
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2004

Design and implementation of a 3D computer game controller Design and implementation of a 3D computer game controller

using inertial MEMS sensors using inertial MEMS sensors

Ali Pezeshk
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

Copyright 2004 Ali Pezeshk

Recommended Citation Recommended Citation
Pezeshk, Ali, "Design and implementation of a 3D computer game controller using inertial MEMS
sensors", Master's report, Michigan Technological University, 2004.
https://digitalcommons.mtu.edu/etds/578

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F578&utm_medium=PDF&utm_campaign=PDFCoverPages

Design and
Implementation of a 3D
Computer Game
Controller Using Inertial
MEMS Sensors

By: Ali Pezeshk

Advisor:
Dr. Brian T. Davis

Submitted in Partial Fulfillment of
Requirements for

Master of Science Degree in
Electrical Engineering

Electrical & Computer Engineering Department,
Michigan Technological University

December 2004

Abstract — Though 3D computer graphics has seen tremendous
advancement in the past two decades, most available mechanisms
for computer interaction in 3D are high cost and targeted for
industry and virtual reality applications. Recent advances in Micro-
Electro-Mechanical-System (MEMS) devices have brought forth a
variety of new low-cost, low-power, miniature sensors with high
accuracy, which are well suited for hand-held devices.

In this work a novel design for a 3D computer game controller using
inertial sensors is proposed, and a prototype device based on this
design is implemented. The design incorporates MEMS
accelerometers and gyroscopes from Analog Devices to measure the
three components of the acceleration and angular velocity. From
these sensor readings, the position and orientation of the hand-held
compartment can be calculated using numerical methods.

The implemented prototype is utilizes a USB 2.0 compliant
interface for power and communication with the host system. A
Microchip dsPIC microcontroller is used in the design. This
microcontroller integrates the analog to digital converters, the
program memory flash, as well as the core processor, on a single
integrated circuit. A PC running Microsoft Windows operating
system is used as the host machine.

Prototype firmware for the microcontroller is developed and tested
to establish the communication between the design and the host,
and perform the data acquisition and initial filtering of the sensor
data. A PC front-end application with a graphical interface is
developed to communicate with the device, and allow real-time
visualization of the acquired data.

This project, “Design and Implementation of a 3D Computer Game Controller
Using Inertial MEMS Sensors”, is hereby approved in the partial fulfillment of the
requirements for the Degree of:

Master of Science in Electrical Engineering

Department of Electrical & Computer Engineering

__
Project Advisor Name

__
Head of Department Name

Date

ACKNOWLEDGMENTS:

I want to express my gratitude to my advisor and
mentor, Dr. Brian T. Davis, for his peerless guidance
throughout the project. His expertise, eloquence,
magnanimity and graciousness have always been an
inspiration and a blessing to me. This project would
never have been possible, wasn’t it for his kind support
and encouragement.

Thanks to my friend and colleague, Mehdi Imaninejad
for his help and thoughtful ideas during the early stages
of the development of the project.

I also want to thank my family for their support during
all years of my studies, and my fiancée, Fatemeh, for her
patience during my two years of studies at Michigan
Technological University.

 Contents v

Contents

 CHAPTER 1 Introduction ...1

 CHAPTER 2 3D Computer Interfaces3
Mechanical Tracking . 3
Magnetic Tracking . 4
Acoustic Tracking . 4
Vision-based Tracking . 4
Inertial Tracking . 5

 CHAPTER 3 Inertial Tracking ..7
Frames of Reference . 9
Orientation Calculation. 10
Position Calculation . 12
Limitations . 13

 CHAPTER 4 Electrical Design ...15
Part Selection . 16

Microcontroller . 16
USB Interface . 17
The IMU Sensors . 18
Other Parts . 20

Layout and Assembly . 20
PCB Layout . 20
Placement of Accelerometers . 24
Chassis Design . 25

 Contents vi

Contents

Debugging the Board . 26
Feature Summary . 28

 CHAPTER 5 Software Development29
Game Controller Firmware . 29

Initialization . 30
3D Game Controller Finite State Machine . 31
Timing and sampling . 31
Packet Structure. 32
Orientation Calculation Revisited. 34
Static Acceleration Compensation . 34

PC Front-end. 35
Version 1: Text Based Interface . 35
Version 2: Graphical Interface . 36

Software Debugging . 37

 CHAPTER 6 Results & Future Work39
Results. 39

Sensor Data . 39
Sensor Saturation . 41
Sensor Noise . 42

Future Work . 43
Hardware Enhancements. 43
Position and Orientation Calculation, and Numerical Methods 45
Filtering and Noise Reduction . 45
Host Application Development . 45

References..47

 List of Tables vii

List of Tables

Table 4.1: Requirements for the microcontroller and the specifications of
dsPIC30F2010-20I. .17

Table 4.2: Requirements for the USB interface and the specifications of
FTDI FT245BM .18

Table 4.3: IMU specifications .19

Table 4.4: Prototype Feature Summary. .28

 List of Tables viii

List of Tables

 List of Figures 1

List of Figures

Figure 3.1: Motion of an object in 2-space .8

Figure 3.2: Effect of rotation on the accelerometer readings in 3-space.10

Figure 3.3: Coordinate system transformation in 3-space .11

Figure 4.1: Layout of the Prototype Design: Floorplan. .21

Figure 4.2: Circuit Board Layout of the Prototype Design: Top Layer22

Figure 4.3: Circuit Board Layout of the Prototype Design: Bottom Layer.23

Figure 4.4: Relative Positioning of Accelerometers .25

Figure 4.5: Completed Prototype in Chassis .26

Figure 4.6: Prototype After Debugging: Bottom View .27

Figure 5.1: The 3D Game Controller Finite State Machine, State Diagram.31

Figure 5.2: Task Scheduling and Super-Sample Acquisition Timing Diagram.33

Figure 5.3: Data Packet Structure. .33

Figure 5.4: Host FSM, State Diagram .36

Figure 5.5: Screenshot of the Graphical Interface .38

 List of Figures 2

List of Figures

Figure 6.1: Sample Sensor Reading for Acceleration: Rotation Around Y-axis 40

Figure 6.2: Sample Sensor Reading for Angular Velocity: Rotation Around Y-axis 41

Figure 6.3: Sample Sensor Reading for Temperature .41

Figure 6.4: Gyroscope Saturation: Fast Rotation Around Y-axis .42

Figure 6.5: Sample Accelerometer Reading: Very Fast Motion Along X-axis42

Figure 6.6: Sample Noise on Sensor Readings .43

Chapter 1: Introduction 1

 CHAPTER 1 Introduction

Since the invention of the first computers, various devices have been designed
and implemented to serve as an interface between the human user and the
machine. It has been only in the past few years, through immense advances in
microelectronic fabrication and design process, that 3D computer graphics
has become accessible to non-professional computer users.

Real-time 3D rendering and virtual environments are part of most newly
released computer games and every year more movies are made which are
completely computer generated. Ongoing research on 3D display systems has
recently made the first commercial 3D monitors available to the market
[SeeReal04] and in the next few years it is expected that every home would
have a 3D TV.

However, the computer interfaces have not advanced at the same pace. The
main interface to most modern home computers is still the 2D mouse, the
same interface used over a decade ago. Current 3D interface designs are
mainly targeted towards industrial, motion tracking and virtual reality
applications, where budget is typically not a prohibiting factor.

The main motivation for the present work was to design an affordable 3D
computer interface with competitive performance, for normal household use.
There are various gaming consoles available on the market now, and the trend
is towards a more immersive realistic 3D virtual experience. Since a gaming
interface has more relaxed requirements compared to a motion tracking
device or a 3D modeling software interface, it was selected as a starting point
for the design of a new generation of 3D computer interfaces.

Chapter 1: Introduction 2

Researching current available 3D interface technologies and observing their limitations
and drawbacks defined the framework in which the new design should reside:

• The design should be operable within virtually any room, meaning there shouldn’t be
restrictions on how tidy the room is, how much furniture is in the room and what the
objects in the environment are made of, how they look and what their colors are.

• The design should require small amount of processing power: Though processing
power of computers is increasing day by day, so is the demand of the applications
running on them. A highly processor-consuming device will severely limit the context
in which the device is used, i.e. the game.

• The design should be operable at distance: The user should be able to stand, sit or lay at
whatever distance (with reasonable limits) (s)he finds suitable for playing the game.
This is even more important for console gaming, where the visual output is sent to a TV,
which is normally a few meters away from the audience.

• The design should require as few components as possible: For a gaming application, the
user plays the game at home not at a studio. It is therefore important that (s)he needs
not install extra equipment around the house.

• The design should preferably not use electromagnetic waves: Though the effects of
various frequency ranges of electromagnetic waves on human body have been subject to
intensive research, the results are still highly debated. It is however always better to stay
on the safe side and avoid using what is potentially harmful, especially for this case,
where the device may be used frequently and for long durations.

By the advances in the design of Micro-Electro-Mechanical-System (MEMS) sensors, new
horizons to design of 3D computer interfaces are emancipated. This report presents and
elaborates a novel design and implementation of a 3D computer game interface based on
inertial MEMS sensors which fits nicely in the above framework.

MEMS devices combine high accuracy, low cost, compactness, and durability, making
them an ideal choice for handheld devices. The design goal of this project has been to
make a prototype device that could be demonstrated as the proof of concept. The
prototype device also unveils the limitations of the design and the challenges one faces
before the design can be commercialized.

The idea presented in this work is partially presented as a paper [Pezeshk04] and an
invention disclosure is filed with Michigan Technological University’s Office of Intellectual
Property and Technology Commercialization (IPTC).

Chapter 2: 3D Computer Interfaces 3

 CHAPTER 2 3D Computer
Interfaces

3D computer interfaces generally consist of a movable compartment and a
system to track or sense its motion. The detected motion is translated in the
software to controls in the virtual environment.

The various ways of tracking the motion of the movable compartment can be
categorized into five main methods: mechanical, magnetic, acoustic, vision-
based, and inertial. In this chapter these techniques and their requirements
will be reviewed, and the advantages and drawbacks of each system will be
discussed.

2.1 - Mechanical Tracking

The mechanical tracking systems are among the simplest designs. The
movable part is physically attached by a number of sliding joints to a fixed
frame, which is connected to a base. Sensors are present at the joints which
monitor the amount of movement in each direction.

Interfaces using mechanical tracking therefore offer very limited range and
take a lot of space. However, since the moving compartment is attached to a
base, these devices have the ability to exert force-feedback or limit the motion
in some or all directions. These interfaces are also typically highly accurate
and updates to the position and orientation can be obtained at much higher
rates and with lower latencies [Bowman05].

Since the base is normally fixed on the ground these devices are rather hard to
use and severely limit the mobility of the user.

Chapter 2: 3D Computer Interfaces 4

Magnetic Tracking

2.2 - Magnetic Tracking

In magnetic tracking systems, a transmitter device is utilized, which sends out a low-
frequency magnetic wave. Special magnetic sensors are be mounted on the object being
tracked, using which the position and orientation of the object can be extracted, relative to
the magnetic transmitter [Bowman05][Foxlin02].

Interfaces using magnetic tracking are very expensive and those of high accuracy typically
have a short range of about 4 feet. The accuracy of these devices is in the order of few
millimeters in position and tenths of a degree in orientation.

Another disadvantage of these devices is their susceptibility to distortions in their output
caused by presence of magnetic (Ferro-/para-/dia-magnetic) objects such as metal surfaces
or objects present in the room. These effects could be mitigated to some extent by using
some computational overhead and applying algorithms at start-up of the device, but not
for a dynamically changing environment.

2.3 - Acoustic Tracking

The interfaces based on this type of tracking usually use a transmitter on the hand-held
compartment of the device. The transmitter emits an ultra-sound wave which is received
by three sensors. The position and the orientation of the hand-held device can then be
computed from the time it took for a pulse to reach the receiver and via triangulation. The
placement of the transmitter and the receivers is interchanged in some designs but the
underlying principle is the same [Logitech92].

These devices however have a short range and offer less frequent updates of the location of
the hand-held device. These devices are relatively less expensive compared to the magnetic
and optical interfaces. The accuracy of these interfaces is also dependent on the presence
of objects in the line-of-sight of transmitter to the receiver. Also external noises such as
jingling keys or a phone ringing can interfere with the tracking signal and reduce accuracy
[Bowman05].

2.4 - Vision-based Tracking

These tracking systems rely on the light emitted by or reflected from the objects or markers
on the objects, and a set of cameras followed by image processing techniques, to find the
position and orientation of the object being tracked [Foxlin02].

Interfaces based on this type of tracking are usually very expensive and hard to setup:

Inertial Tracking

Chapter 2: 3D Computer Interfaces 5

• Multiple cameras must be placed in various locations to cover the area of interest in
which motion should be sensed.

• The background should be easily distinguishable from the markers placed on the hand-
held compartment or objects being tracked. This can be difference in color, pattern, tex-
ture, reflectivity or luminance.

• In case of an interface with a hand-held compartment, the hand-held part of the device
should also be distinguishable from the user’s body and clothing.

• Proper lighting of the environment, where the controller is used, is of extra importance
as it drastically affects the performance of the system.

These systems require high processing power to determine the position and orientation in
real-time. The requirements for the processing power and hardware increase with the
number of cameras used.

The main advantage of these systems is that they are capable of tracking multiple objects in
the scene with the same amount of equipment using more sophisticated software and
further processing of the visual data from the scene.

2.5 - Inertial Tracking

This type of tracking is based on measuring the angular velocity and acceleration of the
object being tracked to calculate its position and orientation.

An interface based on this type of tracking has the advantage that it is self-contained,
meaning that no devices outside of the object being tracked are required. Due to the nature
of measurements, there is also no requirement for transmission of electromagnetic or
acoustic waves. This is an advantage as the user won’t be subject to radiation which may
result in disorders such as cancer caused by prolonged exposure to radiation. Another
advantage is that except for sudden temperature changes, which are unlikely in indoors
environments, the accuracy of the system is not affected by the environment were the
interface is being used. Also, since the sensors are contained within the interface, the
motion can be sensed virtually anywhere, as long as it is connected to the host machine.

Having these advantages in mind, this type of tracking was seen to be suitable for a 3D
game controller system. In the next chapter, details of how this type of tracking works are
presented.

Chapter 2: 3D Computer Interfaces 6

Inertial Tracking

Chapter 3: Inertial Tracking 7

 CHAPTER 3 Inertial Tracking

Inertial Navigation Systems (INSs) have been used in navigation systems
since 1950s in ships and airplanes [Grewal01]. Presently, INS is used for
navigation of missiles, airplanes and satellites. The position and orientation
calculated in INS are fairly stable in short periods of time and updates to
position and orientation can be made much faster than other methods such
as GPS for these applications.

An inertial tracking system is comprised of an Inertial Measurement Unit
(IMU) and a processing unit. Calculation of position and orientation is
performed by the processing unit, based on the measurement of
instantaneous acceleration and angular velocity of an object, which is
performed by the IMU. Two types of sensors are used for measurement of
these quantities:

• Accelerometers: used to measure the acceleration
• Gyroscopes: used to measure the angular velocity around an axis.

Initially gyroscopes used for sensing and measurement of angular velocity
were very heavy and based on the spinning wheel with a heavy mass which
limited their usage. Laser based gyroscopes revolutionized the gyroscope
industry by eliminating moving parts and offering higher precision.

Accelerometer designs are mainly mechanical and until the past few years,
accurate accelerometers were also bulky, heavy and hard to mount. Various
types of accelerometers and gyroscopes are discussed in detail in
[Lawrence98].

Chapter 3: Inertial Tracking 8

Advances in micro-machining and MEMS technology have allowed sensor sizes to shrink
by several orders of magnitude, while retaining their performance, and has considerably
reduced production costs. These favorable features, together with their low power
consumption, and ease of mounting and integration with other electronic components,
makes these sensors ideal for hand-held devices.

In order to track the motion of the Object of Interest (OOI), it is required that components
of acceleration and angular velocity in the vector space containing the object location, be
measured in a basis system that would span all possible motions of the OOI. For instance if
the OOI moves only on a plane, it is required to measure the two components of
acceleration on a desired basis in the plane of motion and the angular velocity component
around the vector normal to the plane of motion. This is shown in Figure 3.1: The
rectangular object has an acceleration vector , which can be represented in terms of its
two components parallel to the basis as and . The angular velocity in the
plane of motion is represented as .

As can be seen, the choice of the basis is arbitrary as long as the motion of the object
remains in the vector space spanned by the basis. It is however more convenient to use an
orthogonal basis for this purpose which could be thought of as a coordinate system.

In the following sections we’ll discuss the frames of reference, how to calculate the position
and orientation of the OOI from the sensor data and the limitations of inertial tracking
systems.

a
(), u v ua u va v

ω

FIGURE 3.1. Motion of an object in 2-space

ω

ua u
va v

a

x

y

Frames of Reference

Chapter 3: Inertial Tracking 9

3.1 - Frames of Reference

Definition: A Frame of Reference is a framework that is assumed to be static and motion
and position of objects are defined relative to a coordinate system attached to this frame.

As an example, the frame of reference for a computer user can be considered to be a
coordinate system attached to the earth. For this person the rotation of the earth around
the sun or around itself is irrelevant since (s)he moves along with the earth and the her/his
position defined in this coordinate system is not a function of rotation of the earth.

If the user holds a game controller in her/his hand and moves it around, the motion of the
controller can be described in three frames of reference, namely:

• The frame of reference of the earth: In this frame of reference the motion of the game
controller is given with respect to the earth. If the room or environment in which the
controller is used is not moving relative to the earth, then a coordinate system attached
to the room or environment may be used to define the motion of the game controller.

• The frame of reference of user: In this frame, the motion of the controller is described
relative to its position from the user, so for instance if the user walks in the room but
holds the controller in a constant location relative to herself/himself, the position of the
controller will be constant.

• The frame of reference of the game controller: According to this frame of reference, the
game controller is static and everything else is moving.

Since the accelerometers and gyroscopes are mounted on the OOI, what the sensors sense
are along/around the coordinate system in the local frame of reference of the OOI, though
the measured quantity is in earth’s frame of reference. This is shown in Figure 3.2, where
the OOI turns 90 degrees around the x-axis of the earth’s frame coordinate system. As can
be seen in both cases the sensors measure the earth’s gravitational acceleration vector, g,
but the values that sensors read, change. Before the rotation, the accelerometer on the v-
axis of the local frame coordinate system senses g, but after the rotation the accelerometer
on the w-axis of the local frame coordinate system is the one that measures g.

In this report we assume that the room or place where the controller is used is attached to
the ground and thus the frame of reference of earth could be used. If the controller is to be
used in a room which itself is moving, e.g. a flight simulation chamber, additional sensors
are required which should track the position and orientation of the room with respect to
the earth’s frame of reference. The position and orientation of the game controller can then
be translated into the frame of reference of the room by subtracting the results obtained by
the two measurement devices to obtain the relative motions.

Chapter 3: Inertial Tracking 10

Orientation Calculation

Inertial tracking can be performed using two main different types of IMU mounting:

• IMU is mounted in a way such that it does not rotate with the object, so the coordinate
system attached to it is always aligned with the coordinate system of the frame of the
earth. Examples of these are the gimbal mounted IMUs.

• IMU is mounted directly on the object, so the coordinate system attached to it is always
aligned with the coordinate system of the frame of reference of the object. Examples of
these are the strap-down IMUs.

In the present work, the second approach is taken, since it results in a more compact
design and lower cost.

3.2 - Orientation Calculation

The orientation of an object can be represented in various ways. In this section we will
introduce the more intuitive representation of rotation matrices [Eberly04]. In Chapter 5
however, quaternions will be briefly introduced for their better computational efficiency in
calculation of orientation [Schneider03].

Consider a solid object in 3-space as shown in Figure 3.3, with the coordinate system
attached to its frame of reference as with origin at P. Further assume that the

FIGURE 3.2. Effect of rotation on the accelerometer readings in 3-space

g
g

(); , , P u v w

Orientation Calculation

Chapter 3: Inertial Tracking 11

frame of reference of interest, in which the motion of the object is defined, has a coordinate
system attached to it as with origin at O.

It can now be seen that the position and orientation of a solid object can be represented by
the relative situation of the two coordinate systems. More rigorously, the coordinate system

can be transformed into and vice versa, by means of a
transposition of origin and rotation of the axes:

(EQ. 3.1)

where is the transposition vector, R is the rotation matrix, and is a matrix
whose columns are the axes vectors , , and .

Definition: A rotation matrix in 3-space, is a 3-by-3 matrix and defines a transformation in
3-space which retains vector lengths and the angle and the sense of the angle between two
vectors.

A rotation matrix, when applied to a coordinate system, i.e. a set of three mutually
orthogonal vectors, rotates this system. This means that the unit vectors in the direction of
the axes retain their unity length after transform and their orthogonality is preserved.

For an object with dynamics, a rotation matrix, R(t), can be defined as a function of time,
which at every instant defines the rotation which aligns the reference coordinate system

with . Hence, calculating R(t) in real-time, provides
the instantaneous orientation information of the OOI.

It can be proved that R(t) can be calculated from the OOI’s angular velocity vector,
, and the initial orientation of the OOI, from the following

differential equation [Grewal01]:

(); , , O x y z

FIGURE 3.3. Coordinate system transformation in 3-space

Rotation Transposition

(); , , O x y z (); , , P u v w

() (); , , ; P u v w O D R x y z⎡ ⎤= + ⎣ ⎦

D OP= x y z⎡ ⎤
⎣ ⎦

x y z

(); , , O x y z () () () ()(); , , P t u t v t w t

u v wu v wω ω ω ω= + +

Chapter 3: Inertial Tracking 12

Position Calculation

(EQ. 3.2)

 Note that since the measurements are made in the frame of reference of the OOI, the OOI
sees itself as static and everything else rotating in the opposite direction. Therefore, a
negative sign is introduced for the angular velocity vector in Equation 3.2. The dependence
of the angular velocity on time is removed as shorthand.

3.3 - Position Calculation

The acceleration of an object is the second derivative of its position. Though it seems that
the position can be readily obtained by doubly integrating the acceleration, this is not the
case. As observed in Figure 3.3, since the accelerometers are mounted on the OOI, they
measure the acceleration of the OOI as projected on the coordinate system attached to the
frame of reference of the OOI, i.e. .

As a result, to calculate the position of the object, it is necessary to map the accelerometer
readings back to the coordinate system in which the position is to be calculated, i.e.

. The position can then be calculated by doubly integrating the mapped
acceleration.

The readings of the accelerometers can be combined as:

(EQ. 3.3)

where, is the acceleration vector of the OOI, which is represented with its
corresponding components in coordinate systems and .

Noting that:

(EQ. 3.4)

and substituting in Equation 3.3, we have:

() () () () () 0

0
Skew 0 , 0

0

w v

w u

v u

R t R t R t R R
ω ω

ω ω ω
ω ω

⎡ ⎤−⎢ ⎥
⎢ ⎥= − = − =⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

() () () ()(); , , P t u t v t w t

(); , , O x y z

u v w x y za a u a v a w a x a y a z= + + = + +

a
(); , , P u v w (); , , O x y z

11 21 31

12 22 32 1 , 3

13 23 33

, ij i j

u R x R y R z

v R x R y R z R R

w R x R y R z
≤ ≤

= + +

⎡ ⎤= + + = ⎢ ⎥⎣ ⎦
= + +

Limitations

Chapter 3: Inertial Tracking 13

(EQ. 3.5)

Having the acceleration vector mapped into the frame of reference of the earth, assuming
that the item is initially at rest, and knowing the initial position of the OOI at time 0, the
instantaneous position of the OOI, , can be calculated as:

(EQ. 3.6)

For a solid object, the position of every of point in/on the object is fixed relative to the
frame of reference of the object. Therefore, knowledge of the evolution of the coordinate
system attached to the frame of reference of the object fully determines the position of
every single point on the object. This is however not true for an object which is not solid
such as a flexible rubber band.

3.4 - Limitations

Sensors are prone to additive noise on the signals. For reasonable accuracy, the output of
the sensors need to be low-pass filtered to remove out-of-band noise. It is therefore
desirable to reduced the passband as much as possible to increase the signal to noise ratio.
This introduces some limitations on the speed at which the device will be able to track the
movements.

Under moderate assumptions it can be assumed that the human motion indeed has a small
bandwidth and so the device is practical. The main assumption is that the device does not
collide with anything while it is used.

Collisions can also cause sensors to saturate, which is another limiting factor causing
failure in tracking. Though cushioning will help reducing the effects of the impact,
saturation of sensors is still probable. Saturation in gyroscopes can also happen as a result
of fast motion of the device.

11 12 13

21 22 23

31 32 33

x u u

y v v

z w w

a R R R a a
a R R R a R a
a R R R a a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

()OP t

()

()

()

()

() ()

() ()

() ()

0 0

0 0

0 0

0

0

0

t

x x

x t

y y y

z t

z z

a d d P

P t
OP t P t a d d P

P t

a d d P

τ

τ

τ

ζ ζ τ

ζ ζ τ

ζ ζ τ

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

∫ ∫

Chapter 3: Inertial Tracking 14

Limitations

Drift in the tracking is mostly referred to as the main limiting factor of an inertial tracking
system [Foxlin02]. Errors in the computation and sensor results will accumulate in time,
causing drift in the output of the inertial tracker. The drift is caused by two different
processes:

• Bias induced drifts: Changes in the bias point of the sensors or incorrect measurement
of bias points during calibration of sensors cause drifts in estimated position and
orientation. A constant bias error will increasingly accumulate in time (as t for
gyroscopes and as for accelerometers). These bias drifts are mainly due to the
temperature dependence of the sensor response curve.

• Noise induced drifts: The additive Gaussian noise on the sensor data, when integrated
forms a random walk process. As a result, though the mean of the estimate is zero, the
variance of the estimated position and orientation increases in time.

Drifts of the first kind can be compensated by either carefully keeping the temperature
constant using an oven, or careful calibration of the sensors at different temperatures,
constantly monitoring the temperature and correcting for the drifts in software by using
the calibration data.

Drifts due to noise can also be compensated for by using other types of sensors and/or
tracking systems, such as those introduced in previous chapter, running in conjunction
with the inertial tracking system, correcting its output at preset time intervals.

t2

Chapter 4: Electrical Design 15

 CHAPTER 4 Electrical Design

Prior to design of the prototype device, several different sensors were tested
on a Motorola 68HC11 evaluation board [Axiom99] using the Buffalo
interface [Axiom03]. This served several purposes:

• To try to verify the concept using a pre-made test-bench.
• To facilitate the selection of proper sensor ranges for the prototype design.
• To determine the required part specifications for the prototype design.

Since the area on which parts could be mounted and connected to the
microcontroller was a breadboard, it was not possible to mount all the sensors
in the required directions, i.e. rows in the breadboard are interconnected so
devices had to be placed perpendicular to the rows, or on the columns.
Instead, dual-axis accelerometers and single-axis gyroscopes were tested
individually.

Since the Buffalo interface is a serial communication terminal application, it
was necessary for the device to transmit ASCII characters which reduced the
transmission rate of data at least three times: a byte represents a two digit
hexadecimal number and a carriage return or space is required after each
value.

The requirement of a power-supply in addition to the cable connecting the
device to the computer was another drawback which severely limited the type
and extent of motions of the device.

The Analog to Digital Converters (ADCs) on the 68HC11 microcontroller
are 8-bit. Since the output of accelerometers does not cover the complete

Chapter 4: Electrical Design 16

Part Selection

voltage range of 0-5V, and the least significant bit (LSB) of each sample contains errors, it
was evident that a higher resolution is required for sampling the sensor outputs. The other
limiting factor was the number of channels that could be sampled by the device and the
low sampling rate provided by the microcontroller. Also it was observed that the 2MHz
core frequency of the 68HC11 with its multicycle instructions would not be able to handle
the workload of processing the data from the sensors.

After these initial tests, it was evident that a prototype device needed to be constructed. In
the following sections, we describe how the parts were selected and how the prototype was
designed.

4.1 - Part Selection

The design goal for the first prototype was to be able to sample the three gyroscope and
three accelerometer outputs at a higher sampling rate than the frequency at which data
should be transmitted to the PC to allow filtering of the signals. It was also decided that the
first implementation should be using a wired connection to the PC and should be easy to
move around for the tests.

4.1.1 - Microcontroller

The microcontroller needed to meet the criteria described in Table 4.1. The requirements
on the packaging are due to current mounting capabilities of ECE department, where
surface mount devices cannot be mounted.

Based on these requirements, a microcontroller from the dsPIC30F series, a new family of
microcontrollers developed by Microchip, was selected [dsPIC-A]. Since at the time of
design, only the highest end and the lowest end of the family were in production and the
high-end dsPIC30F6014 comes only in a TQFP80 package, the low-end dsPIC30F2010
was chosen which meets all the requirements and offers some of the desirable features
[dsPIC-B]. The specifications of this device are summarized in Table 4.1.

The development environment for dsPIC30F series is the Microchip MPLAB IDE which is
available free of charge on the company’s web site. The C30 compiler provided by
Microchip is also available to compile the C code written for dsPIC series.

Programming is done with the Microchip ICD 2, in-circuit programmer/debugger. This
piece of hardware allows faster debugging of the software and hardware by allowing single-
stepping of code, addition of break-points and slow-motion animation of the code while
the microcontroller is in the circuit with actual stimuli.The device can be interfaced to a
USB module using I/O pins or UART serial communication and can be powered through
USB bus or an external power supply.

Part Selection

Chapter 4: Electrical Design 17

4.1.2 - USB Interface

The Universal Serial Bus (USB) interface was chosen for the communication between the
game controller and the host computer for the following reasons:

• Bandwidth: USB offers high data throughput while maintaining low latency, making it
suitable for real-time applications.

TABLE 4.1. Requirements for the microcontroller and the specifications of dsPIC30F2010-20I

Criterion Required Desirable dsPIC30F2010-20I

On chip nonvol-
atile memory

Flash: Enough to elimi-
nate need for memory
components outside the
microcontroller

Some EEPROM for set-
tings and calibration
data storage

12KB Flash

1KB EEPROM

ADC At least 6 channels, with
at least 10-bit resolution,
integrated sample and
hold with 10KHz mini-
mum sampling fre-
quency

Simultaneous sam-
pling, ADC buffer
memory

6 10-bit ADC channels,
simultaneous sampling
on maximum of 4 chan-
nels, 16 word ADC buffer,
up to 500KSPS

I/O pins Enough number of I/O
pins to support transmis-
sion to PC, a push button
and an LED

I/O pins available for
more push buttons

20 I/O pins, 20mA
source/sink on each I/O
pin

Timers At least one 16-bit timer More timers 3 16-bit timers available,
32-bit timer functionality
using two 16-bit timers

Programmabil-
ity

Not requiring expensive
programming devices

On-board program-
mability

On-board programma-
ble, inexpensive pro-
gramming tools
available

Processing
power

Fast enough to process
the raw data

Single cycle instruc-
tions, Special instruc-
tions for faster
numerical computa-
tion

20 MIPS @ 20MHz clock,
single cycle instructions,
some DSP functionality,
fast single cycle 17-bit by
17-bit signed multiplica-
tion

Compiler avail-
ability

C compiler availability Floating point librar-
ies availability

Development environ-
ment available for free,
C30 compiler available
for free evaluation,
includes standard float-
ing point math libraries

Packaging LCC, or DIP DIP PDIP300

Other Quadrature encoder
for interfacing with a
wheel

Integrated RC-oscillator,
Integrated quadrature
encoder

Chapter 4: Electrical Design 18

Part Selection

• Portability: USB ports are available on most computer systems including most of the
gaming consoles such as Sony PlayStation2 and Microsoft X-Box.

• Power through USB: The device connecting to a USB host can be powered through the
USB connection as long as it does not exceed the maximum power specifications in the
standard.

The FT245BM chipset from FTDI was chosen for the interfacing with the microcontroller
to deliver USB connectivity [USB-A]. The requirements for the USB interface and the
specifications of the FT245BM are summarized in Table 4.2.

Since this interface chip is SMD, a simple DIP module called DLP-USB245M developed by
DLP-Design was used [USB-D]. This module incorporates the FT245BM chip together
with a serial EEPROM, USB interface front-end specification capacitor and Ferrite beads,
and a crystal oscillator.

Since the USB standard specifies that no device is allowed to draw more than 100mA
before it is enumerated, a power switch device was used along with the USB interface
module [USB-C]. Micrel MIC2025-2BM was used for this purpose. The power from USB
interface is fed into this device with the switch off at startup, hence only the USB interface
draws current from the USB host. When the USB host has successfully enumerated the
device, the USB interface module will send a signal to MIC2025-2BM to release the power
to the rest of the circuit. The switch is soft-start, meaning that switching the power on, is
not abrupt. This is required in order to meet the specifications of the USB standard.

4.1.3 - The IMU Sensors

There are not many companies developing MEMS accelerometers and gyroscopes. Analog
Devices is one of the first and highly acclaimed producers of the MEMS Inertial

TABLE 4.2. Requirements for the USB interface and the specifications of FTDI FT245BM

Criterion Required FTDI FT245BM

Standard Compliance At least USB 1.0 USB 2.0 Compliant

Ease of use Not requiring in-depth under-
standing of the standard

Basic understanding of USB interface
suffices

Microcontroller inter-
facing capability

Convenient to interface with the
microcontroller

Seen by the microcontroller as a FIFO
buffer through a 13-pin interface

Driver availability Sample code or driver for
Microsoft Windows platform

Drivers available as a DLL file that
could be loaded by the user interface
program

Power management Power control at device connec-
tion

Can control powering the rest of the
circuit after enumeration of the
device

Other Ability to store device identifica-
tion information

Integrated connection interface
to external serial EEPROM for storage
and retrieval of identification data

I2C

Part Selection

Chapter 4: Electrical Design 19

Measurement Unit (IMU) sensors. Several sensors from this manufacturer were tested on
the Motorola evaluation kit. From these tests the The IMU sensors where selected such
that their outputs be analog signals and have a reasonable price. The digital output IMU
sensors by Analog Devices used pulse-width-modulation to transmit the output, so the
duration the output pulse is high determines the sensor readout value. These sensors
where not chosen for the following reasons:

• Accurate timing is difficult: Even in an interrupt driven fashion, finding the pulse-width
of 6 sensors is complicated and far from accurate due to synchronization problems and
race conditions.

• Sampling limitations: The output is sampled by the sensor and sent out at a much less
flexible frequency that is determined by capacitors and resistors added to the circuit,
making it difficult to change the design parameters, whereas in the analog output case,
the sampling frequency can be controlled in the software.

At design time, Analog Devices only produced gyroscopes in two ranges, so the higher
range was chosen [Gyro-A]. 3-axis accelerometers are available from this manufacturer as
modules, but they cost over 5 times a dual-axis accelerometer of the same range, hence
dual-axis accelerometers were chosen [Accel-A].

The gyroscope package is a Ball-Grid-Array (BGA) and the accelerometer is packaged as a
LeadLess-Ceramic-Carrier (LLCC), both of which need special equipment for mounting.
As a result the corresponding evaluation boards were used [Accel-B] [Gyro-B]. These
modules also integrate a single-pole low-pass filter at the output of the sensors for better
signal to noise ratio. These filters also serve as the anti-aliasing filter for the analog to
digital converters.

Specifications of the IMU sensors are summarized in Table 4.3.

TABLE 4.3. IMU specifications

Sensor Type Part Name Quantity Used Specifications

Accelerometers ADXL311 2 Dual-axis accelerometer

Analog output

Range:

Noise floor @50Hz cutoff: 10mg

Gyroscopes ADXRS300 3 Uni-axis gyroscope

Analog output

Range:

Noise floor @ 40Hz Cutoff:

Temperature sensor

2g±

300°s 1–±

0.6°s 1–

Chapter 4: Electrical Design 20

Layout and Assembly

4.1.4 - Other Parts

A push-button is needed in most computer interfaces for various types of input from the
user such as interaction with the environment. Therefore, it was decided for the design to
have at least one push-button. This button could also be used during debugging and
development of hardware and software, as a user input. A shielded push-button was
selected so that any electrostatic discharge would be grounded and won’t damage the other
sensitive circuitry. It was also chosen to be omni-directional, meaning that the button
could be pushed at an angle and it will still work. Usually switches are used as push-
buttons, requiring the force to be exerted perpendicular to the surface of the switch, which
makes them rather inconvenient to use.

Using a set of jumpers was thought to add some additional flexibility to the circuit. Since
the circuit board was to be placed in a chassis, it would have been difficult to access the
jumpers inside, so a right-angle connector was chosen.

A crystal resonator was chosen for supplying the clock signal required by the
microcontroller. Compared to a crystal oscillator clock, a crystal resonator does not
require power and uses up less area. A 10MHz crystal resonator was selected with HC49-
US packaging to take up less space. The dsPIC30F2010-20I microcontroller has a Phase
Locked Loop (PLL) to generate the internal core clock which can be 1, 2, 4, or 8 times the
frequency of the supplied clock, up to 20MHz. The crystal was therefore chosen to have a
resonant frequency of 10MHz, so that the microcontroller could run at core frequencies of
10MHz and its maximum of 20MHz by proper choice of settings for the PLL multiplier
[dsPIC-B].

IC sockets are used for all DIP chips, to allow easy replacement and changing of parts
without damaging the board pads and/or part pins. This also enables reusing of the
expensive sensors in case substantial changes to the board were required such that a new
circuit layout needed to be designed and a new Printed Circuit Board (PCB) be made.

4.2 - Layout and Assembly

The PCB layout was designed on Eagle Layout version 4.1. The board was made using the
milling machine available at ECE department.

4.2.1 - PCB Layout

Due to limitations of the circuit board fabrication at the department, the layout of the
design had to be single layer double sided. A floorplan of the design is shown in
Figure 4.1.The top and bottom layers are shown in Figures 4.2 and 4.3 respectively.

Layout and Assembly

Chapter 4: Electrical Design 21

Accelerometers

Gyroscopes

Push-button

Jumpers

LED

Soft-power-on
Switch

RJ11 Connector for Programming

Microcontroller

Crystal
Oscillator

USB
Interface

FIGURE 4.1. Layout of the Prototype Design: Floorplan

Z

X

Y

Chapter 4: Electrical Design 22

Layout and Assembly

The sensors are placed on the upper area of the board with no other traces except sensor
outputs and supply allowed to run through this area for signal integrity. All ground lines
are routed at the bottom layer, while all supply lines are routed on the top layer. Sensor
supply lines are all routed over ground lines to suppress high-frequency noise.

The jumpers and the push-button are placed on the right-most edge of the board for
convenient access for a right-handed person.

FIGURE 4.2. Circuit Board Layout of the Prototype Design: Top Layer

Layout and Assembly

Chapter 4: Electrical Design 23

From the six jumpers available, two are used for possible external power source
connection, two are used as an input setting that can be high or low, and the final two are
used to switch manually between an IMU output and a temperature sensor on one of the
gyroscopes.

The connectors are located at the lower edge of the board to allow convenient connection
of the USB cable as well as the in-circuit-programming cable.

FIGURE 4.3. Circuit Board Layout of the Prototype Design: Bottom Layer

Chapter 4: Electrical Design 24

Layout and Assembly

Several decoupling capacitors as well as an LED are also incorporated. The LED is
specifically useful for early debugging stages and also for tracking fast changing conditions
that cannot be caught by the in-circuit-debugger.

The microcontroller only has 20 I/O pins from which one pin is used by the crystal
oscillator interface, 6 pins are used as analog inputs for data acquisition from IMU sensors,
and two are used for programming/in-circuit-debugging. The USB interface requires a
minimum of 12 pins for full byte mode operation which were not available. Instead the
circuit is designed in such a way that only half a byte or a nibble of data is transmitted or
received at a time. Hence, only 8 pins were dedicated to the USB communication, leaving 3
pins free to be used by the LED, the push-button and a input from the jumpers which can
be set to high or low.

4.2.2 - Placement of Accelerometers

Since the angular velocity of every point on a solid object is the same, the placement of
gyroscopes on the board could be at any arbitrary location. This is however not the case for
the accelerometers. Since a 3-axis accelerometer is not used, it is crucial for the sensed data
off the accelerometers to be the acceleration components of a single point on the object.
Unless extra care is taken in placement of the accelerometers, knowledge of the exact
distance between the sensors, and angular acceleration between the two accelerometers
and a lot of computational overhead in the software is needed to compensate for induced
errors.

Figure 4.4 shows the placement of accelerometers relative to each other. Accelerometer A is
sensing the acceleration on y and z axes. Accelerometer B is aligned in such a way that its
x-axis lies fully on the x-axis of accelerometer A. Since the distance between the two
sensors is fixed, there is no relative acceleration due to linear motion in the x-direction.
Also, since the two sensors share the same sensing axis, the relative acceleration due to
rotations falls completely in the y and z directions. This is because the radius of the sphere
is orthogonal to the surface of the sphere and rotational acceleration about a point is a
tangent to the sphere centered at that point. So, the sensed acceleration in the x-direction is
exactly the same value as would be read by sensor A if it was a 3-axis accelerometer.

This has been taken into account when placing the accelerometers on the board. As a
result, two vertical-mount sockets were used to align the accelerometers as shown in
Figure 4.1.

Vertical mount sockets are also used for placement of gyroscopes so that their
measurement axes are parallel to those of the same coordinate system used by the
accelerometers.

Layout and Assembly

Chapter 4: Electrical Design 25

4.2.3 - Chassis Design

A chassis was designed to enclose the prototype board having the following in mind:

• Transparency: The chassis was decided to be transparent to conveniently allow checking
if any parts are loosely connected on the board. As a result the case was made out of
Plexiglas.

• Easy disassembly: Since the device is a prototype, during the course of debugging it is
necessary to be able to fully remove the board from the case. The case is all fit together
with screws to allow full or partial disassembly of the chassis.

• Tight board grip: Since the sensors used are sensitive to shock and vibration, it is
important that the board does not wobble in the chassis. The board is thus, fixed with
three screws to bolts mounted on the bottom of the case.

• Convenient access to ports, jumpers and push-button: For convenient access, the lower
end and right side of the chassis have open windows for ease of access to the push-
button, jumpers and the USB and RJ11 ports.

• Easy grip: A band of Velcro was added after the chassis was designed to prevent the
device from accidental falling off users hand and better grip. This band can be resized to
fit with different hand sizes.

The fully assembled prototype in the chassis is shown in Figure 4.5.

Accelerometer A

FIGURE 4.4. Relative Positioning of Accelerometers

Accelerometer B

Chapter 4: Electrical Design 26

Layout and Assembly

4.2.4 - Debugging the Board

After soldering the parts and assembly, the device was tested for functionality of different
compartments during which, various bugs in the design and assembly were diagnosed and
fixed. These include the following:

• Missing connections on the USB interface: two pins on the interface were not connected
to supply. These connections were added by thin wires seen in Figure 4.6.

• Oscillator problems: The oscillator on the board, providing the clock signal of the
microcontroller was not initially working properly. Since the microcontroller has an
internal RC-oscillator, which could be programmed to supply system clock, the
functionality of the push-button, LED, sensors and USB connection were tested, using
this feature. However, since the RC-oscillator runs at 8MHz and suffers from much
higher jitter compared to a crystal oscillator, it was considered essential that the
problem be addressed properly. Changing the capacitors of the Pierce configuration,
fixed the problem.

• Incorrect connection of acceleration output: The left hand side accelerometer in
Figure 4.1 has to have both of its outputs connected to ADC inputs for compliance with

FIGURE 4.5. Completed Prototype in Chassis

Layout and Assembly

Chapter 4: Electrical Design 27

FIGURE 4.6. Prototype After Debugging: Bottom View

Chapter 4: Electrical Design 28

Feature Summary

Figure 4.4. This was fixed by cutting the wrong trace and connecting the correct output
to ADC using a thin wire as depicted in Figure 4.6.

• Noise issues: Since the sampled IMU sensor output signals were seen to be noisy, a
100nF capacitor was added at the analog input pin of the microcontroller for each
sensor output. Since the ADC of the microcontroller is a charge pumped device and a
single converter is shared by multiplexing among all input channels, these capacitors
facilitate a fast charge up of the internal capacitor, hence improving the signal to noise
ratio of the samples. These capacitors also remove high frequency noise that might be
included on the signals. These can be seen as a row of capacitors in Figure 4.6.

4.3 - Feature Summary

A summary of the features of the device is given in Table 4.4

TABLE 4.4. Prototype Feature Summary

Property Specification

Connectivity Wired. USB 2.0 Compliant

Power Source Bus powered. High-power USB device.

Sensor Ranges Accelerometers:

Gyroscopes:

Firmware Upgrading On board programmable

Other Units LED

Push-button

Temperature sensors

Jumpers for external supply connection, Microcontroller input
and manual switching between an IMU sensor output and the
temperature sensor.

Cost $350

Dimensions (W x L x H) 3” x 5.25” x 1.75” (7.6cm x 13.3cm x 4.5cm)

2g±

300°s 1–±

Chapter 5: Software Development 29

 CHAPTER 5 Software
Development

Since the game controller has to communicate with a host machine, the
software was developed in parallel on both the controller and the PC. The
code written for the microcontroller on the game controller, in brief, is
responsible for data acquisition, filtering and transmission.The PC software
front-end, on the other hand, has to receive the data sent to it from the game
controller, and present them in a reasonable form to the user.

Almost all of the code for the microcontroller is written in C, with the
exception of few instances where use of assembly language was unavoidable.
The code was developed in the Microchip MPLAB IDE version 6.5 and
compiled using the C30 compiler. The code has evolved from a set of test
programs for initial debugging to the final version which performs the
designated tasks.

The PC used as the host machine for the game controller is chosen to be a
Microsoft Windows based machine since the drivers for USB interface were
mainly designed for this platform. The code for the PC front-end is written in
Visual C++, using Microsoft Visual Studio version 6.0.

In the following sections, details of implementation of the code on both the
game controller and the host are discussed.

5.1 - Game Controller Firmware

The game controller firmware can be divided into the following sections:

Chapter 5: Software Development 30

Game Controller Firmware

a) Initialization: Initializes and sets the appropriate settings for the microcontroller.
b) The 3D game controller Finite State Machine (FSM): This FSM is used to establish the

connection with the host.
c) Task scheduler interrupt: A timer controls and triggers the main events that need to be

addressed such as transmission of data packets to the PC or monitoring if the PC host
is still listening after a connection is established.

d) Sampling interrupt: A second timer is used to trigger sampling of IMU sensor outputs,
to ensure a fixed sampling rate with equidistant samples. The sampling interrupt is also
responsible for initial filtering and unloading the ADC buffer.

5.1.1 - Initialization

On power-on-reset, an initialization routine is executed which carries on the following
tasks:

i) Sets the tri-state selectors for I/O pins of the microcontroller:
• Pins that are connected to input devices such as push-button are configured as input.
• Pins connected to output devices such as the LED are configured as outputs.
• Bidirectional pins such as data-bus connected to the USB interface, are configured as

inputs.
ii) Sets the ADC settings:

• The six pins connected to the IMU sensor outputs are configured as analog input
pins.

• Positive and negative range of the ADC signals are selected to be 5V supply and
ground, respectively.

• Simultaneous sampling and alternative sampling are activated to sample channels 0,
1, 2, and 3 in phase A and sample channels 2, 3, 4, and 5 in phase B.

• The ADC buffer is split in two halves to be used as a flip-flop buffer.
• The ADC interrupt is set to be triggered every two samples, i.e. whenever phases A

and B are completed once, resulting in all 6 sensor samples to be taken once.
• The ADC unit is configured to use the system clock and to be triggered by timer 3

with automatic sampling.
iii) Initializes the main event timer:

• The clock source and divisor, and the count value for timer 1 are set so that the
counter ticks at 400Hz.

iv) Initializes the ADC timer:
• The clock source and divisor, and the count value for timer 3 are set so that the

counter ticks at 50KHz resulting in a sampling rate of 25KHz.
v) Hooks the interrupt handler routines for the main timer and ADC interrupt in the

interrupt vector table.
vi) Starts the ADC unit and the main timer.

Game Controller Firmware

Chapter 5: Software Development 31

5.1.2 - 3D Game Controller Finite State Machine

After initialization, the controller will wait for a connection request from host. After
reception of this request, the controller will handshake with the PC front-end software and
upon successful handshake will enter the active mode where data packets are transmitted
to the PC. Figure 5.1 depicts the 3D game controller FSM.

5.1.3 - Timing and sampling

Updates on device status and location data are transmitted to the PC at 50Hz. However, to
allow filtering, better performance and satisfying Shannon’s sampling theorem, four
samples are taken in each transmission interval, i.e. sampling rate is 200Hz.

FIGURE 5.1. The 3D Game Controller Finite State Machine, State Diagram

Wait:

Wait for connection
from host. Connection
initiates by receiving

0x06

Handshake 1:

Wait for host to send
0x0D

Handshake 2:

Wait for host to send
0x07

Delay:

Wait for 10ms before
going to active state

Active:

Start sampling and
processing of IMU

sensor outputs.

Send packets to host
@50Hz

Time-out

Time-out

Time-out

No connection
or incorrect

value received

Received 0x06 Received 0x0D

Received 0x07Data Reception

Host Waiting

Received
host ACK in

time

Chapter 5: Software Development 32

Game Controller Firmware

A simple task scheduling algorithm is developed by having 8 time slots for tasks to be
performed:

i) In time slots number 1, 3, 5, and 7, data samples are taken.
ii) In time slot number 2, a new data packet is sent to the host machine. It is also checked

if the connection to the host is still alive, i.e. if any acknowledgment from host has been
received within a limited time interval.

iii) In time slots number 4, 6, and 8, the device monitors the status of inputs, i.e. the push-
button and the jumpers, performing debouncing.

To carry out this task, Timer 1 on the microcontroller is programmed as the main event
timer with a ticking frequency of 400Hz which is 8 times the packet transmission
frequency of 50Hz. The timer interrupt handler routine schedules the tasks as described
above.

In order to further improve the quality of samples and to reduce noise, 16 samples at much
higher rate are taken and summed to form a super-sample. Timer 3 on the microcontroller
is set to trigger the ADC conversions at 50KHz. Since the microcontroller samples only 4
channels simultaneously, it takes two sample/conversion cycles for it to sample all the 6
sensor outputs, as a result a sampling frequency of 25KHz is achieved. Since this is about
500 times the cut-off frequency of the analog filters at the output of IMU sensors, these
samples should ideally read the same value. So, any variations in the read-out values of
samples taken from each sensor output are due to noise.

By averaging these 16 sample values, a four-fold reduction in the variance of the noise can
be achieved. Alternatively, by summing the samples, it is as if the resolution of the ADC is
increased by 4 bits.

Figure 5.2 depicts the timing diagram of the task scheduler and the acquisition of a super-
sample. In sampling time slots, the main event timer interrupt handler enables the
sampling interrupt. The sampling interrupt takes 16 samples, unloads the ADC buffer, and
performs the summation. After 16 samples are taken, the interrupt handler disables the
interrupt and sets a flag showing that super-sample acquisition has completed.

5.1.4 - Packet Structure

The packet structure is depicted in Figure 5.3. The first 112 bytes of the packet are reserved
for future development, were the actual position and orientation data are calculated by the
microcontroller on the game controller. It should be noted that the sizes of all fields are
twice the actual size of the data transmitted in each field due to nibble transmission in
current implementation. Each byte in the packet is of the form 0xUD. U is the high nibble
and is all ones, while D is the low nibble and contains the transmitted data.

Game Controller Firmware

Chapter 5: Software Development 33

Take Super-sample

Take Super-sample

Take Super-sample

Take Super-sample

Send data packet out
Check for host ACK

Debounce button

Debounce button Debounce button

Sample Channels
0, 1, 2, and 3

Sample All Channels
Store in Buffer1

Sample Channels
2, 3, 4, and 5

Sample Channels
0, 1, 2, and 3

Sample All Channels
Sum with buffer values2

Sample Channels
2, 3, 4, and 5

Sample Channels
0, 1, 2, and 3

16

Sample Channels
2, 3, 4, and 5

Sample All Channels
Sum with buffer values

Stop Interrupt
Set Data Valid Flag

600µs 620µs60µs40µs20µs0µs

0.0ms 2.5ms 5.0ms 7.5ms 10.0ms 12.5ms 15.0ms 17.5ms Time

Time + 10ms

Take Super Sample

FIGURE 5.2. Task Scheduling and Super-Sample Acquisition Timing Diagram

Reserved
Position and orientation

7 double values (112 bytes)

Acceleration Data
3 components as 16-
bit integers (12 bytes)

Status

2 Bytes

Angular Velocity Data
3 components as 16-
bit integers (12 bytes)

Packet #

2 Bytes

FIGURE 5.3. Data Packet Structure

Chapter 5: Software Development 34

Game Controller Firmware

5.1.5 - Orientation Calculation Revisited

The rotation matrix representation of the orientation requires that 9 elements of the matrix
be calculated at all times. It is also difficult to compensate for numerical (round-off) error
accumulation.

Another approach to representing the orientation data, is to use an extension of complex
numbers, called quaternions. This approach is widely used in 3D computer graphics
software to represent rotations in 3D [Eberly04]. Quaternions are also proven to be more
accurate than rotation matrices in calculation of orientation [Titterton97].

The orientation of an object can be represented by a unit length quaternion
, where is a unit vector parallel to the axis

of revolution and is the angle of rotation [Schneider03]. i, j, and k satisfy the Hamilton
equation:

(EQ. 5.1)

The equivalent to Equation 3.2 will then be [Titterton97]:

(EQ. 5.2)

Drifts due to machine round-off can be to some extent compensated for, by normalizing
the length of the quaternion to unity at all times.

Having this in mind, the storage space in the packet dedicated to storage of orientation
data is set to four double numbers. Theses four numbers will be the real and imaginary
components of the quaternion .

5.1.6 - Static Acceleration Compensation

The accelerometers used in the IMU of the prototype also sense the static acceleration of
the Earth’s gravity. As a result, to calculate the position, this statics acceleration has to be
removed from the sensor data.

This could be done in hardware by adding series capacitors between sensor outputs and
the ADC to block the DC part of the signal. However, additional circuitry would have been
needed to add a reference offset DC voltage to these signals to bring them into the 0-5V
range of the ADC. The static acceleration data can also be processed to calculate the
inclination of the controller, when it is moving slowly. Using DC-blocking capacitors
would completely remove the static acceleration and as a result the inclination data can no
longer be calculated this way, so this method was not used.

() ()()2 2cos sin i j kq iq jq kqθ θ= + + + (), ,i j kq q q
θ

2 2 2 1i j k ijk= = = =−

()
() () ()

1 ,
2 x y z

dq t t q t t i j k
dt

ω ω ω ω ω= = + +

()q t

()q t

PC Front-end

Chapter 5: Software Development 35

The second solution is to compensate for the static acceleration in software. This can be
done by using the orientation data obtained from gyroscope readings to project the
gravitational acceleration, g, onto the coordinate system used by the accelerometers. As a
result, an estimate of the static acceleration component in the readings of each
accelerometer can be obtained. This component can then be simply subtracted from the
ADC reading of the sensor data to result in the dynamic acceleration, which can be used to
calculate the position.

5.2 - PC Front-end

The front-end is an application running on the host machine, that is used for testing the
3D game controller prototype. For debugging purposes, the front-end must have an
interface with the user to allow study of the prototype functionality. This is in contrast with
a device driver which does not have a user interface and communicates with other
programs to give service to them.

The PC front-end was developed in two phases. In the first phase, the software was
developed with a text only interface. In the second phase, a graphical interface was added,
which allows real-time visualization of the data.

5.2.1 - Version 1: Text Based Interface

A console based Windows application was developed in this phase of work. The D2XX
Dynamically Linked Library (DLL) supplied by FTDI is used for USB communication
[D2XX]. The software is composed of the following sections:

d) Initialization
e) Host FSM
f) Data Reception and Output

During initialization phase, the USB communication routines are loaded from the DLL
file. The transmission and reception buffers are then cleared and the USB interface time-
outs are set. It is then checked to see if matching devices are connected to the USB port for
handshaking to begin.

The host FSM state diagram is shown in Figure 5.4. This FSM is responsible for
establishing the connection with the game controller. When the connection is established,
data packets are received from the game controller and translated and processed to retrieve
the carried information. The data are then output on the screen as hexadecimal numbers
for sensor data, and as symbols for status of the controller.

Chapter 5: Software Development 36

PC Front-end

The status bits show if the button is pressed, where the input jumper is placed, if there has
been a clock failure on the game controller, and if an acknowledgment from host is
received. These states are represented in the output screen as letters B, J, F, and A
respectively.

5.2.2 - Version 2: Graphical Interface

The second version of the PC front-end is developed as a Windows Win32 Application.
The code was developed using Microsoft Foundation Classes (MFC) [MFC]. A console

OK

Handshake 2:

Send 0x0D to the
controller and wait for

echoHandshake 3:

Send 0x07 to the
controller and wait for

echo

Active:

Receive and Process
Packets, Display data,

send ACK every 10
packets

Wait:

Wait for the game
controller to be
connected to a

USB port

Initialize:

Clear device buffers
Set time-outs

Open new log-file

Handshake 1:

Send 0x06 to the
controller and wait for

echo

Time-out

Time-out

Time-out

Game controller not
connected,

Connection error, or
USB interface driver

error

Failed

Time-out or disconnected

Game controller
connected Successful

Echo received

Echo received

Echo received

Connection alive

FIGURE 5.4. Host FSM, State Diagram

Software Debugging

Chapter 5: Software Development 37

window was created in addition to the main frame of the application, where Version 1
output is sent out to be displayed.

Tasks performed in the frame and application instance classes must run in a short period
of time, otherwise Windows considers the application as non-responding. As a result,
Version 1 code could not be run in any of these classes, since it runs constantly due to its
data polling nature. There are two ways to overcome this problem: using a separate
running thread for Version 1 code, or using a timer to clock running of this code.

A multimedia timer was used to function as a clock trigger for the host FSM of Version 1
code. Version 1 was therefore wrapped as a separate class which is instantiated in the main
application class. It was seen that the periods of less than 50ms for the multimedia timer,
cause the system to freeze. Since data packets are sent at a rate of 50Hz by the controller,
the code for host FSM of Version 1 was modified to clear the reception buffer by reading as
many packets as possible on each entrance to the read function.

For generation of plots an open-source library named Plot Graphic Library (PGL) was
used [PGL]. This library in terms uses a set of classes developed by Microsoft in their
Windows Software Development Kit (SDK), named as Graphics Device Interface Plus
(GDI+) [GDI+].

A set of pointers to plot regions and the graphic interface class instance were added to the
class definition of the application. These pointers were then initialized in the application
start-up member function.

A circular buffer class was developed to store a history of data received from the game
controller for display in plots. Pointers to circular buffers were added to the Version 1 class
properties and initialized in the class constructor. Upon reception of a packet, its data is
stored in the circular buffers, where it can be later used by the plot routine.

The multimedia timer used for clocking the host FSM also calls the plot routine after every
10 timer ticks [MMTimer]. The plot routine reads the circular buffer contents, stores them
in corresponding plot data buffers, rescales each plot, and redraws the plot window with
new data.

Super-sample data received from the game controller for all the three accelerometer and
the three gyroscope readings are plotted on separate axes. Each plot shows evolution of the
quantity being displayed for the past 8 seconds. A screenshot of the graphical interface is
shown in Figure 5.5.

5.3 - Software Debugging

The software for the microcontroller as well as the host front-end have gone through
considerable changes during development. Debugging of the code has formed the final

Chapter 5: Software Development 38

Software Debugging

FSMs presented the prior sections and fundamental modifications in the way data is
acquired, processed and transmitted.

Debugging of code was done at early stages on the primitive tasks of both sides, such as
data transmission and reception. Data acquisition was at first done by sampling IMU
sensor outputs at the maximum rate possible and transmission of the samples without any
processing to the host. This caused USB channel flooding, causing loss of data. Another
problem with this method was the lack of a robust packet structure and connection
monitoring. As a result, it was unclear which sensor reading the received data is
representing.

The interrupt driven approach on the game controller addressed the flooding problem.
The improved packet structure with the added packet number field and acknowledgments
from both sides allowed detection of packet losses and an overall more reliable connection.

FIGURE 5.5. Screenshot of the Graphical Interface

Chapter 6: Results & Future Work 39

 CHAPTER 6 Results & Future
Work

Using the graphical version of the PC front-end, a number of tests on the
prototype were performed. These tests, their results, and a brief discussion on
each test are presented in this chapter.

The remainder of the chapter is dedicated to future improvements envisioned
for the system in order to make it more robust, versatile, user friendly, and
ultimately ready for commercialization.

6.1 - Results

Using the second version of the PC front-end a number of tests were
performed to validate the assertions in former chapters. Rotation around each
of the three axes were performed at various speeds to check the response of
the gyroscopes. Motion along each of the three axes was performed to check
the response of the accelerometers. The functionality of the temperature
sensor was also tested.

6.1.1 - Sensor Data

The accelerometers used in the prototype measure the static acceleration due
to the Earth’s gravity, proportional to g. Therefore, the first tests were to check
if each accelerometer is functioning properly, by rotating the accelerometer so
that its measuring axis will be in the direction of g, perpendicular to g, and in
its opposite direction. The results for a sample motion data is shown for the z-

Chapter 6: Results & Future Work 40

Results

direction accelerometer in Figure 6.1. The device was held upright at the beginning, so that
the z-direction accelerometer would see -g. The controller was then rotated 90 degrees so
that the z-direction accelerometer would be perpendicular to g. The device was then
rotated 90 degrees in the opposite direction to come back to its original state. As can be
seen, the accelerometer is working properly, with outputs of -g (~7250), 0 (~8192), and
again -g (~7250). Note that the sensor output after super-sampling is an unsigned value
between 0 and 16383 but the quantity being measured is signed. From these data, an
approximate estimate for the coefficients in a linear model for the accelerometers can be
calculated. These calculations, however have limited accuracy since no precise reference or
mechanism is used to make sure that the accelerometer axes is indeed exactly in the
direction of g or perpendicular to it.

It should be noted that these results are slightly different on different hosts, since the
analog supply voltage for the ADC and the sensors, taken from the USB bus, varies from
machine to machine.

Next, the functionality of the gyroscopes were tested by rotating the game controller
around the axes of each of the gyroscopes, one at a time. A result for a sample motion for
one of the gyroscopes is shown in Figure 6.2. The game controller was held at rest for some
time, then rotated 90 degrees clockwise, stayed at rest there for a moment, and then
returned to initial orientation. As can be seen, the gyroscope is working properly. The
irregularities seen in the output are mainly due to nonuniformity of the motion of human
operator.

The temperature sensor was tested by manually switching the input of the first channel of
the ADC to temperature sensor output by switching the respective jumper connection. As
can be seen in Figure 6.3, the sensor is working properly. The step-like behavior at the

FIGURE 6.1. Sample Sensor Reading for Acceleration: Rotation Around Y-axis

Results

Chapter 6: Results & Future Work 41

beginning of the waveform is due to the manual switch from accelerometer sensor output
to temperature sensor output.

6.1.2 - Sensor Saturation

To test the coverage range of sensors, the game controller was moved and rotated at
different speeds. As can be seen in Figure 6.4, the gyroscopes will saturate once the
prototype is rotated very fast. The range can be extended by adding a resistor to the circuit
[Gyro-C], but this circuit modification will sacrifice the sensitivity and readout resolution
of angular rate data.

FIGURE 6.2. Sample Sensor Reading for Angular Velocity: Rotation Around Y-axis

FIGURE 6.3. Sample Sensor Reading for Temperature

Chapter 6: Results & Future Work 42

Results

Similar tests with linear motion were performed, to find the coverage range of
accelerometers. However, as can be seen in Figure 6.5, the accelerometers do not saturate
even at very fast motion. Saturation of accelerometers was only seen during collisions of
the game controller with a hard surface.

6.1.3 - Sensor Noise

Using autoscaling of limits of the graphs, it was easy to see the noise on the readings. Since
the pattern and variance of the noise was seen to be different when the game controller was
connected to different machines, it can be deduced that the supply voltage from the USB is

FIGURE 6.4. Gyroscope Saturation: Fast Rotation Around Y-axis

FIGURE 6.5. Sample Accelerometer Reading: Very Fast Motion Along X-axis

Future Work

Chapter 6: Results & Future Work 43

a source for the noise. Another observation was that, depending on the host machine the
system is connected to, some sensors may show a noise level below the precision of the
ADC. A sample of such behavior is shown in Figure 6.6, where angular velocity around y-
axis shows almost no noise. The device was at rest in this test.

6.2 - Future Work

The future improvements to the system can be categorized into the following branches:

• Hardware enhancements
• Implementation of the position and orientation calculation and numerical methods
• Filtering and noise reduction techniques
• Host Application development

6.2.1 - Hardware Enhancements

The design can be significantly improved using a better microcontroller. A higher number
of I/O pins will allow full-byte USB communication compared to the current nibble-
transmission. This results in twice the current bandwidth efficiency. Additional I/O pins
will also allow more push-buttons to be added to the design, which can significantly

FIGURE 6.6. Sample Noise on Sensor Readings

Chapter 6: Results & Future Work 44

Future Work

improve productivity and usability. For instance, a push-button can be used to indicate that
the game controller is just being relocated physically and its position in the virtual
environment should be preserved. This is similar to picking up the mouse and putting it
somewhere more convenient for the user. Another button can be used for changing the
view-point rather than manipulating objects in the virtual environment. Also, a
commercial game controller has to have a number of push-buttons for various controls
required by a computer game.

More I/O pins also allow analog multiplexers to be added to the design to change the range
of the sensors by software control. For instance, the gyroscope output could be selected to
be in its normal range, while not near saturation, and to change to a wider range by
digitally bringing a resistor into the circuit. This way, both wider range and high accuracy
can be achieved. A hysteresis curve for switching can be used to reduce the number of
switches and result in a more reliable performance.

Higher number of ADC channels, allows temperature to be sensed and additional
compensations for the sensor parameter drifts to be made in the software. More ADC
channels also allows having two sensor ranges. The high range sensor can be used during
saturation of the low range sensors for device stability, while the low range sensors provide
more accurate readings.

More RAM on the microcontroller allows storage of a longer history of data and enables
better filtering schemes to be implemented on the device for higher performance.
Additional RAM also allows more sophisticated numerical methods and higher precision
floating point arithmetic to be used.

The Microchip dsPIC30F4011-30I is a good candidate and has 9 ADC channels, 30 I/O
pins, 2KB RAM, and a processing power of 30 MIPS [dsPIC-C]. Compared to the current
microcontroller used in current prototype, these are 50%, 50%, 400%, and 50% more,
respectively. Since these devices belong to the same family, the code is fully portable, which
reduces the prototyping time significantly.

Addition of a magnetic compass to the design will allow compensation for drifts in the
orientation estimates. The readings of this sensor together with the inclinations sensed by
the accelerometers even at relatively low frequencies, e.g. every few seconds, give an
estimate of the orientation that can be used to correct the drifts in orientation estimates.

A wireless communication module, e.g. for IEEE 802.11, can replace the USB
communication interface, to allow untethered connection to the host system. A power
supply or battery needs to be added to the design in this case.

As shown early in this chapter, the sensor and ADC power supply require further filtering,
to minimize their effects on the performance of the system. It might as well be necessary to
use a different power source than other than the USB bus for analog signals to ensure
better signal to noise ratio in the sensor readings.

Future Work

Chapter 6: Results & Future Work 45

Adding a wheel to the design and using the quadrature encoding capabilities of the
microcontroller would allow on-the-fly scaling of the position resolution of the system.
This is especially helpful if an accurate small motion is required. In this case, the wheel can
be turned in the direction of increasing resolution, so that a large movement is needed
physically, to create a small scaled version of the movement in the virtual environment.

6.2.2 - Position and Orientation Calculation, and Numerical Methods

Code for calculation of position and orientation calculation can be developed based on the
discussions in Chapter 3 and Chapter 5. It should be noted however, that the derivations
presented in the aforementioned chapters all assumed that the data read from sensors is
converted to actual values. Calibration of sensors in order to find sensor response curves is
a prerequisite to this assumption.

Numerical methods to be used for calculations need to be further studied. For instance, the
performance of the system might be better if a numerical integration method [Akai94] is
used instead of a numerical ODE solver [Shampine94]. The stability of the method and
its accuracy, given the constraints of the system on sampling, together with its
computational complexity are among the factors that need to be considered in
implementation of the position and orientation calculation [Higham02].

6.2.3 - Filtering and Noise Reduction

Filtering of the sensor readings directly affects the performance of the system. Though a
digital filter with constant coefficients can reduce the noise in the system to some extent,
an adaptive filter delivers superior performance [Haykin01].

Kalman filters have been widely suggested for INS applications [Grewal01] [Shin04]. An
attractive feature of these filters is their high tolerance to imperfections in the design
model and their ability to work with non-stationary processes. This is specifically the case
for the game controller, where the input motion of the user is non-stationary.

The Kalman filter approach can be further improved using maneuver detection techniques
[Gustafsson00]. Since the human motion is not continuously at the same pace, there are
times that the motion is relatively slow and times that the motion is fast. When the motion
is slow, a filter with smaller bandwidth can be used and more noise can be rejected.
Detection of when the motion changes is required for this purpose and is referred to as
maneuver detection in navigation systems.

6.2.4 - Host Application Development

The choice of the host system determines how the USB connection should be established
by the software, how the data should be presented to the user application, and how the data
can be visualized.

Chapter 6: Results & Future Work 46

Future Work

After the host system has been selected, it is possible to develop a driver that
communicates with the game controller and relays the data received from it to the user
application. Applications can then be developed using this driver which would allow
virtual manifestation of an object which can be controlled by the user. The controller can
be used in three different modes:

• Virtual world navigation mode: In this mode the trends of motion, i.e. up, down, etc.,
can be used to navigate the character in the virtual environment. This is especially
useful when the character is moving in a big terrain, whereby using this mode relieves
the user from running in a field of the same size as the virtual terrain and significantly
mitigates the effects of the drift in results. Different levels of speed of motion can be
differentiated based on how far the user has moved the game controller in a direction.
For instance if the controller is moved forward in the direction of line-of-sight axis, a
little bit, the character in the virtual environment starts walking slowly in forward
direction. If the controller is moved farther forward, the character starts walking and if
the controller is moved even farther the character starts running.

• Viewpoint control mode: In this mode the motion of the game controller can be used to
control the viewpoint of the user to the virtual environment. Movement along the line-
of-sight axis can be used as a zoom-in/zoom-out feature.

• Object manipulation mode: In this mode the motion of the controller directly controls
the motion of an object in the virtual environment. For instance the user can control a
light saber in the virtual environment as if (s)he is holding one in her/his hand by
moving and turning the game controller in her/his hand.

A host application and driver can also be developed on a gaming console. The availability
of the Linux Development Kit for Sony PlayStation 2, makes this console a good candidate
for the development of the host application and driver.

 References 47

References

[Accel-A]

[Accel-B]

[Akai94]

[Axiom99]

[Axiom03]

[Bowman05]

[D2XX]

[dsPIC-A]

[dsPIC-B]

[dsPIC-C]

[Eberly04]

Analog Devices: Low-cost, Ultracompact ±2g, Dual-axis Accelerometer,
2003.

Analog Devices: Dual-axis Accelerometer Evaluation Board ADXL311EB,
2003.

Terrence J. Akai: Applied Numerical Methods for Engineers, John Wiley &
Sons, 1994.

Axiom Manufacturing: CME11E9-EVBU Development Board, Reference
Manual, 1999.

Axiom Manufacturing: Buffalo Monitor for HC11 Development Boards,
Reference Manual, 2003.

Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola Jr., Ivan Poupyrev: 3D
User Interfaces, Theory and Practice, Addison Wesley, Pearson Education
Inc., 2005.

Future Technology Devices International (FTDI) Ltd.: D2XX Programmer’s
Guide Version 2.01, 2002.

Microchip Technology Inc.: dsPIC30F Family Reference Manual, High
Performance Digital Signal Controllers, 2004.

Microchip Technology Inc.: dsPIC30F2010 Data Sheet, 28-pin High
Performance Digital Signal Controllers, Preliminary Version E, 2004.

Microchip Technology Inc.: dsPIC30F4011/4012 Data Sheet, High
Performance Digital Signal Controllers, Advance Info. Version B, 2004.

David H. Eberly: Game Physics, Morgan Kaufmann Publishers, Elsevier
Science, 2004.

 References 48

References

[Fastrak]

[Foxlin02]

[GDI+]

[Geen04]

[Grewal01]

[Gustafsson00]

[Gyro-A]

[Gyro-B]

[Gyro-C]

[Haykin01]

[Higham02]

[Kim04]

[Lawrence98]

[Logitech92]

[MFC]

[MMTimer]

[Pezeshk04]

Polhemus: Fastrak, The Fast and Easy Tracker, Product Brochure, 2004.

E. Foxlin: “Motion Tracking Requirements and Technologies”, Handbook
of Virtual Environments: Design, Implementation, and Applications. K.
Stanny (Ed.), Lawrence Elbraum Associates, pp. 163-210, 2002.

Microsoft Corp.: GDI+, MSDN Reference, Available online at: http://
msdn.microsoft.com/library/default.asp?url=/library/
en-us/gdicpp/GDIPlus/GDIPlus.asp

John A. Geen: “Progress in Integrated Gyroscopes”, Proc. IEEE Position
Location and Navigation Symposium (PLANS), pp. 1-6, 2004.

Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews: Global
Positioning Systems, Inertial Navigation, and integration, John Wiley &
Sons, 2001.

Fredrik Gustafsson: Adaptive Filtering and Change Detection, John Wiley &
Sons, 2000.

Analog Devices Inc.: ±300°/s Single Chip Yaw Rate Gyro with Signal
Conditioning, 2004.

Analog Devices Inc.: ±300°/s Single Chip Yaw Rate Gyro Evaluation Board,
2003

Harvey Weinberg: Modifying the Range of the ADXRS150 & ADXRS300
Rate Gyros, Application Note AN-625, Rev. 0, Analog Devices, 2003

Simon Haykin: Adaptive Filter Theory, 4th Ed., Prentice Hall, 2001.

Nicholas J. Higham: Accuracy and Stability of Numerical Algorithms,
Society of Industrial and Applied Mathematics (SIAM), 2002.

Anthony Kim, M. F. Golnaraghi: “A Quaternion-Based Orientation
Estimation Algorithm Using an Inertial Measurement Unit”, Proc. IEEE
Position Location and Navigation Symposium (PLANS)‘, pp. 268-272, 2004.

Anthony Lawrence: Modern Inertial Technology, Navigation, Guidance,
and Control, 2nd Ed., Springer Verlag, 1998.

Logitech: 3D Mouse and Head-Tracker, Technical Reference Manual, 1992.

Microsoft Corp.: MFC Development Using Microsoft Visual C++ 6.0,
Microsoft Press, 2000

Leslie Sanford: Wrapper Class for Multimedia Timer Functions, Available at
the Code Project website: http://www.codeproject.com/audio/
mult_media_timer.asp

Ali Pezeshk, Mehdi Imaninejad: “A 3D Computer Game Controller: Design
and Application”, Proc. SIGGRAPH, Los Angeles, 2004.

 References 49

References

[PGL]

[Schneider03]

[SeeReal04]

[Shampine94]

[Shin04]

[Titterton97]

[USB-A]

[USB-B]

[USB-C]

[USB-D]

Jonathan de Halleux: Plot Graphic Library, Available at The Code Project
website: http://www.codeproject.com/miscctrl/pgllib.asp

Philip J. Schneider, David H. Eberly: Geometric Tools for Computer
Graphics, Morgan Kaufmann Publishers, Elsevier Science, 2003.

SeeReal Technologies: Autostereoscopic 3D Display, ‘C’ Product Line,
Operating Manual, 2004.

Lawrence F. Shampine: Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, 1994.

Eun-Hwan Shin, Naser El-Sheimy: “An Unscented Kalman Filter for In-
motion Alignment of Low-cost IMUs”, Proc. IEEE Position Location and
Navigation Symposium (PLANS), pp. 273-279, 2004.

D. H. Titterton, J. L. Weston: Strapdown Inertial Navigation Technology,
IEE, Peter Peregrinus Ltd., 1997.

Future Technology Devices International (FTDI) Ltd.: FT245BM USB FIFO
(USB - Parallel) I.C., Version 1.4, 2004

Future Technology Devices International (FTDI) Ltd.: Data Throughput,
Latency, and Handshaking, Application Note, 2004

Future Technology Devices International (FTDI) Ltd.: FT232BM and
FT245BM Power Control and Pin States, Application Note, 2004

DLP Desgin Inc.: DLP-USB245M User Manual, 2002

 References 50

References

	Design and implementation of a 3D computer game controller using inertial MEMS sensors
	Recommended Citation

	Design and Implementation of a 3D Computer Game Controller Using Inertial MEMS Sensors
	Contents
	List of Tables
	List of Figures

	CHAPTER 1 Introduction
	CHAPTER 2 3D Computer Interfaces
	2.1 - Mechanical Tracking
	2.2 - Magnetic Tracking
	2.3 - Acoustic Tracking
	2.4 - Vision-based Tracking
	2.5 - Inertial Tracking

	CHAPTER 3 Inertial Tracking
	FIGURE 3.1. Motion of an object in 2-space
	3.1 - Frames of Reference
	FIGURE 3.2. Effect of rotation on the accelerometer readings in 3-space

	3.2 - Orientation Calculation
	FIGURE 3.3. Coordinate system transformation in 3-space
	(EQ. 3.1)
	(EQ. 3.2)

	3.3 - Position Calculation
	(EQ. 3.3)
	(EQ. 3.4)
	(EQ. 3.5)
	(EQ. 3.6)

	3.4 - Limitations

	CHAPTER 4 Electrical Design
	4.1 - Part Selection
	4.1.1 - Microcontroller
	TABLE 4.1. Requirements for the microcontroller and the specifications of dsPIC30F2010-20I

	4.1.2 - USB Interface
	TABLE 4.2. Requirements for the USB interface and the specifications of FTDI FT245BM

	4.1.3 - The IMU Sensors
	TABLE 4.3. IMU specifications

	4.1.4 - Other Parts

	4.2 - Layout and Assembly
	4.2.1 - PCB Layout
	FIGURE 4.1. Layout of the Prototype Design: Floorplan
	FIGURE 4.2. Circuit Board Layout of the Prototype Design: Top Layer
	FIGURE 4.3. Circuit Board Layout of the Prototype Design: Bottom Layer

	4.2.2 - Placement of Accelerometers
	FIGURE 4.4. Relative Positioning of Accelerometers

	4.2.3 - Chassis Design
	FIGURE 4.5. Completed Prototype in Chassis
	FIGURE 4.6. Prototype After Debugging: Bottom View

	4.2.4 - Debugging the Board

	4.3 - Feature Summary
	TABLE 4.4. Prototype Feature Summary

	CHAPTER 5 Software Development
	5.1 - Game Controller Firmware
	5.1.1 - Initialization
	5.1.2 - 3D Game Controller Finite State Machine
	FIGURE 5.1. The 3D Game Controller Finite State Machine, State Diagram

	5.1.3 - Timing and sampling
	FIGURE 5.2. Task Scheduling and Super-Sample Acquisition Timing Diagram

	5.1.4 - Packet Structure
	FIGURE 5.3. Data Packet Structure

	5.1.5 - Orientation Calculation Revisited
	(EQ. 5.1)
	(EQ. 5.2)

	5.1.6 - Static Acceleration Compensation

	5.2 - PC Front-end
	5.2.1 - Version 1: Text Based Interface
	FIGURE 5.4. Host FSM, State Diagram

	5.2.2 - Version 2: Graphical Interface
	FIGURE 5.5. Screenshot of the Graphical Interface

	5.3 - Software Debugging

	CHAPTER 6 Results & Future Work
	6.1 - Results
	6.1.1 - Sensor Data
	FIGURE 6.1. Sample Sensor Reading for Acceleration: Rotation Around Y-axis
	FIGURE 6.2. Sample Sensor Reading for Angular Velocity: Rotation Around Y-axis
	FIGURE 6.3. Sample Sensor Reading for Temperature

	6.1.2 - Sensor Saturation
	FIGURE 6.4. Gyroscope Saturation: Fast Rotation Around Y-axis
	FIGURE 6.5. Sample Accelerometer Reading: Very Fast Motion Along X-axis

	6.1.3 - Sensor Noise
	FIGURE 6.6. Sample Noise on Sensor Readings

	6.2 - Future Work
	6.2.1 - Hardware Enhancements
	6.2.2 - Position and Orientation Calculation, and Numerical Methods
	6.2.3 - Filtering and Noise Reduction
	6.2.4 - Host Application Development

	References

