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ABSTRACT 

“In-Plane Thermal Conductivity Modeling of Carbon Filler Liquid Crystal Polymer 

Based Resins” 

Adding conductive carbon fillers to insulating thermoplastic resins increases 

composite electrical and thermal conductivity. Often, as much of a single type of carbon 

filler is added to achieve the desired conductivity, while still allowing the material to be 

molded into a bipolar plate for a fuel cell. In this study, varying amounts of three 

different carbons (carbon black, synthetic graphite particles, and carbon fiber) were 

added to Vectra A950RX Liquid Crystal Polymer. The in-plane thermal conductivity of 

the resulting single filler composites were tested. The results showed that adding 

synthetic graphite particles caused the largest increase in the in-plane thermal 

conductivity of the composite.  

The composites were modeled using ellipsoidal inclusion problems to predict the 

effective in-plane thermal conductivities at varying volume fractions with only physical 

property data of constituents. The synthetic graphite and carbon black were modeled 

using the average field approximation with ellipsoidal inclusions and the model showed 

good agreement with the experimental data. The carbon fiber polymer composite was 

modeled using an assemblage of coated ellipsoids and the model showed good agreement 

with the experimental data. 
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Chapter 1: Introduction 

1.1: Introduction and Motivation 

Most polymer resins are thermally insulating, and increasing the thermal 

conductivity of these resins allows them to be used in heat sink applications. One 

emerging market for thermally conductive resins is for bipolar plates in fuel cells. A fuel 

cell is an electrochemical device that continuously converts chemical energy to electrical 

energy [1].  There are five main fuel cells (FC): Polymer Electrolyte Membrane 

(PEMFC), Alkaline (AFC), Phosphoric Acid (PAFC), Molten Carbonate (MCFC), and 

Solid Oxide (SOFC). PEMFC’s have a subset of fuel cells called Direct Methanol 

(DMFC). There also regenerative fuel cells which are a newer technology being 

researched by NASA [2]. Each of the main fuel cells are characterized by the type of 

electrolytes used and the operating temperature range. Table 1.1-1 below [1-5] 

summarizes the five main fuel cells, and a more extensive summary table of these fuel 

cells is given in Chapter 2.   

The fuel cells summarized have different applications. PEMFC is used for 

transportation, specialty vehicles, distributed power generation, and portable electrical 

devices [2, 6]. In a PEMFC hydrogen is used as the fuel. Hydrogen reacts with oxygen 

(from the air) to produce DC electricity. The byproducts produced from this reaction are 

heat and water, which makes a PEMFC a better alternative for vehicles [1].     
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Table 1.1-1: Summary of the Five Main Fuel Cells [1-5] 

Fuel Cell 
Electrolyte Operating 

Temperature (°C) 

Polymer Electrolyte 
Membrane (PEMFC) 

Solid organic polymer 30-100 

Alkaline (AFC) Aqueous solution of 
potassium hydroxide 

soaked in a matrix 

90-100 

Phosphoric Acid (PAFC) Liquid phosphoric acid 
soaked in a matrix 

175-220 

Molten Carbonate 
(MCFC) 

Liquid solution of 
lithium, sodium and/or 
potassium carbonates, 

soaked in a matrix 

600-700 

Solid Oxide (SOFC) Solid zirconium oxide 
with a small amount of 

ytrria added 

600-1000 

 

  

Fuel cells are stacked together to reach a desired voltage depending on the 

application. A bipolar plate separates one cell from the next, and the plate carries 

hydrogen gas from one side and air (oxygen) to the other side.  Bipolar plates require 

thermal conductivity (to conduct away the heat generated), low gas permeability, and 

good dimensional stability [1]. Engineering thermoplastics are being researched an as 

alternative material for bipolar plates in fuel cells. Using thermoplastics is advantageous 

because it is a light weight material and the material properties can be varied to meet 

specific requirements [7-9]. 
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This research focuses on the thermal conductivity of the thermoplastic. Typical 

thermal conductivity values in W/m.K for some common materials are given in Table 

1.1-2 [10]. One approach to improving the thermal conductivity of a polymer is through 

the addition of a conductive filler material, such as carbon and metal [11-24].  In a 

polymer containing conductive fillers heat is transferred by two mechanisms lattice 

vibrations (major contributor) and electron movement [12].  Generally, a single type of 

carbon is used in thermosetting resins (often a vinyl ester) to produce a thermally 

conductive bipolar plate material [25-28]. Thermosetting resins cannot be remelted. 

 

Table 1.1-2: Thermal Conductivity for Common Materials [10] 

Materials 
Thermal Conductivity 

(W/m∙K) 

Polymers 0.2 to 0.30 

PAN-based Carbon Fiber 8 to 70 

Stainless Steel 11 to 24 

Aluminum 218 to 243 

Copper 400 

Silver 418 

Diamond 990 
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1.2: Objectives  

 The goal of this M.S. research was to take measured in-plane thermal 

conductivities and develop models to predict the effective in-plane thermal conductivity 

for composite materials containing varying amounts of a single filler either carbon black, 

synthetic graphite, or carbon fiber. In previous research by R.A. Hauser [29] effective in-

plane thermal conductivity models have been developed by parameter fitting. In this 

research the models developed only use physical properties of the composite material 

constituents, geometry, and information on processing. The composite materials modeled 

in this research can possibly be used as the material to produce bipolar plates for fuel 

cells.      
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Chapter 2: Background 

2.1: Fuel Cells 

 Between 1838 and 1839 Friedrich Wilhelm Schobein, a German-Swiss chemist, 

and William Grove, a physical scientist, discovered the main operating principle of fuel 

cells. The main operating principle of a fuel cell is the generation of electricity from 

reversing water electrolysis. A fuel cell is an electrochemical device that continuously 

coverts chemical energy to usable (electrical) energy without combustion. Fuel cells are 

being developed for the automotive propulsion, electric power generation, and portable 

systems market [1,2]. 

Fuel cell technology is an improvement on current battery and engine technology. 

Fuel cells are similar to batteries and engines. Fuel cells are similar to batteries because 

they are an electrochemical device that generates power, and fuel cells are similar to 

engines because they work continuously by consuming fuel [1]. However, fuel cells 

differ from engines because they operate in a two-step process rather than a four-step 

process. An engine converts chemical energy to thermal energy, then to mechanical 

energy, and finally to electrical energy [2]. Fuel cells improve engines because they 

convert chemical energy directly to electrical energy. Fuel cells are a desirable 

technology because they are more efficient due to this direct conversion, there are no 

harmful emissions, and they have low operating noise and temperatures [1, 2].  
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Fuel cells are comprised of three key components which are the anode, cathode, 

and electrolyte. To produce electrical energy a fuel is supplied to the anode and an 

oxidant is supplied to the cathode. The fuel supplied is oxidized by an electrochemical 

reaction on the surface of the anode and the oxidant is reduced by an electrochemical 

reaction on the surface of the cathode. These electrochemical reactions create ions which 

flow through the electrolyte located between the anode and cathode. Electrons are 

produced on the anode and flow through an external load to the cathode producing 

electricity. Figure 2.1-1 shows a diagram of a fuel cell [2].   

 

Figure 2.1-1: Diagram of a Fuel Cell [2] 
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Hydrogen is the desired fuel in a fuel cell due to its high reactivity. Hydrocarbons 

can also be used as fuel but need to be converted to hydrogen before being used. Oxygen 

is the desired oxidant because it is readily available in the environment [2]. When 

hydrogen is the fuel and oxygen is the oxidant the following reaction takes place. 

 2H2 + O2 → 2H2O 

There are five main types of fuel cells and the operating principles are the same 

for each. The fuel cells differ in the type of electrolyte used, operating temperature, and 

useful applications. A detailed summary of these fuel cells are shown in Table 2.1-1 

below [1-5]. This work involves researching materials that have the potential to be used 

for a component of the proton exchange membrane fuel cell (PEMFC). More details on 

the PEMFC will be given in the next section. 
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Table 2.1-1: Detailed Summary of the Five Main Fuel Cells [1-5] 

Fuel Cell 
Type 

Electrolyte Anode/Cathode Reaction Operating 
Temperature 

Applications 

Proton 
Exchange 
Membrane 
(PEMFC) 

Solid organic 
polymer 

2 2 2H H e    

2 2

1
2 2

2
O H e H O     30 – 100ºC 

Transportation, 
specialty vehicles, 
portable power and 

small distributed 
generation  

Alkaline 
(AFC) 

Aqueous 
solution of 
potassium 
hydroxide 
soaked in a 

matrix 

2 22 2 2H OH H O e     

2

1
2 2 2

2
O H O e OH     90 – 100ºC 

Used in space and 
military vehicles 

Phosphoric 
Acid 

(PAFC) 

Liquid 
phosphoric 

acid soaked in 
a matrix 

2 2 2H H e    

2 2

1
2 2

2
O H e H O     

175-220ºC 

Large number of 
200kW combined 

heat and power 
systems in use 

Molten 
Carbonate 
(MCFC) 

Liquid 
solution of 

lithium, 
sodium and/or 

potassium 
carbonates 
soaked in a 

matrix 

2
2 3 2 2 2H CO H O CO e    

 

2
2 2 3

1
2

2
O CO e CO     600-700ºC 

Suitable for medium- 
to large-scale 

combined heat power 
systems and electrical 

utility 

Solid Oxide 
(SOFC) 

Solid 
zirconium 

oxide with a 
small amount 
of ytrria added 

2
2 2 2H O H O e     

2
2

1
2

2
O e O    

600 – 1000ºC 

Suitable for all sizes 
of combined heat and 

power systems, 
auxiliary power and 

electric utility 

 

2.1.1: Proton Exchange Membrane Fuel Cells and Bipolar Plates 

The proton exchange membrane fuel cell (PEMFC), also known as the solid 

polymer fuel cell, is one of the most promising alternative fuel technologies to power cars 

and buses. PEMFCs have low maintenance because there are no moving parts in the 
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power generating stacks of the fuel cell system [6].  The electrolyte used in PEMFC is a 

layer of solid polymer. Hydrogen is the fuel used and it reacts with oxygen (from the air) 

to produce DC electricity to power motors and auxiliary equipment for the vehicle. The 

byproduct of this reaction is heat and water [2,7]. 

Hydrogen gas enters the fuel cell on the anode side, where it encounters a 

platinum catalyst. The platinum catalyst is used to facilitate the separation of the 

hydrogen gas into electrons and protons (hydrogen ions). The hydrogen ions pass through 

the membrane and another platinum catalyst, which helps combine the hydrogen ions, 

oxygen gas, and electrons on the cathode side to produce water as the product. The 

electrons that cannot pass through the membrane, flow from the anode to the cathode side 

of the fuel cell through an external circuit containing a motor or some electric load, which 

consumes the power generated by the fuel cell. Figure 2.1-2 shows a schematic of a 

PEMFC with bipolar plates [7]. 

 

Figure 2.1-2: Schematic of a Proton Exchange Membrane Fuel Cell [8] 
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The voltage generated from one single fuel cell is approximately 0.7 volts. Since 

commercial electric motors often operate at 300 volts, fuel cells are stacked in series to 

produce useful voltage. Key components in a fuel cell stack are current collectors and 

separator plates. The current collector is used to conduct electrons from the anode to the 

separator plate, and the separator plate provides the electrical series connection between 

fuel cells necessary to separate the oxidant flow of one cell from the fuel flow of an 

adjacent cell. Two current collectors are coupled with a separator plate to form the 

bipolar plate. There are often 430 bipolar plates needed in a fuel cell stack to achieve 300 

volts [2,7].  

Bipolar plates are important components of fuel cells and have multiple functions 

which include connecting individual fuel cells in series, distributing the reactant gases 

uniformly over the active area, removing excess heat and water, collecting and 

transporting electrons from the anode to the cathode, and preventing the mixing of the 

hydrogen and oxygen (reactant gases) [9,10].  To prevent mixing of the reactant gases 

bipolar plates are made of gas impermeable materials. If the reactant gases mix, then 

electrons will pass directly from the hydrogen to the oxygen and these electrons cannot 

be sent to an external circuit to do useful electrical work.  

Additionally, bipolar plates must be electrically conductive to minimize ohmic 

losses and thermally conductive to conduct away generated heat. One anode-cathode cell 

with an area of 100 cm2 operating at 1 atm and 80ºC (typical PEMFC conditions), 

producing approximately 0.7V, will generate approximately 1.7 kJ of excess heat and 2.5 

kJ of electric energy every minute it operates [6]. Preferably, bipolar plates should be as 
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thin as possible to minimize electrical resistance and to make the fuel cell stack as small 

as possible [3,7,11]. Material selection for bipolar plates is based on desired properties, 

but the plates should also have good dimensional and thermal stability up to 150oC for 

the next generation of fuel cells [3,12]. 

 

2.2: Thermal Conductivity 

 Thermal conductivity is a unique physical property of materials that describes the 

rate of heat conduction. Heat is transferred by three mechanisms: conduction, convection, 

and radiation. In solids, heat transfer is dominated by conduction, and is described by 

Fourier’s Law of Heat Conduction which states that the heat flux is proportional to the 

temperature gradient. In equation form Fourier’s Law is given as [13,14] 

Tkq 


,         (2-1) 

where q


 is the heat flux, k is the thermal conductivity, and T


 is the temperature 

gradient. The negative sign indicates heat loss so the heat flows from hotter to colder 

regions, and the thermal conductivity, k, is assumed to be constant for a given material. 

Heat can be transferred through solids in many different ways but the most 

significant mechanisms are electron and phonon transport. In metals, electron transport is 

the dominant method of heat transfer and in polymers phonon transport is the dominant 

method [15]. Phonons are the minimal amount of thermal vibrations needed to transmit 
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energy, and phonons transmit energy through interactions with electrons, protons, 

neutrons, and other phonons [14]. These interactions can be physically represented as a 

series of atoms with spring as their bonds. When an atom in series is excited due to heat, 

pulling or pushing it starts to vibrate. If one atom in the series begins to vibrate then the 

springs connecting to the other atoms will begin to vibrate, this vibration process will 

continue with the energy from the original excited atom propagating through the series of 

atoms. Figure 2.2-1 shows a two-dimensional example of this mechanism [16]. 

 

Figure 2.2-1: Two-Dimensional Array of Atoms Connected by Springs [16] 

 Energy (heat) transfer by phonons is efficient, and the way phonons scatter as 

they propagate through a material determine the efficiency of this energy transfer [14]. 

Scattering incidents of phonons occur when a phonon encounters an atom and is either 

absorbed or deflected into a different direction. A material with a longer distance between 
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scattering incidents will have a higher thermal conductivity than a material where the 

distance between scattering incidents is relatively short. This is illustrated in Debye’s 

model for heat conduction in dielectric solids and is given by [15,8] 

1

3
k c u     .         (2-2) 

 In Equation 2-2 k is the thermal conductivity, c is the volumetric heat capacity, u is the 

velocity of sound in the material, and λ is the mean free path (average distance between 

scattering incidents) of the phonons in the material. Heat transport by phonons is 

responsible for transferring thermal energy in polymers composites, and since polymers 

are dielectric materials they generally follow the Debye model.   

 

2.3: Thermal Conductivity Modeling 

Effective properties of polymer composites depend on many factors such as the 

microstructure of the matrix and filler material, concentration, degree of mixing, 

orientation, bonding between the filler and matrix, thermal conductivity of the 

constituents, and the crystallinity of the polymer. It is beneficial to have realistic 

mathematical models that can accurately predict the effective properties of polymer 

composites. Understanding the composite thermal behavior under a temperature gradient 

is important because polymer composite materials have useful applications in the fuel cell 

industry for bipolar plates. A way to model the thermal behavior of composites is by 

using math approximations along with the solutions to inclusion problems. In the sections 
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to follow the solution to the inclusion problem will be given along with approximations 

used to estimate the effective thermal conductivity of composites.  

The effective thermal conductivity of composite can be predicted on a 

microscopic scale by solving thermal conductivity equations. The thermal conductivity 

equations are [13,17] 

q k T 
 

         (2-3) 

0q 
 

         (2-4) 

0T 
  

,         (2-5) 

 where q


is the heat flux vector, k is the thermal conductivity, and T


is the temperature 

gradient vector. Equation 2-3 is the three-dimensional Fourier’s Law and Equation 2-4 

comes from simplification of the energy equation. The energy equation in terms of 

temperature change is given as [12] 

   
dt

dp

T
vq

dt

dT
pC

p












ln

ln
:ˆ 


.     (2-6) 

In Equation 2-6, ρ is the density of the composite, pĈ  the heat capacity of the composite, 

T is the temperature, t is the time, p is the pressure applied to the composite, v is the 

velocity of the composite,  q
 

  is the rate of heat addition by conduction per volume 

of the composite,  : v 


 is the rate of heat increase per unit volume by viscous 
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dissipation, and 
ln

ln pT

 
  

is the rate of work done on the composite by external forces. 

Equation 2-6 simplifies to Equation 2-4  0q 
 

 because 0
dt

dp

dt

dT
since the 

composite is at steady-state meaning there is no change with respect to time, and 

 : 0v  


 because there is no velocity in the solid composite. 

On a macroscopic scale the effective thermal conductivity of a composite is 

determined by measuring the average heat flux and average temperature gradient. The 

ratio between the average heat flux and average temperature gradient gives the effective 

thermal conductivity, *k .  So Equation 2-3 can be re-written as  

Tkq 


* .         (2-7) 

In Equation 2-7 “< >” denotes volume average in the composite. On the microscopic 

scale to theoretically compute *k  from Equation 2-7, q


 and T


 must be determined. 

To determine T


 appropriate boundary conditions must be applied and to determine 

q


Equation 2-4 must be satisfied.  

When estimating the effective thermal conductivity the rule of mixtures can be 

used to give an upper bound. The rule of mixtures (also known as the arithmetic mean) is 

[18] 

2211* kfkfk  ,        (2-8) 
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where *k  (W/m·K) is the effective thermal conductivity, f1 is the volume fraction of the 

filler material, k1 (W/m·K) is the thermal conductivity of the filler material, f2 is the 

volume fraction of the matrix, and k2 (W/m·K) is the thermal conductivity of the matrix.  

Likewise to get a lower bound of the effective thermal conductivity the inverse rule of 

mixtures is used. The inverse rule of mixtures (also known as the harmonic mean) is 

given as [18] 

2

2

1

1

*

1

k

f

k

f

k
  .        (2-9) 

Using these rules of mixtures to set bounds gives a range for the estimated effective 

thermal conductivity. Equations 2-3 through 2-5 are difficult to solve on a microscopic 

scale, so as an alternative the solution can be approximated using an inclusion problem 

with an appropriate approximation method. 

  

2.3.1: Inclusion Problem 

An inclusion is a particle with a particular geometry (i.e. spherical, elliptical, etc) 

that is inserted in a matrix material (in this case, polymer) to form a composite. The 

matrix material and inclusion have different physical properties and the matrix is 

assumed to be infinite in all directions.  The matrix is subjected to an applied temperature 

field, and the only inclusion problems with spherical and ellipsoidal geometries can be 

solved when a field is applied.  
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Solving the inclusion problem when the inclusion is spherical is complex. For a 

single sphere with radius, R, and conductivity, k1, in an infinite medium with 

conductivity, k2, the temperature gradient can be written using spherical harmonics. The 

thermal conductivity equations (Eqs. 2-3 through 2-5) are solved for an inclusion with a 

coated spherical geometry and the solution is given as [19] 

   
   xT

kk

kk
xTxT







 

21

21

2
, r ≤ R       (2-10) 

   
   xT

r

R

kk

kk
xTxT







 
3

3

21

21

2
, r ≥ R    (2-11) 

where T is the temperature, x


 is a position vector from the center of the sphere, k1 is the 

thermal conductivity of the spherical inclusion, k2 is the thermal conductivity of the 

matrix, R is the radius of the inclusion, r is the distance from the position vector, x


, to 

the origin of the inclusion (the magnitude of the vector xr


 ), and T


 is the applied 

temperature gradient at infinity (applied field) [19]. 

The inclusion problem can also be solved when the inclusion is an ellipsoid by 

solving the thermal conductivity equations (Eqs. 2-3 through 2-5). In order to solve this 

inclusion problem, an ellipsoidal coordinate system is used. Details and results to this 

inclusion problem can be found in Bohren and Huffman [20], and the solution to this 

inclusion problem is used in the next section to determine the polarizability of an 

ellipsoidal inclusion. 
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There are a variety of different approximations that can be used with the solution 

to the inclusion problem to estimate the effective thermal conductivity of composites. In 

the following sections (2.3.3-2.3.6) different approximation methods are discussed. 

 

2.3.2: Polarizability of a Spherical and Elliptical Inclusion 

 The solution of the inclusion problem can be related to the polarizability of a 

spherical or elliptical inclusion to estimate the effective thermal conductivity of 

composites. Approximations used to estimate the effective thermal conductivity of 

composites make use of the polarizability. To be consistent with the definition of 

polarizability in linear dielectrics the polarizability, α, of an inclusion is given by [20] 

 Tk
V

Tkq


2
1

121


.       (2-12) 

In Equation 2-12 
1

q


is the average heat flux in the inclusion, k2 is the thermal 

conductivity of the matrix, 
1

T


is the average temperature gradient in the inclusion, V1 

is the volume of the inclusion, and T


is the external temperature field applied at 

infinity.  

To determine the polarizability, α, the components on the left-hand side of 

Equation 2-12 are computed by 
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  xdTkk
V

Tkq
inclusion


  21

1
121

1
.     (2-13) 

In Equation 2-13 the temperature gradient in the inclusion needs to be determined. For 

the case of a spherical inclusion the temperature gradient in the inclusion is determined 

from the solution to the inclusion problem in Equation 2-10 which gives 

 
 

 



 T
kk

kk
TT



21

21

2
 , r ≤ R      (2-14) 

Substituting Equation 2-14 into Equation 2-13 and performing the triple integration over 

the volume of the spherical inclusion gives 

    










 T
kk

kk
kkxdTkk

V inclusion



21

21
2121

1 2
1

1
,    (2-15) 

which simplifies to 

    



 T
kk

kkk
xdTkk

V inclusion



21

221
21

1 2

31
.     (2-16) 

Now, Equation 2-16 can be equated to Equation 2-13 giving 

     



  Tk
kk

kk
xdTkk

V
Tkq

inclusion


2

21

21
21

1
121 2

31
.   (2-17) 

Comparing the right-hand side of Equation 2-17 with the right-hand side of 

Equation 2-12 shows that the polarizability of the spherical inclusion is [17, 20] 
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 1 2

1 1 2

3

2

k k
I

V k k

 



.        (2-18) 

In Equation 2-18 I is the identity matrix and is needed because the thermal conductivities, 

k1 and k2, are scalars and the polarizability is a tensor. If the inclusion is an ellipsoid the 

same outlined steps are followed to determine the polarizability. The polarizability for an 

ellipsoidal inclusion is given as [17, 20] 

 212

21

1 kkdk

kk

V i

i







 with i = 1,2,3.      (2-19) 

In Equation 2-19, di are the depolarizing factors of the ellipsoid which are defined in 

more detail in Chapter 5. The depolarizing factors for a sphere are 3/1id . The 

polarizability of an ellipsoid is a tensor with only diagonal entries because the ellipsoidal 

inclusions in the composite are assumed to be aligned in the horizontal plane of the 

composite. This means that the semi-axes of the inclusions are aligned with the major 

axes of the composite. Now the explicit formulas for the polarizability of spherical and 

ellipsoidal inclusions can be used in approximations for estimating the effective thermal 

conductivity of composites. 

 

2.3.3: Maxwell-Garnett’s Approximation 

 Maxwell-Garnett’s approximation, also known as the Clausius-Mossotti 

approximation, is a method widely used to estimate effective properties of composite 
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materials. This approximation is not dependent on the size of the inclusion and can be 

used to study effective properties of two-component mixtures in which the matrix and 

inclusion are both isotropic. The particle geometries that can be analyzed using this 

approximation are spheres and ellipsoids [17].  

The Maxwell-Garnett approximation uses the solution to the inclusion problem 

along with the polarizability to estimate the effective thermal conductivity of a 

composite. This approximation equates the polarizability of a composite with effective 

thermal conductivity, k*, in an infinite matrix of thermal conductivity k2. Then the 

polarizability is set equal to the sum of the polarizabilities of the spherical inclusions of 

thermal conductivity k1 in a matrix of thermal conductivity k2.  

  The effective thermal conductivity of a polymer composite consisting of spherical 

inclusions using Maxwell-Garnett’s approximation is given as [21] 

1

1

2*

2*

32 V

f

kk

kk 





,        (2-20) 

where *k  is the effective thermal conductivity, k2 is the thermal conductivity of the 

matrix, f1 is the volume fraction of inclusions, V1 is the volume of the inclusions, and α is 

the polarizability in the spherical inclusions. Using the polarizability of a sphere as given 

in Equation 2-18 gives [17,21,22] 

I
kk

kk
f

kk

kk

21

21
1

2*

2*

22 






.       (2-21) 
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Solving Equation 2-21 for *k  gives an explicit formula for the effective thermal 

conductivity of a composite with spherical inclusions. The explicit equation is given as 

[17,21,22] 

   
   1211

1211
2* 21

1221

fkfk

fkfk
kk




 .      (2-22) 

Maxwell-Garnett’s approximation can also be used to estimate the effective thermal 

conductivity of a polymer composite with aligned non-spherical inclusions, and the 

equation is given as [17] 


1

112* 3

1








  fIfIkk ,       (2-23) 

where α is the polarizability and I is an identity matrix. Equation 2-23 only holds true if 

the centers of the inclusions are isotropically distributed. 

 

2.3.4: Effective Medium Approximation 

 The effective medium approximation is another method used to estimate effective 

properties of polymer composites. This approximation was introduced by Bruggeman and 

the basis of this approximation is the “self-consistency” assumption. Assume there is a 

polymer composite made up of two types of spherical inclusions (inclusion 1 and 

inclusion 2) that fill its entire space. Inclusion 1 has a thermal conductivity k1 and volume 

fraction f1 while inclusion 2 has a thermal conductivity k2 and a volume fraction f2. To 
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estimate the effective thermal conductivity, k*, of the composite a small representative 

sample of the composite is chosen. The sample is chosen in such a way that the 

inclusions are well-separated from each other which ensures that the proportion of 

inclusion 1 and inclusion 2 in the sample are equal to the proportion of inclusion 1 and 

inclusion 2 in the composite [17].     

 The “self-consistency” assumption states that the effective thermal conductivity 

of the composite remains equal to *k  when the medium surrounding the representative 

sample is replaced by a homogeneous effective medium with an effective thermal 

conductivity of *k . Combining this assumption with the solution to the inclusion problem 

for a spherical inclusion in Equation 2-10 gives an equation for the effective thermal 

conductivity as [17] 

  2/1

21
2

* 8
4

1
kkk           (2-24) 

    2211 1313 kfkf  .       (2-25) 

The inclusion can also be ellipsoidal in shape. If *k  is isotropic then the results 

from the ellipsoidal inclusion problem gives an implicit equation for the effective thermal 

conductivity of the composite [23] 

  0
11

3

1 *

* 



 

N

i iii

i
i kLkL

kk
f






.      (2-26) 
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In Equation 2-26 N is the number of phases in the composite, β are the principle axes of 

the ellipsoid inclusions, 
ik is the principle conductivities of phase i, and 

iL is the 

depolarization factor of the ellipsoidal inclusions. The depolarization factors 
iL  are the 

same as the depolarization factors dci and dei discussed in Chapter 5. 

 

2.3.5: Average Field Approximation 

 The average field approximation was used by Polder and Van Santen [24] to 

estimate effective properties of composite materials.  The average field approximation 

uses average fields such as the temperature gradient, heat flux or polarization from the 

inclusion problem. Like the effective medium approximation this model is based on the 

“self-consistency” assumption. The general idea of the average field approximation is to 

write the effective thermal conductivity, *k , in terms of one the fields and then substitute 

the corresponding field from the solution to the inclusion problem.  

To use the temperature gradient field to estimate the effective thermal 

conductivity of a composite start with Equation 2-7 

Tkq 


* .         (2-27) 

The total average temperature gradient is the composite is a weighted average of the 

temperature gradient in each phase in proportion to its volume fraction so Equation 2-27 

can be written as [17] 
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 * 1 21 2
q k f T f T   

 
.      (2-28) 

Now an expression is needed for the average temperature gradient of each phase  in terms 

of the average heat flux, q


, in the composite. Consider a composite with spherical 

inclusions, to get the expression for 1T


and 2T


 the solution to the inclusion 

problem in Equations 2-10 and 2-11 are used.  

The same steps can be followed to use the heat flux field to estimate the effective 

thermal conductivity of a composite. Again starting with Equation 2-7 the average heat 

flux in the composite can be expressed as a weighted average of the average heat flux in 

each phase of the composite which gives  

 * 1 21 2
k T f q f q  
  

.       (2-29) 

In Equation 2-29 1q


is the average heat flux in the inclusion and 2q


 is the average 

heat flux in the surrounding medium and they are given by 

11 1
q k T 


        (2-30) 

22 2
q k T 


.        (2-31) 

So Equation 2-29 can be re-written as 

 * 1 1 2 2
1 2

k T f k T f k T    
  

,      (2-32) 
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and assuming that the inclusions are spherical 1T


and 2T


 can be computed from 

the solution to the inclusion problem in Equations 2-10 and 2-11. 

Lastly the average polarization field,      xTkxqxp 


2 , can also be used to 

estimate the effective thermal conductivity of a composite. The average polarization field 

in the composite is a linear combination of the average heat flux and the average 

temperature gradient field in the composite and is given as 

2p q k T  
 

.        (2-33) 

Substituting in Equation 2-7 the average polarization field in the composite is given as 

 * 2p k k T  


.        (2-34) 

The average polarization in the composite can be expressed as a weighted average of the 

polarization in each phase of the composite so Equation 2-34 can be expressed as 

 1 2 * 21 2
p f p f p k k T    

  
.     (2-35) 

The polarization field is zero in the matrix material so Equation 2-35 can be simplified to 

 1 * 21
f p k k T  


.       (2-36) 

 Now an expression is needed for the average polarization in the inclusion in terms 

of the average temperature gradient in the composite. The average polarization in the 

inclusion is given as 
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 1 21 1
p k k T  


 ,       (2-37) 

substituting this into Equation 2-36 gives 

   1 1 2 * 21
f k k T k k T    

 
.      (2-38) 

From the inclusion problem, the average temperature gradient in the inclusion is related 

to the polarizability of the inclusion by 

  Tk
V

kkT   
*

1
*11


,       (2-39) 

and when substituted into Equation 2-38 an implicit equation is given for the effective 

thermal conductivity as 

     TkkTk
V

kkkkf   
2**

1
*1211


.    (2-40) 

When the geometry of the inclusion is a sphere the polarizability in Equation 2-18 can be 

substituted into Equation 2-40 and an explicit formula for *k  is given as 

 
21

*211
2* 2

3

kk

kkkf
kk




 .       (2-41) 

Equation 2-41 is approximation for the effective thermal conductivity of composite with 

spherical inclusions. When the inclusion is spherical and isotropic all three average field 

approximations give the same formula for *k . 
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2.3.6: Assemblage of Neutral Inclusions  

 In a composite a neutral inclusion is an inclusion that does not disturb an applied 

temperature field. This means that the neutral inclusion can be removed from the  

composite without changing the properties of the composite while a temperature field is 

being applied [25]. This section will examine neutral inclusions that have geometries of 

coated spheres and coated ellipsoids and use an assemblage of each to derive explicit 

formulas to estimate the effective thermal conductivity of a composite.  

An assemblage of coated spheres was introduced by Hashin and Shtrikman in 

1962 [17]. The basis of this model is when an appropriate effective thermal conductivity, 

*k , is chosen, a sphere of thermal conductivity k1 with coating of the pure matrix at 

thermal conductivity k2 can be inserted as an inclusion in an infinite matrix material 

without disturbing the uniform temperature gradient outside the sphere [17].  Figure 2.3-1 

depicts a neutral inclusion. 

 

 

 

  

 

 

 

 

Figure 2.3-1: Neutral Spherical Inclusion 
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An assemblage of neutral spherical inclusions can have an infinite number of 

phases. Here a composite with two phases will be considered. The first phase contains an 

isotropic filler and the second phase contains and isotropic matrix material which acts as 

a coating on the filler. The first phase is embedded in the second phase. To determine the 

effective thermal conductivity of the composite the thermal conductivity equations (Eqs. 

2-3 through 2-5) must be solved for this inclusion problem.  To solve this inclusion 

problem when a uniform temperature gradient is applied the temperature must be 

examined in each phase of the inclusion. The temperature is given as [17] 

  1
1 1 3

b
T x a z

r
    


, in core       (2-42) 

  2
2 2 3

b
T x a z

r
    


, in coating      (2-43) 

  *
* * 3

b
T x a z

r
    


, in effective medium.     (2-44) 

In Equations 2-42 through 2-44 a1 is a constant, a2 is a constant, a* is constant, b1 is a 

constant that equals zero because T1 is finite, b2 is a constant, b* is a constant, x


 is the 

position vector, 2 2 2 2r x y z    which contain the components of vector x


. 

Next the heat flux in each phase is computed using Fourier’s Law (Equation 2-3) 

which gives   

 1 1 10,0,q a k , 0 ≤ r ≤ R1       (2-45) 
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, r ≥ R2 .   (2-47) 

Equations 2-45, 2-46, and 2-47 represent the core, coating, and effective medium, 

respectively, of the spherical neutral inclusion problem and there are five unknowns a1, 

a2, a*, b2 and b*. To determine the five unknowns appropriate boundary and jump 

conditions must be applied and the unknowns are given by the following system of 

equations 

2
1 2 3

1

b
a a

R
           (2-48) 

2 *
2 *3 3

2 2

b b
a a

R R
           (2-49) 

2
1 1 2 2 3

1

2b
k a k a

R

 
  

 
        (2-50) 

2 *
2 2 * *3 3

2 2

2 2b b
k a k a

R R

   
     

   
       (2-51) 

* * 1k a  .         (2-52) 

 In Equations 2-48 through 2-52 R1 is the radius of the core spherical inclusion and R2 is 

the radius exterior spherical inclusion. This system of five algebraic equations is solved 

to determine the constants. Once the constants are known they are substituted back into 

the heat flux equations (Eqs. 2-45 through 2-47). 

 Finally to compute the effective thermal conductivity of the composite the 

average heat flux within the composite must be computed. The average heat flux in the 
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coated sphere is given by integrating over the volume of the spherical inclusion in polar 

coordinates 

 
1 2

1

1 2 1 2

0

0,0,1
R R

R

q q q q dV q dV q          
     

,   (2-53) 

and solving this equation results in the thermal conductivity, *k  (W/m·K), being given as 

 
  2112

2121
2* 13

3

kkfk

kkkf
kk




 .      (2-54) 

In Equation 2-54, k1 (W/m·K) is the thermal conductivity of the filler, k2 (W/m·K) is the 

thermal conductivity of the matrix, and f1 is the filler volume fraction.  

Now consider neutral inclusions that are coated ellipsoids. This model is called 

the assemblage of coated ellipsoids and is an extension of the assemblage of coated 

spheres model. This model was introduced by G. W. Milton [17], and the basis of this 

model is the same as the assemblage of coated spheres.  

This model can have an infinite number of phases but for simplicity two phases 

will be considered. The first phase is embedded in the second phase and the first phase is 

the filler and the second phase is the matrix material which acts as a coating on the filler. 

In this model the assumption is made that the coated ellipsoids are aligned with the major 

axis of the composite. This neutral inclusion problem is solved the same as the 

assemblage of coated spheres using ellipsoidal coordinates. To solve this neutral 

inclusion problem ellipsoidal coordinates are used and the same steps for solving the 

assemblage of coated spheres are followed. The details of the solution to this inclusion  

problem can be found in Milton [17]. Since the ellipsoidal inclusions are assumed to be 
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aligned the effective thermal conductivity will only have diagonal entries and the 

effective thermal conductivity, *k (W/m·K), is given by   

 
 

 
















3,300

02,20

001,1

*

*

*

*

k

k

k

k       (2-55) 

   
  2112

2121
2* ,

kkdfdk

kkkf
kiik

eici 


  i = 1,2,3.    (2-56) 

In this Equation 2-56, dci and dei are the depolarization factors of the core and exterior 

ellipsoidal inclusions and are a function of the core and exterior semi-axes of the coated 

ellipsoids.  This model is used later in the modeling chapter where more details on the 

depolarization factors are given (Chapter 5). 

 

2.3.7: Nielsen’s Model 

 This research group has previously done thermal conductivity modeling of 

composites using a theoretical and curve fitting approach. Composites are generally 

anisotropic which means that heat conduction in the composite depends on the direction 

of measurement. Therefore, to determine the effective thermal conductivity of a 

composite with anisotropic constituents the heat conduction must be measured in the 

through-plane and in-plane direction. Similarly one way to model the effective thermal 

conductivities of a composite is to develop two separate models; through-plane and in-

plane [16].  
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One model this research group has used is Nielsen’s model. Nielsen model 

predicts the through-plane thermal conductivity of a composite. This model is based on a 

model developed by Albert Einstein for the viscosity of a fluid with dispersed spheres 

[26,27] and the Halpin-Tsai equations for calculating the elastic moduli of composites 

[26]. Einstein’s model and the Halpin-Tsai model were not developed to predict the 

thermal conductivity of composites but can be extended to predict the through-plane 

thermal conductivity of two phase composites. 

Nielsen’s model made modifications to the Halpin-Tsai model by changing 

nomenclature and incorporating a new term    which accounts for the orientation and 

packing of the filler in the matrix. The Halpin-Tsai equations, only took into account the 

shape of the filler. Nielsen’s model is given as [26,28] 















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kk through 1

1
2         (2-57) 
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




2

1
1

m

m
 .        (2-59) 

In Equations 2-57 through 2-59, kthrough is the through-plane thermal conductivity of the 

composite, k1 and k2 are the thermal conductivities of the filler and the polymer, 

respectively,   is the volume fraction of the filler, A is a shape and orientation factor, and 
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B is a factor that takes into account the relative conductivity of the two components.  

Finally, the   parameter relates the maximum packing fraction m to the filler and 

polymer volume fractions. The parameter A can theoretically be calculated by [26,28] 

A = 1 – ke,           (2-60) 

where ke is the Einstein coefficient.  Some values for A have already been determined for 

specific filler types and are given Table 2.3-1 [13]. The maximum packing fraction m  

has also been determined for specific filler shapes and orientations and are given in Table 

2.3-2 [13]. 

 

Table 2.3-1:  Shape Factor ‘A’ for Common Filler Types [13] 

Filler Type Aspect Ratio A 
Cubes 1 2 
Spheres 1 1.5 
Random Fibers 2 1.58 
Random Fibers 4 2.08 
Random Fibers 6 2.80 
Random Fibers 10 4.93 
Random Fibers 15 8.38 
Uniaxially Oriented Fibers -- 2L/D (a) 
Uniaxially Oriented Fibers -- 0.5 (b) 

  a Heat flow in direction of fibers 
  b Heat flow transverse to fiber direction 
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Table 2.3-2:  Maximum Packing Fraction of Selected Fillers [13] 

Particle Shape Packing order m 

Spheres Hexagonal Close 0.7405 
Spheres Face Centered Cubic 0.7405 
Spheres Body Centered Cubic 0.60 
Spheres Simple Cubic 0.524 
Spheres Random Loose 0.601 
Spheres Random Close 0.637 
Irregular Random Close ~0.637 
Fibers Three Dimensional Random 0.52 
Fibers Uniaxial Hexagonal Close 0.907 
Fibers Uniaxial Simple Cubic 0.785 
Fibers Uniaxial Random 0.82 

  

To show how well Nielsen’s model predicted the through-plane thermal 

conductivity experimental data, a standardized lack of fit term, ε was calculated using. A 

value of ε = 0 would indicate a perfect fit of the experimental data with the model. 

Nielsen’s model was shown to underestimate and overestimate the experimental data so 

the shape factor A and packing fraction m  were adjusted to give a ε ≈ 0 [16].  The 

results from this modeling work are in Hauser’s Dissertation [16]. 

There is not a lot of experimental data for the in-plane thermal conductivity of 

composites and as a result there are not many models that predict the in-plane thermal 

conductivity of composites. However, research has been conducted by Keith et al. and 

Miller et al. and they have developed an empirical model to predict the in-plane thermal 

conductivity of carbon-filled liquid crystal polymer composites [29,30].  The in-plane 

model showed that the square root of the product of the through-plane and in-plane 
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thermal conductivities is an exponential function of the filler volume fraction, , which is 

[27,28] 

D
throughin Cekk  .          (2-61) 

In Equation 2-61, kin is the in-plane (longitudinal) thermal conductivity, kthrough is the 

through-plane (transverse) thermal conductivity,  is the volume fraction filler, and C and 

D are parameters obtained through fitting an exponential trend to the experimental data.  

 In conclusion, the models discussed in sections 2.3.3-2.3.6 use a “first-principles” 

modeling approach to estimate the effective thermal conductivity of composites. Using 

first-principles the effective thermal conductivity of the composite is estimated based on 

information about the physical properties of the constituents that make up the composite. 

While past thermal conductivity modeling done by this research group, used a mixed 

approach of both first-principles and empirical modeling to estimate the through- and in-

plane thermal conductivity of a composite. The advantage to using a “first-principles” 

modeling approach is that experimental work can be reduced. 
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Chapter 3: Materials 

3.1: Materials 

 The materials used in this research were a polymer matrix and three carbon fillers. 

The polymer matrix used was Ticona’s Vectra A950RX liquid crystal polymer that has 

advantageous properties for fuel cell bipolar plates.  The three carbon fillers used were 

Akzo Nobel’s Ketjenblack EC-600 JD carbon black, Asbury Carbons’ Thermocarb TC-

300 synthetic graphite, and Toho Tenax America’s Fortafil 243 carbon fiber. More details 

on these materials is given in the following sections. 

 

3.2: Matrix Material 

3.2.1: Vectra A950RX Liquid Crystal Polymer 

The matrix material used in this research was Ticona’s Vectra A950RX liquid 

crystal polymer (LCP).  Vectra is a highly ordered thermoplastic copolymer consisting of 

73 mol % hydroxybenzoic acid (HBA) and 27 mol % hydroxynapthoic acid (HNA).  This 

LCP has the properties needed for bipolar plates, namely high dimensional stability up to 

a temperature of 250°C, short molding times (often 5-10 s), exceptional dimensional 

reproducibility, chemical resistance in acidic environments present in fuel cells, and a 

low hydrogen gas permeation rate [1, 2]. The chemical structure and physical properties 

of this polymer are shown in Figure 3.2-1 [3] and Table 3.2-1 [1], respectively.  
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Figure 3.2-1: Chemical Structure for Vectra A950RX LCP [3] 

 

Table 3.2-1:  Properties of Ticona’s Vectra A950RX LCP [1] 

Melting Point 280 oC 
Tensile Modulus (1mm/min) 10.6 GPa 

Tensile Stress at break (5mm/min) 182 MPa 
Tensile Strain at break (5mm/min) 3.4% 

Flexural Modulus at 23 oC 9.1 GPa 
Notched Izod Impact Strength at 23 oC 95 kJ/m2 

Density at 23 oC 1.40 g/cc 
Volumetric Electrical Resistivity at 23 oC 1015 ohm-cm 

Surface Electrical Resistivity 1014 ohm 
Thermal Conductivity at 23 oC 0.22 W/m·K (approx.) 

Humidity Absorption (23 oC/50% RH) 0.03 wt% 
Mold Shrinkage-parallel 0.0% 
Mold Shrinkage-normal 0.7% 

Coefficient. of linear thermal expansion- parallel 0.04 x 10-4 /oC 
Coefficient. of linear thermal expansion- normal 0.38 x 10-4/oC 

 

3.3: Filler Materials 

3.3.1: Carbon Black 

 Carbon black is one of the top 50 industrial chemicals manufactured worldwide, 

and currently 18 billion pounds of carbon black are produced per year. Carbon black is a 

black fine pellet or powder and is produced by two different manufacturing processes. 

The first and most common method is furnace black processing. In furnace black 

C O

O

C

OO( ()
)
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processing a heavy aromatic oil is used as the feedstock. The oil feedstock is reduced to 

separate atoms in a closed reactor under controlled conditions. The feedstock then enters 

a hot gas stream where it is vaporized and pyrolyzed to form microscopic carbon particles 

[4]. 

The thermal black process is another method used to produce carbon black. In this 

process natural gas containing methane or heavy aromatic oil is used a the feedstock 

material. The natural gas is injected into a hot refractory lined furnace with no air and the 

heat from the refractory material decomposes the natural gas to carbon black and 

hydrogen. The carbon black produced may be further processed to remove impurities [4]. 

Common uses for carbon black are reinforcing and conductive agent in high 

performance materials such as tires, plastics, electrostatic discharge compounds, toners 

and printing inks. Carbon black is also used for pigmentation and ultraviolet stabilization 

[4]. As a reinforcing agent carbon black can be added to materials to improve physical 

properties such as tensile strength and wear resistance. As a conducting agent carbon 

black can increase the electrical and thermal conductivity of a material. 

 For this research Akzo Nobel supplied Ketjenblack EC-600 JD. This is a 

electrically conductive carbon black filler and the physical properties are given in Table 

3.3-1 [5] below.  Carbon black is sold in the form of pellets that are 100 µm to 2 mm in 

size.  When mixed with a polymer, the pellets easily separate into primary agglomerates 

30-100 nm long.  Carbon black is highly branched and has a high surface area allowing it 

to contact a large amount of polymer which results in improved electrical conductivity at 

low carbon black concentrations [5]. Figure 3.3-1 shows carbon black [3].   
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Table 3.3-1: Properties of Akzo Nobel Ketjenblack EC-600 JD [5] 

Electrical Conductivity 10-100 S/cm 

Aggregate Size 30-100 nm 

Specific Gravity 1.8 g/cm3 

Apparent Bulk Density 100-120 kg/m3 

Ash Content, max  0.1 wt% 

Moisture, max.  0.5 wt% 

BET Surface Area 1250 m2/g 

Pore Volume 480-510 cm3/100g 

 

 

Figure 3.3-1: Carbon Black [3] 

 

3.3.2: Synthetic Graphite 

 Synthetic graphite is manufactured by high temperature treatment of amorphous 

carbon materials. The main feedstocks used to produce synthetic graphite are calcined 

petroleum coke and coal tar pitch. One method to produce synthetic graphite is to take a 

carbonaceous gas such as acetylene, subject it to prolysis, and precipitate the graphite 

carbons formed [6]. Synthetic graphite is sometimes used as an anode in aqueous 

electrolytic processes. Other uses for synthetic graphite are in batteries, pencils, polymer 

composites, and fuel cells, crucibles, refractory products, and lubricants [7-9].  
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The synthetic graphite used in this work is Asbury Carbons’ Thermocarb TC-300 

synthetic graphite, previously sold by Conoco [10, 11]. Table 3.3-2 shows the properties 

of this synthetic graphite. Thermocarb TC-300 is produced from a thermally-treated, 

highly aromatic petroleum feedstock and contains very few impurities. The average 

particle size of the synthetic graphite is approximately 70 μm and the aspect ratio is 

approximately 1.7 [10]. Figure 3.3-2 shows an ESEM photomicrograph of this synthetic 

graphite [3].  

Table 3.3-2: Properties of Thermocarb TC-300 Synthetic Graphite [10] 

Carbon Content, wt% 99.91 

Ash, wt% < 0.1 
Sulfur, wt% 0.004 
Density, g/cm3 2.24 
BET Surface Area, m2/g 1.4 

Thermal Conductivity at 
23oC, W/mK 

600 in “a” 
crystallographic 
direction 

Electrical Conductivity of 
bulk carbon powder at 150 
psi, 23oC, parallel to 
pressing axis, S/cm 

50 

Particle Shape Acicular 
Particle Aspect Ratio 1.7 

Sieve Analysis wt % 
+600 microns 0.19 
+ 500 microns 0.36 
+300 microns 5.24 
+ 212 microns 12.04 
+180 microns 8.25 
+150 microns 12.44 
+75 microns 34.89 
+44 microns 16.17 
-44 microns 10.42 

 



 
 

49

 

Figure 3.3-2:  Thermocarb TC-300 Synthetic Graphite ESEM Image at 200X 
Magnification [3] 

 

3.3.3: PAN-Based Carbon Fiber 

  Carbon fiber is a high-performance material that has been commercially available 

for over 50 years. Carbon fiber is a fibrous material with 90% carbon content, and is 

produced from organic precursors and by gas growth. Cotton, linen, polyamide, and 

polyvinyl chloride are some naturally occurring materials that have been previously used 

to produce carbon fiber [12]. Currently, carbon fiber is manufactured from rayon, acrylic, 

mesophase pitch, cellulosic, and polyacrylicnitorile (PAN) precursors [12, 13]. PAN is 

the most common precursor used today. More details on the production of PAN-based 

carbon fiber are given below.  

 Approximately 70% to 80% of carbon fiber produced is PAN-based. Figure 3.3-3 

below shows the chemical structure of PAN-based carbon fiber. It is advantageous to 

produce carbon fiber from the PAN precursor because the chemical structure allows for 
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faster pyrolysis, it decomposes before melting, it has a higher degree of preferred 

orientation, and it has a high carbon yield of about 50% to 55% when pyrolyzed to 

1000°C or higher [12].  

 

 

Figure 3.3-3: Structural Formula of Polyacrlonitrile (PAN) [12] 

  

Figure 3.3-4 below gives the process flow diagram for the main steps used to produce 

PAN-based carbon fiber. The first step is polymerization. In this step the acrylic 

precursor is produced by polymerizing acrylonitrile and a comonomer by either solution 

polymerization or solvent-water suspension polymerization. Some comonomers used to 

produce the acrylic precursor are acrylic acid, methacrylic acid, methacylate, acrylamide, 

and itaconic acid. The second step is spinning, and in this step the PAN fibers are formed 

[12].  
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Figure 3.3-4:  Process Steps of Carbon Fiber Production from Polyacrylonitrile [12] 
 

Stabilization is the third step in the process for PAN-based carbon fiber production. In 

this step, the PAN fibers are heated under tension at low temperatures ranging from 

200°C to 300°C in an oxidative atmosphere. During this step the chemical structure of the 

PAN fibers become thermally stable to any additional high temperature heat-treatments. 

Three reactions take place during stabilization and they are cyclization, dehydrogenation, 

and oxidation. The PAN fibers also change from their original yellow color to black 

which is the final color of the carbon fibers. This step is very important because it 

governs the final structure and mechanical properties of the carbon fiber. The fourth step 

in carbon fiber production is carbonization. In this step the PAN fibers are converted to 

carbon fibers. During carbonization the PAN fibers are heated at high temperatures 

ranging from 1000°C to 1500°C under low tension, and all elements are removed except 

carbon [12].  

After carbonization, the carbon fiber goes through a post heat treatment step; the fifth 

step in carbon fiber production. In the post heat treatment step the carbon fibers are 

heated under tension in an inert atmosphere to temperatures ranging from 1500°C to 

3000°C. During this step the carbon fibers are increased in size and the crystallites are 
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aligned, which improves the final properties of the fiber.  The final step of the carbon 

fiber production process is surface treatment. The final carbon fibers produced are 

surface treated to increase adhesion [12]. 

Toho Tenax America, Inc.’s supplied Fortafil 243 PAN carbon fiber for this research. 

This carbon fiber was chosen because of its ability to improve the electrical conductivity, 

thermal conductivity, and tensile/flexural strength of the Vectra A950RX liquid crystal 

polymer matrix. Fortafil 243 was surface treated and formed into pellets by the 

manufacturer.  A proprietary polymer (sizing) was used as a binder for the pellets to 

promote adhesion with the matrix.  Table 3.3-3 lists the properties of the carbon fiber 

[14] and Figure 3.3-5 and Figure 3.3-6 show ESEM micrographs images of this filler [3]. 

 

Table 3.3-3:  Properties of Toho Tenax America’s Fortafil 243 Carbon Fiber [14] 

Tensile Strength 3800 MPa 
Tensile Modulus 227 GPa 

Electrical Resistivity 16.7 ohm-m 
Thermal Conductivity 20 W/m K (axial direction) 

Bulk Density 356 g/liter 
Fiber Diameter 7.3 μm 
Filament Shape Round 

Fiber Mean Length 3.2 mm (entire range is 2.3 mm to 4.1 mm) 
Carbon Assay 95% 

Binder Content 
2.6 wt% proprietary polymer that adheres pellet 

together and promotes adhesion with nylon 
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Figure 3.3-5:  Fortafil 243 Carbon Fiber ESEM Image at 250X Magnification [3] 

 

 

Figure 3.3-6: Fortafil 243 Carbon Fiber ESEM Image at 10000X Magnification [3] 
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3.3.4:  Formulation Naming Convention 

 For this project, it was important to name and number each specimen. Each test 

specimen produced was labeled according to the filler type and weight percent. The filler 

types were abbreviated as follows “CB” is carbon black (Ketjenblack EC-600JD), “SG” 

is synthetic graphite (Thermocarb TC-300), and “CF” is carbon fiber (Fortafil 243). The 

concentrations for all the single filler composites tested in this research are shown in 

Table 3.3-4. 
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Table 3.3-4: Single Filler Loading Levels 

Formulation Filler wt% Filler vol% 
Vectra 0 0 
2.5CB 2.5 1.9 
4CB 4.0 3.1 
5CB 5.0 3.9 
6CB 6.0 4.7 

7.5CB 7.5 6.0 
10CB 10.0 8.0 
15CB 15.0 12.1 
10SG 10.0 6.5 
15SG 15.0 9.9 
20SG 20.0 13.5 
25SG 25.0 17.2 
30SG 30.0 21.1 
35SG 35.0 25.2 
40SG 40.0 29.3 
5CF 5.0 4.1 

7.5CF 7.5 6.1 
10CF 10.0 8.2 
15CF 15.0 12.4 
20CF 20.0 16.8 
25CF 25.0 21.2 
30CF 30.0 25.5 
35CF 35.0 30.2 
40CF 40.0 34.9 
45CF 45.0 39.7 
50CF 50.0 44.6 
55CF 55.0 49.6 
60CF 60.0 54.7 
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Chapter 4: Fabrication and Experimental Methods 

4.1: Fabrication Methods 

 The details of the test specimen preparation will be discussed in this section. All 

the experimental work for this project was previously done by Dr. Julie King’s research 

group, including Rodwick Barton and Rebecca Hauser. The experimental methods are 

shown here to aide the reader, and this project focuses on thermal conductivity modeling. 

4.1.1: Drying 

The polymer matrix material used for this project, Vectra A950RX LCP, was 

received as pellets and dried. Vectra was dried for 24 hours in an indirectly heated 

dehumidifying drying oven manufactured by Bry Air Systems. Vectra was dried at 150C 

in 20 pound batches and once all of the polymer pellets were dry they were stored in 

moisture barrier bags. A picture of the Bry Air Dryer is shown in Figure 4.1-1. The 

carbon fillers were not dried; they were used as received.   

 

Figure 4.1-1:  Bry Air Dryer System 
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4.1.2: Extrusion 

 An extruder was used to produce the polymer composite material researched in 

this project. An American Leistritz Corporation Model ZSE 27 extruder was used. This 

extruder has a length/diameter ratio of 40, a 27 mm co-rotating intermeshing twin screw 

design, and 10 independent heating zones. This screw design is used to achieve large 

concentrations of carbon fillers in the polymer composite to give maximum thermal 

conductivity. A picture of this extruder is given in Figure 4.1-2 below, and the screw 

design used can be found in Appendix A.  

 

Figure 4.1-2:  American Leistritz Extruder with 27 mm Twin Screw 

 

 Again, the extruder used in this project had 10 zones. The Vectra polymer pellets 

were added to Zone 1 of the extruder using a Schenck AccuRate Flexwall gravimetric 

feeder. Zone 1 was cooled with water to prevent the polymer from obstructing the feed 

port. A picture of the Schenck AccuRate Flexwall gravimetric feeder is shown in Figure 
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4.1-3. To produce a polymer composite containing a single carbon filler, the carbon filler 

was added to Zone 5 of the extruder. The carbon filler was added using a side stuffer fed 

by AccuRate Conisteel loss in weight feeder which is shown in Figure 4.1-4. Zones 4 and 

9 were vented to the atmosphere. Zones 2, 3, 6, 8, and 10 were closed during extrusion. 

Three extruded strands (3 mm diameter) were produced using this extrusion process. 

 

 

Figure 4.1-3: AccuRate Flexwall Feeder 

 

Figure 4.1-4: AccuRate Conisteel Feeder 
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Next, the polymer composite strands entered a water bath for cooling. After 

cooling, a ConAir Model 204HP-14A pelletizer was used to make 3 mm long pellets 

from the polymer composite strands. The polymer composite pellets were dried and 

placed in moisture barrier bags. A picture of the pelletizer and water bath is shown in 

Figure 4.1-5 below. The specific conditions used in this extrusions process can be found 

in Appendix B of Hauser’s dissertation [1]. 

 

 

Figure 4.1-5: Water Bath & Pelletizer 

 

4.1.3: Injection Molding 

After extruding the polymer composite a NE85UA4 Niigata injection molding 

machine was used to fabricate the test specimens [2]. This Niigata injection molding 

machine has a length/diameter ratio of 18, a 40 mm diameter single screw design, a 

maximum clamp force of 82.5 U.S. tons, a maximum injection pressure of 22, 610 psig, 
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and a maximum screw speed of 320 rpm. A picture of this injection molding machine is 

shown in Figure 4.1-6.  

.   

 

Figure 4.1-6: Niigata Model NE85UA4 Injection Molding Machine 

 

A four-cavity mold, Figure 4.1-7, was used to produce 3.2 mm thick and 6.4 cm 

diameter disks (end gated) [3].  The specific injection molding conditions for each 

composite formulation are shown in Appendix C of Hauser’s dissertation [1].  The 

following paragraphs outline the procedure used to injection mold the polymer composite 

samples.  
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Figure 4.1-7: Four-Cavity Mold 

 

The injection molding machine was turned on and set to the operating temperature of 

the material being molded. After the operating temperature was reached, the injection 

molding machine was purged of any contaminants using pure Vectra. About 2lbs of each 

polymer composite material formulation was molded into 30 disks with 6.4 cm diameter. 

The injection pressure and the shot size typically were the only adjusted parameters 

within each formulation. These parameters were adjusted to completely fill the mold. The 

test specimens formed were stored in low-density polyethylene (LDPE) bags. 

After 30 disks were made from one formulation, the injection molding machine was 

run until it was empty. Next, another formulation was added to the hopper and injection 

molded. The first 5 disks molded were thrown out because they could still have some of 

the previous formulation present. During this molding of the first 5 disks the injection 
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molding machine was optimized for the new material. Next, the 30 disks for the new 

material were made using the steps outlined above. Finally, at the end of each day, the 

injection molding machine was cleaned by running pure Vectra through the system. Pure 

Vectra was molded until the disks contained minimal or no carbon. And lastly, 

polypropylene was run through the injection molding machine to purge the Vectra and 

any remaining carbon from the system.  

 

4.2: Experimental Test Methods 

Prior to conducting thermal conductivity testing, all samples were conditioned at 

23ºC and 50% relative humidity for 88 hours in accordance with ISO 291 [4], which is 

the standard test protocol for Vectra A950RX LCP. 

 

4.2.1: Hot Disk Specific Heat  
 

A Heat Capacity Cell manufactured by Hot Disk Incorporated was used to 

measure the specific heat of the fabricated polymer composite materials. The 6.4 cm disk 

produced from injection molding was obtained and three 25 mm diameter and 3.2 mm 

thick disks were cut from the center. The 25 mm diameter disks were stacked in an 

insulated copper cup which had a sensor with nickel attached to the bottom. Using a 

constant power supply, the sensor measured temperature change by detecting the change 

in resistivity of the nickel. The temperature change in the empty copper cup was 

compared to the temperature change of the copper cup containing the polymer composite. 

The specific heat of the polymer composite was determined from these measured 
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temperature changes. Results from this test are located in Appendix E of Hauser’s 

dissertation [1].    

 
 
4.2.2: Hot Disk Thermal Analyzer for Transverse and Longitudinal 
Thermal Conductivity 
 

A Hot Disk Thermal Constants Analyser, manufactured by Hot Disk Incorporated 

was used in this research. The Hot Disk Thermal Constant Analyser is a technology used 

to measure longitudinal (in-plane) and transverse (through-plane) thermal conductivity of 

anisotropic materials. The Hot Disk Thermal Constant Analyser uses transient plane 

source technique and the thermal conductivities were measured at 23 oC. Figure 4.2-1 

below shows a picture of the analyser.  

 

Figure 4.2-1: Hot Disk Thermal Constants Analyser 
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This test system contained sensors which consisted of a 10 µm thick nickel foil 

positioned between two 25.4 µm thick layers of Kapton polyimide film.  Figure 4.2-2 

shows a diagram of the sensors. The polymer composite samples tested had a thickness of 

3.2 mm and a diameter of 6.4 cm. To make certain that the heat from the test system was 

not completely going through the samples in the through-plane direction the assumption 

of an infinite sample had to be satisfied.  To accomplish this, two sample disks were 

stacked above and below the sensor for a total of four sample disks tested in one run. 

Stacking the disks allowed for an infinite sample to be tested and the thermal 

conductivity data collected was reproducible. For each formulation, five sets of disks 

were (so a total of 20 disks) tested.   

 
Figure 4.2-2: Diagram of Samples and Sensor. The insert at the lower left shows the 

double spiral heating element. 
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A constant power is supplied to the sensor for short periods of time for each test 

sample. The power supplied and time period varied depending on the sample being tested 

in the range of 0.03W – 1.25W and 2.5s – 40s, respectively. During testing, heat was 

generated in the test sample and was dissipated using a double spiral and then conducted 

through the Kapton insulating layer to the surrounding test samples. This caused a rise in 

temperature for the sensor and the test sample.  

Theoretically, the double spiral can be estimated as a series of concentric equally 

spaced ring sources. Assuming radial symmetry the heat conduction equation for the 

double spiral is given as, 

   





























rings
rthroughinp zrrQ

z

T
k

r

T
r

rr
k

t

T
C )()'(

1
2

2

 .  (4-1) 

In Equation 4-1 ρ is the density of the sample (kg/m3), Cp is the heat capacity of the 

sample (J/kg·K), T is the temperature of the sample (K), t is the measurement time (s), kin 

is the in-plane thermal conductivity of the sample (W/m·K), r is the radius of the sample,  

kthrough is the through-plane thermal conductivity of the sample (W/m·K),   is the Dirac 

delta function, 'r  is the radius of one of the ring sources, and Qr is the power supplied to 

that ring per unit length of the ring (W/m). The total power for each ring is proportional 

to the circumference of the ring '2 r , such that the total power supplied for all of the 

rings is Q (W).  This total power Q is an input parameter to the Hot Disk Thermal 

Constants Analyser. The first term in Equation 4-1 represents accumulation of thermal 

energy, the second term radial (referred to as in-plane in our experiments) heat 

conduction, the third term axial (often referred to as through-plane) heat conduction, and 

the final term is a heat source. 
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If the experimental time is much less than the characteristic thermal diffusion 

time, then the sample can be approximated as an infinite domain. For an anisotropic 

material with a cylindrical geometry, the experimental time must meet the following two 

criteria [5-9], 

    inDt /2/ 2         (4-2) 

 throughTt /2 .        (4-3) 

In Equations 4-2 and 4-3 α is the thermal diffusivity and is given as )/( pCk   , which 

is the thermal diffusivity of the polymer composite material. 

The average transient temperature increase of the sensor is simultaneously 

measured by recording the change in electrical resistance of the nickel sensor [5-9] 

according to, 
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where ΔT (K) is the change in temperature at time t, β is the temperature coefficient of 

resistance of the material (1/K), Rn is the electrical resistance of the nickel at time t (Ω), 

and Rno is the electrical resistance of the nickel at time 0 (Ω). In Equation 4-4 the 

temperature rise is correlated with the in-plane and through-plane thermal conductivities 

through the solution to Equation 4-1 as, 
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In Equation 4-5, F(τ) is a dimensionless time dependent function of  τ and is given by an 

integral of a  double series over the number of rings m 
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A detailed derivation of Equations 4-5 and 4-7 is given by He [10]. 

The complete results for the through-plane and in-plane thermal conductivity of 

each test specimen can be found in Appendix F in Hauser’s dissertation [1]. For this 

project, the through-plane  and in-plane thermal conductivity was measured only for the 

neat Vectra samples. For all other formulations, only the in-plane thermal conductivity is 

reported. 

 

4.2.3: Density  

 The density of the sample disks were measured using the standard test method for 

density and specific gravity of plastics by displacement, ASTM D792-98 [11].  The 

sample disk was weighed while dry and then weighed when placed in water. The 

temperature of the water was noted, and the actual density of the sample was determined 

using the following equation,  
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The theoretical density of the sample disk was determined by,  
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In Equation 4-9, ρi is the density of the constituents of the sample disk, i is the volume 

fraction of the constituents, and i is the type of constituent in the sample disk. The results 

for each sample can be found in Appendix G in Hauser’s dissertation [1].  In all cases, the 

actual and theoretical composite densities were similar. 

 

4.2.4: Solvent Digestion  

Solvent digestion was used to dissolve the polymer composite samples, and 

ASTM D5226-98, a standard practice for dissolving polymer materials, test method was 

used [12]. The purpose of this test is to liberate the carbon fiber and synthetic graphite 

fillers from the polymer matrix. Once this was accomplished the aspect ratio and length 

of the carbon fiber and synthetic graphite were measured, and these measurement 

techniques are outlined in the next section. Carbon black was too small (primary 

aggregate 30-100nm) to be separated using this test method. 

A 0.2 g sample was obtained from the center of the 6.4 cm diameter sample disk, 

and a total of three solvent digestion samples were obtained from each formulation. The 

0.2 g sample was placed in a 2 ounce labeled glass vial filled approximately halfway, 

enough to dissolve the sample, with diethylenetriamine (DETA). A recording of the exact 

amount of DETA was not necessary because DETA was pulled through the filler and 

disposed of following regulations. The sample was soaked in DETA for about four to six 

hours at 170 oF until the polymer matrix was completely dissolved. 

While the sample was dissolving, filter paper and a Petri dish were weighed 

separately using a  four-place Denver Instruments A-250 scale, and the weights were 

recorded. The filter paper used was produced by Millipore and called Duapore ® 
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membrane filters. These filter papers had a pore size of 0.45 m  The Petri dish was 

labeled to make sure the correct filter was used for the correct sample. One filter paper 

was used for each sample.   

After the polymer matrix was dissolved, the polymer/filler/solvent solution was 

filtered. The filtering system used is shown below in Figure 4.2-3. The filtering system 

contained a Fisher Brand 47 mm microanalysis filter assembly, vacuum flask, and 

vacuum pump. The weighed filer paper was placed in the filtration system and the 

polymer solution was introduced into the filter. The vacuum pulled the solvent and 

polymer matrix through the filter paper and only the filler material remained on the filter 

paper. The 2 ounce sample vial was rinsed with isopropyl alcohol to ensure that all of the 

polymer/filler/solvent solution has been filter. The funnel was also rinsed with isopropyl 

alcohol to ensure only filler remained on the filter paper. The vacuum continued to run 

until all liquid was removed. The filter paper containing the filler was placed in a pre-

weighed labeled Petri dish. The Petri dishes was placed in the fume hood and left open 

over night for the filler to dry.  These steps were repeated for three samples of each 

formulation of the polymer composite. 

The polymer composite containing carbon black was not dissolved and filtered 

because the carbon black would plug the filter. After drying the sample overnight the 

Petri dish wit the filter paper and filler was weighed. The weigh percent of the filler was 

determined using the following equation, 

( )% Final Filter s PetriDish
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 
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The complete set of results can be found in Appendix H in Hauser’s dissertation [1]. 
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Figure 4.2-3:  Solvent Digestion Filtration Apparatus 

 

4.2.5: Filler Length and Aspect Ratio 

The carbon fiber and synthetic graphite fillers liberated by solvent digestion were 

used to determine the aspect ratio and length of the fillers. The “as-received” carbon fiber 

and synthetic graphite were also measured to determine the aspect ratio and filler length. 

The two measured values were compared to see if the material changed during extrusion 

and injection molding.  

The fillers were dispersed on a glass slide and the apparatus used to do so is 

shown in Figure 4.2-4. Approximately 0.01 g of the filler was obtained from the filter 

paper using a micro-spatula and with the one-hole stopper removed the filler was placed 

in the crucible. The filler particles were distributed on the glass slide so that no particles 

were overlapping in the images. The one-hole stopper was replaced in the flask and the 

flask was placed over the clean surface of the glass slide.  A duster can was placed 
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through the one-hole stopped and the filler was dispersed onto the glass slide using a 

short burst. After each dispersion, the apparatus and the glass slide were cleaned. 

Compressed Gas

Filler in 
Crucible

Plastic Vacuum
Flask with 
Bottom Removed

Glass Slide

One Hole
Stopper

 

Figure 4.2-4:  Filler Dispersion Apparatus 

 

The glass slide containing the dispersed filler was placed on a Prior automatic 

stage for microscope setup.  An Olympus SZH10 optical microscope was used for 

imaging the dispersed fillers. This microscope contained an Optronics Engineering LX-

740 video camera for digital imaging. A picture of the microscope and camera is shown 

in Figure 4.2-5. An automated series of steps in Scion Image version 1.62 was used to 

collect the images. Dr. Larry Sutter, professor and director of Michigan Tech’s 

Transportation Institute, wrote the automated steps and they were modified for this 

project. All of the images were collected at 70x magnification and the results are in 

Appendix I of Hauser’s dissertation [1].  
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Figure 4.2-5: Microscope Setup Used for Filler Length and Aspect Ratio 

 

The images collected were measured and processed an academic version of 

Adobe Photoshop 5.0 along with a The Image Processing Tool Kit version 3.0. Batch 

operation was used for processing of the images, using the following steps [13]:  

1. Convert image from red/green/blue (RGB) to grayscale 

2. Remove the uneven lighting of the image by fitting and removing the background 

3. Standardize the contrast of the image by automatic leveling 

4. Convert the image to a binary image where all fillers are in black using threshold 

5. Remove all features that came in contact with the edge of the image using feature 

cutoff and threshold 

6. Calibrate image, a predetermined calibration based on the magnification and 

resolution of the image is loaded 

7. Measure all, 26 different items of each feature in the image were measured and 

stored to a text file that was appended to for each new image 
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500 to 5000 particles were measured for each formulation. An algorithm was used to 

measure the maximum and minimum caliper distance of each feature. Every 11.25° the 

caliper length and height were measured for every feature, and from this a length 

(maximum caliper distance) and breadth (minimum caliper distance) were calculated. 

The aspect ratio of the filler is calculated by dividing length by breadth. This method did 

not work well for particles that were long and thin. This issue was addressed by dividing 

the length of the fibers by literature diameter to produce the aspect ratio. 

 

4.2.6: Determination of Particle Orientation in the Composite 

 The method described below was primarily developed by Rodwick Barton Carter 

with the advice of Buehler and Dr. Karl Peterson, research assistant professor and 

director of Michigan Tech’s Material Characterization Program. 

 

4.2.6.1: Sample Preparation 

A 13 mm by 13 mm square was cut out of the center of each of the 3.2 mm thick 

thermal conductivity samples to generate the in-plane (x-y plane) samples studied. An 

epoxy mixture was poured into the sample holders and the composite samples were 

carefully pushed down into the epoxy. A two-part epoxy called Epoxide Cold Mounting 

Resin and Hardener purchased from Mager Scientific was used. The epoxy was mixed by 

weight in a ratio of five parts resin to one part hardener. The epoxy plugs cured overnight 

at room temperature. After curing the epoxy plugs were removed from the sample 

holders. 
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4.2.6.2: Polishing 

 After the epoxy samples cured and were removed from the holder the resulting 

pucks were polished. The pucks were polished so that images could be taken of the 

surface using an optical microscopy. First, a 60 grit 12’” abrasive pad was used to ground 

the epoxy pucks on two sides to shape them as an oval. Next, the epoxy pucks were 

labeled and attached to the glass microscope slide using JB Kwik Weld. Figure 4.2-6 

shows the ground epoxy pucks.   

 

 

Figure 4.2-6: Ground Oval-Shape Epoxy Pucks 

 

 Once the weld was dry and the pucks were secured to the microscope slides the 

epoxy covering the sample surface is removed. The epoxy is removed using a diamond 

surface grinder with a vacuum holder. After the epoxy is removed the samples are 

washed with water and detergent and dried. Another microscope slide with one side 

frosted is obtained and attached to the puck with the frosted side down using Epotech 301 

epoxy. Figure 4.2-7 below shows the prepared puck. 
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Figure 4.2-7: Prepared Polymer Puck 

 

 Next, using a diamond tipped pen the puck samples are labeled on the frosted side 

of the glass slide. The sample pucks are placed with the frosted side down on a vacuum 

chuck. A vacuum is applied to hold the sample pucks in place. A cut off saw is used to 

cut a thin 0.2 mm section from the sample pucks. The thin puck samples are placed in a 

diamond surface grinder which made the surface of the pucks flat. Figure 4.2-8 shows a 

picture of the cut off saw and Figure 4.2-9 shows the flat thin puck samples.  

 

 

Figure 4.2-8: Image of Cut Off Saw Used to Cut Epoxy Puck into Thin Sections 
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Figure 4.2-9: Thin Sections of Composite Samples Ready for Polishing 

 

 The Buehler Ecomet 4 Grinder/Polisher is used to polish the flat thin puck 

samples, and Figure 4.2-10 shows a picture of the polisher. First, the scratches created 

from the diamond surface grinding of the sample pucks were removed by using the 

Buehler Ultra-Pol PSA 12” diameter cloth with Buehler 9 µm Metadi Supreme 

Polycrystalline Diamond suspension at 120 rpm for 2 minutes.  

 

 

Figure 4.2-10: Buehler Ecomet 4 Grinder/Polisher 
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After the diamond scratches were removed the Texmet 1000 polishing cloth (PSA 

12” diameter) was used with the 3 µm Metadi Supreme Polycrystalline Diamond 

suspension at 120 rpm for 4 minutes. The sample pucks were viewed under the 

microscope to be sure the fillers were clearly visible.  If the fillers were not visible then 

the sample puck was polished again with the 3 µm diamond suspension for 4 minutes. 

The last step is to use polish the sample pucks with the Master-Tex polishing cloth (PSA 

12” diameter) with the Masterprep 0.05 µm polishing suspension at 120 rpm for 2 

minutes. The sample puck was viewed with the microscope to be sure that the fillers 

could be seen which meant that polishing was complete. If the fillers were not able to be 

seen then the last polishing step was repeated.  

 

4.2.6.3: Optical Imaging Methods 

The Olympus BX60 microscope was used to image the polished samples. The 

magnification used on this microscope was 100x and 200x. Images of the sample pucks 

were taken across the thickness of the sample using the Scion Image versions 1.62. The 

images were taken in the direction of the thermal conductivity test. The images collected 

were put together to get a large composite image for analysis. Appendix J in Hauser’s 

dissertation [1] shows the resulting photomicrographs. Figure 4.2-11 shows a picture of 

the Olympus BX60. 
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Figure 4.2-11:  Olympus BX60 Microscope 
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Chapter 5: In-Plane Thermal Conductivity Modeling 

5.1: In-Plane Thermal Conductivity Modeling 

 The in-plane thermal conductivity of polymer composites depend on many factors 

such as the microstructure of the matrix and filler material, concentration, degree of 

mixing, orientation, bonding between the filler and matrix, thermal conductivity of the 

constituents, and the crystallinity of the polymer. A way to model the thermal behavior of 

composites is by using math approximations along with the solutions to inclusion 

problems.  

 

5.2: Modeling Theory 

Mathematical models are used in this project to estimate the effective in-plane 

thermal conductivity. The effective thermal conductivity is computed using Fourier’s 

Law, which states that “the heat flux by conduction is proportional to the temperature 

gradient” [1].  In equation form Fourier’s Law [1] is given as 

*q k T 


,         (5-1) 

 where q


is the volume average heat flux vector, *k  is the effective thermal 

conductivity tensor, and T


 is the volume average temperature gradient vector.  

To determine *k , q


 and T


 need to be estimated and one way to accomplish 

this is by solving an inclusion problem. The “assemblage of ellipsoidal inclusions” is the 
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general model used for this research. Variations of this model were used for 

carbon/Vectra A950RX composites. In the ellipsoid inclusion problem, particles inside 

the polymer composite are assumed to have an ellipsoid shape within a homogenous 

medium. The ellipsoidal particle is inserted as an inclusion within an infinite 

homogeneous medium, in which a uniform temperature gradient is applied. Two 

variations of the assemblage of ellipsoid inclusion model were used; they were the 

“uncoated ellipsoid assemblage” and the “coated ellipsoid assemblage.” In the modeling 

developments that follow “ ” is used to denote tensors and “


” is used to denote vectors. 

 

5.2.1: Synthetic Graphite and Carbon Black Models 

Polder and Van Santen [2] were the first to use uncoated ellipsoids and the 

average field approximation to estimate effective properties of materials. Others that have 

worked on solving this inclusion problem are Milton, Helsing, Kirkpatrick, Noh, and 

Stroud [3-7]. In the average field approximation there are a variety of average fields that 

can be used from the inclusion problem, and they are the temperature gradient, heat flux, 

or polarization (a linear combination of both the temperature gradient and the heat flux).  

The average polarization, p


 , is defined as 

mp q k T  
  

,        (5-2) 

where q


 is the average heat flux, mk  is the thermal conductivity of the matrix, 

and T


 is the average temperature gradient. Polarization is zero in the matrix material 

and therefore using polarization is advantageous because the average field only needs to 
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be computed in the ellipsoid particle, not in the surrounding effective medium. Thus, the 

polarization average field approximation with uncoated ellipsoid inclusions is used to 

predict in-plane thermal conductivities of the synthetic graphite/Vectra A950RX  and 

carbon black/Vectra A950RX polymer composites.  

The effective in-plane thermal conductivity of synthetic graphite/Vectra A950RX 

and carbon black/Vectra A950RX is determined by the thermal conductivities of the filler 

and matrix, the volume fraction of the filler, and the polarizability of the inclusion. An 

explicit formula for predicting the effective thermal conductivity, *k  (W/m·K), was 

derived from concepts in Milton [3] and extending the results of Helsing and Helte [4]. 

The derivation is summarized below in the following sections. 

Starting with the definition of the average polarization in the composite, from 

Equation 5-2, the relationship between the heat flux and temperature gradient is 

substituted to give 

 2 * 2 * 2p q k T k T k T k k T         
    

,   (5-3) 

where p


is the volume average polarization in the composite, *k is the effective thermal 

conductivity in the composite, 2k  is the thermal conductivity of the pure matrix (Vectra), 

and T


is  the volume average temperature gradient in the composite. Since the 

polarization is zero in the matrix, the volume average polarization in the composite is 

given by 1 1
p f p
 

 where  f1 is the volume fraction of the filler and 
1

p


is the volume 

average polarization in the filler. Equation 5-3 simplifies to 
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  * 2 1 1
k k T f p  

 
.       (5-4) 

Now the goal of this derivation is to find an expression for 
1

p


in terms of the 

volume average temperature gradient in the composite. To accomplish this the volume 

average polarization in the filler,
1

p


,  is given as 

 1 21 1
p k k T  


,       (5-5) 

 and the volume average polarization in the filler is approximated from the inclusion 

problem as 

 * 2 *1 1 1
p p k k T   

 
 .      (5-6) 

In Equations 5-5 and 5-6 
1

T


is the volume average temperature gradient in the 

inclusion, * 1
p


is the volume average polarization in the inclusion relative to *k (from the 

inclusion problem), and 1k is the thermal conductivity of the inclusion. Solving Equations 

5-5 and 5-6 for 
1

T


 gives 

  1

1 * * 11
T k k p



  
 

.       (5-7) 

Now Equation 5-7 is substituted into Equation 5-5 to give 

    1

1 2 1 * *1 1
p k k k k p



  
 

.      (5-8) 

The effective polarization in the filler relative to *k  comes from the inclusion 

problem and is given by  
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 1
* *1

p V k T  


,       (5-9) 

where α is the thermal polarizability (defined below) of the ellipsoid (filler) with thermal 

conductivity 1k in a matrix of thermal conductivity *k  and V is the volume of the 

inclusion. Substituting Equation 5-9 into Equation 5-8 results in  

    
1

1
1 2 1 * *1

p k k k k V k T


   


.     (5-10) 

The final step is to substitute Equation 5-10 into Equation 5-4 to give the 

expression for the effective thermal conductivity as 

    
1

1
* 2 1 1 2 1 * *k k f k k k k V k


    .     (5-11) 

In Equation 5-11 “< > “ is a volume average over the entire polymer composite 

where as in Equations 5-6 through 5-10 “< > “  dealt with volume average in a single 

inclusion. The polarizability, α, contains information on the geometry of the inclusion. 

The geometry of the inclusion will be further defined here. In Figure 5.2-1, '
il  are 

the semi-axes of the anisotropic ellipsoidal inclusion. The semi-axes of the anisotropic 

ellipsoid are defined as  

'
1 1l            (5-12) 

' ' '
2 3 1

1
*l l l

AR
  ,        (5-13) 

where AR is the aspect ratio of the anisotropic ellipsoidal inclusion. Since the matrix 

(Vectra) is anisotropic a change of variables is used to transform the anisotropic matrix to 

an isotropic matrix so that the anisotropic inclusion is in a isotropic matrix phase.  The 

transformation is given by 
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 

'

2 ,
i

i

l
l

k i i
  with i = 1,2,3.       (5-14) 

In the above equation k2[i,i] is the diagonal entry of the thermal conductivity of the 

matrix material. 

 

Figure 5.2-1: Diagram of Uncoated Ellipsoid (Synthetic Graphite and Carbon Black 

Models) 

 

The last step in solving this inclusion problem is determining of the polarizability 

of the inclusion, α. The polarizability of the inclusion is given by Bohren and Huffman 

[8] as 

      1
1

1 * * 1 *V k k k D k k


       
,      (5-15) 

where D is the depolarization tensor of the inclusion and is given as  

1

2

3

0 0

0 0

0 0

d

D d

d

 
   
 
 

.        (5-16) 
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In Equation 5-16 d1, d2, and d3 are the depolarization factors of the inclusion, and are 

given by 

 
     

1 2 3
1 2 3

2 2 2 2
0 1 2 3

, ,
2i

i

l l l dy
d l l l

l y l y l y l y




   

  with i = 1,2,3. (5-17) 

The integral in this equation is evaluated numerically in Mathematica. In summary, to 

compute *k  Equations 5-15 to 5-17 are substituted into Equation 5-11, which gives rise 

to an implicit equation for *k . All of the given equations, Equations 5-11 and Equations 

5-15 through 5-17, are evaluated in Mathematica. The Mathematica code for the synthetic 

graphite and carbon black model is in Appendix B. 

 

5.2.2: Carbon Fiber Model 

The coated ellipsoid assemblage model was first introduced by G.W. Milton [9], 

and this model is a generalization of the coated sphere assemblage model by Hashin and 

Shtrikman [10]. The basis of this model is when an appropriate effective thermal 

conductivity, *k ,  is chosen, a coated ellipsoid of thermal conductivity 1k  with coating of 

the pure matrix at thermal conductivity 2k can be inserted as an inclusion in an infinite 

matrix material without disturbing the uniform temperature gradient outside the ellipsoid. 

Figure 5.2-2 depicts the inclusion problem. This type of inclusion problem has been 

solved by others such as Kerner, Benveniste and Miloh [11,12]. The coated ellipsoid 

assemblage model was used to predict the effective in-plane thermal conductivity for the 

carbon fiber/Vectra A950 polymer composite, because the surface of the carbon fiber was 
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treated with a proprietary binder to ensure adhesion with the polymer matrix (see 

Materials section of this paper). 

 
 

Figure 5.2-2: Diagram of Ellipsoidal Inclusion Problem (Carbon Fiber Model) 

 

In this model there are two phases. The first phase contains the filler and the 

second phase contains the matrix material which acts as a coating on the filler. The first 

phase is embedded in the second phase, and the fillers are assumed to be ellipsoidal in 

shape and aligned in the horizontal plane of the composite. In this model, the thermal 

conductivity of the matrix and filler can be isotropic or anisotropic. Figure 5.2-3 shows a 

single coated ellipsoid.  
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Figure 5.2-3: Diagram of Coated Ellipsoid (Carbon Fiber Model) 

 

The effective in-plane thermal conductivity of the polymer composite is 

determined by the thermal conductivities of the filler and matrix, the volume fractions of 

the filler and matrix, and the geometry of the filler. The following equations are used to 

model the in-plane thermal conductivity of the carbon fiber/Vectra A950RX polymer 

composite and come from Milton’s development [13]. The equation that predicts the 

effective thermal conductivity, *k  (W/m·K) is given as 

        1 1 1/ 2 1/ 2

1 * 2 1 2 1 2 21f k k k k f k M k
   

     .   (5-18) 

In this equation, 1k (W/m·K) is the thermal conductivity of the filler, 2k (W/m·K) is the 

thermal conductivity of the matrix, and f1 is the filler volume fraction, and M  contains 

information on the geometry of the filler and is explained in more detail below. 
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Before introducing the equations that define M , the inclusion problem will be 

defined further. In Figure 5.2-3, '
cil and '

eil  are the semi-axes of the anisotropic core and 

exterior ellipsoids of the inclusion. The semi-axes of the anisotropic core ellipsoid are 

defined in Equation 5-12 and 5-13 except with a “c” to denote core ellipsoid. Since the 

coating is anisotropic a change of variables is used to transform the inclusion problem.  

Transformation from the anisotropic exterior ellipsoid (matrix phase) to the isotropic 

exterior ellipsoid is given by Equation 5-14. The relationship between the anisotropic 

core ellipsoid and the isotropic exterior ellipsoid is 

2
ei cil l    with i = 1,2,3       (5-19) 

where θ is a parameter determined by the volume fraction of the filler such that the 

following equation is satisfied 

321

321
1

eee

ccc

lll

lll
f  .         (5-20) 

Now, with the inclusion problem defined, M is computed by  

   11 1/ fDfDM ec  .       (5-21) 

In this equation cD  and eD  are the depolarization tensors of the core and exterior 

ellipsoid, and f1 is the volume fraction of the filler. The depolarization tensors are given 

in the following form 

1

2

3

0 0

0 0

0 0

c

c c

c

d

D d

d

 
   
 
 

        (5-22) 
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1

2

3

0 0

0 0

0 0

e

e e

e

d

D d

d

 
   
 
 

 ,       (5-23) 

 

where cid and eid  are calculated numerically from the following formulas 

 
     

1 2 3
1 2 3

2 2 2 2
0 1 2 3

, ,
2

c c c
ci c c c

ci c c c

l l l dy
d l l l

l y l y l y l y




   

  with i = 1,2,3 (5-24) 

 
     

1 2 3
1 2 3

2 2 2 2
0 1 2 3

, ,
2

e e e
ei e e e

ei e e e

l l l dy
d l l l

l y l y l y l y




   

   with i = 1,2,3. (5-25) 

In Equations 5-24 and 5-25, cil and eil are the semi-axis of the transformed coated 

ellipsoid defined above in Equation 5-14.  To compute *k , Equations 5-20 through 5-25 

are substituted into Equation 5-18, which gives rise to an explicit equation for *k . All of 

the given equations, Equations 5-18 and Equations 5-20 to 5-25, are evaluated in 

Mathematica. The Mathematica code for the carbon fiber model is in Appendix C. 

 

5.3: RESULTS 

5.3.1: Filler Length, Aspect Ratio, and Orientation Results 

The length and aspect ratio of the Thermocarb synthetic graphite particles in the 

injection molded disks were typically 50 microns and 1.68, respectively. These values are 

similar to that of the as received material and prior work [14,15]. For the injection 

molded samples containing Fortafil 243, the length was typically 70 microns. The 
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corresponding fiber aspect ratio (length/diameter) was 9. These results agree with prior 

work [14-17].   

Figures 5.3-1 and 5.3-2 display the orientation of the synthetic graphite particles 

and carbon fiber, respectively, in the injection molded disks. The synthetic graphite 

particles appear to be randomly oriented in the horizontal plane of the composite 

(particles lying in the plane). This is similar to the carbon fiber composite, Figure 5.3-2, 

where the carbon fibers all lie in the plane (though randomly oriented within this plane) 

as no circular fiber ends are present.  

 

 

Figure 5.3-1: In-Plane Orientation for 40 wt% Synthetic Graphite in Vectra Injection 

Molded Disk at a Magnification of 200X 

 

 

 

 

Figure 5.3-2: In-Plane Orientation for 20 wt% Carbon Fiber in Vectra Injection Molded 

Disk at a Magnification of 200X 
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5.3.2: In-Plane Thermal Conductivity Experimental Results  

Figures 5.3-3 to 5.3-5 show the mean in-plane thermal conductivity results of the 

composites as a function of filler volume fraction for the synthetic graphite/Vectra 

composites, carbon black/Vectra composites, and carbon fiber/Vectra composites, 

respectively. These formulations correspond to that shown in Table 5.3-1. Figure 5.3-3 

shows that the addition of synthetic graphite causes the in-plane thermal conductivity of 

the composite to increase from 1.00 W/m.K for Vectra to 4.33 W/m.K for composite 

containing 40 wt% SG (29.3 vol% SG) in Vectra.  Figure 5.3-4 shows that the addition of 

carbon black causes the in-plane thermal conductivity of the composite to increase from 

1.00 W/m.K for Vectra to 2.06 W/m.K for composite containing 15 wt% CB (12.1 vol% 

CB) in Vectra.  Figure 5.3-5 shows that the addition of carbon fiber causes the in-plane 

thermal conductivity of the composite to increase from 1.00 W/m.K for Vectra to 2.49 

W/m.K for composite containing 60 wt% CF (54.7 vol% CF) in Vectra. Adding synthetic 

graphite particles caused the largest increase in composite in-plane thermal conductivity.  
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Table 5.3-1:  Single Filler Loading Levels in Vectra A950RX and Experimental and 

Model In-Plane Thermal Conductivity Results 

Formulation Filler  
wt % 

Filler 
vol% 

In-Plane Thermal 
Conductivity 

(W/m.K) 

Predicted In-
Plane Thermal 
Conductivity 

(W/m.K)
Vectra 0.0 0.0 1.00 ± 0.01, n = 5 1.00 
2.5CB 2.5 1.9 1.01 ± 0.01, n = 5 1.10 
4CB 4.0 3.1 1.05 ± 0.004, n = 5 1.17 
5CB 5.0 3.9 1.10 ± 0.01, n = 5 1.22 
6CB 6.0 4.7 1.22 ± 0.04, n = 5 1.27 

7.5CB 7.5 6.0 1.35 ± 0.02, n = 5 1.37 
10CB 10.0 8.0 1.62 ± 0.06, n = 5 1.53 
15CB 15.0 12.1 2.06 ± 0.08, n = 5 1.95 
10SG 10.0 6.5 1.42 ± 0.02, n = 5 1.21 
15SG 15.0 9.9 1.55 ± 0.03, n = 5 1.37 
20SG 20.0 13.5 1.96 ± 0.05, n = 5 1.58 
25SG 25.0 17.2 2.40 ± 0.03, n = 5 1.87 
30SG 30.0 21.1 2.83 ± 0.04, n = 5 2.32 
35SG 35.0 25.2 3.44 ± 0.05, n = 5 3.08 
40SG 40.0 29.3 4.33 ± 0.07, n = 5 4.47 
5CF 5.0 4.1 1.12 ± 0.02, n = 5 1.22 

7.5CF 7.5 6.1 1.18 ± 0.01, n = 5 1.31 
10CF 10.0 8.2 1.27 ± 0.02, n = 5 1.40 
15CF 15.0 12.4 1.41 ± 0.02, n = 5 1.55 
20CF 20.0 16.8 1.52 ± 0.02, n = 5 1.69 
25CF 25.0 21.2 1.62 ± 0.01, n = 5 1.82 
30CF 30.0 25.5 1.74 ± 0.04, n = 5 1.93 
35CF 35.0 30.2 1.87 ± 0.03, n = 5 2.05 
40CF 40.0 34.9 1.97 ± 0.02, n = 5 2.17 
45CF 45.0 39.7 2.09 ± 0.02, n = 5 2.29 
50CF 50.0 44.6 2.21 ± 0.03, n = 5 2.41 
55CF 55.0 49.6 2.31 ± 0.06, n = 5 2.54 
60CF 60.0 54.7 2.49 ± 0.03, n = 5 2.68 
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5.3.3: In-Plane Thermal Conductivity Modeling Results  

In the past our research group has used empirical parameter fitting to model the 

effective in-plane thermal conductivity of polymer composites [18]. In this work an 

assemblage of ellipsoidal inclusions model is used to model the effective in-plane thermal 

conductivity.   

 

5.3.3.1 Synthetic Graphite Model 

Using Equation 5-11 and Equations 5-15 through 5-17, the effective in-plane 

thermal conductivity of the synthetic graphite/Vectra A950RX composite was predicted. 

In Equation 5-11, “< >” denotes volume averaging for all horizontal rotations in the 

horizontal plane of the composite. The inputs for this model were 1k , 2k , AR, and f1.The 

volume fraction f1 is obtained from the experimental data of the single filler formulations 

given in Table 5.3-1 for synthetic graphite, and ranged from 0.065 to 0.293. The AR was 

measured to be 1.7, and the input value of the thermal conductivity of the synthetic 

graphite (see Table 3.3-2), 1k ( W/m.K), is 

1

600 0 0

0 60 0

0 0 60

k

 
   
  

.        (5-26) 

The input value of the thermal conductivity of the Vectra A950RX polymer (matrix), 2k  

(W/m.K), is  
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2

1 0 0

0 1 0

0 0 0.22

k

 
   
  

,        (5-27) 

where 1 W/m.K is the thermal conductivity in the in-plane direction and 0.22 W/m.K is 

the thermal conductivity in the through-plane direction. These input values come directly 

from measurement of the pure Vectra A950RX polymer using the Hot Disk Thermal 

Constants Analyzer. 

 

  The results from modeling this polymer composite are given in Figure 5.3-3, 

where the diamonds are the experimental data and the curve is the model computed from 

Equation 5-11. This model shows good agreement with experimental data, and Table 5.3-

1 shows the data predicted from the model.     

 

 

Figure 5.3-3: Modeling Results of In-Plane Thermal Conductivity of SG/Vectra 
Composites with Experimental Data Represented by Diamonds and Model Predictions 

(Equation 5-11) Represented by Curve 
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5.3.3.2 Carbon Black Model 

Using Equation 5-11 and Equations 5-15 through 5-17 the effective in-plane 

thermal conductivity of the carbon black/Vectra A950RX composite was predicted. The 

inputs for this model were 1k , 2k , AR, and f1. The volume fraction f1 was obtained from 

the experimental data of the single filler formulations given in Table 5.3-1 for carbon 

black, and range from 0.019 to 0.121. The input value of the thermal conductivity of the 

Vectra A950RX polymer, 2k  (W/m.K), is the same as shown in Equation 5-27.   

The AR and 1k  could not be measured directly for carbon black due to the small 

size of the particle, thus these values were estimated. The AR was estimated to be 5 

because carbon black easily separates into aggregates when mixed with polymer. To 

estimate values for the axial and non-axial direction thermal conductivity the 

experimental data for the carbon black/Vectra and carbon fiber/Vectra were compared. At 

equal volume fractions the measured in-plane thermal conductivity of carbon 

black/Vectra was higher than the carbon fiber/Vectra composite. This can be seen in 

Table 5.3-1 at 12.1 vol% of carbon black and 12.4 vol % of carbon fiber the in-plane 

thermal conductivity was measured to be 2.06 W/m.K and 1.41 W/m.K, respectively. 

Therefore,  1k  ( W/m.K) for carbon black was estimated to be slightly higher than that of 

the carbon fiber and is given as 

1

30 0 0

0 30 0

0 0 30

k

 
   
  

.        (5-28) 
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The results from the modeling are given in Figure 5.3-4, where the diamonds are 

the experimental data and the curve is predicted by Equation 5-11. At low volume 

fractions this model overestimates the experimental data and at higher volume fractions 

the model underestimates the experimental data. This result may come from the aspect 

ratio being estimated as 5 for all volume fractions. As the volume fraction increases 

carbon black may be forming chains inside the composite which means at higher volume 

fractions the aspect ratio may be higher. This model shows good agreement with 

experimental data, and Table 5.3-1 shows the data predicted from the model.     

 

 

Figure 5.3-4: Modeling Results of In-Plane Thermal Conductivity of CB/Vectra 
Composites with Experimental Data Represented by Diamonds and Model Predictions 

(Equation 5-11) Represented by Curve 
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5.3.3.3: Carbon Fiber Model 

Using Equation 5-18 and Equations 5-20 through 5-25, the effective in-plane 

thermal conductivity of the carbon fiber/Vectra A950RX composite was modeled. The 

form of Equation 5-18 that was used to compute the effective in-plane thermal 

conductivity was 

      
11 1/ 2 1/ 2

* 1 1 2 1 2 2 21k f k k f k M k k
         

.   (5-29) 

The inputs to the model were 1k , 2k , AR, and f1. The volume fraction f1 is obtained from 

the experimental data of the single filler formulations given in Table 5.3-1 for carbon 

fiber, and range from 0.041 to 0.547. The AR was measured to be 9, and the input value 

of the thermal conductivity of the carbon fiber (see Table 3.3-3), 1k   (W/m.K), is 

1

20 0 0

0 2.5 0

0 0 2.5

k

 
   
  

.        (5-30) 

The input value of the thermal conductivity of the Vectra A950RX polymer, 2k  

(W/m.K), is the same as Equation 5-27. Since the assumption is made that the coated 

ellipsoids are aligned, the tensors 1k  and 2k only have non-zero entries on the diagonal. 

Therefore, calculating   1/ 2

2k


 from Equation 5-29 is done by taking the square root of 

each diagonal entry and then inverting the matrix. To determine the effective in-plane 

thermal conductivity from *k the harmonic mean was used. For example, when the 

volume fraction of carbon fiber is 0.547  *k  is given by 
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*

10.2 0 0

0 1.54 0

0 0 0.82

k

 
   
  

.       (5-31) 

The harmonic mean, H, used to average entry *[1,1]k and *[2,2]k , is computed by 

   
   

* *

* *

2* 1,1 2,2

1,1 2,2

k k
H

k k



,       (5-32) 

 to give an effective in-plane thermal conductivity 2.68 W/m.K and this can be seen in 

Figure 5.3-5. 

The results from modeling this polymer composite are given in Figure 5.3-5, 

where the diamonds are the experimental data and the curve is the model. This model 

overestimates the experimental data because the carbon fibers were assumed to be 

aligned in the composite. Some of the carbon fiber particles in the actual polymer 

composite may be slightly tilted away from the direction in which the in-plane thermal 

conductivity is measured, slightly reducing the overall in-plane thermal conductivity. 

This model shows good agreement with experimental data, and Table 5.3-1 shows the 

data predicted from the model by Equation 5-29.     
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Figure 5.3-5: Modeling Results of In-Plane Thermal Conductivity of CF/Vectra 
Composites with Experimental Data Represented by Diamonds and Model Predictions 

(Equation 5-22) Represented by Curve 
 

 

5.4: CONCLUSIONS  

The objectives of this research were to measure in-plane thermal conductivity and 

develop models to predict the effective in-plane thermal conductivity for composites 

containing varying amounts of a single filler (either carbon black, synthetic graphite, or 

carbon fiber) in Vectra. In previous work by R.A. Hauser [18] effective in-plane thermal 

conductivity models had been developed by parameter fitting. In this work, the models 

developed used only physical properties of the composite material constituents, 

geometry, and information on the processing. From Hauser’s work, the synthetic graphite 
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filler caused the greatest increase in the effective in-plane thermal conductivity of the 

composites.   

Two models were used to derive expressions to predict the effective in-plane 

thermal conductivity of the polymer composites. An uncoated ellipsoid inclusion problem 

was used to model the effective in-plane thermal conductivity of the synthetic graphite 

and carbon black/Vectra polymer composites. This model used the polarization field in 

the average field approximation to predict the effective in-plane thermal conductivity. As 

we have shown, this model can be utilized for isotropic or anisotropic filler and matrix 

materials, and provided good agreement with the experimental data.  

The second model used a coated ellipsoid inclusion problem to model the 

effective in-plane thermal conductivity of the carbon fiber/Vectra polymer composite. 

This model used the temperature gradient and heat flux in the inclusion problem to 

predict the effective in-plane thermal conductivities of the polymer composite. This 

model can be utilized for isotropic or anisotropic filler and matrix materials, and gave 

good agreement with experimental data.  Developing these models are of interest because 

having a model that can predict the effective in-plane thermal conductivity of polymer 

composites from known physical properties of its constituents can reduce experimental 

work and save time and money.   

 



 105

5.5: REFERENCES 

1. R. B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, 2nd edition, 

John Wiley & Son, Inc, New York (2001). 

2. D. Polder and J.H. Van Santen, Physica, 12, 257 (1946). 

3. G.W. Milton, Communications in Mathematical Physics, 99, 463 (1985). 

4. J. Helsing and A. Helte, Journal of Applied Physics, 69, 3583 (1991). 

5. S. Kirkpatrick, Reviews of Modern Physics, 45, 574 (1973). 

6. T.W. Noh, Physical Review B – Solid State, 44, 5459 (1991). 

7. D. Stroud, Physical Review B – Solid State, 12, 3368 (1975). 

8. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small 

Particles, John Wiley & Sons, Inc, (1983). 

9. G.W. Milton, Applied Physics Letters, 37, 300 (1980). 

10. Z. Hashin and S. Shtrikman, Journal of Applied Physics, 33, 3125 (1962). 

11. E.H. Kerner, Proceedings of the Physical Society, 69, 808 (1956). 

12. Y. Benveniste and T. Miloh, Journal of Mechanics and Physics of Solids, 47, 

1873 (1999). 

13. G.W. Milton, The Theory of Composites, Cambridge University Press, New York 

(2002). 

14. J.A. Heiser, J.A. King, J.P. Konell, and L.L. Sutter, Polymer Composites, 25, 407 

(2004). 

15. J.P. Konell, J.A. King, and I. Miskioglu, Polymer Composites, 25, 172 (2004). 

16. J.A. Heiser and J.A. King, Polymer Composites, 25, 186 (2004). 



 106

17. E.H. Weber, M.L. Clingerman, and J.A. King, Journal of Applied Polymer 

Science, 88, 123 (2003). 

18. R.A. Hauser, J.M. Keith, J.A. King, and J.L. Holdren, Journal of Applied Polymer 

Science, 100, 2914 (2008). 

 

 



107 

 

Chapter 6: Summary, Conclusions, and Future Work 

6.1: Summary 

Different concentrations of Ketjenblack EC-600 JD carbon black, Thermocarb 

TC-300 synthetic graphite, and Fortafil 243 carbon fiber were added to Vectra A950RX.  

The maximum single filler content studied were 15 wt% for carbon black, 40 wt% for 

synthetic graphite, and 60 wt% for carbon fiber. The in-plane thermal conductivity of 

each composite formulation was measured using the transient plane source technique at 

23ºC. Two different models were used to model the effective in-plane thermal of each 

composite formulations. An uncoated ellipsoid inclusion problem was used to predict the 

effective in-plane thermal conductivity of the composites containing carbon black and 

synthetic graphite. A coated ellipsoid inclusion problem was used to predict the effective 

in-plane thermal conductivity of the composite containing carbon fiber. 

For the composites containing carbon black, at the highest filler level (15 wt %), 

the composite effective in-plane thermal conductivity increased from 0.99 W/m·K (neat 

Vectra) to 2.06 W/m·K, and the predicted effective in-plane thermal conductivity was 

1.95 W/m·K. For the composites containing Thermocarb TC-300 synthetic graphite, at 

the highest filler level (40 wt %), the composites effective in-plane thermal conductivity 

increases from 0.99 W/m·K (neat Vectra) to 4.33 W/m·K, and the predicted effective in-

plane thermal conductivity was 4.47 W/m·K. For the composites containing Fortafil 243 

carbon fiber, at the highest filler level (60 wt %), the effective in-plane thermal 
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conductivity increased from 0.99 W/m·K (neat Vectra) to 2.49 W/m·K, and the predicted 

effective in-plane thermal conductivity was 2.68 W/m·K. The percent error between the 

measured and predicted effective in-plane thermal conductivity was 5%, 3%, and 8% for 

carbon black, synthetic graphite and carbon fiber, respectively. The Thermocarb TC-300 

synthetic graphite caused the greatest increase in the effective in-plane thermal 

conductivity of the composite.  

 

6.2: Conclusions 

The objectives of this research were to measure in-plane thermal conductivity and 

develop models to predict the effective in-plane thermal conductivity for composites 

containing varying amounts of a single filler (either carbon black, synthetic graphite, or 

carbon fiber) in Vectra. In previous modeling work by R.A. Hauser [1], effective in-plane 

thermal conductivity models had been developed by parameter fitting. In this work, the 

models developed used only physical properties of the composite material constituents, 

geometry, and information on the processing.  

Two models were used to derive expressions to predict the effective in-plane 

thermal conductivity of the polymer composites. An uncoated ellipsoid inclusion problem 

was used to model the effective in-plane thermal conductivity of the synthetic graphite 

and carbon black/Vectra polymer composites. This model used the polarization field in 

the average field approximation to predict the effective in-plane thermal conductivity. 
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This model can be utilized for isotropic or anisotropic filler and matrix materials, and 

provided good agreement with the experimental data.  

The second model used a coated ellipsoid inclusion problem to model the 

effective in-plane thermal conductivity of the carbon fiber/Vectra polymer composite. 

This model used the temperature gradient and heat flux in the inclusion problem to 

predict the effective in-plane thermal conductivities of the polymer composite. This 

model can be utilized for isotropic or anisotropic filler and matrix materials, and gave 

good agreement with experimental data.  Developing these models are of interest because 

having a model that can predict the effective in-plane thermal conductivity of polymer 

composites from known physical properties of its constituents can reduce experimental 

work and save time and money.   

 

6.3: Recommendations for Future Work 

 This study focused on predicting the in-plane thermal conductivity for composites 

containing either carbon black, synthetic graphite, or carbon fiber. Each of these fillers 

increased the in-plane thermal conductivity of the composite, and this was easily shown 

by the models used. Useful applications of these composite materials are in heat sink 

applications and in bipolar plates for fuel cells.  

This work showed that synthetic graphite caused the largest increase in composite 

in-plane thermal conductivity when added to Vectra A950RX LCP. In Hauser’s work, 
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single filler and multiple filler composites were made and modeled using Nielsen’s 

model. For future work, a model should be developed that can predict the in-plane 

thermal conductivity of a composite with multiple fillers using information about the 

physical properties of constituents, geometry and processing. Also, in Hauser’s work the 

through-plane thermal conductivity was measured and modeled using parameter fitting. 

So for future work, a model should be developed that can predict the through-plane 

thermal conductivity for composites containing single and multiple fillers using 

information about the physical properties of the constituents, geometry, and processing. 
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Appendix A: Extruder Screw Design 

 

 Figure A.1: Extruder Screw Design  
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Appendix B : Mathematica Code for Synthetic Graphite and Carbon Black Models

Transversely isotropic averaging over horizontal rotations;
Average polarization approximation,

using the polarization p  j  kmgrad T
as in Milton, p.199


Clearki, km, kstar, a, b, c, diag, asp, f1;

diaga_, b_, c_  a, 0, 0, 0, b, 0, 0, 0, c;

 Enter conductivities for inclusions and matrix 
ClearKPtran, ki, km, f1, asp;
KPtranki_, km_, f1_, asp_ :

Modulel1prime, l2prime, l3prime, l1, l2, l3,

fun1, fun2, fun3, d1, d2, d3, kstar, y, alph1, alph2, alph3,

rhs1, rhs2, rhs3, fred, ethel, first, third, kstar1, kstar3,
Ifkm1  km2, Print"ERROR km must be transversely isotropic";
l1prime  1;

l2prime  l1prime  asp;

l3prime  l2prime;

l1  l1prime  Sqrtkm1;
l2  l2prime  Sqrtkm2;
l3  l3prime  Sqrtkm3;
fun1 

l1  l2  l3  2  1   l1^2  y  Sqrtl1^2  y  l2^2  y  l3^2  y ;
fun2  l1  l2  l3  2  1   l2^2  y  Sqrtl1^2  y  l2^2  y  l3^2  y ;
fun3  l1  l2  l3  2 

1   l3^2  y  Sqrtl1^2  y  l2^2  y  l3^2  y ;
Cleard1, d2, d3, y;
d1  NIntegratefun1, y, 0, Infinity;
d2  NIntegratefun2, y, 0, Infinity;
d3  NIntegratefun3, y, 0, Infinity;
IfAbsd1  d2  d3  1  10^5, Print"ERROR: problem with d1,d2,d3";
Clearalph1, alph2, alph3, kstar, kstar1, kstar3;
kstar  kstar1, kstar1, kstar3;
alph1  ki1  kstar1  kstar1  d1  ki1  kstar1 ;
alph2  ki2  kstar2   kstar2  d2  ki2  kstar2 ;
alph3  ki3  kstar3   kstar3  d3  ki3  kstar3 ;
Clearrhs1, rhs2, rhs3, fred, ethel, first, third;
rhs1  ki1  km1  ki1  kstar1^1  alph1  kstar1;
rhs2  ki2  km2  ki2  kstar2^1  alph2  kstar2;
rhs3 

ki3  km3  ki3  kstar3^1  alph3  kstar3; fred 

FindRootkstar1  km1  f1  1  2  rhs1  rhs2, kstar1, ki1;
ethel  FindRootkstar3  km3  f1  rhs3, kstar3, ki3;
first  kstar1 . fred;

third  kstar3 . ethel;

diagfirst, first, third
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MatrixFormKPtran600, 60, 60, 1, 1, .22, 0.065, 1  1.7
1.09864 0 0

0 1.09864 0
0 0 0.235485
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Appendix C: Mathematica Code for Carbon Fiber Model

Alligned Coated Ellipsoids Model

Anisotropic Constituents

(from Milton, "The Theory of Composites", 2002, pp.124-129 and pp.148-149)

Core/particle  is material "1" and matrix is material "2".

Ellipsoids are axisymmetric about x1.

ellipsoids:  asp<1 ïtorpedos
"alpha" determines f1:  f1=1 if alpha=0;  f1=0 if alpha=¶.

"kstar" determines effective conductivity as a function of

1. "k1" - the conductivity of the anisotropic particles

2. "k2" - the conductivity of the anisotropic matrix

3. "asp" - the aspect ratio of the ellipsoids:  l2/l1

4. "alpha" - determines the volume fraction of f1 (0<alpha<¶ ñ 1>f1>0)

$Assumptions  k1  0, k2  0, 0  f1  1;
$Assumptions  a  0, b  0, c  0, d  0, e  0;
$Assumptions  alpha  0, asp  0;
$Assumptions  lc1  0, lc2  0, lc3  0;
$Assumptions  le1  0, le2  0, le3  0;

Cleark1, k2, f1, M, kstar
Cleara, b, c, d, e

Define the known values of the core semiaxis

carbon filler based on the aspect ratio of the carbon filler
Clearlc1, lc2, lc3
lc1primeasp_ : 1

lc2primeasp_ : asp  lc1primeasp;
lc3primeasp_ : lc2primeasp;

lc1asp_, c_ : lc1primeasp  Sqrtc;
lc2asp_, d_ : lc2primeasp  Sqrtd;
lc3asp_, e_ : lc3primeasp  Sqrte;

Computing the semiaxis of the exterior ellipsoid Eqn 7.56
Clearle1, le2, le3
le1asp_, alpha_, c_ : Sqrtlc1asp, c^2  alpha;
le2asp_, alpha_, d_ : Sqrtlc2asp, d^2  alpha;
le3asp_, alpha_, e_ : Sqrtlc3asp, e^2  alpha;
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calculation of the volume fraction f1 of the carbon filler as

a function based on the core and exterior semiaxis Eqn 7.51
Clearf1
f1asp_, alpha_, c_, d_, e_ : lc1asp, c  lc2asp, d 

lc3asp, e  le1asp, alpha, c  le2asp, alpha, d  le3asp, alpha, e;
Cleardc1, dc2, dc3
dc1asp_, c_, d_, e_ :

lc1asp, c  lc2asp, d  lc3asp, e  2  NIntegrate
1  lc1asp, c^2  y  Sqrtlc1asp, c^2  y  lc2asp, d^2  y 

lc3asp, e^2  y, y, 0, Infinity;
dc2asp_, c_, d_, e_ : lc1asp, c  lc2asp, d  lc3asp, e  2 

NIntegrate1  lc2asp, d^2  y  Sqrtlc1asp, c^2  y 
lc2asp, d^2  y  lc3asp, e^2  y, y, 0, Infinity;

dc3asp_, c_, d_, e_ : lc1asp, c  lc2asp, d  lc3asp, e  2 
NIntegrate1  lc3asp, e^2  y  Sqrtlc1asp, c^2  y 

lc2asp, d^2  y  lc3asp, e^2  y, y, 0, Infinity;
Clearde1, de2, de3
de1asp_, alpha_, c_, d_, e_ :

le1asp, alpha, c  le2asp, alpha, d  le3asp, alpha, e  2 
NIntegrate1  le1asp, alpha, c^2  y 

Sqrtle1asp, alpha, c^2  y  le2asp, alpha, d^2  y 
le3asp, alpha, e^2  y, y, 0, Infinity;

de2asp_, alpha_, c_, d_, e_ : le1asp, alpha, c  le2asp, alpha, d 
le3asp, alpha, e  2 NIntegrate1  le2asp, alpha, d^2  y 
Sqrtle1asp, alpha, c^2  y  le2asp, alpha, d^2  y 

le3asp, alpha, e^2  y, y, 0, Infinity;
de3asp_, alpha_, c_, d_, e_ : le1asp, alpha, c  le2asp, alpha, d 

le3asp, alpha, e  2  NIntegrate1  le3asp, alpha, e^2  y 
Sqrtle1asp, alpha, c^2  y  le2asp, alpha, d^2  y 

le3asp, alpha, e^2  y, y, 0, Infinity;
ClearDc, De
Dcasp_, c_, d_, e_ : dc1asp, c, d, e, 0, 0,

0, dc2asp, c, d, e, 0, 0, 0, dc3asp, c, d, e;
Deasp_, alpha_, c_, d_, e_ : de1asp, alpha, c, d, e, 0, 0,

0, de2asp, alpha, c, d, e, 0, 0, 0, de3asp, alpha, c, d, e;
ClearM
Masp_, alpha_, c_, d_, e_ :

Dcasp, c, d, e  f1asp, alpha, c, d, e  Deasp, alpha, c, d, e 
1  f1asp, alpha, c, d, e;

Cleark1, k2, kstar
k1a_, b_ : a, 0, 0, 0, b, 0, 0, 0, b; carbon filler
k2c_, d_, e_ : c, 0, 0, 0, d, 0, 0, 0, e;polymer matrix
kstark1_, k2_, asp_, alpha_, c_, d_, e_ :

InverseInversek1  k2  f1asp, alpha, c, d, e 
1  f1asp, alpha, c, d, e  f1asp, alpha, c, d, e 
InverseSqrtk2.Masp, alpha, c, d, e.InverseSqrtk2  k2;
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



Summary of Results From Given Inputs
Cleara, b, c, d, e, asp, alpha;
a  20;  Thermal conductivity for carbon filler axial direction 
b  2.5;  Thermal conductivity for carbon

filler in axis perpendicular to axial direction 
c  1;  Thermal conductivity of the polymer matrix in axial direction
d  1; Thermal conductivity of the polymer in the nonaxial direction
e  0.22;

 Thermal conducitivity of the polymer in the nonaxial direction

asp  1  9;  Aspect ratio for carbon filler 
alpha  0.491;  "Alpha" as defined above

to compute volume fraction for carbon filler

 Check to see Equation 8.18 is satisfied
ClearLc, Le, Lcprime, Leprime1, Leprime2
Lc : lc1asp, c^2, 0, 0, 0, lc2asp, d^2, 0, 0, 0, lc3asp, e^2;
Le : le1asp, alpha, c^2, 0, 0,

0, le2asp, alpha, d^2, 0, 0, 0, le3asp, alpha, e^2;
Lcprime : k2c, d, e^1  2.Lc.k2c, d, e^1  2;
Leprime1 : Lcprime  alpha  k2c, d, e;
Leprime2 : Sqrtk2c, d, e  Le  Sqrtk2c, d, e;

Print"Summary of inputs and outputs";
Print" ";
Print"k", MatrixFormkstark1a, b, k2c, d, e, asp, alpha, c, d, e;
Print"kparticle", MatrixFormk1a, b, " ", "kmatrix",

MatrixFormk2c, d, e, " ", "aspect ratio l2l1", asp,

" ", "f1", f1asp, alpha, c, d, e, " ", "alpha", alpha ;
Print"";

Print"This is a check to see if conditions are satisfied";
Print"";
Print"Leprime1 and Leprime2 must

equal so that equation 8.18 on p.148 is satisfied";
Print"";
Print"Leprime1", MatrixFormLeprime1;
Print"Leprime2", MatrixFormLeprime2;



tnadams
Typewritten Text

tnadams
Typewritten Text
117

tnadams
Typewritten Text



Summary of inputs and outputs

k
1.48794 0. 0.

0. 1.03139 0.
0. 0. 0.243659

kparticle
20 0 0
0 2.5 0
0 0 2.5

kmatrix
1 0 0
0 1 0
0 0 0.22

aspect ratio l2l1 1
9

f10.0410763 alpha0.491

This is a check to see if conditions are satisfied

Leprime1 and Leprime2 must equal so that equation 8.18 on p.148 is satisfied

Leprime1
1.491 0. 0.
0. 0.503346 0.
0. 0. 0.120366

Leprime2
1.491 0 0

0 0.503346 0
0 0 0.120366
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Appendix D: Permission Letter  

 

From: "Rebecca Wroblewski" <Rebecca.Wroblewski@UOP.com> 
To: "Tayloria Adams" <tnadams@mtu.edu> 
Cc: "Julia King" <jaking@mtu.edu> 
Sent: Wednesday, December 15, 2010 9:43:36 AM GMT -05:00 US/Canada Eastern 
Subject: RE: SEM photos 

Tayloria, 
Yes, you have my permission to use the requested images from my dissertation. 
  
Regards, 
Becca 
  
Rebecca A. Wroblewski 
Hydroprocessing R&D 
UOP LLC - A Honeywell Company 
8400 Joliet Road 
McCook, IL 60525 
Office: (708) 442.3865   (B34-R248) 
Cell:  (630) 310.7573 
Email: Rebecca.Wroblewski@uop.com 
  
 

 
From: Tayloria Adams [mailto:tnadams@mtu.edu]  
Sent: Tuesday, December 14, 2010 10:05 PM 
To: Wroblewski, Rebecca 
Cc: Julia King 
Subject: Re: SEM photos 
  
Hello Becca,  
 
The figures that I would like to use in my thesis from your dissertation are: 
 
Figure 3.3-1 Carbon Black Aggregate 
Figure 3.3-2 Thermocarb TC-300 Synthetic Graphite ESEM Image at 200x 
Magnification 
Figure 3.3-6 Fortafil 243 Carbon Fiber ESEM Image at 250x Magnification 
Figure 3.3-7 Fortafil 243 Carbon Fiber ESEM Image at 10000x Magnification  
-Tayloria  
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