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Gamma Distribution Probability Model for Asian 
Summer Monsoon Monthly Rainfall 
DIWAKAR A. MOOLEY-Indian Institute of Tropical Meteorology, Poona, India 

ABSTRACT-Using data from 39 well-distributed and 
long-record stations over the area, we found gamma dis- 
tribution to be the most suitable probability model from 
among the Pearsonian models that  show good fit to 
monthly rainfall in the Asian summer monsoon. We show 
that the monthly rainfall distribution is not Gaussian and 
the simple square-root, cube-root, and logarithmic trans- 
formations are of limited utility for normalizing the rain- 
fall distribution. 

A Craig type chart indicates that the rainfall distribu- 
tion is a Type I distribution or a special or limiting case of 
this distribution; these distributions are fitted to monthly 
rainfall, and the goodness-of-fit is tested by the chi-square 
test. The gamma distribution (Pearson's Type 111), which 
is a limiting case of Type I distribution and next to the 
Gaussian distribution in simplicity, gives a good fit to 
monthly rainfall a t  all the stations in each of the summer 
monsoon months; the Kolmogorov-Smirnov test and the 

1. INTRODUCTION 

Because of the importance of rainfall distribution to 
agriculture and efficient utilization of the water resources, 
considerable effort has been made to graduate the rainfall 
of different time scales by fitting appropriate frequency 
functions. Sankaranarayanan (1933) tested for normality 
the frequency distribution of the southwest monsoon sea- 
son rainfall a t  68 representative stations in India, Pakistan, 
Burma, and Ceylon; he found that a t  the 5-percent level 
the moment coefficients of skewness, gl, and kurtosis, g2, 
were significantly different from zero for 34 and 15 sta- 
tions, respectively. Pramanik and Jagannathan (1953) 
examined the annual rainfall series a t  30 well-distributed 
stations over India and Pakistan and found significant 
departures from the Gaussian distribution a t  13 stations. 
On the basis of data for 11 representative stations over 
India, Mooley and Crutcher (1968) showed that the 
monthly rainfall during the southwest monsoon season 
is gamma-distributed. 

Barger and Thom (1949) found that the gamma dis- 
tribution provides good fit to precipitation series in the 
United States. Thom (1951) considered precipitation and 
no-precipitation situations produced by different physical 
systems. He found that the actual rainfall distribution, 
which consists of precipitation and no precipitation, is a 
mixed distribution. 

Momiyama and Mitsudera (1952) showed good fit of 

variance ratio test confirm this good fit. The Type I 
distribution shows good fit to June rainfall a t  26 stations, 
July rainfall a t  31 stations, August rainfall a t  24 stations, 
and September rainfall a t  23 stations. Type IX, a special 
case of Type I, shows good fit to June rainfall a t  four 
stations, July rainfall a t  two stations, August rainfall at 
four stations, and September rainfall a t  three stations. 

In cases where the gamma and other Pearsonian dis- 
tributions show good fit, the gamma distribution is found 
to be the most suitable. The spatial distribution of the 
scale and shape parameters of the gamma distribution 
applied to monthly rainfall over the area is examined and 
the chief features of the distribution are indicated and 
explained. Deciles of the mixed gamma distribution ap- 
plied to monthly rainfall are tabulated; these can be used 
to obtain the monthly rainfall probabilities required by 
any user. 

the gamma distribution to the monthly rainfall over Japan. 
Suzuki (1964, 1967) showed that the hyper gamma dis- 
tribution gives a good fit to the monthly and annual 
rainfall at  Tokyo and Niigata, Japan. 

The purpose of this study is to determine whether or 
not a suitable unified probability model exists for the 
distribution of monthly rainfall associated with the Asian 
summer monsoon. 

2. DATA 

The stations used in this investigation were selected 
from the area, Equator to 35"N, and 70" to 140°E, since 
little monsoon influence is felt outside this area. All sta- 
tions within this area and the periods of data available for 
them were carefully examined, and a fairly good repre- 
sentative network of 39 rain gage stations, each with a 
period of data exceeding 50 yr, was selected. This network 
and the period of data available are shown in figure 1. 
The rainfall data for these stations for the summer 
monsoon months, June, July, August, and September, 
were collected from the World Weather Records (Smith- 
sonian Institution 1927, 61934, 1947, US.  Depart- 
ment of Commerce 1959, 1967) to and including 1960. For 
Singapore, data to 1967 were used to get a rainfall record 
exceeding 50 yr. Singapore data for 1951-67 and Sandakan, 
Kutaradja, Menado, and Manila data for 1951-60 were 
obtained from the concerned meteorological services. 
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'FIQURE 1.-Map showing network of rain gage stations. N, number of years of rainfall data, is given below station name. 

TABLE 1 .-Details of noise-producing data sources 

station D8t8 

Ahmadabad 
Akyab 
Allahabad 
Amini Divi 
Bombay 
Calcutta 
Colombo 
Fort Cochin 
Gauhati 
I-Chang 
Jaipur 
Lahore 
Madras 
Mandalay 
Mangalore 
Manila 
Mergui 
Nagasaki 
Pei-Hai 
Quangtri 
Simla 
Taipei 
Tokyo 

Aug. 1868, June 1893, July 1927 
June 1863, Sept. 1916 
June 1916, Aug. 1953 
June 1924, Sept. 1933 
Sept. 1930, Sept. 1949, Aug. 1958 
Sept. 1900 
July 1878, Sept. 1889 
July 1924, Aug. 1931 
June 1860 
July 1935 
June 1873, Aug. 1892, Sept. 1924. 
Sept. 1954, Sept. 1958 
June 1870 
July 1928, Aug. 1939 
June 1868 
Sept. 1914, Aug. 1919 
June 1888, Aug. 1925 
Sept. 1922, July 1957 
Aug. 1918, July 1923 
July 1919, June 1953 
Aug. 1906 
July 1930 
June 1938, July 1941, Sept. 1958 

3. PRELIMINARY CONSIDERATIONS FOR THE 
CHOICE OF THE FREQUENCY FUNCTION 

Pearson (1902~) stated that half the difficulty of curve- 
fitting lies in the choice of suitable function. In  selecting a 
suitable function, Pearson (1902b) cautioned against 

multiplying constants to improve the fit since it is the- 
oretically undesirable and does not necessarily lead to the 
required result. Elderton and Johnson (1969) also stressed 
these points; they considered in detail the question of 
fitting frequency functions to various types of data and 
stated that Pearsonian curves, which cover a wide range 
of skewness, have been fitted in various circumstances 
and agreements are satisfactory. Godske (1968) suggested 
that the Pearson model may be used for meteorological 
elements for which distributions are not Gaussian. 

Inspection of the rainfall over Southeast Asia reveals 
that the m,onthly rainfall covers a wide range of skewness. 
Hence, in view of what has been stated above, we pro- 
pose to examine the applicability of the Pearson model 
to monthly summer monsoon rainfall over Southeast 
Asia and to obtain the most suit.able distribution if 
two or more Pearsonian distributions show good fit. 

4. PEARSON MODEL 

Elderton and Johnson (1969) discussed a t  length 
the various frequency distributions that come under 
the Pearson model, their criteria, and the computation 
of the values of their parameters. They also clearly 
showed how the differential equation of the Pearsonian 
system, 

(1) &= y(a+x> ax b0+b1z+b,x2)  

can be obtained from the elementary propositions of 
the theory of probability. 
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5. CHOICE OF A SUITABLE DISTRIBUTION 
FROM THE PEARSON MODEL 

Pearson (1916) gave the criteria for the different fre- 
quency distributions of his system in terms of pl(=pi/pt) 
and pz(=p4/p;)  and put these in the form of a diagram 
called a Rhind diagram. The same diagram is also given 
by Pearson and Hartley (1962). Craig (1936) simplified 
this'diagram by using 6= (2pz-3p1-6)/(pz+3) instead of 
pz. His diagram will hereafter be referred to as the Craig 
type chart, and this chart will be used for estimating a 
suitable frequency distribution for monthly rainfall at  
39 representative stations in the Asian summer monsoon 
region. Initially, p1 and p2 were computed in each case. 
The basic purpose of the study is to find a suitable fre- 
quency distribution that generally fits the whole body of 
data. We should not place undue emphasis on fitting a 
distribution a t  the extreme ends; if we do that, the fit 
over the rest of the distribution would suffer. For rainfall 
distribution, this problem arises in the extreme upper end; 
that is, in the highest values. Since p1 and pz involve third 
and fourth powers, respectively, they are subject to high 
random sampling fluctuations. In nature, events of dif- 
ferent probabilities occur in time continuum. When we 
want to study these events, we take a sample over a 
period of time separated by two epochs. If, in this period, 
an event of very low probability has occurred, then such 
an event will be in the nature of noise over the data 
sampled for studying the properties of the distribution of 
the phenomenon. There does not appear to be any suitable 
way of treating such events of very low probability except 
to delete them. The number of rainfall observations a t  
stations over the area is generally 70-100, and an event of 
one in 200 or more (Le., with a probability 10.005) is 
considered in this study as an event of very low 
probability. 

Table 42 of Pearson and Hartley (1962) gives, for the 
Pearsonian system of curves, percentage points expressed 
in standard units of the variate for a given p1 and pz. 
Using the computed values of p1 and pz for the whole data 
in each case and the concerned table in Pearson and 
Hartley (1962), we examined the values at  the upper end 
of monthly rainfall distribution, and the values having 
an occurrence probability of 0.005 or less were noted, 
These values, which are in the nature of noise over data. 
were deleted. The details of noise-producing data are 
listed in table 1. 

Although these data are noise-producing for the pur- 
pose of the present paper, they might well be studied for 
other specific purposes (e.g., extreme value problem). 
For the sake of simplicity in data handling, the data for 
the years mentioned in this table were deleted, and pi 
and pi, the revised value of p1 and pz, respectively, 
were calculated. From these revised values, 6 values 
were calculated. These pi and 6 values were entered in 
the Craig type charts. Figure 2 gives these charts for 
June, July, August, and September. The bulk of the points 
lie within the type I (black) region; only a fe\V points 
appear to have strayed into other regions of the chart. 
It is possible, therefore, to infer as a first approximation 
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FIGURE 2.-Craig type chart for monthly rainfall distribution (sub- 
scripts L and J refer to bell- and J-shaped curves). The black 
area covers bell- and J-shape d Type I curves; 6 = 0 and 6= - 0.5 
define Type 111 and Type XI1 distributions, respectively. 

that the monthly rainfall has type I distribution (bell- 
shaped and J-shaped curves only). 

Type I distribution with origin at  the mode is given by 

where ml, m2 are the shape parameters. The beginning of 
the distribution is al units before the mode and the end 
is a2 units after the mode. The'range is thus (al+az).  
The shape parameters, ml and m,, are related to a, and a2 
by the relation ml/al =m,/az. The distribution covers 
U-, J-, and bell-shaped curves. When the beginning of 
the curve is referred to as the origin, this distribution 
transforms into 

a form that is convenient for use with J-shaped curves. 
If m, and mz are not small, the distribution tails off a t  

both ends; if m, and m2 are small, it rises abruptly a t  both 
ends. The following distributions are special cases of this 
distribution: 

1. Gaussian or normal-limiting dase, when ml=mz=m, 

2. Type II-when ml=m2=m and al=az=a. 
3. Type I11 (gamma)-limiting case, when a2 and 

4. Type VIII-when m, is negative and m2=0. 
5. Type IX-when ml is positive and m2 is zero, or mz 

al=%=a, a and m+m, and (m/d)  remains finite. 

m2+m and (mz/az) remains finite. 

is positive and m, is zero. 



6. Type X (exponential)-limiting case, when ml = O ,  
uz and mz+oo, and (mz/az) remains finite. 

7. Type XII-when m1 and mz are both arithmetically 
less than unity and are of opposite signs. This has a twisted 
J-shape . 

6. ESTIMATION OF PARAMETERS 

Pearson ( 1 9 0 2 ~ ~  1902b) showed that the method of 
moments gives good results and is generally applicable. 
The least-square method also gives good results, but 
its applicability is limited to frequency distributions of 
type y=u+bx+cx2+ . . . or one that can be converted 
into this type. Fisher (1922) showed that the moment 
estimates and the maximum likelihood (M.L.) estimates 
differ little when the distribution is close to normal but 
that the efficiency of moment estimates falls off rapidly 
with increasing deviations from normality. Consequently, 
he has advised the use of efficient M.L. estimates under 
these circumstances. It has also been shown that the 
M.L. method gives consistent estimates and that if a 
sufficient estimate exists, it is the M.L. estimate. In addi- 
tion, Fisher (1924) showed that, when inconsistent and 
inefficient estimates of parameters are used, the computed 
chi square measures not only the deviation of observation 
from the hypothesis but also the deviation due to error 
in estimation of parameters. For that reason also, he 
has advised the use of M.L. estimates. In  some cases, 
the equations from which M.L. estimates are to 
be obtained cannot be explicitly solved; however, in 
such cases, solutions of requisite accuracy can be obtained 
on the computer by iteration method. The method of 
minimum chi square generally leads to difficulties since 
the equations cannot be solved except on computer by 
iteration method. Because of the special advantages 
of estimation by the M.L. method, this method will be 
used in this study. 

Each distribution has location, scale, and shape param- 
eters. A distribution may have more than one shape 
parameter. In  the case of monthly rainfall over southeast 
Asia, zero rainfall can be considered as an attainable 
lower bound, although the probability of attaining it 
would vary from one rainfall regime to another. In  wet 
regimes, the probability of rainfall attaining the lower 
bound zero would be vanishingly small, and this is taken 
care of by the high value of the shape parameters, which 
leads to contact of very high order a t  the origin (Le., at  
the zero rainfall point). Hence, in this study, the location 
parameter &e., the beginning of the distribution) is 
zero except in the case of normal distribution. 

7. TEST FOR NORMALITY 

The normal distribution is a limiting case of Type I 
distribution. The Craig type charts show that in sonie 
cases the monthly rainfall is close to normal distribution. 
It was therefore decided to test monthly rainfall for 
normality . 

Rao (1952) mentioned that the goodness-of-fit test 
applied to observed frequency distribution to  test nor- 

FIGURE 3.-Stations for which rainfall distribution is normal (N). 

mality is insensitive in testing for some specific aspects 
of the distribution such as symmetry and kurtosis. There- 
fore, gl( = p 3 / p i ” )  and gz( = p4 /p i )  , Fisher’s measures of 
skewness and kurtosis, respectively, were computed and 
their departures from zero were tested for significance, in 
addition to applying the chi-square test. To compute 
g1 and g2, we used expressions from Cramer (1946) for 
consistent and unbiased estimates of second, third, and 
fourth moments of the distribution. To test the significance 
of g1 and g2, we used exact expressions for their mean and 
variance as given by Fisher (1930). The distribution is 
considered normal if none of the quantities, g,, gz, and 
the chi-square statistic, is significant a t  the 5-percent 
level. Figure 3 shows the stations for which the monthly 
rainfall is normal. Generally, the monthly rainfall distri- 
bution is not normal except over the southeastern Arabian 
sea, the west coast of India south of Bombay, the west 
coast of Ceylon, and the Burma coast, during June. The 
test for normality clearly indicates that monthly summer 
monsoon rainfall over southeast Asia is not Gaussian. 

8. NORMALIZING TRANSFORMATIONS 

We must next determine if monthly rainfall can be 
transformed into a Gaussian distribution by any trans- 
formation. Bartlett (1947), who considered in some detail 
the use of transformations, showed that the variance- 
stabilizing transformation often has the effect of improving 
the closeness of the distribution to  normality and suggested 
the square root and the logarithmic transformations for 
variance stabilization. Constancy of variance is one of the 
important requisites for applicability of the analysis of 
variance. Freeman and Tukey (1950) suggested the trans- 
formation J@+J(l+x).  This was used by Landsberg 
et al. (1959). 

Stidd (1953) applied the cube-root transformation to 
rainfall of different time scales in different climatic regimes 
and found the transformed distribution to be normal in 
many cases. However, he reported that this transformation 
was not satisfactory for rainfall at Malden Island (near 
the Equator), Laurie Island (high southerly latitudes) , 
and some Hawaiian Islands. From this he inferred that 
the precipitation series of small ocean islands are not 
normalized by the cube-root transformation. 
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FIQURE 4.-Effect of square-root transformation on monthly rain- 
fall. The tick marks and crosses, respectively, denote normalization 
and non-normalization on transformation. 

FIQURE 5.-Same as figure 4 for cube-root transformation. 

Brooks and Carruthers (1953) mentioned the following 
forms for normalization: 

Z=a+b log (x+c), (4 1 
Z=ao+u1X+&x2+ . . . +unx", (5) 

Z=u+bx"". (6) 
and . 

Obviously, the appropriate transformation should be 
selected for each series of data. In  applying a transforma- 
tion, one must find the constants for each data series. 
The total number of constants to be evaluated is the 
number of constants in the normalizing form plus two 
constants for the transformed normal distribution. Deter- 
mining so many constants may not offer any specific 
advantage. We propose to determine if the simple trans- 
formations, &, x1I3, and log (1 +x) are suitable over the 
area under consideration. 

The non-normal monthly rainfall has been transformed 
using these transformations, and the transformed distri- 
butions have been tested for normality in the manner 
indicated in section 7. The results are presented in figures 
4-6 and summarized in table 2. In  about 70 percent of 
the cases, each of the two transformations (the simple 
square root and the cube root) leads to normalization. The 
performance of the logarithmic transformation, however, 
is poor. 

FIQURE 6.-Same as figure 4 for logarithmic transformation. 

TAB LE 2.-EfJect of normalizing transformations on the non-normal 
Asian summer monsoon monthly rainfall 

No. of distributions normalized by 
No. of non-normal __- Month rainfall dlstri- - 

butions JX Xl/S 108 (1+X) 

June 26 21 21 9 
July 28 21 21 4 
Aug. 34 ' 22 22 12 
Sept. 33 24 25 12 

Note: The number refers to number of stations. 

As stated previously, Stidd (1953) found that rainfall 
of some island stations are not normalized on cube-root 
transformation. Figure 5 shows that, in the present study, 
such stations are not confined to islands. In  the 30 percent 
of the cases where the square-root or the cube-root trans- 
formation did not lead to normalization, there are a few 
cases for which none of the three transformations leads to 
normalization. The number of such stations is, one for 
June, four for July, and five each for August and Septem- 
ber. These transformations, therefore, have limited utility 
from the viewpoint of the normalization of the frequency 
function for monthly rainfall over southeast Asia during 
the summer monsoon. 

9. GAMMA DISTRIBUTION 

The gamma distribution (ie., Type I11 from the 
Pearsonian system) is a limiting case of Type I distribu- 
tion. It is next to the normal distribution in simplicity, 
and, a t  the same time, it covers a wide range of skewness. 
We therefore decided to test the fit of monthly rainfall to 
gamma distribution for which the probability density 
function is given by 

for xI0 

where /3 and y are scale and shape parameters, respec- 
tively. The exponential distribution is a particular case 
when y= 1. 
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Thom (1958) reviewed important properties of the Variance-Covariance Matrix 
gamma distribution, computation of M.L. sstimates of 
parameters, efficiency of moment estimates, and variance- 
covariance matrix of parameters. The skewness and the 

coefficient of variation are simple functions of the shape 

As shown by Thorn (1958), the variance-covariance ma- 
trix Of the parameters Of the gamma distribution is given 

kurtosis coefficients, g1 and g2, respectively, and the by A 

parameter only. If 5‘ and 5“ are two independent gamma 
var (b)  A cov (b,g) A h  

sv 6) -b 
n ( k  6) - 1) .(;+I $1 - 1) [ A h  A ] = [  A - f  s  ̂ ] *  (11) 

variates having shape parameters y f  and y”, respectively, 
and a common scale parameter p, then C;(=t’+t”) is a 
gamma variate with scale parameter and shape param- cov ( b , g )  var (9)  A .  A 

eter y ( = y f + y f f ) .  This is referred to as the additive or .(g+f(g)-l) nW’(d-1) 

reproductive property of the gamma distribution. If the 
two scale parameters, 0’ and p”, are not identical, the 
additive property can still be used, provided p’ and p“ 
are not significantly different. I n  this case, p can be taken 
as (p’+p”)/2. In  situations of the common scale param- 
eter, p, Weatherburn (1961) has shown that t’/(t’+t’’) 
or f” / ( t ’+[”)  is a beta variate of the f i s t  kind with 
parameters y’ and y” or y” and y’, respectively. This 
property can be used to get the distribution of a ratio 
like, (July rain)/(rainfall for July and August). 

M. L. Estimates of the Parameters 

Thom (1958) showed that t, the M.L. estimate of y, 
can be obtained approximately by solving a quadratic 
equation; he has given a table of corrections to be applied 
to  this value of t. In  this study, g was obtained by solv- 
ing the following equation by Newton’s method on the 
computer: 

A 

A h  A 

t ( g )  +(g)-ln (g)-ln ( Q m / A m ) = O .  (8) 

Here, In is the ‘natural logarithm, G, and A, are the 
geometric and the arithmetic means, respectively, of the 
rainfall amounts xl, x2, x3, , x,, and 

A 
h !m= a In r(g)=di-gamma function. 

a ŝ 
To solve the equation, let g(O) be the first guess. Then put 
g(l)=g(O)+h for $ in eq (8), expand to the first power of h, 
solve for h, and get 

(3 (9) 
- #( g(O) ) + ln ( g(O) ) + In 

h= 
*‘(Y(O’ 1 - (93.) 

A 
where $‘=a$/ag= tri-gamma function. 

Next, put the second approximation, g ( 2 )  = g ( ’ )  +h, for 
g in eq ( 8 )  and continue the iterations until g c n ) = $  is 
obtained to the desired accuracy. The process is discon- 
tinued after n iterations when 

A 

A 

I5(g) - t ( g ( % ) )  I IO.0001. (10) 
A 

Convergene was rapid. After obtaining 2 we obtained b 
from the relation 

These matrices were computed for M.L. estimates of 
the parameters of the gamma distribution fitted to monthly 
rainfall. These give large sample variances. Fisher (1922) 
demonstrated that M.L. estimates are normally distrib- 
uted in large samples. Since data in exces3 of 50 yr have 
been used in this study, these can be considered as large 
samples. Therefore, the variances provided by these 
Fatrices could be used to obtain the confidence limits for 
b and $. These confidence limits could be utilized to test 
the significance of the difference between the parameters 
for 2 mo. 

The gamma function is required in the computation of 
the theoretical probabilities based on the gamma model, 
and the di-gamma and the tri-gamma functions are 
required in the computation of the M.L. estimates, 
b and $, of the parameters of the gamma model by New- 
ton’s method and in the computation of the variances of 
b and $. Tables for the gamma, the di-gamma, and the 
tri-gamma functions are given by Davis (1933) and 
Abramowitz and Stegun (1964). These tabulated values 
cannot be used, however, when the iteration procedure has 
to be followed or the number of computations is large. 
In this study, these functions were evaluated by computer. 
For computing lnr(y), the logarithmic form of Sterling’s 
series (Davis 1933, Vol. I, p. 181) truncated to include 
only terms containing the 15th and smaller powers of 
(l /y) has been used; for 7 2 4 ,  the function is accurate to 
11 decimal places. The value of #(y) is found to an ac- 
curacy of eight decimal places for y> 50 by using the 
series obtained by differentiating the truncated series for 
lnr(y). The value of +’(y) is computed to an accuracy of 
nine decimal places for 7 2 6  by using the series obtained 
by differentiating the truncated series for lnr(y) twice. 
For y smaller than these limits, the functions can be 
computed without loss of accuracy by using the concerned 
reduction formulas. 

A 

A 

Tests for Gamma Distribution 

Chi-square tes t .  The chi-square test of goodness-of-fit 
was applied to monthly rainfall. The number of intervals 
over which the test was applied varied from seven to 12, 
and each interval had a frequency of not less than five. 
The number of degrees of freedom is three less than the 
number of intervals. The chi-square statistic, x;, was 
calculated in each case. Table 3 gives the frequency for 
different ranges of P(xz2x ; ) .  I n  no case is the chi- 
square statistic significant at  the 5-percent level. The null 
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. TABLE 3.-Chi-square test for the null hypothesis that monthly rainfall 
is gamma-distributed 

Frequency for different intervals of P(x2>&) 

Month <0.01 20.01 20.05 20.10 20.25 20 .50  20.75 Total 
bu t  b u t  bu t  b u t  bu t  

<0.05 <0.10 <0.25 <0.50 <0.75 

June 0 0 2 1 1  5 9 1 2 3 9  
July 0 0 2 6 1 4  9 8 3 9  
Aug. 0 0 1 13 10 10 5 39 
Sept. 0 0 3 4 1 4 1 1  7 3 9  

Total 0 3 8 34 43 39 32 156 

hypothesis is therefore not contradicted, and the monthly 
rainfall can be taken to be gamma-distributed. 

Because of the good fit of the gamma distribution to 
monthly rainfall a t  all the stations over the vast monsoon 
area, we decided to apply additional tests to confirm 
the exceptionally good fit. Accordingly, the Kolmogorov- 
Smirnov test (K-S test) and the variance ratio test were 
also applied. 

K-S test. Massey (1951) showed that this test is more 
powerful than the chi-square test. The K-S test is applied 
to determine if there is agreement between an assumed 
theoretical distribution function and the empirical distri- 
bution function. Keeping (1962) mentioned that the test 
can be applied in situations whcre the theoretical distribu- 
tion function is continuous. In  the preseni case, the 
theoretical distribution is continuous since b and g are 
positive and z can assume all value;. The test statistic 
used is 

A 

D,=max I S,(z) -F(z) I (12) 

where S,(z) and F(z)  are empirical and theoretical 
distribution functions, respectively. The distribution of 
D, is independent of F(z ) .  The theoretical distribution 
function has to be completely specified, however. In  
this study, the theoretical distributions have been com- 
puted by utilizing b and y  ̂ computed from the samples. 
In  such situations, h4assey (1951) indicates that: 

A 

1. When the K-S test strongly implies rejection of the null 
hypothesis, rejection is the correct decision. 

2. When rejection of the null hypothesis is not implied and D, is 
near the critical level, there is soine uncertainty as to the decision 
not to reject thc null hypothesis. 

3. When rejection of the null hypothesis is not implied and the 
D, value is not near the critical level, then the nonrejection decision 
is correct. 

D,, the test statistic, was calculated in all cases. In  
addition, DA0.05) and Dho*zo), the values of the test statistic 
a t  the 0.05 and 0.20 levels, respectively, were computed 
by using the asymptotic formulas, 1.3614; and 1.0716, 
respectively, as given by h4assey (1951). D, was less than 
DllO.'O) in all cases. In  94 percent of the cases, the ratio 
D,/DAo~20) was 5 0.80. Therefore, in accordance with 
\Ghat has been indicated by Massey (1951, para. iii), the 
null hypothesis is not rejected at  the 5-percent level. 
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TABLE 4.-Analysis of d,/dho.20) 

Frequency for different intervals of the ratio d./d!,o.20' 

Month 50.20 >0.20 >0.40 >0.60 >0.80 >1.0 Total 
hut but but but 

$0.40 $0.60 $0.80 51.0 

June 
July 
Aug. 
Sept. 

0 7 15 10 3 4 39 
0 6 15 11 4 3 39 
0 7 13 7 10 2 39 
0 8 12 12 7 0 39 

0 28 55 40 24 9 156 Total 

Note: d!,o'20' is obtained by using the asymptotic formula, 0.8/dm, which is midway 
between those for the normal and the exponential distributions as given by Lilliefors 
(1967, 1969) 

Lilliefors (1967, 1969) showed application of the K-S 
test to sampling from a normal distribution and from an 
exponential distribution when the parameters of the 
distribution are estimated from the sample. The test 
statistic is d,=maxlS,(z)-F*(z)I, where F*(z) is the 
theoretical distribution function whose parameters are 
estimated from the sample. The asymptotic formulas 
given for the normal and the exponential distributions 
by Lilliefors (1967, 1969), and generally used for n>30, 
are respectively, 0.736/& and 0.86/& for the 0.20 level 
and 0.886/& and l.06/& for the 0.05 level. The gamma 
distribution reduces to the exponential distribution when 
the shape parameter equals unity and approaches the 
normal distribution when the shape parameter tends to 
infinity. Hence, the expressions 0.73614; and 0.86/& 
for the 0.20 level and 0.88616 and 1.0616 for the 0.05 
level bracket the asymptotic expressions for the corres- 
ponding levels for the gamma distribution with the shape 
parameter equal to and greater than unity. 

In  only one individual case in the present study (viz, 
September runifall a t  Lahore, Pakistan) is the shape 
parameter smaller than unity a t  the 5-percent level of 
significance; in all other cases, the shape parameter lies 
between 1.0 and 17.0. It is therefore reasonable to adopt, 
in the present case, the asymptotic formulas of 0.8OlJZ 
for the 0.20 level and 0.973/+ for the 0.05 level, which 
are midway between those for the normal and the ex- 
ponential distributions. These formulas were used to 
compute df 'O) and df.05), the values of d, for 0.20 and 
0.05 levels, respectively, in each case. An analysis of the 
ratio d,/dtZ0) is given in table 4. In  only nine cases 
(about 6 percent of the total) \vas d, >dz 'O). In  six of 
these nine cases, d,<df 15); in one case, dn=dz . lO) .  
In  only the two remaining cases, June rainfall a t  Nagpur, 
India, and July rainfall of Zi-Ka-Wei, China, was 
d,=df 05) .  The null hypothesis is, therefore, not rejected 
at  the 5-percent level, and the monthly rainfall is assumed 
to be gamma-distributed. 

It may be noted that the asymptotic formula of 0.97314% 
used for 0.05 level of cl, may correspond to that for a 
level of D,, somewhere between 0.25 and 0.30 of the non- 
parametric tables, if the asymptotic formulas were extrap- 
olated. But the fact that in 94 percent of the cases the 
ratio D,/Df 'O) 20.80 indicates that in all these 94 



percent of the cases D, 5Dz*30). Thus, the K-S test 
applied in the way suggested by Massey (1951) leads t o  
the same result in the present study. 

Variance ratio test. Cochran (1954) suggested this test 
for Poisson and binomial distributions. It can be used for 
all distributions for which theoretical variance can be 
computed independently from parameters estimated by a 
method other than the method of moments. This has been 

the data and then obtain the equations for M.L. estimates 
of ml and m2. If xM is the highest value of the observations 
considered, then the scale parameter, A, was estimated 
as 1 . 1 ~ ~ .  Putting x/A=Z1 the equation for Type I dis- 
tribution becomes 

y=r(ml+l)r(mz+i)  r (ml+ m2+2) Z"l( 1 -Z)"l. (15) 

used here a i  2 test fxr ga%ma distribution. Theoretical 
variance is b2g where b and g are, respectively, M.L. esti- This is known as the beta distribution of the first kind. 

mates of 0 and 7 ,  the parameters of the gamma distribu- 
tion. The test statistic is 

M . ~ m  Estimates of the Parameters 

The equations to be solved for getting M.L. estimates 

(13) +(&+k2+2)-+(&+1)+$& 1=1 In (Zt)=O (16) 

are 

and 
This is to  be referred to  the chi-square table with n-1 
degrees of freedom. Fisher and Yates (1957) pointed out 
that for n-1 degrees of freedom, where n-1 is greater 
than about 30, d m  is approximately normally distrib- 
uted with mean 1/(2n-3) and standard deviation unity. 
Hence, to test the significance of x: when degrees of 
freedom exceed 30, one must calculate the expression 
dm--4(2n-3) ,  which is a normal variate with zero 
mean and unit standard deviation. We calculated this 
expression for all cases and found the value to  be signifi- 
cant in only three cases. These are September rainfall of 
Allahabad, India, and July rainfall of Zi-Ka-Wei, China, 
both significant a t  the 5-percent level, and June rainfall of 
Nagpur, significant at the 1-percent level. The number of 
cases in which XY is significant is not different from that 
which would be expected by chance. The null hypothesis 
is not contradicted] therefore, and the monthly rainfall 
can be taken to be gamma-distributed. 

All three independent tests support the conclusion that 
the gamma distribution gives a good fit to  monthly rain- 
fall over southeast Asia during the summer monsoon 
season. 

3 

10. TYPE I DISTRIBUTION 

the distribution is given by 
This frequency distribution with origin at  the start of 

These have keen soAved on the computer by Newton's 
method and m, and m, have been obtained. 

Variance-Covariance Matrix 

Fisher (1922) showed that the variance-covariance 
matrix giving large sample variances of M.L. estimates is 
ai,/n where ut, is the inverse of urJ and 

Here, 8% are the parameters of the distribution and E, the 
expected value operator. Evaluating the elements of the 
matrix aiJ and inverting, we obtain the variance-covariance 
matrix 

n A  - -I I n A  

and 
f(z)=O for x<O 

where A is the scale parameter and m1 and mz are the 
shape parameters. This is a limited distribution. 

Equations for obtaining the M.L. estimates of the 
parameters of this distribution could not be explicitly 
solved. It was alsonot possible to eliminate two parameters 
from the three equations and obtain an equation in one 
parameter. An attempt was made to solve the three trans- 
cendental simultaneous equations on the computer by, 
iteration method. Difficulties arose in the matter of 
convergdnce because the parameter A is involved as 
log (A-xi).  We decided, therefore, to estimate A from 

The variance-covariance matrix was computed in each 
case. 

Test of Goodness-of-Fit 

The chi-square test was applied to test the goodness-of- 
fit of the monthly rainfall data to Type I distribution. The 
number of intervals over which the test was carried out 
varied generally from six to nine. The number of degrees 
of freedom vaned generally from two to five, since four 
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degrees of freedom were lost through restrictions. The fit 
.was good for 26 stations in June, 31 stations in July, 24 
stations in August, and 23 stations in September. 

Table 6.--Pearsonian distributions that are good jits to monthly 
rainfall 

11. TYPE I X  DISTRIBUTION 

This frequency distribution is 

m+l 

and 

Pearsonian dlstributions for monthly rainfall for 

JlUle J ~ Y  Aug. Sept. 
Station 

given by Ahmadabad III/IX III/I 111/1x/1 I11 
Akyab N/III/I III/I III/I III/I 
Allahabad I11 III/I III/I III/I 
Amini Divi N/III/I I11 III/I III/I for O l x l A  

(21) 
y=o for x<O. 

This is a special case of Type I when ml=O. It is a J- 
shaped distribution, cutting the ordinate at  y= (m+l)/A 
and the abscissa at  x=A. An indication of the cases where 
Type IX can be tried was provided by the value of m1 
obtained in fitting Type I. 

M.L. Estimates of Parameters 

estimates of parameters are 
The equations to be solved for obtaining the M.L. 

and 
n 

(23) 
A A n 

In (A--2,)-TI. In ( A ) + r = O .  
(m+l )  i = l  

Eliminating A between eq (22) and (23), we get 

+1=0. (24) A A 1 1 5 In (A--z,)-ln (A)- n 1=1 

Equation (24) was solved by Newton's method on the 
computer to obtain A. Thereafter, A was obtained from 

A 

eq (22). 

Variance-Covariance Matrix 

The following variance-covariance matrix was obtained 
by following the method given in the preceding section: 

L n  n J  

(25) 

It can be seen that the M.L. estimates are acceptable only 
whcn m > 1, since, form < 1, var (A) becomes negative. 
This matrix was obtained in each case. 

Of GQOdPPeSS-Qf-Fit 

The chi-square test \vas applied. The number of degrees 
of freedom varied from three to  six. The fit is found to be 

Bombay 
Calcutta 
Colombo 
Fort Cochin 
Gauhati 
Hong Kong 
Hyderabad 
I-Chang 
Jaipur 
Kutaradja 
Kyoto 
Lahore 
Madras 
Mandalay 
Mangalore 
Manila 
Menado 
Mergui 
Minicoy 
Nagasaki 
Nagpur 
Naha 
Pei-Hai 
Port Blair 
Quan gtri 
Rangoon 
Saigon 
Sandakan 
Simla 
Singapore 
Taipei 
Tokyo 
Vengurla 
Vishakhapatnam 
Zi-Ka-Wei 

III/I 
I11 
N/III/I 
N/III/I 
N/III/I 
N/III/I 
III/I 
N / I I I / I 
111 
III/I 
111 
III/IX 
III/IX 
111 
N/III/I 
III/I 
III/I 
N/III 
N/III/I 
I11 
N/ I I I/ I 
III/I 
111 
III/I 
III/IX 
III/I 
N/III/I 
III/I 
III/I 
III/I 
III/I 
IIJ/I 
N/III/I 
I11 
III/I 

III/I 
III/I 

III/I 
III/I 
III/I 
III/I 
III/I 
III/I 
I11 
I11 
III/I 
III/I 
III/I/IX 
N/III/I 
III/I 
III/I 
N/III/I 
III/I 
III/IX/I 
N/III/I 
N/III/l 
N/III/I 
III/I 
111 
N/III/I 
I11 
N/III/I 
III/I 
N/III/I 
N/III/I 
III/I 
N/III/I 
111 
N/III 

111 

I11 
I11 
I11 
I11 
I11 
III/I 
III/I 
I11 
III/I 
III/I 
III/I 
III/IX/I 
III/I 
III/I 
I11 
I11 
I11 
N/III 
III/I 
III/IX/I 
N/III/I 
I11 
N/lII/I 
I11 
III/IX 
N/III/I 
N/III/I 
III/I 
III/I , 
III/I 
III/I 
111 
I11 
III/I 
III/I 

I11 
I11 
III/IX 
I11 
III/I 
III/I 
I1 1/1 
III/ IX/I 
III/I x 
I11 
N/III/I 
I11 
III/I 
III/I 
III/I 
III/I 
III/I 

N/III/I 
III/I 
I11 
IIIjI 
N/III/I 
III/I 
N/III/I 
111 
N/III 
I11 
III/I 
III/I 
N/III 
111 
111 
III/I 
III/I 
I11 c 

good for June rainfall at  Madras and Ahmadabad, India, 
Lahore, Pakistan, and Quangtri, South Vietnam; for July 
rainfall at  Mandalay, Burma, and Nagasaki, Japan; for 
August rainfall at  Ahmadabad, Lahore, Nagasaki, and 
Quangtri; and for September rainfall at Colombo, Ceylon, 
I-Chang, China, and Jaipur, India. 

12. REMAINING SPECIAL CASES 
OF TYPE I DISTRIBUTION 

Types 11, VIII, X, and XI1 cover the remaining special 
cases of Type I distribution. 

Type I1 is a symmetrical distribution. An indication of 
the cases in which Type I approximates this distribution A 

can be had by examining the values of ml and mz, shape 
parameters of the Type I distribution fitted to monthly 
rainfall. Variances of and m2 have been computed in all 
cases wherein Type I shows good fit. Utilizing these, one 
can test whether ml and m2 are approximately equal. Let 

A 

A 

A A 



A A A &, and a,& be standard errors of ml and m2. If m2 lies 
within the limits 4, f 0 . 5 ~ 2 ,  and kl lies within the limits 
mzf 0.5rhz, thenm, andm2 can be taken to be approximately 
equal and the distribution can be taken to  be Type 11. 
The parameters m1 and & were tested for equality in all 
cases of good fit of Type I. We found that Type I reduces 
to  Type I1 for June rainfall at  Minicoy and Vengurla, 
India, July rainfall at  Akyab, Burma, and Mangalore, 
India, August rainfall at  Saigon, South Vietnam, and 
September rainfall at  Pojt Blair, India. 

Type I11 reduces to Type X, the exponential, when y 
is unity. y is taken as unity if unity lies between the limits 
g f 0 . 5 ~ ; .  These limits can be obtained in each case by 
using the computed values of g and variance of $. On 
applying these limits, we found that y can be taken as 
unity for June rainfall of Allahabad and Jaipur. 

There was no case of Type I where the parameters & 
and & suggested that Type VI11 would give a good fit 
and only one case (Le., September rainfall at  Lahore) 
where the parameters m, and & of Type I suggested that 
Type XI1 may be a good fit. I t  was not considered neces- 
sary to  fit Type I1 and Type X distributions and obtain 
the parameters of these distributions in the foremen- 
tioned cases since using Type I1 in place of Type I and 
T p e  X instead of Type 111 would lead to only small 
clifferences. ' 

A A A 

A 

A 

A 

A 

n3. GOMPARAUUME FIT OF DUSTRB 

The Pearsonian distributions that show good fit to 
monthly rainfall are listed in table 5. This table, ho\vever, 
does not include the fern cases of Type I1 and Type X 
mentioned in the preceding section since these have been 
covered under Type I and Type 111, respectively. In  
some cases, three distributions show good fit. When two 
or more distributions show good fit to monthly rainfall, 
we must decide which distribution is the most suitable. 
Parrat (1961) presented a criterion for deciding upon the 
most suitable distribution in such situations. If +, e, and 
\t are three distributions that show good fit to data 
Y4z, Yei, and Y+(, where i=l to n, are frequencies for n 
identical intervals of the variate on the basis of these 
distributions, Yz are empirical frequencies for the same 
intervals of the variate, and C,, CS, and C+ are the number 
of constants that have to  be determined in fitting data 
to these three distributions, then, according to Parrat 
(1961), the values of the following quantities should be 
evaluated to determine the most suitable distribution 
function: 

and 

The most suitable distribution function is decided upon 
by the lowest ~2 value. If all three values are close to 
each other, then the decision as to  the most suitable 
function is not possible on the basis of this criterion. The 
quantity evaluated in this study is 4, which may be 
designated as the root-mean-square discrepancy (rmsd) 
between the actual frequency and the theoretical 
frequency . 

The relative variation of the parameters may also be 
taken into account. If (a,, b,),  (ae, be), and (a+, b l )  are 
the two parameters of the distribution functions +, 8,  
and \t, respectively, then the relative variations of the 
parameters are 

the variances being large-sample variances. The dis tri- 
bution with the smallest relative variation of the param- 
eters should be preferred. The criteria of the rmsd and 
the relative variation of parameters would be used to 
decide upon the most suitable distribution when two or 
more distributions show good fit to monthly rainfall. 

The gamma distribution has good fit in all the cases of 
monthly rainfall. Comparisons will, therefore, be made 
between gamma and Type I, gamma and normal, and 
gamma and Type TX distributions over their respective 
common areas. 

Figure 7A gives a plot of the values of the criterion 
rmsd for gamma (ie., Type 111) and Type I distributions. 
For a large majority of the points, rmsd is smaller for the 
gamma distribution than for Type I distribution. In all 
104 cases where Type 111 and Type I distributions show 
good fit to monthly rainfall, the relative variation of each 
of the parameters of the gamma distributions is smaller 
than the relative variation of each of the parameters of 
Type I distribution. Thus, on the basis of each 
criteria, gamma distribution is preferable to Type I 
distribution. 

From figure 7B, a plot of the rmsd for the gamma and 
the normal distributions, one can see that in a majority 
of the cases the value of this criterion is smaller for the 
gamma distribution. In each case, relative variation of 
each of the parameters of the normal distribution is 
smaller than that of each of the parameters of thc gamma 
distribution. In this case, a clear-cut decision is difficult- 
on the basis of the rmsd, the gamma distribution is 
preferable; on the basis of the relative variation of the 
parameters, the normal distribution is preferable. $1 this 
situation, both of the distributions arc equally suitable 
and any one of them may be applied. 

Figure 7C gives a plot of the rmsd for the gamma and 
Type IX distributions. In each case, the rmsd is smaller 
for the gamma distribution. I n  a large majority of the 
cases, the relative variation of each of the parameters 

' 
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FIGURE 7.-Comparative fit of monthly rainfall for (A) Type I vs. 
Type 111, (B) Type I11 vs. normal, and (C) Type 111 vs. Type IX 
distributions. 

of the gamma distribution is smaller than that for each 
of the parameters of the Type IX distribution. On the 
basis of each of the criteria, the gamma distribution is 
preferable to Type IX distribution. 

The preceding analysis indicates the general superiority 
of the fit of gamma distribution to monthly rainfall over 
that of other Pearsonian distributions during the Asian 
summer monsoon. The M.L. estimates of the parameters 
of the gamma distribution applied to monthly rainfall 
and their variances are given in table 6. 

Suzuki (1964) gave the M.L. estimates of the hyper 
gamma distribution fitted to monthly rainfall of Toyko 
and Niigata, Japan, and their variances. These indicate 
that, for the monthly rainfall at these places, the param- 
eter, CY, of the hyper gamma distribution is not significantly 
different from unity at the 5-percent level except for 
February, July, and Scptcmber rainfall a t  Niigata for 
which a is just significant at this level. When a=1, the 
hypcr gamma distribution reduces to the gamma distri- 
bution. Thus Tokyo and Niigata monthly rainfall dis- 
tributions do not, in general, appcar to be significantly 
different from the gamma distribution. 

14. SPATIAL DISTRIBUTION OF THE 
PARAMETERS OF THE GAMMA MODEL 
APPLIED TO MONTHLY RAINFALL 

I n  the preceding section, we showed that the gamma 
probability model is the most suitable among the Pear- 
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TABLE 6.-Parameters of gamma distribution jilted to monthly rainfall 
and their variances 

June July Aug. Sept. 

A A A A A A A ' A  
Var(b) Var(g) Var(b) VarW Var(b) Var(g) Var(b) Var(g) 

Station $. 3 3 3 $ 3  A 

Ahmadabad 

Akyab 

Allahabad 

Amini Divi 

Bombay 

Calcutta 

Colombo 

Fort Cochin 

Oauhati 

Rong Kong 

H yderabad 

I-Chang 

Jaipur 

Kutaradfa 

Kyoto 

Lahore 

Madras 

Mandalay 

Mangalore 

Manila 

Menado 

Mergui 

Miniroy 

Nagasaki 

Nagpur 

Naha 

Pel-Ha1 

Port Blair 

Quangtri 

Rangoon 

Saigon 

Sandakan 

Simla 

Singapore 

Taipei 

Tokyo 

Venguria 

Vishakhapatnam 

Zi-Ka-Wei 

74.1 1. igi 120.1 2.538 129.3 1.582 148.4 0.900 
144 0.024 326 0.119 400 0.044 630 0.013 
80.2 14.315 95.3 14.154 102.3 10.682 61.3 9.972 
143 4.404 202 4.302 234 2.432 84 2.115 
97.1- 0.990 73.3 4.166 69.3 4.239 97.0 1.724 
248 0.016 113 0.325 101 0.337 218 0.051 
40.2 9.076 89.4 3.321 84.2 2.221 57.6 2.443 
50 2.408 257 0.304 236 0.131 109 0.160 
111.7 4.530 126.4 4.985 116.9 3.117 112.1 2.338 
186 0.273 237 0.333 208 0.126 196 0.069 
69.8 4,168 37.5 8.631 39.1 8.530 42.8 5.929 
78 0.246 22 1.095 24 1.069 29 0.508 
59.3 3.332 69.9 1.711 74.5 1.208 90.2 1.493 
84 0.227 125 0.056 151 0.026 213 0.041 
68.8 10.875 84.1 6.867 61.5 5.420 87.9 2.729 
100 2.391 151 0.937 81 0.577 173 0.139 
38.1 8.000 43.2 6.993 42.4 6.315 59.9 3.006 
28 1.160 36 0.881 35 0.715 72 0.154 
109.fi 3.792 87.1 4.324 91.8 4.039 111.7 2.446 
347 0.350 217 0.476 242 0.413 371 0.145 
40.6 2.511 32.2 5.337 34.9 4.194 54.5 3.074 
53 0.164 32 0.789 37 0.480 93 0.251 
48.4 3.269 61.3 3.437 57.2 3.228 73.6 1.491 
93 0.360 147 0.400 129 0.349 238 0.069 
56.2 1.011 68.1 2.905 131.5 1.559 75.4 1.090 
91 0.018 111 0.171 459 0.047 165 , 0.022 
38.6 2.335 64.4 1.555 43.9 2.477 78.5 2.071 
48 0.141 141 0.059 61 0.160 201 0.107 
54.0 4.317 73.2 2.767 60.2 2.447 53.4 3.757 
76 0.433 144 0.171 59 0.132 75 0.521 
33.2 1.265 73.2 1.942 81.7 1.616 87.5 0.756 
29 0.028 122 0.066 160 0.046 262 0.010 
29.2 1.697 33.2 2.803 35.2 3.319 48.3 2.480 
13 . 0.033 16 0.096 ' 18 0.136 35 0.076 
60.2 2.089 42.1 1.806 25.9 4.129 41.6 3.569 
123 0.116 62 0.085 22 0.486 56 0.354 
61.1 15.710 112.1 8.982 90.0 6.601 80.4 3.509 
78 4.983 264 1.604 172 0.855 141 0.235 
88.4 2.883 105.6 4.012 132.9 3.235 58.0 5.904 
250 0.223 349 0.444 560 0.284 106 0.980 
41.4 4.194 73.5 1.982 56.2 2.126 61.1 Li94 
47 0.42Y 165 0.093 97 0.109 117 0.016 
64.4 11.847 78.3 10.243 48.2 15.588 58.9 10,863 
100 3.250 149 2.420 56 5.665 84 2.726 
37.3 7.839 55.4 4.093 82.0 2.344 75.0 2.147 
43 1.787 97 0.470 223 0.146 188 0.121 
97.1 3.367 116.6 2.192 89.2 2.102 89.6 2.712 
250 0.258 374 0.105 220 0.096 216 0.164 
81.6 2.586 60.0 6.037 60.1 4.472 62.6 3.079 
135 0.111 69 0.646 71 0.348 78 0.160 
80.6 3.579 50.7 3.688 115.4 2.320 52.3 3.410 
254 0.434 100 0.462 540 0.175 107 0.393 
81.2 3.369 110.8 4.216 135.1 3.229 105.8 2.373 
274 0.406 503 0,646 760 0.371 470 0.194 
53.3 9.460 60.9 6.452 60.2 6.521 62.4 7.475 
66 1.965 87 0.900 85 0.920 91 1.216 
49.2 1.447 53.3 1.332 80.8 1.314 106.1 3.423 

111 0.068 135 0.058 305 0.055 477 0.428 
42.1 11.655 41.1 13.715 37.7 13.797 24.7 15.973 
44 3.221 42 4.479 35 4.534 15 6.005 
23.3 13.490 29. 5 9.836 32.4 8.271 28.4 11.803 
21 6.701 33 3.532 40 2.482 31 5.113 
31.3 6.221 31.1 5.866 40.7 5.002 51.8 4.666 
31 1.113 30 0.987 52 0.711 85 0.616 
67.9 2.474 58.5 7.520 58.1 i.318 74.7 2.333 
102 0.110 72 1.105 71 1.045 124 0.098 
29.0 5.866 42.2 3.779 43.9 3.886 25.9 6.131 
34 1.277 74 0.515 79 0.546 27 1.398 
67.0 4.548 69.1 3.437 128.6 2.245 90.6 2.466 
149 0,612 161 0,342 576 0.140 283 0.171 
32.0 .5. 266 54.0 2.376 68.6 2. 163 49.7 4. 500 
26 0,636 80 0,121 126 0.099 63 0.460 
104.0 8.190 163.4 5.751 101.5 4.984 93.5 2.845 
225 1.316 562. 0.638 220 0.475 192 0.148 
43.8 2.377 36.1 3.256 49.0 2.638 58.9 3.078 

54.9 3.294 58.0 1.890 50.1 2.787 .?.2 2.561 
82 0.259 175 0.078 69 0.178 73 0.149 

44 0.105 29 0.203 55 0.130 0.180 

h A 
'b Is in m m  and Var(b), in mm2. 
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FIGURE 8.-Spatial distribution of scale parameter, b, of the gamma 

model fitted to monthly rainfall. 

sonian distributions applicable to monthly rainfall over 
southeast Asia. M. L. estimates, 6 and g, of the parameters 
of the gamma distribution vary from one locality to an- 
other. Since 6 ,  the scale parameter, equals Var(s)/Z, any 
phenomenon that has the effect of increasing the variance 
more than the mean of the distribution will le%d to higher 
values of the scale parameter. Similarly, since g , the shape 
parameter,'=4/P1= 6/(Pz-3) , any-mechanism that increases 
the skewness and/or kurtosis coefficient of the distribution 
would decrease the value of the shape parameter. 

Figure 8 shows the spatial distribution of b .  The 
coding, "Isolines: dl (d2) d3," has been used to denote 
that, beginning with the isoline for dl ,  isolines are drawn 
at  intervals of dz, the last one being the isoline for d3. 
The chief features of this distribution are the high values 
(exceeding 10 cm) between 15' and 25'N over western 
India and between 15' and 30"N east of 105OE. The 
latter region is influenced by typhoon rainfall, which 
has the effect of increasing the variance much more than 
the mean of the rainfall distribution; this leads to  higher 
values of the scale parameter over this region. Westward- 
moving monsoon depressions located between 7 5 O  and 
80'E generally intensify as a result of the increased 
influx of moisture from the Arabian Sea and give high 
rainfall over the portion of western India between 15' 
and 25'N. The high rainfall associated with these intensi- 
fied depressions creates an effect similar to that of the 
storm rainfall in the eastern parts of Southeast Asia. 
For this reason, the values of the scale parameter are 
high between 1 5 O  and 25ON over western India. 

Figure 9 shows the spatial distribution of the shape 
parameter, 2, of the gamma model applied to monthly 
rainfall. The values are high (exceeding nine) over the 
belt extending from South Vietnam to the Bangladesh 
coast in all the monsoon months. High values are also 
found over the central part of the west coast of India 
during June. Over the southern part of the west coast of 
India and the adjoining parts of the southeast Arabian 
sea, the shape parameter decreases markedly from June 
to July. Low values (less than 2) are observed over 
northwestern India, Pakistan and the southernmost 

A A 

A 

A 

7 
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A 
FIGURE 9.-Spatial distribution of shape parameter, Q, of the gamma 

model fitted to monthly rainfall. 

A 
FIGURE 10.-Measure of variation of b within season. 

4 5OE . A 
FIGURE 11.-Measure of variation of g within season. 

parts of the area west of 1OO'E during all the monsoon 
months. The high values of 3 are due to  a low skewness 
coefficient, and the low values are due to  a high skewness 

Figures 10 and 11 show, respectively, the variation of b 
and $within the monsoon season. The measure adopted is 

coefficient. A 

4 
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and TABLE 7.-Months for which scale parameters are not different 

4 

A 
subject to the condition that i< j. Here, b,  and Ag,, (for 
i= 1 to 4) are the values of the M.L. estimates of the parame- 
ters of the gamma distribution applied to rainfall of the 
fou; monsoon months, June through September. Variation 
of b within the monsoon season is small over and near the 
northern part of the Indian west coast, southern parts of 
the Bay of Bengal and of South Vietnam, and over the 
belt from southeastern China to the western part of 
southern Japan. The variation is high over Pakistan and 
adjoining parts of northwestern India. The chief features 
of the variation of $ within the monsoon season are a 
narrow belt of small variation from northern Borneo to the 
northern parts of the east coast of India, large variation 
over the southern part of the west coast of India and the 
adjoining southeastern Arabian sea, and larger variation 
over most parts of India than over the rest of Southeast 
Asia. 

15. DIFFERENCES IN THE SCALE 
PARAMETERS OF THE GAMMA MODEL 
APPLIED TO MONTHLY RAINFALL 

A A A  A 
Let bl, bz, b 3 ,  and b, be scale parameters for rainfall at  a 

station for the 4 monsoon mol June, July, August, and 
September and ab:, ab:, ab*,, and ab:, the corresponding 
standard errors. Fisher (1922) showed that large sample 
M.L. estimates are normally distributed. If eachAof the 
tcale paKameters liesAmithin each of the intervals, bl f ab:, 

bz f ub:, b 3 f  u t ,  and b, f a& which constitute 68 percent 
confidence intervals for the scale parameters, then the 
four parameters can be assumed to be not different. If 
three satisfy this criterion, then these three will be taken 
as not different. In case only two satisfy this criterion, 
then they are considered to be not different. Table 7 gives 
months for which the scale parameters are not different. 
Mooley (1971) demonstrated that monthly rainfall over 
Southeast Asia during the summer monsoon season is 
pairwise independent. Using the additive property of the 
gamma distribution, we can, therefore, obtain the shape 
and the scale parameters for the rainfall distribution at  a 
station for a 2-mo period from the shape and the scale 
parameters for any 2 mo mentioned in table 7 for that 
station. From these parameters, probabilities for the 2-mo 
rainfall can be obtained by using the tables of the gamma 
distribution (Salvosa 1930, Pearson 1957, Wilk et al. 1962, 
Thom 1968). 

16. RAINFALL PROBABILITIES 

Rainfall probabilities are required by a wide variety 
of clientele and the requirements vary widely. The 
gamma probability model has been found to be the most 
suitable for application to monthly rainfall for the Asian 
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Station Months 

Ahmadabad 
Akyab 
Allahabad 

Do. 
Amini Divi 
Bombay 

Calcutta 

Colombo 
Cochin 

Do. 
Gau ha ti 

Hong Kong 
Do. 

H yderabad 
I-Chang 
Jaipur 
Kutaradja 
Kyoto 

Lahore 
Do. 

Madras 
Do. 

Mandalay 
Mangalore 
Menado 

July, Aug. 
July, Aug. 
July, Aug. 
June, Sept. 
July, Aug. 
June, July, 

Aug., Sept. 
July, Aug., 

Sept. 
July, Aug. 
June, Aug. 
July, Sept. 
June, July, 

Aug. 
July, Aug. 
June, Sept. 
July, Aug. 
July, Aug. 
July, Sept. 
June, Aug. 
June, Aug., 

Sept. 
July, Aug. 
Aug., Sept. 
July, Aug. 
June, July. 
July, Sept. 
Aug., Sept. 
Aug., Sept. 

Statlon Months 

Mergui June, Sept. 
Minicoy Aug., Sept. 
Nagasaki June, Aug., 

Nagpur July, Aug., 

Naha July, Sept. 
Pei-Hai July, Sept. 
Port Blair June, July, 

Do. July, Aug., 

Quangtri June, July 
Rangoon June, July 

Aug. 
Saigon July, Aug., 

Sept. 
June, July Sandakan 

Simla July, Aug. 
Do. June, Sept. 

Singapore July, Aug. 
Do. June, Sept. 

Taipei June, July 
Tokyo July, Sept. 
Vengurla June, Aug., I 

Vishakhapatnani June, Aug. 
Zi-Ka-Wei June, Aug., 

Sept. 

Sept. 

Aug. 

Sept. 

Sept. 

Sept. 

summer monsoon. This model can be used to  obtain 
the rainfall probabilities. Yao (1971) computed pre- 
cipitation probabilities for eastern Asia. Since the require- 
ments of the users vary widely, it would not serve much 
useful purpose to compute and tabulate the probabilities 
of rainfall not exceedinglexceeding specifled rainfall 
amounts. Computation and tabulation of the deciles 
of the mixed gamma distribution applied to monthly 
rainfall would, however, be very useful since any user 
can easily obtain the rainfall probabilities he needs 
from these values. These deciles should be computed 
for each of the monsoon months for each of the stations. 

Let the deciles be denoted by x d  where d=1 to 9. 
To obtain these, we must solve the following equation 

~ 

for 5,: 

In eq (26), P,, stands for the probability of rainfall 
not exceeding x,, and P stands for the empirical proba- 
bility of no rain. For different deciles, P,,=O.l, 0.2, . . . , 
0.9. All quantities in eq (26) except x, are known. The 
values for b and can be obtained from table 6. P is 
obtained from the rainfall data. If P is 0.1 or more, the 
first decile is indeterminate. In  solving eq (26) for 241 
we followed a procedure similar to that used by Wilk 
et al. (1962). 

The first step consists in obtaining the lower limits of the 
deciles, x,~, xz, . . ., zgL, of the mixed gamma distribution. 



Putting x = x d z  in eq (26), we get 

and (27) 

since the maximum value of the exponential function is 
unity at  Z=O. The lower limit of the decile is given, there- 
fore, by 

f 28) 

The lower limit has been calculated for each decile 
(d= 1 to 9). 

The second step consists of obtaining two limits, one 
lower (Ll) and the other upper (Lu), between which the 
ninth decile, x Q ,  lies. This is done as shown in figure 12A 
by successively putting xd=xQL, 2xQL, 3xQL, . . . in eq (26) 
and noting the stage when the right side of eq (26) 
exceeds the left side. 

The third step is the process of halving between Ll 
and Lu and continuing the process as shown in figure 12B 
until x8 is obtained with desired accuracy. Let the first 
halving point be 1. We determine if this point is to  the 
left or right of xg by evaluating the integral on the 
right side of eq (26) and comparing it with left side. 
As long as the halving point continues to  remain to the 
left of xQ,  halving is continued between the most recent 
halving point and Lu. Once the halving point goes to the 
right of xQ,  halving is done between this point and the 
immediately preceding halving point. With every subse- 
quent halving process, we must determine if the halving 
point is to the left or right of x Q .  If it is to  the right, then 
halving is done between this point and the immediately 
preceding halving point on the left of rQ. If it is to the 
left, then halving is done between this point and the 
immediately preceding halving point on the right of xQ. 
Halving is continued following this principle. The process 
of halving is stopped after n repetitions when 1 P ( x  5 r g / d )  

- P ( x l x J l < ~  for a predetermined small value of E. 

The term x!:,)d is the value attained after n repetitions 
of the halving process and P ( x l x J  is 0.9. In this study, 
e=0.0001. At  this stage, xg?d is assumed equal to xQ. In 
a similar manner, we commence the pIocess of halving 
between xsL and xQ and continue until we arrive at  x8.  
Following the same procedure, x7, 2 6 ,  . . ., x2 and x l ,  the 
remaining deciles, are obtained. Table 8 gives the deciles, 
in millimeters, of the mixed gamma distribution applied 
to monthly rainfall during the summer monsoon season a t  
all the stations in Southeast Asia. Probabilities of rainfall 
less than any specified amount can be obtained by linear 
interpolation from this table with an accuracy that is 
sufficient for most purposes. If higher accuracy is desired, 
however, a smooth graph between the deciles and the 
probability may be prepared and the requisite probability 
interpolated from this smooth graph. 

LI x9 Lu 
A 

9L 3 X g L  4s 9L 2x x9L 

B L1 Lu 
, ,x9 , I 

1 2 3  

. .  . .. _ .  . . .  . . .  
d,?,, : "' 

FIQURE 12.-Diagram of the procedure for (A) finding the lower I 

limit, Ll, and upper limit, Lu, between which the ninth decile, 
XQ,, lies and (B) further specifying Xg to the desired accuracy. 

TABLE 8.-Deciles of mixed gamma distribution applied to monthly 
rainfall 

Station and Deciles (mm) 
period of 
iainfall 1st 2d 3d 4th 5th 6th 7th 8th 9th 

Ahmadabad 
June 
July 
Aug. 
Sept. 

Akyab 
June 
July 
Aug. 
Sept. 

Allahabad 
June 
July 
Aug. 
Sept. 

June 
July 
Aug. 
Sept. 

Bombay 
June 
July 
Aug. 
Sept. 

Calcutta 
June 
July 
Aug. 
Sept. 

Colombo 
June 
July 
Aug. 
Sept. 

June 
July 
AW. 
Sept. 

Oauhati 
June 
J ~ Y  
Aug. 
Sept. 

June 
July 
Aug. 
Sept. 

Aniini Divi 

Fort  Cochin 

Hong g o n g  

9 21 
99 144 
42 71 
6 21 

780 888 
915 1042 
692 863 
380 445 

8 19 
136 178 
132 172 
36 60 

221 261 
116 159 
55 82 
45 65 

235 303 
306 389 
137 190 
80 119 

130 170 
193 229 
198 236 
133 164 

78 106 
2 7 4 4  
13 25 
26 45 

476 554 
319 389 
168 211 
83 118 

178 213 
168 204 
144 177 
66 92 

172 229 
171 222 
162 213 
86 127 

33 
184 
100 
38 

971 
1141 
896 
497 

32 
213 
206 
84 

293 
195 
107 
84 

360 
458 
235 
154 

203 
258 
266 
190 

130 
61 
37 
64 

615 
445 
246 
149 

241 
234 
204 
115 

277 
265 
257 
163 

47 
224 
130 
58 

1047 
1230 
978 
544 

47 
247 
238 
108 

323 
231 
133 
102 

414 
522 
280 
189 

235 
285 
293 
215 

154 
78 
51 
84 

671 
498 
279 
179 

267 
261 
229 
137 

324 
306 
298 
199 

62 
266 
163 
83 

1121 
1318 
1059 
591 

64 
281 
271 
135 

352 
268 
160 
122 

470 
588 
326 
226 

268 
312 
321 
239 

178 
97 
67 

106 

726 
550 
313 
211 

292 
288 
254 
161 

373 
348 
340 
237 

81 105 
313- 370 
202 
113 

1199 
1409 
1144 
6M 

86 
319 
307 
165 

383 
308 
191 
144 

530 
660 
378 
268 

304 
340 
350 
266 

205 
119 
86 

132 

784 
606 
349 
247 

320 
317 
281 
186 

426 
394 
387 
280 

250 
153 

1285 
1512 
1241 
696 

114 
363 
349 
203 

418 
356 
223 
171 

599 
742 
438 
319 

346 
372 
383 
296 

237 
146 
109 
164 

849 
670 
391 
290 

351 
350 
312 
217 

488 
447 
441 
331 

137 192 
444 561 
315 421 
210 309 

1392 1549 
1638 1825 
1380 1537 
766 869 

153 220 
419 506 
402 485 
253 336 

461 527 
418 515 
277 355 
206 261 

688 825 
847 1008 
517 641 
386 492 

399 482 
411 471 
424 486 
334 393 

270 343 
182 241 
142 198 
208 281 

930 1050 
751 872 
444 525 
346 435 

390 440 
392 455 
351 410 
267 319 

568 693 
515 619 
611 618 
399 507 

February 1973 / Mooley / 173 



TABLE 8.-Continued TABLE 8.-Concluded 

Station and Deciles (mm) 
period of 
rainfall 1st 2d 3d 4th 5th 6th 7th 8th 9th 

Station and Deciles (mm) 
period of 
rainfall 1st 2d 3d 4th 5th 6th 7th 

- 
8th 
- 

9th 

Hyderabad 
June  
J ~ Y  
Aug. 
Sept. 

I-Chang 
June  
Ju ly  
Aug. 
Sept. 

Jalpur 
June  
J ~ Y  
Aug. 
Sept. 

Kutaradja 
June  
Ju ly  
Aug. 
Sept. 

Kyoto 
June  
Ju ly  
Aug. 
Sept. 

Lahore 
June  
Ju ly  
Aug. 
Sept. 

Madras 
June  
Ju ly  
Aug. 
Sept. 

Mandolsy 
June  
J ~ Y  
Aug. 
Sept. 

Mangalore 
June  
Ju ly  
Aug. 
Sept. 

Manlla 
June  
Ju ly  
Aug. 
Sept. 

M P I I ~ ~ O  
June 
July 
Aug. 
Sept. 

Mergui 
June 
Ju ly  
Aug. 
Sept. 

Miniroy 
June 
Ju ly  
Aug. 
Sept. 

Nagasaki 
June  
July 
Aug. 
Sept. 

Nagpur 
June 
July 
Aug. 
Sept. 

Naha 
June 
July 
Aug. 
Sept. 

Pei-Hai 
June 
July 
Aug. 
Sept. 

Port Blair 
June 
July 
Aug. 
Sept. 

Quangtrl 
June 
July 
Aug. 
Sept. 

Rangoon 
June 
J ~ Y  
Aug. 
Sept. 

Saigon 
June 
July 
Aug. 
Sept. 

Sandakan 
June 
July 
Aug. 
Sept. 

Simla 
June 
July 
Aug. 
Sept. 

Singapore 
June 
July 
Aug. 
Sept. 

Taipei 
June 
July 
Aug. 
Sept. 

Tokyo 
June 
July 
Aug. 
Sept. 

Vengurla 
June 
July 
Aug. 
Sept. 

June 
July 
Aug. 
Sept. 

Zi-Ka-Wei 
June 
July 
Aug. 
Sept. 

V ishakhapatnam 

33 48 
86 108 
65 85 
63 87 

108 
209 
168 
78 

309 
* 212 

213 
265 

13 
10 
17 

134 

318 
379 
351 
275 

211 
180 
157 
218 

147 
273 
230 
114 

364 
260 
261 
320 

23 
20 
32 

189 

368 
433 
406 
310 

241 
211 
188 
252 

181 
327 
284 
148 

408 
300 
300 
364 

33 
30 
46 

7.35 

406 
407 
439 
338 

265 
235 
212 
278 

213 
378 
337 
181 

447 
336 
336 
405 

44 
41 
63 

279 

442 
513 
474 
363 

288 
258 
235 
302 

247 
431 
392 
217 

486 
373 
373 
446 

56 
53 
81 

324 

477 
550 
508 
387 

307 
280 
257 
326 

284 328 
488 555 
453 524 
257 305 

528 576 
412 457 
412 456 
489 539 

70 87 
67 85 

102 129 
373 431 

513 555 
589 632 
544 584 
412 440 

329 354 
304 331 
281 308 
351 379 

204 227 
191 213 
213 240 
253 286 

385 
640 
617 
368 

634 
514 
513 
601 

111 
110 
167 
m 
606 
688 
634 
475 

384 
364 
341 
414 

255 
241 
274 
327 

473 
772 
762 
470 

722 
600 
598 
694 

150 
151 
229 
623 

61 75 89 105 124 
127 144 161 180 202 
102 118 135 153 174 
108 128 150 174 202 

104 123 142 164 190 
140 165 190 219 252 
120 142 166 191 222 
50 66 85 106 132 

20 29 39 52 68 
125 150 176 205 239 
95 125 159 198 247 
29 41 56 74 97 

149 
22 9 
201 
238 

188 
271 
242 
296 

61 84 
84 114 
71 97 
18 34 

5 12 
71 100 
35 66 

7 17 

223 
296 
261 
168 

276 
363 
322 
228 

130 
354 
420 
183 

91 
283 
312 
129 

682 
765 
707 
526 

429 
413 
392 
485 

299 
283 
326 
391 

27 41 
M 35 
35 51 
45 68 

53 65 78 92 110 
48 63 80 99 122 
65 79 94 111 132 
91 113 137 165 198 

164 190 216 244 277 
126 152 179 209 245 
88 107 128 151 179 

137 160 183 209 240 

15 22 29 38 49 
77 97 119 143 173 
63 82 104 129 159 

7 16 28 43 64 

133 
154 
159 , 

242 

319 
292 
215 
279 

64 
213 
201 
94 

169 
207 
201 
314 

106 138 
70 100 
47 68 
85 113 

3 9  
37 57 
24 44 

1 

10 18 
33 46 
46 62 
38 56 

384 
366 
273 
340 

89 
278 
268 
149 

104 
95 
99 

113 

128 
118 
126 
146 

147 
137 
148 
173 

166 
154 
169 
199 

184 
172 
190 
225 

54 
252 
240 
53 

88 
67 
73 
84 

142 
95 
85 
71 

84 
40 
42 

104 

78 
304 
290 
78 

100 
345 
331 
101 

127 
109 
117 
120 

217 
158 
166 
133 

124 
77 
84 

159 

121 
384 
368 
125 

144 
127 
136 
135 

250 
186 
205 
163 

141 
94 

104 
183 

144 
422 
406 
149 

170 ux) 

463 510 
446 492 
177 210 

240 
568 
549 
254 

304 
656 
635 
324 

24 32 40 49 60 
58 70 82 96 112 
77 91 105 121 140 
72 87 104 123 145 

75 
134 
165 
175 

187 
115 
147 
207 

100 
168 
203 
222 

110 
90 
97 

104 

183 
129 
128 
104 

106 
59 
64 

134 

160 
146 
156 
150 

283 
215 
247 
194 

158 
113 
126 
207 

178 199 
166 190 
178 203 
167 186 

319 361 
247 285 
294 351 
229 271 

176 198 
133 158 
151 181 
234 265 

224 
221 
236 
209 

414 
333 
426 
326 

225 
191 
220 
304 

264 
270 
287 
245 

497 
409 
547 
414 

267 
244 
283 
365 

35 53 
18 29 
47 62 
61 81 

70 88 106 128 153 
40 51 63 76 93 
74 86 98 112 127 
9Y 117 134 151 177 

820 881 940 1002 1071 
807 889 969 1055 1152 
455 509 564 623 690 
188 221 256 293 338 

242 
152 
177 
253 

1281 
1453 
903 
484 

666 753 
607 719 
323 396 
114 154 

91 128 
185 243 
166 227 
181 225 

1156 
1273 
775 
395 

161 193 226 263 308 
293 340 389 442 504 
281 332 387 446 517 
261 294 328 364 406 

121 140 160 181 206 
74 95 117 143 154 
61 i 8  96 117 141 
51 68 85 105 130 

633 688 742 799 862 
654 716 776 840 913 
641 689 735 784 839 
526 574 621 670 726 

230 255 280 307 337 
158 183 209 237 270 
113 138 166 197 234 
91 113 137 164 196 

216 255 295 340 392 
146 181 218 260 311 
105 131 159 190 228 
150 181 214 251 294 

128 156 185 217 256 
273 308 342 380 423 
191 220 249 281 319 
124 147 172 200 232 

194 227 262 300 345 
126 148 170 195 223 
156 192 230 274 326 
118 139 161 186 214 
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365 
584 
608 
458 

238 
214 
173 
162 

456 
707 
750 
538 

287 
280 
225 
215 

499 
485 
247 
94 

596 
604 
313 
133 

674 
702 
369 
167 

746 
793 
421 
200 

817 
886 
474 
236 

893 979 
985 1099 
532 598 
275 321 

1087 
1244 
683 
382 

1248 
1464 
812 
478 

78 101 
29 53 
23 44 
17 35 

32 
46 
43 
68 

47 
62 
62 
94 

61 
71 
79 

117 

75 
91 
96 

139 

90 
106 
113 
162 

106 126 
122 141 
133 157 
188 218 

153 
166 
187 
258 

194 
205 
236 
320 

496 573 
502 587 
520 588 
407 473 

169 203 
100 131 
59 87 
46 69 

129 176 
74 111 
52 80 
83 119 

70 lo! 
191 236 
124 160 
72 100 

118 159 
78 104 
81 121 
71 D6 

941 
1002 
905 
795 

1058 
1136 
10% 
898 

70 
37 
49 
43 

96 
59 
69 
62 

119 
79 
87 
79 

140 
100 
105 
96 

163 
122 
123 
115 

188 217 
148 180 
144 169 
135 159 

255 
222 
201 
191 

314 
291 
252 
241 

375 
312 
282 
239 

432 
377 
360 
308 

460 
379 
279 
351 

566 
487 
360 
441 

Because of the pairwise independence of monthly rain- 
fall shown by Mooley (1971), joint probability as may be 
required can be easily computed from the probabilities for 
the individual months. 

Sajnani (1964) showed that the pentad rainfall of the 
rain gage station at  Bombay (Colaba) during the different 
months of the southwest monsoon is representative of that 
over the Colaba district. The representative character of 

306 
477 
366 
274 

387 
559 
439 
340 

403 
260 
394 
251 

493 
317 
503 
308 
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monthly station rainfall is expected to be much better. 
We feel, therefore, that the probabilities obtained for the 
individual stations could be applied to areas much larger 
than a district. 

17. CONCLUSIONS 

1. The monthly rainfall over Southeast Asia is not normally 
distributed, and the simple square-root, cube-root, and logarithmic 
transformations are of limited utility for normalizing the rainfall 
distribution. 

2. The chi-square test, the Kolmogorov-Smirnov test, and the 
variance ratio test all show clearly that  monthly rainfall in the 
Asian summer monsoon is gamma-distributed. 

3. I n  cases where the gamma and other Pearsonian distributions 
show good fit to monthly rainfall, we find that, on the basis of the 
root-mean-square discrepancy of the actual frequency from the 
theoretical frequency and the relative variation of the parameters, 
the gamma distribution is the most suitable. 

4. The values of the scale parameter of the gamma model applied 
to monthly rainfall are generally high over western India between 
15’ and 25’N and over parts of Southeast Asia between 15’ and 
30’N and east of 105’E. Heavy to very heavy rainfall associated 
with the intensified depressions over the former area and typhoons 
over the latter area lead to high scale-parameter values. 

5. High values of the shape parameter are found over the belt 
from South Vietnam to the Bangladesh coast. These maxima are 
due to a small skewness coefficient over this belt. Over the southern 
part of the west coast of India and adjoining parts of the south- 
eastern Arabian Sea, the shape parameter decreases markedly from 
June to July. The variation of the shape parameter within the 
summer .monsoon season is greater over most parts of India than 
over the rest of Southeast Asia. 

, 
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