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Pseudospin and nonlinear conical diffraction in Lieb lattices
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We study linear and nonlinear wave dynamics in the Lieb lattice, in the vicinity of an intersection point between
two conical bands and a flat band. We define a pseudospin operator and derive a nonlinear equation for spin-1
waves, analogous to the spin-1/2 nonlinear Dirac equation. We then study the dynamics of wave packets that
are associated with different pseudospin states, and find that they are distinguished by their linear and nonlinear
conical diffraction patterns.
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Lattices with two or more intersecting bands display fasci-
nating phenomena such as Klein tunneling [1], pseudodiffusive
transmission [2], and conical diffraction [3]. These unusual
effects appear as the result of strong modification of the
dispersion near the band intersection points, referred to as
singular or diabolical points. One of the hallmarks of diabolical
points with linear dispersion is conical diffraction, i.e., the
evolution of a wave packet into a ring transverse structure
with vanishing amplitude in the center [3,4]. There has been
considerable recent interest in honeycomb lattices because
in the vicinity of its diabolical points the wave propagation
is described by a massless Dirac equation [5,6]. However,
honeycomb lattices are just one example of a more general
family of lattices with a singular band structure which are now
being actively explored [7,8].

As opposed to the honeycomb lattice, the Lieb lattice [9],
which consists of three square sublattices, displays a triply
degenerate diabolical point at which two conical bands and a
flat band intersect. In addition, the Lieb lattice has only one
diabolical point in the first Brillouin zone (BZ), implying that
the Berry phase associated with it is trivial [10]. Nevertheless,
the proximity of intersecting bands with a diabolical point
leads to a variety of interesting effects, which can be realized
using cold atoms in optical lattices [11]. For example, when
spin-orbit coupling is included, the conical bands support
topologically protected edge states, while the flat band remains
topologically trivial [12].

In this Rapid Communication we consider a photonic
realization of the Lieb lattice and study wave dynamics near
the diabolical point in the presence of Kerr nonlinearity.
We define a pseudospin operator and study the evolution of
wave packets associated with different pseudospin eigenstates
[13]. As a specific example, we focus on conical diffraction,
and demonstrate that the pseudospin degree of freedom is
accessible experimentally and has real physical significance.
In addition, we derive a nonlinear effective field equation for
spin-1 waves and use it to study the effect of nonlinearity on
wave dynamics.

We compare the dynamics predicted by our effective
field equation with numerical solutions of the full nonlinear
Schrödinger equation and find remarkable agreement. In
particular, the conical diffraction pattern of the different spin
states is different even when the nonlinearity is absent: For spin
0 the conical diffraction closely resembles the pattern obtained
in honeycomb lattices [3,14]; in contrast, the spin-1 states

present conical diffraction with an additional nondiffracting
central spot. In the nonlinear case, the diffracting rings trans-
form into squares, and reversing the sign of the nonlinearity
changes their orientation. Our results demonstrate that the
underlying pseudospin states are not merely a mathematical
formality but have a physical effect which can be observed
in experiments with light in photonic lattices and with Bose-
Einstein condensates trapped in optical lattices [11].

The propagation equation for a monochromatic field enve-
lope ψ in a two-dimensional photonic lattice is

i∂zψ = Ĥ0ψ + g|ψ |2ψ, Ĥ0 = −∇2
⊥ − V (r⊥), (1)

where V (r⊥) is the periodic refractive index and g = ∓1
accounts for defocusing or focusing Kerr nonlinearity. The
Lieb lattice refractive index is shown in Fig. 1(a).

It is instructive to study the linear (g = 0) regime first; it
will lead us to show that the system incorporates a pseudospin,
which corresponds to an actual degree of freedom and
affects the nonlinear dynamics. Understanding the pseudospin
structure of a system can explain very exotic phenomena such
as weak antilocalization in graphene [15] and nonlinear Klein
tunneling [16].

The Lieb lattice has three sites in each unit cell denoted
by A, B, and C in Fig. 1(a). It is convenient to write the
Hamiltonian Ĥ0 in a tight-binding form,

Ĥ0 =
∑
Rn,δj

[t(a†
nbn + b†ncn) + t ′a†

ncn + H.c.], (2)

where an,bn,cn are the annihilation operators associated with
functions localized around the A,B,C sites (e.g., Wannier
states [17]) in the nth unit cell, Rn is the position of the
unit cell, and δj are the vectors connecting the neighbors
with the hopping parameters (coupling coefficients) t and t ′
[see Fig. 1(a)]. Transforming to momentum space and defin-
ing �

†
k = ( a

†
k b

†
k c

†
k ), Eq. (2) becomes Ĥ0 = ∑

k �
†
kHk�k,

where

Hk = 2t

⎡
⎣ 0 cos kx 2γ cos kx cos ky

cos kx 0 cos ky

2γ cos kx cos ky cos ky 0

⎤
⎦ , (3)

γ = t ′/t , and −π/2 � kx,y � π/2. In the absence of NNN
coupling (γ = 0) the spectrum is

β(k) = 0, ± 2tη(k), η(k) ≡
√

cos2 kx + cos2 ky, (4)
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FIG. 1. (Color online) (a) The lattice potential, with three sites
per unit cell (dashed square). The sublattices are marked A (red), B
(blue), and C (green). The nearest-neighbor (NN) and next-to-nearest-
neighbor (NNN) coupling are shown as t and t ′. (b) First Brillouin
zone. (c) First three bands in the vicinity of the M point.

with the corresponding eigenstates

ψ0 = (− cos ky 0 cos kx), (5)

ψ± = (2η)−1/2[cos kx ±η(k) cos ky]. (6)

We refer to the β(k) = 0 as the flat band, and the other two
branches as conical bands. Note that for each state |β,k〉 there
is a corresponding state |−β,k〉. This symmetry, which is
known as particle-hole symmetry, exists whenever there is
some operator Ô that anticommutes with the Hamiltonian, in
this case Ô = diag(1,−1,1). The symmetry is broken by the
NNN term (γ �= 0).

The three bands intersect at the M point, kM = (π
2 , π

2 ) [see
Figs. 1(b) and 1(c)]. Expanding Hk around the intersection
point and denoting by p the displacement from the M point,
we obtain

H p = 2t

⎡
⎢⎢⎣

0 px + p3
x

24 2γpxpy

px + p3
x

24 0 py + p3
y

24

2γpxpy py + p3
y

24 0

⎤
⎥⎥⎦ . (7)

In the absence of NNN coupling (γ = 0), to leading order
the spectrum is isotropic, β = 0, ± 2t | p|, and the angular
momentum (AM) should be a constant of motion. However,
the orbital AM Lz is not conserved, dL̂z/dt ∝ [H p,L̂z] �= 0,
suggesting that there is some additional AM in the system
which may restore the conservation of the total AM. As was
shown in the Ref. [18], the sublattice degree of freedom in
honeycomb lattices, usually referred to as pseudospin, carries
the missing AM. Here we show that in the Lieb lattice
the “missing” pseudospin part of the total AM can be also
introduced, however, it cannot be identified with the sublattice.
We define the pseudospin Ŝz according to the requirement that
the total AM is conserved, [H p,L̂z + Ŝz] = 0, and find

Sz =
⎡
⎣ 0 0 −i

0 0 0
i 0 0

⎤
⎦ , Sx =

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦ ,

Sy =
⎡
⎣ 0 0 0

0 0 1
0 1 0

⎤
⎦ , (8)

corresponding to spin 1. The matrices Sx,Sy are defined
to satisfy the usual AM algebra, [Si,Sj ] = iεijkSk , for later
notational convenience. We emphasize that the spin matrices
are written in the sublattice basis, and that Sz is not diagonal,
meaning that the pseudospin and the sublattice cannot be

associated with each other as in the case of honeycomb lattices.
Writing the eigenstates of Sz in the sublattice basis illustrates
how to construct these states in experiments. Diagonalizing Sz

we find

vT
0 = (0 1 0), vT

±1 = 1√
2

(±i 0 1), (9)

meaning that the |Sz = 0〉 state has vanishing amplitude on
the A and C sublattices, whereas the |Sz = ±1〉 states have
vanishing amplitude on the B sublattice and a relative phase
of π/2 between the A and C sublattices. In the following we
show the physical significance of the pseudospin by studying
the nonlinear conical diffraction of the different pseudospin
states.

To include Kerr nonlinearity we use the effective-mass
approximation [17] and derive the effective Hamiltonian in
real space. The wave-packet envelopes corresponding to the
three sublattices are conveniently written as a three-component
spinor 
T = ( 
a 
b 
c ). Since the nonlinearity is local, it is
diagonal in the sublattice basis [16], resulting in

i∂z
 = [H̃{i∂j } + gn̂]
, (10)

where H̃{i∂j } is H p with the replacement pj → i∂j , and n̂ =
diag(|
a|2,|
b|2,|
c|2). This equation is derived in a similar
manner to the nonlinear Dirac equation in honeycomb lattices
[19,20]. As was shown in Ref. [21], the nonlinearity drives
the waves out of the vicinity of the conical intersection. This
is taken into account by including the higher-order terms in
the momentum expansion [16,22]. We emphasize that this
nonlinear equation is very unique, and it takes a simple form
when the high-order terms can be neglected,

i∂z
 = [2it S⊥ · ∇⊥ + Vex(r) + gn̂]
, (11)

which is a spin-1 variation of the massless nonlinear Dirac
equation, where we have included an additional external
potential that varies slowly of a scale of a lattice constant.

We study the nonlinear wave-packet dynamics of the dif-
ferent pseudospin states by solving both the effective Eq. (10)
and the nonlinear Schrödinger Eq. (1), and making a quan-
titative comparison between them. An important tool for
the analysis and understanding of the dynamics is a Bloch
distribution analysis presented in detail in Ref. [21]. The
spectrum in Fig. 1(c) is obtained numerically along with the
eigenstates of H0 and the Bloch modes Bn,k. The projections
of the wave function onto the Bloch modes 〈Bn,k|ψ〉 are
calculated to obtain the total population in the nth band,
Pn = ∑

k | 〈Bn,k|ψ〉 |2. This tells us how the nonlinearity
redistributes the population between the different bands, which
causes very different dynamics. For example, the flat-band
population does not diffract at all whereas the conical bands
have very strong diffraction. We find good quantitative agree-
ment between the populations calculated from the effective
model and the solution of Eq. (1).

The input beams corresponding to different pseudospin
eigenstates are constructed by selectively exciting the different
sublattices, as in Fig. 2(a), with a plane-wave envelope
corresponding to the M point. In all cases, the total projection
onto the first three bands is over 98%, indicating that our
three-band approximation is well justified. In experiments
these inputs could be approximated by interfering tilted broad
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FIG. 2. (Color online) (a) Pseudospin-0 input Gaussian beam at
the M point. (b) Linear output; the inset shows a greatly magnified
part of the beam with one sublattice excited in the (dashed) unit cell.
(c), (d) Outputs with focusing and defocusing nonlinearities, with the
input beam power 81.6. (e), (f) Bloch band populations as a function
of z for focusing and defocusing nonlinearities. Markers are obtained
by solving Eq. (1) while curves are obtained from the effective
model Eq. (10).

Gaussian beams positioned at the four corners of the BZ, with
different relative phases controlling the spin: Equal phases at
four corners corresponds to Sz = 0, while Sz = ±1 is obtained
with a phase difference of ±π/2 between adjacent corners of
the BZ. The dimensionless parameters used in the numerical
solution of Eq. (1) are max(V ) = 25, max(z) = 20, and a
lattice period of 2.

For the pseudospin-0 eigenstate |Sz = 0〉 = ( 0 1 0 ), corre-
sponding to the B sublattice, we find that in the low-intensity
limit (g = 0) the input beam in Fig. 2(a) evolves into two
circular bright rings of constant width in Fig. 2(b), which
is characteristic of conical diffraction [3]. When nonlinearity
is introduced, there is a redistribution of the Bloch modes
comprising the wave packet, and the resulting diffraction
pattern has the symmetry of the energy manifold β(k) around
the diabolic point [21]. The diffraction of the lower conical
band population is rotated by π , since its propagation angle
(analogous to group velocity) ∇kβ(k) is opposite. In our case,
the energy manifold has fourfold symmetry, and therefore
the sign of the nonlinearity should not affect the diffraction
pattern. Surprisingly, the numerical solution of Eq. (1) presents
a different picture: Indeed, both focusing and defocusing
nonlinear cases present the expected fourfold symmetry of
the deformed rings, but the two cases are rotated by π/4
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FIG. 3. (Color online) (a) Pseudospin-1 input beam at the M point.
Similar to Fig. 2, here (b) shows the linear output, (c), (d) the outputs
with focusing and defocusing nonlinearities for input power 162.3,
and (e), (f) corresponding Bloch band populations as a function of z.

with respect to each other; cf. Figs. 2(c) and 2(d). To explain
this, we solve the effective model, Eq. (10), without NNN
coupling (γ = 0), and find that the two diffraction patterns
are not rotated with respect to each other, and when the
NNN coupling is introduced (γ �= 0), the π/4 rotation is
reproduced. Therefore, in the nonlinear dynamics in the Lieb
lattice, the NNN coupling has a major qualitative effect, in
contrast to honeycomb lattices. In addition, the Bloch analysis
reveals a very interesting fact: The flat band which is initially
empty (since 〈ψ0|Sz = 0〉 = 0) remains nearly empty during
the propagation even though the nonlinearity has a significant
effect on the band populations; cf. Figs. 2(e) and 2(f). This
means that there is a selection rule in the process of four-wave
mixing.

This selection rule can be understood by using an approx-
imation of a thin-layer nonlinear medium, which is justified
for sufficiently weak nonlinearity (low input power): The input
beam diffracts rapidly, the amplitude decays, and the nonlinear
term only acts for a short distance. In this regime, the
population transfer between the bands α and β is proportional
to 〈ψα|n̂(0)|ψβ〉. For an initial state |Sz = 0〉 ↔ ( 0 
b 0 ),
the matrix element 〈ψ0|n̂(0)|ψ±〉 vanishes [23], and therefore
there is no population transfer between the conical bands and
the flat band, which is exactly the selection rule found in the
numerical calculations. Moreover, one can write the nonlinear
term n̂ in the pseudospin basis and see that the Sz = 0 subspace
is decoupled, i.e., the nonlinearity does not mix the Sz = 0 state
with the Sz = ±1 states.
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For the pseudospin-1 states |Sz = ±1〉 = 1/
√

2( ±i 0 1),
which have a vanishing amplitude on the B sublattice
[Fig. 3(a)], we find even greater differences. In the linear
case the evolution of the input beam [Fig. 3(a)] into a conical
pattern is accompanied by a very bright central spot [Fig. 3(b)].
By calculating the projections of the wave packet of the
Bloch modes of the various bands, we find that the spin-±1
states carry about 50% of the population in the flat band.
During the initial nonlinear propagation part of it, ∼10%, is
transferred to the conical bands. The modes of the flat band
have vanishing group velocity, corresponding to nondiffracting
beams, which is why the central spot does not diffract, and
the nonlinearity has a greater effect. Here we have doubled
the input beam power (with respect to Fig. 2) so that the
power initially residing in the conical bands is identical to
the pseudospin-0 case. Consequently, the structure of the
square-deformed diffracting rings [Figs. 3(c) and 3(d)] is very
similar. In addition, the central spot has a chiral pattern which
is reversed for the opposite spin states ±1 with the same
nonlinearity (not shown); this effect can be used to distinguish
the ±1 states. Therefore, in the presence of nonlinearity the

medium is effectively chiral, as it affects wave packets with
different AM differently.

In conclusion, we have studied nonlinear wave dynamics in
Lieb lattices, and have shown that it is strongly dependent on
the pseudospin. In addition, we derived a spin-1 nonlinear wave
equation resembling the nonlinear Dirac equation. We have
demonstrated experimental accessibility of the pseudospin
via conical diffraction which is qualitatively different from
the honeycomb lattice case. Some of the differences result
from the fact that in the honeycomb lattices the pseudospin
1/2 can be identified with the sublattice, whereas in Lieb
lattices there is a clear distinction between the two. Other
differences originate from the band structure and the existence
of the flat band. It would be intriguing to study similar
dynamics in the kagome lattice [24], which was recently
realized experimentally [25]. The latter is also a tripartite
lattice, presumably with pseudospin 1, but it has the same
underlying symmetries as the honeycomb lattice.
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