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Summary 26 

Genome wide association studies (GWAS) have largely succeeded family-27 

based linkage studies in livestock and human populations as the preferred 28 

method to map loci for complex or quantitative traits. However, the type of 29 

results produced by the two analyses contrast sharply due to differences in 30 

linkage disequilibrium (LD) imposed by the design of the studies. In this paper 31 

we demonstrate that association and linkage studies are in agreement 32 

provided that (i) the effects from both studies are estimated appropriately as 33 

random effects, (ii) all markers are fitted simultaneously and (iii) appropriate 34 

adjustments are made for the differences in LD between the study designs. 35 

We demonstrate with real data that linkage results can be predicted by the 36 

sum of association effects. Our association study captured most of the linkage 37 

information because we could predict the linkage results with moderate 38 

accuracy. We suggest that the ability of common SNP to capture the genetic 39 

variance in a population will depend on the effective population size of the 40 

study organism. The results provide further evidence for many loci of small 41 

effect underlying complex traits. The analysis suggests a more informed 42 

method for GWAS is to fit statistical models where all SNP are analysed 43 

simultaneously and as random effects. 44 

 45 
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mutation effect size; linkage disequilibrium; rare variants; common variants 47 
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1. Introduction 49 

Genome wide association studies (GWAS) and family-based linkage studies 50 

have both been widely used to map genes causing variation in complex or 51 

quantitative traits. The two approaches have a similar aim and so it is 52 

surprising that the results from the two methods have been subjected to little 53 

systematic comparison, particularly with regard to the size of estimated 54 

effects. The approaches both use genetics markers to discovery loci but differ 55 

in their experimental design. Linkage analysis relies on within family 56 

segregation of alleles while association analysis simply correlates markers 57 

with phenotypes across a population. Some studies compare the methods but 58 

primarily aim to identify influential loci and sometimes only a selected portion 59 

of the genome is investigated (Daetwyler et al., 2008; McKenzie et al., 2001). 60 

Rarely has the equivalence between the estimated effects of loci from the two 61 

methods been explored. When comparisons of several linkage studies are 62 

made, result are inconsistent (Altmüller et al., 2001); implying either false-63 

positive results, systematic differences, such as different alleles segregating in 64 

different families, or lack of statistical power (false-negatives). This paper 65 

compares linkage and association analysis genome-wide and shows that the 66 

results are in agreement provided the differences between the methods are 67 

taken into consideration.  68 

 69 

One key difference between linkage and association mapping is in the 70 

precision with which they map the location of quantitative trait loci (QTL). A 71 

linkage analysis uses recombination events only within the recorded pedigree 72 

and so the confidence interval for the position of the QTL is typically large 73 
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(Darvasi et al., 1993). In contrast, GWAS rely on linkage disequilibrium (LD) 74 

between QTL and markers to detect polymorphisms. Since LD extends for 75 

only a short distance (i.e. < 80kb in humans Clark et al., 2003), the confidence 76 

interval for the position of the QTL is generally smaller for a GWAS than for a 77 

linkage analysis. Thus although some GWAS find a QTL in the same region 78 

as linkage studies, linkage studies have found QTL on most chromosomes for 79 

extensively studied traits and regions identified with linkage tend to extend for 80 

long distances (Altmüller et al., 2001).  81 

 82 

Both GWAS and linkage studies suffer from two deficiencies when carried out 83 

using standard procedures. First, the estimated size of effect for significant 84 

QTL are overestimated (e.g. Beavis, 1998; Goddard et al., 2009; Goring et al., 85 

2001; Sun et al., 2011; Xiao & Boehnke, 2011; Xu, 2003b; Zöllner & Pritchard, 86 

2007). This arises because a single dataset is used for both discovery and 87 

parameter estimation, causing a correlation between the test statistic and the 88 

estimated effect size of alleles (Goring et al., 2001). Verification of locus 89 

effects in an independent population can avoid this bias, provided that the 90 

validation results are not conditioned on statistical tests (Goring et al., 2001). 91 

Alternatively, Goddard et al. (2009) argue that this bias can be overcome by 92 

fitting the effect of a SNP or chromosome position as a random effect. If the 93 

mean of the posterior distribution of effect size for the estimate is b̂ , then the 94 

expectation of the true effect (b ) has the desirable property of being the mean 95 

of the estimates, i.e. bbbE ˆ)ˆ|(   (Goddard et al., 2009). This is not the 96 

conventional definition of unbiased but it leads to desirable properties. For 97 
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instance, if the most significant effects are re-estimated in an independent 98 

dataset, then, on average, their effects will not change.  99 

 100 

The second problem with both GWAS and linkage analyses as usually 101 

practiced, is that the effect of one position is estimated ignoring all other 102 

positions. In a GWAS, for example, each SNP is tested independently for an 103 

association with the trait. Consequently many nearby SNP may have 104 

significant effects because they are all in LD with the same QTL. Alternatively, 105 

significant SNP may be near several possible causal polymorphisms (e.g. 106 

Barrett et al., 2008). This can cause confusion about the number, location and 107 

effect size of QTL that have been detected. One approach to partially 108 

overcome this problem in a GWAS is to fit all positions simultaneously as 109 

random effects (Meuwissen et al., 2001), so that the effect of a single SNP is 110 

estimated conditional on the effect of all other positions. 111 

 112 

Multiple QTL also cause confusion for results from linkage analyses. The 113 

simplest interpretation of a significant peak in the likelihood of a QTL is that 114 

there is a single QTL near the peak. However, if more than one QTL 115 

contributes to the linkage signal (Haley & Knott, 1992; Martínez & Curnow, 116 

1992), this can lead to the wrong conclusion being drawn and possibly a futile 117 

attempt to fine map the single QTL (i.e. a so called ‘ghost’ QTL). The effect 118 

estimated in a linkage analysis is actually the combined effect of all the QTL 119 

on the chromosome after accounting for recombination between QTL and the 120 

position being tested. By design, there is strong linkage between adjacent 121 

positions in a linkage analysis and, if there are many QTL, it is impossible to 122 
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distinguish between adjacent loci because of inadequate recombination. If the 123 

effect of all QTL detected in a GWAS could be combined along a 124 

chromosome, allowing for recombination between the position being tested 125 

and all other positions, then this effect should be the same as that estimated 126 

by a linkage analysis. Yang et al. (2010) indicates that common single 127 

nucleotide polymorphism (SNP) markers capture approximately ½ of the 128 

genetic variance for humans height. This could cause a discrepancy between 129 

linkage analysis and GWAS as imperfect LD would affect association but not 130 

linkage results. Studies with domesticated species indicate that markers 131 

generally capture a higher proportion of the genetic variance (Aitman et al., 132 

2011; Boyko et al., 2010; Daetwyler, 2009; Haile-Mariam et al., 2012) 133 

suggesting that this discrepancy should be minimised using a livestock 134 

population. 135 

 136 

This study tests the hypothesis that effects estimated from a GWAS and from 137 

a linkage analysis agree provided both are estimated appropriately as random 138 

effects and that SNP are fitted simultaneously in both analysis. To test the 139 

hypothesis we needed to conduct a linkage analysis and a GWAS in the same 140 

population. We used a sheep population with large half-sib families because 141 

this design maximises power for the linkage analysis and, with appropriate 142 

methods, the impact of family structure in GWAS can be minimised (MacLeod 143 

et al., 2010). Our approach first demonstrates the consequence of treating the 144 

marker effects as random and of fitting all SNP simultaneously. Then we show 145 

how the effects observed in the linkage analysis can be predicted by 146 
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combining the estimated effects from the GWAS and allowing for 147 

recombination along a chromosome.  148 

 149 

2. Materials and Methods 150 

Data. Genotypes and phenotypes were obtained for 1971 merino sheep from 151 

12 half-sib families from the SheepGenomics project (White et al., 2012). The 152 

average family size was 164 animals (range: 68 to 349). Genotypes consisted 153 

of 48,640 SNP from the Illumina Ovine SNP50 BeadChip which were quality 154 

checked and missing genotypes imputed (see Kemper et al., 2011). The trait 155 

analysed was eye muscle depth (mm) corrected for body weight, measured by 156 

ultrasound scanning at approximately 10 months of age. This trait was chosen 157 

because many records were available and the trait has an approximate 158 

normal distribution. Heritability estimates for eye muscle depth range between 159 

0.22 (±0.04) and 0.33 (±0.03) (Huisman & Brown, 2009; Mortimer et al., 2010; 160 

Safari et al., 2005). Full details of the data collection and procedures can be 161 

found in White et al. (2012). Genotypes for the 48,640 SNP were available for 162 

9 sires while the genotypes for the remaining 3 sires were imputed using a 163 

rules based approach from the progeny genotypes and ChromoPhase 164 

(Daetwyler et al., 2011). Calculations of LD between pairs of markers (r2) were 165 

made using the correlation of genotypes. 166 

 167 

Assigning inheritance of the paternal alleles. Alleles for sires and their 168 

progeny were phased into paternal and maternal haplotypes using 169 

ChromoPhase (Daetwyler et al., 2011). Although the sire genotypes were 170 

phased there is no information on which haplotype is paternal or maternal and 171 
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so they are referred to below as the first and second chromosome of a sire 172 

where the designation of first and second is arbitrary. The paternal alleles of 173 

each offspring were assigned to either the first or second chromosome of their 174 

sire based on runs of successive alleles that matched one of the two 175 

chromosomes of their sire. The algorithm allowed up to one mismatch per 176 

section to account for genotyping and map errors. Unassigned SNP were 177 

treated as missing data. Further details of the algorithm are provided in Part A 178 

of the supplementary materials. 179 

 180 

Within-family linkage analysis – fixed effect model. A fixed effects model was 181 

fitted sequentially for all SNP positions. The model was: 182 

y = Xb + Zv + Wα + e        [1] 183 

where y is a vector of phenotypes, X is a design matrix assigning progeny to 184 

fixed effects (including covariates), b is a vector of fixed effect solutions, Z is a 185 

design matrix allocating phenotypes to sires, v is a vector of sire solutions, W 186 

is an incidence matrix assigning progeny to groups according to the allele 187 

inherited from their sire, α is a vector of effects contrasting each sire’s first and 188 

second chromosome and e is a vector of residuals distributed N(0,Iσ2
e). Fixed 189 

effects in b were year of birth (2 levels), a regression coefficient for age (in 190 

days, mean age 304 days), birth and rearing type (3 levels), sex nested within 191 

year (4 levels) and 4 regression coefficients for the first 4 principal 192 

components from the genomic relationship matrix (Yang et al., 2010). 193 

Principal components were fitted as covariates to account for population 194 

structure within the maternal haplotypes as maternal pedigree was unknown 195 
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(Patterson et al., 2006). Thus the estimate of the effect of the sire’s allele ( ̂ ) 196 

is: 197 

)ˆˆ(')'(ˆ 1 vZbXyWWW         [2] 198 

where b̂  and v̂  are the estimates for the fixed effects and sire solutions. The 199 

false discovery rate was calculated as (1-s)p/[s(1-p)] (Bolormaa et al., 2011; 200 

Storey, 2002), where s and p are the realised and expected proportion of 201 

significant SNP. 202 

 203 

Within-family linkage analysis – random effect model. The model is similar to 204 

the fixed effect analysis (i.e. [1]) except that α is treated as a vector of random 205 

effects distributed α  ~ N(0,Iσ2
sire.snp), where I is an identity matrix and σ2

sire.snp 206 

is the sire segregation variance. That is, σ2
sire.snp is the variance in the trait 207 

attributed to the segregation of alleles within sire families, average over all 208 

families. To estimate this variance, we averaged the variance component 209 

estimated using restricted maximum likelihood over all positions with ASReml 210 

(Gilmour et al., 2006). To avoid an upward bias, imposed by the default 211 

settings in ASReml, both positive and negative estimates of σ2
sire.snp were 212 

permitted. This variance component was then fixed and used to calculate the 213 

allele effect at each position for each sire. The solutions vector, from 214 

Henderson’s mixed model equations (Henderson, 1950; Mrode, 2005), was: 215 

)ˆˆ(')'(ˆ 1 vZbXyWIWW         [3] 216 

where terms are as described in [1], 2

.

2 / snpsireerror    and σ2
error is the residual 217 

variance. This was computed with ASReml for all positions. An alternative 218 

cross-validation method to estimate the sire segregation variance, with 219 
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respect to the error variance, and therefore the degree of overestimation in 220 

the fixed effect model is given in Part B of the supplementary materials. 221 

 222 

Genome wide association analysis – fixed effect model. A regression of 223 

phenotype on allele dosage was made at each SNP position. That is, the SNP 224 

marker effect was fitted as fixed following a conventional linkage analysis. The 225 

model was  226 

y = Xb + Zv’ + Tγ + e        [4] 227 

where X, Z and e were as defined for [1], v’ is a vector of random sire effects 228 

[distributed N(0, Iσ2
sire)], T is a vector assigning progeny to their SNP 229 

genotype (i.e. 0, 1 or 2 copies of a SNP allele) and γ is the SNP allele effect (a 230 

scalar). The solution for ̂  was estimated using ASReml (Gilmour et al., 2006) 231 

where the sire variance (σ2
sire) was estimated at each position. 232 

 233 

Genome wide association analysis – simultaneous effect of all SNP with 234 

random SNP effects. Simultaneous estimates of all SNP effects were obtained 235 

using the Bayesian approach (BayesA) of Meuwissen et al. (2001). The model 236 

is  237 

y’ = Tγ + Zv’ + e         [5] 238 

where T, Z, v’ and e are as defined above [4], y’ is a vector of phenotypes 239 

corrected for fixed effects (i.e. bXyy ˆ'  , as described in [1]) and γ is a vector 240 

of  marker effects assumed to be N(0, Iσ2
γi), where σ2

γi is the variance for the 241 

ith SNP. This method assumes that allele effects (γ) come from a t-distribution 242 

with 4.012 df following Meuwissen et al. (2001). This model, in contrast to [4], 243 

directly accounts for the LD between nearby markers, the overestimation bias 244 
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in the marker effects and, by extrapolation of Kang et al. (2010) and Yang et 245 

al. (2011), spurious results due to population stratification. Fitting all SNP 246 

simultaneously indirectly accounts for population stratification because SNP 247 

effects are estimated conditional on all other SNP, whereby eliminating 248 

spurious associations (e.g. associations caused by SNP in LD with QTL on 249 

different chromosomes). SNP allele effects were estimated as the posterior 250 

mean of 10 replicates of a Gibbs chain with 30,000 iterations, with 5,000 251 

iterations discarded in each replicate as burn-in. 252 

 253 

Predicting linkage results from the association analysis. The estimates of SNP 254 

effects from [5] were used to predict the linkage effects at each position. The 255 

predicted effect at position j for sire k ( kj , ) was calculated as: 256 





M

i

kijii

M

i

kijiikj xpxp
1

2,,,

1

1,,,,
ˆˆ        [6] 257 

where î  is the estimate of the SNP allele effect at positions i, pi,j is the 258 

probability of co-inheritance of positions i and j, xi,k,1 and xi,k,2 are sire k’s allele 259 

at position i (i.e. 0 or 1) for the first (k=1) and second (k=2) chromosomes and 260 

M is the total number of SNP positions on the chromosome. Thus [6] is the 261 

difference between the sum of allele effects for the first and second 262 

chromosome at each position, where the sum of allele effects on each 263 

chromosome accounts for the probability of recombination events along the 264 

chromosome. The probability of co-inheritance of positions i and j was 265 

calculated as pi,j = 1 - 2ci,j, where ci,j was the recombination fraction from 266 

Haldane’s mapping function (1919), i.e. ci,j = 0.5 [1-exp(-2m)] where m is the 267 

distance (in Morgans) between i and j and assuming 1 cM = 1Mbp (Botstein et 268 
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al., 1980 citing; Renwick, 1969). The regression coefficient of the observed 269 

effect on the predicted linkage effect will be one if (1) the association analysis 270 

captures all of the genetic information in the linkage analysis, (2) SNP allele 271 

effects are additive and (3) Haldane’s mapping function is an accurate 272 

predictor of recombination. 273 

 274 

Predicting linkage results from the association analysis with independent data. 275 

The data from the association analysis used to predict the linkage effects in 276 

[5] are not independent of the data used in the linkage analysis. This is 277 

because the segregating alleles from the linkage analysis in the 12 sires also 278 

contribute to the association analysis. To achieve complete independence 279 

between the association and linkage analyses it was necessary to exclude, in 280 

turn, the offspring of each sire from the association analysis. That is, model [5] 281 

was run 12 times. SNP marker effects were then used to predict the linkage 282 

results using [6] for the sire excluded from the association analysis. For 283 

comparison, an analysis which predicts the between sire differences from 284 

markers effects estimated from data including all sires and excluding the sire 285 

to be predicted (i.e. independent data) is described in Part C of the 286 

supplementary materials. 287 

 288 

3. Results 289 

Tracking the paternal alleles. Paternal alleles were assigned to either the 1st 290 

or 2nd chromosome of the sire at 92.1% of positions (range per sire: 81.5 to 291 

95.8%), excluding uninformative positions (Supplementary Figure S1). There 292 

was an average of 7.2% unassigned progeny per SNP per sire. 293 
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 294 

Linkage analysis and GWAS using conventional methods. Using the 295 

conventional fixed effect linkage analysis ([1]), 3109 positions were identified 296 

as significant on 15 of 26 chromosomes at a false discovery rate of 14.8% (P 297 

< 0.01, Figure 1). When significant SNP were tested using the genome-wide 298 

association analysis ([4]), there are 132 SNP identified as significant with a 299 

false-discovery rate of 22.8% (P < 0.01), SNP details in Supplementary Table 300 

S1). The false-discovery rate suggests many true discoveries, although the 301 

closer inspection below creates some confusion for QTL underlying our trait. 302 

 303 

Doubts over the results from the conventional analysis arise because some 304 

chromosomes suggest discrete QTL while for other chromosomes the results 305 

are inconsistent. For example, consider chromosomes 3 and 6 (Figure 2). 306 

Chromosome 3 presents seemingly reliable answers where the 43 positions 307 

significant in both analyses appear to cluster near two likely QTL, one at 308 

(approx) 30Mbp and another at 50Mbp. The effect of the SNP with the highest 309 

significance from the association analysis at about 50 Mbp is -0.39 (± 0.08) 310 

mm and the estimated (absolute) effect ranges from 0.01 (± 0.27) to 0.71 (± 311 

0.38) mm for the linkage analysis. However, chromosome 6 shows a strong 312 

linkage signal from 80Mbp onwards and 21 SNP significant from both the 313 

linkage and association analysis over a wide region. It is not clear which, or if 314 

all, these SNP are associated with the linkage peak. The linkage analysis 315 

suggests possibly 3 QTL while the SNP also significant in the association 316 

analysis suggests maybe 4 or more QTL. Also contradictory are the several 317 

significant SNP at about 40Mbp which do not have any corresponding linkage 318 
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signal. It is difficult to ascertain using the two approaches in this form, which 319 

analysis is more reliable, which effects are due to experimental noise, how 320 

many QTL exist and what is the best estimate of the position of each QTL. 321 

<Figure 1; Figure 2> 322 

 323 

Linkage analysis – impact of the random effects model. The mean maximum 324 

likelihood estimate for σ2
sire.snp from all positions was 0.013, and thus the 325 

average proportion of phenotypic variance explained by the paternally 326 

inherited allele was 0.0037 (i.e. σ2
sire.snp/ σ

2
phen = 0.013 / 3.15). Although the 327 

likelihood failed to converge at 5407 (11.1% of all) positions; a subsequent 328 

restricted (positive definite) maximum likelihood analysis at these positions 329 

showed an almost zero variance attributed to σ2
sire.snp. This method 330 

overestimates the average proportion of phenotypic variance explained by 331 

markers because the sum for all markers is much greater than the genetic 332 

variance of the trait (i.e. if the genetic variance is 0.3 σ2
phen; 0.0037 σ2

phen per 333 

SNP x 48,640 SNP > 0.3). The overestimation occurs because of the strong 334 

LD between makers in the linkage analysis. 335 

 336 

Comparison of the fixed and random effects models for SNP alleles from the 337 

linkage analysis (i.e. models [2] and [3]) shows broad agreement for most 338 

sires at most positions (Figure 3A). The regression indicates that the random 339 

effects analysis explains 91% of the variation in the fixed effect analysis but 340 

that the fixed effect model is estimating the size of the allele effect to be about 341 

10 times greater than the random effect model. Adjacent allele effects for a 342 

sire are correlated in Figure 3A (i.e. adjacent SNP positions have correlated 343 
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effects and form lines in the plot). This correlation between positions is 344 

maintained by the random model but the estimated size of effect is reduced. 345 

Notably there are several SNP positions with large effects estimated by the 346 

fixed model (> ± 2 mm) for which the random model estimates an effect near 347 

zero. This more severe regression by the random effects model suggests that 348 

there was little support for the large effect estimated by the fixed model. 349 

These positions are probably regions where poor tracking of the paternal 350 

allele occurred and, consequently, there were few progeny who were 351 

recorded to inherit each of the sire’s alleles. 352 

<Figure 3> 353 

 354 

Association study – impact of the random effects model. The regression of the 355 

association allele effects from the fixed and random models (i.e. [4] and [5]) 356 

show that the fixed model estimates the effect of alleles almost 100 times 357 

larger than the random model (Figure 3b). The regression of the fixed effect 358 

solutions on the random effects solutions also explains a lower amount of 359 

variation compared to the linkage analysis (R2 = 0.58). The differences 360 

between the models and the lower proportion of variance explained by the 361 

random effect model is partially due to over-estimation of the effects when 362 

they are fitted one at a time as fixed effects and partially because the BayesA 363 

analysis may spread the effect of each QTL over several adjacent SNP. For 364 

example, Figure 4 compares the fixed and BayesA analysis over a 20Mbp 365 

region on chromosome 6 where there appears to be a strong QTL signal at 366 

around 42Mbp. The random effects analysis maps this effect in a location 367 

slightly further along the chromosome (41.5 Mbp) compared to the fixed effect 368 
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analysis (40.8 Mbp), but it also shows the spread of QTL effects for SNP in 369 

modest LD (r2 > 0.5) with this SNP in the region. Further, from the random 370 

effects model, it is clearer that there are possibility 3 QTL at 30.7, 45.0 and 371 

50.6 Mbp for markers which are not in strong LD with the SNP at 41.5 Mbp. A 372 

further SNP at 42.1 Mbp may be associated with the same QTL tracked by the 373 

SNP at 41.5 Mbp or this association could indicate another nearby QTL. 374 

Similar to the linkage analysis, many SNP alleles estimated with large effects 375 

(> ± 1mm) from the fixed model were regressed to almost zero using the 376 

simultaneous method (Figure 3b). This occurs because of unreliable 377 

estimates of effects from the fixed effect model. For example, of the 23 378 

markers with large effects (> ± 1mm) from fixed effect model and very small 379 

effects (< 0.001 mm) in the random model, 20 (87%) were not significant (P > 380 

0.05). The remaining 3 markers may represent spurious results from the 381 

standard GWAS, presumably caused by LD with other SNP. 382 

<Figure 4> 383 

 384 

Predicting the linkage results from the association study. Despite the 385 

correction for bias in the linkage and association analyses the magnitude of 386 

the association effects are still in the order of 100 times smaller than those 387 

estimated from the linkage analysis (Figure 3). A prediction of the linkage 388 

results from the association analysis needs to account for the stronger LD 389 

between adjacent positions in the linkage analysis. Using the linkage results 390 

from random model (i.e. [3]), the prediction was the contrast between sire 391 

chromosomes for the sum of the association effects accounting for 392 

recombination (i.e. models [5] and [6]). For individual sires, the expectation of 393 
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the linkage effects shows good agreement with the linkage results (Figure 5, 394 

Supplementary Figure S2). To compare the effects across all sires and at all 395 

positions we plotted the estimate from the linkage analysis against that 396 

predicted from the association study (Figure 6a).  The regression is almost 397 

one (slope: 0.975 ± 1.2x10-3, intercept: 3.7x10-3 ± 6.9x10-5) and accounts for 398 

about half of the variation in the linkage results (R2 = 0.523). Considering the 399 

sampling errors in both estimates, this suggests that the association analysis 400 

is capturing the majority of the within-family information. There were no data 401 

points which showed a notable deviation from the regression slope 402 

(Supplementary Figure S3). 403 

<Figure 5; Figure 6> 404 

 405 

Predicting the linkage results with independent data. There was a high 406 

correlation between the SNP effects estimated with all animals and those 407 

estimated excluding progeny from each sire using the random effects model 408 

(average R2 = 0.91, range: 0.85 to 0.93). However these analyses predicted 409 

the linkage effects for the excluded sire very inaccurately (Figure 6b, R2 = 410 

0.002). This contrasts sharply to results when the sire to be predicted is 411 

included in the analysis (Figure 6a). Thus the sire whose linkage analysis is to 412 

be predicted must be included in the association analysis to achieve good 413 

agreement between the two approaches. Predictive ability with independent 414 

data is slightly improved when predicting differences between sires (R2 = 415 

0.04, appendix 3). 416 

 417 

4. Discussion 418 
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This study suggests two reasons why there is often little agreement between 419 

linkage analysis and GWAS on the same complex trait. First, when the effects 420 

are estimated as fixed effects in statistical models, the most significant effects 421 

are often grossly overestimated. This is evident in our study for both the 422 

linkage and association analysis. Overestimation of fixed effects has been 423 

highlighted previously by several authors (e.g. Beavis, 1998) and contributes 424 

to the often smaller than expected or perhaps non significant results for loci 425 

when replication is attempted. Naturally this problem also occurs if one 426 

attempts to verify the results of a linkage analysis with a GWAS or vice versa. 427 

Our GWAS predicted the linkage results provided both are estimated as 428 

random effects, SNP are fitted simultaneously in the GWAS, and GWAS 429 

effects on a chromosome are combined to account for LD in the linkage 430 

analysis. The regression of the observed linkage effect on the effect predicted 431 

from the GWAS is close to 1.0 indicating an approximate agreement in size. 432 

The proportion of the variance in the linkage results explained by our 433 

prediction is high (R2 = 0.52) considering that both sets of effects are 434 

estimated with error. 435 

 436 

Second, multiple linked QTL can be the underlying cause of significant linkage 437 

results. In contrast to the simulation studies with multiple QTL tracked by 438 

microsatellite markers (e.g. Haley & Knott, 1992), our results in real data 439 

suggest that likelihood peaks can be caused by the sum of many QTL along a 440 

chromosome. We do not suggest that all linkage peaks are detecting multiple 441 

small QTL because some studies have been successful in identifying 442 

important loci (e.g. Charlier et al., 1995; Coppieters et al., 1998; Gusella et al., 443 
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1983; Tsui et al., 1985). However, successful linkage studies involve 444 

polymorphisms of large effect and these loci probably overwhelm any 445 

interference in the signal caused by multiple linked loci. The effect of the 446 

linked loci could be to increase or decrease the apparent effect size of the 447 

major loci, depending on the phase of the interacting loci. Here we 448 

demonstrate with real data that the additive effect of multiple loci in strong LD 449 

can cause apparent linkage signals. This conclusion is consistent with 450 

simulation and theoretical studies (e.g. Dekkers & Dentine, 1991; Visscher & 451 

Haley, 1996) and is also supported by mice studies when single QTL 452 

fractionate into multiple smaller loci with fine mapping (Flint et al., 2005). 453 

 454 

The influence of nearby linked loci cannot be excluded when using 455 

association rather than linkage analysis. Even in a conventional GWAS 456 

analysis, fitting one SNP at a time, SNP with significant effects may be 457 

influenced by multiple nearby QTL, some in phase and some out of phase 458 

with the tested SNP. However, LD in GWAS probably has less influence than 459 

in linkage because LD usually extends for shorter distances, i.e. < 1 Mbp in 460 

Merino sheep (Kemper et al., 2011). Hence a large number of significant SNP 461 

most likely indicates a large number of QTL. This conclusion is made clearer 462 

by fitting all SNP simultaneously. Then SNP which have no marginal effect 463 

after fitting all other SNP, including SNP in strong LD with the causal 464 

polymorphisms, will show no association with the trait. Figure 4 shows a 465 

typical result where there are several positions along the chromosome 466 

associated with the trait of interest.  467 

 468 
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The high degree of agreement (R2 = 0.52, regression coefficient ~ 1.0) 469 

between our observed and predicted linkage results is surprising. This 470 

consistency suggests that the association analysis is tracking the majority of 471 

the linkage information and that imperfect LD (between causal mutations and 472 

SNP) is not a strong influence on the results from our association analysis. 473 

This is because the linkage analysis has strong LD within families and 474 

imperfect LD is not limiting as it can be in GWAS. Incomplete LD between 475 

common SNP and causative mutations has been hypothesised to be 476 

responsible for ~ 50% of the genetic variation in human populations which is 477 

not explained by common SNP (Yang et al., 2010). Here, we suggest that the 478 

importance of incomplete LD between SNP and causative mutations is 479 

influenced strongly by genetic diversity. Our observation is supported by other 480 

studies with domestic species where common SNP capture a high proportion 481 

of the genetic variance (e.g. Boyko et al., 2010; Daetwyler, 2009; Haile-482 

Mariam et al., 2012). Thus, as the population’s diversity, or effective 483 

population size (Ne), increases the ability of common SNP to capture the 484 

genetic variance reduces. Incomplete LD may occur when causative SNP are 485 

at a lower frequency than the genotyped SNP (Yang et al., 2010), suggesting 486 

an increased importance for these mutations in, for example, human 487 

compared to livestock populations. 488 

 489 

Extensive QTL mapping experiments in many species suggests that alleles 490 

with a large effect on quantitative traits are uncommon (e.g. Darvasi & 491 

Pisanté-Shalom, 2002). The results of the association analysis reported here 492 

suggest many QTL for our trait but we found no evidence of large effect QTL 493 
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in our sires. For instance, if most important genes had a variant with large 494 

effect, we might expect to see at least one sire with a large estimated effect 495 

from the linkage analysis and an inaccurate prediction of this effect from the 496 

GWAS. However, we never observed any alleles from the linkage analysis 497 

which substantially differed from the effect predicted from the association 498 

analysis (Figure 5). We sampled only 12 sires but we analysed each sire at 499 

thousands of positions. If most of the genetic variance was due to rare large 500 

effect variants then we might expect to observe at least one heterozygous sire 501 

in our dataset. The situation of segregating alleles with large effect may occur 502 

but it cannot be typical because we predicted our linkage results from an 503 

association analysis with moderate accuracy. Further, all of our estimated 504 

effects from the association analysis were also very small (< 0.008 mm or  < 505 

0.008 / 3.151/2 = 0.004 SD). 506 

 507 

Our results show that most of the linkage information was captured in the 508 

prediction from the GWAS results. However the two approaches are not 509 

independent because they use the same data and we also show that when 510 

the sire to be predicted is excluded from the association analysis we cannot 511 

predict the linkage results. This discrepancy could be explained by high 512 

sampling covariance between the effects estimated for SNP in very strong LD 513 

with one another. Thus the combination of SNP alleles has been observed in 514 

the data to be predicted accurately. The between sire differences, which are 515 

the sum of all SNP effects, were estimated more precisely using independent 516 

data (appendix 3). Prediction of between sire differences is equivalent to 517 

genomic prediction which, given larger datasets, can reach moderate 518 
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accuracies in sheep for this trait (Daetwyler et al., 2010). The dependency 519 

between SNP when estimating effects of individual markers is not surprising 520 

considering that the magnitude of the largest effect was very small (0.004 SD) 521 

and given the relatively small size of the dataset. 522 

 523 

These results suggest that the best analysis is the GWAS in which all SNP 524 

are fitted simultaneously. This method gave us consistent results between 525 

linkage and association and has greater power to discriminate linked QTL 526 

than either the linkage analysis or the standard GWAS fitting one SNP at a 527 

time. This is clearly demonstrated in Figure 4 where the numerous GWAS 528 

results are consolidated into possibly 4 QTL signals at 41.5, 42.1, 45.0 and 529 

50.6 Mbp. A potential drawback of this method is that effects may be split 530 

between closely linked markers (Xu, 2003a). In Figure 4, this is potentially 531 

occurring for several markers in high LD with the largest estimated effect at 532 

41.5 Mbp. These high LD markers may also be capturing multiple mutations at 533 

the locus. However the effect of this disadvantage should diminish as markers 534 

in higher LD with the causal mutations for traits are included in the SNP 535 

marker set. 536 

 537 

In summary this study aimed to reconcile some of the differences between 538 

linkage and linkage-disequilibrium mapping. We have demonstrated, using 539 

real data, the correction for the biases in both linkage and association 540 

mapping. We show that multiple linked QTL can combine to be the primary 541 

cause of significant linkage results. In our study, the association analysis 542 

captured 52% of the within-family information, which is high considering the 543 
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sampling error of effects from both analyses. The results support the 544 

hypothesis that there are many loci of small effect underlying complex traits. 545 

We suggest an improved method for GWAS is to fit statistical models where 546 

all SNP are analysed simultaneously. This method prevents spurious results 547 

caused by population structure and accounts for LD surrounding the analysed 548 

SNP.  549 

550 
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Figures 703 

 704 

Figure 1. Comparison of the test statistics across the genome for linkage 705 

(grey) and the association (black) analyses. Markers significant in both 706 

analyses are highlighted in red (P < 0.01). 707 

 708 

Figure 2. Comparison of test statistics for chromosomes 3 (a) and 6 (b) using 709 

the linkage (grey) and association (black) analyses. Markers significant in 710 

analyses are highlighted in red (P < 0.01). 711 

 712 

Figure 3. Effect of fitting SNP alleles as fixed (y-axis) or random (x-axis) using 713 

linkage (a) or association (b) analysis. Allele effects using linkage are 714 

estimated for every sire at all positions (a) or for all animals at all positions 715 

using association (b). Each point represents a single estimate of an allele 716 

effect. 717 

 718 

Figure 4. The absolute effect of SNP alleles when fitted as fixed (a) or 719 

random (b) in the association analysis. Grey lines indicate the positions of the 720 

largest effect in (a) or (b) with colours showing the linkage disequilibrium 721 

(correlation) between these marked SNP and the surrounding markers. 722 

 723 

Figure 5. The size of marker effects (mm) across the genome for a single sire 724 

(“W4”) when alleles are fitted as random using linkage (grey) or predicted 725 

using the sum of association effects accounting for recombination (black). 726 

 727 



 29 

Figure 6. Marker effects (mm) estimated from linkage when alleles are fitted 728 

as random (y-axis) or predicted from the sum of the association effects 729 

accounting for recombination (x-axis). The association analysis either includes 730 

all sires (a) or excludes the sire to be predicted (b). 731 

732 
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