films would yield the best overall results.  

 Infrared pyrometry was not yet available during the initial phase of 

characterization, and consequently thermally-sensitive paint was utilized to approximate 

induced temperatures. Manufactured by Thermographic Measurements Corporation 

(TMC), the MC490-10 multi-change paint has a temperature range of 490-1250
o
C 

[Thermographic Measurements, 2005]. The color strip shown in Figure 4.21 illustrates 

the manner in which temperatures were determined. Finer calibration was done on-site by 

heating a series of painted samples to the temperatures indicated in the figure. Each 

sample consisted of a 1cm
2
 section of a diced silicon wafer, and the paint “dots” were 

approximately 1/8” in diameter. Heating took place in a Barnstead/Thermolyne FA1738-

1 box furnace, and samples were held at temperature for 15 minutes in order to ensure 

full color change as the manufacturer specifies a ten-minute minimum. Matching each 

result to a location on the color strip was relatively straightforward, as the temperature to 

which the sample had been heated was already known. This was somewhat subjective  

 

 
Figure 4.21: Temperature scale provided by Thermographic Measurements for the 

MC490-10 multi-change thermally-sensitive paint. The color strip was calibrated by 

heating painted samples for 15 minutes each at temperatures from 500-1000
o
C, in 100

o
C 

intervals [Thermographic Measurements, 2005
1
]. 

                                                 
1 Image and information provided courtesy of Thermographic Measurements Ltd. 
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with an unknown temperature, however, as the color strip contained multiple sections of 

brown/orange shades. Thus, the measurement of induced temperature values yielded only 

estimates and required some knowledge of the approximate result (based on observations 

such as film discoloration and/or peeling, intensity of glowing, etc). Nevertheless, 

important qualitative information was obtained from these early experiments.  

 The first samples to be successfully heated on the BEAVIS test system were FeCo 

films deposited under an applied magnetic field in the range of 400-500 Gauss. Silicon 

substrates were prepared with a thermal silicon dioxide layer (~1µm), polysilicon films of 

various thicknesses deposited via either LPCVD or RF sputtering, and finally covered 

with a thin (~100nm) sputtered silicon dioxide layer. The wafers were then diced into 

2x2cm sections. FeCo films of different thickness were deposited and either left as 

blanket 4cm
2
 films or patterned into smaller areas via shadow masking during deposition 

or photolithography after deposition. With a minimum skin depth of 148.9µm, it was 

anticipated from the theoretical analysis that films having lateral dimensions of 1mm or 

higher would heat with reasonably high efficiency, but the relatively low power available 

from the applied magnetic field turned out to be insufficient to generate appreciable 

heating in regions smaller than 1x1cm in size. Table 4.5 summarizes the temperature 

values obtained under full inductive power (~2.1kW) for 1cm
2
 and 4cm

2
 films. The data 

showed several interesting trends. Comparing the results of the 1cm
2
 samples patterned 

via photolithography with those patterned via shadow masking, the latter was observed to 

perform much better. It was initially hypothesized that the photolithography process 

might be imparting some sort of deteriorating effect on the films’ magnetic properties as 

a result of perhaps the various baking procedures or even photoresist-induced stresses. It 
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TABLE 4.5 

TEMPERATURES INDUCED IN INITIAL FECO FILMS 

Sputtering 

Power/Voltage 

Deposition 

Time 

Approximate 

Thickness 

Film 

Area 

 

Patterning 

Method 

Approximate 

Temperature 

400W / 335V 0.5 hour 0.3 µm 1x1 cm Lithography < 490
o
C 

400W / 335V 1 hour 0.6 µm 1x1 cm Lithography < 490
o
C 

400W / 335V 2 hours 1.2 µm 1x1 cm Lithography 500
o
C 

400W / 335V 4 hours 2.5 µm 1x1 cm Lithography 525
o
C 

600W / 475V 0.5 hour 0.6 µm 1x1 cm Lithography < 490
o
C 

600W / 475V 1 hour 1.1 µm 1x1 cm Lithography 500
o
C 

600W / 475V 2 hours 2.2 µm 1x1 cm Lithography 525
o
C 

600W / 475V 4 hours 4.4 µm 1x1 cm Lithography 550
o
C 

400W / 335V 0.5 hour 0.3 µm 1x1 cm Shadow  500
o
C 

400W / 335V 1 hour 0.6 µm 1x1 cm Shadow 550
o
C 

400W / 335V 2 hours 1.2 µm 1x1 cm Shadow 800
o
C 

400W / 335V 4 hours 2.5 µm 1x1 cm Shadow 1000
o
C 

400W / 335V 0.5 hour 0.3 µm 2x2 cm N/A 500
o
C 

400W / 335V 1 hour 0.6 µm 2x2 cm N/A 525
o
C 

400W / 335V 2 hours 1.2 µm 2x2 cm N/A 1000
o
C 

400W / 335V 4 hours 2.5 µm 2x2 cm N/A > 1400
o
C 

 

 

was shown in Section 4.3, however, that the VSM measurements did not support this 

theory. At the time, the significance of the substrate doping level was not yet recognized, 

and most early experimentation was done using samples of unknown doping. Based on 

observations from subsequent research, however, it became apparent that the substrates 

used for that particular set of tests were of much higher doping than those used for the 

other three sets, which all came from the same source. The 0.3µm FeCo film likely 

contributed very little to the initial 500
o
C temperature, but as the film thickness was 

increased, the film/substrate combination became progressively more effective, 

eventually reaching around 1000
o
C with a film thickness of approximately 1.2µm. 

Examining the two sets of 1cm
2
 photolithographically-patterned films in which the 

second set was deposited at a higher power than the first, the data showed that the 

increased film thicknesses exhibited by the higher-power films were for the most part 
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negated by the reduction in film quality (decreased normal permeability due to increased 

stress). These temperature measurements were in much better agreement with data 

obtained later on substrates known to be of low doping concentrations (typically 10-20 

Ω-cm p-type silicon, equivalent to around 1E15 cm
-3
 [Sze, 1981 (p 32)]). For the 4cm

2
 

samples, even the thinnest films yielded color changes in the thermal paint. The 

photograph in Figure 4.22 shows the heating of the 2.5µm film. The sample remained 

stable up to approximately 1.5kW, after which it quickly entered the same thermal 

runaway state as was encountered previously. The resulting deformed shape is shown in 

Figure 4.23(b) and illustrates the relative temperature distribution across the sample at the 

instant of melting; the locations of highest temperature appear to be at the edges of the 

sample, which is consistent with the skin effect concept. Figure 4.23(a) shows the back 

sides of three of the other heated samples, with the various paint colors reflecting 

 

 
Figure 4.22: Photograph showing a sample being heated using an early configuration of 

BEAVIS. This sample measured 4cm
2
 in area and 2.5µm in thickness. It was being 

heated at approximately 1.5kW to around 1000
o
C. Glowing was typically first observed 

at around 600
o
C and grew in intensity with increasing temperature. 
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(a) 

 
(b)

Figure 4.23: Heated samples showing (a) variations in paint colors as a result of different 

induced temperatures, and (b) the result of allowing a sample to heat too high. The shape 

of the melted sample reflected the nature of eddy current heating; the regions of highest 

temperature occurred at the edges of the sample, where the current density was the 

highest, while the center and corners remained relatively cool. 

 

 

different induced temperatures. Although the data indicated an unexpectedly high level of 

difficulty in miniaturizing the footprint of the technology, temperatures sufficient for 

polysilicon annealing were nevertheless induced in a controllable manner. SEM and 

interferometric images from these films are provided in Section 5.1. Miniaturization is a 

key factor, however, in determining the potential success of any microsystem technology. 

The approach to improvement was twofold: examining methods by which the normal 

magnetic properties could be improved, and reconsidering an alternative approach to the 

ferromagnetic film layout. For the former, attempts were made at magnetic annealing, a 

process by which a sample is heated in the presence of a magnetic field in order to 

condition the ferromagnetic domains in the intended direction. The latter led to the 

development of the ferromagnetic ring concept, a design that took advantage of the fact 

that the majority of the heat generated during induction heating was originating at the 

edges of the film and thus the center portion was unnecessary.  
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 A standard procedure in the processing of ferromagnetic films, magnetic 

annealing is a means by which magnetic properties can be optimized for the desired 

application. The literature provides numerous examples of magnetic annealing for the 

conditioning of domains in both the in-plane [Mizutani, et al., 2000; Garcia, et al., 2002; 

Vas’ko, et al., 2002; Chen, et al., 2005] and normal [Garcia, et al., 2002; Zhang, et al., 

2004] orientations. In Mizutani, et al., 2000, 0.8µm Co56Ni14Fe30 alloys were 

electroplated under an 80Oe magnetic field applied parallel to the substrate, establishing 

an in-plane easy axis, and annealed in a vacuum ambient at temperatures ranging from 

150-400
o
C with a 100Oe in-plane field applied either parallel or perpendicular to the easy 

axis. Annealing parallel to the easy axis tended to improve the magnetic properties in that 

direction. The effect of annealing perpendicular to the easy axis was dependent upon both 

the temperature and the duration of the procedure, but it was shown that the easy axis 

direction could be changed from the as-deposited orientation. This occurred more quickly 

at higher temperatures, but even at the lowest temperatures the axis change was observed 

when sufficient time duration was allowed (around 2 hours). Nevertheless, the anisotropy 

constant, or relative “easiness”, associated with the new easy axis was always found to be 

inferior to that measured along the original easy axis prior to annealing. The authors 

hypothesized that this was due to a remnant component of the initial anisotropy 

[Mizutani, et al., 2000]. Examples of perpendicular magnetic annealing are provided in 

Garcia, et al., and Zhang, et al. In the former, (Pt-Co)n-FeMn multilayers were deposited 

to a thickness on the order of tens of microns via magnetron sputtering, which was found 

to impart a stray normal field of up to 40Oe, and annealed at 180
o
C in a vacuum ambient 

with a 2000Oe field applied either in-plane or normal to the film. It was found that the Pt-
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Co interface tended to favor a perpendicular easy axis, whereas the Co-FeMn interface 

favored an in-plane easy axis, and thus the final results were highly dependent upon the 

combined effects of annealing properties, the individual film thicknesses, and the total 

number of multilayers [Garcia, et al., 2002]. In Zhang, et al., film stacks consisting of 

Fe60Pt40-MgO layers were prepared via RF sputtering with each thickness on the order of 

a few nanometers. The purpose of the MgO was to limit the interaction between the 

Fe60Pt40 grains in order to reduce switching noise as well as to condition the grain texture. 

The samples were annealed in a vacuum ambient at 500-600
o
C under a perpendicularly 

applied field. While the perpendicular magnetic properties tended to improve with 

annealing temperature, once again the individual film thicknesses played a significant 

role in determining the quality of the final results. The authors believed that this was 

primarily an effect of the build-up of film stress [Zhang, et al., 2004]. Thus increasing the 

film thickness can introduce a trade-off; more magnetic dipoles are available to interact 

with the applied magnetic field, but lattice strain may reduce their individual abilities to 

respond. For the inductive annealing process, an attempt was made to incorporate 

magnetic annealing in order to compensate for the relatively low quality of the as-

deposited films. Annealing was done both in vacuum and in a nitrogen ambient at 

temperatures up to 250
o
C and 300

o
C, respectively, based upon the limitations of the two 

different furnaces. Some of these results are presented in Table 4.6 with the data from the 

heating of “square rings” of different sizes and materials. Consistent with the VSM 

results from Section 4.3, the data showed that the magnetic anneals failed to improve the 

transverse film properties and in fact usually reduced them. This is one of the suggested 

areas of further research to investigate during the next phase of technology optimization. 
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 In spite of efforts made to engineer the ferromagnetic films to realize the full 

potential of the inductive annealing technology, characterization data showed that this 

would not likely be possible with the existing fabrication capabilities. In order to reduce 

the process footprint below the 1cm
2
 goal, a new design concept was envisioned that 

resulted in a change from solid films to hollow rings. As was discussed in Chapter 2, the 

result of the skin effect was that the vast majority of heat generation took place at the 

outer edges of the inductively heated films. Therefore, it was hypothesized that the 

ferromagnetic films could be hollowed with minimal impact to the induced temperatures; 

this was confirmed experimentally as will be shown. The ferromagnetic ring concept 

allowed for the use of large “effective areas” with much less material required. Its  
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Figure 4.24: Illustration of the ferromagnetic ring concept for reducing the footprint of 

the inductive annealing process. The ferromagnetic film is patterned in the shape of a 

hollow ring, either round or square, such that multiple devices are enclosed. With the 

help of a thermal isolation region, the induced thermal energy is confined to the outer 

devices while the inner devices remain relatively cool. These devices represent chips 

containing CMOS circuitry.  
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intended usage is illustrated in Figure 4.24, which shows the combined use of heated 

rings with a thermal isolation region between the CMOS and MEMS areas. The 

remainder of the experimentation presented in this section made use of both round- and 

square-shaped ferromagnetic rings. 

 The first sets of ferromagnetic rings to be heated were deposited to various 

thicknesses in the 1-7µm range with areas patterned as shown in Figure 4.25(a). For 

analysis, these four squares were designated S1, S2, S3, and S4 with the labels beginning 

at the upper right-hand corner and continuing in a counter-clockwise fashion. After initial 

results indicated that induced temperatures still remained lower than desired, a design  

 

 
Figure 4.25(a): Initial square layout illustrating the dimensions utilized. Two different 

outer diameters were used, 1.3cm and 1.8cm, with different sidewall widths in order to 

vary the resistance to eddy current flow. 

 



 163 

 
Figure 4.25(b): Modified square ring layout with interior corners rounded to better 

accommodate eddy current flow. Note that some dimensions have been increased slightly 

from those of the initial design in order to attempt to obtain higher temperatures. 

 

 

change was made to the pattern in which the interior corners of the squares were rounded 

in order to attempt to improve eddy current flow; this modified pattern is shown in Figure 

4.25(b). It should be noted that some of the dimensions were increased as well, 

specifically the diameter of the two smaller squares (S3 and S4) and the sidewall width of 

S4. The induced temperatures, measured using pyrometry, are presented in Table 4.6. 

The data shows results for the three alloys of interest (FeCo, NiFe19, and NiFe55), 

though the investigation continued to focus primarily on FeCo with considerable effort 

made to enhance its heating capabilities through magnetic annealing. The films were 

deposited onto full 4” silicon wafers boron-doped to 10-20 Ω-cm with 1µm of thermally-
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grown silicon dioxide. These high-resistivity substrates were selected in order to 

minimize the silicon interaction with the magnetic field. The “yes” and “no” information 

provided under the “Magnetic Dep., Anneal” column indicates whether a magnetic field 

was utilized during film deposition and whether a magnetic anneal was performed after 

 

TABLE 4.6 

TEMPERATURES INDUCED IN INDUCTIVELY HEATED SQUARE “RINGS” 

 Mat. Mag. 

Dep., 

Anneal 

Dep. 

Params., 

hours, W  

TF, 

µm 

S1 S2 S3 S4 Sens. 

Loc. 

FeCo Yes 

No 

4:00 

300 

2.10 489 413 363 <325 Back 

S
q
u
ar
es
 

NiFe55 Yes 

No 

4:00 

500 

6.44 391 <325 <325 <325 Back 

FeCo Yes 

No 

4:00 

400 

3.93 541 450 <325 <325 Back 

FeCo Yes 

No 

5:00 

300 

2.88 425 429 380 352 Back 

FeCo No 

Yes, N2 

4:00 

1000 

1.24 <325 <325 <325 <325 Back 

FeCo No 

Yes, N2 

6:00 

1200 

2.37 342 <325 <325 <325 Back 

FeCo No 

Yes, N2 

8:00 

1200 

2.99 454 400 429 405 Back 

FeCo Yes 

Yes, N2 

4:00 

300  

2.45 478 440 515 446 Back 

FeCo Yes 

Yes, N2 

4:00 

300 

2.48 555 510 509 475 Front 

FeCo Yes 

Yes, N2 

6:00 

300 

3.53 348 <325 <325 <325 Front 

FeCo Yes 

Yes, Vac 

4:00 

400 

4.17 <325 <325 <325 <325 Front 

NiFe55 Yes 

Yes, Vac 

3:10 

500 

3.63 <325 <325 <325 <325 Front 

NiFe55 Yes 

Yes, Vac 

5:45 

500 

5.74 383 <325 <325 <325 Front 

NiFe19 Yes 

No 

5:00 

500 

6.61 477 364 <325 <325 Front 

FeCo + 

NiFe55 

Yes 

Yes, Vac 

4:00/4:00 

300/500 

6.12 403 <325 <325 <325 Front 

R
o
u
n
d
ed
 S
q
u
ar
es
 

Au* No 

No 

3:00 

100 
4.38  677  588 473  520  Front 
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Figure 4.26: Plot of S1 FeCo data from Table 4.6 with error bars to compensate for the 

front-back temperature difference as well as to account for uncertainty in the pyrometry 

measurements (+9
o
C / -1

o
C). 

 

 

patterning, respectively. If applicable, the type of anneal is also indicated (nitrogen or 

vacuum ambient). Lastly, the location of the pyrometry sensors is indicated (front or 

back) with respect to the wafer surface; measurements were initially taken from the back 

sides of the wafers so as to ensure consistency that would not be affected by surface 

features, including the ferromagnetic films themselves. It was later found that differences 

in surface features did not significantly alter the pyrometry readings and thus the sensors 

were moved to face the front sides of the wafers so that the actual induced temperatures 

would be known. The front-back temperature difference was observed to vary within the 

50-75
o
C range for the simple film stack. This difference is compensated for via error bars 

in Figure 4.26, in which the FeCo temperature results at the largest square, S1, are plotted 

with respect to film thickness. The bars also account for the uncertainty in pyrometry 

measurements (+9
o
C / -1

o
C for T>325

o
C, or 25

o
C≤T≤325

o
C for T≤325

o
C) as was 



 166 

indicated in Section 4.2. Overall, the data reflected the complexity of the relationship 

between inductive heating capability and film thickness. For the samples with thinner 

ferromagnetic films (t<3µm), the induced temperatures tended to vary approximately 

linearly with thickness, in good agreement with Equation (2.6a). The best results 

occurred under both a magnetized deposition and a post-pattern magnetic anneal 

(nitrogen ambient), and it was hypothesized that a higher annealing temperature might 

yield further improvement. The thicker samples, however, followed a different trend; 

unannealed samples continued to follow the same linear slope, but those subjected to 

magnetic annealing failed to generate an appreciable temperature rise. Furthermore, 

nearly all samples that underwent magnetic annealing in a vacuum ambient, regardless of 

composition, performed rather poorly. The root cause of this behavior was not 

investigated in further detail but was believed to be primarily an effect of increased film 

stress with a possible contribution from film oxidation. The multitude of inter-

relationships involved in magnetic annealing was discussed previously and the design of 

an optimized magnetic annealing process presents a formidable challenge of its own, 

particularly under the thermal budget limitations imposed by a post-CMOS fabrication 

technology. Continued research in this area may be of high importance to the 

improvement of thin film permeabilities and thus the overall inductive annealing process. 

These S1 trends were consistent for the S2, S3, and S4 squares as well, with the 

temperature magnitudes tending to decrease with decreasing surface area. Comparing the 

behaviors of the different ferromagnetic materials, the FeCo films yielded the best 

performance for a given film thickness. Their weakness, however, was in their high 

intrinsic stresses, observed through both discoloration (cloudiness) and delamination 
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problems, which placed an upper limit on the film thickness range. On the other hand, 

films absent of cobalt were able to be deposited to higher thicknesses. This can be 

understood in part by examining mineral hardness values for iron, nickel, and cobalt, 

which are equal to 4.0, 4.0, and 5.0, respectively, using Mohs’ scale of mineral hardness. 

This relative scale ranges from 1.0 to 10.0 without units, where the maximum value is 

assigned to diamond, and is approximately logarithmic, meaning that each integral 

increment reflects an increase in hardness by a factor of ten [Winter, 2006]. The hardness 

of a given material is one of many factors that determine the resulting intrinsic stress. 

This relationship was examined in Davies, et al., and attributed to higher yield stress 

which reduced the migration of nucleates during deposition [Davies, et al., 2004]. Gold, 

with a mineral hardness of 2.5, tended to produce films of very high quality having 

measured resistivity values very close to those of the bulk material. This was believed to 

be the reason that the gold benchmark samples generated the best overall results, despite 

being non-magnetic. The significance of this outcome was to confirm the need for 

improved ferromagnetic film quality. As was concluded in Section 4.3, the measured 

magnetic properties were far below expectation. The additional impacts of resistivity and 

film stress further degraded the inductive heating capabilities of the ferromagnetic alloys 

that were utilized. The ability to optimize these relationships will determine the success 

or failure of the inductive annealing technology. 

 With limited success from the inductively heated square rings, the remaining 

experimentation utilized thick (~6µm) circular films of relatively large surface area (2cm 

outer diameter) in order to better characterize the process at higher temperatures and later 

achieve polysilicon annealing on more complex structures. The two wafers in Figure 4.27 
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illustrate the two patterns that were used; the wafer in (a) formed a solid circle with a 

2.4cm outer diameter while that in (b) was hollow with a 1.2cm inner diameter. Based on 

the aforementioned results, research focus shifted to the NiFe19 alloy as its films 

exhibited lower intrinsic stresses and thus could be deposited to greater thicknesses than 

 

 
(a) 

 
(b)

Figure 4.27: Illustration of 2.4cm-wide circular areas on 100mm wafers, with (a) a solid 

interior and (b) a 1.2cm inner diameter. The rings shown were patterned from NiFe19 

films approximately 6µm in thickness. 

 

 
Figure 4.28: Photograph showing the glow of a 7.50µm hollow NiFe19 ring heated to 

approximately 600
o
C, as measured by infrared pyrometry.  
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FeCo as well as heat to higher temperatures without delaminating. The photograph in 

Figure 4.28 shows the heating of a hollow NiFe19 ring and illustrates the faint glowing 

that was typically observed at around 600
o
C. For each sample, the coil power was 

gradually increased and the induced temperature was allowed to stabilize at each test 

point, which typically required around ten seconds. Figure 4.29(a) shows the 

temperature-vs-power data for five different NiFe19 samples. The legend indicates the 

measured film thicknesses, whether the films were patterned in solid or hollow circles, 

and any special processing conditions, if applicable. The first two samples utilized solid 

NiFe19 circles of different thicknesses whereas the last three utilized hollow rings heated 

under different circumstances; Sample3 utilized the default process, Sample 4 was heated 

using a reduced coil frequency of 272kHz via substitution of the 0.66µF tank capacitor 

for its 1.25µF counterpart, and Sample 5 examined the effect of a ceramic heat sink 

pressed against the back side of the wafer. The trends indicate that the temperature-power 

relationships were all approximately linear within the stable operating regions, i.e., the 

temperatures at which thermal runaway did not occur. Thermal runaway was typically 

initiated at approximately 800
o
C, but the thinnest film went unstable at only around 

600
o
C. This supported the theory that optimizing the heating efficiency of the 

ferromagnetic film (e.g., with increased thickness) would help to prevent the runaway 

condition from occurring. To quantitatively analyze the trends in the stable regions, the 

data series were truncated to remove the points of instablility and linear equations were 

assigned as shown in Figure 4.29(b). For each line, the computed equation and 

correlation coefficient, R
2
, are provided. The R

2
 values were all 0.97 or higher, reflecting 

a high degree of linearity which was consistent with the temperature-vs-power  
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Thermal runaway 

 
Figure 4.29(a): Plot of temperature vs. coil power for both solid and hollow (as 

indicated) 2.4cm NiFe19 films at various thicknesses and heating conditions. Stability 

was retained to approximately 800
o
C, an improvement over that from the proof-of-

concept testing, with nearly linear behavior in the stable region. 

 

 

 
Figure 4.29(b): Reduced data set from Figure 4.28(a) showing only values from the 

stable temperature regions. Linear trendlines for each curve were obtained via Microsoft 

Excel, with the slope providing an indication of the energy conversion efficiency from 

magnetic to thermal.  
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Figure 4.29(c): Linear trendline data for solid FeCo and Au circles of various 

thicknesses. The data series for FeCo and Au have been truncated to show only their 

stable regions. 

 

 

relationship derived in Equation (2.15c) and subsequently confirmed in the simulations of 

Chapter 3. To compare the theoretical and experimental slope values, the proportionality 

constant KPS was first required. This value reflected the relationship between the supply 

power and resulting magnetic field. Measurements of the coil voltage via oscilloscope 

indicated that at full power (2kW) the coil current was approximately 190A in amplitude. 

Equation (2.11) indicates that a current of this strength with the three-turn, 1.25in-long 

solenoidal coil utilized should produce a magnetic field of 18.0kA/m. Therefore, the 

constant KPS was equal to 1.61E5Ω
-1
m

-2
. Theoretical power and slope values were then 

calculated using the electromagnetic properties from Table 4.4, the density and specific 

heat values from Table 4.7 (note that alloy values were obtained via interpolation), and a 

heating time of 10s (the approximate time required for temperatures to reach their new 

values following a power increase). The theoretical and experimental results are  
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TABLE 4.7 

DENSITY AND SPECIFIC HEAT FOR SELECTED MATERIALS 

Material Density
1
 (kg/m

3
) Specific Heat

2
 (J/kg*K) 

Ni 8908 440 

Fe 7874 440 

Co 8900 420 

NiFe19 8712 440 

FeCo 8387 430 

Au 19300  128 

 

summarized in Table 4.8, together with the data from the comparison films in Figure 

4.29(c). For the most part, the experimental slope values were greater than their 

theoretical predictions, but all were within an order of magnitude except for the Au film. 

Offsets were attributed to differences in thin film properties from the bulk material values 

that were utilized, particularly the density. Comparing the two solid NiFe19 films 

(3.28µm and 6.69µm), theory predicted both samples would generate the same power 

density within the skin depth, δ, and that therefore both would have the same 

temperature-generation characteristics due to the increased amount of film material to 

heat, thus negating the thickness advantage. The experimental slope values, however,  

 

TABLE 4.8 

TRENDLINE SLOPES FOR 2CM CIRCULAR FILM DATA 

Sample Description Theoretical 

Power Density 

within δ, W/m
3
 

Theoretical 

Slope, 
o
C/kW 

Experimental 

Slope, 
o
C/kW 

3.28µm NiFe19, Solid 3.78E9 69.58 189.01 

6.69µm NiFe19, Solid 3.78E9 69.58 454.41 

7.50µm NiFe19, Hollow 3.78E9 69.58 344.28 

6.75µm NiFe19, Hollow, 272kHz 2.74E9 59.26 75.779 

7.40µm NiFe19, Hollow, Heat Sink 3.78E9 834.93 409.07 

3.17µm FeCo. Solid 2.21E9 75.70 288.65 

4.90µm Au, Solid 2.39E8 15.53 678.15 

 

                                                 
1 CRC, 1989 (pp. B-68 - B-146) 
2 CRC, 1989 (pp. D-180 - D-181) 
3 2min stabilization time utilized for calculations, rather than the typical 10s 
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suggested that the thinner sample was affected considerably more by surface loss 

mechanisms, an expected result as its volume/surface-area ratio was halved. Furthermore, 

the difference between the solid and hollow films was found to be more significant than 

expected, with the hollow film encountering a 24.3% drop in temperature generation 

efficiency. The root cause for this difference was unclear, but may have been related to 

the additional film stress created during patterning which often resulted in film de-

lamination. The reduced-frequency slope yielded a very close match with theory. This 

dramatic change most likely indicated a secondary effect within the power supply that 

affected the coil current values for a given power output and thus producing a different 

KPS value. This theory was supported in that the lower frequency enabled the power 

supply to reach a 3.5kW output rather than the normal 2kW maximum. Finally, the 

impact of heat sinking the substrate was to significantly reduce the rate of temperature 

rise. Given sufficient time for stabilization (typically ~2 minutes between data points 

rather than the typical ~10 seconds), however, the final temperatures followed nearly the 

same trend as its default-process counterpart (Sample 3). Thus the heat sink acted as a 

buffer and otherwise did not have a significant effect on the temperature distribution. Its 

increased heating time greatly impacted the theoretical slope, but the result was only 

separated from the experiment value by approximately a factor of two. 

Table 4.8 also presented results from the heating of alternate film materials. The 

FeCo slope was predicted to exceed that of the NiFe19 film of similar thickness by 

6.12
o
C/kW, or 8.80%, while in actuality it surpassed NiFe19 by 99.6

o
C/kW, or 52.7%.  

The benefit of increasing heating efficiency was often greater than that predicted by 

theory, as secondary effects like absorption of magnetic energy by the substrate were not 



 174 

taken into account in the equations. As was mentioned previously, though, stress-induced 

thickness limitations for the FeCo films rendered this slope an approximate upper limit. 

The most significant discrepancy between theory and experiment was encountered in the 

results from the Au sample, whose measured slope far exceeded the theoretical value by a 

factor of 43.7.  For reasons already discussed, the high film quality of the sputtered Au 

films inevitably enabled them to surpass all of the present ferromagnetics in initial heat 

generation capacity. The relatively early loss of stability, however, suggested that it was 

easier to be overpowered by the silicon substrate. Nevertheless, the importance of 

emphasizing future research into magnetic film properties was clear. 

 While the degree of heating localization has not received a high degree of 

attention in this chapter, it was in fact one of the most important considerations in the 

technology as it provided an indication of whether the final goal of annealing polysilicon 

microstructures in the vicinity of CMOS circuitry could be realistically achieved. The 

data plotted in Figure 4.30 shows the difference in temperature measurements between 

the sensor pointed directly the heated circular film (Sensor1), which was centered within 

the wafer, and a second sensor (Sensor2) which was spaced 3.2cm away center-center 

(the closest span available due to the radius of the sensors and their supports). As was 

discussed in Section 4.2, the focal lengths of the sensors were mechanically adjusted to 

measure the light intensity within a 1mm spot size. The traces all show that the 

temperature difference increased as the overall temperature increased, indicating that the 

thermal energy generation was surpassing the capabilities of thermal conduction to a 

progressively greater extent. Of interest was the fact that two distinct trends were 

followed. The two samples that generated the upper trend both utilized solid films that  
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Figure 4.30: Pyrometry sensor data showing temperature drop from primary sensor at 

heated film region, at wafer center, to secondary sensor shifted 3.2cm laterally (center-

center spacing), plotted with respect to the primary (induced) temperature. Temperature 

differences increased with increasing temperature, indicating that power generation was 

occurring more rapidly than thermal conduction.  

 

 

 

 
Figure 4.31: Representation of the relative placement of the two pyrometry sensors with 

respect to the inductively heated ferromagnetic films. Assuming a uniform temperature 

within the metal-covered region, the entire temperature differential occurred over a 

distance of 2cm. 
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produced relatively efficient power generation as compared to the others, thus 

maximizing joule heating segregation against the substrate. Assuming that the 

temperature within the ferromagnetic film was relatively uniform due to internal thermal 

conduction, the entire 300-350
o
C temperature drop occurred across a 2cm distance as 

illustrated in Figure 4.31. This corresponded to a gradient of 150-175
o
C/cm (or K/cm). 

Estimation of the gradient inside the ring was more challenging. It was recognized that 

the configuration corresponded somewhat to that of the thin film solid model of Section 

3.3 in which the outer edge of the substrate was regulated to 300K (via the wafer chuck), 

though the wafer radius in the simulation was artificially thinned to 1.8cm. The simulated 

gradient internal to the hollow film was essentially zero, however, which contradicted the 

visual observation of a fainter (or non-existent) glow at the center as can be seen in the 

photograph of Figure 4.28. The three-dimensional system was examined in terms of 

cylindrical surfaces of varying radii. The heat flow outward from the film to the second 

sensor experienced a reduction in intensity due to the spread from a 1.2cm radius to a 

3.2cm radius, or 

 Film

Sensor

Film
FilmSensor III 375.0

2

2

2

2 ==
πρ

πρ
 (4.8) 

The heat flow inward, however, was all directed toward the center. Therefore, the Film-

Sensor2 temperature gradient was assumed to be 1/0.375=2.67 times larger than the Film-

Sensor1 gradient. Neglecting radiation and heat sinking effects, the internal gradient was 

estimated to be 56.3-65.6
o
C/cm and the temperature at Sensor1 was therefore 

approximately 33.8-39.4
o
C below that of a hollow film. The gradient at the center of a 

solid film was likely somewhat smaller due to heat conduction within the metal. This 

data, together with the results of the thin film simulations, pointed out a fundamental 
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problem with the use of the wafer chuck without a heat sink. The pinning of the 

temperature at the wafer edge established a lateral gradient that would most certainly 

impact device-to-device uniformity in a real application. Modeling suggested that the 

solution was to regulate the back side of the wafer, thus impacting all devices equally, 

and find a way to increase the strength of the magnetic field. 

 

Conclusion 

 This chapter presented the evolution to date of the inductive annealing process. 

Connections were made between theory and experimentation, with the calculated trends 

in temperature rise with respect to supply power turning out within an order of magnitude 

of experiment. Being the first generation of the technology, its development was far from 

complete. Nevertheless, many of the challenges revealed were overcome through the 

ongoing engineering of the test system, magnetic film properties, and the layout of the 

heat-treated system. Improvements in heating efficiency helped to clarify and alleviate 

the thermal runaway issue, which was especially important for wafer-scale processing. 

Further progress will require considerable improvement in film properties, both 

electromagnetic and structural (stress and delamination). Film deposition techniques and 

magnetic annealing are key focus areas. The next chapter shows the application of NiFe19 

films to the heating of actual polysilicon films, both blanket and patterned. Variations in 

film morphology demonstrated the generation of controllable temperature gradients. 
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Chapter 5: Annealing of Polysilicon Structures 
 

The ultimate goal of this research project was to utilize induction heating to 

demonstrate the annealing of polysilicon microstructures. The work presented in the 

previous chapter provided the means by which to do so; the work presented in the present 

chapter demonstrates the capability to reach the desired result. Beginning with blanket 

polysilicon films in Section 5.1, both a visible change in morphology and a measured 

reduction in curvature are shown. Section 5.2 illustrates annealing applied to cantilever 

beam structures using inductively heated NiFe19 hollow rings. Finally, Section 5.3 

presents the most successful results obtained to date in which the inductive annealing 

process was applied to lateral accelerometer structures with gradient enhancement 

provided by thermal isolation trenches. In both of the latter two sections, pre- and post-

anneal structures were contrasted using both Scanning Electron Microscope (SEM) and 

X-Ray Diffraction (XRD) analyses, confirming the results both qualitatively and 

quantitatively. The annealing results came very close to reaching the goals as defined in 

Chapter 1 but were limited by the controllability and efficiency factors discussed 

previously. The suggested methods for reaching those goals are summarized in Chapter 7. 

 

5.1: Blanket Polysilicon Films 

 

 The development of the inductive annealing process and its dedicated test system 

has concentrated on the ultimate goal of optimizing the localized annealing of polysilicon 

microstructures. This section presents some of the pre- and post-processing images and 

data from polysilicon films, beginning with unpatterend blanket layers, continuing with 

simple beam structures, and finally ending with more complex accelerometer structures. 

The results contain both SEM and IFM surface images as well as x-ray diffraction 
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analyses, and they demonstrate changes in surface texture, changes in film stress, and the 

establishment of measurable temperature gradients. Section 4.4 showed that despite 

considerable improvements in process efficiency, thermal runaway concerns continued to 

place an upper limit of 800
o
C on the process temperature for full wafers. This was far less 

of a problem for diced samples, however, as less silicon was available to create a 

runaway condition. Thus the images and data presented in this section show the results of 

annealing at 1000
o
C for diced samples and at 800

o
C for full-wafer samples. Despite being 

slightly below the target temperature, clear differences were observable in the polysilicon 

morphology and diffractometry of the full-wafer samples. The results were consistent 

with those reported in the literature for lower-temperature anneals. 

The earliest samples to be successfully annealed on BEAVIS were obtained from 

diced wafers and heated to around the 1000
o
C target. The SEM images in Figure 5.1 

show the surface texture of 1µm LPCVD polysilicon films before and after annealing for 

five minutes at approximately 1000
o
C, measured via thermal paint. Annealing utilized a 

2.5µm-thick FeCo film deposited on a 1cm
2
 sample of relatively high doping  

 

 
(a) 

 
(b) 

Figure 5.1: SEM images of 1µm LPCVD polysilicon surfaces (a) before, and (b) after a 

five-minute anneal at approximately 1000
o
C using a 2.5µm, 1cm

2
 FeCo film deposited in 

a 400-550 Gauss magnetic field. The initial morphology showed approximately 20nm 

grains very clearly whereas the texture of the post-anneal sample was barely visible. 
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(a) 

 
(b)

Figure 5.2: Interferometric images of polysilicon surface (a) before, and (b) after 

annealing showing a change in stress-induced curvature from highly compressive to 

moderately tensile. Surface roughness measurements indicated a reduction in magnitude 

from 0.031µm to 0.0094µm RMS and 0.029µm to 0.0076µm average. 

 

 

concentration as compared to that preferred for full-wafer processing (<1E15 cm
-3
). The 

resulting film morphology no longer exhibited the well-defined grains visible in 5.1(a), 

instead appearing almost homogeneous on the micron scale. Figure 5.2 shows 

interferometric surface scans of the same two films. The initial curvature reflected the 

compressive stress typically associated with as-deposited polysilicon films, whereas the 

final curvature indicated a mild tensile stress. Approximated stress values were obtained 

from these figures through Stoney’s Equation,  
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where the stress, σ (MPa), is a function of the Young’s Modulus, ES (Pa), Poisson’s ratio, 

ν, and thickness, tS (m), of the substrate, the thickness, tF (m), of the film, and the radius 

of curvature, R (m), of the substrate-film combination [Chen, et al., 2002]. The radius of 

curvature can be calculated from the horizontal and vertical dimensions of the IFM plots 

using the relation 
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where l (m) represents the chord length of the sector, or lateral dimension, and b (m) 

represents the bow of the wafer, or vertical dimension [Chen, et al., 2002]. The Stoney 

Equation assumes a uniform stress throughout the film of interest, and thus does not 

account for stress gradients. This reduced form of the original equation also assumes that 

the film thickness was much smaller than that of the substrate. Lastly, the assumption is 

made that the substrate was absent of curvature prior to film deposition. This second 

assumption was unverifiable, as the wafers from which these samples were generated 

were obtained with films already present. They also had a 1µm LPCVD silicon dioxide 

between the substrate and polysilicon film; this film was also on the back side of the 

wafer, however, and was not believed to have contributed significantly to the overall 

curvature. Thus some error was present in the calculated stress magnitudes, but they were 

believed to be in the appropriate range. Table 5.1 summarizes the details and results of 

the calculations for this particular set of samples. The l (horizontal) values were identical 

for both samples and were calculated using the geometric mean of the lateral dimensions 

indicated in the headings (1294.83mm x 980.51mm). The b dimensions were estimated 

from the figures using the vertical scale. This yielded radius of curvature values of 4.88m 

and 15.9m for the unannealed and annealed samples, respectively. These were then 

 

TABLE 5.1 

 STRESS CALCULATIONS FOR LPCVD POLYSILICON FILMS 

Value Unannealed Annealed 

l, mm 1.13 1.13 

b, µm -0.13 0.04 

R, m -4.88 15.9 

σ, MPa -1542 474 
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substituted into Equation (4.8) and, using a Young’s Modulus of 130GPa and a Poisson’s 

Ratio of 0.278 as per measurements done by Franca, et al., for <100> silicon, the stress 

values were obtained [Franca, et al., 2004]. They confirmed quantitatively that a 

significant reduction in the magnitude of the intrinsic stress occurred as a result of 

inductive heat treatment, and that furthermore the type of stress was changed from 

compressive to tensile. Identical samples heated for different time durations showed a 

negligible morphology change for heating durations at or below 2 minutes. 

 A similar analysis was done using sputter-deposited silicon, prepared at MTU on 

the Perkin Elmer 2400-8J RF sputtering system. Films were deposited to a thickness of 

1.5µm in three 0.5µm intervals (chamber remained at vacuum) in order to allow the 

system time to disperse any heat buildup, with a 1µm silicon dioxide layer providing an 

interface between the film and the substrate. Substrates were diced into 2x2cm samples, 

and annealing was done using a 2.5µm FeCo film heated to approximately 1000
o
C.  The 

cross-sectional SEM images in Figure 5.3 compare the initial film morphology with that 

following a ten-minute anneal. The initial film showed almost no discernable texture, 

indicative of the amorphous crystalline structure present. After annealing, however, a 

significant change had taken place, with 10-20nm grains beginning to take shape. This 

restructuring and simultaneous densification resulted in the formation of voids within the 

film as can be observed in the figure. The image shows the lowest of the three 0.5µm 

segments in the film, with the interface to the SiO2 layer visible in the lower right-hand 

corner, and discontinuous interface to the second polysilicon film segment in the upper 

left-hand corner. This discontinuity was likely the result of poor vacuum and took place 

at both poly-poly interfaces, but nevertheless the morphology looked identical in all three
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(a) 

 
(b)

Figure 5.3: SEM images showing cross-sections of 1.5µm sputtered polysilicon film (a) 

before, and (b) after a ten-minute anneal at 1.5kW using a 2.5µm, 4cm
2
 FeCo film. The 

initially amorphous film was beginning to show the presence of grains as well as voids in 

the lattice as the relatively low-density amorphous material assumed increased order. 

 

 
(a) 

 
(b) 

Figure 5.4: Interferometric images of polysilicon surface (a) before, and (b) after 

annealing showing a change in stress-induced curvature from moderately compressive to 

nearly flat. Surface roughness measurements indicated a reduction in magnitude from 

0.029µm to 0.0031µm RMS and 0.015µm to 0.0026µm average. 

 

 

segments as the gap was only on the order of 10nm. IFM images are presented in Figure 

5.4 and again illustrate a change in curvature, but unlike the LPCVD sample shown 

previously the film stress remained compressive in nature. The details of the stress 

calculations are shown in Table 5.2 and were done using the same equations, 

assumptions, and material constants as were used for the LPCVD samples shown 

previously. The radius of curvature values for the unannealed and annealed samples were 
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TABLE 5.2 

STRESS CALCULATIONS FOR SPUTTERED POLYSILICON FILMS 

Value Unannealed Annealed 

l, mm 1.13 1.13 

b, µm -0.10 -0.01 

R, m -6.35 -63.5 

σ, MPa -395 -39.5 

 

 

estimated at 6.35m and 63.5m, respectively, and the resulting stresses were 395MPa and 

39.5MPa, both compressive. Although the resulting film was of lower density than the 

LPCVD polysilicon film and not tensile as is preferred for MEMS devices (see Section 

1.1), its low-temperature deposition made it a potential precursor to the inductive 

annealing process. Tensile stress was likely achievable with alternate annealing times 

and/or temperatures. Alternate possibilities included PECVD polysilicon and cathodic-

arc-based polysilicon alloys. 

 

5.2: Polysilicon Cantilever Beams 

 

 Graduating from blanket films to patterned structures was greatly facilitated by 

the ferromagnetic ring concept (see Section 4.4), as it enabled the use of larger heated 

films and reduced the thermal stress imparted upon the devices. The first structures to be 

utilized were simple beams patterned from a 3µm-thick CVD polysilicon layer grown at 

625
o
C via SiH4 decomposition in a TMX9K 4304 diffusion furnace. A 1µm thermal SiO2 

film provided a base layer. The layout for each beam cluster is shown in Figure 5.5. It 

consisted of eight variations of the same basic design, which incorporated five single-

clamped cantilever beams, one each of two styles of folded beams, and five double-

clamped beams. This pattern was repeated four times horizontally in order to vary beam 

lengths (500µm, 1000µm, 2000µm, and 3000µm) and twice vertically in order to vary  
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Figure 5.5: Layout of the beam design used for structural annealing. The pattern 

consisted of cantilever, double-clamped, and folded beams with widths of 60µm (top 

half) and 80µm (bottom half) and lengths of 500µm, 1000µm, 2000µm, and 3000µm. 

 

 

beam widths (60µm and 80µm). Large vertical strips 500µm in width provided for anchor 

regions in the event that the beams were to be released. Each beam cluster measured 

9mm on each side, and they were patterned into a grid as can be seen in Figures 5.6 and 

5.7. Heating was done using either round or square-shaped ferromagnetic rings formed 

around a single cluster. Figure 5.6 illustrates a common effect that often took place 

during the cool-down phase of an anneal. The square-shaped ring pictured around the 

beam cluster was not the actual FeCo pattern utilized to perform the heat treatment but 

was instead the footprint left behind when the highly-stressed ferromagnetic film 

delaminated from the substrate. Annealing temperatures as low as 500
o
C were sufficient  
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Figure 5.6: Photograph showing the appearance of the silicon substrate after the heating 

of a FeCo square ring. Pyrometry focused at the center of the pattern indicated a 

temperature of approximately 500
o
C. The film peeled during cool-down, removing the 

underlying SiO2 as well as portions of the substrate. 

 

 
Figure 5.7: Photograph showing the inductive heating of a polysilicon beam cluster using 

a 2.4cm-wide hollow NiFe19 ring measuring 6.6µm in thickness. The temperature was 

approximately 800
o
C as indicated by infrared pyrometry. 

 

 

to induce significant thermal expansion mismatch stresses in both FeCo and NiFe19. 

Adhesion problems were not encountered during the warm-up phase, as the rate could be 
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precisely regulated through power supply manipulation, but despite efforts to reduce the 

rate of chamber venting, delamination during cool-down remained an ongoing challenge. 

This was primarily due to the fact that little or no cooling took place while the samples 

remained under vacuum and thus it was difficult to reduce the impact of the thermal 

shock and turbulence created upon the introduction of nitrogen gas. The delaminating 

force was sufficient to also remove the underlying silicon dioxide film as well as pieces 

of the substrate. Among the recommendations for future research in Chapter 7 is the 

development of a controlled cool-down procedure. Figure 5.7 illustrates the bright 

glowing observed around the beams during heat treatment. The glow intensity typically 

began at around 600
o
C and increased with temperature, becoming almost white in color 

during thermal runaway. Figures 5.8(a-d) present SEM images from the heat treatment of 

polysilicon beams via inductive coupling to a 7.3µm NiFe19 ring patterned like that in 

Figure 4.27(b). Annealing was done for ten minutes, and pyrometry indicated a 

temperature of 840
o
C at the center of the ring. As was discussed in the previous section, 

temperatures were limited to the 800
o
C vicinity for this type of film geometry in order to 

avoid initiating a runaway condition. While below the 1000
o
C target stated in Section 1.1, 

the literature indicates temperatures in this lower range to be nevertheless sufficient to 

produce a measurable change in polysilicon morphology [French, 2002; Guckel, et al., 

1988-2; Suarez, et al., 1992]. Post-anneal properties can be somewhat unpredictable, 

however, as the moderate thermal energy level often activates only a subset of the 

restructuring mechanisms. This can result in conflicting behaviors for the various grain 

orientations, including size reduction [Campo, et al., 1995] and significant increases in 

stress [French, et al., 1996]. These behaviors were observed in the lower-temperature  
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Figure 5.8(a): SEM image showing the initial surface morphology of the 3µm 

polysilicon beam pattern. All thick polysilicon films were mechanically polished before 

patterning in order to reduce the surface roughness and thus improve the quality of the 

subsequent films utilized for annealing.  

 

 
Figure 5.8(b): SEM image taken from the center of the annealed polysilicon beam 

pattern. The texture reflected the initiation of film restructuring, with numerous voids and 

little morphology definition. The temperature measured at this location was 840
o
C. 
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Figure 5.8(c): SEM image taken from a location mid-way between the center and edge of 

the annealed polysilicon beam pattern. The film morphology showed increased definition 

as compared to that in (b), with regions of higher density beginning to take shape, as a 

result of a higher annealing temperature. The temperature was estimated to be 853
o
C. 

 

 
Figure 5.8(d): SEM image taken from the edge of the annealed polysilicon beam pattern. 

Proximity to the NiFe19 rings rendered this the region of maximum temperature. The 

texture reflected the furthest progress of the anneal, with the film consisting of low-

density islands engulfed by a densified lattice. The estimated temperature was 865
o
C. 
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anneal data, as will be shown. Figure 5.8(a) illustrates the unannealed polysilicon surface. 

Its unusual appearance can be attributed to the fact that the relatively thick film was 

mechanically polished prior to patterning. The remaining three figures show the 

polysilicon surface texture at different locations within the annealed beam cluster, 

illustrating the horizontal temperature gradient within the anneal region. The image in 

Figure 5.8(b) was taken from near the center of the pattern and thus illustrates the region 

of lowest temperature, which was at approximately 840
o
C as the pyrometry sensor was 

centered with respect to the coil and focused to a 1mm spot size. The image illustrated 

the beginnings of film restructuring. The surface had changed considerably, appearing 

more uniform as though the film was attempting to repair itself from stresses induced 

during polishing. Morphology lacked clear definition, however, with numerous voids 

distributed at random throughout the lattice. Moving outward to a location midway 

between the center and edge of the beam pattern, Figure 5.8(c) demonstrates the impact 

of a slightly higher annealing temperature. Voids in the lattice were starting to be forced 

together as a result of enhanced film recrystallization and densification. Finally, Figure 

5.8(d) shows the polysilicon region of maximum annealing temperature, located at the 

outer edge of the pattern. The film morphology at this location exhibited superior 

restructuring as compared to that shown in (b) and (c), with the “islands” of low density 

crystallites surrounded by an increasingly densified lattice. Thus the inductive annealing 

process had been utilized to produce a significant temperature gradient across a 

polysilicon device and, consequently, a visible morphology gradient. The magnitude of 

this gradient was estimated using the measured temperature differential data from Figure 

4.30. Analysis of the figure for a hollow NiFe19 ring ~7µm in thickness heated to 800
o
C 
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yielded temperature gradient estimates of 150
o
C/cm in the region outside of the heated 

ring and 56.3
o
C/cm inside the ring. Applying linear interpolation, the approximate 

temperature values for the center, middle (r=0.225cm), and edge (r=0.45cm) regions of 

the beam cluster were 840
o
C, 853

o
C, and 865

o
C, respectively. This 25

o
C differential in 

the center-to-edge annealing temperature had a significant impact on the appearance of 

the polysilicon surface, which suggests that the impact on the performance of a released 

sensor would also have been significant.  

The impact of the various levels of partial annealing was exemplified in the X-

Ray Diffraction (XRD) data, which is summarized in Table 5.3 (see Section 4.1 for a 

description of the headings and calculation methods). Figures 5.9(a,b) show the pre- and 

post-anneal output waveforms. Unlike the clear results of the thorough anneal in the 

proof-of-concept test, the data from this partial anneal reflected an earlier stage of 

recrystallization. The computed Scherrer crystallite sizes indicated appreciable grain  

 

TABLE 5.3 

X-RAY DIFFRACTION DATA AND CALCULATIONS FOR POLYSILICON BEAMS 

ID
 2θ, 

degrees 

BFWHM, 

radians 

BADJ, 

radians 

Scherrer Cry. 

Size, nm 

Strain, 

mm/m 

Stress, 

MPa 

28.4479 0.001290 - - - - 

47.3050 0.001417 - - - - 

R
ef
er
en
ce
 

56.1273 0.001370 - - - - 

28.5130 0.009159 0.008448 16.93 -2.092 -334.7 

47.4519 0.002164 0.001105 137.1 -2.357 -377.1 

U
n
an
n
ea
le
d
 

- - - - - - 

28.5174 0.002157 0.001225 116.8 -2.233 -357.3 

47.4562 0.002190 0.001136 133.3 -2.425 -388.1 

55.4999 0.001906 0.000843 185.9 7.466 1195 

A
n
n
ea
le
d
 

56.2502 0.002644 0.001697 91.94 -1.436 -229.7 
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Figure 5.9(a): X-Ray Diffraction output plot obtained from the as-deposited 3µm 

LPCVD polysilicon which was formed at 625
o
C and patterned into cantilever beams. The 

three dominant grain orientations were [111], [220], and [311], though the diffractometer 

did not produce a measurement for the [311] peak. Note that these were the same 

orientations examined in polysilicon films of Section 4.1.  

 

 
Figure 5.9(b): X-Ray Diffraction output plot showing the impact of the 840-865

o
C 

anneal on the polysilicon grain structure. The [111] and [311] grains grew considerably, 

whereas the [220] grains were actually found to have been slightly reduced in size. Stress 

and strain values were rendered higher due to the incomplete anneal. 
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growth along the [111] and [311] axes but a small reduction in size in the [220] direction. 

The [311] grains, which were undetectable in the unannealed sample, appeared at two 

distinct diffraction angles, one of which was computed to have tensile stress while the 

other was computed to have compressive stress. Furthermore, the film stresses along the 

[111] and [220] directions both became slightly more compressive. The implication of 

the results was that grain growth had been initiated, but with insufficient energy to 

achieve complete reversal of the less-dominant orientations. Nevertheless, a measurable 

difference in the polysilicon was demonstrated via both qualitative changes in 

morphology and quantitative changes in grain structure.  

 

5.3: Polysilicon Accelerometer Structures 

 

The ultimate goal of the research project was to demonstrate the application of the 

inductive annealing process to polysilicon devices. Processing difficulties prevented this 

from taking place on complete, functional inertial sensors as was originally intended (see 

Chapter 6), but some success was achieved with basic accelerometer structures. The 

layout of the sensor is shown in Figure 6.6(a); refer to Section 6.2 for a description of the 

structural design. The sensing structures were patterned into a 3µm-thick LPCVD 

polysilicon film deposited at 600
o
C via SiH4 decomposition in a Tempress 6400 furnace 

and mechanically polished to reduce surface roughness. Figure 5.10 illustrates the 

relative placement of the heated film with respect to the sensors. The square-ring-shaped 

NiFe19 film encircled a 6x6 grid of 2x2mm devices, and was patterned via a shadow 

mask to have a 1.2cm inner diameter and a 2.4cm outer diameter. Note that this outer 

diameter was considerably larger than that illustrated in the figure. Thermal isolation  
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Figure 5.10: Approximate layout utilized for the annealing of 3µm polysilicon sensing 

structures using a 7.1µm NiFe19 film patterned into square-shaped ring 2.4cm in width 

with a 1.2cm inner diameter. Two rows of trenches were etched through the polysilicon 

in order to help shield the devices that were not intended for heat treatment. 

 

 

trenches were utilized to divide the high-temperature and low-temperature regions 

in the interior of the heated film, similar to the method described in the thin film isolation 

model of Section 3.3. In this case, the trenches were patterned to form two rows 40µm in 

width with a 20µm space between them. The NiFe19 film was heated at full power for 

ten minutes. Pyrometry indicated a temperature of 760
o
C at the center. This temperature 

was considerably lower than the 840
o
C reached during the cantilever beam experiment, 

though the induced temperatures in the heated NiFe19 rings were likely similar in 

magnitude due to their similar dimensions. Like the results presented in Section 5.2, this 

relatively low temperature rendered the annealing incomplete. The lower polysilicon 

deposition temperature of 600
o
C helped to produce a measurable difference nonetheless. 

The induced temperature gradient inside the inner diameter the heated NiFe19 ring was 
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assumed to be the same as that computed in Section 4.4 and applied previously in Section 

5.2, that being 56.3
o
C/cm. The impact of the thermal trenches was impossible to 

determine directly and was therefore estimated by assuming that the temperature induced 

by the film was indeed 865
o
C, the estimated temperature in the NiFe19 ring of Section 

5.2. These assumptions yielded temperature values of 783
o
C and 854

o
C on the inside and 

outside of the trenches, respectively. The temperature difference across the 20µm inter-

trench polysilicon was relatively small at only 0.113
o
C, and therefore it was concluded 

that each of the two trenches reduced the surface temperature by around 35.6
o
C.  

Figures 5.11(a-d) present SEM images of the post-anneal surface morphology 

obtained at various locations within the interior of the heated ring. All images utilized the 

same magnification. Figure 5.11(a) shows the appearance of the polysilicon near the 

center of the heated region, which had lowest annealing temperature. The initial 

appearance exhibited large, continuous sections with dimensions ranging from ~100-

400nm. The surface morphology slightly inside of the trenches is shown in Figure 

5.11(b). The image shows a trend toward increased fineness of the features, though up 

close they still looked quite similar to those of Figure 5.11(a). Examining the polysilicon 

region between the two trenches, Figure 5.11(c) shows an interesting blend of coarse and 

fine in which some of the larger, continuous regions were still visible but the areas 

between them were taking on an increased granular appearance. The surface as a whole 

was becoming increasingly three-dimensional. Finally, the image in Figure 5.11(d) shows 

the morphology slightly outside of the trench region. The film had become completely 

granular in appearance, with feature sizes averaging around 20µm. The collection of 

images demonstrated a behavior similar that that of the annealed beam clusters in Section  
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Figure 5.11(a): SEM image showing the 3µm polysilicon surface taken from central 

region of the heat-treated set of inertial sensing structures. This was the area of lowest 

temperature, measured via pyrometry to be 760
o
C. Note that the films were mechanically 

polished prior to heat treatment. 

 

 
Figure 5.11(b): SEM image showing the polysilicon surface just inside of the thermal 

isolation trenches, at a distance of just under 4mm from the center. The temperature at 

this location was estimated to be 783
o
C. The film surface looked very similar to that of 

(a) except with relatively finer features.  



 197 

 
Figure 5.11(c): SEM image showing the polyslicon film surface in the region between 

the thermal isolation trenches. The temperature at this location was estimated to be 

818
o
C. The surface exhibited a mixture of small, granular features like those in (d) and 

larger, continuous features like those from (a) and (b).  

 

 
Figure 5.11(d): SEM image showing the polysilicon film surface in the region just 

outside of the thermal isolation trenches. The morphology had entirely taken on a fine, 

granular appearance, with features approximately 20nm in size. The temperature at this 

location was estimated to be 854
o
C. 
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5.2. The two films were deposited at two different temperatures, and the as-deposited 

properties of LPCVD polysilicon are documented in the literature as being quite different 

in the 560-600
o
C range (ellipsoidal grains) from the 600-700

o
C range (columnar grains) 

[Heuer, 2000]. Thus the resulting morphology trends were expected to be quite different. 

The change in morphology across the 600
o
C film was sufficiently pronounced that a 

gradient in texture was visible over a lateral span of ~15µm as is shown in Figure 5.12. 

The image was captured from just slightly inside the trench region, at a location near that 

from which Figure 5.11(b) was obtained. The temperature of heat treatment in that region 

had been estimated at 783
o
C, and the corner-corner differential calculated to  

 

 
Figure 5.12: SEM image showing a visible gradient in the polysilicon texture over a 

15µm lateral span. The upper right-hand corner corresponded to a location just slightly 

inside the trench region, which was estimated to have an annealing temperature of 783
o
C. 

The temperature differential from corner to corner was approximately 0.1
o
C 
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approximately 0.1
o
C. As the figure illustrates, the surface texture was relatively fine at 

the upper right-hand corner, which was in closest proximity to the innermost trench. The 

lower left-hand corner, on the other hand, showed noticeably larger islands. Furthermore, 

the image showed multiple boundary lines parallel to the trenches, i.e., normal to the 

direction of heat flow. These were presumed to represent different activation energies. 

 Similar to the results presented in Section 5.2, quantitative comparison of initial 

and annealed samples via X-Ray Diffraction produced mixed results. The samples were 

analyzed along the same three crystallographic axes, those being [111], [220], and [311]. 

The values and their calculations are summarized in Table 5.4, with the diffraction 

waveforms given in Figures 5.13(a,b). As was the case for the analysis in the previous 

section, the analyzed sample contained the full interior region of the NiFe19 film and 

thus contained a spectrum of annealing results. The annealed polysilicon exhibited an 

increase in crystallite size along the [220] and [311] orientations, but showed a slight  

 

TABLE 5.4 

X-RAY DIFFRACTION DATA AND CALCULATIONS FOR  

POLYSILICON  INERTIAL SENSING STRUCTURES 

ID
 2θ, 

degrees 

BFWHM, 

radians 

BADJ, 

radians 

Scherrer Cry. 

Size, nm 

Strain, 

mm/m 

Stress, 

MPa 

28.4479 0.001290 - - - - 

47.3050 0.001417 - - - - 

R
ef
er
en
ce
 

56.1273 0.001370 - - - - 

28.5417 0.010048 0.009342 15.31 -3.011 -481.8 

47.4340 0.002519 0.001514 100.01 -2.070 -331.3 

U
n
an
n
ea
le
d
 

56.1905 0.005796 0.004993 31.48 -0.7393 -118.3 

28.5209 0.001047 0.015995 8.9 -2.345 -375.3 

47.4548 0.002409 0.001389 109.0 -2.403 -384.5 

A
n
n
ea
le
d
 

56.1908 0.003649 0.002777 56.6 -0.7428 -118.8 
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Figure 5.13(a): X-Ray Diffraction output plot obtained from the as-deposited 3µm 

LPCVD polysilicon, which was formed at 600
o
C and patterned to form inertial sensing 

structures. The three dominant grain orientations were [111], [220], and [311] as in the 

previous samples.  

 

 

 
Figure 5.13(b): X-Ray Diffraction output plot showing the impact of the 760-865

o
C 

anneal on the polysilicon grain structure. Like the cantilever beam polysilicon of Section 

5.2, the [111] and [311] crystallites increased in size while those in [220] were made 

slightly smaller. The stress in the [111] grains became less compressive, but that in [220] 

increased somewhat and that in [311] showed a negligible change. 
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decrease along the [111] orientation. On the other hand, the calculated stress in the [111] 

grains became 22.2% less compressive, but that in [220] actually showed a 16.3% 

increase while that in [311] registered a negligible change. The partial anneal appeared to 

have created a scenario in which the [220] grains were dominant but unable to grow 

significantly due to having insufficient energy to cause reversal in the other grains, thus 

becoming even more compressively stressed. The key result, however, was the repeated 

creation of a controlled morphology change on a polysilicon structure. The expectation 

was that with further research, methods for improvement would be revealed. 

 

Conclusion 

 

 This chapter presented the application of the process development work of 

Chapters 3 and 4 to the annealing of polysilicon films and microstructures. Induced 

temperatures sufficient for annealing were measured using infrared pyrometry and 

demonstrated through changes in film curvature, appearance of surface texture, and 

crystallite size and stress. Further optimization of the technology will help to increase the 

range of sustainable annealing temperatures. Emphasis must be placed on increased 

coupling to the ferromagnetic films and decreased thermal conduction to the silicon 

substrate. Furthermore, increasing the annealing uniformity within the polysilicon is also 

of high importance. Forming the ferromagnetic film directly above the structure, with a 

thin diffusion barrier such as SiO2 between them, would provide the ideal situation but 

would also require that the thermally-induced stresses in the metal be reduced 

significantly so as not to cause device tear-out. 
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Chapter 6: Device Design and Fabrication 
 

The application of a new technology to the production of fully functional micro-

mechanical devices presents a more complex set of challenges than those typically 

encountered with basic test structures. Whether or not obstacles can be overcome without 

compromising flexibility in process or design will establish its actual utility. This chapter 

presents the first iteration in the development of a CMOS-compatible high aspect ratio 

(HAR) device technology based on the inductive annealing process. The lateral 

accelerometer was selected for the purpose of technology demonstration. This class of 

sensors is of high importance to the microsystems industry and has applications ranging 

from automotive safety to consumer electronics. While individual designs are quite 

unique, lateral accelerometers generally resemble that of Figure 6.1(a) in which a series 

of electrodes are attached to either side of a moving seismic mass, whereas vertical or z-

axis accelerometers are often similar to Figure 6.1(b) in which the movable electrode is 

formed from lower surface of the seismic mass. The chapter begins with the presentation 

 

 
(a) 

 
(b)

Figure 6.1: SEM images of industrial inertial sensors illustrating the main features of (a) 

the Analog Devices ADXL150 50g lateral accelerometer [Samuels, 1996
1
] and (b) the 

Motorola 50g z-axis accelerometer [Li, et al., 2001
2
]. 

                                                 
1 Courtesy of Analog Devices, Inc. 
2 ©2001 IEEE 
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of the definitions and equations relevant to device design in Section 6.1. Section 6.2 

details the design process including the selection of the layers to be utilized and their 

targeted thicknesses, the specification of design criteria, and the accelerometer layout. 

The next three sections are devoted to the finite element modeling of the device using the 

Coventorware software, beginning with an overview of the model generation process 

(Section 6.3) and then examining the details of the independent electrical (Section 6.4) 

and mechanical (Section 6.5) simulations. Finally, images and measurements from the 

actual fabrication and device characterization are given in Section 6.6. Although the 

intent had been to utilize the sensor as a means by which to demonstrate the application 

of the inductive annealing technology on a full device, processing challenges were 

encountered that ultimately rendered the devices non-functional. These challenges are 

elaborated in the sixth section, along with recommendations for improvement.  

 

6.1: Design Considerations 

 

 The detection of a change in velocity, whether linear or rotational, entails the 

conversion of a mechanical force into an electrical signal. The block diagram in Figure 

6.2 illustrates the basic operation of a capacitive accelerometer, a linear inertial sensor 

that transduces motion by means of a variable capacitance. Accelerometers consist of a 

movable proof mass anchored to a substrate through a flexible suspension, with viscous 

damping often provided through a pressurized ambient. The inherent inertia of the mass 

causes it to resist an applied acceleration (or deceleration) according to Newton’s second 

law [Elwenspoek, et al., 2001 (p. 133)],  

 maFA = , (6.1) 
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where the inertial force, FA (N), increases with the magnitude of the mass, m (kg), of the 

structure upon which the acceleration, a (m/s
2
), is applied. The result is that the structure 

shifts laterally with respect to the substrate. Its range of motion is determined by the 

rigidity of the suspension according to Hooke’s law [Senturia, 2001 (p. 112)],  

 zkF ZS ∆−= , (6.2) 

 

in which the spring constant, kZ (N/m), determines the strength of the restoring force, FS 

(N), produced for a given deflection, ∆z (m). The springs, or tethers, utilized in 

micromachined accelerometers typically consist of combinations of simple beams like 

those in Figure 6.1. Values for their factors are approximated through standard beam-

bending equations, with the two most relevant forms derived from the cantilever beam, 

 

 
Figure 6.2: Block diagram showing the primary components and transduction method of 

a typical capacitive linear accelerometer. An applied acceleration causes a shift in a 

movable proof mass with respect to the substrate; the change in capacitance between 

mobile and stationary electrodes is detected by customized readout circuitry. 

 

 

 
(a) 

 
(b) 

Figure 6.3: Beam-bending diagrams illustrating (a) the simple cantilever beam and (b) 

the double-clamped beam under a concentrated load, F, applied at x=L. 
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shown in Figure 6.3(a), and the double-clamped beam, shown in Figure 6.3(b). Equations 

for the tip deflection under a concentrated load can be found using the Euler-Bernoulli 

equation [Eibeck, et al., 2000; Senturia, 2001 (p. 215)] for the bending of thin beams, 

   
EI

M

dx

zd
=

2

2

, (6.3) 

 

where the second derivative of the deflection, ∆z (m), with respect to the distance from 

the support, x (m), is a function of the internal moment at x, M (N*m), the Young’s 

Modulus of the constituent material, E (N/m
2
 or Pa), and the area moment of inertia of 

the beam cross-section, I (m
4
). Free-body diagrams for the cases of Figures 6.3(a) and 

5.3(b) yield the respective bending moments 

 )( xLFM −=  LMxLFM +−= )(  (6.4a,b) 

 

in which the term ML in the latter equation refers to the reaction moment at the moving 

support, and the boundary conditions for each scenario are 
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Solving the differential equation produces the following results for the deflection at x=L: 

 F
EI

L
z

3

3

=∆  F
EI

L
z
12

3

=∆ . (6.6a,b) 

 

The area moment of inertia of a rectangular cross-section about the central axis is given 

by [Spiegel, et al., 1994 (p. 133)] 

  
12

3WH
I = , (6.7) 
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where W and H represent the width (y-dimension) and height (z-dimension) of the beam, 

respectively. Substituting (5.7) into (5.6a,b) and solving for the spring constant kZ using 

(5.2) gives the final result: 

 
3

3

4L

EWH
kZ =  

3

3

L

EWH
kZ = . (6.8a,b) 

 

Note that (5.8a,b) refers to the spring constant for a beam bending in the vertical (z) 

direction. In the case of a lateral accelerometer, deflection occurs in the horizontal (y) 

direction and therefore the terms W and H must be exchanged in order to calculate kY. 

Springs such as those shown in Figure 6.1 simultaneously derive behaviors from each of 

the two different beam-bending models. Numerical results are typically closer to those of 

the double-clamped beam due to the fact that the “free” ends are somewhat constrained 

by either a mostly-rigid proof mass or the semi-rigid bends that attach additional beams 

to make up a folded spring. Once approximate values for the individual beams have been 

obtained, complex spring designs can be characterized through series and/or parallel 

combinations of single-beam springs. It should be understood that the results are suitable 

for initial design purposes only as it is difficult to estimate the effects of elasticity in 

spring folds and the proof mass, and consequently simulation through finite element 

modeling or other means is strongly recommended. 

 Several important aspects of device behavior are directly affected by the values of 

m and k that result from the chosen design, beginning with the range of accelerations over 

which it operates. The sensitivity of the device is defined as its deflection for a given 

acceleration, or [Gad-el-Hak, 2002 (p. 24-6)] 

 
a

y
S

∆
= . (6.9) 
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Under “quasi-static” conditions, the device responds to the input stimulus with minimal 

delay, indicating relatively low damping and a sufficiently large resonant frequency so as 

to minimize interference with sensor operation [Senturia, 2001 (p. 499)]. This yields the 

relationship 

 SA FF =  (6.10) 

 

and therefore 

 
k

m
S = . (6.11) 

 

The differential equation modeling the sensor gives the resonant frequency as 

 

 
m

k
=0ω . (6.12a) 

 

which can also be written in the form 

 
y

a

∆
=0ω . (6.12b) 

 

Therefore, it is the ratio between k and m and not their actual values that defines these 

primary characteristics of device operation. Additional parameters such as quality factor 

and noise performance also rely on these two values as well as the coefficient of viscous 

damping. This term is utilized to obtain a specific transient behavior. Sensors are 

typically designed such that they operate as close to critical damping as possible with 

moderate overdamping in order to avoid any overshoot or ringing that can increase the 

time required for stabilization and potentially cause false triggering. A thorough analysis 

of damping coefficients and sensor transients is given in The MEMS Handbook [Gad-el-

Hak, 2002 (pp. 24-7 – 24-12]. Viscous damping is not a critical factor for the device 

design under review and therefore will not be discussed further.  
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 At the present time, capacitance-based sensing is the method of choice for 

industrial sensor manufacturing. Many of these devices are utilized in automotive 

applications and are therefore subject to a wide range of thermal ambient conditions. 

Capacitive sensors are relatively immune to temperature changes, especially when 

compared with other methods such as piezoresistive, piezoelectric, electron tunneling, 

etc, and are furthermore inherently simple. Their means of operation makes use of 

movable and stationary electrodes, with the former attached to the proof mass and the 

latter fixed to the substrate (though electrically isolated). The distance between the two 

sets of electrodes, d (m), changes as the structure moves, which affects the overall 

capacitance as approximately [Senturia, 2001 (p 126)] 

 
d

A
C

ε
= , (6.13) 

 

where the capacitance, C (F), depends also on the permittivity (or dielectric constant) of 

the gas within the gap, ε (F/m), and the electrode surface area, A (m), on either side of the 

gap. This is the standard equation for a parallel-plate capacitor, which neglects the 

contribution of fringing fields at the perimeter. The calculation of an accurate fringing 

capacitance tends to be somewhat difficult, and various complex equations exist with 

varying degrees of accuracy under different conditions [Leus, et al., 2004]. A simple 

estimate can be obtained, however, by adding the gap distance to that of the electrodes, 

thus giving effective length and width values that are each larger by a factor of 2d 

[Calvert, 2003]. Lateral accelerometers typically incorporate numerous electrodes for 

both the moving and stationary signals, with the individual components connected 

together to act as one large capacitor in order to maximize sensing resolution. A subset of 

the capacitive classification of devices utilizes differential capacitive sensing in which  
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Figure 6.4: Schematic of a differential capacitor in which the output voltage V0 is 

measured at the moving plate of the sensing structure and the input signals +VR and -VR 

are applied to each of the two fixed electrodes. 

 

two sets of stationary electrodes are fabricated, with one fixed electrode on each side of 

every moving electrode. The basic configuration of such a device is illustrated in Figure 

6.4. The moving structure provides the center plate from which the output voltage V0 is 

measured, and the two stationary electrodes on opposite sides of the proof mass form 

capacitors C1 and C2 to which a reference voltage +VR and -VR are applied. The 

advantage of such a design can be seen from the characteristic equation for a differential 

capacitor [Senturia, 2001 (p. 502)], 

 RR V
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dd
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= , (6.14) 

 

in which the simplification is made using the assumption that the surface area values for 

C1 and C2 are the same. At the unstressed position of the structure, the values of d1 and d2 

are identical and the output voltage is zero. As the structure moves and the values of d1 

and d2 change, one of the two capacitances will increase while the other decreases, but 

the sum d2+d1 always remains consistent. Therefore, the output voltage is a scaled 

fraction of the reference voltage, linear in d2 -d1, with the sign reflecting the direction of 

the shift. This is the approach that was selected for the sensor presented in this chapter. 

Specific parameters and dimensions are detailed in the next section. 
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 A final consideration for device design is the means by which it will be tested. 

Confirmation of proper performance over the chosen acceleration range as well as 

robustness under cyclic loading, thermal stresses, and impact shock requires sensors to 

undergo a wide range of validation procedures. Providing each device with self-test 

capability enables a rapid check without requiring substantial time or instrumentation, 

allowing many faulty sensors to be quickly discarded. Self-testing of a lateral inertial 

sensor is typically done by incorporating a dedicated set of stationary electrodes. The 

application of a DC voltage generates an electrostatic force between the capacitive plates 

that causes the structure to deflect. Equilibrium is reached when the counter-force of the 

springs balances the capacitive force, or [Senturia, 2001 (pp. 132-137)] 

 2

2

1
CV

d
yk =∆ . (6.15) 

 

The shift can then be detected using the sense electrodes in order to verify that the output 

capacitance change is within the proper range. Nearly all devices are provided with some 

type of self-testing means. Although passing self-test doesn’t guarantee functionality, it 

does give evidence of proper formation of the structure and interconnects, spring constant 

values, and thorough release without stiction.  

 

6.2: Process Development and Device Design 

 

 The design of a device begins with the definition of a fabrication process. While 

the details of the process are subject to change as the device is tested and refined, the 

initial version serves as a starting point in which parameters are chosen such as proof 

mass thickness and number of interconnect layers. The MTU high aspect ratio (HAR) 

accelerometer process revolves around a 20µm-thick polysilicon structure with a 2µm 
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minimum feature size. The fabrication sequence is illustrated in Figures 6.5(a-g). It 

begins with 4” silicon wafers purchased with 1µm of thermally grown silicon dioxide on 

the front and back sides. A silicon nitride layer, targeted at 0.25µm, provides a base layer 

for the device as the oxide would not withstand the final release etch. The wafer cross-

section at this point in the fabrication is shown in Figure 6.5(a). Signal transport below 

the structure utilizes a 0.5µm heavily doped polysilicon interconnect layer (poly0), which 

also is used to fabricate a sub-structural ground plane to electrostatically bias the region 

as is illustrated in Figure 6.5(b). This is followed with a 2µm-thick poly0-poly1 silicon 

dioxide inter-layer dielectric, shown in Figure 6.5(c), whose patterning not only defines 

vias for electrical signals but also the structural anchor points. The heavily doped 20µm 

polysilicon structural layer (poly1) is shown in Figure 6.5(d) and is used to form the 

sensing structure. It also provides for the transfer of signals between the upper and lower 

interconnects. The 2µm minimum feature size assigned to the process is primarily applied 

to this layer and dictates the sizes and shapes of features such as springs, etch holes 

through the structure to facilitate device release, and the gap between sensing electrodes. 

A second 2µm silicon dioxide layer, poly1-metal1, refills the trenches in the patterned 

poly1 layer and defines via locations for the upper interconnect layer as shown in Figure 

6.5(e). It is at this point that the inductive annealing process takes place if desired, 

consisting of the deposition, patterning, heating, and removal of a ferromagnetic film 

such as FeCo or NiFe19. Finally, a 0.5µm aluminum film (metal1), shown in Figure 

6.5(f), is deposited and patterned to form the upper interconnect layer which is comprised 

of the connections to the individual sensing electrodes as well as the peripheral bonding 
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pads. Device release is accomplished through the timed sacrificial etch of the poly1-

metal1 and poly0-poly1 oxides. The etch must be sufficiently long so as to ensure release 

 

 
Figure 6.5(a): Silicon wafer (four-inch diameter, 0.25mm thickness) with 1µm thermal 

silicon dioxide layer for minimal nitride stress and 0.25µm LPCVD silicon nitride 

foundation. 

  

 
Figure 6.5(b): Device wafer following deposition and patterning of poly0 lower 

interconnect layer. Outer portions represent electrical traces while the center region 

reflects the ground plane below the structure. 

 

 
Figure 6.5(c): Device wafer following deposition and patterning of the poly0-poly1 

dielectric. Vias provide locations for electrical signal transport as well as structural 

anchors. 

 

 
Figure 6.5(d): Device wafer following deposition and patterning of the poly1 structural 

layer. The center region shows the sensing structure while the surrounding studs reflect 

the use of the poly1 layer to transfer electrical signals between the lower and upper 

interconnects. 
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Figure 6.5(e): Device wafer following deposition and patterning of the poly1-metal1 

dielectric. The silicon dioxide layer provides for insulation and vias between the two 

conducting layers as well as structural support for the metal1 bonding pads and thick 

ground traces. 

 

 
Figure 6.5(f): Device wafer following deposition and patterning of the metal11 upper 

interconnect layer. This layer provides bonding pads, thick ground traces, and airbridges 

between stationary electrodes. 

 

 
Figure 6.5(g): Device wafer following the sacrificial etch for structural release. 

 

of the full device but not so long that significant undercut of the surroundings occurs. 

More specific details of the actual fabrication process, including film measurements, 
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equipment used, and in-progress images are provided in Section 6.6. The detailed process 

flow is provided in Appendix C, both with (C.2) and without (C.1) the insertion of the 

inductive annealing procedure. 

 Device design was initiated in the Spring of 2003 as part of the EECS425 

Semiconductor Fabrication course offered remotely through the University of Michigan, 

designated as EE5900 at MTU. The sensor was initially targeted to have a maximum 

acceleration of +/-2g, where g represents the earth’s gravitational accelerating force, 

9.8m/s
2
. The value of the gap spacing, d, between the capacitor electrodes was given by 

the minimum feature size for the fabrication process, 2µm. Suggestions made by Dr. 

Bishnu Gogoi of Freescale Semiconductor included a nominal capacitance of around 1pF, 

a full-load capacitance change from 7.5-15% of the nominal value, an overall spring 

constant greater than 1.2N/m to minimize stiction-related problems, and self-test 

capability. Similar to the structures utilized in Freescale Semiconductor lateral 

accelerometers, the device would have four springs located internally to the proof mass. 

The final design had a proof mass with an interior region 994x690µm in size and 2x6µm 

etch holes staggered throughout the structure with 6µm spaced between them. The etch 

holes consumed approximately 12.5% of the structure, reducing the effective area from 

0.686mm
2
 to 0.600mm

2
. For the electrodes, length and width values of 120µm and 6µm, 

respectively, were assigned. Each side of the structure was given 36 sensing electrodes 

and three self-test electrodes for a total of 78, adding 0.0562mm
2
 to the structural area. 

Multiplying by the 20µm thickness dictated by the fabrication process gave an effective 

volume of 0.0131mm
3
 and, using the typical polysilicon density value of 2331kg/m

3
 

given in the Senturia textbook [Senturia, 2001 (p. 196)], the total mass of the structure 
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calculated to 3.06E-8kg. Combining the electrode dimensions with the 2µm gap spacing 

resulted in a capacitance of 10.6fF per electrode pair for a total nominal capacitance of 

0.765pF, neglecting fringing effects. An estimate of the total capacitance, including 

fringing, can be obtained by adding the gap spacing to the length and height parameters 

as was suggested in Section 6.1, which predicted an actual value of 0.948pF. Four 

different styles of springs were designed in order to examine some different ideas. The 

final designs yielded spring constant calculations that ranged from 1.19N/m to 4.42N/m 

per spring (this is multiplied by four for the overall spring constant), causing the 

theoretical sensing range of the four different accelerometers to vary from 2.38g to 8.84g 

in order to produce the necessary 7.5% minimum sensitivity. The resonant frequencies 

ranged from 1.99kHz to 3.83kHz. Self-testing was designed such that a 5V input would 

shift the structure by approximately 50% of the full sensing range for the nominal 2g 

device. Substituting the design specifications into Equation (5.15) led to the selection of 

six self-test electrodes, or three on each side of the sensor. With the actual spring constant 

values, the shift would instead fall between 55.8% and 15.0%, depending on the spring 

type, which meant that a larger voltage would likely be utilized in the testing of the stiffer 

devices. Thus the final sensor designs spanned a fairly broad scope, but device modeling 

gave a preliminary indication that each of the four would be functional. Simulation 

results and images obtained using Coventorware are presented in Sections 5.4 and 5.5 

with detailed discussions of the specific aspects of each model.   

 Figures 6.6(a-c) present images from the final layout of the sensor. The first figure 

shows the full 2x2mm chip including the polysilicon device layer (red), bonding pads 

(dark blue), ground traces (dark blue), poly0 interconnects (white), and the overall  



 216 

 
Figure 6.6(a): Full view of device layout on a 2x2mm die. Visible features include four 

internal springs, 36 100x100µm bonding pads along the edge of the die on the metal1 

interconnect layer (blue), and 100µm-wide ground trace (blue). 

 

 

shape of the sensing structure including the placement of its four internal springs. Effort 

was made to maximize symmetry within the device, particularly when concerning the 

right and left capacitive sensing signals, so as not to introduce significant voltage offset. 

Bonding pad connections were made on all sides of the chip, with the right-hand and left-

hand edges containing the sensing signals and the upper and lower edges containing the 

grounding and self-test signals. A close-up of the upper right-hand region of the structure 

is shown in Figure 6.6(b). Etch holes located throughout the interior to assist in release 

are visible as well as the design and anchoring (anchor region in light blue) of one of the 

springs. The electrodes spanned the entire length of both edges of the structure; shown 

here are movable electrodes attached to the proof mass, sense electrodes (light blue) 
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Figure 6.6(b): Right-hand side of the device showing connections to and anchoring of 

springs, structural electrodes and etch holes, stationary electrodes and anchors, self-test 

electrodes, ground plane (white), and upper (dark blue) and lower (white) interconnects. 

 

 
Figure 6.6(c): Close-up of sense electrode region showing dimensions of moving and 

stationary electrodes and surrounding gaps, vias, etch holes, and anti-stiction “bumps.”  
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anchored to the substrate, and the slightly larger self-test electrodes. Zooming in further, 

Figure 6.6(c) illustrates the finer details of the electrode shapes. The stationary electrodes 

were held in place using the same mask (light blue) that provided for poly0-poly1 signal 

transport and spring anchoring. The poly0 ground plane (white) located below the entire 

structural region also included the area below each of the moving electrodes. Anti-

stiction “bumps” on the sides of the stationary electrodes gave a non-uniform texture in 

order to prevent adhesion to the structure during either release or operation. Details and 

dimensions of the spring designs are shown in Figure 6.7(a). The first was a single-

anchor spring to which the inertial load was applied at two points. A more rigid beam 

perpendicular to the axis of motion transferred the force to a single beam down the  

 

 
Figure 6.7(a): Styles and sizes of folded-beam springs for each of the four sensor 

designs. Each spring measured 40µm in overall width with individual segments either 

2µm or 4µm wide in order to produce the desired spring constant. 
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center, at which point the load was again divided before reaching the anchor region. The 

second spring, the least complex of the four, resembled many folded-beam springs 

encountered in similar industrial devices. The third design combined two springs of the 

second type, with fewer folds, into a more rigid single- anchor device. The fourth was 

perhaps the most unique, in which again two springs of the second type were combined 

with the difference that one of them was inverted, producing a double-anchor spring that 

was anticipated would minimize torsional elasticity. These springs were modeled as 

series and/or parallel combinations of individual beams as is illustrated in Figure 6.7(b), 

and approximate spring constant values were obtained from Equation (5.8b) using the 

typical polysilicon Young’s Modulus of 160Gpa given by Senturia [Senturia, 2001 (p. 

196)]. Figure 6.7(c) shows the details of the calculations, beginning with the values for 

the individual beams, combining them to model the full spring, and then multiplying by 

four to give the overall spring constant for the sensor since the four springs act in parallel. 

Simulation results presented in Section 6.5 confirm the accuracy of these calculations. 

 

 
 (1) (2) (3) (4) 

Figure 6.7(b): Models of each of the four spring styles shown in Figure 6.6(d) using 

series and/or parallel combinations of single-beam springs. Overall spring constants are 

additive for parallel springs and inverse additive for series springs. 



 220 

 

 
Figure 6.7(c): Microsoft Excel spreadsheet showing the numerical details of each of the 

spring constant calculations. The spring constants for the individual beams were 

determined and then combined to yield the overall value for the spring. Multiplication by 

four gave the total spring constant for the sensor. 

 

 

6.3: Solid Model Generation 

 

 The Coventorware finite-element simulation software provides for the importation 

of layout files from other software packages such as Cadence. A process file is defined in 

which layers are deposited to the desired thicknesses with the layout masks applied to 

delineate their patterns, and the software utilizes this information to build a three-

dimensional solid model. The process file used to model the full sensor is shown in 

Figure 6.8. Two “imaginary” masks were created in order to separate each of the inter-

layer silicon dioxide films, labeled as phospho-silicate glass (PSG), into sacrificed and 

non-sacrificed portions. Otherwise, the software would completely remove the films 

during the final sacrificial etch, leaving no support for the upper layers. The model 

generation process therefore had to be adjusted. This was done by first defining the 

fraction of the deposited PSG layer intended to be permanent by an etch that utilized the 

“imaginary” mask. These holes were then refilled with “Oxide”, creating two portions of  
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Figure 6.8: Fabrication process file utilized to construct the full solid model of the lateral 

accelerometer. Two additional masks were drawn to define non-sacrificed portions of the 

poly0-poly1 and poly1-metal1 oxide layers due to controlled timing of the sacrificial etch. 

 

 

 
Figure 6.9(a): Solid model of the full accelerometer chip including the substrate (gray) 

and base dielectrics (nitride in green). This model was far too large for the software to 

simulate and was later divided into reduced electrical and mechanical portions so each 

simulation could be optimized as necessary. 
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the same film distinguished by different names. A planarized refill was achieved by 

depositing the oxide film on top of the PSG with zero thickness, as the software defines 

film thicknesses based on the surface of the previous layer. Finally, the via locations were 

etched in the PSG using the original mask. At the end of the process, the sacrificial etch 

removed only the region of the film identified as PSG, leaving that identified as Oxide 

intact. Figures 6.9(a-c) present images taken from the full solid model of the lateral 

accelerometer. The complete die is shown in Figure 6.9(a). For consistency, the colors of 

the patterned layers were chosen to match those from the Cadence layout masks. The 

Coventorware left-hand window enables the selection of individual layers for purposes 

such as adding to mesh regions, adjusting mesh configurations, or toggling visibility. 

Figure 6.9(b) shows a close-up of the right-hand portion of the sensor region, illustrating 

 

 
Figure 6.9(b): Close-up of the right-hand portion of the sensor surface showing details of 

the electrodes, both sensing and self-testing, as well as etch holes, a style-4 spring, and 

the upper interconnect layer. 
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in three dimensions the appearance of features such as etch holes and airbridges. 

Removing the structural and upper layers yields the image shown in Figure 6.9(c) in 

which the poly0 ground plane and interconnects are shown with the non-sacrificed 

portion of the poly0-poly1 oxide (yellow). Initially, an effort was made to simulate the 

full device in a coupled electro-mechanical mode, but numerous problems associated 

with the modeling package were encountered as a result of the large file sizes. In its 

present format, the Coventorware solvers have a 2GB limit on memory addressing 

capability, and this was insufficient to simulate the full device. Based on 

recommendations by Coventorware technical support personnel, separate models were 

generated for simulating the electrical and mechanical portions of the sensor so that each 

 

 
Figure 6.9(c): Close-up of the right-hand portion of the sensor with the poly1, metal1, 

and poly1-metal1 oxide layers removed, illustrating the poly0 pattern as well as the non-

sacrificed portion of the poly0-poly1 oxide layer  
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could be reduced and optimized to their individual requirements. Details of the 

electrostatic model, in which capacitance chances are computed as the structure shifts 

laterally, are given in Section 6.4. The mechanical model predicts the shift of the 

structure for a particular applied acceleration; these results are presented in Section 6.5. 

 

6.4: Electrostatic Simulation 

 

 The purpose of the electrostatic simulation of the lateral accelerometer was to 

determine the relationship between the structural offset and the resulting Center-Left and 

Center-Right capacitance values. Modeling the relevant portion of the sensor required 

only the regions containing the capacitive electrodes; specific details of the structure such 

as springs and etch holes were not necessary. The layout was reduced to encompass only 

the device region as shown in Figure 6.10. Etch holes and springs were filled in, and only 

the immediate interconnect traces were included. It was initially intended that the entire 

set of electrodes would be included in the simulation, but it was found that the model still 

exceeded the 2GB addressing limit. Therefore, the model was cropped using an 

additional layer, shown in green, such that only half of the sensing electrodes were used. 

An electrode bank on each side of the structure was included in order to compensate for 

skew that would otherwise be introduced as a result of different stationary electrode 

lengths. The process file used to build the solid model is shown in Figure 6.11. This 

process differed from that used to build the full model in that the structural layer itself 

was split into two portions, one to be included in the meshed region and one to be left 

out. The means by which the layer was divided was the same as that used to split the 

inter-layer oxides, described previously. On the other hand, the poly1-metal1 oxide was 

no longer divided because the entire layer was sacrificed in this model. The three-  
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Figure 6.10: Imported layout of the modified device in which the two green areas 

defined the portion to be utilized for solid model generation. Half of each electrode bank 

was modeled, as the full set of electrodes were too large of a simulation to remain within 

the addressing limit. 

 

 

dimensional meshed model is shown in Figure 6.12(a). Only the poly1 and metal1 layers 

were included in the actual simulation, as the model was intended to simulate the 

relationships between poly1 surfaces and thus required the metal1 connections in order to 

define the Left and Right capacitive signals in their entirety. The device was meshed 

using the Manhattan (brick) parabolic elements with size parameters of 20µm, 4µm, and 

10µm in the x, y, and z dimensions, respectively, and the additional stipulation was given 

that at least two elements must be defined on each surface. The left-hand window was 

utilized to define specific conductors, allowing the Center, Right, and Left signals from  
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Figure 6.11: Modified fabrication process used to produce the electrostatic model. Two 

additional masks were required; the first defined non-sacrificed regions of the poly0-

poly1 oxide, and the second separated the modeled and non-modeled portions of poly1.  

 

 

 
Figure 6.12(a): Meshed model of the capacitor banks utilized for the electrostatic model 

of the accelerometer. Only the poly1 and metal1 layers were included in the simulation as 

the remaining layers did not contribute to the capacitance calculations. 
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Figure 6.12(b): Close-up of the left-hand electrode bank of the electrostatic device model 

illustrating details of the capacitive sub-structure and its mesh configuration. 

 

 

each of the two electrode banks to be linked for the simulation as they normally would if 

the remainder of the structure and interconnects were present. A close-up of the left-hand 

electrode bank is shown in Figure 6.12(b), illustrating the finer details of the sub-

structure and its mesh. Once the features of the solid model were defined, the simulation 

parameters were set up as shown in Figures 6.12(a-d). Coventorware requires that 

voltages be assigned to all conductors, illustrated in the ConductorBCs window in Figure 

6.13(a), though for this simulation the actual values were not relevant to the capacitance 

computation. Finally, a parametric sweep of offset values was applied to the structure in 

order to force it to shift laterally as desired. The offset trajectory was established as 

shown in Figure 6.13(b). Through the Edit tab, its direction was defined with an optional 

scaling factor, shown in Figure 6.13(c), and the components to receive the offset
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Figure 6.13(a): Voltages applied to the Center, Left, and Right conductor signals. The 

software requires that values be assigned, though for this model the actual voltage 

magnitudes were not relevant to the simulation results. 

 

 

 
(b) 

 

 
(c) 

 
(d)

Figure 6.13(b-d): Definition of structural offset trajectory for the electrostatic 

simulation. The “dimension” window in (b) established the nature of the trajectory t1 as 

an offset which is applied to the structure. Selecting the “Edit” tab produced the window 

in (c) in which direction(s) and scaling factor(s) were applied to the trajectory values, 

which were enumerated as shown in (d).  
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were selected; in this case the shift was applied only to the partial proof mass. The actual 

values that were used for the simulation are shown in Figure 6.13(d) and spanned the 

range of +/-0.20µm in steps of 0.04µm. The resulting values computed by the solver, 

multiplied by two, are plotted in Figure 6.14, in which the capacitances are shown in 

solid lines and the percent change relative to the nominal value are shown in dashed lines. 

The device was designed to have a 0.15µm shift under full load, and the plot shows that 

under normal operation the two capacitances ranged from approximately 0.92pF to 

1.04pF with a nominal value of 0.975pF, which is within 2.8% of the nominal value 

calculated using the fringe effect approximation. The relative capacitance change under 

full load fell within the 6-7% range, depending on the amount of deflection, slightly 

lower than the 7.5% target but reasonably close. The results do not include capacitance  

 

 
Figure 6.14: Results of lateral accelerometer electrostatic simulation. Capacitances vary 

from approximately 0.92pF to 1.04pF under a 0.15µm structural shift with a nominal 

value of around 0.975pF. The relative capacitance change with respect to the nominal 

value is in the 6-7% range under full load. 
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contributed by interconnect traces, which may have a small effect on the behavior of the 

fabricated device. Overall, however, the electrostatic model was expected to provide a 

reasonably accurate prediction of the sense capacitance values with respect to structural 

shift. The mechanical model was then used to translate this shift into the required input 

acceleration values. 

 

6.5: Mechanical Simulation 

 

 An accurate mechanical simulation was of high importance due to the need to 

confirm the accuracy of the design values, particularly the spring constant calculations, as 

well as absence of unintentional electrical shorts. The mechanical model consisted only 

of the structure and springs as shown in Figure 6.15. The green-colored rectangles drawn 

at the spring regions were utilized by the software to separate the springs from the 

structure during the solid model generation, which enabled the independent meshing of 

the different regions for optimization purposes. For proper simulation, reattachment 

would later be required through the establishment of links between the adjacent surfaces. 

Meshing was also simplified through the consolidation of the etch holes into two large 

holes placed on opposite sides of the structure. This allowed for the use of a relatively 

coarse mesh through the interior of the structure while still maintaining the same inertial 

resistance to a change in motion. The process definition file used to generate the solid 

model is shown in Figure 6.16. This procedure was far more simple than that utilized for 

the electrostatic model, requiring only the base layers, a sacrificial layer patterned for 

spring anchoring, and the structural layer. Figure 6.17(a) shows the meshed solid model. 

The structural region was assigned mesh dimensions in the x-, y-, and z-directions of 

20µm, 12µm, and 6µm, respectively, and the spring regions had 2µm, 2µm, and 4µm  
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Figure 6.15: Imported layout of structural region consisting only of the proof mass, 

moving electrodes, and springs. Meshing was optimized through the consolidation of the 

etch holes and the separation of the springs from the structure.  

 

 

 
Figure 6.16: Modified fabrication process file utilizing only the base layers, sacrificial 

layer, and poly1 structural layer. The interconnect layers were not required and thus the 

structure was anchored directly to silicon nitride. 
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./  

Figure 6.17(a): Meshed model utilized for mechanical simulation. Springs were modeled 

as separate regions and thus could be given a finer mesh, as is needed for accurate spring 

constant calculations, while the structural mesh remained coarse in order to minimize 

computational requirements. 

 

 

nominal element sizes. The mesh generator was again instructed to create at least two 

elements for each surface, further reducing the element size in several locations. A closer 

look at one of the spring regions, given in Figure 6.17(b), shows the relative difference 

between the two meshes. Had they not been separated, it would not have been possible to 

assign them different mesh parameters. For the software to recognize them as attached, 

each of the adjacent surfaces (or patches) had to be selected, assigned a name, and listed 

as a linkage boundary condition in the LinkageBCs window shown in Figure 6.18(a). 

Two types of links were available; rigid links place limits on the strain allowed in the 

attachment patches based upon the radius value assigned (integral values from 0.0 to 7.0), 

thus potentially reducing accuracy, whereas tied links allow for unrestricted deformation  
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Figure 6.17(b): Close-up image of a spring region from the solid model showing the fine 

details of the mesh. The springs had five elements in the vertical direction while the 

remainder of the structure had three. 

 

 

 
Figure 6.18(a): Re-attachment of the springs to the structure through linkage boundary 

conditions. Rigid links were used as opposed to the more complex tied links, which were 

found to increase computational requirements with a minimal effect on results. 
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at the expense of computational resources. Experimentation with the two formats as well 

as different rigid link radii showed that the deformation in the patches was sufficiently 

minimal such that using rigid links with a radius value of 1.0 produced results very 

similar to those of tied links with far less computation time. Only a single surface 

boundary condition was needed, that being the restriction of motion in the anchor regions 

as shown in the SurfaceBCs window of Figure 6.18(b). Applying the loads was a multi-

step procedure that began with the VolumeBCs window of Figure 6.18(c). For this model, 

two separate accelerations were applied; the Set1 load was a fixed 1g gravitational force  

 

 
Figure 6.18(b): Surface boundary condition preventing motion of the four anchor patches 

in any direction. 

 

 

 
Figure 6.18(c): Volumetric boundary conditions establishing two separate acceleration 

loads. The first was a fixed load defined as shown in Figure 6.17(d). The second was a 

trajectory by the name of MechBC1 defined as shown in Figures 6.17(e-h). 



 235 

 
(d) 

 
(e)

Figure 6.18(d,e): Acceleration loads applied separately but simultaneously to the 

structure under the two Edit tabs in Figure 6.17(c). The load in (d) referred to the 

downward gravitational force. The load in (e) was a scaling factor that was multiplied by 

the trajectory vector t1, defined in Figures 6.17(f-h) to establish the load MechBC1. 

 

 

 
(f) 

 

 
(g) 

 
(h) 

Figures 6.18(f-h): Definition of acceleration trajectory load MechBC1. The trajectory 

was established under the name t1 in (f) and assigned actual values through the Edit tab, 

shown in (h). It was then incorporated as a mechanical boundary condition in (g) at which 

point an additional scaling factor may be utilized. 
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applied through the Edit tab as shown in Figure 6.18(d), and the Set2 load was a 

trajectory identified as MechBC1 defined elsewhere and assigned a direction and optional 

scaling factor through the Edit tab of Figure 6.18(e). Definition of MechBC1 occurred 

through the series of windows shown in Figures 6.18(f-h). A trajectory was allocated 

under the name t1 in Figure 6.18(f) that was assigned to the boundary condition load 

MechBC1 through Figure 6.18(g) with another scaling opportunity. The actual values 

used in the simulation are shown in Figure 6.18(h) and correspond to applied 

accelerations ranging from 0g-10g. Figure 6.19 shows the structural shift computed for 

each of the four different spring styles. The values verified the accuracy of the calculated 

spring constants, with results of 4.98N/m, 5.73N/m, 13.57N/m, and 17.46N/m for Springs 

1-4, which were all within 5% of the calculated values of 4.77N/m, 5.72N/m, 13.27N/m, 

 

 
Figure 6.19: Mechanical simulation results for each of the four spring styles. Reaching 

the targeted 0.15µm structural shift under full load required accelerations of 2.54g, 2.90g, 

6.88g, and 8.86g for Springs 1-4, respectively, corresponding to spring constants of 

4.98N/m, 5.73N/m, 13.57N/m, and 17.46N/m. 
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and 17.69N/m. Downward deflection in the z-direction due to the gravitational force was 

found to be in the range of 0.543-2.87nm, corresponding to vertical spring constants from

103.2-544.9N/m. The accuracy in the results confirmed that the devices were ready to 

begin fabrication.  

 

6.6: Device Fabrication 

 

 The accelerometer fabrication process was initiated with six 100mm wafers 

purchased from University Wafer with 1µm of thermal silicon dioxide on the front and 

back sides. The wafers were of the <100> orientation and boron-doped to the 10-20Ω-cm 

range. The first three films were all deposited via low pressure chemical vapor deposition 

(LPCVD) in one of several TMX9K 4304 tube furnaces. Deposition of the base silicon 

nitride layer was done through the decomposition of SiH2Cl2 (40sccm) and NH3 

(160sccm) at 150mTorr and 820
o
C. Measurements based on spectroscopic reflectometry 

using a NanoSpec 6100 indicated an average actual thickness of 0.271µm. This system 

was used for all film thickness measurements unless indicated otherwise. The poly0 

lower interconnects were then formed from a polysilicon layer produced using SiH4 

(80sccm) at 180mTorr and 625
o
C. The measured thickness was found to be 0.316µm. 

Following deposition, this film was doped with phosphorous, again in a TMX9K 4304 

furnace, in order to enhance its conductivity. This was done at 1175
o
C. Following 

doping, the sheet resistance was measured on a four-point probe and found to be 

26.5Ω/square, or 8.38E-4 Ω-cm. This layer was then patterned to form the interconnect 

traces and sub-structural ground plane to which the device is anchored. Etching was done 

in a LAM 9400 RIE system at 500W using HBr (100sccm) with He (100sccm) as a 

carrier gas. The first inter-layer dielectric, poly0-poly1, consisted of an undoped silicon  
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Figure 6.20(a): Image of full device following patterning of the poly0-poly1 silicon 

dioxide layer, taken at 5X magnification. 

 

 
Figure 6.20(b): Close-up of upper left-hand corner of device following poly0-poly1 

patterning, taken at 20X magnification. Vias and anchor regions were visible in white and 

appeared to be in good alignment. 
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dioxide film deposited using N2O (120sccm) and SiH2Cl2 (60sccm) at 400mTorr and 

920
o
C. Measurement indicated an actual thickness of 1.19µm, considerably lower than 

the 2µm target but nevertheless deemed to be sufficient as the device springs were highly 

rigid in the vertical direction. Patterning defined the electrical vias as well as the 

structural anchor points, and the film was etched using buffered hydrofluoric acid (BHF). 

The images in Figures 6.20(a,b) illustrate the state of the device at this stage in 

fabrication. The poly1 structural layer was formed through one of two means; half of the 

six wafers underwent a 20µm epitaxial deposition at Lawrence Semiconductor and half 

received an 8µm LPCVD polysilicon layer at the University of Michigan (equipment 

usage policies dictated the limitation on the latter set). The former was done in an ASM 

2000 epitaxial reactor at 1150
o
C under atmospheric pressure using HSiCl3, and the latter 

was done in a Tempress 6400 tube furnace at 600
o
C under 220mTorr with 60sccm SiH4. 

The intent was for the epitaxial wafers to provide a low-stress baseline set of devices 

against which to compare the inductively annealed devices. This plan did not come to 

fruition, however, as will be discussed shortly. Following deposition, both sets of wafers 

were mechanically polished on a Logitech PM2A system in order to reduce the surface 

roughness. Figure 6.21 illustrates the non-uniform morphology of the epi-poly device 

layer. The silicon grown above the poly0-poly1 via sites appeared darker in color than the 

remainder, indicative of a transition boundary in which that formed above the vias was in 

direct contact with the poly0 polysilicon, which provided a seed layer, while the 

remainder was situated above silicon dioxide. The seed layer gave the epi-poly a base 

morphology upon which to form, resulting in material of better quality, whereas that 

grown rapidly above silicon dioxide exhibited a lower degree of crystallinity. Because the  
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Figure 6.21: Image of epi-poly device layer following the polishing step and prior to 

patterning, taken at 5X magnification. Darker areas, which occurred above the poly0-

poly1 via locations, reflected differences in crystalline morphology as compared to that 

deposited on silicon dioxide. 

 

 

poly1 film was of such high thickness, any features formed in the layers below, such as 

alignment marks, were no longer visible. Thus the first pattern transferred to the device 

layer provided for the removal of the polysilicon in two large window-like sections on 

opposite sides of the wafer in order to reveal the alignment marks. A second mask was 

intended to provide thermal isolation trenches for the test wafers, as was discussed in 

Section 6.2 and illustrated in Figure 4.24, and thus was not utilized as the epitaxial wafers 

did not require annealing. The third and final pattern defined the actual shape of the 

sensors including the proof mass, moving and stationary electrodes, springs, and etch 

holes. All etching was done on a STS Multiplex ICP using a recipe formulated for deep 

trench etching: 100W at the platen and 800W at the coil generator with gas flow rates of 
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130sccm SF6 and 13sccm O2 for etching and 85sccm C4F8 for passivation. Future 

endeavors will likely combine the second and third masks into a single step, but for this 

initial attempt they were left separate in order to allow for independent changes to each as 

the process evolves. Figures 6.22(a,b) illustrate the appearance of the devices following 

DRIE etching. The “window” openings made alignment possible but nevertheless 

somewhat difficult due to the 20µm of vertical spacing between the alignment marks and 

the wafer surface; this approximately doubled the distance between the patterns to be 

aligned, which rendered simultaneous focusing more difficult. Following the DRIE steps, 

the second inter-layer dielectric was deposited via plasma enhanced chemical vapor 

deposition (PECVD) to a 2.1µm measured thickness in order to provide complete refill of  

 

 
Figure 6.22(a): Image of sensor following patterning of the poly1 device layer, taken at 

5X magnification. The DRIE procedure first required the opening of two large “window” 

areas in order to reveal the alignment marks buried beneath. This made it possible to 

align to the previous layers. 
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Figure 6.22(b): Close-up image showing the lower left-hand corner of the poly1 

structural layer following patterning, taken at 50X magnification. The 2x6µm etch holes 

are visible, as are the seemingly random shapes of the regions of non-uniform 

morphology and their sizes relative to that of the electrodes. 

 

 

the 2µm-wide trenches in the structure. Deposition was done on a GSI Ultradep 2000 at 

200
o
C. Refill was far from complete, however, and it was largely the combination of the 

low quality of the poly1-metal1 silicon dioxide film and incomplete trench refill, as 

illustrated in Figure 6.23(a), that rendered the devices non-functional. It was at this stage 

that inductive annealing was intended to be performed on the three test wafers. 

Unfortunately, as was shown in Chapter 4, the technology had not yet advanced to a state 

in which the thorough annealing of an 8µm structure was achievable. Although 

temperatures in excess of 1000
o
C could be reached, limitations in ferromagnetic film 

quality limited the controllability range to below 900
o
C, above which the substrates 

rapidly entered the thermal runaway condition and melted almost instantaneously. The  



 243 

 
Figure 6.23(a): Image showing the partial but incomplete trench refill following 

deposition of the poly1-metal1 silicon dioxide layer, taken at 100X magnification. Etch 

holes appeared smaller and rounder than previously, with the new sizes exhibiting 

considerable variation as a result of non-uniformity in film thickness. 

 

 

process had been designed around the ferromagnetic ring and thermal trench concept 

exactly as was illustrated in Figure 4.24, and would have followed the standard inductive 

annealing procedure: deposition of a chrome adhesion layer to a thickness of 

approximately 100-150nm, deposition of the ferromagnetic film, photolithography and 

etching, inductive heating on the BEAVIS test system, and lastly the removal of both the 

ferromagnetic and adhesion films. Instead, however, the test wafers were placed in 

storage for future use and the process continued with only the epitaxial wafers. The 

poly1-metal1 silicon dioxide layer was etched in a Semi Group RIE 1000 TP/CC system 

at 180W and 20mTorr using 25sccm each of CF4 and CHF3. Figure 6.23(b) shows a 

portion of the device at this stage of the process. The vias appeared to have formed well, 

with minimal overetch. The final device layer, metal1, turned out to present a rather  
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Figure 6.23(b): Close-up image of the lower left-hand corner of the device, taken at 20X 

magnification, showing poly1-metal1 vias along the outer portion of the stationary 

electrodes.  

 

 

formidable challenge. With vias deeper than 2µm to fill, it was found that metallic films 

were not giving sufficient step coverage to overcome their relative softness, resulting in 

collapsed airbridges. For this reason, the decision was made to switch to polysilicon. 

Deposited via PECVD using a GSI Ultradep 2000, a 1.1µm polysilicon film gave much 

improved rigidity and step coverage. Following patterning, it was planned to sputter 

deposit a titanium layer for silicide formation at 1000
o
C via rapid thermal annealing 

(RTA) on a Heatpulse 410 RTA system. The unreacted titanium was to be removed 

during device release, as it is known to dissolve in BHF [Williams, et al., 1996]. Test 

samples showed, however, that the RTA chamber was substantially contaminated with 

metals such as lead. The result was an alloy that was not removable in standard etching 

solutions including BHF and thus would have prevented device release. Thus the 
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silicidation procedure was abandoned for this first process iteration and the wafers were 

advanced to the release step. Wafers were cleaved into quarters and each portion was 

processed individually in order to maximize the chances of obtaining one or more 

functional devices. Release began with a 1-hour soak in BHF to dissolve the supporting 

silicon dioxide layers. This was followed with a ten-minute rinse in de-ionized water 

followed by immersion in isopropanol, methanol, and pentane for ten minutes each. The 

purpose of the three solvents was to reduce the likelihood of stiction; they exhibit 

increasing surface tension, helping to prevent released features from being pulled toward 

each other or to the substrate. Agitation was minimized as much as possible during each 

bath as well as when in transition, again for anti-stiction purposes. Thus concluded the 

first pass of the MTU high aspect ratio transducer process. 

 Despite the effort that was made, no functional devices were found after this first 

process iteration. Figure 6.24(a) shows a SEM image of a completed, unreleased sensor. 

From the multi-toned appearance of the surface layers, it was evident that both the poly1-

metal1 silicon dioxide and the metal1 silicon layers exhibited textural non-uniformity. 

The 2.1µm silicon dioxide failed to fully refill the poly1 trenches as shown in Figure 

6.24(b), indicating that the deposition reaction did not adequately permeate below the 

polysilicon surface. Increasing the dielectric’s thickness would have the adverse effect of 

increasing the step height of the poly1-metal1 vias and further complicating airbridge 

formation, and thus a more elaborate refill procedure will likely be required. In the future, 

the use of a two-step PSG deposition with an intermediate heat treatment for reflow is 

suggested. Refinement of this portion of the process will be critical to device fabrication 

unless the airbridges are eliminated in favor of a second buried interconnect. 
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Figure 6.24(a): SEM image of a completed, unreleased accelerometer. Both of the two 

PECVD films, poly1-metal1 and metal1, exhibited significant non-uniformity in 

morphology, as is evidenced by the film discoloration. 

 

 
Figure 6.24(b): Close-up SEM image of the right-hand side of the device illustrating the 

incomplete refill of the structural trenches. While some portions of the electrode gaps had 

closed, the majority remained open and susceptible to trapping subsequent materials.  
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Conclusion 

 

This chapter presented the process by which a lateral accelerometer was designed 

and fabricated for the purpose of demonstrating the inductive annealing technology. The 

basic components of a device of this nature were defined, and the component values that 

resulted from the design choices were specified. Modeling through finite element 

simulation was utilized to confirm design accuracy as well as to help to verify the 

absence of basic layout errors, which are much easier to identify and correct in the 

software phase of development than in the later hardware phase. The combined results of 

the electrostatic and mechanical simulations produced a high degree of confidence that 

the devices should perform as expected. Unfortunately, the fabrication process was of a 

highly complex nature and will likely require several iterations before successful devices 

are produced. Nevertheless, the exercise served as a first iteration in the development of a 

high aspect ratio MEMS process. The goal of incorporating inductive annealing into a 

state of the art micromachining technology remains unfulfilled, but with continued effort 

will be realized in the near future.  
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Chapter 7: Conclusion and Recommendations for Future Work 
 

7.1: Conclusion 

 

 This dissertation proposed a novel semiconductor fabrication technology in which 

inductively heated ferromagnetic films were utilized to establish controlled temperature 

gradients within a semiconductor device. The primary research motivation was to address 

existing limitations to the monolithic integration of MEMS and CMOS due to conflicts in 

thermal budget as was described in Chapter 1. Development was concentrated on surface 

micromachined polysilicon structures in accordance with present industrial preferences. 

The inductive annealing technology utilized the superior magnetic properties of 

ferromagnetic materials to drive the efficient conversion of energy from magnetic to 

thermal. Selective patterning provided the ability to target a specific region of a structure 

or device for the purpose of localized polysilicon recrystallization.  

Process characterization and refinement made use of theory, simulation, and 

experimentation. Correlation of these three counterparts was confirmed through analysis 

of output trends with respect to input parameters. The theoretical equations of Chapter 2 

predicted the impact of film properties, dimensions, and the applied magnetic field on the 

resulting power dissipation and induced temperatures. Analysis of the simulated trends in 

Chapter 3 supported these relationships both in magnitude and in rate of change while 

also providing qualitative information on process behaviors. The experimental 

measurements in Chapter 4 reflected some deviation from theoretical assumptions but 

nevertheless were typically within an order of magnitude of expectation. Thus the 

underlying variables that defined process efficiency were well understood, as were the 

requirements for performance improvement. 
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Many challenges were revealed during process development that limited the 

ability to achieve the research objectives as initially defined. Solutions were obtained 

through both innovation and directional changes, but the overall scope was nevertheless 

narrowed due in part to processing capabilities. The relative magnetic permeability of the 

heated film was perhaps the most important input variable to the process, but challenges 

in film quality limited that of the usable materials to only 15.8, considerably short of the 

expectations discussed in Chapter 2. Other problems that rendered the technology in its 

present state undesirable for industrial application included thermal runaway above 

800
o
C, stress-induced delamination, non-uniformity across the heated wafer, and the 

overall footprint. Proposed solutions to these concerns are discussed in Section 7.2. 

Finally, the polysilicon annealing results failed to show a complete anneal on a functional 

micro-mechanical sensor as was originally intended. The accelerometer design presented 

in Chapter 6 was simulated successfully, but challenges encountered during fabrication 

rendered the final devices non-functional. Annealing was demonstrated on polysilicon 

cantilever beams and accelerometer structures in Chapter 5, but in both cases the 

recrystallization was incomplete due to trade-offs between induced temperature and 

process control. Thus thorough anneals were only demonstrated on the proof-of-concept 

cantilever beams, for which the early test configuration rendered essentially no process 

control, and on blanket polysilicon films. The realization of a functional, inductively 

annealed microsensor has been left for future research endeavors. 

In conclusion, this initial phase of process development was successful in that the 

capability of the inductive annealing technology to resolve the CMOS-MEMS integration 

challenge was confirmed. Measures were taken to align with industrial fabrication 
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processes and, although the work remains far from complete, the technology has the 

potential to resolve the drawbacks of existing methods and provide for maximum 

flexibility in device design and fabrication through system modularity, unrestricted 

structural materials, and precise heat treatment control. 

 

7.2: Recommendations for Future Work 

 

 Continued research into the development of the technology should focus on the 

optimization of coupling efficiency between the magnetic field and the ferromagnetic 

films. One of the key avenues toward achieving this is the improvement of the properties 

of the magnetic films themselves, with studies recommended into alternate deposition 

methods, post-deposition magnetic annealing, optimum alloy composition for the 

research application, stress reduction for adhesion improvement and elimination of 

device tear-out. Enhanced thermal isolation methods are also of high importance, as was 

demonstrated through both simulation and experimentation. The utilization of a base 

layer extremely low in thermal conductivity so as to isolate the device region from the 

highly conductive substrate is of great importance, and a thermally resistive region of 

separation between the regions of high and low temperature is also recommended. Lastly, 

further development of the inductive heating test system must include a means by which 

the heated film can be controllably cooled back down so as to prevent stress-induced 

delamination, and methods to increase the strength of the applied magnetic field are also 

suggested. The latter could be achieved through increased power to the coil and/or 

improvements in coil design though increased turns of the solenoid or possibly even a 

different style altogether. The addition of a high-resolution thermal imaging camera 



 251 

would also be of great assistance, as it would provide a more direct, quantitative means 

by which the induced thermal gradients could be analyzed and optimized. 

 The high aspect ratio accelerometer technology presented in Chapter 6 also left 

many opportunities for improvement. The primary obstacle that prevented successful 

completion of the inertial sensors was the refill of the trenches within the polysilicon 

device layer. The development of a SiO2 reflow anneal would help to ensure a more 

thorough, uniform trench refill, but maintaining compatibility with the low-temperature 

nature of the post-CMOS integration approach presented a challenge. Other 

recommendations include improving the adhesion at the airbridge contacts, and 

developing a better means by which to perform alignments following the deposition of 

the thick device layer. This process must be optimized on its own before an attempt can 

be made to incorporate the inductive annealing technology. The successful integration 

would yield a true demonstration that would very likely gain the attention of the 

semiconductor industry. 
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Appendix A: ANSYS Code 
 

A.1: Simulation Code for ANSYS Example Induction Heating Model 

 

Note: This simulation was obtained from the ANSYS Coupled-Field Analysis Guide 

[ANSYS Coupled-Field Analysis Guide, Sec. 2.10.2.9] and was re-printed with 

permission. An exclamation point signifies the beginning of a comment. For clarity in 

explanation, additional comments have been provided; these are indicated with double 

exclamation points. 

 

/batch,list 

/filenam,induc 

/prep7 

shpp,off         ! Shape warning disabled 

/title, induction heating of a solid cylinder billet 

/com, 

 

!!This model is a sequentially-coupled induction heating  

!!simulation. It a two-dimensional axisymmetric model,  

!!meaning that it's drawn in two dimensions but rotated  

!!about the y-axis. 

 

!!ELEMENT TYPE DEFINITIONS FOR ELECTROMAGNETIC MODEL 

!!Sets up two Plane13 planar element types to distinguish  

!!between two different portions of the model, and a Surf151  

!!surface element type utilized for simulating thermal  

!!radiation. Element1 (Plane13) is used for the structure  

!!and is converted to Plane55 in the thermal model. Element2  

!!(Plane13) is used for the coil and surrounding air, and is  

!!converted to the Null0 type (not simulated) in the thermal  

!!model. Element3 (Surf151) overlays onto the surface of the  

!!heated structure and is used only in the thermal model. 

 

et,1,13,,,1               ! PLANE13, axisymmetric, AZ dof 

et,2,13,,,1  

et,3,151,,,1,1,1        ! SURF151, thermal, radiation 

 

!!VARIABLE DEFINITIONS FOR BOTH MODELS 

!!These variables set the size of the structure, the  

!!frequency and time durations of the simulations, and the  

!!skin depth which determines the minimum element size.  

 

r,3,0                     ! Real constant set for SURF151 

row=.015                 ! outer radius of workpiece 

ric=.0175                 ! inner radius of coil 

roc=.0200                ! outer radius of coil 
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ro=.05                    ! outer radius of model 

t=.001                    ! model thickness 

freq=150000              ! frequency (hz.) 

pi=4*atan(1)            ! pi 

cond=.392e7              ! maximum conductivity 

muzero=4e-7*pi          ! free-space permeability 

mur=200                  ! maximum relative permeability 

skind=sqrt(1/(pi*freq*cond*muzero*mur))  ! skin depth 

ftime=3                   ! final time 

tinc=.05                  ! time increment for harmonic analysis 

time=0                    ! initialize time 

delt=.01                  ! maximum delta time step 

 

!!MATERIAL PROPERTIES FOR ELECTROMAGNETIC MODEL 

!!Sets the magnetic permeability and the electrical  

!!conductivity for the air (material 1), the structure  

!!(material 2) and the coil (material 3). Note that the  

!!properties for the structure are temperature dependent. 

 

emunit,mks               ! set magnetic units 

mp,murx,1,1              ! air relative permeability 

mp,murx,3,1              ! coil relative permeability 

mptemp,1,25.5,160,291.5,477.6,635,698    ! temps for relative permeability 

mptemp,7,709,720.3,742,761,1000 

mpdata,murx,2,1,200,190,182,161,135,104  ! steel relative permeability 

mpdata,murx,2,7,84,35,17,1,1 

mptemp 

mptemp,1,0,125,250,375,500,625           ! temps for resistivity  

mptemp,7,750,875,1000 

mpdata,rsvx,2,1,.184e-6,.272e-6,.384e-6,.512e-6,.656e-6,.824e-6 

mpdata,rsvx,2,7,1.032e-6,1.152e-6,1.2e-6  ! steel resistivity 

 

!!STRUCTURE DEFINITION 

!!The structure is built out of rectangles that are "glued"  

!!together in order to force shared boundaries. Axisymmetric  

!!rotation converts the rectangles into concentric rings.  

!!The innermost ring simulates a cylindrical heated sample.  

!!It is encircled by a single coil loop, with air filling  

!!the surrounding space.  

 

rectng,0,row,0,t         ! billet 

rectng,row,ric,0,t       ! air-gap 

rectng,ric,roc,0,t       ! coil 

rectng,roc,ro,0,t        ! outer air 

aglue,all 

numcmp,area 
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!!MESHING 

!!The mesh sizes are selected via keypoints. The mesh size  

!!in the heated structure is modulated from 1/2 of the  

!!minimum skin depth, at the outer edge, to 40 skin depths  

!!at the inner edge. The other areas (air and coil) are  

!!divided into 1mm regions. Lastly, a single node, called a  

!!"space node", is created for the purpose of modeling  

!!thermal radiation. The space node provides a site at which  

!!the radiated energy is collected. 

 

ksel,s,loc,x,row         ! select keypoints at outer radius of workpiece 

kesize,all,skind/2       ! set meshing size to 1/2 skin depth 

ksel,s,loc,x,0           ! select keypoints at center 

kesize,all,40*skind      ! set meshing size 

lsel,s,loc,y,t/2         ! select vertical lines 

lesize,all,,,1            ! set 1 division through thickness 

lsel,all 

asel,s,area,,1 

aatt,2,1,1                ! set attributes for billet region 

asel,s,area,,3 

aatt,3,1,2                ! set attributes for coil region 

asel,s,area,,2,4,2 

aatt,1,1,2                ! set attributes for air region 

asel,all 

mshape,0,2d 

mshk,1 

amesh,1                  ! mesh billet area 

lsel,s,loc,y,0 

lsel,a,loc,y,t 

lsel,u,loc,x,row/2 

lesize,all,.001 

lsel,all 

amesh,all                 ! mesh remaining areas 

n                         ! create space node for SURF151    

*get,nmax,node,,num,max 

lsel,s,loc,x,row 

type,3 

real,3 

mat,2 

lmesh,all             ! mesh billet outer radius with SURF151       

*get,emax,elem,,num,max 

emodif,emax,3,nmax    ! modify element to add space node for radiation 

 

!!SET UP ELECTROMAGNETIC MODEL 

!!Loads, boundary conditions, and solution options are  

!!applied: AZ=0 along y-axis, impressed coil current  
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!!density, harmonic frequency, and analysis type (harmonic).  

!!The elements are set to their required configuration for  

!!the electromagnetic model (Plane13, Plane13, Null0).  

!!Lastly, the physics environment is stored. 

 

et,3,0                    ! reset type 3 to null element  

nsel,s,loc,x 

d,all,az,0                ! apply flux-normal bc. 

nsel,all 

esel,s,mat,,3 

bfe,all,js,,,,15e6       ! apply current density to coil 

esel,all 

finish 

/solu 

antyp,harm 

harfrq,150000 

physics,write,emag       ! write emag physics file 

finish 

 

!!ELEMENT TYPE DEFINITIONS FOR THERMAL MODEL 

!!Sets up a Plane55 planar element type (Element1) for the  

!!heated structure, a Null0 element (Element2) for the coil  

!!and surrounding air, and a Surf151 surface element type  

!!(Element3) for radiation modeling. 

 

/prep7 

lsclear,all               ! clear all bc's and options 

et,1,55,,,1               ! PLANE55 thermal element, axisymmetric 

et,2,0                    ! null element type for coil and air region 

et,3,151,,,1,1,1         ! SURF151 element for radiation 

 

!!MATERIAL PROPERTIES FOR THERMAL MODEL 

!!Sets the thermal conductivity, enthalpy (or internal  

!!energy), and emissivity for the heated structure. Note  

!!that the thermal conductivity and enthalpy are both  

!!temperature dependent. 

 

keyopt,3,9,1 

r,3,1,5.67e-8            ! form factor, Stefan-Boltzman constant 

mptemp 

mptemp,1,0,730,930,1000    ! temps for conductivity 

mpdata,kxx,2,1,60.64,29.5,28,28 

mptemp                           ! temps for enthalpy 

mptemp,1,0,27,127,327,527,727 

mptemp,7,765,765.001,927 

mpdata,enth,2,1,0,91609056,453285756,1.2748e9,2.2519e9,3.3396e9 
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mpdata,enth,2,7,3.548547e9,3.548556e9,4.3520e9 

mp,emis,2,.68                    ! emissivity 

finish 

 

!!SET UP THERMAL MODEL 

!!Initial conditions and model parameters are applied:  

!!Celsius temperature scale, 100C initial temperature, 25C  

!!far-field temperature, transient analysis type, and  

!!computer-chosen time steps in the range of 1us-10ms  

!!(delt=10ms from variable definitions). Lastly, the physics  

!!environment is stored. 

 

/solu 

antype,trans 

toffst,273 

tunif,100                        ! initial uniform temperature 

d,nmax,temp,25                   ! ambient temperature 

cnvtol,heat,1                    ! convergence tolerance 

kbc,1                            ! step loads 

trnopt,full 

autos,on                         ! auto time-stepping 

deltim,1e-5,1e-6,delt,on        ! time step control 

outres,basic,all                 ! save all load step information 

physics,write,thermal           ! write thermal physics file  

finish 

 

!!EXECUTE MODEL 

!!This do-loop runs the simulation. The number of loops  

!!depends on the user-specified final time (ftime) and time  

!!duration between re-evaluation of electromagnetic fields  

!!(tinc). Each iteration of the loop begins with the  

!!electromagnetic model. It assigns a uniform temperature of  

!!100C for the first pass and reads in the results of the  

!!thermal model for each subsequent pass. After reaching a  

!!solution, the code switches to the thermal model. The  

!!thermal simulation is restarted with the updated Joule  

!!heat data, and evolution of the transient thermal behavior  

!!continues until the time duration specified (time) is reached. 

 

*do,i,1,ftime/tinc               ! solution *do loop 

time=time+tinc                   ! increment time 

physics,read,emag                ! read emag physics file 

/solu 

*if,i,eq,1,then 

 tunif,100                       ! initial temperature 

*else 
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 ldread,temp,last,,,,,rth        ! read thermal analysis temperatures 

*endif 

solve                            ! solve harmonic analysis 

finish 

physics,read,thermal             ! read thermal physics file 

/assign,esav,therm,esav         ! redirect files for use in thermal restart 

/assign,emat,therm,emat 

/solu 

*if,i,gt,1,then 

 antype,trans,rest               ! thermal restart 

*endif 

time,time                        ! time at end of thermal run 

esel,s,mat,,2                    ! select billet region 

ldread,hgen,,,,2,,rmg            ! apply coupled joule heating load from emag 

esel,all 

solve 

finish 

/assign,esav                     ! reassign files to default 

/assign,emat 

*enddo                           ! end of solution looping 

finish 

save                             ! save database 

 

!!PLOT RESULTS 

!!The center and outer edge of the heated structure are  

!!selected for evaluation. The temperatures at each location  

!!are given over time both graphically and numerically.  

 

/post26                         ! time-history postprocessor 

/show 

nsol,2,1,temp,,tempcl           ! store temperature at billet centerline  

nsol,3,2,temp,,tempsurf     ! store temperature at billet outer diameter  

plvar,2,3                        ! plot temperature rise over time 

prvar,2,3                        ! print temperature rise over time 

finish 

 

 

A.2: Material Properties for Thin Film Simulations 

 

Silicon Substrate - 1E15 Boron Doped  

Density: Senturia, 2001 (p. 196). 

Thermal Conductivity: CRC, 1989 (pp. E-14 - E-16). 

Resistivity: Sze, 1981 (pp. 32-33). 

Specific Heat: Okhotin, et al., 1972. 

Emissivity: Sato, 1967. 

Relative Permeability: CRC, 1999 (pp. 4-131 – 4-138). 
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/COM,ANSYS RELEASE  6.0    UP20010919       18:27:46    09/06/2004 

/NOP 

/COM,Internal UNITS set at file creation time = SI   (MKS) 

TBDEL,ALL,_MATL 

MPDEL,ALL,_MATL 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,DENS,_MATL   , 1, 2331.00000      

MPTEMP,R5.0, 3, 1,  200.000000    ,  300.000000    ,  1000.00000 ,     

MPDATA,R5.0, 3,KXX ,_MATL   , 1, 250.000000        ,  170.000000 , 30.00000000    , 

MPTEMP,R5.0, 12, 1,  250.000000    ,  300.000000    ,  400.000000 ,    

MPTEMP,R5.0, 12, 4,  500.000000    ,  600.000000    ,  700.000000 ,    

MPTEMP,R5.0, 12, 7,  800.000000    ,  900.000000    ,  1000.00000 , 

MPTEMP,R5.0, 12, 10,  1100.00000    ,  1200.00000    ,  1300.00000 , 

MPDATA,R5.0, 12,RSVX,_MATL   , 1, 0.026300000    , 0.040000000   , 0.07752000    , 

MPDATA,R5.0, 12,RSVX,_MATL   , 4, 0.100000000    , 0.066670000   , 0.05000000    , 

MPDATA,R5.0, 12,RSVX,_MATL   , 7, 0.040000000    , 0.033330000   , 0.02500000  , 

MPDATA,R5.0, 12,RSVX,_MATL   , 10, 0.01670000    , 0.012500000  ,  0.01000000 , 

MPTEMP,R5.0, 9, 1,  200.000000    ,  300.000000    ,  400.000000 , 

MPTEMP,R5.0, 9, 4,  500.000000    ,  600.000000    ,  800.000000 , 

MPTEMP,R5.0, 9, 7,  1000.00000    ,  1200.00000    ,  1400.00000 , 

MPDATA,R5.0, 9, C  ,_MATL   , 1, 500.0000000    ,  670.000000   , 760.0000000  , 

MPDATA,R5.0, 9, C  ,_MATL   , 4, 820.0000000    ,  860.000000   , 890.0000000  , 

MPDATA,R5.0, 9, C  ,_MATL   , 7, 920.0000000    ,  950.000000   , 970.0000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,EMIS,_MATL   , 1, 0.630000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURX,_MATL   , 1,  1.00000000   , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURY,_MATL   , 1,  1.00000000   , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURZ,_MATL   , 1,  1.00000000   , 

/GO 

 

Silicon Dioxide 

Density: Senturia, 2001 (p. 196). 

Thermal Conductivity: CRC, 1989 (pp. E-14 - E-16). 

Resistivity: Sze, 1981 (pp. 850-851). 

Specific Heat: Grove, 1967. 

Emissivity: Forsythe, 2003. 

Relative Permeability: CRC, 1999 (pp. 4-131 – 4-138). 

 

/COM,ANSYS RELEASE  6.0    UP20010919       17:45:10    07/29/2004 

/NOP 

/COM,Internal UNITS set at file creation time = SI   (MKS) 

TBDEL,ALL,_MATL 

MPDEL,ALL,_MATL 
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MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,DENS,_MATL   , 1,  2200.00000    , 

MPTEMP,R5.0, 4, 1,  200.000000    ,  300.000000    ,  400.000000    

MPTEMP,R5.0, 4, 4,  500.000000 

MPDATA,R5.0, 4,KXX ,_MATL   , 1,  1.10000000    ,  1.28000000    ,  1.40000000     

MPDATA,R5.0, 4,KXX ,_MATL   , 4,  1.50000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000     

MPDATA,R5.0, 1,RSVX,_MATL   , 1, 1.000000000E+10,   

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,C   ,_MATL   , 1,  1000.00000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,EMIS,_MATL   , 1, 0.700000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURX,_MATL   , 1,  1.00000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURY,_MATL   , 1,  1.00000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURZ,_MATL   , 1,  1.00000000    , 

/GO 
 

Polysilicon - Undoped 

Density: Senturia, 2001 (p. 196). 

Thermal Conductivity: CRC, 1989 (pp. E-14 - E-16); assumed the same as for silicon. 

Resistivity: Sze, 1981 (pp. 32-33); Moore, et al., 1994. 

Specific Heat: Okhotin, et al., 1972; assumed the same as for silicon. 

Emissivity: Sato, 1967; assumed the same as for silicon. 

Relative Permeability: CRC, 1999 (pp. 4-131 – 4-138).  

 

/COM,ANSYS RELEASE  6.0    UP20010919       18:27:46    09/06/2004 

/NOP 

/COM,Internal UNITS set at file creation time = SI   (MKS) 

TBDEL,ALL,_MATL 

MPDEL,ALL,_MATL 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,DENS,_MATL   , 1, 2331.00000      

MPTEMP,R5.0, 3, 1,  200.000000    ,  300.000000    ,  1000.00000 ,     

MPDATA,R5.0, 3,KXX ,_MATL   , 1, 250.000000        ,  170.000000 , 30.00000000    , 

MPTEMP,R5.0, 12, 1,  250.000000    ,  300.000000    ,  400.000000 ,    

MPTEMP,R5.0, 12, 4,  500.000000    ,  600.000000    ,  700.000000 ,    

MPTEMP,R5.0, 12, 7,  800.000000    ,  900.000000    ,  1000.00000 , 

MPTEMP,R5.0, 12, 10,  1100.00000    ,  1200.00000    ,  1300.00000 , 

MPDATA,R5.0, 12,RSVX,_MATL   , 1, 289.2000000    , 220.0000000   , 102.2000000  , 

MPDATA,R5.0, 12,RSVX,_MATL   , 4, 77.78000000    , 77.78000000   , 61.72000000  , 

MPDATA,R5.0, 12,RSVX,_MATL   , 7, 50.52000000    , 42.34000000   , 36.15000000  , 

MPDATA,R5.0, 12,RSVX,_MATL   , 10, 31.3300000    , 27.50000000  ,  24.39000000 , 

MPTEMP,R5.0, 9, 1,  200.000000    ,  300.000000    ,  400.000000 , 

MPTEMP,R5.0, 9, 4,  500.000000    ,  600.000000    ,  800.000000 , 
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MPTEMP,R5.0, 9, 7,  1000.00000    ,  1200.00000    ,  1400.00000 , 

MPDATA,R5.0, 9, C  ,_MATL   , 1, 500.0000000    ,  670.000000   , 760.0000000  , 

MPDATA,R5.0, 9, C  ,_MATL   , 4, 820.0000000    ,  860.000000   , 890.0000000  , 

MPDATA,R5.0, 9, C  ,_MATL   , 7, 920.0000000    ,  950.000000   , 970.0000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,EMIS,_MATL   , 1, 0.630000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURX,_MATL   , 1,  1.00000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURY,_MATL   , 1,  1.00000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURZ,_MATL   , 1,  1.00000000    , 

/GO 

 

NiFe19 

Density: CRC, 1989 (pp. B68-B146); interpolated between nickel and iron. 

Thermal Conductivity: CRC, 1989 (pp. E14-E16); interpolated between nickel and iron. 

Resistivity: Measured via Four-Point Probe. 

Specific Heat: CRC, 1989 (pp. D180-D181); interpolated between nickel and iron. 

Emissivity: CRC, 1989 (p. E-406). 

Relative Permeability: Measured via Vibrating Sample Magnetrometry. 

 

/COM,ANSYS RELEASE  6.0    UP20010919       16:49:20    11/04/2004 

/NOP 

/COM,Internal UNITS set at file creation time = SI   (MKS) 

TBDEL,ALL,_MATL 

MPDEL,ALL,_MATL 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,DENS,_MATL   , 1,  8058.00000    , 

MPTEMP,R5.0, 13, 1,  273.000000    ,  350.000000    ,  400.000000    ,   

MPTEMP,R5.0, 13, 4,  500.000000    ,  600.000000    ,  700.000000    ,    

MPTEMP,R5.0, 13, 7,  800.000000    ,  900.000000    ,  1000.00000    , 

MPTEMP,R5.0, 13, 10,  1100.00000    ,  1200.00000    ,  1300.00000    , 

MPTEMP,R5.0, 13, 13,  1400.00000     

MPDATA,R5.0, 13,KXX ,_MATL   , 1,  92.08600000    , 82.05030000   , 76.53610000  , 

MPDATA,R5.0, 13,KXX ,_MATL   , 4,  67.60330000    , 60.32460000   , 53.70760000  , 

MPDATA,R5.0, 13,KXX ,_MATL   , 7,  47.75240000    , 41.90740000   , 35.95210000  , 

MPDATA,R5.0, 13,KXX ,_MATL   , 10,  32.75390000    , 31.09970000   , 32.97450000, 

MPDATA,R5.0, 13,KXX ,_MATL   , 13,  34.07730000 

MPTEMP,R5.0, 13, 1,  273.000000    ,  300.000000    ,  400.000000    ,   

MPTEMP,R5.0, 13, 4,  500.000000    ,  600.000000    ,  700.000000    ,    

MPTEMP,R5.0, 13, 7,  800.000000    ,  900.000000    ,  1000.00000    , 

MPTEMP,R5.0, 13, 10,  1100.00000    ,  1200.00000    ,  1300.00000    , 

MPTEMP,R5.0, 13, 13,  1400.00000     

MPDATA,R5.0, 13,RSVX,_MATL   , 1, 1.690000000E-07, 2.100000000E-07, 

3.620000000E-07, 
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MPDATA,R5.0, 13,RSVX,_MATL   , 4, 5.130000000E-07, 6.650000000E-07, 

8.170000000E-07, 

MPDATA,R5.0, 13,RSVX,_MATL   , 7, 9.680000000E-07, 1.120000000E-06, 

1.270000000E-06, 

MPDATA,R5.0, 13,RSVX,_MATL   , 10, 1.420000000E-06, 1.580000000E-06, 

1.730000000E-06, 

MPDATA,R5.0, 13,RSVX,_MATL   , 13, 1.880000000E-06 

MPTEMP,R5.0, 13, 1,  273.000000    ,  300.000000    ,  400.000000    ,   

MPTEMP,R5.0, 13, 4,  500.000000    ,  600.000000    ,  700.000000    ,    

MPTEMP,R5.0, 13, 7,  800.000000    ,  900.000000    ,  1000.00000    , 

MPTEMP,R5.0, 13, 10,  1100.00000    ,  1200.00000    ,  1300.00000    , 

MPTEMP,R5.0, 13, 13,  1400.00000     

MPDATA,R5.0, 13,RSVY,_MATL   , 1, 1.690000000E-07, 2.100000000E-07, 

3.620000000E-07, 

MPDATA,R5.0, 13,RSVY,_MATL   , 4, 5.130000000E-07, 6.650000000E-07, 

8.170000000E-07, 

MPDATA,R5.0, 13,RSVY,_MATL   , 7, 9.680000000E-07, 1.120000000E-06, 

1.270000000E-06, 

MPDATA,R5.0, 13,RSVY,_MATL   , 10, 1.420000000E-06, 1.580000000E-06, 

1.730000000E-06, 

MPDATA,R5.0, 13,RSVY,_MATL   , 13, 1.880000000E-06 

MPTEMP,R5.0, 13, 1,  273.000000    ,  300.000000    ,  400.000000    ,   

MPTEMP,R5.0, 13, 4,  500.000000    ,  600.000000    ,  700.000000    ,    

MPTEMP,R5.0, 13, 7,  800.000000    ,  900.000000    ,  1000.00000    , 

MPTEMP,R5.0, 13, 10,  1100.00000    ,  1200.00000    ,  1300.00000    , 

MPTEMP,R5.0, 13, 13,  1400.00000     

MPDATA,R5.0, 13,RSVZ,_MATL   , 1, 1.690000000E-07, 2.100000000E-07, 

3.620000000E-07, 

MPDATA,R5.0, 13,RSVZ,_MATL   , 4, 5.130000000E-07, 6.650000000E-07, 

8.170000000E-07, 

MPDATA,R5.0, 13,RSVZ,_MATL   , 7, 9.680000000E-07, 1.120000000E-06, 

1.270000000E-06, 

MPDATA,R5.0, 13,RSVZ,_MATL   , 10, 1.420000000E-06, 1.580000000E-06, 

1.730000000E-06, 

MPDATA,R5.0, 13,RSVZ,_MATL   , 13, 1.880000000E-06 

MPTEMP,R5.0, 5, 1,  200.000000    ,  300.000000    ,  400.000000 

MPTEMP,R5.0, 5, 4,  700.000000    ,  1400.00000     

MPDATA,R5.0, 5,C   ,_MATL   , 1,  398.000000    , 461.000000     , 502.000000     , 

MPDATA,R5.0, 5,C   ,_MATL   , 4,  628.000000    , 921.000000     , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,EMIS,_MATL   , 1,  0.09000000    , 

MPTEMP,R5.0, 10, 1,  273.000000    ,  298.000000    ,  373.000000    ,   

MPTEMP,R5.0, 10, 4,  473.000000    ,  573.000000    ,  673.000000    ,    

MPTEMP,R5.0, 10, 7,  773.000000    ,  873.000000    ,  973.000000    , 

MPTEMP,R5.0, 10, 10, 1400.00000     

MPDATA,R5.0, 10,MURX,_MATL  , 1,  48.30400000    , 48.30400000   , 31.19400000 , 
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MPDATA,R5.0, 10,MURX,_MATL  , 4,  32.22900000    , 30.63700000   , 22.60000000 , 

MPDATA,R5.0, 10,MURX,_MATL  , 7,  6.461700000    , 1.010600000   , 0.970850000 , 

MPDATA,R5.0, 10,MURX,_MATL  , 10,  1.000000000     

MPTEMP,R5.0, 10, 1,  273.000000    ,  298.000000    ,  373.000000    ,   

MPTEMP,R5.0, 10, 4,  473.000000    ,  573.000000    ,  673.000000    ,    

MPTEMP,R5.0, 10, 7,  773.000000    ,  873.000000    ,  973.000000    , 

MPTEMP,R5.0, 10, 10, 1400.00000     

MPDATA,R5.0, 10,MURZ,_MATL  , 1,  48.30400000    , 48.30400000   , 31.19400000 , 

MPDATA,R5.0, 10,MURZ,_MATL  , 4,  32.22900000    , 30.63700000   , 22.60000000 , 

MPDATA,R5.0, 10,MURZ,_MATL  , 7,  6.461700000    , 1.010600000   , 0.970850000 , 

MPDATA,R5.0, 10,MURZ,_MATL  , 10,  1.000000000     

MPTEMP,R5.0, 10, 1,  273.000000    ,  298.000000    ,  373.000000    ,   

MPTEMP,R5.0, 10, 4,  473.000000    ,  573.000000    ,  673.000000    ,    

MPTEMP,R5.0, 10, 7,  773.000000    ,  873.000000    ,  973.000000    , 

MPTEMP,R5.0, 10, 10, 1400.00000     

MPDATA,R5.0, 10,MURY,_MATL  , 1,  15.75600000    , 15.75600000   , 15.19900000 , 

MPDATA,R5.0, 10,MURY,_MATL  , 4,  14.80100000    , 13.84600000   , 12.57300000 , 

MPDATA,R5.0, 10,MURY,_MATL  , 7,  9.310600000    , 1.106100000   , 1.082260000 , 

MPDATA,R5.0, 10,MURY,_MATL  , 10,  1.000000000     

/GO 

 

Vacuum - 50mTorr 

Density: Wikipedia, 2007. 

Thermal Conductivity: Ierardi, 1999  

Resistivity: CRC, 1999 (pp. 12-45 – 12-47). 

Specific Heat: Ierardi, 1999. 

Relative Permeability: Balanis, 1989 (p. 55). 

 

/COM,ANSYS RELEASE  6.0    UP20010919       20:31:24    12/03/2003 

/NOP 

/COM,Internal UNITS set at file creation time = SI   (MKS) 

TBDEL,ALL,_MATL 

MPDEL,ALL,_MATL 

MPTEMP,R5.0,11, 1,  300.000000    ,  400.000000    ,  500.000000     

MPTEMP,R5.0,11, 4,  600.000000    ,  700.000000    ,  800.000000     

MPTEMP,R5.0,11, 7,  900.000000    ,  1000.00000    ,  1100.00000     

MPTEMP,R5.0,11,10,  1200.00000    ,  1300.00000    , 

MPDATA,R5.0,11,DENS,_MATL   , 1, 7.740800000E-05, 5.810600000E-05, 

4.644500000E-05 

MPDATA,R5.0,11,DENS,_MATL   , 4, 3.870400000E-05, 3.317500000E-05, 

2.902800000E-05 

MPDATA,R5.0,11,DENS,_MATL   , 7, 2.580300000E-05, 2.322200000E-05, 

2.111100000E-05 

MPDATA,R5.0,11,DENS,_MATL   ,10, 1.935200000E-05, 1.786300000E-05, 

MPTEMP,R5.0,11, 1,  300.000000    ,  400.000000    ,  500.000000     

MPTEMP,R5.0,11, 4,  600.000000    ,  700.000000    ,  800.000000     
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MPTEMP,R5.0,11, 7,  900.000000    ,  1000.00000    ,  1100.00000     

MPTEMP,R5.0,11,10,  1200.00000    ,  1300.00000    , 

MPDATA,R5.0,11,KXX ,_MATL   , 1, 2.600000000E-02, 3.500000000E-02, 

4.000000000E-02 

MPDATA,R5.0,11,KXX ,_MATL   , 4, 4.700000000E-02, 5.300000000E-02, 

5.800000000E-02 

MPDATA,R5.0,11,KXX ,_MATL   , 7, 6.200000000E-02, 6.800000000E-02, 

7.200000000E-02 

MPDATA,R5.0,11,KXX ,_MATL   ,10, 7.800000000E-02, 8.300000000E-02, 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,RSVX,_MATL   , 1,  2.00000000E13.    , 

MPTEMP,R5.0,12, 1,  300.000000    ,  400.000000    ,  500.000000     

MPTEMP,R5.0,12, 4,  600.000000    ,  700.000000    ,  800.000000     

MPTEMP,R5.0,12, 7,  900.000000    ,  1000.00000    ,  1100.00000     

MPTEMP,R5.0,12,10,  1200.00000    ,  1300.00000    ,  1400.00000     

MPDATA,R5.0,12,C   ,_MATL   , 1,  1005.00000    ,  1015.00000    ,  1030.00000     

MPDATA,R5.0,12,C   ,_MATL   , 4,  1050.00000    ,  1075.00000    ,  1100.00000     

MPDATA,R5.0,12,C   ,_MATL   , 7,  1125.00000    ,  1150.00000    ,  1165.00000     

MPDATA,R5.0,12,C   ,_MATL   ,10,  1180.00000    ,  1200.00000    ,  1220.00000     

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURX,_MATL   , 1,  1.00000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURY,_MATL   , 1,  1.00000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURZ,_MATL   , 1,  1.00000000    , 

/GO 

 

Copper (Magnetic Coil) 

Density: CRC, 1989 (pp. B68-B146). 

Thermal Conductivity: CRC, 1989 (pp. E-14 - E-16). 

Resistivity: CRC, 1999 (pp. 12-45 – 12-47). 

Specific Heat: CRC, 1989 (pp. D-180 - D-181). 

Emissivity: CRC, 1989 (p. E-406). 

Relative Permeability: CRC, 1999 (pp. 4-131 – 4-138). 

 

/COM,ANSYS RELEASE  6.0    UP20010919       16:54:29    06/02/2003 

/NOP 

/COM,Internal UNITS set at file creation time = SI   (MKS) 

TBDEL,ALL,_MATL 

MPDEL,ALL,_MATL 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,DENS,_MATL   , 1,  8920.00000    , 

MPTEMP,R5.0, 12, 1,  273.000000    ,  350.000000    ,  400.000000    , 

MPTEMP,R5.0, 12, 4,  500.000000    ,  600.000000    ,  700.000000    , 

MPTEMP,R5.0, 12, 7,  800.000000    ,  900.000000    ,  1000.00000    , 

MPTEMP,R5.0, 12, 10,  1100.00000    ,  1200.00000    ,  1300.00000    , 
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MPDATA,R5.0, 12,KXX ,_MATL   , 1,  401.0000000    , 394.0000000   , 392.0000000  , 

MPDATA,R5.0, 12,KXX ,_MATL   , 4,  388.0000000    , 383.0000000   , 377.0000000  , 

MPDATA,R5.0, 12,KXX ,_MATL   , 7,  371.0000000    , 364.0000000   , 357.0000000  , 

MPDATA,R5.0, 12,KXX ,_MATL   , 10,  350.0000000    , 342.0000000   , 334.0000000, 

MPTEMP,R5.0, 3, 1,  273.000000    ,  300.000000    ,  900.000000     

MPDATA,R5.0, 3,RSVX,_MATL   , 1, 1.543000000E-08, 1.725000000E-08, 

6.041000000E-08 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,C   ,_MATL   , 1,  386.000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURX,_MATL   , 1,  1.00000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURY,_MATL   , 1,  1.00000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,MURZ,_MATL   , 1,  1.00000000    , 

/GO 

 

 

A.3: Simulation Code for Thin Film Induction Heating Model 

 

! Thin film simulation with hollow ferromagnetic ring 

! 1.2cm nife19 outer radius, 0.6cm inner radius, 7.3um thickness 

! 4.5mm poly radius, 3um thickness, 4.5mm-wide outer poly 

! 1 coil turn (multiply current by 3) 

 

! This model is an axisymmetric induction heating simulation 

! that models a thin film stack. The energy from the heated  

! NiFe19 film ring spreads to polysilicon films both inside 

! and outside, simulating polysilicon devices, to examine the. 

! heat transfer behaviors. 

 

! DEFINE MODEL DIMENSIONS 

! The model dimensions are defined via connected  

! keypoints. Keypoints are points defined at specific 

! locations (eg, x,y,z coordinates). Area definitions  

! include all keypoints through which they 

! intersect in order to avoid mesh discontinuities. 

 

/prep7 

 

! Y-coordinates 

 

SubstrateY=-0.5E-3 

OxideY=1E-6   ! 1um lower oxide 

PolyY=4E-6   ! 3um poly 

FerroY=8.3E-6  ! 7.3um nife19 
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! X-coordinates 

 

SubstrateXMax=1.8E-2 ! 1.8cm model width 

PolyXMax=4.5E-3  ! Inner poly region 

FerroXMax=12E-3 

FerroXMin=6E-3 

Poly2XMin=13.5E-3 ! Outer poly region 

 

! Finite and Inifinite Space Dimensions 

 

AirMinY=-0.25E-2  ! Air range is -.25cm to 1cm 

AirMaxY=1E-2  

AirMaxX=2.25E-2 

InfMinY=-0.35E-2  ! Infinite space range is -.35cm to 1.1cm 

InfMaxY=1.1E-2 

InfMaxX=2.35E-2 

 

! Define Areas via Keypoints 

 

k,1,0,SubstrateY,0 

k,2,SubstrateXMax,SubstrateY,0 

k,3,0,0,0 

k,4,SubstrateXMax,0,0 

 

a,1,2,4,3  ! Substrate (area 1) 

 

k,5,0,OxideY,0 

k,6,PolyXMax,OxideY,0 

k,7,FerroXMin,OxideY,0 

k,8,FerroXMax,OxideY,0 

k,9,Poly2Xmin,OxideY,0 

k,10,SubstrateXMax,OxideY,0 

 

a,3,4,10,9,8,7,6,5 ! Oxide (area 2) 

 

k,11,0,PolyY,0 

k,12,PolyXMax,PolyY,0 

k,13,Poly2XMin,PolyY,0 

k,14,SubstrateXMax,PolyY,0 

 

a,5,6,12,11  ! Inner Poly (area 3) 

a,9,10,14,13  ! Outer Poly (area 4) 

 

k,15,FerroXMin,FerroY,0 

k,16,FerroXMax,FerroY,0 
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a,7,8,16,15  ! NiFe19 (area 5) 

 

k,17,0,AirMinY,0 

k,18,AirMaxX,AirMinY,0 

k,19,0,AirMaxY,0 

k,20,AirMaxX,AirMaxY,0 

 

a,17,18,20,19  ! Air (area 6, becomes 9 after subtraction) 

 

cyl4,15.9E-3,6.2E-3,3.2E-3,0,1.6E-3,360        ! Coil (areas 7,8) 

 

asba,6,ALL,,DELETE,KEEP ! Subtract all areas from Air 

 

k,29,0,InfMinY,0 

k,30,InfMaxX,InfMinY,0 

k,31,0,InfMaxY,0 

k,32,InfMaxX,InfMaxY,0 

 

a,29,30,18,17  ! Lower Infinite Air (area 6) 

a,30,32,20,18  ! Middle Infinite Air (area 10) 

a,19,20,32,31  ! Upper Infinite Air (area 11) 

 

! CREATE MESH 

! This section meshes the model. It begins by  

! defining the element types. Material properties are 

! read in from previously-defined files. Each area 

! is then meshed individually using the dimensions 

! assigned. Lastly, the top surface of the NiFe19 

! film is given an overlaid surface mesh to provide 

! for radiation modeling. One key difference from 

! the ANSYS example model is the use of infinite 

! surface elements around the outer edge of the  

! model. These allow the free space region to seem 

! larger than that simulated. 

 

! Define element types 

 

et,1,53,,,1             ! PLANE53, AZ DOF, included in thermal sim 

et,2,53,,,1  ! PLANE53, AZ DOF, not in thermal sim 

et,3,110,,1,1  ! INFIN110, for infinite area 

et,4,151,,,1,0,1  ! SURF151, for including radiation 

r,4,0 

 

! Define material properties (from files) 

 

emunit,mks 
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toffst,0 

mat,1 

mpread,h:\ansys\materials\silicon_15,SI_M,,LIB 

mat,2 

mpread,h:\ansys\materials\oxide,SI_M,,LIB 

mat,3 

mpread,h:\ansys\materials\polysilicon,SI_M,,LIB 

mat,4 

mpread,h:\ansys\materials\nife19,SI_M,,LIB 

mat,5 

mpread,h:\ansys\materials\vacuum,SI_M,,LIB 

mat,6 

mpread,h:\ansys\materials\copper,SI_M,,LIB 

 

/pnum,mat,1 

 

! Define mesh dimensions 

 

FerroMesh=4E-6 

PolyMesh=12E-6 

OxideMesh=24E-6 

SubstrateMesh=200E-6 

OCoilMesh=0.8E-3 

ICoilMesh=1.6E-3 

AirMesh=1E-3 

InfAirMesh=2E-3 

 

asel,all 

 

! Generate mesh 

 

n,1,0,1E-2,0   !Radiation node (node 1) 

 

asel,S,AREA,,5,,,0  !NiFe19 

aatt,4,1,1 

aesize,ALL,FerroMesh 

mshkey,1 

mshape,0,2D 

mopt,qmesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,3,,,0             !Inner Poly 

aatt,3,1,1 

aesize,ALL,PolyMesh 

mshkey,1 

mshape,0,2D 
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mopt,qmesh,DEFAULT 

amesh,all 

asel,S,AREA,,4,,,0             !Outer Poly 

aatt,3,1,1 

aesize,ALL,PolyMesh 

mshkey,1 

mshape,0,2D 

mopt,qmesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,2,,,0  !Oxide  

aatt,2,1,1 

aesize,ALL,OxideMesh 

mshkey,0 

mshape,1,2D 

mopt,amesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,1,,,0  !Substrate  

aatt,1,1,1 

aesize,ALL,SubstrateMesh 

mshkey,0 

mshape,1,2D 

mopt,amesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,7,,,0  !Outer Coil 

aatt,6,1,2 

aesize,ALL,OCoilMesh 

mshkey,0 

mshape,1,2D 

mopt,amesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,8,,,0  !Inner Coil 

aatt,5,1,2 

aesize,ALL,ICoilMesh 

mshkey,0 

mshape,1,2D 

mopt,amesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,9,,,0  !Air 

aatt,5,1,1 

aesize,ALL,AirMesh 

mshkey,0 
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mshape,0,2D 

mopt,qmesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,6,,,0  !Infinite Air (all) 

asel,A,AREA,,10,,,0 

asel,A,AREA,,11,,,0 

aatt,5,1,3 

aesize,ALL,InfAirMesh 

mshkey,0 

mshape,0,2D 

mopt,qmesh,DEFAULT 

amesh,all 

 

! Mesh top line of ferromagnetic film as Surf151 

 

allsel 

lsel,S,LINE,,19,,,0 

nsll,S,1 

esln,0 

esel,R,MAT,,4 

type,4 

real,4 

mat,4 

esurf,1    ! Generate mesh and assign space node (node 1) 

allsel 

finish 

 

! WRITE ELECTROMAGNETIC PHYSICS ENVIRONMENT 

! The electromagnetic physics environment requires  

! only one load, that being the applied current  

! density to the magnetic coil. The boundary 

! conditions required are the infinite surface on the  

! outer lines and the flux-normal condition for AZ  

! along the y-axis. An additional BC is optionally  

! utilized to artificially control the substrate  

! temperature. The harmonic frequency is also  

! provided. 

 

/prep7 

allsel 

toffst,0 

et,4,0 

nsel,S,loc,x,0 

d,ALL,az,0               ! Apply flux-normal on y-axis 

nsel,ALL 
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esel,S,mat,,6   ! Select coil elements 

bfe,all,js,,,,2.36e7      ! Apply current density to coil 

esel,all 

lsel,S,LINE,,24,,,0  ! Select the three outermost lines 

lsel,A,LINE,,37,,,0 

lsel,A,LINE,,39,,,0 

nsll,S,1 

sf,ALL,INF   ! Apply infinite surface boundary condition 

dl,ALL,temp,300 

allsel 

!dl,1,temp,300   ! Apply fixed temperature behind the substrate (optional) 

!dl,2,temp,300   ! Apply fixed temperature at edge of substrate (optional) 

finish 

/solu 

antyp,harm 

harfrq,375000 

physics,write,emag       ! Write electromagnetic physics file 

finish 

 

! WRITE THERMAL PHYSICS ENVIRONMENT 

! This section switches the element types to  

! those utilized by the thermal environment. No 

! load is applied as it is read in from the output 

! of the electromagnetic solution. The boundary 

! conditions are the infinite surface condition and 

! the optional substrate temperature control. The 

! time-stepping options for the solution are also 

! provided. 

 

! Change element types  

 

/prep7 

allsel 

toffst,0 

lsclear,all              ! Clear all previous loads and options 

et,1,77,,,1              ! PLANE77 thermal element, axisymmetric 

et,2,0                   ! Null element type for coil region 

et,3,110,,1,1   ! INFIN110, for infinite area 

et,4,151,,,1,0,1          ! SURF151 element for radiation 

keyopt,4,9,1 

r,4,1,5.67e-8             ! Form factor=1, define Stefan-Boltzman constant 

allsel 

lsel,S,LINE,,24,,,0  ! Select the three outermost lines 

lsel,A,LINE,,37,,,0 

lsel,A,LINE,,39,,,0 

nsll,S,1 
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sf,ALL,INF   ! Apply infinite surface boundary condition 

dl,ALL,temp,300 

allsel 

!dl,1,temp,300   ! Apply fixed temperature behind substrate (optional) 

!dl,2,temp,300   ! Apply fixed temperature at edge of substrate (optional) 

finish 

 

! Write Thermal Physics Environment 

 

/solu 

antype,trans,new  ! Start a new transient analysis  

tunif,300                  ! Initial uniform temperature 

d,1,temp,300                  ! Ambient temperature at reference node 

cnvtol,heat,1                   ! Convergence tolerance 

kbc,1                             ! Step loads 

trnopt,full 

autos,on                        ! Auto time-stepping 

deltim,1E-6,1E-9,1E-2,ON     ! Time step control 

outres,basic,all                ! Save all load step information 

physics,write,thermal            ! Write thermal physics file  

finish 

 

! EXECUTE SOLUTION 

! The solution is executed using two different 

! solution loops. The first runs from t=0 to t=1s 

! with relatively slow increments of 0.05s  

! between re-evaluation of the electromagnetic 

! model. The remainder of the model executes 

! at a faster pace, with 0.5s increments. The  

! interior of each loop is essentially the same,  

! running the electromagnetic simulation and  

! then the thermal simulation for the time 

! durations specified.  

 

! Slow Solution loop 

 

/solu 

ftime1=1                   ! final time 

tinc1=.05                  ! time increment for harmonic analysis 

simtime=0                ! initialize time 

 

*do,i,1,ftime1/tinc1             ! solution *do loop 

simtime=simtime+tinc1          ! increment time 

physics,read,emag              ! read emag physics file 

/solu 

*if,i,eq,1,then 
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 tunif,300                     ! initial temperature 

*else 

 ldread,temp,last,,,,,rst     ! read thermal analysis temperatures 

*endif 

solve                           ! solve harmonic analysis 

finish 

physics,read,thermal           ! read thermal physics file 

/assign,esav,therm,esav        ! redirect files for use in thermal restart 

/assign,emat,therm,emat 

/solu 

*if,i,gt,1,then 

 antype,trans,rest             ! restart thermal model each time 

*endif 

time,simtime                   ! time at end of thermal run 

esel,S,mat,,1,5                ! select all regions except coil 

esel,U,type,,2,3        ! unselect unsimulated elements 

ldread,hgen,,,,2,,rmg          ! apply coupled joule heating load from emag   

allsel 

solve 

finish 

/assign,esav                   ! reassign files to default 

/assign,emat 

*enddo                         ! end of solution looping 

 

! Fast solution loop 

 

ftime2=10                   ! final time 

tinc2=.5                  ! time increment for harmonic analysis 

 

*do,i,1,ftime2/tinc2             ! solution *do loop 

simtime=simtime+tinc2          ! increment time 

physics,read,emag              ! read emag physics file 

/solu 

*if,i,eq,1,then 

 tunif,300                     ! initial temperature 

*else 

 ldread,temp,last,,,,,rst     ! read thermal analysis temperatures 

*endif 

solve                           ! solve harmonic analysis 

finish 

physics,read,thermal           ! read thermal physics file 

/assign,esav,therm,esav        ! redirect files for use in thermal restart 

/assign,emat,therm,emat 

/solu 

*if,i,gt,1,then 

 antype,trans,rest             ! restart thermal model each time 
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*endif 

deltim,1E-2,1E-9,1E-1,ON     ! Change time step control 

time,simtime                   ! time at end of thermal run 

esel,S,mat,,1,5                ! select all regions except coil 

esel,U,type,,2,3        ! unselect unsimulated elements 

ldread,hgen,,,,2,,rmg          ! apply coupled joule heating load from emag   

allsel 

solve 

finish 

/assign,esav                   ! reassign files to default 

/assign,emat 

*enddo                         ! end of solution looping 

finish 

 

! PLOT TEMPERATURE RESULTS 

! The temperature results on each side of the 

! NiFe19 film are plotted, as are the  

! temperatures on the inner and outer sides of 

! both sets of trenches. 

 

/post26  

/show 

ksel,S,KP,,8         ! Select outer ferromagnetic KP 

nslk 

*get,n1,node,,num,max 

nsol,2,n1,temp,,outer_nife19  

allsel 

ksel,S,KP,,7       ! Select inner ferromagnetic KP 

nslk 

*get,n2,node,,num,max 

nsol,3,n2,temp,,inner_nife19  

allsel 

ksel,S,KP,,6         ! Select inner poly KP 

nslk 

*get,n3,node,,num,max 

nsol,4,n3,temp,,inner_poly  

allsel 

ksel,S,KP,,9        ! Select outer poly KP 

nslk 

*get,n4,node,,num,max 

nsol,5,n4,temp,,outer_poly  

allsel 

plvar,2,3,4,5                  ! plot temperature rise over time 

finish   
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A.4: Simulation Code for Thin Film Induction Heating Model with Thermal 

Isolation 

 

! Thin film simulation with hollow ferromagnetic ring 

! 1.2cm nife19 outer radius, 0.6cm inner radius, 7.1um thickness 

! 3um poly layer with two sets of three thermal isolation trenches 

! 1 coil turn (multiply current by 3) 

 

! This model is an axisymmetric induction heating simulation 

! that models a thin film stack. The energy from the heated  

! NiFe19 film ring spreads to polysilicon film below, and an 

! attempt is made to contain the thermal energy using  

! various isolation methods. 

  

! DEFINE MODEL DIMENSIONS 

! The model dimensions are defined via connected  

! keypoints. Keypoints are points defined at specific 

! locations (eg, x,y,z coordinates). Area definitions  

! include all keypoints through which they 

! intersect in order to avoid mesh discontinuities. 

 

/prep7 

 

! Y-coordinates 

 

SubstrateY=-0.5E-3 

OxideY=1E-6   ! 1um lower oxide 

PolyY=4E-6   ! 3um poly 

FerroY=11.1E-6  ! 7.1um nife19 

 

! X-coordinates 

 

SubstrateXMax=1.8E-2 ! 1.8cm model width 

FerroXMax=12E-3 

FerroXMin=6E-3 

Trench1IMin=(4E-3)-(50E-6) 

Trench1IMax=(4E-3)-(30E-6) 

Trench2IMin=(4E-3)-(10E-6) 

Trench2IMax=(4E-3)+(10E-6) 

Trench3IMin=(4E-3)+(30E-6) 

Trench3IMax=(4E-3)+(50E-6) 

Trench1OMin=(14E-3)-(50E-6) 

Trench1OMax=(14E-3)-(30E-6) 

Trench2OMin=(14E-3)-(10E-6) 

Trench2OMax=(14E-3)+(10E-6) 

Trench3OMin=(14E-3)+(30E-6) 
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Trench3OMax=(14E-3)+(50E-6) 

 

! Finite and Inifinite Space Dimensions 

 

AirMinY=-0.25E-2  ! Air range is -.25cm to 1cm 

AirMaxY=1E-2  

AirMaxX=2.25E-2 

InfMinY=-0.35E-2  ! Infinite space range is -.35cm to 1.1cm 

InfMaxY=1.1E-2 

InfMaxX=2.35E-2 

 

! Define Areas via Keypoints 

 

k,1,0,SubstrateY,0 

k,2,SubstrateXMax,SubstrateY,0 

 

k,3,0,0,0 

k,4,SubstrateXMax,0,0 

 

a,1,2,4,3   ! Substrate (area 1) 

 

k,5,0,OxideY,0 

k,6,Trench1IMin,OxideY,0 

k,7,Trench1IMax,OxideY,0 

k,8,Trench2IMin,OxideY,0 

k,9,Trench2IMax,OxideY,0 

k,10,Trench3IMin,OxideY,0 

k,11,Trench3IMax,OxideY,0 

k,12,Trench1OMin,OxideY,0 

k,13,Trench1OMax,OxideY,0 

k,14,Trench2OMin,OxideY,0 

k,15,Trench2OMax,OxideY,0 

k,16,Trench3OMin,OxideY,0 

k,17,Trench3OMax,OxideY,0 

k,18,SubstrateXMax,OxideY,0 

 

a,3,4,18,17,16,15,14,13,12,11,10,9,8,7,6,5 ! Oxide (area 2) 

 

k,19,0,PolyY,0 

k,20,Trench1IMin,PolyY,0 

k,21,Trench1IMax,PolyY,0 

k,22,Trench2IMin,PolyY,0 

k,23,Trench2IMax,PolyY,0 

k,24,Trench3IMin,PolyY,0 

k,25,Trench3IMax,PolyY,0 

k,26,FerroXMin,PolyY,0 
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k,27,FerroXMax,PolyY,0 

k,28,Trench1OMin,PolyY,0 

k,29,Trench1OMax,PolyY,0 

k,30,Trench2OMin,PolyY,0 

k,31,Trench2OMax,PolyY,0 

k,32,Trench3OMin,PolyY,0 

k,33,Trench3OMax,PolyY,0 

k,34,SubstrateXMax,PolyY,0 

 

a,5,6,20,19   ! Inner Poly Structure (area 3) 

a,6,7,21,20   ! Inner Trench 1 (area 4) 

a,7,8,22,21   ! Poly between T1 and T2 (area 5) 

a,8,9,23,22   ! Inner Trench 2 (area 6) 

a,9,10,24,23   ! Poly between T2 and T3 (area 7) 

a,10,11,25,24   ! Inner Trench 3 (area 8) 

a,11,12,28,27,26,25  ! Poly below NiFe19 (area 9) 

a,12,13,29,28   ! Outer Trench 1 (area 10) 

a,13,14,30,29   ! Poly between T1 and T2 (area 11) 

a,14,15,31,30   ! Outer Trench 2 (area 12) 

a,15,16,32,31   ! Poly between T2 and T3 (area 13) 

a,16,17,33,32   ! Outer Trench 3 (area 14) 

a,17,18,34,33   ! Outer Poly Structure (area 15) 

 

k,35,FerroXMin,FerroY,0 

k,36,FerroXMax,FerroY,0 

 

a,26,27,36,35   ! NiFe19 (area 16) 

 

k,37,0,AirMinY,0 

k,38,AirMaxX,AirMinY,0 

k,39,0,AirMaxY,0 

k,40,AirMaxX,AirMaxY,0 

 

a,37,38,40,39   ! Air (area 17, becomes 20 after subtraction) 

 

cyl4,15.9E-3,6.2E-3,3.2E-3,0,1.6E-3,360        ! Coil (areas 18,19) 

 

asba,17,ALL,,DELETE,KEEP ! Subtract all areas from Air 

 

k,49,0,InfMinY,0 

k,50,InfMaxX,InfMinY,0 

k,51,0,InfMaxY,0 

k,52,InfMaxX,InfMaxY,0 

 

a,49,50,38,37   ! Lower Infinite Air (area 17) 

a,50,52,40,38   ! Middle Infinite Air (area 21) 
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a,39,40,52,51   ! Upper Infinite Air (area 22) 

 

! CREATE MESH 

! This section meshes the model. It begins by  

! defining the element types. Material properties are 

! read in from previously-defined files. Each area 

! is then meshed individually using the dimensions 

! assigned. Lastly, the top surface of the NiFe19 

! film is given an overlaid surface mesh to provide 

! for radiation modeling. One key difference from 

! the ANSYS example model is the use of infinite 

! surface elements around the outer edge of the  

! model. These allow the free space region to seem 

! larger than that simulated. 

 

! Define element types 

 

et,1,53,,,1               ! PLANE53, AZ DOF, included in thermal sim 

et,2,53,,,1   ! PLANE53, AZ DOF, not in thermal sim 

et,3,110,,1,1   ! INFIN110, for infinite area 

et,4,151,,,1,0,1   ! SURF151, for including radiation 

r,4,0 

 

! Define material properties (from files) 

 

emunit,mks 

toffst,0 

mat,1 

mpread,h:\ansys\materials\silicon_15,SI_M,,LIB 

mat,2 

mpread,h:\ansys\materials\oxide,SI_M,,LIB 

mat,3 

mpread,h:\ansys\materials\polysilicon,SI_M,,LIB 

mat,4 

mpread,h:\ansys\materials\nife19,SI_M,,LIB 

mat,5 

mpread,h:\ansys\materials\vacuum,SI_M,,LIB 

mat,6 

mpread,h:\ansys\materials\copper,SI_M,,LIB 

 

/pnum,mat,1 

 

! Define mesh dimensions 

 

FerroMesh=4E-6 

PolyMesh=12E-6 
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TrenchMesh=2E-6 

OxideMesh=24E-6 

SubstrateMesh=200E-6 

OCoilMesh=0.8E-3 

ICoilMesh=1.6E-3 

AirMesh=1E-3 

InfAirMesh=2E-3 

asel,all 

 

! Generate mesh 

 

n,1,0,1E-2,0   ! Radiation node (node 1) 

 

asel,S,AREA,,16,,,0  ! NiFe19 

aatt,4,1,1 

aesize,ALL,FerroMesh 

mshkey,1 

mshape,0,2D 

mopt,qmesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,4,14,2,0          ! Trenches 

aatt,2,1,1 

aesize,ALL,TrenchMesh 

mshkey,1 

mshape,0,2D 

mopt,qmesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,5,7,2,0          ! Inter-Trench Poly 

asel,A,AREA,,11,13,2,0        

aatt,3,1,1 

aesize,ALL,TrenchMesh 

mshkey,1 

mshape,0,2D 

mopt,qmesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,3,15,6,0          !Bulk Poly 

aatt,3,1,1 

aesize,ALL,PolyMesh 

mshkey,2 

mshape,0,2D 

mopt,qmesh,DEFAULT 

amesh,all 
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asel,S,AREA,,2,,,0  !Base Oxide  

aatt,2,1,1 

aesize,ALL,OxideMesh 

mshkey,0 

mshape,1,2D 

mopt,amesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,1,,,0  ! Substrate  

aatt,1,1,1 

aesize,ALL,SubstrateMesh 

mshkey,0 

mshape,1,2D 

mopt,amesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,18,,,0  ! Outer Coil 

aatt,6,1,2 

aesize,ALL,OCoilMesh 

mshkey,0 

mshape,1,2D 

mopt,amesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,19,,,0  ! Inner Coil 

aatt,5,1,2 

aesize,ALL,ICoilMesh 

mshkey,0 

mshape,1,2D 

mopt,amesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,20,,,0  ! Air 

aatt,5,1,1 

aesize,ALL,AirMesh 

mshkey,0 

mshape,0,2D 

mopt,qmesh,DEFAULT 

amesh,all 

 

asel,S,AREA,,17,,,0  ! Infinite Air (all) 

asel,A,AREA,,21,,,0 

asel,A,AREA,,22,,,0 

aatt,5,1,3 

aesize,ALL,InfAirMesh 

mshkey,0 
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mshape,0,2D 

mopt,qmesh,DEFAULT 

amesh,all 

allsel 

 

! Mesh top line of ferromagnetic film as Surf151 

 

*get,emin,elem,,num,max 

lsel,S,LINE,,50,,,0 

nsll,S,1 

esln,0 

esel,R,MAT,,4 

type,4 

real,4 

mat,4 

esurf,1 

*get,emax,elem,,num,max 

allsel 

 

! WRITE ELECTROMAGNETIC PHYSICS ENVIRONMENT 

! The electromagnetic physics environment requires  

! only one load, that being the applied current  

! density to the magnetic coil. The boundary 

! conditions required are the infinite surface on the  

! outer lines and the flux-normal condition for AZ  

! along the y-axis. An additional BC is optionally  

! utilized to artificially control the substrate  

! temperature. The harmonic frequency is also  

! provided. 

 

/prep7 

allsel 

toffst,0 

et,4,0 

nsel,S,loc,x,0 

d,ALL,az,0                ! Apply flux-normal on y-axis 

nsel,ALL 

esel,S,mat,,6   ! Select coil elements 

bfe,all,js,,,,2.36e7      ! Apply current density to coil 

esel,all 

lsel,S,LINE,,55,,,0  ! Select the three outermost lines 

lsel,A,LINE,,68,,,0 

lsel,A,LINE,,70,,,0 

nsll,S,1 

sf,ALL,INF   ! Apply infinite surface boundary condition 

dl,ALL,,temp,300 
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allsel 

!dl,1,,temp,300 

!dl,2,,temp,300 

allsel 

finish 

/solu 

antyp,harm 

harfrq,375000 

physics,write,emag       ! Write electromagnetic physics file 

finish 

 

! WRITE THERMAL PHYSICS ENVIRONMENT 

! This section switches the element types to those 

! utilized by the thermal environment. No load is 

! applied as it is read in from the output of the 

! electromagnetic solution. The boundary conditions 

! are the infinite surface condition and the optional 

! substrate temperature control. The time-stepping 

! options for the solution are also provided 

 

! Change element types  

 

/prep7 

allsel 

toffst,0 

lsclear,all               ! Clear all previous loads and options 

et,1,77,,,1               ! PLANE77 thermal element, axisymmetric 

et,2,0                    ! Null element type for coil region 

et,3,110,,1,1   ! INFIN110, for infinite area 

et,4,151,,,1,0,1          ! SURF151 element for radiation 

keyopt,4,9,1 

r,4,1,5.67e-8             ! Form factor=1, define Stefan-Boltzman constant 

allsel 

lsel,S,LINE,,55,,,0  ! Select the three outermost lines 

lsel,A,LINE,,68,,,0 

lsel,A,LINE,,70,,,0 

nsll,S,1 

sf,ALL,INF   ! Apply infinite surface boundary condition 

dl,ALL,,temp,300 

allsel 

!dl,1,,temp,300 

!dl,2,,temp,300 

allsel 

finish 

 

/solu 
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antype,trans,new  ! Start a new transient analysis  

tunif,300                  ! Initial uniform temperature 

d,1,temp,300                  ! Ambient temperature at reference node 

cnvtol,heat,1                    ! Convergence tolerance 

kbc,1                             ! Step loads 

trnopt,full 

autos,on                         ! Auto time-stepping 

deltim,1E-6,1E-9,1E-2,ON    ! Time step control 

outres,basic,all                 ! Save all load step information 

physics,write,thermal            ! Write thermal physics file  

finish 

 

! EXECUTE SOLUTION 

! The solution is executed using two different 

! solution loops. The first runs from t=0 to t=1s 

! with relatively slow increments of 0.05s  

! between re-evaluation of the electromagnetic 

! model. The remainder of the model executes 

! at a faster pace, with 0.5s increments. The  

! interior of each loop is essentially the same,  

! running the electromagnetic simulation and  

! then the thermal simulation for the time 

! durations specified.  

 

! Slow Solution loop 

 

/solu 

ftime1=1                   ! final time 

tinc1=.05                  ! time increment for harmonic analysis 

simtime=0                 ! initialize time 

 

*do,i,1,ftime1/tinc1             ! solution *do loop 

simtime=simtime+tinc1          ! increment time 

physics,read,emag              ! read emag physics file 

/solu 

*if,i,eq,1,then 

 tunif,300                      ! initial temperature 

*else 

 ldread,temp,last,,,,,rst      ! read thermal analysis temperatures 

*endif 

solve                           ! solve harmonic analysis 

finish 

physics,read,thermal           ! read thermal physics file 

/assign,esav,therm,esav        ! redirect files for use in thermal restart 

/assign,emat,therm,emat 

/solu 
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*if,i,gt,1,then 

antype,trans,rest             ! restart thermal model each time 

*endif 

time,simtime                   ! time at end of thermal run 

esel,S,mat,,1,5                ! select all regions except coil 

esel,U,type,,2,3        ! unselect unsimulated elements 

ldread,hgen,,,,2,,rmg          ! apply coupled joule heating load from emag   

allsel 

solve 

finish 

/assign,esav                   ! reassign files to default 

/assign,emat 

 

*enddo                          ! end of solution looping 

 

! Fast solution loop 

 

ftime2=10                   ! final time 

tinc2=.5                  ! time increment for harmonic analysis 

 

*do,i,1,(ftime2-simtime)/tinc2            ! solution *do loop 

simtime=simtime+tinc2          ! increment time 

physics,read,emag              ! read emag physics file 

/solu 

*if,i,eq,1,then 

 tunif,300                      ! initial temperature 

*else 

 ldread,temp,last,,,,,rst      ! read thermal analysis temperatures 

*endif 

solve                           ! solve harmonic analysis 

finish 

physics,read,thermal           ! read thermal physics file 

/assign,esav,therm,esav        ! redirect files for use in thermal restart 

/assign,emat,therm,emat 

/solu 

*if,i,gt,1,then 

 antype,trans,rest             ! restart thermal model each time 

*endif 

time,simtime                   ! time at end of thermal run 

deltim,1E-2,1E-9,1E-1,ON     ! Change time step control 

esel,S,mat,,1,5                ! select all regions except coil 

esel,U,type,,2,3        ! unselect unsimulated elements 

ldread,hgen,,,,2,,rmg          ! apply coupled joule heating load from emag   

allsel 

solve 

finish 
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/assign,esav                   ! reassign files to default 

/assign,emat 

 

*enddo                          ! end of solution looping 

finish 

 

! PLOT TEMPERATURE RESULTS 

! The temperature results on each side of the 

! NiFe19 film are plotted, as are the  

! temperatures on the inner and outer sides of 

! both sets of trenches. 

 

/post26  

/show 

ksel,S,KP,,27         ! Select outer ferromagnetic KP 

nslk 

*get,n1,node,,num,max 

nsol,2,n1,temp,,outer_nife19  

allsel 

ksel,S,KP,,26         ! Select inner ferromagnetic KP 

nslk 

*get,n2,node,,num,max 

nsol,3,n2,temp,,inner_nife19  

allsel 

ksel,S,KP,,25         ! Select inner trench outer KP 

nslk 

*get,n3,node,,num,max 

nsol,4,n3,temp,,inner_trench_out  

allsel 

ksel,S,KP,,20         ! Select inner trench inner KP 

nslk 

*get,n4,node,,num,max 

nsol,5,n4,temp,,inner_trench_in  

allsel 

ksel,S,KP,,28        ! Select outer trench inner KP 

nslk 

*get,n5,node,,num,max 

nsol,6,n5,temp,,outer_trench_in  

allsel 

ksel,S,KP,,33        ! Select outer trench outer KP 

nslk 

*get,n6,node,,num,max 

nsol,7,n6,temp,,outer_trench_out  

allsel 

plvar,2,3,4,5,6,7                  ! Plot temperature rise over time 

finish  
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Appendix B: Ferromagnetic Film Data 
 

B.1: Nickel and Cobalt 

 

 
Figure B.1: Magnetic flux density plots for a RF sputtered nickel film illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 700W with no applied magnetic field, resulting in a 0.19µm film. Hysteresis was 

evident in the parallel direction but is difficult to distinguish over noise interference. 

 

 
Figure B.2: Magnetization plots for the RF sputtered nickel film showing the effect of 

elevated temperature on its magnetic behavior in the direction normal to the substrate 

relative to the 25
o
C data. The parallel curve at 25

o
C is also included for reference. Noise 

in the data made curve shapes unusual. Ferromagnetic behavior was minimal at and 

above 400
o
C. The nickel Curie temperature is 358

o
C [Eisberg, et al., 1985 (p 500)].  
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Figure B.3: Magnetic flux density plots for an electroplated nickel film illustrating 

properties both parallel and normal to the substrate at room temperature. The film was 

formed using a NiSO4-based solution (see Section 4.3) with a ??mA current under no 

applied magnetic field, resulting in a 11µm film. Hysteresis loops were more clearly 

defined than for the sputtered nickel film shown previously. Their lack of appreciable 

width is likely due to the more amorphous film structure. 

 

 
Figure B.4: Magnetization plots for the electroplated nickel film showing the effect of 

elevated temperature on its magnetic behavior in the direction normal to the substrate 

relative to the 25
o
C data. The parallel curve at 25

o
C is also included for reference. 

Ferromagnetic behavior was minimal at and above 375
o
C, as anticipated.  
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Figure B.5: Magnetic flux density plots for a RF sputtered nickel film illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 700W with a 400-550 Gauss applied magnetic field, resulting in a 2.8µm film. 

Hysteresis in both directions was wider than that of the non-magnetized films. 

 

  
Figure B.6: Magnetization plots for the in-situ magnetized RF sputtered nickel film 

showing the effect of elevated temperature on its magnetic behavior in the direction 

normal to the substrate relative to the 25
o
C data. The parallel curve at 25

o
C is also 

included for reference. Ferromagnetic behavior was minimal at and above 400
o
C.  
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Figure B.7: Magnetic flux density plots for a RF sputtered cobalt film illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 800W with no applied magnetic field, resulting in a 0.20µm film. Both directions 

exhibited measurable hysteresis, taller than that of the nickel films due to cobalt’s higher 

saturation level. 

 

 
Figure B.8: Magnetization plots for the RF sputtered cobalt film showing the effect of 

elevated temperature on its magnetic behavior in the direction normal to the substrate 

relative to the 25
o
C data. The parallel curve at 25

o
C is also included for reference. 

Ferromagnetic properties showed minimal degradation up to 600
o
C but exhibited a sharp, 

unexpected decrease at 700
o
C. The cobalt Curie temperature is 1127

o
C [Eisberg, et al., 

1985 (p 500)].  
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Figure B.9: Magnetic flux density plots for a RF sputtered cobalt film illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 700W with a 400-550 Gauss applied magnetic field, resulting in a 2.4µm film. 

Both hysteresis loops decreased in height but increased in width relative to the non-

magnetized films. This was a result of the more rounded magnetization curves as shown 

below. 

 

 
Figure B.10: Magnetization plots for the in-situ magnetized RF sputtered cobalt film 

showing the effect of elevated temperature on its magnetic behavior in the direction 

normal to the substrate relative to the 25
o
C data. The parallel curve at 25

o
C is also 

included for reference. The magnetic properties show minimal degradation up to 700
o
C.  
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B.2: Nickel-Iron Alloys 

 

 
Figure B.11: Magnetic flux density plots for a RF sputtered Ni83Fe17 alloy illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 800W with no applied magnetic field, resulting in a 0.18µm film. Hysteresis 

resembled that of in-situ magnetized nickel and likely would have resembled the non-

magnetized nickel had that data been less noisy. 

 

 
Figure B.12: Magnetization plots for the RF sputtered Ni83Fe17 alloy showing the effect 

of elevated temperature on its magnetic behavior in the direction normal to the substrate 

relative to that at 25
o
C. The parallel curve at 25

o
C is also included for reference. The 

nickel and iron Curie temperatures are 358
o
C and 761

o
C, respectively [Eisberg, et al., 

1985 (p 500)], and thus the iron content improved the high-temperature stability of the 

film’s properties over that of pure nickel.  
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Figure B.13: Magnetic flux density plots for a RF sputtered Ni81Fe19 alloy illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 800W with no applied magnetic field, resulting in a 0.28µm film. Hysteresis and 

other properties were very similar to that of Ni83Fe17.  

 

 
Figure B.14: Magnetization plots for the RF sputtered Ni81Fe19 alloy showing the effect 

of elevated temperature on its magnetic behavior in the direction normal to the substrate 

relative to that at 25
o
C. The parallel curve at 25

o
C is also included for reference. High-

temperature ferromagnetic properties were similar to that for the Ni83Fe17 film. 
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Figure B.15: Magnetic flux density plots for a RF sputtered Ni81Fe19 alloy illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 700W with a 400-550 Gauss applied magnetic field, resulting in a 2.1µm film. 

Hysteresis loops appeared to have narrowed in width as compared to the non-magnetized 

Ni81Fe19 film, an unexpected result.  

 

 
Figure B.16: Magnetization plots for the in-situ magnetized RF sputtered Ni81Fe19 alloy 

showing the effect of elevated temperature on its magnetic behavior in the direction 

normal to the substrate relative to that at 25
o
C. The parallel curve at 25

o
C is also included 

for reference. High-temperature performance was similar to that of the non-magnetized 

Ni81Fe19 and Ni83Fe17 alloys, though once again the field caused the curves to become 

somewhat rounded. 
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Figure B.17: Magnetic flux density plots for a RF sputtered Ni45Fe55 alloy illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 1000W with no applied magnetic field, resulting in a 0.67µm film. Saturation 

levels were reduced in magnitude from those of the alloys with lower iron content, an 

unexpected result, though normal hysteresis showed increased width. 

 

 
Figure B.18: Magnetization plots for the RF sputtered Ni45Fe55 alloy showing the effect 

of elevated temperature on its magnetic behavior in the direction normal to the substrate 

relative to that at 25
o
C. The parallel curve at 25

o
C is also included for reference. The data 

indicates that the magnetization fell rapidly with increasing temperature until between 

300-400
o
C, at which point it recovered to nearly the 25

o
C level. This suggests that a 

phase transformation may have taken place. Similar to the other two iron-nickel alloys, 

ferromagnetic quality was negligible at 600
o
C and above. 
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Figure B.19: Magnetic flux density plots for a RF sputtered Ni45Fe55 alloy illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 500W with a 200-300 Gauss applied magnetic field, resulting in a 1.6µm film. 

Hysteresis loops were very similar to those of the non-magnetized film.  

 

 
Figure B.20: Magnetization plots for the in-situ magnetized RF sputtered Ni45Fe55 alloy 

showing the effect of elevated temperature on its magnetic behavior in the direction 

normal to the substrate relative to that at 25
o
C. The parallel curve at 25

o
C is also included 

for reference. The data was very similar to that of the non-magnetized film, again 

suggesting a phase transformation between 300-400
o
C. 
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Figure B.21: Magnetization plots for the in-situ magnetized RF sputtered Ni45Fe55 alloy 

showing the effect of elevated temperature on its magnetic behavior in the direction 

parallel to the substrate relative to that at 25
o
C. The high-temperature quality in the 

parallel direction agreed with that in the normal direction, further supporting the 

assumption of a phase transformation in the 300-400
o
C range.  
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B.3: Iron-Cobalt Alloys 

 

 
Figure B.22: Magnetic flux density plots for a RF sputtered Fe49Co50V alloy illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 850W with no applied magnetic field, resulting in a 0.20µm film. Both hysteresis 

loops were relatively wide and exhibited somewhat of a rounded shape. 

 

 
Figure B.23: Magnetization plots for the RF sputtered Fe49Co50V alloy showing the 

effect of elevated temperature on its magnetic behavior in the direction normal to the 

substrate relative to that at 25
o
C. The parallel curve at 25

o
C is also included for reference. 

The alloy remained ferromagnetic only to approximately 500
o
C, considerably lower than 

expected, though its magnetized counterparts performed better. The iron and cobalt Curie 

temperatures are 761
o
C and 1127

o
C, respectively [Eisberg, et al., 1985 (p 500)]. 
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Figure B.24: Magnetic flux density plots for a RF sputtered Fe49Co50V alloy illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 700W with a 200-300 Gauss applied magnetic field, resulting in a 1.7µm film. 

The parallel hysteresis loop reflected increased permeability with respect to the 

unmagnetized film, whereas the normal hysteresis loop showed less significant changes.  

 

 
Figure B.25: Magnetization plots for the magnetized RF sputtered Fe49Co50V alloy 

showing the effect of elevated temperature on its magnetic behavior in the direction 

normal to the substrate relative to that at 25
o
C. The parallel curve at 25

o
C is also included 

for reference. The alloy remained ferromagnetic over the full 700
o
C range, showing 

almost no degradation in quality.  
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Figure B.26: Magnetic flux density plots for a RF sputtered Fe49Co50V alloy illustrating 

properties both parallel and normal to the substrate at room temperature. Deposition was 

done at 700W with a 400-550 Gauss applied magnetic field, resulting in a 3.0µm film. 

Hysteresis is similar to that of the same alloy deposited under a 200-300 Gauss field. 

 

 
Figure B.27: Magnetization plots for the magnetized RF sputtered Fe49Co50V alloy 

showing the effect of elevated temperature on its magnetic behavior in the direction 

normal to the substrate relative to that at 25
o
C. The parallel curve at 25

o
C is also included 

for reference. Once again, the film remained fully ferromagnetic over the entire 700
o
C 

range. The data suggests that the effect of doubling the applied field during deposition is 

negligible.  
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Figure B.28: Magnetization plots for a RF sputtered Fe49Co50V alloy parallel and normal 

to the substrate. Deposition was done at 300W with a 200-300 Gauss applied magnetic 

field, resulting in a 0.40µm film. Some samples underwent a photolithography process to 

simulate the stresses to which the magnetic films are exposed during patterning. Of those, 

half were then magnetically annealed at 300
o
C in a nitrogen atmosphere. The data 

showed that both the lithography process and the magnetic anneal had a minimal impact 

on the Fe49Co50V magnetic properties. Furthermore, the magnetization normal to the 

substrate reached saturation far more quickly than that for the other in-situ magnetized 

Fe49Co50V films, suggesting that the lower deposition power (and thus lower deposition 

rate) allowed the film to magnetize more strongly as it formed. 
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B.4: Iron-Nickel-Cobalt Alloys 

 

 
Figure B.29: Magnetic flux density plots for a RF sputtered Co60(Ni81Fe19)40 alloy 

illustrating properties both parallel and normal to the substrate at room temperature. 

Deposition was done by alternating between the Co and Ni81Fe19 targets for 3 and 2 

minutes, respectively, at 700W each with a 400-550 Gauss applied magnetic field, 

resulting in a 3.1µm film. Hysteresis is fairly wide like that of cobalt, but the parallel 

slope is more like that for Ni81Fe19 (with almost identical maximum permeability). 

 

 
Figure B.30: Magnetization plots for the magnetized RF sputtered Co60(Ni81Fe19)40  alloy 

showing the effect of elevated temperature on its magnetic behavior in the direction 

normal to the substrate relative to that at 25
o
C. The parallel curve at 25

o
C is also included 

for reference. The film retained approximately 70% of its room temperature 

magnetization at 700
o
C, the best high-temperature performance of the ternary alloys. 
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Figure B.31: Magnetic flux density plots for a RF sputtered (Ni81Fe19)70Co30 alloy 

illustrating properties both parallel and normal to the substrate at room temperature. 

Deposition was done by alternating between the Co and Ni81Fe19 targets for 1.5 and 3.5 

minutes, respectively, at 700W each with a 400-550 Gauss applied magnetic field, 

resulting in a 2.8µm film. Normal hysteresis is similar to that of cobalt, whereas parallel 

hysteresis yields a higher permeability value than either of the two constituent materials. 

 

 
Figure B.32: Magnetization plots for the magnetized RF sputtered (Ni81Fe19)70Co30 alloy 

showing the effect of elevated temperature on its magnetic behavior in the direction 

normal to the substrate relative to that at 25
o
C. The parallel curve at 25

o
C is also included 

for reference. The addition of cobalt improved the thermal performance by a factor of 70 

over that of pure Ni81Fe19, though the normal permeability values were approximately 2/3 

lower. 
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Figure B.33: Magnetic flux density plots for a RF sputtered (Fe49Co50V)70Ni30 alloy 

illustrating properties both parallel and normal to the substrate at room temperature. 

Deposition was done by alternating between the Fe49Co50V and Ni targets for 3.5 and 1.5 

minutes, respectively, at 700W each with a 400-550 Gauss applied magnetic field, 

resulting in a 3.0µm film. Hysteresis loops were similar to those of Fe49Co50V.   

 

  
Figure B.34: Magnetization plots for the magnetized RF sputtered (Fe49Co50V)70Ni30 
alloy showing the effect of elevated temperature on its magnetic behavior in the direction 

normal to the substrate relative to that at 25
o
C. The parallel curve at 25

o
C is also included 

for reference. The addition of nickel reduced the high-temperature performance from that 

of pure Fe49Co50V, and furthermore the normal permeabilities were approximately 2/3 

lower. Permeability values in the parallel direction, however, were the highest among all 

samples tested, reaching 124 times that of free space at 25
o
C. 
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Appendix C: MTU High Aspect Ratio Polysilicon Sensor Process 

 
C.1: Low Temperature Deposition with Annealing  

 

1) Wafer Procurement 
Vendor: University Wafer 

Orientation: <100>  

Dopant: Boron  

Resistivity: 10-20Ω-cm  

Films present: 1µm thermal oxide 

Comments: Dopant species not critical, Resistivity critical for inductively annealed 

wafers only 

 

2) LPCVD Silicon Nitride Deposition 
System: TMX9K 4304 

Gas flow: 40sccm SiH2Cl2, 160sccm NH3 

Temperature: 820
o
C 

Pressure: 150mTorr 

Target thickness: 0.25µm 

 

3) LPCVD Polysilicon Deposition 
System: TMX9K 4304 

Gas flow: 80sccm SiH4 

Temperature: 625
o
C 

Pressure: 180mTorr 

Target thickness: 0.5µm 

Comment: Poly0 lower interconnect layer 

 

4) Phosphorous Doping of Polysilicon 
System: TMX9K 4304 

Temperature: 1175
o
C 

Pressure: Atmospheric 

Measured resistivity: 26.5Ω/square 

Comment: Doping intended to enhance conductivity of poly0 layer 

 

5) Photolithography  
Mask: Poly0  

Resist polarity: Negative 

 

6) Polysilicon RIE Etch 
System: LAM 9400 

Power: 500W 

Gas flow: 100sccm HBr, 100sccm He 

Pressure: 120mTorr 

 

7) LPCVD Silicon Dioxide Deposition 
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System: TMX9K 4304 

Gas flow: 120sccm N2O, 60sccm SiH2Cl2 

Temperature: 920
o
C 

Pressure: 400mTorr 

Target Thickness: 2µm 

Comment: Poly0-poly1 sacrificial layer 

 

8) Photolithography 
Mask: Poly0-poly1 

Resist polarity: Negative 

 

9) Silicon Dioxide Chemical Etch 
Chemical: Buffered hydrofluoric acid (BHF) 

 

10) LPCVD Silicon Deposition 
System: Tempress 6400 

Gas flow: 60sccm SiH4 

Temperature: 600
o
C 

Pressure: 220mTorr 

Target thickness: 6µm 

Comment: Alternate silicon deposition methods with temperatures below 400
o
C were 

preferred but were not available at the time of device fabrication 

 

11) Wafer Polishing 
System: Logitech PM2A 

Rotation rate: 60 RPM 

Slurry: Logitech Polishing Suspension Type SF1 

 

12) Photolithography 
Mask: Windows 

Resist polarity: Positive 

Comment: Removes thick polysilicon from two areas on opposite sides of the wafer 

approximately 1x1cm
2
 in order to reveal the alignment marks 

 

13) Polysilicon DRIE Etch 
System: STS Multiplex ICP 

Power: 100W platen, 800W coil generator (etching) / 800W coil generator (passivation) 

Gas flow: 130sccm SF6, 13sccm O2 (etching) / 85sccm C4F8 (passivation) 

Pressure: 10mTorr 

 

14) Photolithography 
Mask: Thermal trenches  

Resist polarity: Positive 

Comment: Defines thermal isolation trenches in order to enhance the temperature 

differential during localized annealing 
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15) Polysilicon DRIE Etch 
System: STS Multiplex ICP 

Power: 100W platen, 800W coil generator (etching) / 800W coil generator (passivation) 

Gas flow: 130sccm SF6, 13sccm O2 (etching) / 85sccm C4F8 (passivation) 

Pressure: 10mTorr 

 

16) Photolithography 
Mask: Poly1 

Resist polarity: Positive 

 

17) Polysilicon DRIE Etch 
System: STS Multiplex ICP 

Power: 100W platen, 800W coil generator (etching) / 800W coil generator (passivation) 

Gas flow: 130sccm SF6, 13sccm O2 (etching) / 85sccm C4F8 (passivation) 

Pressure: 10mTorr 

 

18) PECVD Silicon Dioxide Deposition 
System: GSI Ultradep 2000 

Power: 30W platen, 90W coil generator 

Gas flow: 15% SiH4, 99%N2O, 50% He  

Temperature: 200
o
C 

Pressure: 

Target thickness: 2µm 

Comment: Low temperature required to minimize effect on polysilicon properties 

 

19) Sputtered Chromium Deposition 
System: Perkin-Elmer 2400-8J 

Power: 700W 

Gas flow: 20sccm Ar 

Pressure: 10mTorr 

Target thickness: 120nm  

Comment: Provides adhesion assistance for ferromagnetic films 

 

20) Sputtered Ni81Fe19 Deposition 
System: Perkin-Elmer 2400-8J 

Power: 500W 

Gas flow: 15sccm Ar 

Pressure: 8mTorr 

Target thickness: To be determined 

 

21) Photolithography 
Mask: Ferromagnetic Grid 

Resist polarity: Positive 

 

22) Ferromagnetic Chemical Etch 
Chemical: Transene Nickel Etchant Type I 
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Comment: Etchant removes NiFe, FeCo, and Cr 

 

23) Inductive Anneal 
System: MTU BEAVIS 

Power: Full 

Pressure: 5mTorr 

Time: 5 minutes 

Temperature: 1000
o
C 

 

24) Ferromagnetic Film Removal 
Chemical: Transene Nickel Etchant Type I 

 

25) Photolithography 
Mask: Poly1-Metal1 

Resist polarity: Positive 

 

26) Silicon Dioxide RIE Etch 
System: Semi Group RIE System 1000 TP/CC 

Power: 180W 

Gas flow: 25sccm CF4, 25sccm CHF3 

Pressure: 20mTorr 

 

27) PECVD Silicon Deposition 
System: GSI Ultradep 2000 

Target thickness: 1.5µm 

Comment: Substitution material for Metal1 interconnect layer 

 

28) Photolithography 
Mask: Metal1 

Resist polarity: Negative 

 

29) Silicon RIE etch 
System: March Instruments Jupiter II 

Power: 30W 

Gas flow: 80sccm SF4 

Pressure: 100mTorr 

 

30) Device Release 
Chemical: Buffered hydrofluoric acid (BHF) 

Comment: Etchant removes unreacted titanium also 
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C.2: High Temperature Deposition without Annealing 

 

1) Wafer Procurement 
Vendor: University Wafer 

Orientation: <100>  

Dopant: Boron  

Resistivity: 10-20Ω-cm  

Films present: 1µm thermal oxide 

Comments: Dopant species not critical, Resistivity critical for inductively annealed 

wafers only 

 

2) LPCVD Silicon Nitride Deposition 
System: TMX9K 4304 

Gas flow: 40sccm SiH2Cl2, 160sccm NH3 

Temperature: 820
o
C 

Pressure: 150mTorr 

Target thickness: 0.25µm 

 

3) LPCVD Polysilicon Deposition 
System: TMX9K 4304 

Gas flow: 80sccm SiH4 

Temperature: 625
o
C 

Pressure: 180mTorr 

Target thickness: 0.5µm 

Comment: Poly0 lower interconnect layer 

 

4) Phosphorous Doping of Polysilicon 
System: TMX9K 4304 

Temperature: 1175
o
C 

Pressure: Atmospheric 

Measured resistivity: 26.5Ω/square 

Comment: Doping intended to enhance conductivity of poly0 layer 

 

5) Photolithography  
Mask: Poly0  

Resist polarity: Negative 

 

6) Polysilicon RIE Etch 
System: LAM 9400 

Power: 500W 

Gas flow: 100sccm HBr, 100sccm He 

Pressure: 120mTorr 

 

7) LPCVD Silicon Dioxide Deposition 
System: TMX9K 4304 

Gas flow: 120sccm N2O, 60sccm SiH2Cl2 
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Temperature: 920
o
C 

Pressure: 400mTorr 

Target Thickness: 2µm 

Comment: Poly0-poly1 sacrificial layer 

 

8) Photolithography 
Mask: Poly0-poly1 

Resist polarity: Negative 

 

9) Silicon Dioxide Chemical Etch 
Chemical: Buffered hydrofluoric acid (BHF) 

 

10) Epitaxial Silicon Deposition 
System: ASM 2000 

Gas flow: HSiCl3 with H2 carrier gas 

Temperature: 1150
o
C 

Pressure: Atmospheric 

Target thickness: 20µm 

Comment: Film deposited at high temperature, no annealing required.  

 

11) Wafer Polishing 
System: Logitech PM2A 

Rotation rate: 60 RPM 

Slurry: Logitech Polishing Suspension Type SF1 

 

12) Photolithography 
Mask: Windows 

Resist polarity: Positive 

Comment: Removes thick polysilicon from two areas on opposite sides of the wafer 

approximately 1x1cm
2
 in order to reveal the alignment marks 

 

13) Polysilicon DRIE Etch 
System: STS Multiplex ICP 

Power: 100W platen, 800W coil generator (etching) / 800W coil generator (passivation) 

Gas flow: 130sccm SF6, 13sccm O2 (etching) / 85sccm C4F8 (passivation) 

Pressure: 10mTorr 

 

14) Photolithography 
Mask: Poly1 

Resist polarity: Positive 

 

15) Polysilicon DRIE Etch 
System: STS Multiplex ICP 

Power: 100W platen, 800W coil generator (etching) / 800W coil generator (passivation) 

Gas flow: 130sccm SF6, 13sccm O2 (etching) / 85sccm C4F8 (passivation) 

Pressure: 10mTorr 
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16) PECVD Silicon Dioxide Deposition 
System: GSI Ultradep 2000 

Gas flow:  

Temperature: 200
o
C 

Pressure: 

Target thickness: 2µm 

Comment: Poly1-Metal1 insulating layer, sacrificial in structural region 

 

17) Photolithography 
Mask: Poly1-Metal1 

Resist polarity: Positive 

 

18) Silicon Dioxide RIE Etch 
System: Semi Group RIE System 1000 TP/CC 

Power: 180W 

Gas flow: 25sccm CF4, 25sccm CHF3 

Pressure: 20mTorr 

 

19) PECVD Silicon Deposition 
System: GSI Ultradep 2000 

Power: 

Gas flow: 

Pressure: 

Target thickness: 1.5µm 

Comment: Substitution material for Metal1 interconnect layer 

 

20) Photolithography 
Mask: Metal1 

Resist polarity: Negative 

 

21) Silicon RIE etch 
System: March Instruments Jupiter II 

Power: 30W 

Gas flow: 80sccm SF4 

Pressure: 100mTorr 

 

22) Device Release 
Chemical: Buffered hydrofluoric acid (BHF) 
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