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ABSTRACT 
 

The study of advanced materials aimed at improving human life has been performed 

since time immemorial. Such studies have created everlasting and greatly revered 

monuments and have helped revolutionize transportation by ushering the age of 

lighter–than–air flying machines. Hence a study of the mechanical behavior of 

advanced materials can pave way for their use for mankind’s benefit. In this school 

of thought, the aim of this dissertation is to broadly perform two investigations. 

First, an efficient modeling approach is established to predict the elastic response of 

cellular materials with distributions of cell geometries. Cellular materials find 

important applications in structural engineering. The approach does not require 

complex and time-consuming computational techniques usually associated with 

modeling such materials. Unlike most current analytical techniques, the modeling 

approach directly accounts for the cellular material microstructure. The approach 

combines micropolar elasticity theory and elastic mixture theory to predict the 

elastic response of cellular materials. The modeling approach is applied to the two 

dimensional balsa wood material. Predicted properties are in good agreement with 

experimentally determined properties, which emphasizes the model’s potential to 

predict the elastic response of other cellular solids, such as open cell and closed cell 

foams. The second topic concerns intraneural ganglion cysts which are a set of 

medical conditions that result in denervation of the muscles innervated by the cystic 

nerve leading to pain and loss of function. Current treatment approaches only 

temporarily alleviate pain and denervation which, however, does not prevent cyst 
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recurrence. Hence, a mechanistic understanding of the pathogenesis of intraneural 

ganglion cysts can help clinicians understand them better and therefore devise more 

effective treatment options. In this study, an analysis methodology using finite 

element analysis is established to investigate the pathogenesis of intraneural 

ganglion cysts. Using this methodology, the propagation of these cysts is analyzed in 

their most common site of occurrence in the human body i.e. the common peroneal 

nerve. Results obtained using finite element analysis show good correlation with 

clinical imaging patterns thereby validating the promise of the method to study cyst 

pathogenesis. 
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NOMENCLATURE 
 

( )n
ka  Acceleration vector component of the nth constituent 

( )n
kla  Material derivative of ( )n

klε  

( ) ( )n n
kl klmnA ,A  Material moduli of the nth constituent 

( )nA  Cross–sectional area of the struts of the nth constituent 

kla  Material derivative of klε  

AB Articular Branch 

B(m) Strain-displacement matrix in FEA 

( )n
klb  Material derivative of ( )n

klγ  

( ) ( )n n
kl klmnB ,B  Material moduli of the nth constituent 

klb  Material derivative of klγ  

C0 Constant relating temperature and free energy in the natural state 

C Right Cauchy–Green deformation tensor 

C(m) Elasticity matrix in FEA 

( )n
klmnC  Material moduli of the nth constituent 

m
nc  Mooney–Rivlin constant corresponding to In term where n can be 1 or 2 

m
x avgC −  Average values of the xth Mooney-Rivlin constant obtained from Quapp et. 

al. (Quapp & Weiss, 1998) 
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m
x newC −  Re-fit coefficient of the xth Mooney-Rivlin constant obtained from Quapp 

et. al. (Quapp & Weiss, 1998) 

CPN Common Peroneal Nerve 

d Inverse of pressure applied to maintain incompressibility by the U/P 

formulation 

D Set of all dependent variables 

DPN Deep Peroneal Nerve 

e Total number of transverse tensile tests performed by Quapp et. al. 

(Quapp & Weiss, 1998) 

( )n
strutE  Young’s modulus of the strut material of the nth constituent  

( )nE  Young’s modulus of the equivalent continuum of the nth constituent 

E Young’s modulus of the mixture 

( )n
kf  Body force density vector components of the nth constituent 

f (n) Volume fraction of the nth constituent 

FEA Finite Element Analysis 

( )n
strutG  Shear modulus of the material of the struts of the nth constituent 

( )nG  Shear modulus of the equivalent continuum of the nth constituent 

G Shear modulus of the mixture 

h(n) Internal energy source density of the nth constituent 

h Internal energy source density of the mixture 

I Identity tensor 

I Set of all independent variables 
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In First, second and third invariants of the right/left Cauchy–Green 

deformation tensor for n=1, 2, 3 respectively 

( )nI  Moment of inertia of the struts of the nth constituent 

IGC Intraneural Ganglion Cyst 

( )nj  Microinertia density of the nth constituent 

J Set of all thermodynamic fluxes 

J  Ratio of volume before and after deformation 

K Classical Fourier constant 

K Stiffness matrix in FEA 

( )n
il  Body couple density vector components of the nth constituent 

( )nl  Length of the struts of the nth constituent 

lcyst Length of the cyst 

L Left Cauchy–Green deformation tensor 

( )n
klm  Couple stress tensor components of the nth constituent 

( )n
km̂  Internal couple vector components exerted onto nth constituent by the 

other constituent 

klm  Couple stress tensor components of the mixture 

( )n
kp̂  Internal force density vector components exerted onto nth constituent by 

the other constituent 

( )n
kq  Heat flux vector components of the nth constituent 

qk Heat flux vector components of the mixture 
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Q(n) Grid structural parameter 

(n) Region occupied by the nth constituent in the mixture 

r0 Cyst outer radius 

ri Cyst inner radius 

( )nR  Grid structural parameter 

R Applied force vector in FEA 

RF Rear face direction Failure strength 

S0 Free energy in the natural state 

s(n) Cross–sectional thickness / equivalent continuum thickness of the nth 

constituent 

( )nS  Grid structural parameter 

S Second Piola–Kirchoff stress tensor 

S Sciatic nerve 

S–I Stage–I of the finite element model 

S–II Stage–II of the finite element model 

SPN Superficial Peroneal Nerve 

SF Side face direction Failure strength 

n
lfS  Longitudinal failure strength of the nth nerve specimen 

t Time at the end of constituent motion  

tc Thickness of the cyst 

tf Distance between the cyst top surface and outer surface of the outer 

epineurium 
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( )n
klt  Stress tensor components of the nth constituent 

T Change in temperature from ambient temperature 

T0 Ambient temperature 

( )nT  Grid structural parameter 

klt  Stress tensor components of the mixture 

( )n
ku  Displacement vector components of the nth constituent 

uk Displacement vector components of the mixture 

U Fixed boundary region point 

U Displacement vector in FEA 

( )n
kv  Velocity vector components of the nth constituent 

vi Velocity vector components of the mixture 

( )12
kv  Relative velocity vector components 

V Fixed region boundary point 

V(m) Volume of the mth element in FEA model 

( )n
kX  Reference position vector components of the nth constituent 

( )n
kx  Spatial position vector components of the nth constituent 

X Point representing AB end 

W Fixed boundary condition region in stage–I 

Y Set of all thermodynamic forces 

Z Fixed boundary condition region in stage–I 

( )nα  Micropolar elastic constant of the nth constituent  
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α Failure strength anisotropy ratio 

( )n
0β  Thermal expansion constant of the nth constituent 

( )nβ  Micropolar elastic constant of the nth constituent 

( )n
kχ  Motion equation components of the nth constituent 

∆l Displacement due to a tensile force along a nerve’s length 

δij Kronecker delta 

( )n
klε  Linear strain tensor components of the nth constituent 

δlcyst Cyst length increase due to cyst propagation 

δθcyst Cyst arc angle increase due to cyst propagation 

εijk Permutation tensor components 

ε(n) Internal energy density of the nth constituent 

( )nε̂  Energy transferred to nth constituent from the other constituent 

ε Internal energy density of the mixture 

εkl Strain tensor components of the mixture 

( )n
iφ  Microrotation vector components of the nth constituent 

Φ Dissipation potential 

φi Microrotation vector components of the mixture 

( )n
klγ  Linear microrotation gradient tensor components of the nth constituent 

( )nγ  Micropolar elastic constant of the nth constituent 

γkl Linear microrotation gradient tensor components of the mixture 

η Entropy density of the mixture 
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η0 Entropy density of the mixture in the natural state 

( )nκ  Micropolar elastic constant of the nth constituent 

( )nλ  Micropolar elastic constant of the nth constituent 

λ Stretch along the length of the nerve 

( )nµ  Micropolar elastic constant of the nth constituent 

( )nν  Poisson’s ratio of the equivalent continuum of the nth constituent 

ν Poisson’s ratio of the mixture 

θ Absolute temperature of the constituents and the mixture 

θcyst Angle subtended by the arc of the cyst 

ρ Mass density of the mixture 

ρ(n) Mass density of the nth constituent 

( )n
relρ  Relative density of the grid of the nth constituent 

σ Cauchy stress tensor 

( )n
iυ  Microgyration vector components of the nth constituent 

( )12
kυ  Relative microgyration vector components 

ϖ  Momentum generation coefficient due to difference in gyrations 

ξ  Momentum generation coefficient due to velocity difference 

ψ Free energy density of the mixture 

Ψ Strain energy function of a hyperelastic material 

ζ  Heat generation for unit change in velocity 
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1. INTRODUCTION 
 

The great necessity to understand structural behavior has existed ever since the 

ancients decided to erect monuments to eulogize, worship or celebrate. It led to the 

need to perform studies, both experimental and analytical, that has in turn led to 

some of the greatest architectural wonders of the world. For example, Archimedes 

(287–212 B.C.) detailed the conditions for equilibrium of levers and methods for 

calculating the centre of gravity of bodies. These studies helped in the construction 

of various hoisting devices that helped build the temple of Diana of Ephesus 

(Timoshenko, 1953). Leonardo da Vinci, considered an outstanding man of the 

fifteenth century, studied complicated problems in statics and also performed 

experiments to identify the tensile strength of wires (Timoshenko, 1953). However, 

it was not until Galileo Galilei documented his experiments on tension and bending 

of beams that the study of strength of materials is really believed to have arrived.  

 

A watershed moment in the history of structural mechanics was the invention of 

lighter–than–air flying machines. After the strategic edge they provided to the 

ground troops in the First World War, these came to be used to transport civilians 

across cities and continents. It was precisely at this juncture that there began the 

effort to design materials that were light in weight and yet able to bear the brunt of 

flight. This ushered the age of composite materials research whose properties could 

be tailored to have good strength–to–weight and stiffness–to–weight ratios. A 

composite material consists of two or more materials that are combined to result in a 
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new material with properties that represent the better qualities of its constituents 

(Jones, 1975). The success of the use of composite materials is reflected by their 

abundant use in the newest generation of civilian and military aircraft (Daniel & 

Ishai, 1994). 

 

A specific class of composites is cellular materials. The combination of a structural 

material and air cells provides for a low–density material with desirable engineering 

properties such as mechanical durability and porosity. The most readily recognizable 

cellular material which is also widely prevalent is the honeycomb structure that 

stores the honey and larvae of bees. Other naturally occurring cellular materials 

might need a microscope for recognition of their cellular structure. For example, 

cellular materials like cork, balsa wood, sponge, coral, iris leaf and plant stalks have 

cell sizes ranging from the micrometer range to a few millimeter (Gibson & Ashby, 

1999). Also, interestingly, foods like bread, meringue, malt balls and cake and 

biological materials such as cancellous bone and cuttlefish bone have a definite 

cellular structure (Gibson & Ashby, 1999). While cellular materials might have 

humble applications such as the material used in a disposable coffee cup, they also 

boast of some heady aerospace applications. In particular, honeycomb structures are 

used in sandwich composites that are heavily used in aerospace structures. Also, 

metallic foams are used as an energy–absorbing medium for impact in the 

automobile industry. 

 

Another field of mechanics that has been much researched since the times of Galileo 

is the field of biomechanics (Fung, 2004). However, until the beginning of the 
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twentieth century the practitioners of applied mechanics did not perform research in 

this area. The role that biomechanics has played in the invention of prosthetic heart 

valves, heart assist devices, extracorporeal circulation, heart–lung machines and 

hemo–dialysis machines is significant (Fung, 2004). The mechanics of blood flow 

plays a crucial role in the identification of stenosis or atherosclerosis in arteries 

(Fung, 2004). Further, nowhere is the role of biomechanics more pronounced than in 

the field of orthopedics given that surgeries dealing with musculoskeletal problems 

outnumber those in other areas (Fung, 2004). Much of the development of prosthesis 

and implantable materials owes itself to the field of biomechanics.  

 

The subject of this thesis can broadly be considered to be the development and 

application of novel techniques in applied mechanics to study material behavior with 

microstructure. Given the great importance that cellular materials occupy in the 

aerospace and medical fields, an investigation to model their material behavior 

forms the subject of Chapter 2 of this thesis. Details are provided as to the existing 

gap in the literature followed by a methodical treatment. This is followed by a 

section on validating the suggested modeling approach. Chapter 3 discusses the 

significance of the work done in Chapter 2 and points out some future directions. 

Chapter 4 focuses on developing a methodology for addressing another important 

problem, namely, cyst evolution and propagation in nerve tissue. Little is known 

about the formation and propagation of these cysts, which limits clinical treatment. 

Chapters 5 and 6 deal with specific studies that are conducted using the frame work 

developed in Chapter 4. Chapter 7 serves as a concluding chapter for the work done 

in Chapters 4, 5 and 6.  
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2. CONSTITUTIVE MODELING OF 
CELLULAR MATERIALS  

S. Elangovan, B.S. Altan, G.M. Odegard 
Michigan Technological University, Houghton MI 49931, USA 

(Reprinted from Mechanics of Materials, 40(7), Elangovan, S. et. al., An elastic micropolar mixture theory 
for predicting elastic properties of cellular materials, p. 602–615, 2008, with permission from Elsevier, 
please refer Appendix–A) 

2.1 INTRODUCTION 

Cellular materials have a lattice architecture that in many cases results in high 

specific stiffness, specific strength, and good thermal insulation properties relative 

to many engineering materials. Cellular materials have been used in many 

structural engineering applications, including the core material in composite 

sandwich panels (Gibson & Ashby, 1999). The design and implementation of cellular 

materials relies on accurate and efficient models to relate the lattice microstructure 

to the bulk mechanical properties.  

 

Cellular materials consist of a complex interconnected framework of either material 

struts only (open cell foams) or material struts and cell face membranes (closed cell 

foams) that yields a porous or a closed–cellular material, respectively. For example, 

the open cell lattice of the polyurethane foam shown in Figure 2.1 has pores and 

material struts with a range of cell sizes and shapes distributed spatially in the 

material. This microstructural complexity poses significant problems for accurately 

modeling the mechanical behavior of cellular materials.  
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Two modeling approaches that have been used to predict the mechanical response of 

cellular materials are finite element analysis (FEA) and analytical techniques. 

Numerous studies have been performed to predict the mechanical response of 

cellular materials using FEA techniques (Kanaun & Tkachenko, 2006; Li, Gao, & 

Subhash, 2006; Roberts & Garboczi, 2002; Yoo & Jasiuk, 2006; Zhu, Hobdell, & 

Windle, 2000). While this approach has the ability to accurately predict mechanical 

behavior for a wide range of cellular microstructures, the model building and 

solution procedures can be time–consuming and expensive, making FEA techniques 

prohibitive where efficient material design is necessary. Analytical approaches have 

been developed that are much more efficient than FEA approaches (Gibson & Ashby, 

1999). Although these methods are simple and efficient, they often cannot directly 

incorporate the microstructural details on non–periodic geometries that are found in 

a majority of cellular materials without resorting to the use of empirical data. 

Therefore, there is a need to establish an efficient and accurate modeling approach 

 

Figure 2.1 Open Cell Polyurethane Foam 

5 µm
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to predict the mechanical response of cellular materials as a function of the random 

material microstructure.  

The objective of this study is to establish a linear–elastic constitutive modeling 

approach for cellular materials that accounts for distributions of cell size and 

geometry. The modeling approach consists of two steps. First, two individual lattice 

geometries with periodic microstructures are modeled as effective micropolar 

continua. The micropolar elasticity theory is used to enable the effective continua to 

represent the lattice geometry at the microstructural and bulk–level length scales. 

An example of this first step is shown in Figure 2.2 for two 2–dimensional triangular 

grids. In the second step the two effective micropolar continua are combined via 

 

Figure 2.2 Modeling Approach 

=

+

Triangular grid
Conceptual combined 

triangular gridTriangular grid

Micropolar constituent Micropolar constituent Micropolar mixture

+

Micropolar
mixture
theory

micropolar 
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=

+

Triangular grid
Conceptual combined 

triangular gridTriangular grid

Micropolar constituent Micropolar constituent Micropolar mixture

+

Micropolar
mixture
theory

micropolar 
homogenization
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mixture theory to create a micropolar continuum that effectively models a cellular 

solid with a distribution of cell geometries, as shown in Figure 2.2. 

 

First, the concepts related to the first step, namely the micropolar homogenization 

are detailed. Next the schematic of the proposed constitutive theory for a two solid 

micropolar mixture is outlined, which forms the second step of the homogenization 

process. Finally the application of the proposed modeling approach to a two–

dimensional cellular solid is presented.  

 

2.2 MICROPOLAR HOMOGENIZATION 

2.2.1  Micropolar Elasticity 

In the theory of micropolar elasticity (Eringen, 1999), the points in a material 

continuum have six degrees of freedom: three translational components of the 

classical theory and three rotation components about the coordinate axes. Although 

the theory of micropolar elasticity has been applied to many fields of engineering, 

one of its primary uses is to provide a mathematical foundation to describe the 

mechanical behavior of lattice structures. The micropolar theory is necessary in the 

analysis of lattice structures because rotations at the strut joints play a significant 

role in influencing the overall behavior of the lattice at relatively small length 

scales. For example, a micropolar beam model was developed (Noor & Nemeth, 

1980b) for four different types of planar lattice grids with rigid joints. In a 

subsequent study (Noor & Nemeth, 1980a), the model was extended to model three–
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dimensional lattice structures. An energy approach considering in–plane 

displacements as well as joint rotations was used (Sun & Yang, 1973) to estimate 

the dynamic characteristic of a two–dimensional square grid.  

 

2.2.2 Triangular Lattice Homogenization 

The equivalent micropolar continuum for a single triangular grid composed of 

Timoshenko beams has been previously established (Ostoja-Starzewski, 2002). In 

this formulation, given the length of the strut of the nth constituent l(n) (Figure 2.3), 

cross–sectional width and height of the strut  of the nth constituent s(n), the Young’s 

modulus of the material composing the struts of the nth constituent ( )n
strutE , and the 

shear modulus of the material composing the struts of the nth constituent ( )n
strutG , the 

equivalent in–plane isotropic micropolar elastic moduli for a two–dimensional 

equivalent continuum of thickness s(n) are 

 

 

( ) ( )
( ) ( )

( )

( )
( )

( )

( )
( )

( )

( ) ( )

n n
n n

n

n
n

n

n
n

n

n n

3 Q R
8 s
3 R
2 s
3 S
2 s

0

−
= =

=

=

= =

λ µ

κ

γ

α β

 (2.1) 

 

where 
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( )
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( ) ( )( )
( )

( ) ( )

( ) ( )

( )
( ) ( )( )
( ) ( )( )

n n
n strut

0.5n

n n
n strut

3 n0.5n

n n
n strut

0.5n

2n n
strutn

2n n
strut

2E AQ
l 3

24E I 1R
1 Tl 3

2E IS
l 3

E s
T

G l

=

=
+ 

 

=

=

 (2.2) 

 

In Equation (2.2) A(n) and I(n) are the cross–sectional area and moment of inertia of 

the struts of the nth constituent, respectively, given by 

 

 ( ) ( ) ( )
( ) 4n

2n n n
s

A s I
12

 
  = =   (2.3) 

 

These equations assume a plane state of stress in the plane of the triangular lattice, 

as shown in Figure 2.3. The relative density of the triangular lattice is (Gibson & 

Ashby, 1999)  

 

 ( )
( )

( )

( )

( )

n n
n

rel n n

s 3 s2 3 1
2l l

 
= − 

  
ρ  (2.4) 
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It is noted that it has been shown (Ostoja-Starzewski, 2002) that for relative 

densities of 80% and higher, the strut width becomes too large for Equation (2.1) to 

accurately predict the elastic properties of the equivalent micropolar continuum. 

 

2.3 MICROPOLAR MIXTURE HOMOGENIZATION 

2.3.1 Mixture Theory 

Motivated by Maxwell's kinetic theory of gases, Truesdell and Toupin (Truesdell & 

Toupin, 1960) presented an axiomatic mixture theory for interacting continua based 

on the premise that each point of space is simultaneously occupied by all 

constituents of the mixture. It has been used with profound success to model the 

mechanical behavior of composite materials (Bedford & Stern, 1972; Hegemier, 

 

Figure 2.3 Triangular Lattice Strut Dimensions 

e2

e3

e1O S

l
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Gurtman, & Nayfeh, 1973; McNiven & Mengi, 1979a, 1979b, 1979c; Nayfeh & 

Gurtman, 1974; Stern & Bedford, 1972). It is also assumed that the interactions 

between the constituents of a mixture are accounted for as interaction forces in the 

appropriate field equations. The mixture theory concept has been used to model the 

three–dimensional mechanical behavior of a binary mixture (Bedford & Stern, 1972). 

In a subsequent study (Stern & Bedford, 1972), the three–dimensional model 

predicted wave propagation phenomena in a composite material. It was concluded 

that in order to accurately predict wave propagation properties in a composite 

material, the material microstructure must be considered, which can be done with 

considerable ease by using the elastic mixture theory. An alternative version of the 

mixture theory was developed (Hegemier et al., 1973) for modeling the wave 

propagation in laminated and unidirectional fibrous composites. The theory was 

used to determine the distribution of displacements and stresses within individual 

constituents. This theory was subsequently applied (Nayfeh & Gurtman, 1974) for 

both transversely and horizontally polarized shear waves propagating in the plane of 

the laminate. A mixture theory was developed (McNiven & Mengi, 1979a) for two–

phase materials which was implemented (McNiven & Mengi, 1979b, 1979c) to study 

the wave propagation in periodically–structured composites.  

 

2.3.2 Kinematics 

The following presentation of the kinematic theory of a binary mixture of micropolar 

solids is similar to that developed for a binary mixture of a solid and fluid previously 

(Eringen, 2003). Consider regions of two constituents of a mixture (1) and (2), 
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which simultaneously occupy a common volume in the reference configuration 

(Figure 2.4).  

A material point of the nth constituent in the reference configuration has a position 

denoted by ( )nX . After a time t, due to a motion denoted by the mapping ( )nχ , the 

position of the point of the nth constituent in the spatial configuration is given by the 

motion equation 

 

 ( ) ( ) ( )( ),x Xn n n t= χ  (2.5) 

 

The corresponding velocity and acceleration vector components at time t are given 

by, respectively, 

 

 

Figure 2.4 Kinematics of the Mixture 
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 ( ) ( )n n
k kv x=         (2.6) 

  ( ) ( )n n
k ka x=   (2.7) 

 

where the superposed dot denotes the usual material time derivative. The velocity 

vector components of the mixture are given by 

 

 ( ) ( ) ( ) ( )1 1 2 21
k k kv v vρ ρ

ρ
 = +   (2.8) 

 

where ρ and ρ(n) are the densities of the mixture and the nth constituent, 

respectively, and are related by 

 

 ( ) ( ) ( ) ( ) ( )1 2x,t x,t x,tρ ρ ρ= +  (2.9) 

 

The linear strain tensor components and the linear microrotation gradient tensor 

components of the nth constituent are given by, respectively, 

 

 ( ) ( ) ( )n n n
kl l ,k lkm mu= +ε ε φ  (2.10) 

 ( ) ( )n n
kl k ,l=γ φ   (2.11) 

 

where ( )n
ku  and ( )n

kφ are the displacement and rotation vector components of a point 

of the nth constituent  and  lkmε  is the permutation symbol. In Equations (2.10) and 
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(2.11), and throughout this paper, the usual summation and partial differentiation 

conventions are used.  For the linear theory, the microgyration vector of the nth 

constituent is defined as (Eringen, 1999)  

 

 ( ) ( )n n
k kυ φ=   (2.12) 

 

The material derivatives of (2.10) and (2.11) are denoted by 

 

 
( ) ( )

( ) ( )

n n
kl kl

n n
kl kl

a

b

=

=





ε

γ
  (2.13) 

 

The motion of the material points of the mixture is influenced by forces and 

thermodynamic conditions that the mixture is exposed to.  The corresponding 

balance laws are described in the next section. 

 

2.3.3 Balance Laws 

If it is assumed that microinertia is constant and isotropic, then the remaining 

balance laws of mass, linear momentum, angular momentum, and energy provide 

field equations which dictate the kinetic response of the micropolar mixture. Each 

balance law is individually addressed in this section.  The balance laws are similar 

to those previously proposed by Eringen (Eringen, 2003). 
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2.3.3.1 

The balance of mass for the nth constituent is given by 

Balance of Mass 

 

 ( ) ( ) ( ) 0n n n
k ,kvρ ρ+ =  (2.14) 

 

Summing over the two constituents and using Equations (2.8) and (2.9), the balance 

of mass of the mixture is  

 

 0k ,kvρ ρ+ =  (2.15) 

 

2.3.3.2 

The balance of linear momentum for the nth constituent is 

Balance of Linear Momentum 

 

 ( ) ( ) ( ) ( ) ( )n n n n n
l kl ,k l lˆx t f p= + +ρ  (2.16) 

 

where ( )n
lx  is the acceleration of the nth constituent, ( )n

klt  are the components of the 

stress tensor, ( )n
lf are the components of the body force density vector, and ( )n

lp̂  are 

the components of the interaction force density vector which represents force exerted 

on the nth constituent due to the interaction with the other constituent (terms that 

represent constituent interactions have the superposed caret). Summing over the 

two constituents produces the linear momentum balance of the mixture  
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2 1 2
l l kl ,k kl ,k l l l lˆ ˆx x t t f f p pρ ρ+ = + + + + +   (2.17) 

 

If it is assumed that linear momentum of the mixture is balanced solely by the 

stresses and body force densities in the constituents then Equation (2.17) becomes 

 

 ( ) ( )1 2 0k kˆ ˆp p+ =  (2.18) 

 

Equation (2.18) indicates that the two interaction force density vectors are of equal 

magnitude and opposite sign. 

 

2.3.3.3 

The balance of angular momentum is given by  

Balance of Angular Momentum 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n
l kl ,k lmn mn l lˆj m t l m= + + +ρ υ ε  (2.19) 

 

where ( )nj  is the microinertia density (resistance to microrotation), ( )n
lυ is the 

microgyration (microrotation rate), ( )n
klm  are the components of the couple stress 

tensor, ( )n
ll  are the components of the body couple density vector, and ( )n

lm̂ is the 

components of the interaction couple exerted on the nth constituent due to 

interaction with the other constituent. Summing over the two constituents, Equation 

(2.19) becomes 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 1 2 1 2 1 2 1 2
l l kl ,k kl ,k lmn mn lmn mn l l l lˆ ˆj j m m t t l l m mρ υ ρ υ ε ε+ = + + + + + + +   (2.20) 

 

If it is assumed that the angular momentum of the mixture is balanced by ( )n
kl ,km , ( )n

mnt  

and ( )n
ll , then Equation (2.20) reveals 

 

 ( ) ( )1 2 0l lˆ ˆm m+ =  (2.21) 

 

Therefore, the interaction couple vectors have equal magnitudes and opposite signs. 

 

2.3.3.4 

The conservation of energy for the nth constituent is  

Balance of Energy 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n n
kl kl kl lk k ,k ˆt a m b q h= + + + +ε ε  (2.22) 

 

where ( )nε is the internal energy density of the nth constituent, ( )n
kq is the heat flux 

vector, ( )nh is the energy source density, and ( )nε̂ denotes the transfer of energy 

density to the nth constituent from the other constituent.  It has been shown 

(Eringen, 2003) that by summing Equation (2.22) over the two constituents and 

utilizing field equations (2.18) and (2.21) the following relationship is established 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2 1 12 1 12
k ,k kl kl kl kl kl lk kl lk k k k kˆ ˆq h t a t a m b m b p v mε υ= + + + + + − −  (2.23) 
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where ε, h and qk are the components of the internal energy density, energy source 

density and heat flux vector of the mixture, respectively, ( )12
kv  and ( )12

kυ  are the 

components of the relative velocity and relative microgyration vectors, respectively, 

given by 

 

 
( ) ( ) ( )

( ) ( ) ( )

12 1 2

12 1 2

k k k

k k k

v v v

υ υ υ

= −

= −
 (2.24) 

 

and 

 

 
( ) ( )

( ) ( )

1 2

1 2h h h

ε ε ε= +

= +
 (2.25) 

 

The free energy density of the mixture is defined by  

 

 = −ψ ε θη  (2.26) 

 

where θ  is the absolute temperature of the constituents and the mixture, and η is 

the entropy density of the mixture.  The absolute temperature is assumed to be 

spatially uniform.  Substitution of Equation (2.26) into (2.23) yields 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2 1 12 1 12
k ,k kl kl kl kl kl lk kl lk k k k kˆ ˆq h t a t a m b m b p v mψ θη θη υ+ + = + + + + + − −

   (2.27) 
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2.3.3.5 

The second law of thermodynamics is expressed as 

Clausius–Duhem inequality 

 

 1 1 0,k
k ,k k 2q q h− + − ≥

θ
η

θ θ θ
 (2.28) 

 

Substitution of Equation (2.27) into (2.28) yields the Clausius–Duhem inequality 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2 1 12 1 12 0,k
kl kl kl kl kl lk kl lk k k k k kˆ ˆt a t a m b m b p v m q

θ
ψ θη υ

θ
− + + + + + − − + ≥

  (2.29) 

 

2.3.4 Constitutive Modeling 

The parameters associated with field equations (2.15), (2.18), (2.21), (2.27) and the 

Clausius–Duhem inequality of Equation (2.29) are related by the constitutive 

equations. The constitutive independent and dependant variables are the sets I and 

D, respectively, given by 

 

 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

1 2 1 2 12 12

1 2 1 2 1 1

kl kl kl kl m m

kl kl kl kl m m m

I , , , , ,v ,

ˆ ˆD , ,t ,t ,m ,m ,q , p , m

θ ε ε γ γ υ

ψ η

=

= − −
 (2.30) 

 

All the independent variables are frame–independent except ( )12
mv  and ( )12

mυ . The 

admissibility for using these quantities has been established (Eringen, 2003). The 

parameters ρ, ( )2
mp̂ , and ( )2

mm̂  are uniquely determined by Equations (2.15), (2.18), 
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and (2.21), respectively, and thus are not included in sets I and D. The free energy 

density is assumed to be a function of the static independent variables 

 

 ( ) ( ) ( ) ( )( )1 2 1 2
kl kl lk lk, , , ,ψ ψ θ ε ε γ γ=   (2.31) 

 

where the superposed ~ denotes a response function. Using the chain rule, the 

material derivative of the free energy is given by 

 

 ( )
( )

( )
( )

( )
( )

( )
( )1 2 1 2

1 2 1 2kl kl lk lk
kl kl lk lk

a a b bψ ψ ψ ψ ψψ θ
θ ε ε γ γ

∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂

    



  (2.32) 

 

Substituting Equation (2.32) into Equation (2.29) yields 

 

 

( )
( )

( ) ( )
( )

( ) ( )
( )

( )

( )
( )

( ) ( ) ( ) ( ) ( )

1 1 2 2 1 1
1 2 1

2 2 1 12 1 12
2 0

kl kl kl kl kl lk
kl kl lk

,k
kl lk k k k k k

lk

t a t a m b

ˆ ˆm b p v m q

ψ ψ ψ ψη θ
θ ε ε γ

θψ υ
θγ

     ∂ ∂ ∂ ∂ − + + − + − + −            ∂ ∂ ∂ ∂       
 ∂

+ − − − + ≥  ∂ 

   





 (2.33) 

 

If Equation (2.33) is to be satisfied for arbitrary values of θ , ( )n
kla , and ( )n

lkb  then 

 

 ( )
( )

( )
( )

( )
( )

( )
( )

1 2 1 2
1 2 1 2kl kl kl kl

kl kl lk lk

t t m mψ ψ ψ ψ ψη
θ ε ε γ γ

∂ ∂ ∂ ∂ ∂
= − = = = =

∂ ∂ ∂ ∂ ∂

    

 (2.34) 

Substituting Equation (2.34) back into Equation (2.33) 
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 ( ) ( ) ( ) ( )1 12 1 12 0,m
m m m m mˆ ˆp v m q

θ
υ

θ
− − + ≥  (2.35) 

 

The inequality of Equation (2.35) implies a set of thermodynamic forces Y and fluxes 

J (Eringen, 1999) given by 

 

  
( ) ( )

( ) ( )( )

12 12

1 1

,m
m m

m m m

Y v , ,

ˆ ˆJ p , m ,q

θ
υ

θ
 

=  
 

= − −

 (2.36) 

 

Using a similar approach to that used by Eringen (Eringen, 2003)  the constitutive 

equations associated with these quantities are 

 

 

( )
( )

( )
( )

( )

1
12

1
12

k
k

k
k

k
,k

p̂
v

m̂

q

Φ

Φ
υ
Φ

θ θ

∂
= −

∂
∂

= −
∂
∂

=
∂

 (2.37) 

 

where Φ is the dissipation potential (Eringen, 1999).  

 

 

The specific free energy of the mixture is 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 1 2 2 1 1 2 220
0 0

0

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

2
1 2
2
1 2
2

kl kl kl kl kl kl kl kl

klmn kl mn klmn kl mn klmn kl mn

klmn kl mn klmn kl mn klmn kl mn

CS T T A T A T B T B T
T

A B C

A B C

ψ η ε ε γ γ

ε ε γ γ ε γ

ε ε γ γ ε γ

= − − − − − −

+ + +

+ + +

 (2.38)  

 

where the subscript 0 denotes constants or variables in their natural state, that is, a 

state that is free of stress and couple stress. S0 is the free energy in the natural 

state, C0 is a constant relating temperature and free energy in the natural state, T0 

is the ambient temperature, T is the change in ambient temperature resulting in the 

current temperature θ  (θ =To+T, where T  is much less than 0 0T ,T > 0), and 

( ) ( ) ( ) ( ) ( )n n n n n
kl kl klmn klmn klmnA ,B ,A ,B ,C  are material moduli.  The dissipation potential of the 

mixture is given by 

 

 ( ) ( ) ( ) ( ) ( )12 12 12 12 12
22 2 ,k ,k ,k

k k k k kv v v K
θ θ θ

Φ ξ ζ ϖυ υ
θ θ

= + + +  (2.39)  

 

where ξ  is the momentum generation coefficient due to velocity difference, ζ  is the 

heat generation for unit change in velocity, K is the classical Fourier constant, and 

ϖ  is the momentum generation due to difference in gyrations. The linear 

constitutive equations are obtained by substituting (2.38) and (2.39) into (2.34) and 

(2.37), 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

1 1 1 1 2 2 2 20
0

0

1 12

0

1 12

12

0

kl kl kl kl kl kl kl kl

n n n n n n
kl kl klmn mn klmn mn

n n n n n n
kl kl lkmn mn klmn mn

,k
k k

k k

,k
k k

C T A B A B
T

t A T A C

m B T B C
T

p̂ v
T

m̂
T

q v K
T

η η ε γ ε γ

ε γ

γ ε

ξ ζ

ϖυ

ζ

= + + + + +

= − + +

= − + +

= − −

= −

= +

 (2.40) 

 

For isotropic constituents (Eringen, 1999) 

 

 

( )

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0

n
kl kl

n
klmn klmn

n n
kl kl

n n n n n
klmn kl mn km ln kn lm

n n n n
klmn kl mn kn lm km ln

B

C

A

A

B

β δ

λ δ δ µ κ δ δ µ δ δ

α δ δ β δ δ γ δ δ

=

=

=

 = + + + 

= + +

 (2.41) 

 

where 0kl and 0klmn are the components of the second– and fourth–order null tensors, 

respectively; ( ) ( ) ( ) ( ) ( ) ( )n n n n n n, , , , ,α β γ λ µ κ  are the six micropolar elastic constants; and 

( )
0

nβ  is a thermal expansion constant for determining micropolar isotropic behavior.  

Substitution of Equation  (2.41) into Equation (2.40) yields 

 

 ( ) ( ) ( ) ( )1 1 2 20
0 0 0

0
kk kk

C T
T

η η β ε β ε= + + +  (2.42) 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

n n n n n n n n n
kl mm kl kl lkt Tβ λ ε δ µ κ ε µ ε   = − + + + +     (2.43) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n
kl kl mm lk klm α δ γ β γ γ γ= + +  (2.44) 

 ( ) ( )1 12

0

,k
k k

T
p̂ v

T
ξ ζ= − −  (2.45) 

 ( ) ( )1 12
k km̂ ϖυ= −  (2.46) 

 ( )12

0

,k
k k

T
q v K

T
ζ= +  (2.47) 

 

Equation (2.42) – (2.47) describes the constitutive response of the constituents, the 

entropy density of the mixture, the interaction parameters, and the mixture heat 

flux vector.  The overall behavior of the constituents is governed by the constitutive 

response as well as the balance equations discussed in Section 4.  Substitution of 

Equations (2.42) – (2.47) into Equations (2.16), (2.19), and (2.27) yield, respectively, 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1 12

2 2 2 2 2 2 2 2 2 12

0

0

l mm,l kl ,k lk ,k l

l mm,l kl ,k lk ,k l

x v

x v

ρ λ ε µ κ ε µ ε ξ

ρ λ ε µ κ ε µ ε ξ

 − − + − + = 
 − − + − − = 





 (2.48) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1

1 1 1 1 1 12

2 2 2 2 2 2 2 2 2

2 2 2 2 2 12

0

0

l mm,l kl ,k lk ,k

lmn mn nm l

l mm,l kl ,k lk ,k

lmn mn nm l

j

j

ρ υ α γ β γ γ γ

ε µ κ ε µ ε ϖυ

ρ υ α γ β γ γ γ

ε µ κ ε µ ε ϖυ

− − −

 − + + + = 

− − −

 − + + − = 





 (2.49)

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )12 1 12 1 12 1 1 2 2
0 0 0k ,k k k k k kk kkˆ ˆv p v m T a T aζ υ β β− − − − =  (2.50) 
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where isothermal conditions are assumed and body force densities, body couple 

densities, heat source densities, and temperature gradients have been neglected. 

 

2.4 MICROPOLAR MIXTURE OF TRIANGULAR 

LATTICES 

Consider the case of the equivalent micropolar continuum loaded in uniaxial tension 

parallel to the e1 basis vector shown in Figure 2.3, in which the strains are 

 

 ( ) ( ) ( ) ( ) ( ) ( )
11 22 33 23 13 12 0n n n n n nε ε ε ε ε ε= = = =  (2.51) 

 

where ( )
11

nε  is the applied uniaxial strain.  The transverse stresses are 

 

 ( ) ( )
22 33 0n nt t= =  (2.52) 

 

The in–plane Young’s modulus E(n) and the Poisson’s ratio ν(n) of the nth constituent 

are defined as, respectively, 
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Isothermal conditions are assumed. Substitution of Equation (2.51) into the ( )
11

nt  

component of Equation (2.43) yields 

 

 ( ) ( )
( )

( )
( ) ( ) ( )22

11 11
11

2 2
n

n n n n n
nt ελ µ κ ε

ε

 
= + + 

  
 (2.55) 

 

Substituting Equations (2.51) and (2.52) into the ( )
22

nt  component of Equation (2.43)  

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
22 11 220 2 2n n n n n n nt λ ε µ λ κ ε = = + + +   (2.56) 

 

Substitution of Equations (2.55) and (2.56) into (2.53) establishes the Young’s 

modulus of the equivalent continuum of the nth constituent 

 

 ( ) ( ) ( )( n ) ( n ) ( n ) ( n ) ( n )
n

( n ) ( n ) ( n )

2 3 2
E

2 2
+ + +

=
+ +

µ κ λ µ κ

λ µ κ
 (2.57) 

 

Substitution of Equation (2.56) into (2.54) provides 
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Now consider the case of pure shear in the e1–e2 plane of the equivalent micropolar 

continuum.  Again, isothermal conditions are assumed to exist.  The corresponding 

strain field is 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
12 21 11 22 33 13 23 0n n n n n n nε ε γ ε ε ε ε ε= = = = = = =  (2.59) 

 

where γ is the engineering shear strain. The in–plane shear modulus of the 

equivalent continuum of the nth constituent is defined as 

 

 ( )
( )

( )
12

122

n
n

n

tG
ε

≡  (2.60) 

 

Substitution of Equation (2.59) into (2.43) for the 1–2 component of stress 

 

 ( ) ( )
( )

2

n
n nG κµ= +  (2.61) 

 

It is noted that Equations (2.57), (2.58), and (2.61) are consistent with those reported 

elsewhere (Eringen, 1999; Gauthier & Jahsman, 1975, 1976; Nowacki, 1974). 

 

Although the constitutive and field equations govern the response of the micropolar 

mixture, the nature of the interactions, as represented by ( )1
kp̂  and ( )1

km̂  have yet to 

be determined.  For simplicity, it is assumed here that  
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( ) ( )

( ) ( )

1 2

1 2

k k k

k k k
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= =

= =
 (2.62) 

 

Therefore 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

kl kl kl kl kl kl

kl kl kl kl kl kl

a a a

b b b

ε ε ε

γ γ γ

= = = =

= = = =
 (2.63) 

 

where  uk, φk, εkl, γkl, akl, and bkl are the kinematic quantities associated with the 

mixture.  Hence by virtue of Equation (2.62) and in the absence of temperature 

gradients 

 

 ( ) ( ) ( ) ( )12 1 12 10 0k k k k k kˆ ˆv p mυ= = = =  (2.64) 

 

The elastic mixture theory assumes that the stress tij and couple stress mij of the 

mixture are given by 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2

1 1 2 2

ij ij ij

ij ij ij

t f t f t

m f m f m

= +

= +
 (2.65)  

 

where f (1) and f (2) are the volume fractions of constituents 1 and 2, respectively, in 

the mixture. For the binary mixture considered in this study f (1) + f (2) = 1. 
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The assumptions of Equations (2.62) and (2.65) are the simplest assumptions for the 

interaction of the constituents. In fact, Equations (2.62) implies that no internal 

interactions exist between the micropolar continua. A possible physical 

interpretation of this assumption with regards to the conceptual combined 

triangular grid shown in Figure 2.2 is that there are no locations in which the two 

grids are bonded together. If on the other hand, the grids are “welded” at their 

junction points, then the assumption of Equation (2.62) must be modified 

appropriately.  

 

Consider again the uniaxial deformation described by Equations (2.51) and (2.52).  If 

the same deformation field (here εij are the components of strain of the mixture) is 

applied to the binary mixture, the Young’s modulus E and Poisson’s ratio ν of the 

mixture are, respectively, 

 

 11

11

tE
ε

≡  (2.66) 

 22

11

εν
ε

≡ −  (2.67) 

 

Substitution of Equations (2.57) and (2.65)1 into (2.66) reveals 
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 (2.68) 

 

Since the normal strains in the constituents are equal to those in the mixture, 

Equation (2.58) is equal to Equation (2.67)  
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 (2.69) 

 

When the strain field described by Equation (2.59) is applied to the mixture for the 

case of pure shear, the shear modulus of the mixture G is 

 

 12

122
tG
ε

≡  (2.70) 

 

Substitution of Equations (2.60), (2.61), and (2.65)1 into (2.70) 
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( ) ( )
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1 1 2 2 1 1 2 2

2 2
G f G f G f fκ κµ µ

   
= + = + + +   

      
 (2.71) 

In a similar manner, the micropolar moduli of the mixture can be determined.   
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2.5 EXPERIMENTAL VALIDATION 

The constitutive framework developed in Section 2.3.4 is for a general mixture of two 

micropolar elastic solids.  To demonstrate the application of the proposed theory, the 

constitutive response of a two–dimensional cellular material with a distribution of 

cell sizes is determined.  Such material structures are found in many varieties of 

wood. For example, the microstructure of a cross–sectional slice of balsa wood is 

shown in Figure 2.5.  To determine the constitutive response of this two–

dimensional natural cellular material, its cell size distribution is matched with the 

cell size distribution of the conceptual combined triangular grid (Figure 2.2). The 

conceptual triangular grid, which then represents the microstructure in Figure 2.5, 

is homogenized in two steps, namely, the micropolar homogenization step in which 

each individual grid is converted to an effective micropolar continuum and the 

 

Figure 2.5 SEM Image of a Longitudinal Cross-Section of Balsa Wood 
(Image copyright Dennis Kunkel Microscopy, Inc., printed with permission, see Appendix–A) 

100 µm

Sap 
channels

Ray cells

Normal 
cells
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micropolar mixture theory homogenization step where the individual micropolar 

continua are superimposed using the micropolar mixture theory. This yields the 

equivalent continuum whose mechanical behavior represents the mechanical 

behavior of the natural two–dimensional cellular material. It is important to note 

that since the micropolar mixture theory combines two equivalent micropolar 

continua and not the individual lattices, the model does not directly model the 

conceptual combined triangular grid shown at the top of Figure 2.2. In the current 

section, the micropolar homogenization of a single triangular grid is discussed 

followed by the details of the micropolar mixture theory homogenization and the 

resulting constitutive response of the mixture. 

 

2.5.1  Application of Model to Balsa Wood 

A cross sectional slice of balsa wood closely approximates a two–dimensional cellular 

structure with a distribution of cell sizes.  Figure 2.5, which is an image of an axial 

cross–section of balsa wood, shows three types of cells.  Most of the volume is 

occupied by nearly hexagonal normal cells, with parallel bands of rectangular ray 

cells.  The larger sap cells occupy a much smaller volume than the normal and ray 

cells over the entire cross section (Figure 2.5 is focused on an area crowded with sap 

cells), thus their relative volume fraction is insignificant compared to those of the 

normal and ray cells.   

 

A binary mixture model was constructed in which the 1st and 2nd constituents were 

the equivalent continua of the normal and ray cells, respectively. The structural and 
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mechanical parameters for the two lattices are shown in Table 2.1. The values of s(n), 

E(n), and f(n) were previously determined by Easterling et al. (Easterling, Harrysson, 

Gibson, & Ashby, 1982). The values of l(n) were determined by equating the average 

cell areas reported by Easterling et al. (Easterling et al., 1982)  with triangular cell 

areas for the triangular lattice. The values of G(n) were calculated assuming a cell 

wall Poisson’s ratio of 0.33.   

Using Equations (2.1) – (2.3), (2.57), (2.58), (2.61), (2.68), (2.69), and (2.71), the in–

plane Young’s modulus, Poisson’s ratio, and shear modulus of balsa wood were 

predicted to be 376 MPa, 0.25, and 150 MPa, respectively.  Experimental 

measurements of in–plane Young’s modulus of balsa wood range from 10 – 300 MPa 

(Easterling et al., 1982) .  Therefore, the predicted Young’s modulus is in reasonable 

agreement with the empirical value.  The model did not take into consideration the 

 Normal Cells Ray Cells 

n 1 2 

s(n) 1.5 µm 1.5 µm 

l(n) 44 µm 29 µm 

f(n) 86% 14% 

( )n
strutE  10 GPa 10 GPa 

( )n
strutG  3.8 GPa 3.8 GPa 

Table 2.1 Properties of Equivalent Lattices of Balsa Wood 
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presence of sap channels and imperfections in the material, which may explain 

slight overestimate of the predicted properties.  Of course, more constituents can be 

added to the model to account for these structural effects, if a more accurate 

prediction is needed. 

 

2.6 SUMMARY 

An analytical modeling approach has been developed to predict the elastic properties 

of cellular materials without the need for complex and inefficient FEA modeling.  

The modeling approach directly accounts for the distribution of cell geometries that 

are present in most cellular materials. The approach combines mixture theory and 

micropolar elasticity theory to predict elastic response of cellular materials to a wide 

range of loading conditions. The modeling approach was applied to the two–

dimensional balsa wood material.  Predicted properties were in good agreement with 

experimentally–determined properties. This agreement demonstrates that the model 

has the potential to predict the elastic response of other cellular solids, such as open 

cell and closed cell foams. 
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3. CONSTITUTIVE MODELING OF OPEN 
CELL FOAMS – CONCLUSIONS 

 

3.1 RESEARCH SIGNIFICANCE 

A novel two step analytical technique has been suggested for predicting the behavior 

of cellular materials. The method unlike previous analytical models demonstrates 

the ability to incorporate material microstructure. FEA studies of cellular materials 

tend to be accurate but time consuming and computationally intensive. This 

analytical technique provides a simpler and yet accurate method for studying 

cellular material behavior. The second step of the homogenization which outlines the 

micropolar mixture homogenization is very general. This is indeed applicable to any 

two micropolar solids, not just this case. While mentioning significance, it is 

important to note the capabilities of the mixture theory. In a fiber–reinforced 

composite material it has been shown to account for the interaction between the 

fiber and the matrix at the interface (Bedford & Stern, 1972). This is an example of a 

mechanical interaction. Another advantage of using the mixture theory is its ability 

to represent the dynamic behavior of materials. Stern et. al. (Stern & Bedford, 1972) 

studied  elastic wave propagation in a laminate using mixture theory. They were 

able to predict wave properties like attenuation and dispersion which the classical 

theory could not. The first step to studying dynamic behavior is to establish a 

constitutive equation; the constitutive equation designed in this study can form a 

platform for such a dynamic study.  



53 
 

3.2 FUTURE WORK 

Levels of complexity can be added to the homogenization process to improve 

predictions. The two stages of the homogenization processes allow flexibility for 

making changes. For example, in the first stage of the homogenization process a 

hexagonal grid formulation may be used. The hexagonal grid will more closely 

approximate the normal cells of balsa wood. To add another level of complexity, cell 

size randomness in each individual grid may be considered. This will help represent 

the cell size randomness at the individual grid level itself. However, a 

homogenization for such a grid has to be established using available techniques 

(Nemat-Nasser & Hori, 1993) first. The constitutive equation designed in this study 

may be used to study the propagation of waves in a cellular material. This will 

eventually have important applications in studying the porosity of a cellular 

material using wave propagation e.g. ultrasound testing of bone.  
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4. FINITE ELEMENT MODELING OF 
INTRANEURAL GANGLION CYSTS 

Shreehari Elangovan, Gregory Odegard,  
Michigan Technological University, Houghton, MI 49931, USA  

Duane Morrow, Huan Wang, Marie–Noëlle Hébert–Blouin and Robert 
Spinner, MI, USA  

Mayo Clinic, Rochester, MN 55905, USA 

(Material in section 4.1.3, reprinted from Neurosurgical Focus, 26(2), Elangovan, S. et. al., Intraneural 
Ganglia: A Clinical Problem Deserving A Mechanistic Explanation and Model, Article Number–E11, 
2009, with permission from the American Association of Neurosurgeons, please refer Appendix–A) 

4.1 INTRODUCTION 

Intraneural ganglion cysts (IGC) have remained curiosities for centuries in the 

clinical world. They occur most commonly in the nerves of the lower leg, but have 

been described in many nerves in the vicinity of joints. Their occurrence can lead to 

neuropathy, which can lead to muscle weakness, sensory abnormalities and pain. 

When IGC occur at their most common site of occurrence in the human body namely 

the common peroneal nerve, they can lead to a condition called ‘foot drop’. Foot drop 

is characterized by the inability of the patient to dorsiflex the foot. If they remain 

undetected, they can spread to nearby nerve branches and cause further problems. 

Not understanding the root cause of these cysts can cause recurrence of these cysts 

after initial medical treatment/surgery. This means that the symptoms associated 

with their occurrence will persist. Effective patient treatment strategies will greatly 

depend on how well clinicians understand the pathogenesis of these cysts. The aim 
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of the study in this chapter is to investigate the pathogenesis of IGC using a 

computational tool called finite element analysis (FEA). 

 

4.1.1 Normal Nerve Anatomy 

The cross section of a nerve is shown in Figure 4.1 (Spinner, Amrami, et al., 2007). 

The following information about nerve constituents was obtained from Sunderland 

et al. (Sunderland & Bradley, 1961) and Topp et al. (Topp & Boyd, 2006). The outer 

epineurium is the outermost sheath of the nerve which is composed primarily of 

connective tissue and serves to encase the nerve contents. Filling the inner cavity of 

the outer epineurium is the inner epineurium, which is composed of loose connective 

tissue. Embedded in the inner epineurium are fascicles, which are bundles of axons. 

Axons are nerve fibers that conduct electrical impulses between the brain and the 

muscles. The inner epineurium cushions individual nerve fascicles. The fascicles are 

capable of extending and contracting longitudinally during normal nerve function. A 

frequent site of IGC in the peripheral nervous system is the common peroneal nerve 

(CPN) (Spinner, Atkinson, Scheithauer, et al., 2003), which originates from the 

sciatic nerve (S) as shown in Figure 4.2 (Spinner, Atkinson, Tiel, & Tn, 2003). At the 

fibular neck, the CPN branches into the articular branch (AB), the deep peroneal 

nerve (DPN) and the superficial peroneal nerve (SPN). The superior tibiofibular 

joint is formed at the meeting point between the tibia and the fibula, just below the 

knee joint. It is encapsulated by a capsule containing synovial fluid which is 

generated by the synovium of the joint that lubricates the contact between the tibia 

and fibula. 
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Figure 4.1 Nerve Structure 

 

Figure 4.2 Superior Tibiofibular Joint Anatomy 

 

Figure 4.3 Cross–Sectional Appearance of a Normal Nerve and an IGC 
 (Figure 4.1, Figure 4.2 and Figure 4.3 are copyrighted and used with permission of the Mayo Foundation 

for medical education and research, all rights reserved, see Appendix-A)  
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4.1.2 Intraneural Ganglion Cyst 

Figure 4.3a (Spinner, Atkinson, Tiel, et al., 2003) shows a healthy nerve where the 

differently colored tubes represent the fascicles. These fascicles in Figure 4.3 have 

been assigned colors depending on which nerve branch they belong to. The blue 

fascicles belong to the DPN and the orange fascicles belong to the SPN. The green 

fascicle belongs to the AB. An IGC is a condition of fluid accumulation within a 

nerve which causes fascicles and the inner epineurium to be compressed against the 

periphery of the nerve as shown in Figure 4.3b (Spinner, Atkinson, Tiel, et al., 2003). 

The specific details about how these blue and orange fascicles are compressed will be 

discussed in section 4.1.3. Compression of fascicles prevents them from functioning 

normally and it could lead to a dysfunctional nerve. 

 

4.1.3 IGC Evolution and Propagation 

The mechanistic explanation for IGC pathogenesis consists of the analysis of the 

mechanical interactions of the cyst fluid, the nerve tissue (e.g. epineurium), the 

tissue surrounding the nerve (e.g. muscle, bone, soft tissue) in relation to the 

environment (e.g., gravity).  As the mechanical interactions are specific to each 

interface (1. joint/capsule, 2. capsule/AB, 3. AB/parent nerve), each will be described 

individually.  Parent nerve refers to a major nerve e.g. CPN. For simplicity, the 

peroneal nerve, the most common site for an IGC, will be used as the prototype.  

However, this mechanistic explanation can be applied to IGC of any nerve.  
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4.1.3.1 

A hypothesis based on a multitude of clinical experiences for the pathogenesis of 

IGC is provided by the articular theory (Spinner, Atkinson, Tiel, et al., 2003). 

According to this theory, the formation of an IGC occurs at the joint-joint capsule 

interface. The synovial fluid escapes through a capsular defect (a slit) into the AB. 

The capsular defect may be preexisting and is probably the result of a traumatic, 

degenerative or congenital process (Desy, Amrami, Spinner, & Mp, 2006; Spinner, 

Atkinson, Scheithauer, et al., 2003; Spinner, Atkinson, Tiel, et al., 2003). Evidence 

suggests that direct or indirect cumulative trauma (Ellis, 1936; Faivre, 1975; 

Gurdjian, 1965; Spinner, Atkinson, Scheithauer, et al., 2003) to the superior 

tibiofibular joint itself or in relation to the neighboring knee joint is important in the 

development of these cysts. Intraarticular pressure in the capsule can increase due 

to the following reasons: 

Joint-Joint Capsule 

a) Continued production of synovial fluid within the joint 

b) Dynamic increase in intraarticular pressure associated with loading of the 

joint and joint mechanics 

Prior to the escape of the fluid through the defect, increased intraarticular pressure 

may lead to bulging of the joint capsule.  This is possibly due to the relative ease to 

expand the capsular tissue initially.  As the intraarticular pressure increases, the 

potential energy of the system increases.  In accordance with the principle of 

minimum potential energy (Beer, Johnston Jr., Mazurek, Cornwell, & Eisenberg, 

2010), it is then easier for the fluid to escape through the capsular defect than to 

expand the capsule further.  The synovial fluid “chooses” the path of least resistance.  
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In the absence of a capsular defect, increased pressure could result in rupture of the 

capsule.  

 

4.1.3.2 

In IGCs the capsular defect is closely associated with the AB. While a joint 

“connection” of the AB to a neighboring synovial joint can be well seen on imaging 

and at surgery, the direct “communication” between the joint and the cyst has been 

demonstrated on arthrography (De Schrijver, 1998; Godin, 1985; Huaux J.P., 1986; 

Lagarrigue, 1982; J. Malghem, Vande Berg, B.C., Lebon, C., Lecouvet, F.E., 

Maldague, B.E., 1998; J. Malghem, Vande, B. B., Lecouvet, F., et. al., 2002; Spinner, 

Amrami, Kliot, Johnston, & Casanas, 2006; Spinner, Amrami, & Rock, 2006). 

Increase in intraarticular pressure would logically lead to an increase in the 

pressure within the newly initiated cyst. Resulting forces from the joint promoting 

cyst formation (driving forces) are greater than the resisting forces (

Joint Capsule-AB Interface 

Figure 4.4).  

 

Figure 4.4 IGC Driving and Resisting Forces 
(Image copyright Journal of Neurosurgery, used with permission, see Appendix-A) 
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Driving forces are those that lead to an increase in intraarticular pressure namely 

points 4.1.3.1a and b. Resisting forces can be either intrinsic or extrinsic. Intrinsic 

resisting forces relate to the resistance to the elastic deformation of the nerve. 

Extrinsic resisting forces come from the surrounding tissue such as bone, muscle, or 

soft tissue (e.g., compartments). Gravity can also play a role in facilitating or 

resisting cyst propagation. The role of cyst resorption and/or the potential for 

rupture is unknown. Cyst resorption refers to the body’s ability to absorb the cyst 

fluid. 

 

It seems intuitive that in clinically apparent, persistent cysts, the intra-articular 

pressure remains larger than the resisting forces, resulting in further cyst 

formation: expansion (in diameter) and extension (in length). Expansion refers to the 

distension of the nerve cross-section similar to what is seen in Figure 4.3b. 

Extension refers to the growth along the length of the nerve and is shown in Figure 

4.5.  

 

Expansion and extension are further favored for two reasons: 1) maintenance of joint 

forces (i.e., synovium continues to produce fluid, in fact probably at an increased rate 

due to the association of joint-related disease), and 2) the relative ease of further 

cyst growth (i.e., increased volume of the cyst results in a reduction of the intrinsic 

resisting forces). This observation would be consistent with the path of least 

resistance, which is illustrated by the well established principle of potential energy 

minimization (Beer et al., 2010). Lesser energy is required for cyst expansion and 

extension, in view of the relatively weak neural tissue (especially in the 
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epineurium), than for fluid re-entry into the joint. The presence (or absence of) and 

type of valve is unknown. 

4.1.3.3 

At the AB/parent nerve interface, the same factors as those discussed above apply. 

With continued cyst growth, extension occurs within the confines of the epineurium 

into a parent nerve (

AB-Parent Nerve Interface 

Figure 4.5). At the AB/parent nerve junction, the cyst again 

follows the path of least resistance. Cysts can either extend proximally and/or 

distally to varying levels. Contributing factors could include: 1) the degree of 

angulation of the AB to the parent nerve; 2) the relative location of the cyst within 

the AB when it reaches the AB/parent nerve junction (favoring growth along rather 

than around strong and stiff fascicles); and 3) increased additional resistances from 

intrinsic or extrinsic factors (e.g., scarring, ligation, etc.). Any combination of these 

factors could dictate directionality.  

 

 

Figure 4.5 Intraneural Ganglion Cyst Propagation 
(Image copyright Journal of Neurosurgery, used with permission, see Appendix-A) 

Peroneal intraneural ganglion
Cystic articular

branch
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As clinical observation suggests, cyst expansion tends to be eccentric, displacing 

nerve fascicles (“signet ring” sign)(Spinner, Desy, & Amrami, 2006). Figure 4.3b 

indicates eccentric displacement of orange fascicles. This along with the distended 

cyst region looks like a signet ring and hence has been coined so by Spinner et. al. 

Assuming the lack of a morphological defect, the intraepineurial cleavage plane 

(specifically, within the outer epineurium) seems to be favored clinically. This could 

be explained by dissection according to the path of least resistance: 1) the outer 

epineurium is composed of looser connective tissue than the inner epineurium, and 

2) the continued forces promote cyst propagation within the same neural 

compartment.  

 

The AB is a small nerve branch and the diameter of its cystic enlargement in IGC is 

relatively small compared to that of the parent nerve. This gives rise to the 

characteristic imaging features of IGCs: a tubular cyst constrained by the 

epineurium with a small neck (tail sign) and balloon-like cystic involvement of the 

parent nerve. The size and shape of the cyst in different regions is dictated by the 

architecture and diameter of respective neural branches and extrinsic forces 

overlying the neural tissues. The multilobulated but elongated appearance often 

seen clinically can potentially be due to the dynamic nature of the intra-articular 

pressures and variable effects from other forces.  

 

4.1.3.4 

The term ‘cyst propagation’ is used to refer to the combined effects of cyst expansion 

and extension. For example, in 

Predicting Cyst Propagation 

Figure 4.5 the cyst is said to have propagated from 
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the AB to the CPN. The word ‘growth’ is also used synonymously with ‘propagation’. 

A previously used method for predicting the path of cyst propagation is to conduct a 

dye experiment (Figure 4.6) (Spinner, Atkinson, Tiel, et al., 2003). In this 

experiment, a dye is injected into the AB and its path of propagation in the nerve is 

observed. A dye experiment can only indicate the presence of a communication 

channel. It cannot quantitatively indicate why a certain path is preferential 

compared to another.  

On the other hand, computational techniques like FEA consider the influence of 

dimensions, material properties and various phenomena involved in the propagation 

of a cyst. Therefore, such a technique can quantitatively predict why a certain path 

of propagation is preferential to another. A widely used computational technique in 

biomechanics is FEA (Hirokawa & Tsuruno, 1997; Valencia & Solis, 2006; Weiss & 

Gardiner, 2001). 

 

 

Figure 4.6 Dye Experiment 
(Image copyright Journal of Neurosurgery, used with permission, see Appendix-A) 

Dye injection
Dye in articular branch
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Finite element analysis (FEA) is a computational method where if forces applied on 

a solid object are known, then forces generated in various regions of the solid object 

in response to the applied forces can be predicted. The predictions are based on 

properties of the material e.g. stiffness. In IGCs the applied force is the 

intraarticular pressure. If the material properties and the dimensions of the nerve 

are known then forces generated in the nerve can be predicted. The generated forces 

in a nerve likely influence the propagation of the cyst and therefore might help 

throw light on the propagation of IGC. A complete theoretical treatment of FEA is 

not in the scope of this dissertation; however, numerous textbooks provide 

exhaustive details on FEA. 

 

The objective of the research discussed in this chapter is to devise a method using 

FEA to simulate the path of cyst propagation in the AB. The details of the finite 

element model are outlined first, including the assumed material properties, 

dimensions, and boundary conditions. This is followed by a presentation of the 

simulation results, including the predicted cyst growth behavior.  

 

4.2 FINITE ELEMENT MODEL 

The peroneal nerve, the most common site for an IGC, will be used as the prototype 

for the FEA studies. A solid model of the junction between the AB, DPN, and SPN 

branches indicated by the box on Figure 4.7a (Spinner, Atkinson, Tiel, et al., 2003) 

was created as shown in Figure 4.7b. Dimensions for the model were averages of the 

dimensions measured from the two limbs of one cadaveric specimen using a digital 
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caliper with 0.01 mm accuracy (Industrial Direct Co., Inc.) by Drs. Wang and 

Spinner, and are shown in Figure 4.8. In view of the computational effort required to 

solve the model, it is divided into two stages as shown in Figure 4.7b. All studies 

performed in this chapter pertain to stage–I. 

4.2.1 FE Model Structure 

 A FE model of the stage–I region was constructed and meshed as shown in Figure 

4.9. The outer blue region represents the outer epineurium and the inner region 

represents a single fascicle. The inner red region is in reality composed of both inner 

epineurium and multiple fascicles. However, because it is known that the fascicle is 

much stiffer than the inner epineurium (Topp & Boyd, 2006), the red region’s 

mechanical response is dominated by fascicle properties. Hence the red region only 

represents the response of the fascicles. Further, including individual fascicles will 

complicate the modeling process and introduce additional detail.  

 

Figure 4.7 Finite Element Model 
(Figure 4.7a copyrighted and used with permission of Mayo Foundation for medical education and 

research, all rights reserved, see Appendix-A)  

AB – Articular branch, DPN – Deep peroneal nerve, SPN – Superficial peroneal
nerve, S–I = Stage–I, S–II = Stage–II

a. AB–DPN–SPN junction
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Figure 4.8 FEM Dimensions 
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This additional detail is not warranted since the global response of the nerve is more 

important than the stresses in the individual nerve fascicles. Therefore, the red 

region is homogenized as a single fascicle. Since the inner epineurium is not 

included in this model, the blue region is henceforth simply referred to as 

‘epineurium’.  

The following are two reasons why two separate regions were necessary in the FE 

model.  

a) Topp et al. (Topp & Boyd, 2006) and Sunderland et al. (Sunderland & Ray, 

1948) mention that the fascicle is stiffer in tension than any other part of the 

nerve. Hence to be able to declare separate material properties, a separate 

material was needed for the fascicle.  

b) IGCs usually occur and propagate only in the epineurium. Hence, the 

epineurium was created as a separate material to constrain the cyst to 

propagate only in the epineurium. 

 

Figure 4.9 Material Discretization 
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Only half of the FEA model is shown so that the internal structure of the fascicle is 

visible. The mesh consisted of ten noded tetrahedral elements with each node having 

three degrees of freedom, namely translations in the global coordinate directions. 

Tetrahedral elements were chosen since a complicated geometry such as this could 

not be meshed with hexahedral brick elements in Ansys 11. The element technology 

incorporated reduced integration capability and mixed U/P formulation for 

simulating nearly incompressible behavior. No experiments have been done to 

investigate the compressibility of the nerve constituents. However, it was assumed 

as an incompressible material due to the large amount of trapped water (Topp & 

Boyd, 2006) in the nerve. The finite element analysis also accounted for the 

geometric non–linearity in the structure.  

 

4.2.2 FE Material Properties 

The mechanical properties of nerve tissue components (e.g. fascicle, inner/outer 

epineurium) have not been previously explored in detail. The only reported 

mechanical properties (Sunderland & Bradley, 1961; Topp & Boyd, 2006) were linear 

properties measured from the tensile response of a whole nerve. Therefore, attention 

was focused on understanding the load bearing components of a nerve. This would 

help in selecting properties of a material with a similar reinforcing architecture and 

whose properties are already known. 

 

It is known that the inner and the outer epineurium consist of elastin fibrils and 

collagen fibrils (type 1 & 3) aligned along the length of the nerve (Topp & Boyd, 
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2006). The main load–bearing portion of the nerve is the perineurium, the outer 

sheath of the fascicles, which can be made by up to fifteen layers of collagen fibrils 

(type 1 & 2). These fibrils may be alternately aligned in the longitudinal, 

circumferential and oblique directions (Topp & Boyd, 2006). The inner matrix of the 

fascicle (endoneurium) consists of endoneurial fluid and collagen fibrils (type 1 & 2) 

aligned along the length of the nerve (Topp & Boyd, 2006). While the load bearing 

components of a nerve are known, the relative proportion of each is yet to be known. 

Because of the nature of the cyst geometry (cyst geometry is explained in the next 

sections), it is expected that the cyst pressure (which represents intraarticular 

pressure) will result in forces that are mostly applied in the y–direction (Figure 4.9) 

in the fascicle and z–direction (Figure 4.9) in the epineurium. If the YZ plane is 

considered as the transversely isotropic plane, then the X-direction represents the 

axis of isotropy. Cyst pressure is expected to cause very small forces along the axis of 

isotropy and hence the properties of a nerve in that direction are not of much 

consequence in this study.  

 

The z–direction force results in stretching the epineurium in the direction 

transverse to the length of the nerve. Based on the reinforcing architecture 

(Sunderland & Ray, 1948; Topp & Boyd, 2006), this amounts to stretching the nerve 

in the direction across the collagen fiber direction. Hence a material whose 

reinforcing architecture is similar to that of a nerve and whose transverse direction 

properties are available might be an ideal approximation for the current situation. 
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Ligaments are reinforced in the direction of their length by collagen (type I and III) 

and elastin fibers (Cowin & Doty, 2007) in a similar manner to nerves. Ligaments 

contain proteoglycans, structural glycoproteins, plasma proteins and fibroblasts 

(Cowin & Doty, 2007; Weiss & Gardiner, 2001). The epineurium of nerves consist of 

fibroblasts, mast cells and fat cells (Topp & Boyd, 2006). Despite the slight 

dissimilarities between the nerve epineurium and ligaments, the properties of 

human medial collateral ligament (MCL) measured in the direction transverse to 

the ligament’s length (Quapp & Weiss, 1998) is used for the epineurium. A 

description of how ligament properties were adapted to our study is detailed later in 

this section. 

 

The fascicular region experiences compression in the yz–plane (Figure 4.9). Apart 

from collagen, fascicles are made up of glycoproteins, proteoglycans, fibroblasts, 

mast cells, macrophages and endoneurial fluid (Topp & Boyd, 2006). There is no 

guiding data on the stress-strain response of a nerve’s fascicle. Therefore for 

simplicity, it is approximated to be equal to the tensile behavior of the human MCL 

in the transverse direction to the ligament’s length. Hence both the epineurium and 

the fascicle are assigned similar properties. 

 

A simple and effective strain energy function for hyperelastic materials is the 

Mooney–Rivlin model (Holzapfel, 2000) given by  

 

 ( ) ( ) ( )2
1 1 2 2 3

13 3 1m mc I c I I
d

Ψ = − + − + −
 (4.1) 
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where Ψ is the strain energy density, 1
mc  and 2

mc  are material property constants for 

material m and I1, I2 and I3 are the first, second and third invariants of the right 

Cauchy–Green deformation tensor (Holzapfel, 2000). The term ‘1/d ’ represents the 

pressure that the U/P formulation applies to maintain incompressibility and here d 

takes the value 0.001. In the Lagrangian frame, the stress is given by the 2nd Piola–

Kirchoff stress given by 

 

 

1
1 3

1 2 2 3

2 I I
I I I I

−  ∂Ψ ∂Ψ ∂Ψ ∂Ψ
= + − +  ∂ ∂ ∂ ∂  

S I C C
 (4.2)

 

 

where C represents the right Cauchy–Green deformation tensor and I represents the 

identity tensor. Alternately, the stress may be measured in the Eulerian frame 

which is given by the Cauchy stress written as 

 

 

1 1
2 3 3

2 3 1 2

2σ I L LJ I I I
I I I I

− −  ∂Ψ ∂Ψ ∂Ψ ∂Ψ
= + + −  ∂ ∂ ∂ ∂  


 (4.3)
 

 

where J  refers to the ratio of  volumes before and after deformation, L represents 

the left Cauchy–Green deformation tensor. In equation (4.3), I1, I2 and I3 refer to the 

invariants of the left Cauchy–Green deformation tensor which are the same as the 

invariants of the right Cauchy–Green deformation tensor. For incompressible 

materials, the ratio J  is 1. The values of 1
mc  and 2

mc  were obtained based on the 
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data reported by Quapp et al. (Quapp & Weiss, 1998). Seven sets of values for 1
mc  

and 2
mc  were determined experimentally by them for the properties transverse to the 

collagen fiber direction in the human MCL. In order to obtain the best 

approximation, the average value of 1
mc  from seven experiments was obtained. In a 

similar manner, the average value for 2
mc  was also obtained. This is illustrated by 

the following equation. 
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 (4.4)

 

 

where ‘e’ represents the experiment number from Quapp et. al. (Quapp & Weiss, 

1998).  Based on Quapp et al.’s data, 1
m

avgc − was equal to 22.7 MPa and 2
m

avgc −  was 

equal to –9.4 MPa. The above values could not be used as is because negative 

coefficients can cause problems in finite element simulations. Therefore, a new curve 

with coefficients 1
m

newc −  and 2
m

newc −  was fit to the average coefficient curve. The aim of 

this refitting was to obtain a good match with the average constant curve with 

positive coefficients. This is shown by the graph in Figure 4.10. The two curves show 

good correlation especially between stretch ratios of 1 and 1.25.  
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Figure 4.10 Material Properties for FE Model 

 

 

Figure 4.11 Cyst Location and Dimensions 
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This is important since the FE model is expected to develop stretch ratios within 

this limit. The new refitted coefficients 1
m

newc −  and 2
m

newc −  are given by 7 MPa and 0.95 

MPa respectively. 

 

4.2.3 Cyst Dimensions 

The cyst is represented by the hollow crescent–like region shown in the epineurium 

in Figure 4.11. The length of the cyst (lcyst) is the length measured along the AB and 

the cyst arc angle (θcyst) is the angle subtended by the arc of the cyst. The cyst 

thickness (tc) represents the distance between the top and bottom surfaces of the 

cyst. The values for these dimensions are given in Table 4.1. The cyst length is 

chosen to be one–third the length of the AB and the cyst thickness is one–third the 

thickness of the epineurium. The cyst is located to be equidistant from the outer and 

the inner epineurium surfaces. The rear face of the cyst is a crescent shaped surface 

as indicated in Figure 4.11a.  

Initial Values Stage–I 

lcyst (mm) 2.74 

θcyst (degree) 270 

r0 (mm) 0.8 

ri (mm) 0.64 

Table 4.1 Stage–I Cyst Dimensions 
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The side face of the cyst is a semi–cylindrical surface at the sides of the cyst as 

indicated in Figure 4.11b. There are no guiding data on the shape of a cyst in the 

epineurium. The above mentioned shape and dimensions are best estimates of what 

they might be. 

 

4.2.4 Boundary Conditions 

As mentioned in section 4.1.3, the cyst is pressurized by the continuous production of 

cyst fluid in the superior tibiofibular joint and the biomechanical loading of the joint. 

This leads to its continued accumulation in the epineurium. In the FEA model, this 

cyst fluid pressure is represented by a pressure load applied on the inner surfaces of 

the cyst except at the rear face. This is because of the cyst’s similarity to a crack in 

traditional fracture mechanics. The rear face then represents the crack tip of a 

mode–I crack (Anderson, 2004). Since no load is applied at the crack tip itself, no 

load was applied on the rear face. Since it is very difficult to measure the pressure of 

the cyst fluid, an assumed pressure was chosen. An examination of the range of 

pressures that existed within synovial joints was then conducted. Pressure in knee 

synovial joints was investigated since no data was available of superior tibiofibular 

joint intraarticular pressure. An article on joints in the university of Washington–

orthopaedics and sports medicine website (Medicine, 2010) reports that the 

intraarticular pressure in a resting, normal, human knee is about –4 mmHg 

(equivalent to –5.33e–4 MPa). The article further reports that the sub–atmospheric 

pressure within the joint helps provide a stabilizing force for holding joint members 

together. It also mentions that in the abnormal/diseased joint, the intraarticular 
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pressure is higher than atmospheric pressure. Knight et. al. (Knight & Levick, 1982) 

studied the pressure–volume relationships above and below atmospheric pressure in 

a normal rabbit knee synovial joint. Synovial joint rupture occurred at 17 cmH20 

(16.67e–4 MPa). They verify that intraarticular pressure in a resting, undiseased 

joint condition is sub–atmospheric and that it is supra–atmospheric while diseased 

(e.g. knee effusion). However, joint disease may not be the only reason for a positive 

intraarticular pressure; in a resting undiseased human knee, intraarticular pressure 

can become positive when the knee is flexed. These references validate the positive 

values of pressures used in this study. This is because as said in section 4.1.3, IGC 

are always associated with a joint disease. However, the exact value of pressure 

cannot be validated. Also, the biomechanical loading experienced by the superior 

tibiofibular joint is dynamic in nature (Hunt et al., 2010). It is necessary to 

understand the static behavior of cyst growth before its dynamic behavior is studied. 

Therefore, as a first level of approximation, a static pressure is applied in this study. 

The applied pressure varied between 1.5–2 MPa, which was based on the maximum 

value that the FEA model would converge for. Lack of convergence occurred either 

due to element distortions or the solution’s inability to maintain incompressibility. A 

discussion on the variation of pressure is given in section 5.7.2. To prevent rigid 

body motion errors, the fascicle surfaces, corresponding to locations W and Z noted 

in Figure 4.11a, were fixed with respect to all three coordinate axes. 
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4.2.5 Mesh Sensitivity Analysis 

A FEA model is an approximate mathematical representation of a real structure and 

it is important to make sure that the finite element model accurately represents the 

real structure. It is also important that the model is constructed in a manner that 

ensures efficiency in the computational solution process. Hence it is necessary to 

make sure that a sufficiently refined mesh is used for both accuracy and efficiency in 

the FEA model.  

 

Therefore, a mesh sensitivity analysis was performed on the FEA model. In this 

model the main regions of interest were the surfaces of the cyst. The number of 

elements on the cyst surfaces was increased progressively in individual steps, with 

the resulting stress distribution in the cyst side face and cyst rear face being 

monitored in each step. Starting from a very fine mesh size of 95,000 elements, 

simulations were performed and stress variations were monitored while reducing 

5000 elements from the region near the cyst faces for each simulation. A constant 

pressure of 2 MPa was applied in each case. 

 

The coarsest mesh size whose elements were within the software’s (ANSYS) limits of 

allowed element aspect ratios and whose results did not significantly vary from the 

95,000 elements simulation’s results was a simulation performed with 75,000 

elements. This is demonstrated by Figure 4.12 where the von Mises stress is plotted 

at the side and rear face of the cyst versus the point numbers for different number of 

elements contained in the overall model.  
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Figure 4.12 Mesh Sensitivity Analysis Results 
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Point number on the X–axis refers to equidistant points along the length of the side 

face and rear face. On the side face, the point number 1 is closer to the distal end of 

the AB and point 21 is closer to the proximal end of the AB. The mesh density 

corresponding to the 75,000 element model was used in all subsequent simulations. 

 

4.3 STAGE–I RESULTS 

All stress and strain measures are referred to in the Lagrangian reference frame. 

Figure 4.13a shows the strain in the Z–direction that was predicted from the FEA 

model. The maximum tensile strain was 19%. The large strain gradient that is 

caused by the cyst (cyst blow–out) is consistent with intra–operative observations. 

The von Mises stress is henceforth used as the principle stress measure in the model 

because it is expected that it is the most accurate measure to predict the failure of 

the material (and hence cyst propagation). The von Mises stress at the point in a 

material is the norm of the distortion energy theory, that is, the energy associated 

with shear–related deformation. According to the distortion energy theory, failure 

occurs at a point when the distortion energy per unit volume at the point equals the 

distortion energy at failure in a simple tension test. The distortion energy theory 

was selected because it conveniently takes into account all stress components in a 

multi–axial stress state. Alternatively, the maximum principle stress could be used 

as a governing stress measure; however, it typically functions better for more brittle 

solids and is unable to account for a multiaxial stress state (Dowling, 2006). Figure 

4.13b shows that the maximum von Mises stress on the side face which varied from 

15.08 to 30.16 MPa. 
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Figure 4.13 Stage–I Results (Applied Pressure = 2 MPa) 

a. Z–direction strain
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The von Mises stress distribution on the left side face, as shown in Figure 4.13b, was 

the same as the right side face (not shown), which is expected since the structure is 

symmetric. The stresses on the rear face, as shown in Figure 4.13c, varied between 

3.78 to 18.02 MPa (ignoring spurious stress concentrations). Spurious stress 

concentrations refer to those that have been caused by sharp edges in the model or 

due to element distortion. A comparison of the stresses along the left side face 

against the rear face is plotted in Figure 4.14. The side face point numbers refer to 

equidistant points along the length of the side face. Similarly, rear face point 

numbers are equidistant points spanning the cyst arc angle, θcyst, on the rear face of 

the cyst. Comparing the stress values on the side against that on the rear face, it is 

found that the magnitude at the sides is greater. This indicates that the cyst in this 

stage tends to engulf the sides by growing circumferentially along the side faces as 

opposed to growing along the length of the branch towards the junction.  

 

4.4 CYST GROWTH 

4.4.1 Growth Methodology 

The analysis described in the previous section describes a single step in the growth 

of an IGC. It is well–known from clinical observations (Spinner, Wang, Carmichael, 

Amrami, & Scheithauer, 2007) that a cyst will grow along and/or around a nerve 

branch (referred to as ‘expansion’ and ‘extension’ in section 4.1.3.2). The cyst growth 

process was simulated by selecting a threshold value of von Mises stress above 

which failure occurs. 
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Figure 4.14 Side Face V Rear Face Stresses 

 

 

Figure 4.15 Re–modeled Cyst Dimensions 
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All elements in which this maximum value of von Mises stress was exceeded were 

determined. The set of these elements constituted an envelope around the cyst in 

which the material was assumed to fail (could no longer bear any load because the 

tissue “ripped”). The dimensions of the envelope were noted, and the cyst arc angle 

and cyst length were increased by values based on the dimensions of the envelope in 

the respective directions for the subsequent modeling step. The cyst was remodeled 

in this manner as shown in Figure 4.15a and b by increasing the cyst dimensions by 

δlcyst and δθcyst. Therefore remodeling corresponds to an increase in cyst volume and 

in this subsequent step, the cyst was said to have ‘grown’ in the side and the rear. To 

understand how a cyst grows in the AB, the cyst propagation was simulated along 

the AB approaching the nerve branch junction. For the cyst to propagate the length 

of the modeled AB, multiple cyst propagation steps like the one just described were 

performed iteratively. A flowchart depicting this methodology is shown in Figure 

4.16. The number of times the loop needs to be repeated along with the first 

simulation represents the total number of growth steps. It must be noted that due to 

the cyst dimensions described in section 4.2.3, the cyst rear face is modeled 

sufficiently far away from the AB-DPN junction. Being farther enough ensures that 

the cyst can exhibit its growth behavior during subsequent growth steps without any 

bias. This helps simulate a more natural growth process. The threshold value of 

stress in this study describes failure of tissue in the direction transverse to the 

collagen fiber direction. No guiding data or experiment exists for understanding the 

threshold value of stress in the direction transverse to the collagen fiber direction. 
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Figure 4.16 Cyst Growth Technique 
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However, from the construction of the nerve discussed in section 4.2.1, it was known 

that the transverse direction failure strength must be lesser than the longitudinal 

value of failure strength. The ultimate longitudinal failure strength was measured 

by Sunderland et al. (Sunderland, 1961) in the direction of the collagen fiber 

direction for 15 CPN specimens. The average value of those 15 experimental values 

(13.07 MPa) is taken as the longitudinal failure strength in this study. The 

transverse failure strength was taken to be approximately 70% of this value (9.5 

MPa). 

 

4.4.2 Model Approximations 

The total number of growth steps it took for growing the cyst to the end of the AB 

was 15. An elaborate investigation of the results is dealt with in the following 

section. This paragraph is intended to detail some modeling approximations that 

were necessary during the course of the cyst growth study in the AB. Initially, the 

cyst was thought of as a crack in a material. Hence, initially the cyst thickness 

gradually decreased from the distal end to the proximal end by half its value. 

Growth steps were performed like this until growth step 7. At growth step 8, a 

decreasing thickness cyst geometry could not be created due to a failure in the 

Boolean operation in Ansys 11. Therefore the cyst thickness at this stage was made 

to be uniform. Later at growth step 10 when the cyst was created, the proximal end 

of the cyst side face penetrated into the fascicle.  
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Since this represents an unrealistic situation the cumulative value of side growth 

was reverted to the cumulative value of side growth at growth step 5. This is 

because the cumulative side growth at growth step 5 was the maximum value of side 

growth with which the rear face could reach point X (Figure 4.15) without 

penetrating into the fascicle. What this indicates is that the maximum value of side 

growth was reached in 5 growth steps. Also, after growth step 10, the rear growth 

was fixed at 0.4mm for all further growth steps. This is because the rear growth was 

a very small value; the average rear face growth for the first 9 growth steps was 

0.13mm. With the side growth value being fixed since growth step 5, each growth 

step with this very small value yielded very small difference in results. Hence, the 

rear face growth value was changed to 0.4 mm. 

 

4.5 RESULTS AND DISCUSSION 

4.5.1 Cyst Growth Results 

The number of growth steps required for the cyst to progress along the entire length 

of the AB was 15. This corresponds to the rear face of the cyst being at point X in 

Figure 4.15a. A plot indicating the stress variation at the side and at the rear face in 

each of these growth steps is shown in Figure 4.17. A comparison of plots Figure 

4.17a and b indicates that the trend of the maximum stress value at the side face 

being greater than the rear cyst face is true for all of the growth steps (except 

growth step 7). 
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Figure 4.17 Cyst Propagation Results 
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Comparing Figure 4.17a and b also shows that, until growth step 6, the maximum 

rear cyst face stress was close to the minimum side face stress value indicating the 

predominantly higher stress values at the sides. Growth step 7 represents the only 

step where the side face stresses are lower than the rear face stresses.  

 

Beyond growth step 7, greater overlap existed between the side and rear face stress 

ranges. The change in trend from less overlap in the first six growth steps to greater 

overlap in the rest can be explained due to the change in cyst shape. Once 

considerable side growth occurs, due to the change in cyst shape, stresses tend to be 

lesser in the side faces. The trend of higher stresses at the side faces when compared 

to the rear face indicates the tendency for greater growth along the side faces. While 

growth at the rear face will also occur, it will be smaller in magnitude compared to 

the side faces. 

 

4.5.2 Cyst Behavior at Junction 

It is important to analyze the stress state at the rear face of the cyst in growth step 

15. Figure 4.18 is a plot of stresses for an applied pressure of 1.75 MPa at the rear 

face of the cyst in growth step 15 i.e. when the rear face is at point X in Figure 4.15a.  

An examination of the stress distribution in the rear face at this stage can give 

information on whether the cyst will propagate proximal to the AB–DPN junction or 

distal. The stresses in the rear face vary between 0.02 and 7.53 MPa with 3.77 – 7.53 

MPa being the most predominant stress band. 
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Figure 4.18 Rear Face Stresses at Growth Step 15 (MPa) 

 

 

Figure 4.19 Stresses Behind Rear Face at Growth Step 15 (MPa) 

0.02 7.53 15.03 22.54 30.04
3.77 11.28 18.78 26.29 33.79

0.02 7.53 15.03 22.54 30.04
3.77 11.28 18.78 26.29 33.79
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Figure 4.19 shows the cutaway model of the stresses just behind the rear face. Once 

again the predominant stress band is 3.77 – 7.53 MPa. The failure value selected in 

the cyst growth steps was 9.5 MPa. Clearly on the rear face and behind it stresses 

are much lesser than 9.5 MPa. Hence this indicates that the cyst will not propagate 

proximally. However, the value 9.5 MPa was chosen as the best approximation to 

reality. An experimental value of failure stress might help explain the phenomena of 

proximal growth more accurately. 

 

4.6 SUMMARY 

IGC were described and their theory of evolution and growth was discussed. The 

need to improve on the current technique (i.e. dye experiments) for predicting cyst 

growth was noted. A FE model was created of a nerve junction that is a frequent site 

of IGCs, namely the AB–DPN–SPN nerve junction of the CPN at the fibular neck. 

Material property assumptions were done based on reinforcing components and 

their layup in the nerve. A crescent–shaped cyst was modeled in the outer–

epineurial regions and increased intraarticular pressure was simulated using a 

pressure boundary condition. Rather than only simulating one static step in the cyst 

growth process, a criterion for cyst growth was formulated using which cyst growth 

was simulated in the AB. This cyst growth technique was based on removing 

material that had failed in the model. The results indicate a trend of predominantly 

higher maximum value of stress in the side faces of the cyst when compared to the 

stresses in the rear face of the cyst. Such a condition causes the cyst to engulf the 

sides by propagating circumferentially rather than propagating along the length of a 
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nerve. Further an examination of stresses in the rear face when the cyst is the end 

of the AB indicates that the stresses do not favor the growth of the cyst proximal to 

the AB–DPN junction based on the current material failure value. The analyses 

performed in this chapter show that they can predict quantitative values regarding 

the growth of IGC. Unlike dye experiments that can only indicate the path of 

growth, FEA has shown the ability to predict quantitative values. If the 

computational analyses are supplemented by laboratory measured properties, 

predictions will be more authoritative.  
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5. ANISOTROPIC FAILURE ANALYSIS OF 
INTRANEURAL GANGLION CYSTS 

Shreehari Elangovan, Gregory Odegard,  
Michigan Technological University, Houghton, MI 49931, USA  

Duane Morrow, Huan Wang, Marie–Noëlle Hébert–Blouin and Robert 
Spinner  

Mayo Clinic, Rochester, MN 55905, USA 

 

5.1 INTRODUCTION 

Cyst propagation studies in the AB performed in the previous chapter indicated that 

the stresses at the cyst side faces were much greater that at the rear face. This 

indicated that the cyst would engulf the sides circumferentially well before the rear 

face reached the junction i.e. point X in Figure 4.15a. Clinical studies (Spinner, 

Atkinson, Tiel, et al., 2003) however indicate that in the segment of the nerve 

proximal to the AB-DPN junction, the cyst tends to propagate within a certain 

circumferential portion of the nerve, i.e. it is restricted to a quadrant of the 

epineurium. This would mean that the side growth is very restricted while the rear 

face growth is much higher comparatively.  The objective of this chapter is to explain 

the restricted quadrant growth of IGC. 

 

5.2 ANISOTROPY HYPOTHESIS 

The discussion in the previous chapter in section 4.2 suggests that nerve is a 
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heterogeneous material (Sunderland, 1948; Topp & Boyd, 2006). Therefore any 

continuum–based model must be inherently anisotropic to accurately predict the 

overall mechanical response. However, for the same model described in the previous 

chapter a computational simulation performed with anisotropic material properties 

would multiply solution time. This can be explained in the following manner and the 

following details have been obtained from the book on FEA by Bathe (Bathe, 1996). 

A finite element solution seeks to evaluate U from known K and R according to the 

following equation 

 

 
1

KU R
U = K R−

=

 
(5.1) 

 

where U is the displacement vector, R is the applied force vector and K is called the 

stiffness matrix of the finite element model. R is assembled based on the applied 

forces on the model. K is found from the following equation  

 

 

( ) ( ) ( ) ( )

( )

K
m

m T m m m

m V

B C B dV= ∑ ∫
 

(5.2) 

 

where ‘m’ refers to the element number, V(m) refers to the volume of the mth element, 

B(m) is the strain-displacement matrix of the mth element and C(m) is the elasticity 

matrix of the mth element, which contains details of the material properties. ‘T’ in 

the superscript indicates a transpose matrix operator. For a heavily non-linear finite 

element solution using implicit time integration, the complexity of C(m) will greatly 
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affect simulation time. An anisotropic material model can complicate C(m) more than 

an isotropic model. Therefore an alternate simpler strategy was adopted. Unlike 

what is seen conventionally, the anisotropy in this chapter deals only with strength 

values and not stiffness values. Hence the material properties mentioned in the 

previous chapter apply here exactly. 

 

It is hypothesized that the failure strength (defined herein as the resistance of the 

material to tearing associated with cyst propagation) in the direction called the rear 

face failure direction in Figure 5.1 is different from the failure strength in the side 

face failure direction also shown in Figure 5.1. From here on, the failure strength in 

the rear face failure direction is referred to by the acronym RF. Similarly, the failure 

strength in the side face failure direction is designated SF. SF and RF are related by 

the anisotropy ratio  

 

 
SF
RF

α =  (5.3) 

 

where α is assumed to be greater than or equal to 1. Therefore, for values of α 

greater than 1, greater magnitudes of stress are required to fail the material at the 

sides relative to the rear of the cyst. The anisotropy ratio α  therefore helps quantify 

varying levels of strength anisotropy in the tissue. 
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5.3 FAILURE STRENGTH DETERMINATION 

An accurate determination of failure strength from experiments was performed by 

Mr. Morrow of Mayo clinic. 

 

5.3.1 Longitudinal Failure 

Two CPN specimens from the region immediately proximal to the AB–DPN–SPN 

junction were tested in tension until failure. The gage length for the two 

experiments was 20 mm. The specimens were fresh and not fixed prior to testing. 

The nerves were strained at a constant rate of 0.025 mm/s until failure. The test 

instrument used was ElectroForce 3000 and the specimens were mounted using 

custom made clamps with sinusoidal grip surfaces. Specimen hydration was 

maintained through the application of saline throughout testing. The force measured 

during the experiment was divided by the initial area to obtain the stress in the 

Lagrangian frame. The diameter of the CPN was obtained from Figure 4.8. The area 

  

Figure 5.1 Directions of Material Failure 

X

X

a. Stage-I cyst location

Rear face failure direction

Side face failure 
direction

Cyst propagation direction

b. Section X–X
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of the CPN was calculated using the standard equation for a circle’s area. The 

stretch was calculated from the following equation 

 

 
1

g

l
l

λ ∆
= +

 (5.4) 

 

where λ is the stretch along the length of the nerve, gl  is the gage length and l∆ is 

the displacement. The stress–stretch curves are shown in Figure 5.2.  

Post failure point load indicates the value indicated by the load cell once complete 

catastrophic failure of the nerve has occurred. The point N is the ultimate tensile 

point of CPN 2 with the corresponding stress being the ultimate tensile stress. This 

value is 1.57 MPa. For CPN 1, the point M is taken as the ultimate tensile point. 

This is because failure of the nerve is said to occur when there is onset of failure 

 

Figure 5.2 Experimental Failure Strength Determination 
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(material separation) in either the epineurium or the fascicle. Information on the 

failure of nerves was reviewed in a paper by Sunderland et. al. (Sunderland, 1961). 

They noted that in tensile tests the nerve failed progressively; the epineurium, nerve 

fibers and individual fascicles all failed separately at different load levels. This led to 

great uncertainty in assessing the failure strength of the nerve. Therefore to avoid 

confusion, in this study the nerve failure was correlated with the earliest failure 

onset in either the epineurium or the fascicle. In Figure 5.2, point M clearly 

indicates the beginning of yielding and this was verified by printing out the curve 

and using a straight–edge. Beyond point M, there is also a stiffening effect that 

suggests progressive failure. Yielding is due to the onset of failure in either the 

epineurium or the fascicle. Hence the stress corresponding to point M is taken as the 

ultimate tensile strength for CPN 1. This value corresponds to 1.30 MPa. The 

average of the two values 1.57 and 1.30 (1.44) is taken as the longitudinal failure 

strength of the material. 

 

5.3.2 Transverse Failure Strength 

Properties of the nerve transverse to its length could not be measured. This is 

because Mr. Morrow of Mayo clinic reported that it was not possible to grip the 

nerve in the transverse direction with the existing apparatus. This same is also the 

reason why RF and SF values mentioned in section 5.2 could not be determined 

experimentally. No data on the transverse properties of nerve constituents could be 

found in the literature.  
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5.4 ANISOTROPIC FAILURE ANALYSIS 

5.4.1 Stage–I Articular Branch 

The model used for the analysis of the AB was described in Chapter 4, section 4.2. 

For the work described in this chapter, the following changes were made:  

(a) It was assumed that the anisotropy parameter, not used in Chapter 4, took 

values of 1, 5 and 10. The side face failure strength was determined with 

Equation (5.3) for each value of the anisotropy parameter. 

(b) RF was 1.44 MPa and this was fixed for all growth steps for every value of α  

(as opposed to 9.5 MPa as was considered in the previous chapter).  The value 

1.44 MPa is the average value of the CPN longitudinal failure strengths 

whose measurements have been described in section 5.3.1. While RF and the 

longitudinal direction failure strength might be different, this approximation 

was adopted because of the great difficulties in measuring nerve properties in 

different directions. 

(c) The applied pressure was 1.5 MPa for all simulations performed except for 

Stage–I, α = 1, Growth step number 2, in which case the applied pressure 

was 2 MPa. After performing step 1 for α = 1, the pressure was incremented 

to 2 MPa in step 2 to see if the model could solve without convergence 

difficulties. Since step 2 solved with convergence problems, the pressure was 

reverted to 1.5 MPa. The influence of the variation in the absolute value of 

pressure on the predicted results is examined in section 5.7.2. 
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(d) Being forewarned, the modeling approximations mentioned in the previous 

chapter (section 4.4.2) were avoided. This helps simulate a more natural cyst 

growth process. 

 

5.4.2 Stage–II *–branch 

The model for the *–branch analysis was the portion labeled “S–II” in Figure 4.7b, 

and its exterior dimensions were given in Figure 4.8. The configuration of the cyst in 

the epineurium remained the same as in Stage–I whereas its dimensions are 

different and are tabulated in Table 5.1. 

The length of the cyst was assumed to be one–third the total length of the model. 

This ensures that the rear face is farther enough from the AB-DPN junction. Being 

farther enough ensures that the cyst can exhibit its growth behavior during 

subsequent growth steps without any bias. This helps simulate a more natural 

growth process. The cyst arc angle was equal to the cyst arc angle of the last step of 

stage–I. This was the maximum value of the cyst arc angle that a cyst in the AB can 

Initial Values Stage–II 

Cyst length, lcyst (mm) 3.29 

Cyst arc angle, θcyst (degree) 253.41 

Cyst outer radius, r0 (mm) 1.705 

Cyst inner radius, ri (mm) 1.545 

Table 5.1 Stage–II Cyst Dimensions 
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have. The inner and the outer radii were chosen such that the cyst thickness 

remained the same as stage–I. 

a) Similar to the AB model described in section 5.4.1, the rear face failure 

strength was fixed at 1.44 MPa and the anisotropy parameter took values of 

1, 5 and 10. The side face failure strength was determined with Equation(5.3) 

for each value of the anisotropy parameter. 

b) The applied pressure value for every growth step in this branch was 1 MPa. 

Simulations for applied pressure values above 1 MPa solved only with 

convergence problems and hence the pressure was reverted to 1 MPa. The 

influence of the variation in the absolute value of pressure on the predicted 

results is examined in section 5.7.2. 

 

5.5 ANISOTROPIC FAILURE ANALYSIS RESULTS 

Figure 5.3 shows the values of side and rear face growth in each growth step for 

values of α = 1, 5 and 10. Percentage growth values are plotted on the Y–axis. A 

growth percentage of 20% indicates that 20% of the maximum growth value was 

attained in that particular step. Maximum side growth value was the maximum 

value at which the proximal end of the cyst did not penetrate into the fascicle. The 

maximum rear face growth for stage–I was the value of growth when the rear face 

was at point X in Figure 4.15. Similarly in stage–II, it was the growth value when 

the rear face reached the proximal end of the stage–II model. Step 1 was the first 

growth step for each value of α, which was performed with initial values of cyst 

dimensions (Table 4.1, Table 5.1).  
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Figure 5.3 Stage–I Anisotropic Failure Analysis Results 
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From the results of the step 1 simulations, growth values were determined and used 

to modify the cyst dimensions in step 2 as per the cyst growth methodology described 

in section 4.4. 

 

5.5.1 Stage–I Results 

The trend of side face stress values being higher than rear face stress values was 

seen in all growth steps for every value of α. The trend of side face stresses being 

predominantly higher than the rear face stresses is similar to the observation that 

was made in section 4.5.1. As shown in Figure 5.3a, for α = 1, the side face cyst 

growth reached its maximum value in three growth steps. As shown in Figure 5.3b, 

the rear face growth reached only 55% of the maximum possible growth value at the 

end of three growth steps. This difference in growth rates was due to greater stress 

magnitudes at the sides relative to the rear face. When α = 5, as shown in Figure 

5.3c and Figure 5.3d, both the side and rear face cyst growth reached 100% growth 

in seven growth steps. Although there is greater stress magnitude at the cyst sides, 

there are fewer elements in which stresses exceeded the SF value. Hence, a larger 

number of steps were required to reach 100% growth relative to the case in which 

α = 1. When α = 10, as shown in Figure 5.3f, the rear face reaches 100% growth in 

seven steps. As shown in Figure 5.3e, the side–face cyst growth reaches only 38.84% 

in seven growth steps. Therefore, when the anisotropy parameter is high, cyst 

growth occurs much faster along the rear face. 
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Figure 5.4 Stage–II Anisotropic Failure Analysis Results 
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5.5.2 Stage–II Results 

The trend of side face stress values being higher than rear face stress values was 

seen in all growth steps for all α. Once again, this was similar to what was seen in 

section 5.5.1 and section 4.5.1. When α = 1, as shown in Figure 5.4a, the side face 

cyst growth reached 100% growth in three growth steps. As shown in Figure 5.4b, 

the rear face growth reached only 24.24% at the end of three steps. Clearly the 

higher stresses at the side faces caused quicker cyst growth compared to the rear 

face with the strength values being equal in both directions. As shown in Figure 5.4d 

for α = 5, the rear face cyst growth reached its maximum value in eight steps. As 

shown in Figure 5.4c, the side face growth reached only 60.8% of its total growth in 

eight growth steps. Comparatively, elements at the rear face in which stresses 

exceeded the corresponding failure strength were greater in number. When α = 10, 

as shown in Figure 5.4f, the rear face reached 100% growth in ten steps. As shown in 

Figure 5.4e, the side face cyst growth reached only 15.11% in ten steps. Under these 

conditions, very few elements at the sides failed in each step, leading to very little 

cyst side growth. 

 

5.6 CYST GROWTH ANALYSIS 

It has been clinically observed that the cyst growth proximal to the AB–DPN 

junction follows the pattern as shown in Figure 5.5a, where the cyst is restricted to a 

particular circumferential portion (i.e. a certain quadrant) of the epineurium 

(Spinner, Atkinson, Tiel, et al., 2003). In this case, the cyst only affects certain 

fascicles of the whole nerve.  
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Figure 5.5 Restricted Quadrant Growth of IGC 
(Figure 5.5a copyrighted and used with permission of the Mayo Foundation for medical education and 

research, all rights reserved, see Appendix-A) 
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This in turn causes problems in patients that pertain mostly to those specific 

fascicles (Spinner, Atkinson, Tiel, et al., 2003). Figure 5.5b shows the deformed 

shape for stage–I growth step seven when α = 10. The side growth is only 38.84% of 

its maximum value of growth while the rear growth has reached 100%. Figure 5.5c 

shows the deformed shape for growth step 10 when α = 10 in stage–II. The side 

growth is only 15.23% of its maximum value of growth while the rear growth has 

reached 100%. These images clearly correlate with the restricted circumferential 

pattern of cyst growth in Figure 5.5a. However, there are other variables in the 

study that need investigation. It is important to note that this model neglects the 

heterogeneous microstructure of the nerve by assuming it as a uniform continuum; 

how local tissue heterogeneity on the micro–scale affects cyst propagation and 

whether it influences restricted circumferential growth is beyond the scope of this 

dissertation. Also, anisotropy might exist in directions other than the mentioned 

directions in Figure 5.1, and the influence of those is not considered in this study. 

 

5.7 SENSITIVITY STUDIES 

Values used for the material properties or pressure are not exact values measured 

from experiments. They are best approximations of reality drawing on the 

information available regarding nerve structure and function. Therefore it is 

necessary to explore how a change in a material properties/pressure maintaining all 

other parameters constant affects predicted behavior. This is the subject of this 

section of the chapter. 
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5.7.1 Material Property Sensitivity 

Sensitivity to material properties is studied in the following manner: Cyst growth 

phenomena is investigated in stage–I for a material whose Mooney–Rivlin constants 

are an order of magnitude less than that used in section 4.2.2. No strength 

anisotropy is considered in this model (i.e. α =1). The trend of the expected results is 

the same as that seen in section 5.5.1: that the side growth will reach its maximum 

value before the rear face growth. If this is true then it can be concluded that the 

predicted phenomena are independent of the material properties used within the 

scope of this study. The applied pressure for this model (0.15 MPa) was an order of 

magnitude lesser compared to the original case. This is because since the structure 

is now less stiff due to the reduction in properties, the load it can bear is reduced. 

The material failure value (also a material property) is reduced by an order of 

magnitude. Therefore, in this study it is taken to be 0.144 MPa. The growth results 

are shown in Figure 5.6.  

 

Figure 5.6 Material Property Sensitivity Studies 
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The side face growth reached 100% of its maximum value in 3 growth steps. The 

rear growth at the end of three steps was only 25.15%. Therefore the same trend in 

cyst growth has been predicted with an order of magnitude less properties. These 

results clearly indicate that the predicted phenomena in section 5.5.1 are 

independent of the material properties used within the scope of this study. A similar 

conclusion is suggested by the following observation. Cyst growth studies for α =1 in 

both stage–I and stage–II (sections 5.5.1 and 5.5.2) indicate the same trend. When 

the same material properties predict the same trend in different nerve branches, the 

predicted phenomena should be independent of material properties. This of course 

pertains only to the hyperelastic incompressible properties used in this study. 

 

5.7.2  Pressure Sensitivity 

The supra–atmospheric pressure value in knee synovial joints (discussed in section 

4.2.4) helps justify the positive values of pressure used in this study. However, the 

exact value of pressure inside IGC remains unknown. In this dissertation, the 

maximum value of pressure that the model could solve for is mentioned as the 

corresponding load. This is because it was necessary to find the envelope dimensions 

corresponding to the maximum value that the model could sustain. Hence it is 

necessary to understand if a change in the value of pressure maintaining all other 

parameters constant affects predicted phenomena. Therefore a stage–I cyst growth 

analysis was performed with the pressure being reduced to 0.75 MPa and 

maintained constant throughout this study. This value of pressure was chosen such 

that it is significantly lower than currently used values (1.5–2 MPa) and yet capable 
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of producing failure in the nerve so that growth can be studied. The Mooney-Rivlin 

material constants described in section 4.2.2 were used in this study. The material 

failure strength was fixed at 1.44 MPa and no strength anisotropy was considered 

(i.e. α =1). The growth results are shown in Figure 5.7. The side face growth reached 

100% of its maximum value in 4 growth steps. The rear growth at the end of three 

steps was only 22.53%. Therefore the same trend in cyst growth has been predicted 

with a reduced magnitude of pressure. These results clearly indicate that the 

predicted phenomena in sections 5.5.1 and 5.5.2 are independent of the value of 

pressure.  

5.8 SUMMARY 

An FEA model was developed that takes into account the anisotropy that arises out 

of the heterogeneity of the epineurium in nerve tissue. An anisotropy ratio that 

quantifies the degree of anisotropy in the material, in terms of material strength, 

was formulated and incorporated in the FEA model. For varying levels of the 

 

Figure 5.7 Pressure Sensitivity Studies 
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anisotropy ratio, cyst propagation analysis was performed in the AB and the *–

branch (for stage–I and stage–II, respectively). A plot of cyst growth per simulation 

step for each stage shows that cyst propagation varies significantly with the 

anisotropy parameter. The results in both stage–I and stage–II simulations for high 

levels of anisotropy match the clinically–observed circumferential cyst propagation 

pattern in the region of the nerve proximal to the AB–DPN junction. 
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6. CROSS–SECTION ANALYSIS OF AN 
INTRANEURAL GANGLION CYST 

AFFECTED NERVE 

Shreehari Elangovan, Gregory Odegard,  
Michigan Technological University, Houghton, MI 49931, USA  

Duane Morrow, Huan Wang, Marie–Noëlle Hébert–Blouin and Robert 
Spinner,  

Mayo Clinic, Rochester, MN 55905, USA 

 

6.1 INTRODUCTION 

Chapters 4 and 5 studied cyst growth behavior in a nerve junction in three 

dimensions. The nerve cross-section was assumed to be circular in those studies in 

view of reducing simulation time and modeling complexities. However, the cross-

section of a nerve is more close to elliptical than circular. Studying the evolution of a 

cyst in a nerve cross-section in two dimensions can provide valuable information on 

the growth of a cyst. Accordingly, in this chapter the outer geometry of the 

epineurium of the CPN cross-section at the fibular neck was traced and replicated to 

actual nerve dimensions in Abaqus 6.8. The cyst was represented in a location that 

best corresponds to a cyst in the AB. A two dimensional cyst growth technique was 

used to simulate cyst growth. Results indicate a resemblance with MRI images and 

also emphasize the need to be able to simulate larger strains to obtain better 

correlations with MRI images.  
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6.2 NERVE CROSS–SECTION DETAILS 

An elaborate investigation of the complicated internal architecture of the CPN at 

various levels distal to the sciatic bifurcation has been previously published 

(Sunderland & Ray, 1948). Figure 6.1 shows the details of the CPN cross–section at 

the level just before it splits into the *–branch and the SPN near the neck of the 

fibula (Figure 4.7a). The outer blue elliptical line in Figure 6.1 represents the outer 

boundary of the epineurium. The red, oval shapes inside this blue boundary 

represent the fascicles. Interspersed in the regions between the red oval shapes is 

the epineurial tissue. The fascicles have been labeled according to specific muscle 

they innervate. Only the fascicles that are relevant in the context of the current 

study have been labeled in Figure 6.1. In this study, the aim is to investigate the 

growth of a cyst in two-dimensions in the location most probable for a cyst 

propagating proximal from the AB. Therefore the fascicles of interest are fascicle ‘G’ 

 

Figure 6.1 CPN Cross-Section Details 
(Reproduced with permission of Oxford university press: Sunderland S, The intraneural topography of the 

sciatic nerve and its popliteal divisions in man, Brain, v. 71, p. 242-273, 1948, see Appendix–A) 

G

Anterior

Posterior

LateralMedial

a

b

G – Articular branch nerve fibers,      – Nerve fibers to tibialis anterior muscle
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that refers to the nerve fibers of the AB and the solid triangle that represents the 

nerve fibers of the tibialis anterior muscle, which is the muscle associated with the 

clinical condition of foot drop. The details about foot drop are given in section 4.1.  

 

6.3 FINITE ELEMENT MODEL 

The geometry of the outer boundary of the epineurium shown in Figure 6.1 was 

scanned and imported into Abaqus 6.8. The finite element model of the cross-sectiion 

is shown in Figure 6.2. The major axis ‘c’ of the finite element model was adopted as 

the CPN dimension measured by Drs. Wang and Spinner. The value of dimension ‘c’ 

is 5.7 mm (as shown in Figure 4.8). The minor axis ‘d’ was scaled down by using the 

following relation  

 

Major axis dimension when printed (a) Major axis dimension in FEA model (c)
Minor axis dimension when printed (b) Minor axis dimension in FEA model (d)

=  (6.1) 

 

In equation (6.1), ‘a’ and ‘b’ are measured by obtaining a print out of Figure 6.1 on 

paper. Then according to equation (6.1), dimension ‘d’ was obtained to be 2.52 mm. 

Although the initial objective of this two–dimensional model was to model the 

individual fascicles and epineurium discretely, the entire nerve cross–section was 

modeled as a solid material of homogenous properties. This assumption was made 

for two reasons. First, the mechanical properties of the individual nerve constituents 

are not currently known, so an FEA model incorporating individual fascicles would 

not be any more accurate than a FEA model that is homogeneous.  
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Second, because of the approach adopted herein for modeling cyst growth (described 

in section 6.4), the presence of discrete entities in the modeled nerve created 

modeling problems. This is explained at the end of section 6.4 since it is necessary to 

understand the cyst growth technique used herein to understand this problem.  

 

In the FEA model, the cyst was located in the region medial to the fascicle labeled 

‘G’, which contains the AB nerve fibers as shown in Figure 6.1. This cyst location 

was chosen since this is the most probable location for a cyst originating in the AB 

and propagating proximally into the CPN, according to Drs. Wang, Hebert–Blouin, 

and Spinner of Mayo Clinic. Due to the lack of any guiding data, an initial cyst 

diameter of 0.18 mm was chosen. This dimension helps locate the cyst between the 

fascicle ‘G’ boundary and the outer epineurium boundary.  

 

The model was meshed with four–node quadrilateral elements with reduced 

integration (‘S4R’ elements in Abaqus 6.8). The incompressible isotropic Mooney–

 

Figure 6.2 Finite Element Model 

V

UCyst

Fixed boundary 
partition

c

d
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Rivlin hyperelastic material model discussed in section 4.2.2 was used. Geometric 

nonlinearity was accounted for and implicit time integration was used. The 

boundary conditions consisted of an internal pressure load and an external 

displacement constraint. The pressure boundary condition was applied on the cyst 

edges. The applied pressure ranged between 0.1–0.006 MPa for the individual 

growth steps, depending on what the maximum pressure the model could solve for in 

a given step. A discussion on the selection of pressures for the finite element model 

is in sections 4.2.4 and 5.7.2. The displacement constraint was applied in all 

directions to a segment of the outer epineurium boundary to the right of the fixed 

boundary partition between the points marked by letters U and V, shown in Figure 

6.2. This was done so that rigid body motion of the model does not cause errors in 

the finite element solution. 

 

6.4 CYST GROWTH TECHNIQUE 

The ideal approach to modeling the growth of the cyst is to simulate the internal 

pressurization and the subsequent expansion of the cyst cavity. For this it is 

necessary to simulate strains in excess of 100% in the material. However, in the 

previous chapters the maximum strain obtained was only 19%. Indeed FEA can only 

simulate strains for such a complicated problem to such an extent. Because this 

research was focused on using FEA to simulate the growth of the cyst, an alternative 

approach was taken. Instead of simulating the balloon–like expansion of the 

material around the cyst (which would require simulated strains well beyond 100%), 

the cyst growth was modeled in the same manner as described in Chapters 4 and 5. 
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That is, it was assumed that the cyst grew via local material failure instead of 

extensive hyperelastic deformation. The following are the steps in the cyst 

propagation process: 

a) The failure strength of the material was fixed at 1.44 MPa. The details about 

the measurement of this value are given in section 5.3.1. Even though this 

value was measured along the length of the nerve, it is used here in a 

different direction since it is the most realistic failure strength value 

available. Any other assumption will have to be completely arbitrary. 

b) After the first finite element simulation was performed, all elements around 

the cyst in which the stresses exceeded 1.44 MPa were determined (‘display 

groups’ option in the Abaqus 6.8). A finite element simulation that 

corresponds to a certain initial cyst diameter is referred to as a growth step. 

c) A circular envelope centered at the cyst center was established around the 

failed elements. The difference in radius between the initial cyst radius and 

the circular envelope radius represented the growth increment for the next 

growth step. This approach is based on the same assumption discussed in 

Section 4.4, that is, the elements in which the failure strength is exceeded 

can no longer sustain the load, and hence they are torn. Hence in the three-

dimensional case cyst growth referred to an increase in cyst volume and in 

this two-dimensional case it corresponds to a change in cyst area. 

d) The modified cyst radius was calculated as the sum of the initial cyst radius 

and the growth increment. This modified cyst radius was then used as the 

initial cyst dimension in the subsequent growth step. This step–by–step 

procedure was performed until the cyst reached its maximum size in the 
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cross–section. The maximum size reachable in the cross–section is dictated by 

the length of line segment UV in Figure 6.2. How the maximum cyst size in 

the cross-section was determined is explained in the results section.  

 

Two points need to be noted. First, after 4 steps the cyst could not be grown further 

as perfectly circular. This is because the circular envelope dimensions would have 

exceeded the boundaries of the nerve cross-section. Hence beyond this step, the cyst 

shape was changed to elliptical. The minor axis of the ellipse was fixed at the value 

of the envelope diameter in growth step 4. The growth in further steps was 

incremented only in the major axis of the ellipse. 

 

Second, at step 13, the size of the cyst was significantly large. At this stage, the fixed 

boundary partition shown in Figure 6.2 was moved to the right by 0.4mm thereby 

reducing the portion of the edge that was completely constrained from displacing in 

all directions. This was done to prevent the boundary conditions from interfering 

with the deformation of the large cyst. 

 

In Abaqus 6.8, the regions corresponding to fascicles if created would have separate 

boundaries with different edge numbers. As the cyst radius was increased from one 

growth step to another, the cyst boundary would have interfered with individual 

fascicle boundaries. This would have made tracking the edge numbers of the cyst 

very difficult. This was the second reason why individual fascicle boundaries were 

not modeled in the finite element model in section 6.3. 

 



118 
 

 

Figure 6.3 von Mises Stress (MPa) Distribution – Growth Step 1 
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6.5 RESULTS 

A total of 13 cyst growth steps were performed including the initial simulation to 

reach the maximum cyst size reachable in this cross–section. This was determined 

based on the biggest cyst growth possible with the smallest region of displacement 

constraint on line segment UV. For further cyst growth beyond this growth step the 

fixed boundary condition partition in Figure 6.2 would have to have been moved 

much further to the right of the model in order to prevent the fixed boundary 

condition from hampering cyst deformation. If this were done, then the model would 

be constrained in a very limited location that would have caused rigid body motion 

errors in the software. A plot of von Mises stresses on the CPN cross–section for the 

initial simulation is shown in Figure 6.3. The stresses around the cyst varied from 

0.683 MPa to 4.1 MPa. The emphasis in this chapter is not on the exact value of 

stresses around the cyst but rather on the deformed shape of the cyst in each growth 

step. Therefore a plot of the deformed shape for each growth step starting with the 

first growth step is shown in Figure 6.4. Growth step–1 represents the simulation 

performed with the initial cyst size and growth step–13 was the maximum size to 

which the cyst could be grown. Growth step-5’s deformed shape is different from the 

previous growth steps since the shape from then on was changed to elliptical. 

 

6.6 CYST GROWTH ANALYSIS 

Figure 6.5a (Spinner, Scheithauer, et al., 2006) shows the MRI image of a CPN cyst 

at the level of the fibular neck.  
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Figure 6.4 Deformed CPN Cross–section Shapes 
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The bright white region seen in the zoomed inset is the cystic region filled with cyst 

fluid. At the base of this white region a little to the right is seen a light grayish 

region that represents the fascicles of the CPN that have been compressed due to 

cyst blow–out in the nerve. Spinner et. al. (Spinner, Desy, et al., 2006) have coined 

the name ‘signet ring sign’ for this cystic representation since the eccentrically 

displaced fascicles along with circumference of the white cystic region strongly 

resembles a signet ring. The signet ring sign represents adverse compression of the 

fascicles by the accumulating cyst fluid. 

 

Figure 6.5b shows the deformed shape of step–13. Comparing Figure 6.5b with 

Figure 6.5a, the manner in which the cyst has blown out in Figure 6.5b bears 

resemblance to the cyst blow out in Figure 6.5a. The MRI image shows eccentric 

accumulation of compressed matter whereas the FEA result indicates unfailed 

material around the circumference of the cyst. Though Figure 6.5a and Figure 6.5b 

bear resemblance, the deformed shape in Figure 6.5a has been caused due to 

compression of the fascicular material whereas in Figure 6.5b it has been caused due 

to the progressive removal of failed material. Therefore correlations are counter-

intuitive. This however emphasizes the need to be able to produce large compressive 

strains in the fascicular matter so that correlations are possible with the MRI image. 

Therefore it is necessary to select a simulation tool that can produce strains in 

excess of 100% unlike FEA which can only simulate few tens of percents of strain. 
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6.7 SUMMARY 

The primary objective of this study was to predict the growth of an IGC with a two–

dimensional FEA model. The two-dimensional model of the CPN at the neck of the 

fibula was constructed using dimensions provided by clinicians and the geometry 

provided by Sunderland et al. (Sunderland & Ray, 1948). The initial cyst was located 

in the region medial to the nerve fibers that distally branched–out into the AB. Cyst 

fluid pressure was simulated by a pressure boundary condition on the edges of the 

cyst. Boundary condition constraints were placed in a small region of the boundary 

away from the cyst to prevent rigid–body errors. A cyst growth technique was used 

according to which elements in which stresses exceeded a critical strength value 

were removed from the model to simulate material failure (tearing). The cyst was 

grown to the maximum possible extent in this manner and the deformed shape of 

the final growth step resembles the ‘signet ring sign’ pattern observed in MRI 

 

Figure 6.5 Signet Ring Sign Correlation 
(Image ‘a’ reprinted with kind permission from Springer Science+Business Media: Skeletal Radiology, 

Coexisting secondary intraneural and vascular adventitial ganglion cysts of joint origin: a causal rather 
than a coincidental relationship supporting an articular theory, v.35, 2006, p.734-744, Authors - Spinner 

RJ, Scheithauer BW, Desy NM, Rock MG, Holdt FC and Amrami KK, Fig. 1, see Appendix–A) 

a. MRI Image of a CPN Cyst b. Deformed shape of growth step–13

Cyst

Eccentrically 
displaced 
fascicles
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images of CPN cysts. However, the MRI image and the FEA result represent 

different scenarios and hence correlations are not possible. To be able to correlate 

with MRI images, a simulation tool that can accurately replicate the large strains in 

the fascicular region is needed. 
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7. FEA OF INTRANEURAL GANGLION 
CYSTS – CONCLUSIONS 

 

7.1 RESEARCH SIGNIFICANCE 

IGC have been considered curiosities for nearly 2 centuries. Different theories 

without a scientific basis have been proposed (Elangovan et al., 2009). Dye 

experiments have been used by clinicians to demonstrate the path of cyst growth. 

While they are capable of indicating the path of cyst growth, they are unable to 

answer why it does so quantitatively in a particular direction. Herein a novel 

mechanistic approach (FEA) was adopted in this dissertation to study IGC growth. 

Chapter-4’s objective was to devise a mechanistic approach for predicting the growth 

of IGC in the AB of the AB-DPN junction. FEA, a computational tool that has been 

popularly used to study the mechanical behavior of biological systems, was chosen 

for this purpose. The FEA model considered nerve dimensions, material properties 

based on reinforcing architecture and knowledge of pressures inside knee synovial 

joints in studying cyst growth. Unlike dye experiments, the FEA model made it 

possible to view the forces causing cyst growth inside the cyst. Based on the stresses 

inside the cyst, cyst growth was simulated assuming a material failure criterion. 

This helped understand the parameters of cyst growth in a nerve branch. The 

methodology developed in Chapter-4 can be applied to other nerve branches as well. 

This was applied to study the restricted quadrant growth of IGC (in the AB and *-

branch) in Chapter-5. The restricted quadrant growth of IGC has not been studied 
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using any technique previously. Using a strength anisotropy assumption, FEA 

results were computed and found to match the real behavior. However, the validity 

of strength anisotropy in nerve tissue needs to be validated using experiments. 

Chapter-6’s objective was to study the evolution of cyst growth in two-dimensions. A 

cyst growth assumption using a material failure criterion was used to simulate cyst 

growth in two-dimensions. The model at the final stage of the cyst growth phase 

resembles the signet ring sign MRI image of the CPN. FEA was however incapable 

of replicating the large strains necessary for predicting cyst growth.  

 

The above studies confirm the promise in using a mechanistic method to 

quantitatively predict forces causing growth in IGC. Therefore the contribution of 

this thesis was to validate mechanistic methods as tools to predict cyst growth. 

Clearly the necessity to be able to produce large strains in the material is also seen. 

Also, the ability to predict results that are accurate in any chosen mechanistic 

method need accurate representation of material microstructure, material property 

input to the model and extensive comparative studies between the mechanistic 

method and reality (discussed in the next section). 

 

7.2 FUTURE WORK 

The current study has yielded valuable inferences which can be used to better the 

FEA model in the future. The first and foremost of these are the computational 

issues. The FEA models in both Ansys 11 and Abaqus 6.8 could produce only tens of 

percents of strain for the current geometry and material model. Element distortions 
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prevented the models from converging for higher values of load. For producing the 

high strains in nerve tissue, a new method that tackles element distortion effectively 

is necessary. Various meshless methods (Nguyen, Rabczuk, Bordas, & Duflot, 2008) 

have been shown to effectively tackle mesh distortions. However, the promise of any 

new method has to be checked by looking for its capability to produce large 

deformations through large strains not large displacements. The three-dimensional 

modeling was carried out only in Ansys 11. As mentioned in section 4.4.2, important 

Boolean operations could not be performed. It is necessary that software chosen in 

the future be capable of modeling complicated geometries. Another issue is that of 

computational efficiency. In Ansys 11, all simulations could only be run on a single 

processor because a different license would have been necessary to run it on multiple 

processors. For more realistic simulations incorporating complicated physics, 

parallelizing the simulation is necessary.  

 

FEA is a tool that relies heavily on its input data to produce reliable outputs. The 

current material properties have been assumed based on strong similarities with 

other biological materials. Providing real experimental data will increase the 

certainty of the results. The experimental estimation of material properties of a 

greatly anisotropic material as nerve is very difficult. For a start, differences in 

morphology between different nerve branches may be safely ignored. Therefore, 

properties might be estimated from a sufficiently large nerve such as the sciatic 

nerve. Herein, properties in every direction are not important. As mentioned in 

section 4.2.2, properties in two directions are crucial for this problem: tensile 

behavior of the epineurium transverse to the nerve’s length and compressive 
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behavior of the fascicle transverse to the nerve’s length. Once this information is 

available realistic deformations can be expected in the FEA model (provided large 

strains without distortion can be produced). The failure strength in the direction 

transverse to the nerve’s length is also important. This will have a huge say on the 

growth values for each growth step.  

 

The following are suggestions that may be considered only in the long run. 

Sunderland et. al. (Sunderland & Ray, 1948) suggest that the morphology of a nerve 

varies between different regions of the body. For example, a small nerve branch as 

the AB can differ significantly from a large nerve such as the sciatic nerve. 

Incorporating such differences require explicit modeling of the microstructure. While 

this is computationally very intensive, only such models can be used for predictions 

of clinical phenomena with high levels of accuracy. Also, influence of extrinsic 

resisting forces (defined in section 4.1.3.2) has to be determined. They may introduce 

an additional variability in dictating cyst growth. 
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