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During the analysis of archived VLF data from Indian low latitude ground stations, some discrete
VLF emissions recorded at the low latitude ground station Gulmarg (geomagnetic latitude 24◦26′N;
geomagnetic longitude 147◦09′E, L = 1.28) during moderate magnetic storm activity (

∑
K−

P = 32,
KP index varies from 4 to 6 during the observation period) on 6/7 March, 1986 are presented in
this paper. The dynamic spectra of these discrete VLF emissions were observed along with tweeks
and its harmonics, which is interesting and complex to explain. In most of the events the harmonic
frequency of tweeks correlates with the starting frequency of harmonics of discrete emissions. In
order to explain the observed features of discrete VLF emissions, we propose cyclotron resonance
interaction between whistler mode wave and energetic electrons of inner radiation belt as possible
generation mechanism. An attempt is also made to determine parallel energy, anisotropy and
wave growth relevant to the generation process of VLF emissions.

1. Introduction

Magnetospheric ELF/VLF emissions is a class of
natural radio phenomena, which is often observed
in close association with whistlers both at the
Earth’s surface and onboard satellites. They are
grouped as: (a) unstructured continuous emissions
in both time and frequency which tend to main-
tain a steady state like hiss, resonance band and
noise bands near the ion gyrofrequencies, and
(b) structured discrete emissions with a repeti-
tive and even periodic character which tend to
be transient like chorus, periodic emissions and
other transient discrete emissions such as hooks,
risers, fallers, pseudo whistlers (Helliwell 1967;
Hattori et al 1991; Sazhin and Hayakawa 1992; Bell
et al 2000). The generation of discrete VLF emis-
sions is one of the most puzzling problems of VLF
waves in the Earth’s magnetosphere. Although
it is generally believed that their generation is

connected with the cyclotron resonance of whistler-
mode waves and radiation belt electrons (Helliwell
1967), the mechanism responsible for the origin
of discrete VLF emissions and the formation of
spectrum of separate elements are still a sub-
ject of active experimental and theoretical research
(Trakhtengerts 1999; Santolik and Gurnett 2003;
Santolik et al 2004; Singh and Singh 2004 with ref-
erences therein). At mid- and high-latitudes the
observed correlation between discrete VLF emis-
sions and energetic electrons suggests the key role
of the latter in the generation of the former. Nunn
and Sazhin (1991) considered interaction between
VLF hiss and energetic electrons and explained
the similarities between fine structure of chorus
and hiss emissions. To explain the spectrogram of
hiss and discrete VLF emissions, Dowden (1971)
suggested that whistlers echoing in the discrete
emission path are initiated by sferics and appear
to be the source of discrete VLF emissions and
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Figure 1. Equatorial hourly Dst variations and three hourly KP index during the main phase magnetic storm 6–9 March,
1986. The emission period of the event is also marked.

hiss bursts involving lightning triggered from the
Earth’s magnetosphere.

Since the propagation characteristics of ELF/
VLF emissions in the low latitude ionosphere
are not properly known, the mechanism of their
generation source and propagation are far from
being well understood (Singh et al 2000; Singh
and Singh 2004). Therefore, a better understand-
ing of the generation mechanism for ELF/VLF
emissions observed at low latitudes would be use-
ful for analyzing the properties of high energy
trapped electrons. During the course of our analy-
sis of old ELF/VLF data recorded during Jan-
uary 1986 to July 1986 at low latitude ground
station Gulmarg (geomag. lat. 24◦26′N; geomag.
long. 147◦09′E, L = 1.28), we found a new type
of discrete VLF emission which we report here
with a discussion of their probable generation
mechanism.

In the present paper, first we present spectral
analysis of the ELF/VLF discrete emission events
observed at Gulmarg during the routine recording
of whistlers. The dynamic spectra of the discrete
VLF emissions were observed along with tweeks
and its harmonics. In most of the events, the low-
est frequency of harmonics of discrete emissions
correlates with the second and third harmonic fre-
quency of tweeks. Further, generation mechanism
of these discrete VLF emissions has been pro-
posed and an attempt is made to determine par-
allel energy, anisotropy and wave growth relevant
to the generation process of discrete emissions.
Finally results are discussed with other published
results.

2. Experimental observations
and analysis

At the low-latitude ground station Gulmarg, the
wideband ELF/VLF waves were received by a
T-type antenna, suitably amplified by pre- and
main-amplifiers and recorded using a tape recorder.
The recorded data were analysed by digital Sono-
graph machine and Advance VLF Data Analysis
System (AVDAS). At low latitudes, nights with
observable ELF/VLF emissions are rather rare,
and the activity is closely related to strong mag-
netic activity (Siingh et al 2005). Several inter-
esting ELF/VLF events were recorded during a
magnetic storm often large enough to allow for
a statistical analysis. The observations of dis-
crete VLF emissions at low-latitude ground sta-
tion Gulmarg are unusual in the sense that most
of the reported discrete emissions are from satel-
lites (Cornilleau-Wehrlin et al 1978; Hattori et al
1991; Santolik and Gurnett 2003; Santolik et al
2004). In this paper, the discrete VLF emissions
recorded during the night of 6–8 March, 1986 are
analysed. We have recorded a new type of discrete
VLF emission, which is associated with the tweaks
and its harmonics. These discrete VLF emissions
were recorded during the magnetic storm period
of 6–9 March, 1986, with minimum Dst index of
–84 nT on 6 March and maximum

∑
Kp = 34 on

7 March. The Dst-index variations and Kp-index
variations are shown in figure 1, in which the obser-
vation period of the event is also marked. It is to
be noted that these discrete events were observed
during the main phase of the magnetic storm.
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Figure 2. Typical examples of lightning generated sferices alongwith discrete VLF emissions observed at Gulmarg on
7 March, 1986 (local time). Arrows mark the tweeks. The first, second and third harmonics of the tweeks are also marked
in (j) by arrows on frequency scale.

2.1 Spectral analysis of discrete
VLF emissions

Typical frequency-time spectrograms of sferics and
discrete VLF emissions recorded at Gulmarg dur-
ing the night hours of 6–7 March, 1986 are shown
in figure 2. Discrete emission events started at

1930 UT (0100 LT) and continued up to 2200 UT
(0330 LT). Figure 2 shows an association between
VLF spherics (tweeks) and discrete VLF emissions.
Here we note that for most of the events the fun-
damental frequency of tweeks corresponds to the
initiating frequency of fundamental discrete emis-
sions. The second harmonic frequency of tweeks
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corresponds to the starting frequency of the second
harmonics of discrete emissions and so on. Tweeks
are ELF/VLF electromagnetic waves which origi-
nated in the distant lightning and propagated in
the Earth-ionosphere waveguide. They are known
to exhibit remarkable dispersion near the cut-off
frequencies of the first-, second-, third-order mode
waves, and these dispersion effects are found to fit
well with the Earth-ionosphere waveguide propaga-
tion theory (Singh and Singh 1996). In the course
of time the upper boundary frequency of discrete
VLF emissions was fluctuating and the number of
events increased with the passage of time. First
harmonic tweeks (sferics) accompanied with the
single event of discrete VLF emissions observed in
different frequency ranges between 2.6 and 6.5 kHz
is shown in figure 2(a, b and e), whereas figure 2(c,
d and f) contain second harmonic tweeks and
correspondingly two discrete VLF emission events
lying in different frequency ranges between 2 and
6.5 kHz. Figure 2(g, h, i and j) clearly show third
harmonic tweeks accompanied by three events of
discrete VLF emissions of short and long duration
in different frequency ranges between 1 and 8 kHz.
Hence, a fairly consistent pattern emerges from the
observed features of the tweeks and discrete VLF
emissions recorded at Gulmarg and a correlation is
found between them.

From figure 2, an interesting point emerges con-
cerning the correspondence between the cut-off
frequencies of harmonics of tweeks and starting
frequency of corresponding discrete emissions. For
example, figure 2(j) shows that the first harmonic
frequency is 0.7 kHz and the initiating of discrete
emission is 0.7 kHz. Similarly the cut-off frequency
of the second harmonic is 1.9 kHz and correspond-
ing starting frequency of the second discrete VLF
emission is 1.9 kHz. Corresponding frequency for
the third harmonic and the third discrete emission
are 3.4 kHz and 3.4 kHz respectively. The observed
discrete VLF emission elements have the follow-
ing mean parameters: fmin = 1kHz, fUB = fmax =
5.04 kHz and df /dt = 6.622Hz sec−1. The stan-
dard deviation of fUB was found to be about 0.65.
The discrete VLF emissions shown in figure 2
occurred in the wide frequency range between 1
and 8 kHz with the rate of change of frequency
with time (df/dt) between 0.9 and 10.5 kHz sec−1.
The relationship between the cut-off of the tweak
and the cut-off of the VLF emissions indicates that
the emissions may have actually propagated in the
Earth-ionosphere wave-guide and this correlation
in frequency could be due to wave-guide cut-off.

3. Generation mechanism

The dynamic spectrum of tweeks (sferics) and
its higher harmonics can be understood by

considering part of VLF energy after lightning
discharge to propagate through the Earth-
ionosphere waveguide (Singh and Singh 1996;
Shvets and Hayakawa 1998). Discrete VLF emis-
sions can be explained by transverse resonance
interaction between whistler mode waves and
counter streaming energetic electrons (Helliwell
1967; Nunn and Sazhin 1991). Analyzing Ariel 3
and 4 satellite data Hayakawa (1989) has also sug-
gested that low latitude VLF emissions may have
originated during lightning discharges.

The observed features of tweeks shown in fig-
ure 2 and cut off frequency of tweeks confirm that
the scenario in which lightning source is closer to
the observation point in the northern hemisphere
may give rise to higher harmonics. Usually light-
ning energy is coupled to the Earth-ionosphere
wave-guide and tweeks along with the higher har-
monics are generated. Only in rare cases, lightning
generated electromagnetic energy propagates both
along the geomagnetic field lines and in the Earth-
ionosphere waveguide, for which tweeks are found
to be correlated with VLF whistler-mode waves.
The second and the third harmonic of discrete VLF
emissions may have been generated through the
wave–particle interactions in the magnetosphere.
The two events having their origin in the lightning
discharge and wave–particle interaction respec-
tively are very well correlated.

As the wave is received at the low latitude
Earth’s station, Gulmarg, we may consider that
the generation region could be near the equatorial
plane of the field line corresponding to Gulmarg
in the inner zone radiation belt (L∼1.2). In this
region there are a large number of energetic elec-
trons, which can effectively participate in the gen-
eration mechanism through Cyclotron resonance
interaction (Rycroft 1972; Imhoff et al 1973). In
order to explain the observed features of discrete
VLF emissions we propose cyclotron resonance
interaction between whistler mode wave and ener-
getic electrons of inner radiation belt. We note that
for effective transfer of energy from the interacting
particle to the wave, resonance condition has to be
satisfied which is written as

1 − β‖ =
ωH

γω
, (1)

where β‖ = v‖/c, v‖ is the electron velocity along
the magnetic field and γ = (1 − β2

‖)
−1/2. The

refractive index for parallel propagating waves
under condition ω2 � ω−

Hω+
H is much greater than

1 and is written as (Stix 1962).

n2 =
ω2

pe

ωHe(ω + ωHi)
, (2)
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where ωpeωHe are the electron plasma frequency
and electron gyrofrequency respectively. ωHi is the
proton gyrofrequency. The resonant energies E‖ for
various frequencies of emissions can be written as
(Tsurutani et al 1975)

E‖ =
(

ωHe

ωpe

)2 (ωHe

ω

)(
1 +

ωHi

ω

)
m0c

2, (3)

where m0 is the rest mass of electron, c is the veloc-
ity of light in vacuum.

The interacting waves can be amplified if the
high-energy tail of the velocity distribution func-
tion has some finite anisotropy A = (T⊥/T‖) − 1,
where T⊥ and T‖ are the temperatures of the
electrons perpendicular to and parallel to the geo-
magnetic fields respectively. In the regime of linear
theory, the growth rate of the wave for ω � ωHe is
given by (Kennel and Pestschek 1966)

Γ = πωHe

(

1 − ω

ωHe

)2
J(> ER)
2VRNT

×
[

A(VR) − 1
(ωHe/ω) − 1

]

, (4)

where J(> ER) is the omnidirectional flux of elec-
trons having energy greater than the resonance
energy. VR is the resonance velocity and NT is the
total number density of electrons.

4. Results and discussions

The observation of ELF/VLF emissions at low-
latitude station Gulmarg shows that, although
discrete VLF emissions are rare under quiet condi-
tions the occurrence rate of discrete VLF emissions
is high during magnetic storms. We have recorded
a new type of discrete emission during the mag-
netic storm period of 6–9 March, 1986. During sub-
storms the inflow of the particles with energy of
about 1 keV from the plasma sheet into the inner
magnetosphere takes place. Plasma is trapped by
the geomagnetic field and accelerated. The oscil-
lating particles drift to dawn (electrons) and to
dusk (protons). The large-scale dawn-dusk electric
field, which is increased during disturbed condi-
tions cause plasma to drift across L shells. As elec-
trons drift to dawn the conditions become more
and more favourable for the cyclotron instability
to arise (Bespalov and Trakhtengerts 1986) and
the background plasma density increases from mid-
night to morning-noon hours owing to filling of the
equatorial regions of the magnetosphere with cold
ionospheric plasma. At a certain time the energetic
electrons reach a certain region where the condi-
tions for the cyclotron instability turn out to be

Figure 3. The variation of parallel energy of resonating
electrons with wave frequency at L = 1.2 and 1.5.

optimal. In this region the dissipation of accumu-
lated energy takes place by cyclotron instability.
As a result of this dissipation the generation of
ELF/VLF emissions and precipitation of resonant
electrons into the loss-cone proceeds (Smirnova
1984).

In order to test cyclotron resonance interaction
as a possible generation mechanism for discrete
VLF emissions, we have computed the resonance
energy of the high-energy interacting electrons and
growth rate of whistler waves at L = 1.2 in the
equatorial plane. The variations of parallel energy
of resonating electrons with wave frequency for dif-
ferent L-values are shown in figure 3. It is found
that the energy of resonating electrons decreases
as L-value increases for a given frequency band.
Burton and Holzer (1974) have shown that the
discrete emissions are generated by cyclotron res-
onance with electrons in the energy range of 5–
150 keV with pitch angle distribution peaked at
90◦ to B and anisotropy greater than a critical
value. Further, it has been shown that the resonant
energies for various frequencies of the emissions at
L = 1.2 are in the MeV range (Lalmani et al 1972).
Thus, the computed values of resonant energy for
various frequencies are in good agreement with the
reported results (Lalmani et al 1972; Burton and
Holzer 1974).

Equation (4) shows that the wave growth lin-
early increases with anisotropy A in the velocity
distribution function. Further Γ is positive only
when A > ω/(ωHe − ω). Thus there is a minimum
anisotropy which is required for the wave to grow
and hence for the generation of ELF/VLF emis-
sions. The variations of this minimum anisotropy
as a function of wave frequency for different L-
values are shown in figure 4. The anisotropy A
increases with frequency as well as L-value. It
is also seen that the gyroresonance leading to
extremely low frequency signals requires only small
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Figure 4. The variation of the minimum anisotropy as a
function of wave frequency at L = 1.2 and 1.5.

Figure 5. The variation of wave growth rate with excited
frequency at L = 1.2 and 1.5.

values of A, however on a particular field line, this
requires resonance with electrons of much higher
energy.

For computation of wave growth, the density of
energetic electrons at different L-values are derived
from the measurement of Katz (1966) who has
reported the variation of electron flux as a function
of energy for different L-values in the inner zone
radiation belt. The variation of wave growth rate
with excited frequency for L = 1.2 and L = 1.5 is
shown in figure 5. It is observed that the growth
rate is larger and it increases with frequency. This
large amplification causes significant enhancement
in wave amplitude, which in turn triggers discrete
emissions to be observed at low latitude ground
station Gulmarg.

The rising frequency spectrum of discrete VLF
emissions observed at Gulmarg can be explained
by considering the interaction region to start from
the equator and extend to some finite length in
the southern hemisphere along the geomagnetic
field line. After moving away from the equator, the
local electron gyrofrequency becomes too large for
the resonance condition to be still met and the

generation of rising tone ceases. Thus, the maxi-
mum frequency of discrete emissions is controlled
by the extension of interaction region along the
geomagnetic field line.

In the above, we considered the generation of dis-
crete emission through the process of wave-particle
interaction in the magnetosphere. However, there
is no direct evidence that these emissions belong to
the magnetospheric origin. These emissions could
be generated during lightning discharge along with
tweeks. In this case it is not clear how to explain
dispersion produced in the VLF signal called dis-
crete emissions. The other possibility is that dis-
crete emission is generated during instability in
the ionosphere. Again this aspect has not been
explored in detail.

5. Conclusion

A detailed spectral analysis of a new type of dis-
crete VLF emissions observed at the low-latitude
ground station Gulmarg during the strong mag-
netic activity period have been carried out. The
possible generation mechanism for temporal and
spectral features of these discrete VLF emissions is
presented. It is suggested that these discrete emis-
sions could be generated during resonant cyclotron
interaction in the equatorial zone of the inner mag-
netosphere. A further experimental and theoreti-
cal study of discrete VLF emissions at low latitude
would definitely contribute to a more detailed
understanding of these phenomena.
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