
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2009

Analysis and performance of a UPC implementation of a parallel Analysis and performance of a UPC implementation of a parallel

longest common subsequence algorithm longest common subsequence algorithm

Bryan M. Franklin
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

Copyright 2009 Bryan M. Franklin

Recommended Citation Recommended Citation
Franklin, Bryan M., "Analysis and performance of a UPC implementation of a parallel longest common
subsequence algorithm", Master's Thesis, Michigan Technological University, 2009.
https://digitalcommons.mtu.edu/etds/184

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages

ANALYSIS AND PERFORMANCE OF A UPC IMPLEMENTATION OF A

PARALLEL LONGEST COMMON SUBSEQUENCE ALGORITHM

By

BRYAN M. FRANKLIN

A THESIS

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

MICHIGAN TECHNOLOGICAL UNIVERSITY

2009

c© 2009 Bryan M. Franklin

This thesis, "Analysis and Performance of a UPC Implementation of a Parallel

Longest Common Subsequence Algorithm", is hereby approved in partial fulfill-

ment of the requirements for the degree of MASTER OF SCIENCE in Computer

Science.

DEPARTMENT:
Computer Science

Signatures:

Thesis Advisor
Dr. Seven Seidel

Department Chair
Dr. Linda Ott

Date

Contents

List of Figures . vi

1 Introduction . 1

1.1 Longest Common Subsequence Problem 1

1.2 Edit Distance Problem . 1

1.3 Background . 1

1.4 Dynamic Programming Algorithm 3

1.4.1 Computing LCS Matrix 3

1.4.2 Reconstructing LCS . 3

1.4.3 Time and Space Complexity 4

1.5 Parallel Dynamic Programming 4

2 The pLCS Algorithm . 5

2.1 The algorithm . 5

2.2 Pruning Rules . 8

2.3 Counterexamples . 9

iii

2.4 Modifications needed for k-LCS 10

2.5 Rebalancing . 11

2.5.1 Rebalancing Example 14

2.5.2 Number of messages . 15

2.5.3 Rounds of communications 17

2.5.4 Rebalance Complexity 17

3 Crossing Pairs . 18

3.1 Pruning of Crossing Pairs . 18

4 Complexity Analysis . 21

4.1 Sequential run time . 21

4.2 Parallel run time . 22

5 pLCS Implementation in UPC . 22

5.1 Data Structures . 23

5.1.1 Successor Tables . 23

5.1.2 Pairs and Levels . 23

5.2 Optimizations . 24

5.2.1 Ineffective Optimizations 25

6 Performance . 25

6.1 Measurements and Observations 27

iv

7 Conclusions and Future Work . 37

v

List of Figures

1 Recurrence for computing Longest Common Subsequence (LCS) Matrix. . 3

2 Successor table for the sequence tactacgc. 5

3 Successor table for the sequence gtcgaag. 5

4 Trace of pLCS algorithm on the sequences tactacgc and gtcgaag. 6

5 Trace of pLCS algorithm on the sequences tactacgc and gtcgaag. 9

6 Successor table for the sequence gaga. 9

7 Successor table for the sequence aaga. 9

8 Trace of pLCS algorithm on the sequences gaga and aaga. 10

9 Successor table for the sequence gagtat. 10

10 Trace of pLCS algorithm on the sequences gagtat and aaga. 10

11 Matrix computed using algorithm shown in Algorithm 2. 11

12 Original pair counts for each thread. 14

13 Sorted and reduced pair counts. 14

14 Offset matrix computed using algorithm shown in Algorithm 2. 15

vi

15 Matrix shown in Figure 11 in T ′ order. 15

16 Communication operations needed to rebalance. 16

17 Final pair counts for each thread after rebalancing. 16

18 Bipartite graph showing communication patterns. 16

19 Possible relationships between two pairs (i, j) and (k, l). 18

20 Successor table for the sequence aacaaa. 19

21 Successor table for the sequence caacaa. 19

22 Trace of algorithm on the sequences aacaaa and caacaa. 20

23 Successor table for the sequence gaca. 20

24 Successor table for the sequence ca. 21

25 Trace of algorithm on the sequences gaca and ca. 21

26 Layout of pairs for thread Ti with m levels. 24

27 Speedup for various input sizes and threads with cache enabled. 26

28 Speedup for various input sizes and threads with cache disabled. 26

29 Total execution time versus input size. 27

30 Total time with different numbers of threads for large inputs. 28

31 Time versus cache size for large inputs. 28

32 Pairs within a level over the course of algorithms execution. 29

33 Maximum pairs within a level versus input size. 30

vii

34 Cache hit rate versus pairs before pruning. 30

35 Cache hit rate within each level. 31

36 Messages needed versus number of threads. 32

37 Average rounds needed versus number of threads. 32

38 Average rounds needed versus input size. 33

39 Percent of time needed to add a level for each level for large input size. . . . 34

40 Percent of time needed to find successors for each level for large input size. 34

41 Percent of time needed to sort pairs within each level for large input size. . 35

42 Percent of time needed to prune each level for large input size. 35

43 Percent of time needed to rebalance each level for large input size. 36

44 Percent of time needed to check for completion at each level for large input
size. 36

viii

Abstract

An important problem in computational biology is finding the longest common
subsequence (LCS) of two nucleotide sequences. This paper examines the correctness
and performance of a recently proposed parallel LCS algorithm that uses successor
tables and pruning rules to construct a list of sets from which an LCS can be easily
reconstructed. Counterexamples are given for two pruning rules that were given with
the original algorithm. Because of these errors, performance measurements originally
reported cannot be validated. The work presented here shows that speedup can be
reliably achieved by an implementation in Unified Parallel C that runs on an Infiniband
cluster. This performance is partly facilitated by exploiting the software cache of the
MuPC runtime system. In addition, this implementation achieved speedup without
bulk memory copy operations and the associated programming complexity of message
passing.

ix

1 Introduction

1.1 The Longest Common Subsequence Problem

Given a sequence of symbols X = x1x2x3. . .xn from an alphabet Σ, a subsequence is any
sequence obtained by deleting zero or more symbols from X . A sequence that is a subse-
quence of each member of a collection of sequences is called a common subsequence. The
k-LCS problem is to find at least one longest common subsequence of a set of k sequences.
The best known instances of this problem are in computational biology where the goal is to
determine the similarity of DNA sequences or protein sequences [8, 2, 23, 14]. In the case
of DNA, the sequences are strings over the alphabet Σ = {a, c, g, t}. For amino acids the
alphabet consists of 20 symbols [14]. While k-LCS is NP-complete [17], it is solvable in
polynomial time using dynamic programming when the number of sequences is fixed [27].
Only LCS problems where k = 2 are considered in this paper, however a brief discussion
of how pLCS might can be modified to solve the k-LCS problem is given in Section 2.4.

1.2 Edit Distance Problem

A related problem to LCS is the edit distance problem. Given two sequences X and Y of
symbols from an alphabet Σ, the edit distance problem is to find a minimum cost sequence
of weighted edit operations that are applied to X to transform it into Y . Valid edit opera-
tions are delete a single symbol, insert a single symbol or replace a single symbol with a
different symbol [3]. The longest common subsequence problem is a special case of the
edit distance problem, in which the cost of an insertion or deletion is 1, the cost of replacing
a character with a different character is 2, and the cost of leaving a character unchanged is
0 [27].

1.3 Background

Many serial algorithms have been put forth for solving the LCS problem and the edit dis-
tance problem (which LCS is a special case of). Bergroth et al. [4] compared many such
algorithms. The widely used Smith-Waterman algorithm [25] for the edit distance is based
on the work of Needleman and Wunsch [22]. Hirschberg showed that LCS can be solved
in O(n · m) using O(n + m) space [12] using a recursive divide and conquer approach.
Ullman, Aho and Hirschberg [26] determined the lower bound on time-complexity of LCS

1

to be Ω(mn) using the decision tree model, where m and n are the lengths of the input
sequences. Masek [18] and Myers [19] gave four-russians algorithms with run-times of
O(n2/ log n). Using suffix tree methods for finding the LCS of gene sequences MUMmer
[6] and MGA [13] algorithms are both fast and memory efficient [7]. Guo [11] gives a
linear space primal-dual algorithm that runs in O(nL) time where L is the length of the
LCS.

The longest common subsequence problem has also been solved using systolic array algo-
rithms. Robert and Tchuente [24] gave an algorithm that solves LCS in n+5m steps using
m(m + 1) processing elements. Chang et al. [5] gave an algorithm that runs in 4n + 2m
steps using m(m + 1) processing elements. Luce et al. [16] gave an algorithm that runs in
n + 3m + L steps using m(m + 1)/2 processing elements. Freschi and Bogliolo [9] gave
an algorithm that find the LCS of two run-length-encoded (RLE) sequences in O(m + n)
steps using M + N processing elements.

Several parallel algorithms for LCS have also been proposed. Myoupo and Semé [20] gave
an algorithm that runs on the broadcasting with selective reduction (BSR) model which
claims a constant time solution to the LCS problem. For the CREW-PRAM model Aggar-
wal and Park [1] and Apostolico et al. [3] gave algorithms that run in O(log log n) time
on mn log m processors. Lu and Lin [15] gave two algorithms for LCS, one that runs in
O(log2 n+log m) time on mn/ log m processors, and one that runs in O(log2 m+log log m)
time on mn/ log2 m log log m processors when log2 m log log m > log n, otherwise it takes
O(log n) time on mn/ log n processors. Apostolico et al. [3] gave an O(log n (log log m)2)
algorithm that runs on O(mn/ log log m) processors. Babu and Saxena [21] converted ex-
isting CREW-PRAM algorithms to the CRCW-PRAM model giving run times of O(log2 n)
using mn processors.

Several parallel algorithms have also be proposed for solving the edit distance problem.
Edmiston et al. [8] gave parallel versions of both Needleman-Wunsch and Smith-Waterman
algorithms. Galper and Brutlag also gave a parallel Smith-Waterman algorithm based on
dynamic programming [10]. Zhang et al. [28] proposed a parallel version of the Smith-
Waterman algorithm that uses a divide and conquer strategy to reduce memory usage.

Liu et al. proposed FAST_LCS, a parallel LCS algorithm [14] and reported it to have a run
time of O(L), where L is the length of an LCS, using O(n + m + P) space, where P is the
number of identical pairs (see Definition 2). The parallel LCS algorithm, pLCS, presented
here is based on FAST_LCS. This paper notes and corrects errors in FAST_LCS as it was
given in [14]. It is shown that pLCS has a runtime of O(n3/T) on T processors and uses
O((n/T)2) space per processor, where n = min{n, m}. The UPC implementation of
pLCS described here exploits spatial locality to take advantage of the software cache of the
MuPC runtime system [29]. This implementation exhibits speedup without the use of any

2

explicit bulk shared memory copy operations.

1.4 Dynamic Programming Algorithm

One common serial approach to solving the the LCS problem is by dynamic programming
[12]. Solving the LCS problem by dynamic programming is done in two phases. In the
first phase an n + 1 by m + 1 matrix is computed. In the second phase the actual LCS can
easily be reconstructed using the original strings and the matrix.

1.4.1 Computing LCS Matrix

Given two input strings X = x1x2. . .xn with n symbols and Y = y1y2. . .ym with m
symbols, an n + 1 by m + 1 matrix M is constructed according to the recurrence given in
Figure 1.

Mi,j =

0 i = 0 or j = 0
1 + Mi−1,j−1 xi = yj

max(Mi−1,j, Mi,j−1) otherwise

Figure 1: Recurrence for computing Longest Common Subsequence (LCS) Matrix.

Since the computation of each cell in the matrix depends on the values of the three cells
above, to the left of and diagonally above and to the left, this matrix can be filled in a top
down, left to right fashion.

1.4.2 Reconstructing LCS

Let L initially be the empty string. Starting from Mi,j , whenever xi = yj , move to prepend
xi to L and move to Mi−1,j−1. Otherwise move to the larger of Mi−1,j and Mi,j−1. When
the cell M0,0 is reached, L will contain an LCS of X and Y .

3

1.4.3 Time and Space Complexity

Since this dynamic programming algorithm must fill the matrix, which takes O(n · m)
time, then reconstruct the LCS which take O(n + m) time, the overall time complexity is
O(n ·m). Also since the entire n + 1 by m + 1 matrix is typically stored, along with the
original input strings, the space complexity is O(n · m). However [12] showed that LCS
can be solved in O(n + m) space and O(n ·m) time using a recursive divide and conquer
algorithm.

1.5 Parallel Dynamic Programming

Several parallel techniques have been proposed to perform dynamic programming similar
to that used in solving LCS. While the methods listed here are intended for solving the edit-
distance problem, the same techniques, can be applied to filling the matrix used to solve
the LCS problem.

Edmiston et al. [8] used the message passing paradigm, and subdivided the matrix into
rectangular sub-matrices, then each processor filled a sub-matrix. Once each sub-matrix
was filled, the final row was passed to another processor so it could use it to start another
sub-matrix.

Galper and Brutlag [10] on the other hand used the shared-memory paradigm and decom-
posed the computations into wavefronts in a variety of ways. The first was the row wave-
front method where each processor attempted to fill in a single row of the matrix. Because
of the data dependencies in the recurrence, a row can only be filled from left to right up to
the point of the row above it. An alternative was a diagonal wavefront, in which each pro-
cessor started at the left edge of the matrix and moved up along an anti-diagonal. Using the
row wavefront method gives a run-time in O(m · n/p) where m is the length of the query
string, n is the size of the database when run on p processors. The diagonal wavefront
method gives a run-time in O(m2/p).

4

2 The pLCS Algorithm

2.1 The algorithm

This section describes the basis of the pLCS algorithm as it was given by Liu, et al. [14].
The idea behind the algorithm is to follow chains of pairs of identical symbols, one from
each string, from which an LCS can be constructed. Each iteration of the algorithm adds
one link to each of the chains currently under consideration. Chains that provably cannot
be part of an LCS are pruned after each iteration. Each iteration is called a “level". The
number of levels equals the length of an LCS. When the computation of the last level
is complete, an LCS can be constructed by a backwards traversal of any chain that has
persisted to the last level.

Definition 1: Given a string (or sequence) X = x1x2. . .xn over an alphabet Σ of S sym-
bols, the successor table of X is an S×(n+1) table TX such that each entry TX(σ, i), where
0 ≤ i ≤ n and σ ∈ Σ, gives the position of the next instance of character σ after position i
in X . When there are no more instances of a symbol σ after position i, TX(σ, i) =–.

For example, the successor tables for TX for X = tactacgc and TY for Y = gtcgaag are
shown in Figures 2 and 3.

Definition 2: Given two sequences X and Y and their successor tables TX and TY , an
identical pair is a tuple (i, j, (p, q)) = (TX(σ, p), TY (σ, q), (p, q)), where σ ∈ Σ. Note that

TX 0 1 2 3 4 5 6 7 8
a 2 2 5 5 5 – – – –
c 3 3 3 6 6 6 8 8 –
g 7 7 7 7 7 7 7 – –
t 1 4 4 4 – – – – –

Figure 2: Successor table for the sequence tactacgc.

TY 0 1 2 3 4 5 6 7
a 5 5 5 5 5 6 – –
c 3 3 3 – – – – –
g 1 4 4 4 7 7 7 –
t 2 2 – – – – – –

Figure 3: Successor table for the sequence gtcgaag.

5

this implies xi = yj and, when none of the indices are –, p < i and q < j. For simplicity,
the third component (p, q) of an identical pair is often omitted and the object is referred
to as just a pair. The pair (i, j) is said to be a successor of the pair (p, q), and (p, q) is a
predecessor of (i, j).

Definition 3: The initial pairs are the identical pairs of the form
(TX(σ, 0), TY (σ, 0), (0, 0)), for each σ ∈ Σ.

Definition 4: level1 is the set of initial pairs. For k > 1, levelk is the set of pairs that are
the successors of pairs in levelk−1.

For example, in Figures 2 and 3, the initial pairs for a, c, g, and t are (2, 5), (3, 3), (7, 1),
and (1, 2), respectively, and (5, 6) and (7, 7) are successors of (2, 5). The first 4 levels for
this instance of the problem are nonempty, as shown in Figure 4.

The algorithm terminates when it finds that levelk+1 is empty. The reverse of an LCS can
then be constructed starting from any pair (i, j, (p, q)) in levelk and tracing backward to any
of its predecessors (p, q, ...) in levelk−1, and so on, back to a pair of the form (r, s, (0, 0))
in level1.

For example, level5 in Figure 4 is empty, so the longest common subsequence of tactacgc
and gtcgaag has a length of 4. One of the longest common subsequences is given in re-
verse by the pairs (7, 7, (5, 6)) → (5, 6, (2, 5)) → (2, 5, (1, 2)) → (1, 2, (0, 0)), which
corresponds to x1x2x5x7 = y2y5y6y7 = taag.

The correctness of pLCS follows from the definitions. Any LCS must begin with at least
one symbol from an initial pair, otherwise a longer common subsequence could be con-
structed. Moreover, some LCS must begin with symbol xi = yj , where (i, j, (0, 0)) is an
initial pair. Every pair of consecutive symbols in an LCS corresponds to pairs that are

Level Pairs
1 { (2,5,(0,0)), (3,3,(0,0)), (7,1,(0,0)), (1,2,(0,0)) }
2 { (5,6,(2,5)), (7,7,(2,5)), (5,5,(3,3)),

(7,4,(3,3)), (8,3,(7,1)), (2,5,(1,2)),
(3,3,(1,2)), (7,4,(1,2)) }

3 { (7,7,(5,6)), (7,7,(5,5)), (5,6,(2,5)),
(7,7,(2,5)), (5,5,(3,3)), (7,4,(3,3)) }

4 { (7,7,(5,6)), (7,7,(5,5)) }
5 ∅

Figure 4: Trace of pLCS algorithm on the sequences tactacgc and gtcgaag.

6

successors of one another. That is, if xi = yj and xi+i′ = yj+j′ are consecutive symbols
in an LCS, then (i + i′, j + j′) is a successor of (i, j). The algorithm traces all chains of
successors and so each of the longest chains the algorithm finds must be an LCS.

Algorithm 1 is pseudo code for the sequential version of pLCS.

Algorithm 1 pLCS
1: Build successor tables
2: // Get initial pairs
3: for all σ ∈ Σ do
4: (TX(σ, 0), TY (σ, 0), (0, 0)) ∈ level1
5: end for
6: // Find all relevant identical pairs
7: k ← 1
8: repeat
9: // Apply pruning rules to levelk

10: for all (i, j) ∈ levelk do
11: for all (p, q) ∈ levelk s.t. (p, q) 6= (i, j) do
12: if (i, j) can be pruned due to (p, q) then
13: Prune (i, j)
14: end if
15: end for
16: end for
17: // Get successor pairs
18: for all (i, j) ∈ levelk and σ ∈ Σ do
19: Put (TX(σ, i), TY (σ, j), (i, j)) in levelk+1

20: end for
21: k ← k + 1
22: until levelk = ∅
23: // Reconstruct LCS
24: (i, j) ∈ levelk−1

25: Z ← λ
26: repeat
27: Z ← xiZ
28: (i, j)← predecessor of (i, j)
29: until (i, j) is an initial pair

7

2.2 Pruning Rules

The following theorems were given in Liu, et al. [14]. These theorems show that pairs that
satisfy certain properties can be deleted (pruned) from the level at which they occur. In
these theorems, let X = x1...xn and Y = y1...ym. Notation of the form Xpq denotes the
substring xpxp+1...xq of X . Similarly for Y .

Theorem 1: If a level contains two pairs (i, j) and (k, l), where i > k and j > l, then the
pair (i, j) can be pruned.

Proof: All LCSes of Xin and Yjm are strictly shorter than LCSes of Xkn and Ylm because
Xin and Yjm are proper suffixes of Xkn and Ylm, respectively, and the latter two sequences
have an identical pair (k, l) not in the former sequences. It follows that (i, j) can be pruned
from the current level. �

The following theorem shows that in the special case that j = l, the pair (i, j) can also be
pruned.

Theorem 2: If a level contains two pairs (i, j) and (k, j) where i > k, then the pair (i, j)
can be pruned.

Proof: Xin is a proper suffix of Xkn, so no LCS of Xin and Yjm can be longer than an LCS
of Xkn and Yjm, so (i, j) can be pruned. �

Corollary 1: If a level contains two pairs (i, j) and (i, k) where j > k, then pair (i, j) can
be pruned.

As in the example shown in Section 2.1, let X = tactacgc and Y = gtcgaag. Figure 5
gives a trace of pLCS with pruning rules applied.

In this example pairs (2,5) and (3,3) in level1 can be pruned due to the pair (1,2) by Theorem
1. In level2 the pair (7,4) can be pruned due to (3,3) by Theorem 1, while (8,3) can be
pruned due to (3,3) by Theorem 2. In level3, the pair (7,7) can be pruned due to (5,6) by
Theorem 1, while (5,6) can be pruned due to (5,5) by Corollary 1.

Since level5 in Figure 5 is empty, the longest common subsequence of tactacgc and gtcgaag
has a length of 4. The longest common subsequence that was found is given in reverse by
the pairs (7, 7, (5, 5)) → (5, 5, (3, 3)) → (3, 3, (1, 2)) → (1, 2, (0, 0)), which corresponds
to x1x3x5x7 = y2y3y5y7 = tcag.

8

Level Pairs
1 { (2,5,(0,0)), (3,3,(0,0)), (7,1,(0,0)), (1,2,(0,0)) }
2 { (8,3,(7,1)), (2,5,(1,2)), (3,3,(1,2)),

(7,4,(1,2)) }
3 { (5,6,(2,5)), (7,7,(2,5)), (5,5,(3,3)),

(7,4,(3,3)) }
4 { (7,7,(5,5)) }
5 ∅

Figure 5: Trace of pLCS algorithm on the sequences tactacgc and gtcgaag with pruning.
Pruned pairs are indicated in bold.

2.3 Counterexamples

The following two claims were made in [14]. We provide counterexamples to those claims.

Claim 1: If a level contains two pairs (i, j) and (i + 1, k), where k < j, then the pair (i, j)
can be pruned.

Counterexample: Let X = gaga and Y = aaga. The successor tables for these strings
are given in Figures 6 and 7. As Figure 8 shows, the last nonempty level is 3, so the LCS
has length 3. However when Claim 1 is applied to level2, the pair (3,3) is pruned due to
(4,2) since 4 = 3 + 1 and 2 < 3. This causes the algorithm to finish after level2, due to
(4,2) and (2,4) not having any successors, giving a longest common subsequence of 2.

TX 0 1 2 3 4
a 2 2 4 4 –
c – – – – –
g 1 3 3 – –
t – – – – –

Figure 6: Successor table for the sequence gaga.

TY 0 1 2 3 4
a 1 2 4 4 –
c – – – – –
g 3 3 3 – –
t – – – – –

Figure 7: Successor table for the sequence aaga.

9

Level Pairs
1 { (2,1,(0,0)), (1,3,(0,0)) }
2 { (4,2,(2,1)), (3,3,(2,1)), (2,4,(1,3)) }
3 { (4,4,(3,3)) }
4 ∅

Figure 8: Trace of pLCS algorithm on the sequences gaga and aaga, without any pruning.

TX 0 1 2 3 4 5 6
a 2 2 5 5 5 – –
c – – – – – – –
g 1 3 3 – – – –
t 4 4 4 4 6 6 –

Figure 9: Successor table for the sequence gagtat.

Level Pairs
1 { (2,1,(0,0)), (1,3,(0,0)) }
2 { (5,2,(2,1)), (3,3,(2,1)), (2,4,(1,3)) }
3 { (5,4,(3,3)) }
4 ∅

Figure 10: Trace of pLCS algorithm on the sequences gagtat and aaga, without any prun-
ing.

Claim 2: If a level contains two pairs (i, j) and (i + 2, k), where k < j and xi+1 = xi+3,
then the pair (i, j) can be pruned.

Counterexample: Let X = gagtat and Y = aaga. The successor tables for these strings
are given in Figures 9 and 7. As Figure 10 shows, the last nonempty level is 3, so the
LCS has length 3. However when Claim 2 is applied to level2, the pair (3,3) is pruned due
to (5,2) since 5 = 3 + 2, 2 < 3 and x4 = x6 = t. This causes the algorithm to finish
after level2, due to (5,2) and (2,4) not having any successors, giving a longest common
subsequence of 2.

2.4 Modifications needed for k-LCS

The pLCS algorithm while designed to solve the LCS problem for two input strings. It
can be modified to solve the more general k-LCS problem [14]. These changes include
increasing the size of the pair structure to be a k-tuple structure. The pruning rules would
also need slight revision.

10

Given two k-tuples t0 = (i0, i1, . . . , ik) and t1 = (j0, j1, . . . , jk) within the same level, t0
can be pruned if t1 6= t2 and ip ≥ jp for all p s.t. 0 ≤ p ≤ k, . As in the 2-LCS case, when
a level contains duplicate k-tuples, only one of them should be kept.

2.5 Rebalancing

Since the time required to prune a level in pLCS is proportional to the product of the sizes
of the two largest per thread pair lists, for best performance all threads should have the
same number of pairs. However due to pruning, some threads will have more pairs than
others. To correct this, a greedy rebalancing algorithm was implemented. Pseudocode for
this algorithm is given as Algorithm 2.

The rebalancing algorithm first has one thread gather the number of pairs from all k threads.
Threads are denoted Ti. The number of pairs in thread Ti is denoted ni. The number of
pairs for each thread is then scattered to all threads. Each thread then sorts the list of pair
counts to get a new list of threads T ′, where each T ′

i has n′i pairs. Using the sorted list of
threads, each thread computes a k by k matrix steal that gives how many pairs Ti needs to
steal from thread Tj , like the one shown in Figure 11. Each thread also has a count of how
many pairs it will be keeping, keepi. Initially, keepi is the minimum of the target value and
the number of pairs the thread has.

Before the steal matrix can be computed, the target number of pairs needs to be computed.
This value is n′, which may not be an integer. When the target value is not an integer,
threads that have more than the target number of pairs are allowed to keep extra pairs, and
reduce the number of pairs that are available to be stolen. This reduction starts with the
thread that has the most pairs, and moves one pair from n′i into keepi, it then moves down

Receiver
T0 T1 T2 T3 T4 T5 T6 T7

Sender

T0 23 – – – – – – –
T1 – 24 – – – 3 1 –
T2 – – 24 – – – – 7
T3 1 – – 24 – – 1 –
T4 – – – – 24 2 – 2
T5 – – – – – 18 – –
T6 – – – – – – 22 –
T7 – – – – – – – 14

Figure 11: Matrix computed using algorithm shown in Algorithm 2.

11

through the threads until n′ is an integer. If a thread is reached that has too few pairs, the
process continues from the thread that has the most pairs.

Once n′ has been adjusted, steal can be computed. The steal matrix is initialized such that
steali,i ← min(n′i, n

′) The computation then starts by computing the number of pairs that
T ′

0 needs, needi ← n′ − n′i, and how many pairs T ′
k has available, availj ← n′j − n′. If

availj > needi, then steali,j ← needi and i ← i + 1. If availj < needi, then steali,j ←
availj and j ← j− 1. If availj = needi, then steali,j ← availj , i← i + 1 and j ← j− 1.
This process continues so long as j > i. By computing steali,j in this way, thread T ′

i

always tries to get pairs from the thread that is likely to have enough.

Using the steali,j matrix, each thread can compute the starting offset of a block of pairs to
be stolen by finding how many other threads with a smaller thread id are also stealing from
that threads. Thus offseti,j =

∑j−1
m=0steali,m. At this point thread T ′

i knows that it needs to
steal pairs at positions offseti,j through offseti,j+steali,j from thread T ′

j’.

Since the computation of the matrix is the same on all threads, all threads will all agree on
which pairs every other thread will be stealing. Once each thread knows which pairs it will
be stealing from other threads, each thread copies the needed pairs by simply reading the
pairs out of the remote thread’s shared memory.

By stealing pairs in this fashion, a single contiguous block of pairs will always be stolen
from one thread by another. Which means the thread that needs pairs can steal the pairs
directly from shared memory one pair at a time making efficient use of the cache due to
spatial locality.

It should be noted that tests were performed to verify that it is faster to have all threads
compute the communication needed, than to have one thread gather the counts, compute
and scatter the communication matrix.

12

Algorithm 2 Rebalance
1: Gather then scatter per thread pair counts
2: Sort threads by pair counts
3: Compute average number of pairs per thread
4:
5: // Reduce pair counts
6: keepi ← min(ni, bnc), ∀i
7: while n′ > bn′c do
8: j ← THREADS− 1
9: while n′ > bn′c do

10: n′j ← n′j − 1
11: keepj ← keepj + 1
12: end while
13: end while
14:
15: // Build matrix
16: i← 0
17: j ← THREADS− 1
18: while i < j do
19: neededi = n′ − ni

20: while neededi > 0 do
21: allowedj = n′j − n′

22: steali,j = min(allowedj, neededi)
23: neededi ← neededi − steali,j
24: n′j ← n′j − steali,j
25: if allowedj = 0 then
26: j ← j − 1
27: end if
28: end while
29: i← i + 1
30: end while
31:
32: // Copy pairs as needed
33: i← MYTHREAD
34: for j = 0 to THREADS-1 do
35: offset←

∑j−1
k=0 stealk,j

36: count← steali,j
37: Steal steali,j pairs starting at position offset from thread T ′

j .
38: end for

13

2.5.1 Rebalancing Example

This section provides an example of the rebalancing algorithm used in pLCS. At the start
of the algorithm each thread (Ti) has a number of pairs (ni), as shown in Figure 12. In
the first phase of rebalancing thread T0 gathers the pair counts from each thread, then each
scatters the data to all threads. Each thread then computes the average number of pairs per
thread (n), which is will be the goal number of pairs after rebalancing.

Once all threads have a copy of the pair counts table, they each sort their local copies. After
sorting, the pair counts of some threads are reduced slightly to simplify rebalancing when
n is not an integer. Starting from the thread that has the most pairs, 1 is subtracted from its
pair count, then the next thread has one subtracted, so forth and so on until the total number
of pairs is a multiple of the number of threads. If a thread is reached that has a pair count
less than or equal to bnc, the process is started over from the thread that has the largest pair
count. This results in pair counts that sum to a multiple of THREADS, as shown in Figure
13.

Let T ′
i be the thread with the ith smallest number of pairs. also Let n′i be the number of

pairs in thread T ′
i after being reduced.

After the pair count tables are sorted and reduced so that n′ is an integer, a matrix is com-
puted indicating how many pairs are to be stolen by each thread and which thread they will
be stolen from as shown in Figure 11. Figure 15 also gives the number of pairs to be stolen,
but the columns and rows have been re-ordered according to each threads initial number
of pairs, giving a clearer view of the communication pattern. The starting offset for the
block of pairs that will be stolen is given in the matrix shown in Figure 14. Using these two
matrices, the actual communication operations can be determined, as Figure 16 shows.

Thread T0 T1 T2 T3 T4 T5 T6 T7 Total bnc Remainder
ni 23 28 31 26 28 18 22 14 190 23 6

Figure 12: Original pair counts for each thread.

T ′
0 T ′

1 T ′
2 T ′

3 T ′
4 T ′

5 T ′
6 T ′

7

Thread T7 T5 T6 T0 T3 T1 T4 T2

ni 14 18 22 23 26 28 28 31
Reduced by 0 0 0 0 1 1 2 2

n′i 14 18 22 23 25 27 26 29

Figure 13: Threads sorted by pair counts with pair counts reduced so their sum is divisible
by THREADS.

14

Receiver
T0 T1 T2 T3 T4 T5 T6 T7

Sender

T0 0 – – – – – – –
T1 – 0 – – – 0 0 –
T2 – – 0 – – – – 0
T3 23 – – 0 – – 1 –
T4 – – – – 0 3 – 7
T5 – – – – – 5 – –
T6 – – – – – – 2 –
T7 – – – – – – – 9

Figure 14: Offset matrix computed using algorithm shown in Algorithm 2.

Receiver
T ′

0 T ′
1 T ′

2 T ′
3 T ′

4 T ′
5 T ′

6 T ′
7

Sender

T ′
0 14 – – – – – – –

T ′
1 – 18 – – – – – –

T ′
2 – – 22 – – – – –

T ′
3 – – – 23 – – – –

T ′
4 – – 1 1 24 – – –

T ′
5 – 3 1 – – 24 – –

T ′
6 2 2 – – – – 24 –

T ′
7 7 – – – – – – 24

Figure 15: Matrix shown in Figure 11 in T ′ order.

After applying the rebalancing actions, the final number of pairs in each thread is given in
Figure 17. Clearly the minimum and maximum number of pairs only differ by one, which
is as close to balanced as possible.

2.5.2 Number of messages

This algorithm works in a greedy fashion and does not maintain the original ordering of
pairs within a level. However it does manage to rebalance in O(THREADS) messages.

Theorem: The total number of pair blocks sent between threads is always less than the
number of threads.
Proof: Let G = (V, E) be a directed graph that represents the communication needed for
rebalancing, where each element Ti of V represents a thread, and (Ti, Tj) ∈ E indicates
that thread Tj steals a contiguous block of pairs from thread Ti. Assuming rebalancing
is actually needed, some threads must have fewer pairs than other threads, and the mean

15

Thread Keeps Steals
T0 23 Pairs3[25]
T1 24 none
T2 24 none
T3 24 none
T4 24 none
T5 18 Pairs1[1 . . . 3]

Pairs4[2 . . . 3]
T6 22 Pairs1[0]

Pairs3[0]
T7 14 Pairs2[0 . . . 6]

Pairs4[0 . . . 1]

Figure 16: Communication operations needed to rebalance.

Thread T0 T1 T2 T3 T4 T5 T6 T7

Pairs 24 24 24 24 24 23 24 23

Figure 17: Final pair counts for each thread after rebalancing.

7T2

T4

T1

T3

T7

T5

T6

T0

3
1

1
1

2
2

Figure 18: Bipartite graph showing communication patterns for example given in Section
2.5.1. Edges are labeled with the number of pairs moving between threads.

number of pairs per thread must be between the minimum and maximum number of pairs.
Thus the threads can be divided into two groups, one that has more than the average number
of pairs (i.e. the threads that will be stolen from) and one that has fewer pairs (i.e. the
threads that will be doing the stealing). If these two groups are then arranged into two
columns where the left column contains the threads that have above average pair counts
ordered largest to smallest, and the right column contains threads with below average thread
counts ordered smallest to largest, as shown in Figure 18.

As the rebalance algorithm runs, it will first add an edge between the thread with the most
pairs, and the thread with the least pairs, which are the top nodes in each column. In each

16

subsequent iteration the head of the next edge will be moved if the stealing thread has
enough pairs, and the tail will move if the source thread is out of extra pairs. Since one of
these conditions will always be true, at least one end of each edge will be moved down to
the next node each iteration. The maximum number of edges is |V | − 1 since the first first
iteration starts by selecting two nodes, and each subsequent iteration selects one more node
to add an edge to. �

2.5.3 Rounds of communications

In this rebalancing algorithm there is an initial phase of gathering and scattering the pair
counts for each thread which can be viewed as two rounds of communications. Once the
pair counts are scattered to all threads, each thread is able to compute which pairs will
be stolen from other threads. Then another set of communication rounds starts, the total
number of rounds is given by the maximum in-degree or out-degree of the nodes in the
communication graph (Figure 18) which is given by treating Figure 11 as an adjacency
matrix.

2.5.4 Rebalance Complexity

In order to rebalance, the pair counts for T threads must first be gathered then scattered to
all threads. This can be done in roughly O(lg T) time. The thread counts are then sorted,
which takes O(T ·lg T) time. Computing the communication matrix takes O(T) time. Each
thread can then compute the portion of the offset matrix that affects it in O(T) time. Thus
the overall time complexity of computing the communication needed is O(T · lg T).

Once the necessary communication is computed, the moving of pairs can be done using
at most T − 1 messages, as shown in Section 2.5.2. This can therefore be done in O(T)
rounds. Thus the overall complexity for rebalancing is O(T · lg T) time.

The space complexity for rebalancing as described is O(T 2) due to the T by T matrix that
is computed, however storing values in this matrix is not necessary as the stealing of pairs
can occur as soon as the number of pairs and starting offset are computed. So, only the pairs
counts for each thread need to be stored, thus the overall space complexity for rebalancing
is O(T).

17

3 Crossing Pairs

In pLCS performance can be suffer when a level contains a large number of crossing pairs,
which are any two pairs (i, j) and (k, l) such that i < k and j > l.

The upper portion of Figure 19 shows the crossing pairs (i, j) and (k, j) from the strings
agtacgt and gcatgca, where (i, j) refers to the first t in each string and (k, j) refers to
the first c in each string. The lower portion of Figure 19 shows the possible relationships
two pairs (i, j) and (k, l) can have depending on the relative values i, j, k and l values. In
the case of separated pairs, one of the pairs will be pruned by Theorem 1. In the case of
touching pairs, one of the pairs will be pruned by Theorem 2 or Corollary 1. This section
discusses attempts to prune crossing pairs, and gives counterexamples that demonstrate
problems with each method attempted.

3.1 Pruning of Crossing Pairs

In [14], two pruning rules were given for which counterexamples are given in Sections 2.3
and 2.3, which attempt to prune crossing pairs.

Since crossing pairs are common in pLCS, it would be useful to prune as many of them as
possible. However as this section will demonstrate, it is difficult to reliably and efficiently

l
g c a t g c a

a g t a c g t
k i

j

(b) touching (c) crossing(a) separated

i k

j l

i k

j l

k

j l

i

Figure 19: Possible relationships between two pairs (i, j) and (k, l): a) separated, b) touch-
ing and c) crossing.

18

identify pruneable crossing pairs.

Starting with the assumption that the claimed pruning rules in [14] contained only minor
flaws, several attempts were made to create valid pruning rules from them.

Theorem 3: When a level contains two pairs (i, j) and (i + r, k) where k < j,
xi+1 . . . xi+r−1 = xi+r+1 . . . xi+2r−1 and r > maxσ∈Σ (TX(σ, i)− i) (i.e. r is large enough
that the substring xi+1 . . . xi+r−1 contains every character that can be found in the substring
xi+1. . .xn), then pair (i, j) can not always be pruned without affecting the length of the
LCS.

Proof: By counterexample. Assume that pairs meeting the requirements for (i, j) of The-
orem 3 are always pruneable without affecting the length of the longest common subse-
quence found. Let X = aacaaa and Y = caacaa. The successor tables for these strings
are given in Figures 20 and 21. Using the corresponding successor tables shown in Figures
20 and 21, the levels shown in Figure 22 can be computed. Which gives an LCS of length
5.

However, if pairs that match the criteria for (i, j) in Theorem 3 are allowed to be pruned,
the pair (2, 3) in level2 would be pruned due to the pair (4, 2). This pruning would then
lead to a common subsequence with a length of only 4. �

Several modifications to the pruning rule in Theorem 3 were also tested. The first modifica-
tion added the constraint that xi+1 . . . xi+r−1 must contain at least one instance of each char-
acter in Σ. Another attempt modified the sub-strings that are matched to be xi . . . xi+r−1

TX 0 1 2 3 4 5 6
a 1 2 4 4 5 6 –
c 3 3 3 – – – –
g – – – – – – –
t – – – – – – –

Figure 20: Successor table for the sequence aacaaa.

TY 0 1 2 3 4 5 6
a 2 2 3 5 5 6 –
c 1 4 4 – – – –
g – – – – – – –
t – – – – – – –

Figure 21: Successor table for the sequence caacaa.

19

and xi+r . . . xi+2r−1. Finally the constraint that length(Xkn) > length(Yjm) was tested. All
three of these modified pruning rules were tested and shown to cause imprecise results for
some input strings. While all of these modifications were tried separately, it is believed that
combinations would also lead to imprecise results.

Since Theorems 1 and 2 give pruning rules that reduce the pairs to a point where each pair
must have a unique i value and a unique j value. An attempt was made to develop a pruning
rule based on restricting pairs to unique diagonals.

Theorem 4: If a level contains two pairs (i, j) and (k, l) such that i+j = k+l, and |i− j| >
|k − l|, then it is not always possible to prune (i, j) without affecting the correctness of
pLCS.

Proof: Assume that if a level contains two pairs (i, j) and (k, l), where (i + j = k + l),
that (i, j) can be pruned. Let X = gaca and Y = ca. The successor tables for these strings
are given in Figures 23 and 24.

Since the last non-empty level in Figure 25 is level2, the length of the LCS is 2 However if
pairs (i, j) matching the criteria of Theorem 4 were pruned, then (3, 1) in level1 could be
pruned. Since (3, 1) is the predecessor of (4, 2), level2 would be empty, giving and LCS
length of 1. �

Level Pairs
1 { (1,2,(0,0)), (3,1,(0,0)) }
2 { (2,3,(1,2)), (3,4,(1,2), (4,2,(3,1)) }
3 { (4,5,(2,3)), (3,4,(4,5,(3,4)), (4,5,(3,4)),

(5,3,(4,2)) }
4 { (5,6,(4,5)), (4,5,(3,4)), (6,5,(5,3)) }
5 { (5,6,(4,5)) }
6 ∅

Figure 22: Trace of algorithm on the sequences aacaaa and caacaa, without any pruning.

TX 0 1 2 3 4
a 2 2 4 4 –
c 3 3 3 – –
g 1 – – – –
t – – – – –

Figure 23: Successor table for the sequence gaca.

20

4 Complexity Analysis

Let X = x1..xn and Y = y1..ym be an instance of the LCS problem. W.l.o.g., we may
assume that n = min{n, m}. Also, S = |Σ| is assumed to be constant.

4.1 Sequential run time

The algorithm generates at most n nonempty levels because the LCS can not be longer than
the shorter input sequence. level1 has exactly S pairs. Generating a successor pair is O(1)
because it is a simple table look-up. levelk+1 has at most S times the number of pairs in
levelk, but this exponential growth is strictly limited by pruning. Theorems 1 and 2 and
Corollary 1 guarantee that at most n pairs remain after pruning. Treating pairs as Cartesian
coordinates in an n×m array, Theorem 1 says there can be no pairs (x, y) in the rectangular
region x > i, y > j. Similarly, Theorem 2 and Corollary 1 say that there can be at most
one pair per y and x coordinate, respectively. Pruning n pairs has cost O(n2). This gives
an overall run time bound of O(n3).

The memory required to run pLCS is Θ(m) for the successors tables, and O(n2) for the
pairs in the worst case.

While this complexity is higher than the O(nm) worst case run time bound on the dynamic
programming algorithm [12], parallelizing the pLCS algorithm offered many interesting
implementation challenges. It proved to be a good example of the performance benefits of

TY 0 1 2
a 2 2 –
c 1 – –
g – – –
t – – –

Figure 24: Successor table for the sequence ca.

Level Pairs
1 { (2,2,(0,0), (3,1,(0,0)) }
2 { (4,2,(3,1)) }
3 ∅

Figure 25: Trace of algorithm on the sequences gaca and ca, without any pruning.

21

a runtime cache as well as a demonstration of a complex application in which the cache
can be used by the programmer to avoid explicit message passing.

4.2 Parallel run time

As in the serial algorithm there are at most n levels and each level has at most O(n) pairs
after pruning. The pairs are load balanced by an exchange of pairs between threads that
have too many and those that have too few. Computing how many pairs and which pairs
need to be moved between threads takes O(T · lg T) time as discussed in section 2.5.4.
This is done in O(T) rounds of communication, where T is the number of threads (or
processors), and it ensures that at the beginning of each iteration each thread has O(n/T)
pairs. Generating a successor pair has constant cost, as in the serial algorithm, because
each thread has complete copies of the two successor tables. (Distributing the successor
tables caused too many remote references.) Applying the pruning rules to a level is done
in T rounds of communication. O((n/T)2) pair comparisons are done on each round. The
run time of the parallel algorithm thus consists of O(n) levels, each with O(T) rounds
of communication with O((n/T)2) comparisons of pairs on each round. This yields a
total cost of O(nT (n/T)2) = O(n3/T). This run-time is significantly larger than the
O(n2/T) for parallel dynamic programming, however further study would be needed to see
if exploiting the data caching in MuPC can lead to better performance on certain problem
sizes.

Since each thread contains a copy of the two successor tables, the per-thread memory bound
for pLCS is O(m + n2/T). For large problem sizes where n and m are comparable, n2/T
will dominate.

5 pLCS Implementation in UPC

We implemented the pLCS algorithm in UPC. This implementation was designed to be
run on the MuPC runtime system [29]. It takes affinity and the availability of a runtime
cache into account, so it is not a “naive" implementation. In particular, during pruning all
references to remote pairs are local once the pairs are cached. All necessary references
are made to a cached pair before going on to the next pair. This maximizes cache reuse.
In addition, since all remote pruning operations are done to pairs in cache, all pairs in the
cache are evaluated for pruneability before being written back. Thus pairs are only ever
read or written along with an entire cache line.

22

One shortcoming of MuPC is that it only checks the cache for remote objects that are no
more than 16 bytes long. The implementation represents a pair as two integers and a pointer
to shared, so a pair is larger than 16-bytes. Care was taken to ensure that the components of
a pair were always referenced individually, and not the pair structure as a whole, so that the
reference would be resolved in the cache and not cause a separate remote communication
operation in the runtime system.

5.1 Data Structures

In order to run pLCS two main data structures are needed. First there is the successor table,
which is used to generate new identical pairs in each level. The second data structure holds
the actual levels and the pairs within them.

5.1.1 Successor Tables

Since all threads will need to access both successor tables, the successor tables are declared
as shared. However, for ease of implementation and performance reasons the shared suc-
cessor tables are computed by one thread, then each thread makes a private copy of the
successor tables which will be used in all subsequent computations.

The structure of a successor table is an array of n + 1 successor structures, where n is the
length of the input string it is built from. The successor structure in turn contains a single
array of |Σ| integers which indicate the next position of a particular symbol in the input
string.

5.1.2 Pairs and Levels

During the operation of the pLCS algorithm a series of levels are produced where each level
contains a set of pairs. Each pair consists of two locations in the input strings, a pruned flag
and a pointer to the pair’s predecessor. The positions are stored as integers. To save space,
the sign bit for one of the position indexes is used for the pruned flag. Since the pointer
to the predecessor is only needed when reconstructing the LCS, in order to pack more pair
structures in a single cache line, the predecessor pointers are stored in a separate array of
predecessor structures. The predecessor structure contains two pointers, the first one points

23

i
Tail(T)

Pairs(T , m)Pairs(T , 2)Pairs(T , 1)i i i

iHead(T)

. . .

Figure 26: Layout of pairs for thread Ti with m levels.

to the pair structure, the second points to another predecessor structure, which contains a
pointer to the actual predecessor of the pair.

The pairs are stored in a series of linked lists, each thread has its own linked list. The head
and tail pointers for each linked list are stored in a shared array so each thread can access
every other threads’ linked lists. The nodes of the linked lists each contain an array of pair
structures that the thread has affinity to. This structure can be seen in Figure 26. Each node
also contains an array of predecessor pointer structures that correspond to the pairs it has
affinity to.

5.2 Optimizations

In addition to pLCS being designed to make heavy use of the MuPC cache, several addi-
tional optimizations were made.

In order to allow packing of more pairs into a single cache line, rather than use a separate
pruned flag, the sign bit of one of the indexes was used to indicate that the pair was pruned.
The pointer to the predecessor is also stored outside of the actual pair structure, to help
reduce the size of the pair structure.

Since accessing shared data that a thread has affinity to through a pointer to shared is
significantly slower than accessing non-shared memory, wherever possible, shared pointers
were cast to local pointers. Also whenever an invariant non-local pointer is accessed, a
local copy of the pointer is made.

Since the pruning rules that are known to be correct are transitive (i.e. if pair p2 can be
pruned due to pair p1 and p1 can be pruned due to pair p0, then p2 can be pruned due to p0),
when applying pruning rules a pruned pair is never compared to unpruned pairs to see if
the pruned pair allows for pruning.

24

Also, before pruning, pairs within each level are sorted such that pairs with the smallest
difference between i and j values are examined first, as they are more likely to be on the
LCS.

5.2.1 Ineffective Optimizations

Since pruning is O(n2) with respect to the number of pairs in a level, several approaches
were attempted to reduce the cost of pruning. One approach attempted was to not prune
every level. This however this leads to larger numbers of pairs in each level, which greatly
increased the pruning time in each level.

Another approach was to prune every level, but each thread only compares its own pairs
to one other threads’ pairs. Since only two threads are comparing their pairs, the cost is
O(

(
n
T

)2
) instead of O

(
n2

T

)
. This has the advantage of performing far fewer comparisons

per level, but is less effective at pruning, so the total number of pairs grows. In limited
testing the effectiveness of this change was inconclusive.

6 Performance

The UPC implementation of the pLCS algorithm was run on different sizes of randomly
generated sequences. An LCS of each pair of sequences was computed using up to 24
nodes of a dual-core, dual-processor Pentium cluster with an Infiniband network using the
MuPC runtime system. The sequential run time reported here is for this implementation
on one thread. Care was taken to ensure that all references to pointers to shared were
cast as local. Correctness was checked against a sequential implementation of the standard
dynamic programming algorithm. (It was this checking that led to the two counterexamples
in Section 2.3.)

Figure 27 shows that an efficiency of almost 50% (a speedup of 6 on 14 nodes) is achieved
for a pair of sequences of size 10,000. Figure 28 shows that this implementation of pLCS
is critically dependent on the runtime cache.

25

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25

Sp
ee

du
p

Threads

Speedup vs. Threads
(varying Input Size, Cache Line length=1024)

100 bytes
500 bytes

1000 bytes
2000 bytes
3000 bytes
4000 bytes
5000 bytes
6000 bytes
8000 bytes

10000 bytes

Figure 27: Speedup for various input sizes and threads with cache enabled.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

Sp
ee

du
p

Threads

Speedup vs. Threads
(varying Input Size, Cache Line length=0)

100 bytes
500 bytes

1000 bytes
5000 bytes

10000 bytes

Figure 28: Speedup for various input sizes and threads with cache disabled.

26

6.1 Measurements and Observations

As the input size increases, the runtime increases rather quickly when the cache is disabled,
as Figure 29 shows for cache lines of zero bytes. However with the cache enabled the
increase is far less significant, as Figure 29 also shows.

When the input size is large, as shown in Figure 30, increasing the number of threads can
greatly reduce the total run-time. However, increasing the number of threads only helps to
a certain point.

As Figure 29 indicates, enabling the MuPC cache, greatly reduces the run-time for pLCS
with large inputs.

With larger input sizes, the cache does help tremendously, as Figure 31 clearly shows. The
size of cache lines however does not seems to affect performance as much as might be
expected. Cache lines of 1024 bytes seem to be optimal for larger inputs. Increasing to
2048 bytes does not help much, and in some cases even hurts performance. Above 2048
bytes lead to stability problems, and were not studied in great detail.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

To
ta

l T
im

e
(s

ec
on

ds
)

Input Size (bytes)

Total Time vs. Input Size
(varying Cache Line Length, Threads=24)

0 bytes
256 bytes
512 bytes

1024 bytes
2048 bytes

Figure 29: Total execution time versus input size.

27

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25

To
ta

l T
im

e
(s

ec
on

ds
)

Threads (Threads)

Total Time vs. Threads
(varying Cache Line Length, Input Size=10000)

0 bytes
256 bytes
512 bytes

1024 bytes
2048 bytes

Figure 30: Total time with different numbers of threads for large inputs.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 500 1000 1500 2000 2500

To
ta

l T
im

e
(s

ec
on

ds
)

Cache Line Length (bytes)

Total Time vs. Cache Line Length
(varying Threads, Input Size=10000)

1 Threads
2 Threads
3 Threads
4 Threads
6 Threads
8 Threads

10 Threads
12 Threads
14 Threads
16 Threads
18 Threads
20 Threads
22 Threads
24 Threads

Figure 31: Time versus cache size for large inputs.

28

Since a major factor in the total cost of pLCS is the cost of pruning, and the cost of pruning
is O(n2) with respect to the number of pairs in a level, it is important to understand how
the number of pairs varies through normal execution with pruning. Figure 32 shows how
the number of pairs varies with two random input strings. The quadratic shape of the pairs
versus level curve appeared in a wide variety of tests on random strings.

Since the quadratic shape seen in Figure 32 seems common for many inputs, the behavior
of the peak can give some insight into the behavior of the pLCS algorithm. As Figure 33
shows, the relationship between the input size and the maximum number of pairs that will
appear in a level, is linear.

Even with pruning, the number of pairs within a level can grow to be quite large, pLCS
was designed to make maximum use of the cache, specifically while pruning. As Figure
34 shows, the cache hit rate is very high for all but very small numbers of pairs. However,
as can also be seen in Figure 34, the number of pairs needed to achieve a high hit rate
increases with the number of threads. For 2 threads the hit rate goes up the fastest, and for
larger numbers of threads more pairs are needed to achieve the same hit rate. For a single
thread, the cache is automatically disabled, and thus reports a hit rate of zero.

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000 7000

N
um

be
r o

f p
ai

rs
 a

fte
r p

ru
ni

ng
 (p

ai
rs

)

Level (level)

Number of pairs after pruning vs. Level
(varying Threads,

(Input Size,Cache Line Length,Cache Lines)=(10000,1024,64))

24 threads
22 threads
20 threads
18 threads
16 threads
14 threads
12 threads
10 threads
8 threads
6 threads
4 threads
3 threads
2 threads
1 threads

Figure 32: Pairs within a level over the course of algorithms execution.

29

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pa
irs

 in
 la

rg
es

t L
ev

el
 (b

ef
or

e
pr

un
in

g)
 (p

ai
rs

)

Input Size (bytes)

Pairs in largest Level (before pruning) vs. Input Size
(varying Cache Line Length, Cache Line Length=0)

0 bytes

Figure 33: Maximum pairs within a level versus input size.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
ac

he
 h

it
ra

te
 (p

er
ce

nt
)

Number of pairs before pruning (pairs)

Cache hit rate vs. Number of pairs before pruning
(varying Threads,

(Input Size,Cache Line Length,Cache Lines)=(10000,1024,64))

24 threads
22 threads
20 threads
18 threads
16 threads
14 threads
12 threads
10 threads
8 threads
6 threads
4 threads
3 threads
2 threads
1 threads

Figure 34: Cache hit rate versus pairs before pruning.

30

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

C
ac

he
 h

it
ra

te
 (p

er
ce

nt
)

Level (level)

Cache hit rate vs. Level
(varying Threads,

(Input Size,Cache Line Length,Cache Lines)=(10000,1024,64))

24 threads
22 threads
20 threads
18 threads
16 threads
14 threads
12 threads
10 threads
8 threads
6 threads
4 threads
3 threads
2 threads
1 threads

Figure 35: Cache hit rate within each level.

Considering Figures 32 and 34, the hit rate over the course of execution should be very
high for most levels. This is exactly what Figure 35 shows.

Since pLCS relies on pruning rules to keep the number of pairs down, threads can end up
with differing numbers of pairs at the end of each level. To compensate, pLCS uses a load
balancing algorithm, as described in Section 2.5.

While Section 2.5.2 provides a proof that the number of messages needed to rebalance is
always less than the number of threads, Figure 36 illustrates this for up to 24 threads on
a large input. While Figure 36 only shows the maximum number of messages needed,
any number of messages from zero to T − 1 are seen, depending on the how unbalanced
the data is after each iteration. However the number of messages is less important than
the number of communication rounds needed. As Figure 37 shows, while the average
number of communication rounds for rebalancing is closely related to number of threads for
very small thread counts, for larger threads counts the number of rounds starts to stabilize.
Likewise as the input size increases the average number of rounds needed to rebalance
grows more slowly for larger inputs, as Figure 38 shows.

31

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

R
eb

al
an

ce
 M

es
sa

ge
s

(m
es

sa
ge

s)

Threads (threads)

Maximum Rebalance Messages vs. Threads
(varying Input Size,

(Input Size,Cache Line Length,Cache Lines)=(10000,1024,64))

10000 bytes

Figure 36: Messages needed versus number of threads.

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25

Av
er

ag
e

R
eb

al
an

ce
 R

ou
nd

s
(ro

un
ds

)

Threads (Threads)

Average Rebalance Rounds vs. Threads
(varying Input Size, Cache Line Length=1024)

100 bytes
500 bytes

1000 bytes
2000 bytes
3000 bytes
4000 bytes
5000 bytes
6000 bytes
8000 bytes

10000 bytes

Figure 37: Average rounds needed versus number of threads.

32

 0

 0.5

 1

 1.5

 2

 2.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Av
er

ag
e

R
eb

al
an

ce
 R

ou
nd

s
(ro

un
ds

)

Input Size (bytes)

Average Rebalance Rounds vs. Input Size
(varying Threads, Cache Line Length=1024)

1 Threads
2 Threads
3 Threads
4 Threads
6 Threads
8 Threads

10 Threads
12 Threads
14 Threads
16 Threads
18 Threads
20 Threads
22 Threads
24 Threads

Figure 38: Average rounds needed versus input size.

Since each iteration of pLCS consists of multiple phases, each of which having a different
cost function associated with it, the amount of time spent in each phase can vary consider-
ably.

Figures 39 through 44 show the percentage of time spent in each phase for large inputs.
The percentage of time needed to create new entries in the linked list of levels is shown in
Figure 39. The percentage of time needed to fill the new level with pairs using the successor
tables is shown in Figure 40. The percentage of time needed to sort the pairs within each
thread for faster pruning is shown in Figure 41. The percentage of time needed to prune the
pairs within each level is shown in Figure 42. The percentage of time needed to rebalance
the number of pairs in all threads is shown in Figure 43. The percentage of time needed to
check if the a level is empty, and LCS has been found, in each level is shown in Figure 44.

For large inputs, the phase that dominates execution is clearly pruning, as Figure 42 demon-
strates. As the number of threads increases though, the percentage of time spent pruning
decreases and the percentage of time spent rebalancing increases, as Figures 42 and 43
show. In Figure 42, the largest percentages are for 1 thread and the smallest percentages
are for 24 threads, the rest of the points fall in the middle. A similar trend can be seen
in Figures 40 and 41, however mostly at the start and end of execution where the number
of pairs, and thus pruning time is considerably less. In Figure 43 the opposite holds, here
the lowest percentages are for a single thread and increasing the threads increases the per-
centage of time spent rebalancing with 24 threads taking the largest percentage of time to
rebalance. This trend can also be seen to a lesser extent in Figures 39 and 44.

33

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

Ad
d

Le
ve

l T
im

e/
Le

ve
l T

im
e

(p
er

ce
nt

)

Level (level)

Add Level Time/Level Time vs. Level
(varying Threads,

(Input Size,Cache Line Length,Cache Lines)=(10000,1024,64))

24 threads
22 threads
20 threads
18 threads
16 threads
14 threads
12 threads
10 threads
8 threads
6 threads
4 threads
3 threads
2 threads
1 threads

Figure 39: Percent of time needed to add a level for each level for large input size.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

G
et

 S
uc

ce
ss

or
s

Ti
m

e/
Le

ve
l T

im
e

(p
er

ce
nt

)

Level (level)

Get Successors Time/Level Time vs. Level
(varying Threads,

(Input Size,Cache Line Length,Cache Lines)=(10000,1024,64))

24 threads
22 threads
20 threads
18 threads
16 threads
14 threads
12 threads
10 threads
8 threads
6 threads
4 threads
3 threads
2 threads
1 threads

Figure 40: Percent of time needed to find successors for each level for large input size.

34

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

So
rt

Pa
irs

 T
im

e/
Le

ve
l T

im
e

(p
er

ce
nt

)

Level (level)

Sort Pairs Time/Level Time vs. Level
(varying Threads,

(Input Size,Cache Line Length,Cache Lines)=(10000,1024,64))

24 threads
22 threads
20 threads
18 threads
16 threads
14 threads
12 threads
10 threads
8 threads
6 threads
4 threads
3 threads
2 threads
1 threads

Figure 41: Percent of time needed to sort pairs within each level for large input size.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

G
lo

ba
l P

ru
ni

ng
 T

im
e/

Le
ve

l T
im

e
(p

er
ce

nt
)

Level (level)

Global Pruning Time/Level Time vs. Level
(varying Threads,

(Input Size,Cache Line Length,Cache Lines)=(10000,1024,64))

24 threads
22 threads
20 threads
18 threads
16 threads
14 threads
12 threads
10 threads
8 threads
6 threads
4 threads
3 threads
2 threads
1 threads

Figure 42: Percent of time needed to prune each level for large input size.

35

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

R
eb

al
an

ce
 T

im
e/

Le
ve

l T
im

e
(p

er
ce

nt
)

Level (level)

Rebalance Time/Level Time vs. Level
(varying Threads,

(Input Size,Cache Line Length,Cache Lines)=(10000,1024,64))

24 threads
22 threads
20 threads
18 threads
16 threads
14 threads
12 threads
10 threads
8 threads
6 threads
4 threads
3 threads
2 threads
1 threads

Figure 43: Percent of time needed to rebalance each level for large input size.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

D
on

en
es

s
C

he
ck

 T
im

e/
Le

ve
l T

im
e

(p
er

ce
nt

)

Level (level)

Doneness Check Time/Level Time vs. Level
(varying Threads,

(Input Size,Cache Line Length,Cache Lines)=(10000,1024,64))

24 threads
22 threads
20 threads
18 threads
16 threads
14 threads
12 threads
10 threads
8 threads
6 threads
4 threads
3 threads
2 threads
1 threads

Figure 44: Percent of time needed to check for completion at each level for large input size.

36

7 Conclusions and Future Work

This work examined a parallel algorithm for the longest common subsequence problem
based on an algorithm proposed by Liu et al.. The major contributions of this work are the
development of a correct version of that algorithm, a PGAS implementation of that algo-
rithm that exhibits speedup, and an implementation that does not use any shared memory
bulk copy operations. The UPC implementation studied here made good use of a runtime
cache because the pruning rules of the algorithm heavily reuse remote data and only writes
back data after it is done with it. In particular, performance was significantly degraded
when the cache was turned off. The programmer of an MPI version of such a code would
have to implement a runtime cache explicitly in order to achieve the same reuse benefits.

Future work should consider the scalability of pLCS on platforms larger than 24 nodes
and on a wider range of test data, such as real genome sequences rather than randomly
generated sequences. Performance should be measured using other runtime systems to
determine whether optimizations in those systems are relevant to this implementation.

It is possible that more aggressive pruning rules can be found. (A generalization of Claims
1 and 2 was implemented and found to provide much improved performance but at the
price of correctness.) We speculate that there are additional pruning rules that will improve
performance.

Additional future work could place bounds on the error introduced by pruning rules that do
not lead to exact results.

37

References

[1] A. Aggarwal and J. Park. Notes on searching in multidimensional monotone arrays.
Foundations of Computer Science, 1988., 29th Annual Symposium on, pages 497–512,
Oct 1988.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. J. Mol. Biol., 215(3):403–410, October 1990.

[3] Alberto Apostolico, Mikhail J. Atallah, Lawrence L. Larmore, and Scott McFaddin.
Efficient parallel algorithms for string editing and related problems. SIAM Journal on
Computing, 19(5):968–988, 1990.

[4] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. String Processing and Information Retrieval, International Symposium
on, 0:39, 2000.

[5] Jik H. Chang, Oscar H. Ibarra, and Michael A. Palis. Parallel parsing on a one-way
array of finite-state machines. Computers, IEEE Transactions on, C-36(1):64–75,
Jan. 1987.

[6] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg.
Alignment of whole genomes. Nucleic Acids Res, 27(11):2369–2376, June 1999.

[7] A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg. Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acids Res, 30(11):2478–2483, June
2002.

[8] Elizabeth E. Edmiston, Nolan G. Core, Joel H. Saltz, and Roger M. Smith. Parallel
processing of biological sequence comparison algorithms. Int. J. Parallel Program.,
17(3):259–275, 1988.

[9] Valerio Freschi and Alessandro Bogliolo. Longest common subsequence between
run-length-encoded strings: a new algorithm with improved parallelism. Inf. Process.
Lett., 90(4):167–173, 2004.

38

[10] Adam R. Galper and Douglas L. Brutlag. Parallel similarity search and alignment with
the dynamic programming method. Technical report, Stanford University, California,
1990.

[11] J. Y. Guo and F. K. Hwang. An almost-linear time and linear space algorithm for the
longest common subsequence problem. Inf. Process. Lett., 94(3):131–135, 2005.

[12] D. S. Hirschberg. A linear space algorithm for computing maximal common subse-
quences. Commun. ACM, 18(6):341–343, 1975.

[13] Michael Höhl, Stefan Kurtz, and Enno Ohlebusch. Efficient multiple genome align-
ment. Bioinformatics, 18(suppl_1):S312–320, 2002.

[14] Wei Liu, Yixin Chen, Ling Chen, and Ling Qin. A fast parallel longest common sub-
sequence algorithm based on pruning rules. Computer and Computational Sciences,
2006. IMSCCS ’06. First International Multi-Symposiums on, 1:27–34, June 2006.

[15] Mi Lu and Hua Lin. Parallel algorithms for the longest common subsequence prob-
lem. Parallel and Distributed Systems, IEEE Transactions on, 5(8):835–848, Aug
1994.

[16] Guillaume Luce and Jean Frédáéric Myoupo. Systolic-based parallel architecture for
the longest common subsequences problem. Integr. VLSI J., 25(1):53–70, 1998.

[17] David Maier. The complexity of some problems on subsequences and superse-
quences. J. ACM, 25(2):322–336, 1978.

[18] William J. Masek and Michael S. Paterson. A faster algorithm computing string edit
distances. Journal of Computer and System Sciences, 20(1):18–31, 1980.

[19] Gene Myers. A four russians algorithm for regular expression pattern matching. J.
ACM, 39(2):432–448, 1992.

[20] Jean-Frédéric Myoupo and David Semé. Time-efficient parallel algorithms for the
longest common subsequence and related problems. J. Parallel Distrib. Comput.,
57(2):212–223, 1999.

[21] K. Nandan Babu and S. Saxena. Parallel algorithms for the longest common subse-
quence problem. High-Performance Computing, 1997. Proceedings. Fourth Interna-
tional Conference on, pages 120–125, Dec 1997.

[22] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of Molec-
ular Biology, 48(3):443–453, March 1970.

39

[23] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison.
Proceedings of the National Academy of Sciences of the United States of America,
85(8):2444–2448, 1988.

[24] Y. Robert and M. Tchuente. A systolic array for the longest common subsequence
problem. Information Processing Letters, (21):191–198, 1985.

[25] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195–197, March 1981.

[26] J. D. Ullman, A. V. Aho, and D. S. Hirschberg. Bounds on the complexity of the
longest common subsequence problem. J. ACM, 23(1):1–12, 1976.

[27] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J.
ACM, 21(1):168–173, 1974.

[28] Fa Zhang, Xiang-Zhen Qiao, and Zhi-Yong Liu. A parallel smith-waterman algorithm
based on divide and conquer. In Algorithms and Architectures for Parallel Processing,
2002. Proceedings. Fifth International Conference on, pages 162–169, 2002.

[29] Z. Zhang, J. Savant, and S. Seidel. A UPC Runtime System based on MPI and
POSIX Threads. In Proc. of 14th Euromicro Conference on Parallel, Distributed
and Network-based Processing (PDP 2006), 2006.

40

	Analysis and performance of a UPC implementation of a parallel longest common subsequence algorithm
	Recommended Citation

	List of Figures
	Introduction
	Longest Common Subsequence Problem
	Edit Distance Problem
	Background
	Dynamic Programming Algorithm
	Computing LCS Matrix
	Reconstructing LCS
	Time and Space Complexity

	Parallel Dynamic Programming

	The pLCS Algorithm
	The algorithm
	Pruning Rules
	Counterexamples
	Modifications needed for k-LCS
	Rebalancing
	Rebalancing Example
	Number of messages
	Rounds of communications
	Rebalance Complexity

	Crossing Pairs
	Pruning of Crossing Pairs

	Complexity Analysis
	Sequential run time
	Parallel run time

	pLCS Implementation in UPC
	Data Structures
	Successor Tables
	Pairs and Levels

	Optimizations
	Ineffective Optimizations

	Performance
	Measurements and Observations

	Conclusions and Future Work

