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Abstract

The numerical solution of the incompressible Navier-Stokes equations offers an alterna-

tive to experimental analysis of fluid-structure interaction (FSI). We would save a lot of

time and effort and help cut back on costs, if we are able to accurately model systems

by these numerical solutions. These advantages are even more obvious when considering

huge structures like bridges, high rise buildings or even wind turbine blades with diame-

ters as large as 200 meters. The modeling of such processes, however, involves complex

multiphysics problems along with complex geometries. This thesis focuses on a novel

vorticity-velocity formulation called the Kinematic Laplacian Equation (KLE) to solve the

incompressible Navier-stokes equations for such FSI problems. This scheme allows for the

implementation of robust adaptive ordinary differential equations (ODE) time integration

schemes, allowing us to tackle each problem as a separate module.

The current algortihm for the KLE uses an unstructured quadrilateral mesh, formed by

dividing each triangle of an unstructured triangular mesh into three quadrilaterals for spatial

discretization. This research deals with determining a suitable measure of mesh quality

based on the physics of the problems being tackled. This is followed by exploring methods

to improve the quality of quadrilateral elements obtained from the triangles and thereby

improving the overall mesh quality. A series of numerical experiments were designed and

conducted for this purpose and the results obtained were tested on different geometries with

varying degrees of mesh density.

xii



Chapter 1

Introduction

The flow of fluids can be seen all around us, be it the natural environment or almost any

kind of technical field. Meteorological phenomena, combustion processes, HVAC systems,

pollution, and the numerous processes in the human body are some examples of fluid flow

we encounter almost everyday. The number of applications of fluid flow analysis is enor-

mous: breathing, blood flow, turbines, airplanes, ships, windmills, and engines to name a

few, making the analysis of flow one of the most important areas of research in the last half

century.

Mathematically, the flow of fluids is represented by a system of non-linear partial differ-

ential equations known as the Navier Stokes Equations. These equations represent the

conservation laws for mass, momentum, and energy for the concerned flow. The Navier-
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Stokes equations present a challenging problem to mathematicians and engineers in finding

solutions related to proof of existence and finding accurate yet fast numerical methods with

proper Boundary conditions.

The numerical Solution of the Navier-Stokes Equations is an important area of study in

modern day engineering. It can be used to model numerous things of economic as well

as academic interest. It offers an attractive alternative to the expensive, and sometimes

extremely difficult to implement, experimental analysis of flow patterns.

1.1 Fluid structure interaction

One of the most important applications of the numerical solutions of these equations would

be the numerical modeling of fluid-structure interaction (FSI). The non-linear dynamics

involved in such interactions provides insights into numerous engineering problems such

as the response of high rise buildings and bridges to strong winds, blood flow through ar-

teries, vibrations in turbine blades, aerodynamic response characteristics of aircraft wings,

areas of marine hydrodynamics which includes modeling fluid flow interaction with marine

systems, offshore and coastal structures, underwater systems and structures, and the ever

popular aerodynamic modeling of automobiles. These phenomena manifest themselves at

a wide range of scales and present excellent opportunities for scientific discovery with a

richness of technical application.

2



An experimental analysis for some of the FSI problems might not always be the most at-

tractive prospect. The case of a wind turbine is a perfect example to support the above

statement, owing to the enormity of the surfaces involved. The economy of scales fac-

tors have driven companies to consider rotors with diameters going as large as 200 meters.

Extrapolating experimental data from wind tunnels in such cases make things very com-

plicated. Another interesting example would be the modeling of bridges and high rise

buildings and their interaction with high winds. Such huge structures run the risk of stress

related failures due to FSI, and hence require a very accurate modeling of flow patterns.

On the other extreme, problems of placing sensors on small-scale mechanisms with com-

plex roto-translational motion, like the Micro-Air-Vehicle modelled on insect flight, makes

an experimental analysis extremely difficult. A numerical scheme seems like an attractive

alternative to experimental prototypes and should also help bring down the overall cost

drastically. But a numerical solution comes with its own set of problems starting with com-

plex physics involved in slender-body aeroelastic dynamics. The aeroelastic dynamics in

slender bodies depends not only on the characteristic modes of the body structure itself, but

also on the frequency and amplitude of the fluctuating aerodynamic forces. These forces

are strongly affected by the dynamics of the vortex-wake shed from the body, which it-

self depends on the body’s oscillations. Vortex-induced vibration can lead to catastrophic

failure of engineering systems, as was clearly illustrated by the Tacoma Narrows Bridge

disaster. Essentially, a periodic vibration ensues if the work done by the fluid on the body

over a cycle is positive. This net energy transfer is significantly influenced by the phase

3



of the induced side force relative to the body motion, which in turn is associated with the

timing of the vortex dynamics (1).

A significant challenge in analyzing these systems is the fact that an oscillating body can

produce a vortex wake that is very different from the classic Karman vortex street, which

would translate into a complex fluctuating aerodynamic force. Many rototranslational

mechanisms have a dynamic control system reacting to structural responses to fluid flow as

well as varying loads, thereby optimizing efficiency and extending their lifetime. This con-

trol system would also have to be incorporated into the numerical model for an accurate rep-

resentation. The problem is no longer just an unsteady flow simulation, but a multiphysics

problem invloving non-linear structural dynamics as well as a dynamic control system in

addition to the fluid flow model. All of this combined with the discretization of complex

geometries makes it quite difficult to numerically solve the non-linear partial differential

equations (PDEs) involved. Further complications may arise with time-marching integra-

tion of multiphysics problems. Adaptive variable-timestep/variable-order ODE algorithms

provide a way to improve the efficiency of time-marching schemes. But finding a way to

combine those adaptive algorithms with the discretization of the spatial PDE problem has

proved to be difficult. An innovative computational scheme to solve these problems was

introduced in (2).This scheme is called the Kinematic Laplacian Equation (KLE) method.

The KLE invloves a hybrid formulation of the Navier-Stokes equations using velocity and

vorticity as the primary variables, rather than the conventional formulation in terms of

pressure and velocity, and is a natural extension of the well-established vorticity-stream

4



function methods. The emergence of vorticity-velocity methods might be considered one

of the most recent innovations in the computational solution of time-dependent viscous

flows. Even though the appearance of what could be regarded as the first vorticity-velocity

approach may be traced as early as 1976 (3), it is only during the last decade or so that a

systematic research effort has been applied to the development of this family of methods

(see see (2, 4) for a complete list of references). The vorticity-velocity methods present sev-

eral advantages compared with the classical formulation on primitive variables (velocity-

pressure) or with their vorticity-stream-function cousins. This is discussed in greater detail

in Chapter 2.

The KLE algorithm solves the vorticity transport equation as an ODE problem in time with

input velocity from the solution of a modified Poisson’s equation in velocity, called the

Kinematic Laplacian Equation, at each spatial node. The input to solve the KLE is provided

by the time integration of the vorticity at each time step. Thus, it creates an evolving scheme

in which the KLE provides the input for the ODE algorithm and vice-versa. Since time is

the only iteration variable present it is now possible to couple the fluid analysis with other

physical mechanisms (e.g. structural response, control-system dynamics, etc.) by adding

more equations to the ODE system. The KLE also shows a substantial tolerance to the

use of unstructured meshes, which allows a more suitable meshing of complex geometries

than structured-mesh approaches would permit. The latter is a very convenient feature

for dealing with the complex aerodynamic shape of wind-turbine blades, helicopter-rotor

blades, insect wings, or other aerodynamic surfaces.
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1.2 An emerging field of application:The wind power chal-

lenge

This research is a small yet important part of the ongoing work towards the advancement

of computational mathematical models for complex multiphysics problems involving fluid-

structure-control interaction that are present in many engineering designs, providing a fun-

damental tool for a better understanding of the underlying physics. One such important

engineering problem is the harnessing of wind power. Given the current trend of looking

towards cheaper and cleaner ways to meet the ever increasing energy demand, wind en-

ergy might just be the answer to our growing needs. It is not only getting cheaper with

technological innovations to harness wind energy on a large scale, wind power is also one

of the cleanest ways to produce energy. During the last three decades there has been a

spontaneous tendency in the wind-turbine industry to increase the size of the state-of-the-

art machine (6) and substantially reduce the cost of wind energy. Output power of these

turbines range from 3.6 to 6 MW, with rotor diameters up to 127 meters (Figure 1.1). Next-

generation offshore turbines with rotor diameters up to 200 meters have been suggested

(7). The technological challenge in wind power nowadays is to develop a next generation

of upscaled low-cost turbines that may further reduce generation costs. If this generation of

superturbines is successfully developed, wind-energy costs would be reduced substantially.

In fact, in favorable sites, it might be feasible to produce hydrogen as an alternative fuel

6



Figure 1.1: The REpower M5 5-megawatt turbine, with a rotor diameter of approximately 126
meters (from (5)).Permission to reuse in Appendix C.

in competitive terms, thereby getting rid of a significant roadblock towards developing hy-

drogen as an alternative fuel. Current wind-turbine blade technology based on composite

laminates is labor-intensive and requires a highly-qualified workforce, creating a critical

bottleneck in terms of industrial workforce and infrastructure that hampers a rapid expan-

sion of wind-energy. It also poses a barrier to turbine upscaling by increasing the cost of

the rotor as turbine size increases. The structural conception of today’s blades also poses

huge challenges in terms of transport logistics and crane capacity. Transportation cost in-
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creases as blades grow in length. The risk of damage during transportation, and hence,

the cost of insurance, also increases with length. Moreover, while the rest of the turbine

subsystems may be treated as modules assembled on site, blades are one-piece monolithic

components, substantially complicating transport logistics. Limitation in crane capacity

is the other critical factor to take into account during the turbine assembly phase. Thus,

transport and lifting logistics may impose a premature limit for turbine upscaling, even be-

fore the actual limits in blade length for the current manufacturing technology are reached.

Blades operate under a complex combination of fluctuating loads, and huge size differences

complicate extrapolation of experimental data from the wind-tunnel to the prototype scale.

Hence, computer models of fluid-structure interaction phenomena are particularly relevant

to the design and optimization of wind-turbines. The wind-turbine industry is increasingly

using computer models for blade structural design and for the optimization of its aerody-

namics. But the complex interaction of physical processes that characterize the coupled

aeroelastic problem still exceeds the capacities of existing commercial simulation codes.

The result is an industry to be cautious with the introduction of new concepts in order to

ensure reliability. Innovations are likely to introduce changes in structural response and

may possibly require different control strategies, which should be taken into account if the

development of a new prototype blade is considered. Research efforts within the estab-

lished parameters of the composite-laminate monolithic blade concept would not produce

the breakthrough that is needed in wind-power evolution. A better understanding of the

underlying physics is needed in order to introduce innovative concepts like modular blades

8



and improved control strategies. This is where the KLE plays a pivotal role owing to its

ability to create a common framework for modular integration of the aeroelastic model with

the control system dynamics.

1.3 Thesis outline

The focus of the current thesis is to improve the efficiency of the spatial discretization of

an incompressible viscous flow problem using the KLE method. The problem considered

here is the semi-infinite region of stationary fluid bounded by an infinite horizontal plate

and given a sudden velocity in its own plane and thereafter, maintained at that speed. This

problem, along with its analytical solution, is discussed further in context with the KLE

in Chapter 4. Since the unstructured meshes are better suited to complex geometries than

structured meshes, their use for implementing the KLE is studied.

This thesis is divided into two parts. The first part is concerned with carrying out controlled

distortions of a structured mesh and using the distorted meshes obtained to solve the above-

mentioned flow problem using the KLE. The results are then analyzed to select a mesh

quality metric best suited for the KLE method. The criteria for assessing an element’s

quality should be problem specific to some extent. This metric is then used to come up

with a possible change in the kind of unstructured meshes used. This change constitutes

the second part of the thesis. This part is concerned with modifying the methodology used

9



to transform an unstructured triangular mesh into a quadrilateral one. The end result is then

compared with the previous quadrilateralization using the quality metric decided upon in

the first part. The mesh quality is analyzed for two dimensional geometries ranging from

a square region to a few aerofoils. The results obtained are quite promising and present a

strong case in favor of this approach in regard to both quality of the mesh obtained as well

as the computational effort required for the quadrilateralization.

As mentioned before, the motivation for this research is the analysis of flow over wind tur-

bine blades. Since this type of flow can be assumed to approximate incompressible flow,

that is exactly the kind of flow which will be considered for this thesis. The next Chap-

ter deals with an introduction to the incompressible Navier-Stokes equations and gives a

breif outline of some of the more popular solution methods in use. Chapter 3 is concerned

with the hybrid methods based on a vorticity/velocity approach to solve the Navier-Stokes

equations. The Chapter then goes on to introduce the KLE along with its variational formu-

lation. Chapter 4 deals with the numerical implementation of the KLE. Chapter 5 explains

the controlled distortion experiment and is concerned with the analysis of the results ob-

tained by the KLE based on the experiment. This Chapter is also concerned with the various

quality parameters analyzed and the subsequent quadrilateralization method developed for

the triangular mesh. Chapter 6 summarizes the results and ends with a brief on future

prospects.

10



Chapter 2

Numerical methods

2.1 The Navier−Stokes equations

Navier-Stokes equations is a system of non-linear Partial differential Equations of the sec-

ond order. These consist of three basic conservation equations

1. Conservation of mass or the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0

where ρ is the density, u is the velocity field and t is the time.

2. Conservation of momentum

ρ
du

d t
= ρg −∇P +∇ · σ

11



where, P is the pressure, σ is the stress tensor and ρg is the body force.

3. Conservation of energy

ρ
d û

d t
+ p(∇ · u) = ∇ · (k∇T ) +Φ

where Û is the internal energy per unit mass, k is the thermal conductivity, ν is the

kinematic viscosity and the function Φ represents energy dissipated due to viscous

effects.

This set of equations may completely define fluid motion allowing us to solve for various

flow quantities like pressure, velocity, temperature, and density. In the more general case

of the incompressible flow of Newtonian fluids, the density is considered constant and the

above equations reduce to

1. Conservation of mass or the continuity equation

∇ · u = 0 (2.1)

2. Conservation of momentum

ρ
du

d t
= ρg −∇P + μ∇2u (2.2)

where μ is the coefficient of dynamic viscosity.

3. Conservation of energy

ρCv
dT

d t
= k∇2T +Φ (2.3)

where Cv is the specific heat at constant volume.
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2.2 Numerical Solution of the incompressible viscous flow

The following section deals with some of the more popular formulations of the Navier-

Stokes equations modeling a viscous incompressible flow of a homogeneous fluid in an

inertial frame of reference, along with some discussion on the issues of boundary condi-

tions. As mentioned before, for a homogeneous incompressible flow, the density remains

constant giving us a set of equations (2.1), (2.2), (2.3). These equations clearly imply the

decoupling of the momentum equation with the energy equation for the incompressible

flow. The most obvious advantage of this decoupling is that the momentum equation and

the continuity equation can now be solved independent of temperature to obtain the re-

quired velocity and pressure field. This decoupling might seem like it makes things easier,

but that is not the whole picture, as will become clear in the subsequent discussion.

The first step in finding a numerical solution to the Navier-Stokes equations would be to

decide upon the set of variables representing the equations followed by a set of boundary

conditions. The two main formulations of the Navier-Stokes equations are the primitive

variable formulations and the non-primitive variable formulations. Both have their own set

of advantages and disadvantages, which shall be discussed in brief, but in both cases the

major problem and the oldest point of contention are the boundary conditions. It is mostly

the pressure and vorticity which pose a problem since they do not have what can be called

an obvious physical representation at the boundaries.
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2.2.1 Primitive variables

The most fundamental formulation of the incompressible Navier-Stokes equations would

be the pressure-velocity based formulations. These are what are called the primitive vari-

able formulations. The Navier-Stokes equations for incompressible viscous flow in terms

of the primitive variables can be written as

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u+ g (2.4)

∇ · u = 0 (2.5)

where, p = P/ρ defined in a spatial domain Ω with S as its boundary. Here u is the veloc-

ity, p is the pressure divided by the fluid density (constant), and ν is the kinematic viscosity.

The Navier-Stokes equations represented by the primitive variables can be called a mixed

elliptic parabolic equation being parabolic in time mainly because of the convective diffu-

sive term and elliptic in space owing to the interaction between pressure and the continuity

equation. To define the above problem completely, the equation needs to be supplemented

by a set of boundary conditions specifying it as an initial value boundary value (IVBV)

problem. The most common approach would be to start with the specification of an initial

value for the velocity in Ω

u(x, t0) = u0(x), such that ∇ · u0 = 0,where x ∈ Ω (2.6)

followed by specifying the velocity at the boundary

u(x, t) = uS(x, t), x ∈ S = b (2.7)
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along with a global continuity condition obtained by integrating the continuity equation

over the entire volume and then using the Gauss theorem∮
S

n · bdS = 0 (2.8)

where, n is a unit vector normal to the boundary surface. So in this simplest of representa-

tions there is indeed no boundary condition for pressure, giving rise to a series of problems

which are still a topic of debate.

Solution strategies

As discussed in the previous section, the main difficulty in the numerical solution of the

incompressible Navier-Stokes equations comes in the form of understanding pressure. Un-

like velocity, pressure does not have any explicit representation. There is no evolutionary

pressure equation. The main reason is that since we have assumed an incompressible con-

dition, pressure now loses its thermodynamic meaning and serves only as some kind of a

Lagrange operator to ensure the incompressibility condition. Since the pressure term is of

elliptic character, the solution anywhere would be influenced by the solution at every point

in the domain. Physically this means that the pressure waves travel at infinite velocity to all

points in the domain for every time step. In other words, the pressure has to adjust instan-

taneously throughout the domain to account for any disturbance in order to maintain zero

divergence of velocity. This leads to the intricate coupling between the two variables. This

statement is the driving factor for non-fractional approach or, in other words, the standard

discretization approach. Thus a numerical scheme with proper boundary conditions must

be devised which can take into consideration the implicit coupling between pressure and
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velocity and keeps the flow incompressible throughout the domain. At the same time, the

method should be able to decouple the pressure and velocity and solve for each separately

to avoid having to tackle the unwieldy simultaneous equations.

It is, in fact, possible to solve this set of equations simultaneously as a coupled system (8).

This is rarely seen in finite difference methods (8) due to the complex matrices obtained as

opposed to a regular block diagonal matrix. Though this method is more common in finite

element analysis, it does have its own set of difficulties, as mentioned by (9) arising from :

1. The equations are non-linear.

2. The continuity equation.

3. The coupling between the set of equations owing to the advection term and continuity

equation.

The most common approach to getting rid of the continuity equation is Poisson’s pres-

sure equation obtained by taking the divergence of the momentum equation and using the

continuity condition. This, along with other details, will be discussed in the subsequent

section.

The two main approaches in a pressure-velocity formulation are the fractional step and the

non-fractional step methods.
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2.2.1.1 Non−fractional step methods

The major difference between the two approaches is that in non-fractional step methods

the velocity and pressure evolve simultaneously, whereas in the fractional step method

the convection part is treated separately from the pressure or incompressibility part. The

equations (2.4) and (2.5) can be linearized by discretizing in time and neglecting the body

forces to give

un+1 − un

�t +∇pn+1 = ν∇2un+1 − un · ∇un (2.9)

∇ · un+1 = 0 (2.10)

where, u is the velocity vector and p is the pressure term equation (2.9) can be written as

[−���+ γI]un+1 +∇pn+1 = g(un) (2.11)

where, ν is the kinematic viscosity, I is an Identity matrix, γ = 1

ν�t
and g(un) = γun −

ν−1un · ∇un

Here, a two-level scheme has been adopted, treating the pressure and viscous term implic-

itly and the nonlinear advection term explicitly in time. There can be other methods in

time discretization such as a fully implicit scheme or even a semi-implicit scheme using

linearization techniques. A popular method is to use a higher order explicit scheme like

the Adams-Bashforth scheme for the advection term and a Crank-Nicolson scheme for the

linear terms. This can be followed by linearizing the advection term using a point iteration
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scheme. There are many other higher order and more accurate schemes, but the one men-

tioned in the above equations is just for explanatory purposes. As previously mentioned,

a Poisson’s Equation is obtained by taking the divergence of the momentum equation and

using the continuity condition. This gives us the following set of equations :

[−���+ γI]∇ · un+1 +∇pn+1 = g(un) (2.12)

∇
2pn+1 = ∇ · g(un) (2.13)

Even though the above relation is obtained by the continuity equation, its solution does

not imply the incompressibility condition, all it shows is that [−��� + γI]∇ · un+1 = 0.

Therefore it simply tells us that ∇ · un+1 is harmonic but not necessarily zero. However,

Kleiser and Schumann (10) showed that if divergence at the boundary is forced to zero

∇ · un+1 |S= 0 (2.14)

incompressibility should be ensured throughout the domain. This follows from the mean

value theorem/ extremum theorems of harmonic functions which means if some harmonic

function equals a constant at the surface completely enclosing a domain, its value will

be equal to that constant throughout the domain.This leads us to a BVP with two elliptic

equations

[−���+ γI]∇ · un+1 +∇pn+1 = g(un)

∇
2pn+1 = ∇ · g(un) (2.15)

un+1 |S= bn+1

∇ · un+1 |S= 0

18



along with the global constraint (2.8) i.e.
∮
S
n · uSdS = 0. Here there are two boundary

conditions for u and none for pressure, which means that the above equations still have to

be solved simultaneously. So, it is imperative to look for some method to decouple the two

equations by coming up with a legitimate boundary condition for pressure. As mentioned

in (11), Glowinksi and Pironneau devised a Finite Element method based on an additional

equation for the scalar velocity potential. Another method was based on the influence

matrix technique proposed by Kleiser and Schumann (11). Both these methods propose

to implement the pressure boundary conditions using an additional linear problem. This

was followed by Quartapelle and Napolitano’s paper on implementing integral Boundary

conditions on pressure (11) which seemed to provide a better physical interpretation owing

to the elliptic nature of the Poisson’s equation for pressure. A brief introduction to these

methods can be found in Appendix A.

2.2.1.2 Fractional step methods

This method, first introduced by Chorin and Tenman, is one of the most widely used meth-

ods for solving the primitive variable formulation of the Navier−Stokes equations. Con-

sider the following form of the Navier−Stokes equations, with the body forces neglected

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u

∇ · u = 0 u |S= b (2.16)
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The general procedure is to advance the velocity in time and approximate an intermediate

velocity from the first equation, without considering the pressure term. As already men-

tioned, the pressure term in the above equation acts as a Lagrange multiplier to enforce

incompressibilty at every time-step, therefore, the calculated velocity will not be diver-

gence free. This velocity is then used to solve an elliptic equation to obtain a divergence

free velocity by enforcing the incompressibilty condition. Subsequently a pressure field is

determined for that time step. In the intermediate step, the following equation is obtained

by avoiding completely the pressure term

u∗ − un

�t = −(un · ∇)un + ν∇2un u∗ |S= bn+1 (2.17)

Obviously, as stated above, the velocity field u* would not be divergence free, which leads

to the next step

un+1 − u∗

�t = −∇pn+1 (2.18)

∇ · un+1 = 0 (2.19)

n · un+1 |S= n · bn+1 (2.20)

Equation (2.18) can also be formulated as

u∗ = un+1 +�t∇pn+1 (2.21)

where, ∇pn+1 is not the gradient of pressure but of some artificial scalar function propor-

tional to the unknown Pressure often referred to as the “Pseudo-pressure”. The quantity
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un+1 which is required the velocity field is actually the solenoidal component of u∗ and

not the real un+1 as the tangential boundary condition is not necessarily met. The normal

boundary value for velocity is a consequence of the above step being inviscid. So the re-

quired velocity is calculated by projecting the velocity u∗ onto a solenoidal space. The

basis for the above step is the helmholtz-hodge decomposition of the velocity field (due to

Ladyzhenskaya) which states that any vector field can be decomposed as v = w + ∇φ

where, w is solenoidal and n · w = 0 and φ is the potential function with its gradient

giving the irrotational component of v. The gradient term can be further decomposed into

∇φ = ∇φ0 +∇h, where h is a harmonic function and φ0 |S= 0. This leads to the vector

v being decomposed into

v = w +∇φ0 +∇h (2.22)

Using this decompostion for the divergent u∗

u∗ = w +∇φ0 +∇h (2.23)

Adding and subtracting another harmonic function hB to the RHS of equation (2.23)

u∗ = [w +∇hB] + [∇(h− hB)] +∇φ0] n · ∇hB = n · b (2.24)

Clearly [w + ∇hB] represents un+1 for an incompressible flow not satisfying the no-slip

condition for the second half step. Thus, un+1 can be found using a projection of u∗ on the

divergence free space.
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In order to calculate the velocity from the equations (2.18) and (2.20) the divergence of

(2.18) is substituted into (2.19) to get the Poisson’s Equation for pressure also callled the

PPE

−∇
2pn+1 =

−1

�t∇ · u∗ (2.25)

Using equation (2.20) along with the boundary condition u∗ |S= bn+1 the following

boundary condition for the PPE can be derived

n · ∇pn+1 |S= 0 (2.26)

Once the pressure field is determined, the required velocity field can be determined from

equations (2.18) and (2.20). The basic disadvantage here as mentioned before is that the

second half step ensuring the incompressibility condition is inviscid, thereby, able to en-

sure only the normal component of the velocity boundary condition. This error is slightly

qualified owing to the fact that the velocity boundary condition in the first half step is the

no-slip condition. There are methods that introduce the viscous component in the second

half step. One such method is mentioned in (10) in the form of a Crank-Nicholson scheme

u∗ − un+1

�t = −(un · ∇)un +
1

2
ν∇2un u∗ |S= bn+1 (2.27)

un+1 − u∗

�t = −∇pn+1 +
1

2
ν∇2un+1 un+1 |S= bn+1 (2.28)

This is second order accurate for the viscous term but, like the non−fractional step schemes,

some complicated pressure condition must be used to enforce the incompressibility.
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2.2.1.3 Artificial incompressibility

This method, first proposed by Chorin in 1967, allows analysts to take advantage of the

immense advances made in the analysis of compressible flow. The main idea of this method

is to replace the continuity equation with a slightly modified version in order to make it

compressible and, hence, solve it as an evolution equation in pressure. In order to achieve

that a time derivative of the pressure term is added to the continuity equation giving

1

β

∂p

∂t
+
∂ui
∂xi

(2.29)

This was originally introduced for the steady state Navier−Stokes equations, so that the

artificial compressibility term vanishes as the steady state is achieved. Here ‘t’ does not

represent the real physical time but an artificial ‘pseudo’ time. This gives a mixed hyper-

bolic/parabolic form of equations, and many algorithms developed for similar compress-

ible flows could be used to solve these equations. For a steady state formulation Chorin

proposed a leap-frog time differencing scheme for pressure and a Dufort-Frankel space

differencing method for velocity at the regular grid points. Peyret and Taylor adopted the

staggered grid formulation explicit in time (12). What this method implies on a physical

level is that pressure waves now travel at a finite speed depending on the incompressibility

factor β rather than instantaneously propagate to all points in the domain, thus the choice of

β is very important. The higher its value the closer the formulation will be to incompress-

ible flow. But at the same time, however, too high a value will tend to make the equation

stiff. But if β is too small then the propagation speed will be too slow which will effect
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other factors like the viscous boundary layer, flow separation, etc. which might prevent

convergence.

The governing equations are iterated in the ‘pseudo’ time until steady state is achieved.

Although because of the compressibility introduced in the continuity equation this method

was not preferred for unsteady flow, it has been proven successful for such flows as well

(13). The general idea for unsteady flows would be to use an iterative procedure using an

artificial compressibility method for each physical time step, ensuring that incompressibil-

ity is met at each step.

2.2.2 Non-Primitive variables

Given the importance of vorticity as a physical variable, especially in vortex dominated

flows, a vorticity-based approach to formulate the Navier-Stokes equations is a popular

alternative to the primitive variable formulation. In such cases, it makes more sense to

analyze the flow based on vorticity, which has an extensively researched and understood

transport equation. The study of vortex generation at boundaries, along with its diffusion

and advection are very important in analyzing flow seperation, drag etc. in vortex dom-

inated flows. Mathematically, owing to the vorticity ω being one order higher than the

velocity u a vorticity formulation implicitly gives a more accurate velocity field. Vorticity-

based methods also give a better estimate of the skin friction since they are based more on
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the shearing process itself. For flows with high Reynold’s number the vorticity seems to

be concentrated in the wake region, thereby, greatly reducing the computational domain.

However, this formulation is also plagued by its own set of problems. The kinematic prob-

lem for the vorticity-velocity relation is overdetermined as it has both the Neumann and

Dirichlet boundary conditions prescribed, whereas the dynamic vorticity transport equa-

tion has no boundary conditions for vorticity. Also, there does not seem to be any physical

boundary condition for the vorticity independant of the velocity boundary conditions.

The creation of vorticity can be attributed to the no slip boundary Condition which results

in a torque and hence an angular velocity being imparted on the packets of fluid. This

vorticity creation at the boundary should be represented by the vorticity boundary condi-

tions and has been the general reasoning used to tackle this issue. Lighthill, One of the

pioneers in this approach, proposed a fractional step method starting with an arbitrary vor-

ticity boundary condition (14). This results in a velocity field which does not satisfy either

of the two velocity conditions. He then proposed adding a velocity potential to take care of

the normal flow, thereby getting slip velocity at the boundary. This slip velocity was called

the vortex sheet and said to represent the boundary vorticity. Chorin (14) proposed a similar

approach using the Prandtl boundary layer approximation. He basically split the Navier-

Stokes equations into a viscid and an inviscid part. The Euler equation is then solved to

give a slip velocity at the boundary. To get rid of this, vortex sheets are introduced and

the resulting vorticity field is then used to solve the diffusion equation to get the correct

vorticity field at the desired time step. This formulation does not seem to satisfy the no-slip
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as also the normal boundary condition for velocity simultaneously and independent of the

geometry.

There have been many such models based on generation of vorticity at the boundary, but

there is an entirely different school of thought which believes that a vorticity creation

method does not fully explain vorticity interaction with solid boundaries. This led Quar-

tapelle and Valgriz (10) to introduce an integral constraint on the vorticity. This ‘nonlocal’

approach couples the vorticity everywhere in the domain to the boundary velocity. A sim-

ilar approach was adopted by Anderson (14) who suggested requiring the time derivative

of these integral constraints be made to vanish. These methods as per Quartapelle (10) are

the true representation of the vorticity diffusion and interaction with solid walls. These

are ofcourse a kind of projection methods, where an initial ‘wrong’ vorticity, based on an

arbitrary vorticty boundary value is ‘corrected’ by a projection onto the space of harmonic

functions. This is achieved by the integral condition. This Chapter deals with a particular

type of formulation called the non-primitive variable formulation and a brief overview of

solution strategies based on Quartapelle’s book (10) is given for both two and three dimen-

sional flows. The next Chapter covers hybrid formulation, also called the vorticity-velocity

formulation.
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2.2.2.1 Vorticity−stream function formulation for two dimensional flows

One possible way to circumvent the problem of pressure boundary conditions is to elim-

inate the pressure term entirely. This is exactly what is achieved in the vorticity-stream

function formulation of the Navier-Stokes equations. In this formulation the Navier-Stokes

equations are represented in terms of the vorticity ω and the stream function ψ. So now

the unknowns are ω and ψ instead of u, v, p, reducing the number of unknowns by one.

It also presents the added advantage of automatically taking care of the incompressibility

condition owing to a property of the stream function. In two dimensions the above repre-

sentation comprises two scalar equations obtained as follows:

In two dimensions vorticity ω is a scalar given by

ω = ∇× u · k (2.30)

while the velocity can be represented as the curl of a Stream-function ψ given by

u = ∇× ψ (2.31)

Equation (2.31) clearly implies that ∇·u = 0. Substituting equation (2.31) in (2.30) gives

the Poisson’s equation for the Stream-function

−∇
2ψ = ω (2.32)

Taking the curl of the momentum equation and using equations (2.30), (2.31) and ∇·u = 0

gives the vorticity transport equation

∂ω

∂t
+ J(ω, ψ) = ν∇2ω (2.33)
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where, J(ω, ψ) is the Jacobian matrix representing the curl of the advection term namely,

∇× [(u · ∇)u].

The Dirichlet and Neumann conditions for the above two equations are derived conditions

deduced by separately tackling the normal and tangential components of boundary condi-

tions of the velocity equation (2.7) i.e. u |S= b. They are given by, ψ |S= a and ∂ψ

∂n
|S= b,

where, a =
∫ s
s1
n ·bdS and b = −τ ·b given that s1 is any fixed point on the boundary and

τ is a unit vector tangential to the boundary. An initial condition for the vorticity can also

be derived using the definition of vorticity and the initial condition for velocity equation

(2.6) giving the following initial condition

ω |t=0= (∇× u0) · k (2.34)

Therefore the Navier-Stokes equations in the two dimensional vorticity-Stream function

formulation can be written as

∂ω

∂t
+ J(ω, ψ)− ν∇2ω = 0

−∇
2ψ = ω (2.35)

ψ |S= a ,
∂ψ

∂n
|S= b

ω |t=0= (∇× u0) · k

Provided that

∇ · u0 = 0

∂a(S, 0)

∂s
= n · u0 (2.36)

28



One of the problems with this kind of formulation is the nonlinear advection term which

also couples the vorticity and stream function variables. The other important issue is the

overspecification of ψ owing to both Dirichlet and Neumann conditions present as opposed

to the underdetermined problem for ω with no boundary condition specified for it. The

nonlinear terms can be dealt with using the standard linearizing techniques for nonlinear

equations. Some of the ways in which the problem of the boundary conditions is tackled

are discussed below.

2.2.2.2 Biharmonic formulation

One way to avoid the boundary value problem for vorticity is to eliminate the vorticity term

from the transport equation. This is achieved by substituting the Poisson’s equation for the

stream function into the voticity transport equation resulting in the following equation

∂2∇2ψ

∂t
− ν∇4ψ + J(∇2ψ, ψ) = 0

ψ |S= a ,
∂ψ

∂n
|S= b (2.37)

where, ψ0 is the solution of the Dirichlet problem

−∇
2ψ0 = (∇× u0) · k , ψ0 |S= a(S, t) (2.38)

Where u0 and a as before satisfy the solenoidal and the compatibility condition and k is the

unit vector in the Z direction. Since the equation is fourth order elliptic, the specification

of both dirichlet and Neumann conditions no longer make it overspecified.
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2.2.2.3 Coupled formulation in vorticity and Stream function

Another method to eliminate problems associated with the overdetermined problem is to

solve (2.35) as a coupled equation in vorticity and stream function even in the absence of

the nonlinear term. This is achieved by a unique coupling through the boundary conditions

by associating one boundary condition with the transport equation and the other with the

Poisson’s equation. This can be written as

∂2∇2ψ

∂t
− ν∇4ψ + J(∇2ψ, ψ) = 0 such that ψ |S= a

−∇
2ψ = ω such that

∂ψ

∂n
|S= b (2.39)

The spatial discretization for both these methods can be done by any of the three meth-

ods, namely, finite elements, finite differences, or spectral methods. Inspite of no direct

implementation of the integral constraint, the couple formulation still satisfies the nonlocal

character of vorticity. Hence further fortifying the idea of an integral condition on vorticity.

2.2.2.4 Uncoupled formulation using vorticity integral conditions

To split the two terms in the vorticity stream function formulation it becomes necessary

to determine supplementary conditions for vorticity to account for its lack of boundary

conditions. Quartapelle and Valz-Cris (10) came up with an integral constraint on vorticity∫
ωηdΩ =

∮
(a
∂η

∂n
− bη)dS (2.40)
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giving the following set of linearized equations

(−���+ γ)ω = f,

∫
ωηdΩ =

∮
(a
∂η

∂n
− bη)dS (2.41)

−∇
2ψ = ω, ψ |S= a

Where η is any harmonic function defined in the domain Ω. This is a semi implicit dis-

cretization in time with ω ≡ ωn+1 and ψ ≡ ψn+1 at the new time level tn+1. One of

the ways to implement the integral conditions and solve the uncoupled equations is based

on utilizing the linearity of the above formulation. It consists of decomposing the vortic-

ity transport equation using the principle of superposition. The split formulation can be

represented as

ω(x) = ω0(x) +

∮
ω‘(x; ζ‘)λ(ζ‘)dS(ζ ′) (2.42)

where, ω0 and, ω‘ are the solutions to

(−���+ γ)ω0 = f ω0 |S= 0 (2.43)

(−���+ γ)ω‘ = 0 ω‘(x; ζ‘) = δ(s− ζ‘) (2.44)

for any ζ‘ ∈ S and δ is the dirac delta function over the boundary

The value of the boundary function can then be evaluated by imposing on ω the integral

constraint (2.40) with respect to all harmonic functions on the boundary which are the

solution to the following problem

−∇
2η = 0 such that η(x; ζ) = δ(s− ζ) for any ζ ∈ S (2.45)

And finally come up with a linear equation of the type Aλ = β

31



where, the value of the matrix A is of the form
∫
ω(x; ζ‘)η(x; ζ)dΩ and can be calculated

and stored in the beginning.

The stream function in the above form exists only for flow in two dimensions, so the

vorticity-Stream function formulation is rather difficult to implement for a three dimen-

sional flow. Also, the vorticity is now a vector with two tangential components on the

boundary. The solenoidal property of the vorticity is no longer implied by its definition

but needs to be enforced. It will be shown in the next Chapter that the divergence of the

vorticity vector in three dimensions can be enforced to be equal to zero by the following

two boundary conditions

∇ · ω |S= 0 (2.46)

∇ · ω |t=0= ∇ · (∇× u0) (2.47)

But the real problem starts with the boundary conditions for the three dimensional “equiv-

alent” for the stream function for which different schemes involving different vector po-

tentials have been developed, each having its own set of boundary conditions and its own

set of elliptic equations to solve. But each method has to come up with a set of boundary

conditions for the vector function to ensure its unique solution. Apart from having to solve

such complex equations with often debatable boundary conditions, these methods are also

not well suited for a variational approach which often turns out to be computationally very

expensive. On account of these issues with the three dimensional approach another method

has begun to garner interest. This new approach, called the hybrid methods, uses a vorticity
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velocity formulation of the Navier-Stokes equations and seems to be quite well suited to

two dimensional as well as three dimensional flows. This method will form the basis of

this research and shall be covered in the next Chapter.
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Chapter 3

Hybrid methods

3.1 Introduction

These methods are based on hybrid formulations in terms of the primitive and nonprimitive

variables velocity and vorticity. They are well suited for both two and three-dimensional

flows. Some of the advantages of vorticity-velocity (ω, v) formulations compared to the

classical formulation with primitive variables or with the nonprimitive vorticity-stream

function methods (2) are:

1. Vorticity is a relevant physical variable which has been extensively studied and its

distribution is of immense importance. The velocity is perhaps the most important

physical variable which completely defines the kinematical problem at hand. And
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the fact that they are related by a simple elliptic equation makes this approach all the

more advantageous.

2. The velocity can be supplemented by a unique set of boundary conditions as opposed

to a vast number of boundary conditions necessary for a unique solution of the stream

vectors or the velocity potentials.

3. The non-inertial terms caused by an accelerating reference frame enter into the flow

solution through the initial and boundary conditions, without having to do anything

extra to evaluate those non-inertial terms.

4. Relative ease of implementing vorticity conditions at infinity as compared to that for

pressure.

But hybrid formulation also has some disadvantages too. As already mentioned, the issue

with this method is the over-determined kinematic problem and the underdetermined dy-

namic problem. The unsteady problem in three dimensions has six unknowns compared to

the four in primitive variable methods.The general formulation can be written as

∂ω

∂t
+∇× (ω × u) = ν∇2ω (3.1)

∇ · u = 0 (3.2)

ω = ∇× u (3.3)
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Many methods involve a Poisson’s equation obtained from the curl of Equation 3.3 and

utilizing (3.2) to give

∇
2u = −∇× ω (3.4)

The major problem here is ensuring the divergence condition as well as the curl of velocity.

As mentioned before, the zero divergence of velocity can be ensured throughout the domain

by enforcing it on the boundary. But now the solenoidal property for the vorticity also has

to be ensured, which can be done in the following way.

Taking the divergence of the transport equation gives the following diffusion

∂(∇ · ω)

∂t
= ν∇2(∇ · ω) (3.5)

Imposing the boundary condition ∇ · ω |S= 0 on the divergence of vorticity, along with

the obvious initial condition ∇·ω |t=0= ∇·(∇×u0), should give a unique solution to the

diffusion equation for ∇·ω, i.e. ∇·ω = 0 therefore, the solenoidal property is confirmed.

Gatski (15) has classified the solution strategies into method A and method B. Method

A “utilizes” the continuity and curl Equations 3.2 and 3.3 as the kinematic equations to

solve and Equation 3.1 as the dynamic transport equation. Method B comprises of solving

Equations 3.1 and 3.4.

Fasel (3) was among the first to publish numerical results of this method. He used the

normal component of the Poisson equation for velocity and the tangential derivative of

the continuity equation along with the vorticity transport equation. The boundary condi-

tion, in addition to the usual velocity condition, was simply the above-mentioned Poisson’s
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equation on the boundary. Like this, many formulations based on a derived vorticity condi-

tion were formulated. Since none of these conditions are genuine constraints, many authors

have solved the governing equations without using any vorticity boundary conditions what-

soever. This has led to the use of an integral constraint on the vorticity rather than a local

boundary condition.

Since most of the methods do not ensure a solenoidal vorticity field by virtue of the bound-

ary conditions (16), many authors have resorted to using a projection method to ensure the

solenoidal property of vorticity. Of course, as shown by Wu, et al. (17), the non-solenoidal

vorticity can be used to solve for a solenoidal velocity field. However, to find a vorticity

field that is solenoidal, the vorticity is decomposed by the Helmholtz theorem to get the

Poisson equation,

∇
2φ = ∇ · ω0 (3.6)

where, ∇φ is the solenoidal part of the computed vorticity. Once ∇φ is solved for from

the above equation, the non-solenoidal vorticity can be projected onto the solenoidal field

using the relation

ω = ω0 −∇φ

The next section deals with some of the formulations of the vorticity−velocity methods as

presented in (10)
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3.1.1 Equations in three dimensions

Using the above-mentioned boundary and initial conditions for vorticity along with the

definition ∇ × u = ω, the vorticity−velocity formulation in three dimensions can be

represented as

∂(∇ · ω)

∂t
− ν∇2(∇ · ω) = 0 ω |t=0= ∇× u0

∇
2u = −∇× ω uS = b ∇ · uS = 0 (3.7)

n · ω |S= n · ∇ |S ×b ∇ · ω |S= 0

Given the compatibilty conditions
∮
n · bdS = 0, ∇ · u0 = 0, n · bt=0 = n · u0 |S

The above formulation can be solved numerically by a semi-implicit discretization in time

and a spectral method for spatial discretization. The lack of boundary values for vortic-

ity can be taken care of by the influence matrix technique as introduced by Daube (18).

This will be briefly introduced in the next section for two dimensional flows along with a

temporal discretization scheme to linearize the formulation before resolving it in space.

An uncoupled formulation using an integral constraint can be written in the following way,

∂(∇ · ω)

∂t
− ν∇2(∇ · ω) = 0 ω |t=0= ∇× u0∫

∇× ω · ηdΩ =

∮
(n× b · ∇× η + n · b∇ · η)dS (3.8)

n · ω |S= n · ∇ |S ×b ∇ · ω |S= 0

∇
2u = −∇× ω uS = b
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Where, η is a harmonic vector field defined by the following problem,

−∇
2η = 0, n× η |S= 0 (3.9)

The problem here is the implementation of the the integral constraint in a variational form.

The culprits are the boundary conditions n · ω |S= n · ∇S × b and ∇ · ω |S= 0 which

cannot be used together in a variational formulation.

3.1.2 Equations in two dimensions

As shown in the vorticity−stream function formulation for two dimensions, the vorticity

is now a scalar variable given by ω = ∇ × u · k giving the following set of governing

equations

(
∂ω

∂t
− ν∇2ω)k +∇× (ωk × u) = 0, ωt=0 = ∇× u0 · k (3.10)∫

ωdΩ =

∮
τ · bdS (3.11)

−∇
2u = ∇ω × k ∇ · u |S= 0 u |S= b (3.12)

Provided the compatibility conditions
∮
n · bdS = 0, ∇ · u0 = 0, n · bt=0 = n · u0 |S are

met. Here τ is a unit vector tangential to the boundary.

As before, a semi-implicit dicretization can be performed by first discretizing the advection

term explicitly, followed by an implicit scheme like the Crank-Nicolson scheme for the

diffusion terms.
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This gives the following linearized time dicretized formulation,

(−∇
2 + γ)ωn+1 = f, in Ω

−∇
2un+1 = ∇ω × kn+1 u |S= b (3.13)

∇× un+1 = ωkn+1

∮
S

bn+1
· ndS = 0

Just as for the primitive variable formulation, an influence matrix technique devised by

Kleiser and Schumann can be used for the vorticity-velocity formulation as well. Details

of its implementaion are briefly covered in Appendix B.

Solving these methods numerically, as with the three dimensional case, has not been free

of problems for both the finite element and the finite difference methods. The integral

constraint does offer a better representation of vorticity diffusion and its interaction with

solid boundaries, there is an inclination towards using such constraints. Several innovative

techniques like the staggered discretization of vorticity by Napolitano and Pascazio (10)

have resulted in avoiding certain problems related to a doubly singular influence matrix in

the above linear equation. The following sections describes how these problems can be

solved by a new method belonging to the hybrid family.
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3.2 The Kinematic Laplacian equation method

The Kinematic Laplacian equation method was first introduced by Ponta in a paper (19). It

is a vorticity−velocity method which decouples the evolution of vorticity from the spatial

solution of a velocity field. Vorticity is advanced in time by integrating a vorticity transport

equation for which an initial velocity field is obtained from the solution of the weak form of

a PDE called the Kinematic Laplacian equation (the KLE). The KLE in turn is solved using

the vorticity field obtained by the time integration of vorticity from the previous time step.

The no-slip, no-normal flow Boundary conditions for velocity required for solving the KLE

are solved over a sequence of two steps. This basically involves two integral projection in

each time step ensuring compatibility of the two fields at each step. This is explained in

greater detail in the following sections which are taken from a paper on KLE by F.L. Ponta

(20).

3.2.1 The constant-curl Laplacian equation

As stated in (21), the idea behind using a Laplacian was to come up with a simple lin-

ear PDE along the lines of a potential flow equation, but, which could also account for

rotational effects as seen in turbines. This lead to a Kinematic equation for solving time

dependant flows over slender bodies with no flow separation under the assumption of in-

compressible flow and a constant curl.The following vector relation can be used to get the
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Laplacian of the velocity field

∇2u = ∇ ·∇u = ∇(∇ · u)−∇× (∇× u). (3.14)

The first and second terms can be ignored on account of the incompressibility and constant

curl condition.Thus, the Laplacian ∇2u = 0 can be solved numerically under the incom-

pressibility condition and the constant curl constraint. i.e. ∇·u = 0 and ∇×u = c, where

c is a constant.

This earlier version of KLE called the constant curl Laplacian equation (CCLE) (21), had

a narrow field of application owing to the constraint of no flow separation. Nevertheless,

CCLE was quite successfully used in the study of wind turbine blades (20).

3.2.2 A generalized Laplacian (ω, u) method: The KLE

As mentioned previously the KLE can be solved to get the spatial distribution of vorticity

and velocity. It’s a more general PDE expression than the CCLE, not limited to non-

separated flows. Consider a vorticity velocity formulation for a three dimensional Navier–

Stokes equation for incompressible viscous flow. Consider a domain with a solid boundary

S and a far field external boundary Ω. Therefore in a non-inertial reference frame,

∂ω

∂t
= −u · ∇ω + ν∇2ω + ω · ∇u (3.15)
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If the velocity field is known at a particular time step then the above equation can be written

as

∂ω

∂t
= −u · ∇(∇× u) + ν∇2(∇× u) + (∇× u) · ∇u (3.16)

This can be integrated in time to solve for ω at each node using an ODE solver using the

vorticity and velocity field from the previous time step. However, the vorticity field so

calculated is not compatible with the instantaneous boundary conditions, and so to solve

for the correct vorticity and velocity fields in the spatial domain, the following Laplacian

equation is used

∇2u = ∇D −∇× ω (3.17)

∇ · u = D (3.18)

∇× u = ω (3.19)

As explained in (19) the KLE is basically a solution of the weak form of (3.17) under the

simultaneous imposition of the expansion rate and the curl of the velocity i.e. the vorticity

field. These constraints are given by (3.18) and (3.19).

Sections 2.4 to 2.7 of (22) gives a good explanation of the physical significance of the two

constraints. Most hybrid methods simultaneously solve equations (3.17) and (3.16) under

the ∇ · u = 0 constraint i.e. incompressibility. The KLE, however, as mentioned earlier

solves (3.17) independent of the vorticity transport equation. Therefore the vorticity distri-

bution given by (3.19) can be used as a second constraint along with the rate of expansion
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given by (3.18) to solve for the velocity field in space. For a brief validation, consider

the decomposition of the velocity field into three orthogonal components: the irrotational

component uD with zero divergence, the solenoidal component uω with no vorticity and

the harmonic component uh. Given the no-normal flow at the boundary along with the

vorticity distribution the above mentioned decomposition i.e. u = uD + uω + uh has a

unique solution (22). (3.18) and (3.19) can be used to solve for uD and uω as

∇ · u = ∇ · uD = D (3.20)

∇× u = ∇× uω = ω. (3.21)

For uh substitute the above mentioned decomposition in to (3.16),

∇2(uh + uD + uω) = ∇2uh +∇(∇ · uD)−∇× (∇× uω)

= ∇D −∇× ω (3.22)

Substituting (3.20) and (3.21) in (3.22) gives,

∇2uh = 0 (3.23)

This Laplacian equation gives the solution for uh. Therefore the KLE ensures a complete

and unique solution of the velocity field.

To impose the no-normal flow and no-slip velocity boundary conditions on S together with

the correspondingly compatible boundary conditions on the vorticity, a solution method

based on two consecutive solutions of the KLE is used: the first under free-slip and the

second under no-slip boundary conditions on the solid surface. The algorithmic sequence

explained below (19, 20) is iteratively performed at each time step within an iterative time
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integration performed by an adaptive variable-stepsize ODE solver for incompressible flow.

1. The vorticity is advanced in time by integrating (3.16) in time at each node in space

to get an initial vorticity field ω̃n field. Since velocity from the (n− 1)st time step is

used to get vorticity for step n, this field is not compatible with the velocity boundary

conditions.

2. Enforce homogeneous conditions ω̃n at the boundary surface to get ω̃n0 . This is done

by imposing a zero boundary value for vorticity at each node on the boundary.

3. Applying the no normal flow velocity boundary conditions and setting ∂ux
∂n

= 0 on the

solid boundary, equation (3.17) i.e. the KLE is solved for 	un under the 2 constraints

given by (3.18) and (3.19) using ω̃n0 as the vorticity field. Here ux is the tangential

component of u.

4. Using this 	un the vorticity field is again calculated as ωn = ∇× 	un, only this time

both boundary conditions i.e. no-normal flow u.n = 0 and the no slip condition

u.τ = 0 are applied on S. This ωn can be seen as a vorticity field produced as an

effect of the slip induced in the previous step, somewhat like the vorticity creation

methods (23, 24, 25).

5. Using the above calculated vorticity field ωn a fixed velocity field un is computed as

a solution to the KLE using both constraints and the two boundary conditions i.e. the

no normal flow and the no slip condition.
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For the velocity boundary condition on the far field external boundary S∞, the correspond-

ing Dirichlet conditions are applied.

The above algorithm clearly shows the vorticity in time and velocity in space approach of

KLE. The momentum equation is solved in step 1 itself. Step 2-5 consist of solving the

KLE for each time step to get the spatial distribution of velocity, compatible with both

the vorticity distribution as well as the velocity boundary conditions. Setting vorticity

equal to zero at boundary is consistent with the free slip boundary condition for velocity

in step 2 and finally as in vorticity creation methods, the no slip condition of step 4 gives

the final vorticity field in response to the slip induced in step 3. It can be seen that the

two solutions of KLE , each with a different set of boundary conditions take care of the

vorticity boundary conditions also. These two integral projections on the velocity field

ensure a vorticity compatible with the velocity boundary conditions in each time step. This

decoupling between the vorticity evolution and the solution to get velocity distribution

along with the compatible vorticity distribution, makes it possible to solve problems with

different constitutive relations using this method since the physics involved in any such

relation is independent of the spatial solution of KLE. It also becomes much simpler to

implement the variational formulation since the PDE system now does not depend either

on time or the constitutive relations, but are simply a set of kinematic equations. Since

this method is integral and not limited to just the boundary data for calculating boundary

vorticity, it does seem to have a somewhat better physical interpretation then the other

vorticity generation methods (10).
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3.2.3 Variational formulation of KLE

A variational form of (3.17) can be written using the Galerkin method (20) as follows,∫
Ω

(∇ ·∇u) · δu dΩ = −
∫
Ω

(∇× ω) · δu dΩ, (3.24)

where δu is a virtual, arbitrary velocity field on Ω that is set to zero where ever Dirichlet

conditions are applied. The next step would be to integrate the left hand side of (3.24) by

parts and using the divergence theorem to get, δu vanishes on S∞,∫
Ω

∇u : ∇δu dΩ−
∫
S

n · ∇u · δu dS =

∫
Ω

(∇× ω) · δu dΩ. (3.25)

The no slip (as well as the free slip) and no normal flow boundary conditions ensure that

δu = 0, thereby reducing (3.25) to:∫
Ω

∇u : ∇δu dΩ =

∫
Ω

(∇× ω) · δu dΩ. (3.26)

The Laplacian operator also has an equivalent minimization formulation which gives for

the variational form of KLE the following functional,

Π =

∫
Ω

1

2
∇u : ∇u dΩ−

∫
Ω

(∇× ω) · u dΩ. (3.27)

To impose the constraints (3.18) and (3.19) the penalty method was used over other possible

schemes. A brief on why it is preferred over other more rigorous alternatives can be found

in (2). The penalty terms according to the two constraints given by (3.18) and(3.19) are

added to (3.27) giving the modified functional Π̃ as,

Π̃ = Π +

∫
Ω

αD

2
(∇ · u)2 +

αω
2
(∇× u− ω) · (∇× u− ω) dΩ (3.28)
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Where the penalty constants are given by αω and αD The stationary of Π̃ with respect to u

can be written as,

δΠ̃ =

∫
Ω

∇u : ∇δu− (∇× ω) · δu+ αD(∇ · u)(∇ · δu)

+ αω(∇× u− ω) · (∇× δu) dΩ = 0. (3.29)

Reordering the above equation gives,∫
Ω

∇u : ∇δu+ αD(∇ · u)(∇ · δu) + αω(∇× u) · (∇× δu) dΩ =∫
Ω

(∇× ω) · δu+ αωω · (∇× δu) dΩ, (3.30)

(3.30) gives the variational formulation for KLE for incompressible flow, with (3.18) and

(3.19) as the constraints. As mentioned before, this variational form can be solved by a

spatial discretization using finite elements or spectral methods. This thesis deals with a

spectral element approach which will be introduced in the next chapter.

Even though in previous paragraphs the KLE was referred to as a “vorticity-in-time/velocity-

in-space split approach”, this is more a general description of its time-space/vorticity-

velocity uncoupled nature than a strict definition of its algorithmic structure. Strictly speak-

ing, time-marching splitting or fractional-step methods replace simultaneous processes by

sequential steps as a means to increase efficiency (26). Split may be by dimensions (e.g.

a three-dimensional process split into three one-dimensional substeps), or by physics (e.g.

advection on one fractional step, pressure adjustment on another, and diffusion on a third).

For the hydrodynamic equations, the advantage of splitting-by-process is that the nonlinear

advection process can be treated by a different algorithm than pressure adjustment, which
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in turn can be different from diffusion, the latter two involve a linear solution each. The

advective step is usually advanced explicitly and the adjustment of fields, is integrated im-

plicitly. A typical example of this technique is the very successful AB3CN (third-order

Adams-Bashforth/Crank-Nicholson) three-step scheme (see (27, 28), among others). Be-

sides its advantages, splitting also has some drawbacks, mostly related with consistency

and the treatment of boundary conditions (see (26), Sec. 13.1–13.4). The choice of appro-

priate boundary conditions is quite important in minimizing the splitting error, as shown by

Karniadakis et al. (29), where high-order pressure boundary conditions are found to be the

key to the time accuracy of the splitting scheme.

Contrarily, there is no splitting whatsoever in the KLE method. All terms in the physical

problem are solved simultaneously during time integration of the vorticity field, and all

the spatial components of the velocity are solved together by the KLE. Since the KLE

is an entirely Kinematic equation with the entire physics concerned with any of the non-

linearities and complex constitutive relations limited to the time integration schemes, it

favors modeling complex flow problems like non-Newtonian flows or turbulent flows etc.

Since it is also a universal vector equation, basically any field represented by this relation

can be solved for as long as the divergence and curl of that field has a solvable transport

equation. Also, since the vector relation is independent of the time iteration process, the

KLE can be coupled with other processes like heat transfer or chemical processes by simply

adding the required relation to the existing ODE system. So basically just the source term

to the KLE is changed to solve different physical problems.
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Chapter 4

Numerical implementation of the KLE

4.1 Introduction

This chapter deals with the numerical implementation of the KLE using a spectral element

method to discretize Equation 3.30 in space along with a predictor-corrector time integra-

tion scheme. The spatial discretization scheme used here is a two dimensional isopara-

metric spectral element with a high order Lagrangian polynomial to interpolate solutions

within the element. An isoparametric element was chosen because of the complex differen-

tial equations involved as also the complexity of the intended surfaces to be modeled. The

main advantage of this type of an element is that the integration has to be performed over

the “parent” element which represents a normalized domain in terms of a local co-ordinate
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Figure 4.1: A two-dimensional nine node isoparametric element in its natural coordinate system
along with a graphical representation of three of its nine interpolation functions i.e nodes 3, 8 and
9.

system varying between +1 and -1. This makes it easier to implement any numerical tech-

nique. An isoparametric element uses the same Lagarange polynomial (shape functions)

to interpolate the unknown variable within the elements as the ones used to map the global

to local coordinates. Figure 4.1 shows an example of biquadratic interpolation functions

of a nine-node isoparametric quadrilateral element on its natural system of coordinates, i.e.

(r,s). A quadrilateral element was chosen because of its high convergence rate and its abil-

ity to reduce the skin error on curvilinear bondaries when compared to linear elememts.

Nevertheless, other discretization techniques may be applied to the implementation of the

KLE method. For our experimentation, the spectral element method is used for the KLE

which will be discussed in the following section.
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4.2 The Spectral-element method for KLE

The general trend in finite element methods had been to use Lagrange polynomials of a

particular order as shape functions. To improve the accuracy, the number of elements was

increased. This is called an h-type finite element method. For sufficiently smooth problems

these methods converge at an algebraic rate with the error being proportional to 1

Np+1 where

N is the number of degrees of freedom and p is the order of the Lagrange polynomial (30).

Another approach would be to follow the h-type discretization with an increase in the

order of the interpolating polynomial within each element to improve accuracy. Again, for

sufficiently smooth solutions this would give an exponential convergence rate (30). These

are called the p-type methods. The spectral method is a particular implementation of the

p-version of an hp finite element method.

The spectral-element method was introduced some twenty years back (31, 32). It’s main

purpose was to tackle complicated domains which the spectral methods were not able to

handle. As shown in (33) this h− p type of method was capable of local refinements, and

where thus good for complex geometries and at the same time preserved the high conver-

gene rates seen in spectral methods. Owing to the h− p discretization, a high accuracy can

be achieved for less number of nodes, amking it a highly memory-minimizing method (26).

Mostly the Legendre or Chebyshev polynomials are used by the spectral element meth-

ods in order to come up with suitable basis functions. The same points are used for the
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interpolation functions as are for the numerical integration within the elements. These col-

location points are called the Gauss-Legendre-Lobatto (GLL) quadrature points. This leads

to diagonal mass matrices making the system more efficient.

As mentioned at the beginning of this chapter, in this particular analysis an isoparametric

element is used with the Lagrangian polynomials as interpolating functions for the solution.

The variational formulation for the KLE using the Galerkin method, shown in the previous

chapter, is used to solve for the velocity field at the nodal points. The nodes are at the

GLL points.For higher order elements using the GLL points in place of the regular equis-

paced points is more economical (34). Giraldo (35), through experiments has shown that

for higher order interpolating polynomials (in excess of 4) the solution results for Gauss

Legendre and GLL quadrature are comparable.

As shown in (20) the finite-element discretization of the velocity field and its gradient can

be represented as,

u =

⎡
⎢⎢⎣
ux

uy

⎤
⎥⎥⎦ = H ·Ue, ∇u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ux
∂x

∂ux
∂y

∂uy
∂x

∂uy
∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= B ·Ue, (4.1)

where H is the interpolation-function, B it’s derivative and Ue is the array of discretized

velocity at nodes of each element,
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Ue =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1x

u1y

u2x

...

uNGL
2

x

uNGL
2

y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎣
h1 0 h2 · · · hNGL

2

0

0 h1 0 · · · 0 hNGL
2

⎤
⎥⎥⎦ ,

(4.2)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h1

∂x
0 ∂h2

∂x
· · · ∂hNGL2

∂x
0

∂h1

∂y
0 ∂h2

∂y
· · · ∂hNGL2

∂y
0

0 ∂h1

∂x
0 · · · 0 ∂hNGL2

∂x

0 ∂h1

∂y
0 · · · 0 ∂hNGL2

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.3)

where NGL = p+ 1 is the number of nodes of the Gauss-Lobatto interpolation.

The elements of (4.3) are given by,⎡
⎢⎢⎣

∂hk

∂x

∂hk

∂y

⎤
⎥⎥⎦ = J−1

·

⎡
⎢⎢⎣

∂hk

∂r

∂hk

∂s

⎤
⎥⎥⎦ , k = 1, . . . , NGL2, (4.4)

where J is the Jacobian operator which relates the natural to the local coordinate derivates,

J =

⎡
⎢⎢⎣

∑NGL2

k=1

∂hk

∂r
xk

∑NGL2

k=1

∂hk

∂r
yk

∑NGL2

k=1

∂hk

∂s
xk

∑NGL2

k=1

∂hk

∂s
yk

⎤
⎥⎥⎦ , (4.5)
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and (xk, yk) the local coordinates of the nodes. The divergence of the velocity field is given

by

∇ · u = m ·B ·Ue, m =

[
1 0 0 1

]
, (4.6)

and the curl of the velocity ωz (the only component of the curl not equal to zero), is obtained

as,

∇× u = r ·B ·Ue, r =

[
0 −1 1 0

]
. (4.7)

Similarly for vorticity,

ω = Hω · ω
e, ∇× ω =

⎡
⎢⎢⎣

∂ω
∂y

−∂ω
∂x

⎤
⎥⎥⎦ = Bω · ω

e, (4.8)

where ωe gives the vorticity values at nodes of each element calculated by integrating in

time the vorticity transport equation, and as shown for velocity Hω and Bω are the vorticity

interpolation-functions snd their derivatives respectively,

ωe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1

ω2

...

ωNGL
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Hω =

[
h1 h2 · · · hNGL

2

]
, (4.9)

Bω =

⎡
⎢⎢⎣

∂h1

∂y
∂h2

∂y
· · · ∂hNGL2

∂y

−∂h1

∂x
−∂h2

∂x
· · · −∂hNGL2

∂x

⎤
⎥⎥⎦ . (4.10)

For the finite element analysis, first each element can be thought of as a discretized sub-
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domain (Ωe). Therefore if equation (3.30) is considered at each Ωe and the corresponding

discretized values of the velocity and vorticity fields are substituted for, the following equa-

tion is obtained,

δUeT
· (Ke

L +Ke
D
+Ke

ω)︸ ︷︷ ︸
Ke

·Ue = δUeT
· (Re

L +Re
ω)︸ ︷︷ ︸

Re

·ωe, (4.11)

where

Ke
L =

∫
Ωe

BT
·B dΩ =

∫ 1

−1

∫ 1

−1

BT
·B |J| drds,

Ke
D
=

∫ 1

−1

∫ 1

−1

αD BT
·mT

·m ·B |J| drds,

Ke
ω =

∫ 1

−1

∫ 1

−1

αω B
T
· rT · r ·B |J| drds,

Re
L =

∫ 1

−1

∫ 1

−1

HT
·Bω |J| drds,

Re
ω =

∫ 1

−1

∫ 1

−1

αω B
T
· rT ·Hω |J| drds,

δUe gives the array of values at nodes of each element for the arbitrary δu.

The arrays and the matrices of (4.11) are assembled for each element to give the following

global system,

K ·Ue = R · ω. (4.12)

As mentioned earlier a quadrilateral element has high convergence rate and reduces the

skin error on circular boundaries. At the same time triangular elements find it easier to

change mesh density in a more smooth and gradual manner and are also more suitable

for unstructured meshing (20, 21). Thus the domain was first dicretized using triangular

elements which was subsequently converted to a quadrilateral mesh, by dividing each tri-
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Figure 4.2: A tri-quadrilateral finite element mesh derived from an unstructured triangular mesh.

Figure 4.3: The internal topology of a tri-quadrilateral element. Quadrilateral elements (I)–(III)
are the nine-node isoparametric elements. 1–19 is the in-triangle global numbering of the nodes.

angle into three quadrilaterals. This can be seen in figure (4.2). An important advantage

of this "tri-quadrilateralization" is a process called static condensation of internal nodes.

These nodes lying inside the triangle though used for elemental integration are not used

while assembling the final global structure matrices. These are later recovered from the

values obtained by the solution of the external nodes. To establish an equation for this
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condensation, as shown in (36), the system Ke
·Ue = Re

· ωe are partitioned as,⎡
⎢⎢⎣

Ke
aa Ke

ab

Ke
ba Ke

bb

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

Ue
a

Ue
b

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Re
a

Re
b

⎤
⎥⎥⎦ · ωe (4.13)

where a is for the degrees of freedom 1–24 of the velocity at nodes 1–12 and b is for the

degrees of freedom 25–38 of the velocity at nodes 13–19. The second row of the above

equation gives,

Ue
b = (Ke

bb)
−1

·Re
b︸ ︷︷ ︸

Re
b

· ωe − (Ke
bb)

−1
·Ke

ba︸ ︷︷ ︸
Ke

ba

·Ue
a, (4.14)

substituting this into the first row of (4.13) and reordering,

(
Ke
aa −Ke

ab · (K
e
bb)

−1
·Ke

ba

)
︸ ︷︷ ︸

Ke

·Ue
a =

(
Re
a −Ke

ab · (K
e
bb)

−1
·Re

b

)
︸ ︷︷ ︸

Re

·ωe, (4.15)

This is the condensed form. Assembling the arrays and matrices of (4.14) and (4.15) gives

the following global condensed system,

K ·Ua = R · ω, (4.16)

Ub = Rb · ω −Kba ·Ua, (4.17)

The static condensation process leads to almost a 40% reduction in the size of the global

system to be solved and also leads to a better condition number of the global structure

matrices. This is in accordance with the Schur complement method, where the condensed

matrix forms the Schur complement for the in-triangle nodes of the original system. As
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mentioned earlier none of the structure matrices depend on the physics of the problem, in

this case the vorticity or the time, they can be calculated and stored and used over and

over again as required. Since KK is positive definite and symmetric it is factorized by

the Cholesky decomposition method and the factor (triangular) so obtained can be used to

solve for Ua. One problem with the spectral element methods is the loss of the exponential

convergence and also the higher accuracy in case of singularities like shock in compressible

flow (37). This is often seen while interpolating non-smooth functions (abrupt changes in

boundaries and forces etc.) using high order polynomials.

Evaluating the right-hand side of the vorticity transport equation

As shown in (20) for the two-dimensional implementation of the time-integration proce-

dure, the vorticity transport Equation (3.16) can be written in a more convenient way as

follows,

∂ω

∂t
= F (ω, t) = ∇× (ν ∇ ·∇u− u · ∇u) . (4.18)

The RHS of (4.18)is solved for by carrying out the respective curl, divergence and gradient

operations on the discretized counterpart of u as found by the KLE algorithm previously

explained. Since, for the spectral-element case, the Gauss-Lobatto points are the same

as the nodes,therefore, for those lying on the inter-element boundaries, an average of the

values from elements sharing those boundaries can be used.

The weight of each Gaussian point depends on the mesh geometry and is calculated during
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assembly. So the arrays for the differential operators are assembled at the same time as

the Finite element matrices. Those arrays perform the differential operations on any vector

or tensor field, as a dot product with the corresponding discrete solution of that field. For

instance, the discrete form of the curl of the velocity field ∇×u is given by the dot product

Curl ·U. Thus, the discrete form of (4.18) is written as,

F(ω, t) = Curl · (ν Div −Uadv) ·Grad ·U, (4.19)

where Grad gives the gradient, Div the divergence of Grad, Curl the curl vector and Uadv

is obtained by reordering U to perfrom the dot product u · ∇u in the advective term.

Since none of them depend on the vorticity field or time, they can be, as with the structure

matrices, calculated and stored for further use. For the time integration Adams-Bashforth-

Moulton predictor-corrector (ABM-PECE) solver with multivariable order and adaptive

stepsize is used and the results show that it is efficient enough to pursue further research

(2) as discussed in the following sections.
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Chapter 5

Experiment and analysis

5.1 Introduction

This chapter deals with a numerical experiment performed with the aim of determining a

quality metric along with its threshold value, to be used in the mesh generation algorithm

for solving the KLE. Since this algorithm does not really incorporate the solution field of

the given problem, the experiment aims at testing certain metrics by seeing how well the

quality value of the elements, obtained using different measures, matches with the solution

of the KLE problem.

While difficult to give an absolute definition for mesh quality, it is safe to say that a good

quality mesh should accurately and efficiently solve the given differential equation, thereby
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suitably simulating the concerned physical problem. The following important aspects re-

garding mesh quality are mentioned by Knupp (38):

1. The mesh quality depends on the problem at hand.

2. The mesh should not create difficulties for the simulation. Such as, inverted elements,

high condition numbers, or clusters of large eigenvalues.

3. The mesh should result in sufficiently accurate solutions.

The first point is the reason behind performing the controlled distortion tests. Since the

quality metric should be problem specific, a series of runs of the KLE are performed on

a ‘distorted’ mesh. Since the KLE uses unstructured meshes, the main aim of the exper-

iment is to suitably quantify the distortion in order to prevent a mesh with poor quality

elements that have inverted edges, angles excessively large or small, poor aspect ratios, etc.

The experiment mainly comprises of performing a controlled distortion on a regular mesh,

solving the KLE for this mesh, and comparing the results with the quality obtained for that

mesh using various metrics. The metric that best reflects the results obtained is then used

to measure the quality of elements in the unstructured mesh.

As mentioned in Knupp‘s paper (38) two important functions expected of a quality metric

are:

1. Identifying defects like ill-conditioned elements, inverted edges, extreme values of
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angles and bad topology.

2. As a guiding factor to implement various smoothing and optimization techniques.

While solving the KLE in an unstructured mesh, several factors affect the result. The three

important ones guiding the design of this experiment are the h-refinement, the p-refinement,

and the amount of distortion. As mentioned in the previous chapter, this thesis is concerned

with the spectral element implementation of the KLE, therefore both the h and the p refine-

ment methods are equally important. Since the quality metric should reflect the effect of

distortion on the solution, one must consider the effect an h-p refinement has on factors

like error, convergence rates, solution times, etc. It is important to bear in mind that while

solving real problems in a distorted mesh, one might have to tinker with the number of

elements and the order of interpolation, thereby making all three factors equally important.

Keeping these things in mind, the controlled distortion experiment was performed and a

suitable quality metric, conforming to the solution of the KLE, was decided upon. This ex-

periment, along with the effect of distortion on the net error norm of the estimated velocity

and the condition number of the mesh is dealt with in the subsequent sections.
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5.2 Controlled distortion experiments

The idea behind a controlled distortion is to distort, in a step by step fashion, a regular

structured mesh. The KLE is used to solve a canonical flat plate problem for each distortion.

As mentioned earlier the reason for distorting the mesh in a controlled manner is not just to

come up with a suitable quality measure but also decide upon a suitable threshold value of

the distortion to help improve the element quality. For this purpose several different types

of distortions were considered,and finally the one shown in Figure 5.1 was considered as

the test distortion.

(a) A structured mesh with zero distortion

γ

(b) Distorted Mesh

Figure 5.1: A Structured mesh being distorted by γ radians

This distortion is specifically designed to ensure that the elements in the mid-region are the

most skewed elements and, as we move towards the edges the aspect ratio starts to dominate

as the element distorting factor. This makes it easier to compare various quality parameters
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used on a given mesh, especially if one is interested in ensuring that the metric should

represent skewness rather than aspect ratio as the main cause of bad quality elements. The

most useful feature of the distortion shown in Figure 5.1 is that this kind of distortion is

brought about by varying just one parameter, γ. γ represents the angle by which the line

dividing the given square domain at the centre, along the vertical axis, is twisted. Once

that is achieved, the rest of the nodes in the mesh are shifted only along the horizontal axis

with the vertical centre line as reference. This is done to achieve the kind of mix of skewed

elements and bad aspect ratio elements in the same mesh, as was mentioned earlier. Once

the mesh has been distorted the next step would be to use KLE to solve a test problem. The

canonical test problem of semi-infinite region of stationary fluid bounded by an infinite

horizontal flat plate given a sudden velocity along its plane is used here. This problem is

discussed in some detail in the next section.

5.2.1 The canonical test problem

The tests were conducted on the well-known problem of a semi-infinite region of stationary

fluid bounded by an infinite horizontal flat plate at y = 0, which is suddenly given a velocity

U in its own plane and thereafter maintained at that speed. This problem has an exact

analytic solution (see (22), Sec.4.3, among others). The velocity field described in a frame

of reference fixed to a plate moving in the negetive x direction is

u(y, t) = U erf
(

y√
4 ν t

)
, (5.1)
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where erf is the error function and y is the vertical coordinate. Rewriting (5.1) in terms of

the normalized velocity u/U , the normalized vertical coordinate y/Y , and the parameter

τ =
√
4 ν t /Y

u

U
= erf

(
y/Y

τ

)
, (5.2)

where Y is the height of the test mesh. The normalized vorticity distribution for this in-

compressible flow is given by the Gaussian function

ω

U/Y
=

2

τ
√
π
e−(

y/Y
τ )

2

. (5.3)

This problem is closely related with the key process of (ω, v) methods, i.e. the vorticity

generation at a solid surface due to the induced slip and its further propagation to the body

of the fluid. And in that sense, may be regarded as a canonical problem on the subject. For

a specified time, the analytic solution for the velocity and vorticity fields are given, respec-

tively, by the Gaussian and the error function of the spatial coordinate. The latter prevents

the occurrence of the trivial case in which the analytic solution coincides exactly with any

of the polynomial interpolant functions associated to the spectral-element technique. Thus,

besides analyzing the time-dependant problem, the spatial analytic solution was used at

specific times to test several aspects on the spatial discretization of the KLE.
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5.2.2 The experiment

This section briefly oulines the methodology for the controlled distortion experiment as

well as the reasoning behind it. It then goes on to discuss the analysis of the results in order

to come up with a suitable quality metric for the unstructured mesh being used to solve the

KLE.

The first step was to solve the KLE on each distortion for different values of h and p and

compare the results with the experimental values to get an estimate of the error. Here it

is worthwhile to note that, when used inside the time-marching process of the vorticity-

velocity scheme, the source term for the KLE solution at a given time is provided by a

computation made by the ODE integrator from an approximation in weak form of the

velocity field at the previous time step. This has the tendency to smooth out the shock

introduced at the initial stage. Hence, forcing the theoretical vorticity distribution given by

expression (5.3) at the initial stages as a source term for the KLE poses a very strict trial

on the KLE solution. This sharp forcing is actually more challenging than KLE’s normal

operational requirements as the spatial counterpart in a vorticity-velocity scheme.

So for each distortion, both h and p were tried over a range of values keeping one constant

while varying the other. As in spectral elements the nodes are not equidistant, the error in

velocity was plotted against the number of intervals in each dimension N�, which is equal

to the number of nodes minus one and represents the inverse of the average internodal dis-
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tance. To get a measure of what effect the distortion had on the solution both the velocity

error and the condition number of the stiffness matrix were plotted against N�. Since the

dominant flow is in the x direction, only the horizontal component of the velocity error was

considered for the analysis. An infinity norm of the error was considered, to get a global

estimate of the error in velocity. While the error gives an idea of the accuracy, the con-

dition number tells us how stiff the matrix is, and how sensitive it is to perturbations. An

ill-conditioned matrix not only converges very slowly but also blows up round-off and trun-

cation errors which are to an extent unavoidable. These values were taken for successive

values of τ at several stages of development of the boundary layer.

The problem considered here gives an initial jump in velocity, seen in the plots of the norm

of the error vs N∗. For τ = 0.01 the error is two to four orders of magnitude greater than

the error later on in the flow depending on the extent of refinement. Even though this is an

important stage of flow, it is not ideally suited for the above mentioned experiment since

the change in error with distortion is not very significant. This is expected since there is

an initial shock at the beginning which dominates the error. Figure 5.2 shows plots of an

error norm against N∗ for different values of τ . Plots of velocity error against the order of

discretization show that for τ values of 0.01 there is very little effect of increasing the order

of discretization or even the distortion. For this purpose the plots of the error norm vs N∗

are observed for stages further into the development of the boundary layer. Therefore, for

this experiment the plots for τ = 0.2 and τ = 0.9 are used. After 0.9 the domain truncation

error seems to dominate, therefore the range of τ between 0.2 and 0.9 is quite reasonable.
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Figure 5.2: Error plots for initial stages of boundary layer development for three different distortion
values while varying the order of the interpolation polynomial ”p“
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5.3 Observations and analysis

The analysis of the controlled distortion experiment can basically be broken down into two

parts. In the first part, the various plots obtained for different distortions and varying h

and p refinement are analyzed for the error. This is used to find the threshold distortion

after which, as will be seen later, there is huge jump in error. The second part is then con-

cerned with finding out a quality metric that can predict this jump in error, with reasonable

dependability based on the geometrical aspects of the mesh elements.

5.3.1 Error analysis

The purpose of this stage of the experiment is to find a threshold value for distortion. The

first step is to plot the condition number and the error norm of the velocity against N∗

for different values of γ. These plots are taken for both an h-refinement as well as a p-

refinement, varying one while keeping the other constant. One must remember that the

error can be reduced by the above-mentioned refinements, so the purpose of the above

tests would be to give a threshold value of distortion by seeing how the error behaves

with distortion and not the order of discretization. So if the same value of distortion gives

similar results of an extremely high error and condition number, it should give the desired

threshold value. Since the condition number is independent of the solution, depending

only on the meshing, an agreement between the results obtained by plots for the condition
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number and the error norm for varying discretization should validate the threshold value

observed. Figure 5.3 shows plots of the condition number against N∗ keeping the NGL

constant i.e the h-refinement plots for the condition number. The plots clearly show that

the condition number shoots up for γ = 0.75 radians, so the threshold value must lie

below the 0.75 radians value, somewhere around 0.7 radians where it shows reasonable

values. A check on the p-refinement curve shows similar results, as can be seen in the plot

shown for meshes with 7 and 20 elements respectively along a given direction.owing to

such high values the problem infact was not converging for values even slightly more than

0.75. As can be seen that the condition number is already going up at around 0.7 rad, it was

decided to limit the distortion to 0.7 rad, and this was justified by the error plots.

The next set of plots in Figure 5.4 are for infinity norm of error in velocity Vs N∗ for both

h and p-refinement. Keeping in mind the value of γ obtained from the condition number

plots, values for error for γ varying from 0 to 0.7 radians were plotted against N∗, again

for both h and p-refinement. As mentioned earlier these values are taken for τ = 0.2 and

τ = 0.9. These plots clearly show how the error blows up for γ = 0.7 radians. The log

values of the norm of error are taken since it gives a clearer picture of how and when the

error shoots up. The difference between the error values are apparent for the two different

cases of τ , since with increasing τ the boundary layer stabelizes further, as opposed to

the intial discontinuity. The three plots shown here are part of a series of plots for an

interpolation order ranging from 2 till order 10 and the number of elements ranging from

2 all the way till 50. This was, however, done keeping in mind the computational power
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Figure 5.3: Plots showing how the condition number increases with increase in mesh distortion,
keeping the interpolation order “p” constant, such that γ is measured in radians
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Figure 5.4: Plots of the error norm for different values of γ, keeping p constant and varying the
number of elements h, for τ = 0.2,where γ is given in radians
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available. Hence the values were selected to ensure that the N∗ values did not go beyond

320. This was based on an earlier experiment performed to test the computational limit of

the available resources. In fact there was no real need to go beyond 250 since after that the

error values did not change much and an increasing round off error more or less took over

from the decreasing truncation error. An important observation from the plots (a) and (c) of

Figure 5.4 shows how a higher value of p gives more accurate solutions even for the initial

stages, for relatively lesser number of elements.

The next step was to locate more precisely the threshold value of distortion. Figures 5.5-

5.6 represent plots taken over a range of h and p refinements with varying gamma and two

values of τ equal to 0.2 and 0.9. The γ values are increased from 0.6 to 0.75 radians.

The increment in γ was performed over a range of step sizes and finally a size of 0.0125

was observed to give satisfactory results. Plots for NGL values varying from 3 to 11 were

taken. This was to ensure that the threshold was based on the distortion rather than just

the h or p refinement. The different plots show a range of the threshold value varying from

somewhere around 0.61 to 0.68 radians. A combined plot for all these values given in

Figure 5.5 for both τ clearly shows this.
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The discretization has been represented by the N∗ value to avoid confusion. This plot

just shows that the threshold value lies approximately in the region between 0.61 to 0.68

radians, but an interesting result can be seen by observing the plot in figure (5.6) for

tau=0.2 alone. It can be seen that by increasing the value of NGL by just one order, the

error can be brought down dramatically, even when the number of elements is decreased by

almost half. This reduction in the N∗ value has a huge effect on the computational power

required and is one important advantage of the spectral element methods.

So it is safe to assume that a distortion of over 0.68 radians is enough to cause the KLE

to fail no matter what the mesh refinement value is. Once the threshold has been decided

upon we can go on to see how well the various quality metrics mentioned above represent

the distortion, especially for the region between 0.61 to 0.68 radians depending upon the

refinement being considered.

5.3.2 Quality Metric

This section analyzes the effect of distortion on the mesh using different quality metrics

in order to select the most suitable metric. The table (5.1) shown in the next page lists the

various quality metrics for both triangular and quadrilateral elements that were finalized for

the test. The distortion was carried out by varying γ as defined in Figure 5.1. The quality

plot was then compared with the corresponding error plots, i.e for the plot with similar
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Table 5.1
Quality metrics used for a 2-D distorted element

Quality type Quadrilateral Triangle

Quadrilateral shape met-
ric (39) QQUAD

8
∑

3

k=0
(1+r2

k
)/(rksinθ)

NA

where r =
√
γ22/γ11 is the

length ratio such that γk11 is
the length of the side con-
necting nodes k and k + 1
and γk22 is the length of the
side connecting nodes k and
k + 3

Diagonal Ratio (40) QDR max[d1, d2]/min[d1, d2], NA

where d1 and d2 are the 2 di-
agonals of the quadrilateral

EquiAngle Skew (40)
QEAS

max[θmax−90
180−90

, 90−θmin

90
], max[θmax−60

180−60
, 60−θmin

60
],

where θmax and θmin are
the maximum and minimum
angles (in degrees) between
the edges of the element

where θmax and θmin are
the maximum and mini-
mum angles (in degrees)
between the edges of the
element

MidAngle Skew (40)
QMSKW

cos(θmin), NA

where θmin is the minimum
angle formed between the
bisectors of the edges of the
quadrilateral

77



number of elements and value of γ to relate the threshold value of γ to the worsening

quality. The quality metrics used are based on shape measures as well as skew metrics.

The basic idea of a shape measure is that it relates both skew as well as the aspect ratio

to the element quality (39). This is not always desirable since the aspect ratio measure is

not well suited for an unstructured quadrilateral mesh which can have very extreme edge

sizes and angles (38). In fact, while using the meshing algorithm it was ensured that the

element sizes and aspect ratios were kept in control. And since the triangle was divided

into three quadrilaterals using the centroid, the sizes obtained where comparable. Thus

the main purpose of this experiment is to check the distrotion for skewness, hence the

predilection towards skew metrics. It should be noted that there is no real control over

the quadrilateralization, as far as the skewness is concerned, so the quality metric is the

only way an element can be analyzed for iteration till an acceptable quality is obtained.

The following figures show a color map representing quality of each element in terms of

the metric being used. Each figure consists of two color maps each for different levels

of distortion. Those for the Diagonal ratio, Equi-angle skew and Mid-angle skew quality

metrics consist of two figures, one before and one after the threshold value. Here γ varies

from 0.4 to 0.65 radians and the number of elements along an axis for all these figures

is 6. The γ values shown for the quadrilateral shape metric in Figure 5.8 are both before

the threshold value to basically give an idea of how this metric is not at all suited for the

problem at hand. Figure 5.7 clearly shows how the Qdr metric fails for higher distortion.

With increasing distortion the most skewed elements all of a sudden have better qualities
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Figure 5.7: A color-map and a histogram representing mesh quality Using the Diagonal Ratio
quality metric for two meshes with different levels of distortion

than the less distorted elements and the quality for the most distorted elements seems to

be increasing with increasing distortion. This can also be seen in the histograms for this

quality metric, where the percentage of elements with really bad qualities has actually

gone down, despite the fact that the quality of some of the elements has worsened. So this

is clearly not the metric which can be used for this case.
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The Qq quality measure represented by a color map in Figure 5.8 shows better results

as far as worsening quality conditions with increasing distortion are concerned. But, as

mentioned before, this measure is a blend of aspect ratio and skewness, which can clearly

be seen in the plots. The quadrilateral elements which seem to be of decent quality as

far as the skewness is concerned turn out to give bad quality values. The worst quality

elements are clearly the ones with both skewness and bad aspect ratios rather than just

the most skewed elements. The remaining two quality metrics are based entirely on a

0.84

0.86

0.88

0.9

0.92

0.94

0.96

(a) Nel=6 and γ = 0.4 radians

0.84

0.86

0.88

0.9

0.92

0.94

0.96

(b) Nel=6 and γ = 0.5 radians

Figure 5.8: A color-map representing mesh quality using the Quadrilateral shape metric for two
meshes with the same number of elements but increasing distortion

normalized skewness value of the elements. They show similar results as can be seen in

the plots shown in Figures 5.9 and 5.10. The elements with maximum distortion in angle

are the worst elements. This agrees well with the error plots, so seem to be best suited for

this case. The histograms also clearly show a shift in the quality values towards a region

with poorer quality, as the distortion increases. The Qeas quality metric (Figure 5.10)does
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Figure 5.9: The Mid-angle skew quality metric for two meshes with the same number of elements
but varying distortion

seem to be more sensitive to the distortion, i.e. the skewness as compared to the Qmskw

(Figure 5.9). Apart from that, it is easier to implement as far as the computational effort

is concerned. So Qeas is the obvious choice for this particular case. This quality metric

Qeas was then used to check the quality of the unstructured tri-quadrilateral mesh being

used for the KLE. A number of tests were then performed for different distortions, with
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Figure 5.10: The Equi-angle skew quality metric for two meshes with the same number of elements
but varying distortion

different levels mesh density to find a relation between the mesh quality using Qeas and the

threshold value of distortion. It could be seen from these results that every time an element

with quality greater than 0.42 was found, a substantial jump in error could be seen.

Figure 5.11 is an example of how an unstructured tri-quadrilateral mesh looks like along

with a color-map representing the quality of that mesh. The elements showing the worst
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(a) A tri-quadrilateral Mesh with 21 Edge
nodes

0.35

0.4

0.45

0.5

0.55

0.6

(b) A color-Map Showing the quality of the tri-
quadrilateral elements Using the Qeas metric

Figure 5.11: A tri-quadrilateral Mesh for a Square plate along with a color-Map for qaulity using
the Equi-anle Skew quality Metric

quality, comparable with those for worst distortions of the controlled distortion experiment,

were observed. These are the ones with the darkest shade of blue. It was noted that the

elements with the maximum obtuse angle at the centroid of the triangles showed the worst

qualities. This can be checked again with a more complicated geometry than a square plate

as shown in Figure 5.12. This geometry consists of a rectangular domain with a cylindrical

region in between and a much denser mesh than the previous example. Figure 5.13 shows

a color map for quality for this mesh. A zoomed in region of the color map has also been

shown, where the region highlighted by a red square shows the element whose quality is

poor because of an angle greater than 120o.
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5.4 Improved tri-quadrilateralization

The triangulation was designed to take care of thin elements, thereby reducing the possi-

bilty of exrtemely acute angles. But the angle formed at the Steiner point (the centroid in

our case) was not controlled in any way. So it was decided to ensure an angle of 120o at the

center to keep the error manageable. This was done by changing the location of the Steiner

point from the centroid to the Fermat point of the mid-point triangle of each triangle. Math-

ematically, the Fermat point of a triangle solves a Steiner tree problem to minimize the sum

of distances of a point from all three vertices. The method used in this research is based on

a paper by Anthony Varilly (41). This procedure fails for triangles with a maximum angle

greater than 120o. For such cases, the Steiner point was left at the centroid. However, it is

worth mentioning here, that the algorithm used for the triangulation, has, for all the geome-

tries used in the test, not given a single triangle with any of the angles greater than 120o.

The formula used for the Fermat point also fails for equilateral triangles, in which case the

Fermat point coincides with the centroid. Following is the formula used for obtaining the

Fermat point

u = (
√
3 bc−

√
3 a2 − ac− ab)(b− c)

v = (a2 +
√
3 ab+

√
3 ac+ 3cb)(b+ c)

d = 2
√
3 (a2 + b2 + c2) + 6ac+ 6ab+ 2

√
3 bc

T = (
u

d
,
v

d
)
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Where, a, b, c are as shown in Figure 5.14 and T gives the location of the Fermat point.

Applying the above equation to the triangles in the initial mesh gives us a tri-quadrilateral

Figure 5.14: A triangle displaying the variables used in the above equation

mesh with considerably better quality as can be seen from Figure 5.15 which uses his-

tograms and color maps to compare the two meshes, i.e. the one using the centroid and the

other the Fermat point to achieve the tri-quadrilateralization.

It is easy to see from the histogram that the percentage of higher quality elements goes

up dramatically for a tri-quadrilateral mesh using the Fermat point in place of the centroid

to achieve the quadrilateralization. This can also be seen in the color-map where the map

for the mesh using the Fermat point has a lot more elements in the dark red region, which

happens to represent the good quality elements. The figures shown from page 90 onwards

are used to reiterate the above-mentioned observation, for a couple of meshes denser and

more complex then the meshes used thus far. From the Figures 5.16-5.19, it can be
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Figure 5.15: A histogram and a color bar using an Equi-angle skew quality metric to compare the
tri-quadrilateralization achieved by a) Using the centroid as Steiner Point and b)Using the Fermat
point as Steiner point

seen that the number of higher quality elements has increased when using the Fermat point

instead of the centroid for quadrilateralization of the triangular mesh.
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Appendix A

Non-fractional step methods

This Appendix gives a brief outline of some of the more popular Non-fractional step meth-

ods using the primimtive variables formulation. It should be noted that from now on

the above linearized temporal discretization formulation will be written without the su-

perscripts “n“ for time, but will imply the same.

Therefore, the problem (1.5) can be represented as

(−���+ γ)u+∇p = g

−∇2p = −∇ · g (A-1)

u |S= b and ∇ · u |S= 0

given the Global Constraint
∮
S

n · uS.dS

The Glowinski and Pironneau method

This method uses a velocity potential function to help enforce the continuity equation and

find a pressure boundary condition. The basic idea is to find a boundary condition λ for the

pressure that would give a velocity field satisfying the continuity condition at the boundary.

Considering first, equation (1.5), the method first decomposes the velocity to get a unique
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function θ (42) such that

u = ∇θ +∇×Ψ

θ |S= 0 (A-2)

Taking the divergence of both sides of the above equation gives a poisson‘s equation

−∇
2θ = −∇ · u

θ|S = 0 (A-3)

On applying the operator [−��� + γI] to the above equation one gets from the divergence

of momentum equation and the poisson pressure equation [−��� + γI]∇2θ = 0. If for this

equation boundary conditions are given θ |S= 0 and ∂θ
∂n

|S= 0 are given the solution for θ

would be 0. Clearly this implies from −∇
2θ = −∇ · u that ∇ · u = 0 It follows that the

solution u, p of the following system should satisfy incompressibility conditions

−∇
2p = −∇ · g

(−���+ γ)u = −∇p+ g (A-4)

−∇
2θ = −∇ · u

u |S= b

θ |S= 0

given that
∂θ

∂n
|S= 0 (A-5)

The variational form of equation (1.20) would be

∮
∂θ

∂n
μS = 0 (A-6)
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where μ is an arbitrary function on the boundary.Thus, we must find λ such that equation

(A-5) is satisfied.

Using the principle of superposition the solutions of u, p and θ can be split into a harmonic

and non harmonic part giving

u(x) = u0 +

∮
u‘(x; ζ‘)λ(ζ‘)dS(ζ ′)

p(x) = p0 +

∮
p‘(x; ζ‘)λ(ζ‘)dS(ζ ′) (A-7)

θ(x) = θ0 +

∮
θ‘(x; ζ‘)λ(ζ‘)dS(ζ ′)

for ζ ′ ∈ S such that p0, u0 and θ0 are solutions to

−∇
2p0 = −∇ · g where p0 |S= 0

(−���+ γ)u0 = −∇p0 + g where u0 |S= b

−∇
2θ0 = −∇ · u0 where θ0 |S= 0

and the functions with the prime superscript solve

−∇
2p‘ = 0 where p‘ |S= δ(s− ζ ′)

(−���+ γ)u‘ = −∇p‘ where u‘ |S= 0

−∇
2θ‘ = −∇ · u‘ where θ‘ |S= 0

where δ is a dirac function on the boundary these set of equations in an FEA analysis , can

be reduced to a linear equation of the type Aλ = β using the condition (A-6) Which can

be solved for λ and hence the poisson‘s problem can be approximated. The method is as

big as the number of grid points on the boundary from a numerical aspect.
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Influence Matrix Method

The influence matrix techniques, like the Glowinski Pironneau method, are based on the

principle of superposition for linear problems. The linearized elliptic problems with un-

known boundary conditions are split into a set of relatively simpler problems with known

boundary conditions. Here the linearity has been assured by the semi discretization in time

giving a set of linear elliptic partial differential equations. This has already been shown in

equation (1.1). The following discussion is only for two dimensional flows. Though it can

easily be extended into three dimensional flows, it does require a lot of memory and hence

not the best option for three dimensional problems.

Therefore, considering the set of equations (1.15), the solution for velocity and pressure

are split into their homogeneous and particular solution parts as follows

u = ū+

Nb∑
k=1

λkûk (A-8)

p = p̄+

Nb∑
k=1

λkp̂k (A-9)

Where λks are determined by enforcing the incompressibility constraint on the boundary

and Nb is the number of boundary points or the number of degrees of freedom on the

boundary

The particular solution problem is

(−���+ γ)ū+∇p̄ = g in Ω

ū = 0 in S (A-10)

∇
2p̄ = ∇ · g in Ω such that p̄k = p̄S in S
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where p̄S is an arbitrary dirichlet distribution of pressure at the boundary mostly taken to

be zero.

The homogeneous problem is

(−���+ γ)û+∇p̂ = 0 in Ω

û = 0 in S (A-11)

∇
2p̂ = 0 in Ω

p̂k = δkj

where k, j are nodes on the boundary.

The velocity field û is then determined from the solution to the homogeneous problem

(A-9). For each boundary point and owing to the pressure distribution equal to the dirac

function a matrix of the order Nb × Nb is obtained. This is in fact the influence matrix.

Another way to look at it would be to see that for both the the split equations for pressure

as well as velocity the coefficient lambda is the same. So the idea is to find lambda using

the split equation for velocity (A-7) such that the incompressibility condition is satisfied

at the boundary and then use it to get the correct pressure boundary values. Taking the

divergence of both sides of the split equation for velocity (A-7) Since ∇ · u = 0

therefore, ∇ · ūj = −∑Nb

k=1
λkûk

therefore, λ = A−1f

where, A is the Nb ×Nb influence matrix and f is a column matrix with Nb elements such

that fj = ∇ · ūj
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û can be found by solving the problem (A-10).

Therefore, the correct boundary condition for pressure would be pS = p̄S + λk.

This boundary condition is then used to calculate the correct pressure and velocity field

from the equation (A-1). Note, however, that the divergence free boundary condition has

already been satisfied.

The integral constraint

The idea for an integral constraint on pressure was put forth by Quartapelle and Napolitano(11).

The following discussion is based entirely on their paper on the same. Their basic aim was

to come up with a method which would ensure the decoupling of the pressure and velocity

by deriving pressure conditions not depending on the internal velocity field but only on the

previously calculated velocity field and the boundary velocity For this, the vector equiva-

lent of the Green’s identity for the helmholtz operator (−��� + γ) is considered, which is

ultimately shown to imply the following integral constraint on pressure

∫
(−∇p+ g) · ηdΩ =

∮
(n× b · ∇× η + n · b∇ · η)dS (A-12)

where η is a harmonic field in the domain and a solution to the following problem:

(−���+ γ)η = 0 (A-13)

n× η |S= 0

n · η |S= 0
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Thus the integral condition on pressure depends only on the boundary velocity b and the

source term g owing to the explicit advection equation. The number of linearly independant

ηs fields is the same as the number of boundary points, since the problem in η involves

solving equations equal to the number of boundary nodes therefore, the following well

posed problem can be written as an uncoupled formulation of equation (A-1)

−∇2p = −∇ · g∫
(−∇p+ g) · ηdΩ =

∮
(n× b · ∇× η + n · b∇ · η)dS

(−���+ γ)η = 0

n× η |S= 0 (A-14)

n · η |S= 0

(−���+ γ)u+∇p = g

u |S= b

This time discretized formulation can be discretized in space by any suitable method namely,

finite elements, finite difference, or spectral methods. A possible solution technique similar

to the influence matrix method was presented in (11). It starts with the decomposition of

the pressure at a time step (n+1) into a harmonic and non-harmonic component as follows

p(x) = p0(x) +

∮
p‘(x; ζ‘)λ(ζ‘)dS(ζ ′) (A-15)

for ζ ′ ∈ S such that

∇
2p‘ = 0 p′ |S= δ(s− ζ ′),

and ∇
2p0 = −∇ · g p0 |S= p0S , where p0S is arbitrary
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δ is the dirac function over the boundary

Imposing on the pressure the integral constraint (A-12) gives a linear equation.

Aλ = β

This can be used to determine λwhich eventually gives the boundary condition for pressure

just as in the influence matrix technique. This pressure can be used to solve for the velocity

field in the following formulation

−∇2p = −∇ · g p |S= λ

(−���+ γ)u+∇p = g (A-16)

u |S= b
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Appendix B

The Influence matrix technique for hybrid formulations

This technique is very similar to the one used in velocity pressure formulation starting with

splitting vorticity and velocity into the homogeneous and the particular solution part as fol-

lows

u = ū+

Nb∑
k=1

λkûk (B-1)

ω = ω̄ +

Nb∑
k=1

λkω̂k (B-2)

Where λ is determined by enforcing on the boundary ∇ × u = ωk and Nb is the degree

of freedom or the number of nodes on the boundary. The two problems can be defined

separately as

1. Homogeneous problem

(−∇
2 + γ)ω̂n+1

k = 0 in Ω

ω̂k = δkj on S (B-3)

∇
2ûn+1

k = −∇× (ω̂n+1

k k) in Ω

ûn+1 = 0 on S
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2. Particular solution problem

(−∇
2 + γ)ω̄n+1

k = f in Ω

ω̄k = ω̄S on S (B-4)

∇
2ūn+1 = −∇× (ω̄n+1k) in Ω

ûn+1 = 0 on S

Where ω̄S is an arbitrary value usually taken as zero

∇× u = ωk can be enforced on the boundary using the following equation

(η̂ − ω̂)(γj) +

Nb∑
k=1

λk(η̂k − ω̂k)(γj) = 0, Where j = 1, 2....Nb, γj ∈ Nb (B-5)

Where,η̄ = (∇× ū) · k and η̂k = (∇× ûk) · k

Giving the following linear problemAλ = f

for λ Where, A is a Nb × Nb matrix given by (η̂k − ω̂k)(γj) and f is a Nb × 1 column

matrix given by (η̂ − ω̂)(γj) The boundary value of vorticity is then given by

(ωS)k = (ω̄S)k + λk (B-6)

For problems with very low viscosity this method shows a lot of numerical instability. A

possible modification has been suggested by Clercx (43)

An uncoupled formulation can be written by imposing the following integral constraint for

vorticity ∫
∇ω × k · ηdΩ =

∮
(n× b · ∇× η + n · b∇ · η).dS (B-7)
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Where, η is the same as descirbed for three dimensional flow. Thus, an uncoupled formu-

lation can be written by imposing the integral constraint for vorticity as follows

(
∂ω

∂t
− ν∇2ω)k +∇× (ωk × u) = 0, ωt=0 = ∇× u0 · k∫

∇ω × k · ηdΩ =

∮
(n× b · ∇× η + n · b∇ · η).dS (B-8)

∫
ωdΩ =

∮
τ · bdS (B-9)

−∇
2η = 0 τ · η |S= 0

−∇
2u = ∇ω × k u |S= b

∫
ωdΩ =

∮
τ · bdS is obtained by integrating ∇× u = ωk over the entire domain.

Using the time discretized scheme derived above the above equation can be linearized as

follows

(−∇
2 + γ)ω = f,

∫
ωdΩ =

∮
τ · bdS

∫
∇ω × k · ηdΩ =

∮
(n× b · ∇× η + n · b∇ · η).dS (B-10)

−∇
2u = ∇ω × k u |S= b (B-11)

Here the superscripts for the time steps has not been written for simplicity.

A possible way to implement this technique is for the two dimensional case is the Glowinski-

Pironneau Method. As before ω can be decomposed using the principle of superposition to

give

ω(x) = ω0(x) +

∮
ω‘(x; ζ‘)λ(ζ‘)dS(ζ ′) (B-12)
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Where, ω0 and, ω‘ are the solutions to

(−���+ γ)ω0 = f ω0 |S= 0 (B-13)

(−���+ γ)ω‘ = 0 ω‘(x; ζ‘) = δ(s− ζ‘) (B-14)

for any ζ‘ ∈ S and δ is the dirac delta function over the boundary.

Again, giving a linear problem of the sort Aλ = β. This combined with another linear

problem of similar type using the second condition equation (2.22) gives the value of λ at

the boundary which can be used to supplement the boundary value of vorticity.
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Appendix C

Permission for reusing the image in figure 1.1

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported li-

cense. You are free:

1. to share to copy, distribute and transmit the work

2. to remix to adapt the work

Under the following conditions:

1. attribution You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the

work).

2. share alike If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.

ATTRIBUTION

Hans Hillewaert / CC-BY-SA-3.0
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