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Abstract: 

Thunderstorms and the lightning that they produce are inherently interesting phenomena 

that have intrigued scientists and mankind in general for many years. The study of 

thunderstorms has rapidly advanced during the past century and many efforts have been 

made towards understanding lightning, thunderstorms and their consequences. Recent 

observations of optical phenomena above an active lightning discharge along with the 

availability of modern technology both for data collection and data analysis have renewed 

interest in the field of thunderstorms and their consequences in the biosphere. In this 

paper, we review the electrification processes of a thunderstorm, lightning processes and 

their association with global electric circuit and climate. The upward lightning discharge 

can cause sprites, elves, jets, etc. which are together called transient luminous events. 

Their morphological features and effects in the mesosphere are reviewed. The wide 

spectrum of electromagnetic waves generated during lightning discharges couple the 

lower atmosphere with the ionosphere/magnetosphere. Hence various features of these 

waves from ULF to VHF are reviewed with reference to recent results and their 

consequences are also briefly discussed.  
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1. Introduction 

A thunderstorm is characterized by strong winds in the form of squall, heavy 

precipitation and low level wind shear. The formation, intensification and propagation of 

thunderstorms are mostly governed by the synoptic and thermodynamic conditions of the 

atmosphere; their microphysical and electrical characteristics are known to affect 

significantly the formation and the intensity of precipitation. Thunderstorms are the 

deepest convective clouds caused by buoyancy forces set up initially by the solar heating 

of the Earth’s surface. Several field and laboratory experiments have been conducted to 

determine the electrical nature of storms and possible electrification processes are being 

studied in the laboratory and also through theoretical modeling and computer simulations 

(Rycroft et al., 2007; Yair, 2008; Saunders, 2008, and references therein). Various 

research programmes such as the Thunderstorm Research International Programme 

(TRIP), the Down Under Doppler and Electricity Experiment (DUNDEE) (Rutledge et 

al., 1992), the Severe Thunderstorm Electrification and Precipitation Study (STEPS) 

(Lang et al., 2004) have been launched involving both ground and airborne measurements 

to study the electrical properties of thunderstorms and related phenomena.  

The most fascinating aspect is lightning associated with thunderstorms whose 

strength and location can be assessed by a number of techniques such as those involving 

electrostatic, electromagnetic, acoustic, radar, and radio-frequency measurements. 

Electrostatic field/field-change measurements at multiple stations have the particular 

advantage of giving information about the electrical charge centers and their structure and 

movements in a thunderstorm (Krehbiel et al., 1979; Jacobson and Krider, 1976; Krehbiel 

et al., 2008). Usually electrified thunderstorms are modeled to have a dominant tripolar 

electrical structure, consisting of a negative charge in the middle and positive charges at 

the lower and the upper levels of the cloud, along with a negative screening charge layer 

at the upper boundary (Williams, 1989). However, the problem of determining the charge 

structure of storms from remote measurements of total electric field has some limitations, 

e.g. due to the vertical variation of conductivity and subsequent masking of upper 

charges. These problems are somewhat alleviated by measuring the time rate of change of 

electric fields, which forms the basis for measurements of the Maxwell currents (Krider 
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and Musser, 1982). Such measurements can be used, in principle, to locate and quantify 

the different currents of the storm. 

 Thunderstorms exhibit cloud (including intra-cloud, cloud-to-cloud, and cloud-to-

air), cloud-to-ground and cloud-to-ionosphere lightning discharges. Cloud-to-ground 

(CG) discharges are the most studied as a good part of them is observed from the Earth’s 

surface. The discharges occur mostly between the main negative or positive charge center 

and the ground. Each flash consists of several strokes, with each stroke consisting of a 

leader and a return stroke; thus, negative or positive charges are brought to the ground. 

On the other hand, most of the intra-cloud (IC) discharges occur between the positive and 

negative charge centers of the main dipole. The upward discharges from cloud to the 

ionosphere may occur as a result of electrical breakdown between the upper storm charge 

and the screening charge attracted at the cloud top. They could also occur due to 

electrical breakdown between the main mid-level charge and a screening depleted upper-

level charge that continues to propagate out of the top of the storm (Krehbiel et al., 2008). 

The first process has been used to explain blue jets, while the second one could explain 

gigantic jets (Krehbiel et al., 2008). Thus, recently observed optical emissions such as 

sprites, elves, jets, blue starters, etc. are associated with thunderstorms (Rodger, 1999; 

Barrington-Leigh et al., 2002; Su et al., 2003). Recent studies established a link between 

individual positive ground flashes that stimulated sprites and the excitation of global 

Schumann resonances within the Earth-ionosphere cavity (Boccippio et al., 1995). 

Research in the past two decades has identified a surprising variety of “Transient 

Luminous Events” (TLEs). Amongst them the most common is the so called sprite, 

which is a manifestation of electrical breakdown of the mesosphere at 40 – 90 km altitude 

(Sentman et al., 1995). Sprites are associated with positive cloud to ground lightning 

discharges which lower positive charges from a cloud to the ground. Blue jets are 

discharges propagating upwards into the stratosphere from cloud tops in a similar way to 

classical lightning, consisting of leaders and a return stroke. They may or may not be 

associated with cloud to ground lightning activity (Wescott et al., 1995). Elves are 

concentric rings of optical emissions propagating horizontally outwards at the bottom 

edge of ionosphere at ~ 90 km altitude (Fukunishi et al., 1996), which are caused by the 
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electromagnetic pulse radiated by the cloud to ground discharge current of cloud to 

ground lightning of either polarity (Cho and Rycroft, 1998).  

Gigantic jets seem to be a discharge where a blue jet triggers a sprite, creating 

electrical breakdown of the atmosphere from the thunderstorm clouds directly up to the 

bottom of the ionosphere (Pasko et al., 2002; Su et al., 2003). Another related event is the 

Terrestrial Gamma-ray Flash (TGF) with energies up to 20 MeV, which is observed in 

association with lightning onboard a satellite (Fishman et al., 1994; Smith et al., 2005; 

Ostgaaard et al., 2008). TGFs may be bremsstrahlung radiation from upward propagating 

relativistic electron beams generated in a runaway discharge process powered by the 

transient electric field in the stratosphere and mesosphere following a lightning event. 

The runaway discharge process has also been suggested for the initiation of lightning and 

sprites (Roussel-Dupre and Gurevich, 1996), but so far no evidence of a direct connection 

between sprites and TGFs could be obtained. 

Lightning discharges in thunderclouds radiate powerful radio noise bursts over a 

wide frequency range from a few Hz to several MHz. In the ELF/VLF frequency range 

waves can propagate over long distances in the Earth-ionosphere waveguide. Waves with 

frequencies less than 50 Hz can propagate globally with extremely low attenuation rates, 

allowing these radio waves to propagate a few times around the globe before dissipating. 

Interference between these waves results in the Earth-ionosphere cavity resonances 

known as Schumann resonances (SR) (Polk, 1982; Siingh et al., 2007). In this frequency 

range there are sources of interference due to electric railways, mechanical vibrations of 

the antennas, surrounding vegetation, drifting electrically charged clouds and power line 

transients, etc. Presently Schumann resonances are being used to monitor global lightning 

activity (Heckman et al., 1998; Rycroft et al, 2000), global variability of lightning 

activity (Satori, 1996; Nickolaenko et al., 1998) and sprite activity (Boccippio et al., 

1995; Cummer et al., 1998a; Rycroft et al., 2000). The relations between lightning and 

ELF noise levels on the global basis have been used to study the space-time dynamics of 

world-wide lightning activity (Magunia, 1996). Schlegel and Fullekrug (1999) showed 

that solar proton events cause increases in the frequency, Q-factor and amplitude of the 

SR modes. 
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Waves in the very low frequency (VLF, 3-30 kHz) range penetrate the ionosphere 

and propagate along geomagnetic field lines without appreciable attenuation. Thus, the 

waves can propagate from one hemisphere to the other many times before being 

attenuated. The mode of propagation is called the whistler mode and the waves are 

termed whistlers. As whistler waves propagate from a lightning discharge to deep into the 

magnetosphere, they couple energy from the atmosphere to the magnetosphere. As the 

wave propagates through the ionized medium embedded in the geomagnetic field, it is 

dispersed and a particular form of whistler spectrogram (dynamic spectrum in the 

frequency-time domain) is obtained. Signals having spectra of different shapes are also 

observed and termed VLF emissions; these are broadly classified as hiss or unstructured 

emissions characterized by a continuous band limited signal producing a hissing sound 

(Helliwell, 1965), or chorus, structured emissions exhibiting coherent discrete spectra 

(Helliwell, 1969), and including periodic emissions, quasi-periodic emissions, triggered 

emissions (Helliwell, 1965). 

 Lightning discharges radiate intense electromagnetic pulses ~ 20 GW peak power 

for ~ 1 ms to ~ 1 s duration as measured by electric and magnetic sensors on the ground 

or in space (Neubert et al., 2008). The electromagnetic power heats the partly ionized 

layers of the upper atmosphere, the mesosphere and the D and E layers of the ionosphere. 

The quasi-static electric field of up to ~ 1 kV/m produced during a lightning discharge at 

mesospheric heights can accelerate electrons to relativistic energies; some of these might 

travel up into the magnetosphere. Whistler mode waves propagating along dipolar 

geomagnetic field lines interact with counter-streaming energetic electrons and scatter 

them from the Van Allen radiation belts into the atmosphere. These energetic electrons 

produce additional ionization in the D-region (Inan et al., 2007) and modify the electrical 

conductivity of the atmosphere (Hu et al., 1989). Inan et al. (1996) presented evidence of 

disturbances of electrical conductivity of the night time mesosphere and the lower 

ionosphere in association with lightning which lasted only 1 – 2 seconds. The resulting 

change in conductivity may cause changes in the amplitude/phase of VLF signals passing 

through the region. The most common perturbation observed follows within a few ms of 

the causative lightning discharge and has a short onset duration of less than ~ 50 ms; 

usually referred as early/fast (Inan et al., 1995). Recent observations show that early VLF 
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amplitude perturbations for 90% cases were associated with + CG discharges which 

triggered sprites (Mika et al., 2005). On the other hand numerous + GG and – CG 

discharges which did not trigger sprite were seldom associated with amplitude 

perturbations. Thus sprites are nearly always accompanied by “early” VLF perturbations 

(Neubert et al., 2008). In a few cases “early” VLF perturbations were found to be 

associated with elves also (Neubert et al., 2008). 

 The precipitated (whistler wave induced) electrons (Rycroft, 1973) in the 

mesosphere and thermosphere through chemical effects can produce NOx (Rodger et al., 

2007). Sprites may also produce NOx locally. The strong convection in a thunderstorm 

cell may carry tropospheric air into the lower stratosphere (Huntrieser et al., 2007). 

Recently efforts have been made to model the effect of sprite discharges on the chemistry 

of the middle atmosphere using different codes and observed properties of sprites (Enell 

et al., 2008; Sentman et al., 2008; Gordillio-Vazquez, 2008) The additional production of 

NOx affects the mesospheric ozone concentration and could perturb the 

pressure/temperature distribution of the stratosphere or change its dynamics. 

 The electromagnetic signals generated during lightning discharges carry 

information about the source region and the ambient medium through which they 

propagate. They can be used to estimate the ionization density in the magnetosphere, and 

the existence and location of plasmapause (Storey, 1953; Singh et al., 1998a). The 

electromagnetic energy radiated from sprite-associated lightning in the ELF range can be 

used as a diagnostic of sprites because optical methods become ineffective during 

daytime. The global nature of the SR phenomena provides special incentive to examine 

very distant events, at ~ 20 Mm distance (Williams et al., 2007a). 

 This introductory discussion clearly shows that cloud-to-ground lightning 

discharges and sprite discharges in the mesosphere have their origin in thunderstorms. In 

this review paper, we propose to briefly discuss the current status of our understanding of 

transient luminous events in the mesosphere, whistler mode signals in the 

ionosphere/magnetosphere, their parent-lightning discharges and thunderstorms. Thus, 

we uniquely try to summarize the phenomena taking place from the troposphere to the 

magnetosphere. 
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 In section 2, a brief discussion about thunderstorm electrification is presented. 

Charge separation in a thunderstorm ultimately results in the lightning discharge which is 

also discussed in this section. Lightning discharges in thunderstorms are cloud-to-cloud, 

intra-cloud, downward (cloud-to-ground) and upward (cloud-to-ionosphere) discharges. 

In this review paper we attempt to discuss some phenomena associated with these 

discharges such as the global electric circuit, the role of lightning on processes affecting 

climate, and the effects of lightning on precipitation, aerosol, and cloud processes. In 

section 3, we briefly review recent work related to upward lightning such as sprites, elves 

and jets. In this section, we discuss the morphology, discharge mechanism and effects of 

these phenomena on stratospheric and mesospheric processes. In section 4 we briefly 

discuss electromagnetic very low frequency wave phenomena generated during electrical 

discharges in thunderstorms and different phenomena associated with wave propagation 

from the source region to the point of reception. The electromagnetic wave propagation 

through the ionospheric/ magnetospheric plasma and the development of plasma physics 

has led to many interesting results being obtained. However, we shall discuss only recent 

results. Finally, a summary and conclusions are presented section 5. 

 

2. Thunderstorms 

Thunderstorms generate and separate electrical charges whereas lightning 

discharges neutralize electrical charges. There are numerous processes operating 

synergistically within the environment of a mature convective cloud, and numerous 

processes with varying effectiveness and time-dependencies affect cloud electrification 

(Stolzenburg and Marshall, 2008; Yair, 2008). The charging of thunderstorms can be 

discussed as inductive charging or non-inductive charging. An inductive process requires 

pre-existing electric fields to induce charges on a particle so that when it rebounds from 

another charge is separated and the field enhanced. In the atmosphere the fair-weather 

electric field resulting from positive charges in the atmosphere and negative charges on 

the ground could be considered as the pre-existing field. Brooks and Saunders (1994) 

interpreted laboratory experiments to support this mechanism. However, there are 

experimental results from airborne instruments which require some other processes of 

charging. Non-inductive processes are independent of the presence of an external electric 
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field. This process is based on collisions between graupel and cloud-ice particles and the 

selective transfer of charge of a certain polarity to the larger particle. In an ordinary 

thundercloud, the smaller ice crystals are charged positively and move upward, whereas 

larger graupel particles charged negatively descend relative to the smaller particles. This 

is the normal situation, depending on the prevailing conditions of temperature, liquid 

water content and mixing in the thunderstorm. A variant of this situation may lead to the 

reverse condition. Charging of solid particles can involve tribo-electric charging, 

charging by fracto-emission and photoelectric charging, as discussed in detail in different 

review papers (Yair, 2008; Saunders, 2008 and references therein). The presence of 

soluble ionic substances in the liquid and ice phases has a significant effect on the 

charging processes and may significantly alter the outcomes of particle interaction and 

the charging processes. In the non-inductive mechanism, Saunders (2008) has discussed 

drop break up, ion charging (atmospheric ions produced by cosmic rays, or radioactivity) 

and convective mechanisms, etc. He has also discussed particle charging involving the 

ice phase and ice crystal/graupel charging mechanism. However, he considers that the 

most viable processes are those by which ice particles, growing at different rates, collide 

and share charges such that particles growing fastest charge positively via the inductive 

mechanism. 

The widely accepted model of thunderstorm electrification shown in Figure 1 is 

one in which conduction, displacement and precipitation current densities below the 

negative layer of charge in the thundercloud vary with altitude. (In the same figure are 

shown the various Transient Luminious Emissions (TLEs) of the stratosphere and 

mesosphere.) In the region between the bottom and the top of thunderstorm cloud 

charging, conduction, displacement and precipitation current densities vary in space and 

time. In the region above the thunderstorm only conduction and displacement currents are 

considered. All lightning currents are considered as discontinuous charge transfers. In the 

fair-weather regions far away from thunderstorms, only conduction currents flow.  

The time variation of thunderstorm electric fields, both aloft and at the ground, 

can be interpreted in terms of total Maxwell current density 
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t
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dependent current, JC is the convection current produced by the mechanical transport of 

charges such as by the air motion or by precipitation, JL is the lightning current 

representing the impulsive, discontinuous transfer of charge in both space and time, and 

tD ∂∂ /  is the displacement current. In accordance with classical electrodynamics JE, JC 

and JL are associated with charge transfer and can be considered as a part of the 

conduction current so that the total Maxwell current can be taken as the sum of the 

conduction current and the displacement current. The Maxwell current is almost 

unaffected during the evolution of thunderstorm when the electric field both at the ground 

and aloft undergoes large changes in amplitude, and sometimes even in polarity (Krider 

and Musser, 1982). They inferred that the cloud electrification processes may be 

substantially independent of the electric field, and that the thunderstorm is assumed to be 

a current generator. Considering ~ 1000 thunderstorms operating at any time and each 

generating ~ 1 Ampere from the top of the cloud charges the ionosphere  with a charging 

current of 10
3
 A to a potential of ~ 250 – 300 kV (Rycroft et al., 2000; Williams, 2005; 

Tinsley et al., 2007). The ionosphere, being a good conductor, behaves as an 

equipotential surface having a potential of ~ 250 – 300 kV with respect to the Earth 

(Siingh et al., 2005a).  

In the most simplified picture the thunderstorm is modeled as a dipole having 

charges at the bottom and top of the cloud and their image charges on the surface of the 

Earth, and the associated electrostatic fields determined (Farrell and Desch, 1992). A 

tripolar model for the charge structure of the thunderstorm has also been widely used 

(Williams, 1989; Krehbiel et al., 2008). In realistic cases charge distributions in 

thunderstorms sometimes may involve up to six charge layers in the vertical direction 

(Marshal and Rust, 1993; Shepherd et al., 1996). When computing the electric field, each 

of the charge centers can be viewed as generating its own polarization charge in and 

above the thundercloud and the resultant configuration of the electric field and charge 

density can be obtained using the principle of superposition. 

 

2.1 Spatial and temporal distribution of thunderstorm  

Lightning activity is concentrated in three distinct zones - East Asia, Central 

Africa and America - and is more prevalent in the northern hemisphere than the southern 
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hemisphere mostly occurring over the land surface. The observation of lightning activity 

from space shows that two out of every three lightning flashes occur in tropical regions 

(Williams, 1992). In addition to the tropical lightning, extra-tropical lightning activity 

plays a significant role in the summer season in the northern hemisphere, resulting in the 

global lightning activity having a maximum from June to August. The similarity of the 

diurnal variations of the electric field over the oceans and of the worldwide thunderstorm 

activity supports the hypothesis that thunderstorms are the main electrical generators in 

the DC global electric circuit (GEC). The largest of the three maxima occurs at the time 

of maximum thunderstorm activity over the Americas, although this is weaker than that 

over Africa. Williams and Satori (2004) and Williams (2008) explain this as being due to 

greater importance of electrified shower clouds in driving the global electric circuit (also 

see Rycroft et al. (2007)) than thunderstorms in the Americas, where it is rainier than in 

Africa. This paradoxical effect could also be explained by the fact that South American 

thunderstorms are close to the magnetic dip equator, whereas most African thunderstorms 

occur over the Congo at higher (southern) dip latitude (Kartalev et al., 2004, 2006).  

About 2000 thunderstorms are active at any time. These are mainly concentrated 

over the tropical land masses during the local afternoons and cover about 10% of the 

Earth’s surface (Markson, 1978). Over the remaining 90% of the Earth’s surface the 

return current (fair weather current) of ~1000A (~ 1 pA/m
2
) flows from the ionosphere to 

the Earth’s surface. There is also a good relation between the AC component of the 

global circuit (Schumann resonance) and global lightning activity (Clayton and Polk, 

1977). All these studies show that the global circuit has a maximum current at ~1800 UT 

and a minimum at 0300 UT (Price, 1993).  

Recently Sato et al. (2008) studied the temporal and regional variation of 

lightning occurrence and their relation to sprite activity and climate variability based on 

1–100 Hz ELF magnetic field data obtained at the Syowa (Antarctica), Onagawa (Japan) 

and Esrange (Sweden) for the period from September 2003 to August 2004. They found 

that in the northern summer season (June to August) the lightning occurrence rates are 

higher in the northern hemisphere than in the southern hemisphere with large 

enhancements in North America, South-East Asia and the northern part of Africa. On the 

other hand, in the northern winter season (December to February) these rates are higher 
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in the southern hemisphere, with large enhancements in South America, Australia and the 

southern part of Africa. 

 

2.2 Thunderstorms and Lightning 

 In recent years some progress has been made towards understanding thunderstorm 

and lightning (Mazur and Ruhnke, 1993; 1998). To explain lightning phenomena, 

Kasemir (1950, 1960, 1983) introduced the concept of the bidirectional uncharged leader, 

emphasizing that the essential factor in maintaining the lightning discharge is the 

continuing breakdown at the tip of the positive or negative ends of the lightning leader 

that extends the channel into new regions with stored electrostatic energy.  

 General models of the cloud charge distribution are based on electric field 

measurements inside a thundercloud and on the ground (Stolzenburg, 1994 and 

references therein). A widely used model is based on the tripolar charge structure 

consisting of a negative charge in the middle of the cloud, a positive charge above it and 

a smaller positive charge below. Sometimes a screening negative charge on the upper 

cloud boundary is also considered (Krehbiel, 1986; Stolzenburg, 1994). A similar 

kinematic numerical model of thunderstorm electrification has been proposed by Ziegler 

and MacGorman (1994). Using this tripole model, Mazur and Ruhnke (1998) simulated 

the lightning discharge and showed that the upper part of the cloud-to-ground leader and 

the lower part of the intra-cloud leader terminate inside the cloud. 

 The charging current leads to charge build-up in the thunderstorm until a 

breakdown threshold is reached. At this point, bidirectional discharges are initiated, 

producing different types of lightning. When breakdown occurs between adjacent 

unbalanced charge regions, then discharges escape the storm. For example, breakdown 

triggered between mid-level negative charges and lower positive charges escape the 

storm downward to become a negative cloud-to-ground discharge. The charge imbalance 

(negative charge being much larger) imparts a strongly negative initial potential to the 

downward developing leader and, as such, the initiated discharge does not terminate at 

the lower positive charges. 

 The negative cloud-to-ground discharge transfers intermittently negative charge to 

the ground, thereby helping to charge the GEC and shifting the storm’s net charge from 
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negative to positive. The cloud potential quickly shifts to positive values and the electric 

field is enhanced in the upper part of the storm. Continued charging could initiate a 

discharge in the upper part of the storm within a few seconds, which may lead to an 

upward discharge having the same polarity as the upper storm charge, i.e. for a negative 

cloud-to-ground discharge, the upward discharge would have a positive polarity. The 

triggering is suppressed if the screening charge is mixed into the upper storm charge 

(Krehbiel et al., 2008). The infrequent observation of jets implies that mixing of the 

screening charge is normally strong in a storm. The upper level discharge, once triggered, 

would propagate upward above the cloud top and the distance covered would depend 

upon the positive potential in the upper part of the storm which is imparted to the 

developing leader channel. The upward discharge also helps to charge the GEC. 

 

2.2.1 Thunderstorms and the Global Electric Circuit  

The global electric circuit (GEC) links the electric field and current flowing in the 

lower atmosphere, ionosphere and magnetosphere forming a giant spherical condenser 

(Rycroft et al., 2000; Siingh et al., 2005a, 2007), which is charged by thunderstorms to a 

potential of several hundred thousand volts (Roble and Tzur, 1986) and drives a vertical 

current through the fair weather atmosphere’s columnar resistance (~100 ohm). The 

current causes weak electrification of stratified clouds (Harrison and Carslaw, 2003) and 

produces a vertical potential gradient in the atmosphere near the Earth’s surface. The 

circuit is closed by a horizontal current flowing through the highly conducting Earth and 

the ionosphere, and by vertical currents from the ground into the thunderstorm and from 

the top of the thunderstorm to the ionosphere. Figure 2 shows a schematic representation 

of a section of the global circuit through the dawn-dusk magnetic meridian (Tinsley, 

2008), with the land/ocean surface forming one spherical highly conducting circuit 

element and, above that, the ionosphere forming the concentric outer shell of the circuit. 

In this model the upper conducting boundary is taken to be at about 60 km altitude. 

Additional generators are shown near the poles due to the solar wind moving past the 

magnetosphere of the Earth and producing a V × B electric field.  

In the circuit T and S represent the column resistances of the Troposphere and the 

Stratosphere. The column resistance at a location varies due variations in surface altitude 
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(orography), variations of aerosol concentrations and ion production by galactic cosmic 

rays (GCR) and other space particle fluxes, etc. To account for variations with latitude a 

subscript on T and S is used for equatorial, low, middle, high and polar latitudes. Even 

very small changes (1~ 3%) in the cosmic ray flux in the equatorial region due to 

variations in the solar wind may affect the thunderstorm charging current and the 

ionospheric potential. The variation in GCR flux could produce a 5% variation in T and S 

at low latitudes and, at high latitudes, ~10 – 20% (Tinsley, 2008). In addition to GCR, 

solar energetic particle (SEP) events could also change the resistance of the atmosphere 

in the polar cap region (Kokorowski et al., 2006). Variations in the column resistance of 

the troposphere and stratosphere cause variations in the vertical current Jz. Apart from 

external factors, Jz also changes due to internal forcing. For example day-to-day 

variations in ionospheric potential due to changes in highly electrified deep convective 

clouds, mainly in the humid low latitude land areas of Africa, the Americas and northern 

Australia/Indonesia, produce changes in Jz (Tinsley et al., 2007). 

The relaxation time in the global atmospheric electric circuit varies with altitude; 

it is ~ 10
-4

 sec at 70 km altitude, increasing with the decrease in altitude to about 4 sec 

near 18 km, and 5-40 min near the Earth’s surface. Measurements have never shown a 

complete absence of the fair-weather electric field, suggesting continuous operation of 

thunderstorms and other generators in maintaining the current flow in the GEC. 

Considering the charge carried to the upper atmosphere to be ~ 2 × 10
5
 C, the potential 

drop between the ionosphere and ground is ~ 250 kV (Roble, 1985; Rycroft et al., 2000; 

Singh et al., 2004a). The traditional role of thunderstorms is to charge the ionosphere and 

to maintain the Earth-ionosphere potential difference, whereas TLE phenomena may 

discharge and reduce the potential difference, with each jet removing 30 C from the 

ionosphere (Hu et al., 2002; Sato et al., 2002). The charge removed by each jet thus 

accounts for ~ 0.015% of the total charge. The contribution of sprites to the global DC 

atmospheric electric field is of the order of 44 mV/m (Fullekrug, 2004); this is much 

smaller than the sensitivity of the electric field mills which measure the fair weather 

potential gradient (≥ 1V/m). Fullekrug and Rycroft (2006) proposed a coupled model for 

the global static and dynamic electric fields derived from Maxwell’s equations and 
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showed that this small contribution can be measured with conventional radio equipment 

at frequencies ≤ 4 Hz. 

The GEC provides a good framework for understanding solar-terrestrial-weather 

relations (Markson, 1978). These relate solar sector boundary crossings in interplanetary 

space to increasing lightning frequency (Reiter, 1972), thunderstorm activity (Cobb, 

1967; Reiter, 1972) and vorticity area index (Markson, 1978). Cloud-to-ionosphere 

discharges affect the GEC by producing transient plasma in the mesosphere, which 

causes an enhancement of electrical conductivity for a short duration. Further, 

observations indicate that the ELF waves associated with TLEs reduce the electrical 

potential between the ionosphere and cloud (Rycroft, 2006). Thus it becomes necessary 

to modify the conventional GEC picture by including the contributions of gigantic jets, 

blue jets, elves and sprites to changes of electrical conductivity and ionospheric potential. 

The detailed knowledge of characteristic properties of these emissions along with 

frequency of events will help us to understand their contribution to the GEC (Pasko, 

2003). Recent developments in this area and possible linkages with several other 

phenomena such as cosmic rays, atmospheric aerosols, weather and climate, sprites, blue 

jets and elves, etc. are discussed by Siingh et al. (2007).  

 

2.2.2 Lightning and Climate: 

Measurements show variations of the atmospheric electrical conductivity (σ) due 

to variations in radon, local aerosols and humidity exacerbated by vertical convection and 

turbulence. Such vertical current Jz changes could dominate short term variations. Burns 

et al. (2007) showed high latitude surface pressure changes in response to Jz changes on a 

day-to-day basis. They considered Jz changes caused by ionospheric potential changes 

due to variations in the low latitude highly electrified convective cloud generators of the 

global circuit. Tinsley et al. (2007) showed that both on day-to-day and millennial time 

scales such a response to solar activity can be understood in terms of cloud microphysical 

responses to the Jz changes. The flow of Jz through gradients in conductivity at the cloud 

boundaries create space charges which rapidly attach to droplets and aerosol particles 

including cloud condensation nuclei (CCN) and ice forming  nuclei (Tinsley et al., 2001). 

This increases the production rate of primary ice by contact ice nucleation, leading to an 
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enhanced rate of precipitation, which may affect storm dynamics and the general 

circulation (Tinsley and Deen, 1991). On the other hand the enhanced scavenging of 

larger cloud condensation nuclei (CCN), along with other aerosol particles, may protect 

the smallest CCN and other small particles from scavenging by other processes such as 

Brownian diffusion and phonetic scavenging (Tinsley, 2004). This causes an 

enhancement in CCN concentration and a narrowing in droplet size distribution during 

cloud formation. As a result precipitation may reduce and cloud lifetime may increase.  

 Droplets with positive charge in the range 80 – 90 e were measured in downdrafts 

for droplets of radii 6 – 8 µm at cloud tops, whereas near the cloud base droplets were 

found with negative charge in the range 50 – 70e, in updrafts (Beard et al., 2004). The 

magnitude and sign difference of the charges near the two boundaries are consistent with 

the calculations of droplet charging resulting from the flow of Jz through clouds (Zhou 

and Tinsley, 2007; Tinsley et al., 2007). The time constants for aerosol and droplet 

charging with ambient ions could range from minutes to hours which are comparable to 

typical convection and turbulence characteristic times (Tinsley, 2008). This shows that 

time dependent cloud and aerosol charging models including turbulence and convection 

are needed. 

The variation in Jz and hence variation in GEC is directly related to microscopic 

and macroscopic processes associated with clouds/lightning and would produce an 

integrated effect on climate that could dominate over short term weather and climate 

variations (Williams, 2005). The small variations in electric field near a cloud surface 

affects cloud formation and hence the temperature of the atmosphere. Williams (1992) 

reported an extremely non-linear increase in tropical lightning rate when temperature rose 

above a critical threshold (nonlinear sensitivity of thunderstorm activity to temperature). 

He also showed a high correlation between monthly mean tropical surface air 

temperatures and SR measurements of global lightning activity. Markson and Price 

(1999) reported a positive correlation between ionospheric potential and global 

temperature, ionospheric potential and global lightning/deep cloud index, global lightning 

and global temperature. They suggested that warmer conditions lead to more deep 

convection resulting in a higher ionospheric potential. Price (1993) showed good 

agreement between the diurnal surface temperature changes and the diurnal variability of 
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GEC. He suggested that a 1 % increase in global surface temperature could result in a 20 

% increase in ionospheric potential. Fullekrug and Fraser-Smith (1997) have inferred 

global lightning and climate variability from the ELF magnetic field variations. In the 

global framework the response of lightning and electrified clouds to temperature and 

changes in temperature have been analyzed and many time scales, including semi-annual 

and annual have been reported (Williams, 2005). In the case of the semi-annual variation, 

a 1
0
C increase in temperature above the threshold value may result in a 50% increase in 

global lightning frequency (Williams, 2005). 

A close relationship has been shown between (i) tropical surface temperature and 

monthly variability of SR (Williams, 1992), (ii) ELF observations in Antarctic/Greenland 

and global surface temperature (Fullekrug and Fraser-Smith, 1997), (iii) diurnal surface 

temperature changes and the diurnal variability of the GEC (Price, 1993) and (iv) 

ionospheric potential and global/tropical surface temperature (Mulheisen, 1977; Markson, 

1986; Markson and Price, 1999).  Reeve and Toumi (1999), using satellite data, showed 

agreement between global temperature and global lightning activity. Price (2000) 

extended this study and showed a close link between the variability of upper troposphere 

water vapor (UTWV) and the variability of global lightning activity. SR measurements 

could reveal excellent agreement between the variation of UTWV with surface 

temperature and lightning activity.  UTWV is closely linked to the other phenomena, 

such as tropical cirrus cloud, stratospheric water vapor content, and tropospheric 

chemistry (Price, 2000). Recently, Williams et al. (2005) discussed in detail the physical 

mechanisms and hypotheses linking temperature and thermodynamics with lightning and 

the global circuit. This clearly shows that the study of physical processes involved in the 

global electric circuit, the variability of global lightning activity and its relation to surface 

temperatures, tropical deep convection, rainfall, upper tropospheric water vapor content, 

and other important parameters that affect the global circuit are essential to understand 

the global climate system, which is so essential for the betterment of human society. 

 

2.2.3 Lightning and precipitation  

Cloud-to-ground lightning discharges have been used to estimate rainfall. Zipser 

(1994) used the ratio of monthly rainfall to the number of thunderstorm days to study the 
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rainfall and thunderstorm relation for West Africa. Petersen and Rutledge (1998) used the 

total rain mass and CG flash density to examine the relationship over large spatial and 

temporal scales for several different parts of the globe, and found them to vary 

significantly, depending on air-mass characteristics and cloud microphysics. Earlier 

studies showed some positive relationship between lightning and area averaged 

convective rainfall (Marshall and Radhakant, 1978, Piepgrass and Krider, 1982, Tapia et 

al. 1998), and total lightning flash rate and convective rainfall (Goodman and Buechler, 

1990, Chez and Sauvageot, 1997, Peterson and Rutledge, 1998).  The relation between 

rainfall and lightning is generally expressed in terms of the Rainfall-Lightning ratio 

(RLR). This ratio estimates the convective rainfall volume per cloud-to-ground lightning 

(CG) flash.  The RLR depends on thermal and microphysical characteristics of the 

thunderstorm, its location, local climatology and convective regime (Williams et al., 

1989, Tapia et al. 1998, Seity et al. 2001, Lang and Rultedge, 2002) and varies over a 

wide range. The nature of the relationship is less certain over the oceans and, in 

particular, over the tropical oceans (Petersen and Rutledge, 1998; Zipser, 1994).  Rakov 

and Uman (2003) and Kempf and Krider (2003) have shown that the RLR varies from 2 

×10
4
 m

3
 per CG flash to 2 × 10

7 
 m

3
 per CG flash, depending upon geographical location 

and season of the year. It has been also observed that severe storms produce lower RLR 

values than ordinary thunderstorms. 

Buechler and Goodman (1990) and Williams (1992) have shown inverse 

correlations between RLR and Convectively Available Potential Energy (CAPE). 

Considering wet bulb temperature (TW) to be a reliable indicator of CAPE in the tropics 

Williams and Renno (1993) and Williams (2005) showed that the lightning flash rate has 

a good correlation with CAPE.  Williams (1992) has also shown that the ratio of total 

rainfall to observed lightning in convective rain can be negatively correlated to the 

Convective Available Potential Energy (CAPE) of that thunderstorm. These discussions 

clearly show that additional measurements are required before any firm conclusion can be 

drawn.   

In the modeling of weather forecasting, knowledge of the latent heat rate is 

required. This can be derived from lightning data and we can improve upon it if we have 

a good amount of data showing lightning-rainfall relationships. For example, Alexander 
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et al. (1999) reported a relatively good correlation between convective rainfall and 

lightning rates during a large storm in 1993, and showed improved numerical forecasts by 

assimilating latent heating rates derived from lightning data. On the basis of the 

comparison made between lightning rates measured by Pacnet and convective rainfall 

data obtained from TRMM (Tropical Rainfall Measuring Mission) microwave sensors for 

a variety of storm systems over the central North Pacific, Pessi et al. (2004) suggested 

that the lightning data over the Pacific can be assimilated into numerical models as a 

proxy for latent heat release in deep convective clouds. 

 

2.2.4 Lightning, Atmospheric Aerosols and Cloud Processes  

                 Aerosol particles are generated by gas-to-particle (GPC) or drop-to-particle 

conversion processes. Trace gases also play a significant role through the aqueous-phase 

chemistry of the atmosphere and contribute to the generation and destruction of aerosols. 

Aerosol particles in the atmosphere partly act as nucleation centers for cloud formation 

and partly as ice forming nuclei. The number of aerosol particles which can  serve as 

cloud condensation nuclei (CCN) increases with increasing supersaturation because even 

smaller particles participate in nucleation at higher supersaturation values. Observations 

show that continental air masses are generally richer in CCN than maritime air masses 

(Twomey and Wojciechowski, 1969). The Aitken nuclei produced by gas-to-particle 

reactions under supersaturation conditions are likely to become cloud nuclei (Vohra et al., 

1970; Vohra and Nair, 1970). Hegg et al. (1980) observed a shift of the particle size 

spectrum towards larger sizes on passing from the upstream to downstream side of a 

cloud. A numerical simulation of the growth and subsequent evaporation of a convective 

cloud produced a similar result. Heintzenberg et al. (1989) observed a pronounced shift 

of the size distribution to larger sizes due to the processing of clear air particles by cloud. 

Hoppel et al. (1994) proposed that drop-to-particle conversion is the cause for the double 

maxima found in maritime aerosol particle spectra. 

Aerosol particles and trace gases differing vastly in their physical and chemical 

characteristics are removed from the atmosphere through the processes of nucleation 

scavenging (incorporated in cloud drops, raindrops or ice crystals), impact scavenging 

(collected by collisions with cloud drops, raindrops or ice crystals) and gas scavenging 
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(absorption of trace gases by cloud particles and raindrops). As a result of the various 

scavenging processes, the gas-phase and aqueous-phase chemistry of the atmosphere 

becomes complex.  The whole variety of anthropogenic aerosol particles and trace gases 

injected into the atmosphere makes the situation still more complex.  

It is difficult to distinguish the effect of aerosols from that of 

thermodynamics/dynamics on thunderstorm activity. Williams et al. (2002) conducted 

experiments to verify the enhanced lightning activity predicted by the aerosol hypothesis 

and arrived at different results during the lightning-active pre-monsoon and during the 

less active wet season in Brazil.  Williams and Stanfill (2002) supported the thermal 

hypothesis to explain the lightning activity variation with island area acting in oceans as 

heat islands. Lyons et al. (1998) and Murray et al. (2000) attributed the enhancement in 

the positive cloud-to-ground flashes in North America to incursion of smoke from fires in 

Mexico and subsequent ingestion by these thunderstorms. However, the effect of smoke 

from biomass burning on thunderstorm activity observed in Brazil does not support the 

above result (Williams et al., 2002). MacGorman and Burgess (1994) reported clustering 

of positive ground flashes below storms which developed in a strong instability. In fact 

the possible role of the model results of Baker et al. (1999) indicate that the lightning 

flash rate is proportional to the fourth power of vertical velocity of aerosols whereas field 

experiments undermine this sensitive relationship (Williams 1992; Rutledge et al., 1992). 

This point should be investigated in detail. Further studies are required to explore the 

relationships between Convective Available Potential Energy (CAPE) in dry and moist 

convections and the potential temperature (θ or θw ) in the tropics and the role of cloud 

base height in transferring CAPE to updraft kinetic energy in thunderstorms (Williams 

and Stanfill, 2002; Williams and Renno, 1993; Lucas et al., 1994; Williams et al., 2002). 

 

2.2.5 Radio wave propagation and thunderstorms   

Radio communications in the VHF and UHF bands have seen a rapid growth during the 

last two or three decades. However, the quality of electromagnetic waves in these 

frequency bands undergoes deterioration in the presence of water vapor, clouds and 

hydrometeors such as rain, hail and fog which absorb, attenuate and scatter these waves. 

The water molecule has a permanent electric dipole moment and, being an asymmetric 
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top molecule, exhibits a complex absorption spectrum of rotational transitions with a 

peak at 22.23 GHz and strong lines at 183 GHz and 325 GHz.   

During rainy periods, the water droplets intercepting a radio path act as an 

imperfect conductor. Due to their large dielectric constant (81 times that of air) water 

droplets attenuate these waves. In addition, these displacement currents induced in the 

droplet of rain or fog act as sources of scatter for incident radiation. Non-spherical 

raindrops cause depolarization. The role of thunderstorms on the propagation of these 

high frequency waves should be studied both experimentally and through modeling work. 

 

3.  Transient Luminous Events above Thunderstorms 

 Thunderstorm charges and electric fields build up with time until a breakdown 

threshold is reached. The charge structure could be a complex structure leading to upward 

and downward lightning discharges, which are associated with Transient Luminous 

Events occurring at high altitudes in the Earth’s atmosphere above thunderstorms. TLEs 

include sprites, elves, jets, gigantic jets, blue starters, etc. (Neubert et al., 2008 and 

references therein). The possibility of discharges above a thundercloud at high altitudes 

was predicted by Wilson (1925) based on electric field computations due to the residual 

charges of the cloud just after a positive cloud-to-ground discharge.  

            The observations of spectacular optical flashes by Franz et al. (1990) initiated 

experimental and theoretical studies in this area. Ground and aircraft campaign were 

conducted in the USA, Australia, Japan, Taiwan and Europe, and a large number of 

events concerning TLEs have been documented and studied (Rodger, 1999; Chern et al., 

2003; Fullekung et al., 2006; Pasko, 2007; Neubert et al., 2005, 2008, Arnone et al., 

2008). Amongst TLEs, sprites are widely observed/studied phenomena and they are 

usually found over Mesoscale Convective Systems (MCS), and not over ordinary isolated 

thunderclouds (Sentman et al., 1995; Lyons, 1994; Boccippio et al., 1995; Lyons, 1996; 

Lyons et al., 2008). MCS are characterized by laterally extensive regions of stratiform 

precipitation with a total area more than an order of magnitude greater than the area of an 

ordinary thunderstorm. Sprites are induced by +CG lightning strokes possessing large 

charge moment changes. Blue jets are slow moving “fountain of blue light” from the top 

of the cloud, whereas elves are lightning induced rings of light that can spread over ~ 300 
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km laterally at around 90 km altitude in the lower ionosphere. Su et al. (2003) have 

reported six gigantic optical jets from oceanic thunderstorms that establish a direct link 

between a thundercloud (~ 16 km altitude) and the ionosphere at 90 km. ELF waves were 

detected in only four of these events and no cloud-to-ground lightning was observed to 

trigger these events. 

 

3.1 Morphology and discharge mechanisms 

 Sprites may occur in clusters of two, three or more “carrot” shaped emissions of ~ 

1 km thickness over a horizontal distance of 50-100 km, with the separation between 

sprite elements of ~ 10 km (Neubert et al., 2005). Sprites may also occur as single 

luminous columns termed C-sprites (Wescott et al., 1998). Telescopic imaging revealed 

sprites with intertwined discharge channels and beads to scales down to 80 m diameter 

and smaller (Gerken et al., 2000; Mende et al., 2002). The optical intensity of a sprite 

cluster as observed by TV-frame rate cameras is comparable to that of a moderately 

bright auroral arc (Sentman et al., 1995). The brighter region is in the altitude range 65-

85 km with most of the intensity in the red, and with wispy faint blue tendrils extending 

down to 40 km or at times as low as the cloud top (Wescott et al., 2001). High speed 

photometry shows that the duration of sprites is from a few ms to ~ 200 ms (Winckler et 

al., 1996; Armstrong et al., 1998). High speed imaging reveals that the discharges are 

initiated at ~ 65 km altitude; they propagate downwards and shortly after upwards 

(Stanley et al., 1999; Moudry et al., 2003). Recent imaging at 10 kHz frame rates shows 

the formation and propagation of streamers and resolves the streamer heads (McHarg et 

al., 2007). Stenback-Nielsen et al. (2007) showed that sprite emission rate on the shortest 

time scale can reach 1 - 500 GR. 

Based on ELF/VLF observations, Ohkubo et al. (2005) suggested that IC 

discharges play a significant role in sprite generation. The IC flash and sferic activity is 

caused by breakdown processes inside the clouds feeding the continuing currents of +CG 

discharges. Using the Euro-sprite data, this point has been examined by Neubert et al. 

(2008), who showed that column sprites are generally characterized by a short time delay 

relative to the causative + CG discharge with high peak current, little IC activity and 

short, intense bursts of broadband VLF radio wave activity, whereas carrot sprites are 
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associated with longer time delays, large IC activity and weaker, longer lasting bursts of 

lightning discharges. This shows that IC discharges play an important role in the 

generation of carrot sprites but may not play significant role for the impulsive column 

sprites. Neubert et al. (2008) have presented a sprite which is laterally displaced from the 

+CG and have proposed a process in which a +CG discharge may transfer charge from a 

remote region of the storm to the ground. A laterally displaced sprite was also reported by 

Mazur et al. (1998). 

 The above features of sprites depend on the thunderstorm source fields (Pasko et 

al., 1997; Valdivia et al., 1998) and the very rapidly varying field composed of the 

directly emitted electromagnetic field from the discharges and components reflected from 

the ground and the ionosphere (Cho and Rycroft, 2001). Local perturbations of the 

mesosphere may affect sprite morphology. For example, neutral gas density perturbations 

caused by gravity waves generated in the underlying thunderstorm could modulate the 

local threshold electric field for the sprite discharges (Sentman et al., 2003), with lower 

densities requiring a lower threshold electric field. An example of a sprite cluster that 

could have been formed by such a process has been reported by Neubert et al. (2005, 

2008). The small scale (~ 1 km) structure in the sprite could also be produced by the 

perturbations of electric conductivity induced by meteor trails (Suszcynsky et al., 1999; 

Symbalisty et al., 2000). This shows that there is a complex link between medium and 

small scale structures of sprites, gravity waves and medium and small scale structures of 

the mesosphere. 

 Sprites are produced due to the excitation of atmospheric constituents by 

collisions with free electrons accelerated to sufficient energy. Early observations 

suggested a strong signature of N2 (1 P) emissions and an absence of the N2
+
 Meinel 

emissions (Swenson and Rairden, 1998). Emissions in the Meinel band are strongly 

quenched by the atmosphere and hence they are not observed (Armstrong et al., 1998). 

The second proposed mechanism involves the ionization of neutral constituents in air 

breakdown cascades by the polarization electric field over the cloud tops following a + 

CG discharge (Pasko et al., 1995, 1996, 1997). Breakdown occurs when streamers are 

formed with high space charge density in the streamer tips. Model calculations and 

observations compare well with energies of ~ 2 eV in the sprite proper (Morrill et al., 
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2002) and ~ 5-25 eV in the halo surrounding the sprite (Miyasato et al., 2003). This 

model is valid for both + CG and – CG lightning, although – CG lightning is less 

effective in sprite generation (Neubert et al., 2008). However – CG lightning has been 

observed to cause sprites on rare occasions (Taylor et al., 2008). Spectral observations 

from space show the existence of significant impact ionization of N2 (Mende et al., 2005; 

Frey et al., 2005), which has also been inferred from ELF observations of currents 

associated with sprites (Cummer and Inan, 1997; Cummer, 2003). The third process 

involves electrons with energy > 5 keV, generated during cosmic ray ionization of 

atmosphere (Gurevich et al., 1992, 1999; Roussel - Dupre et al., 1994). This mechanism 

is also called a runaway electron discharge process. In this process the required threshold 

field is less by a factor of 10 than the classical discharge process. Hence the runaway 

discharge process seems to preclude classical air breakdown (Roussel - Dupre and 

Gurevich, 1996; Taranenko and Roussel - Dupre, 1996). 

In order to explain optical emissions above thunderstorms, the space and time 

evolutions of lightning generated electromagnetic pulses were studied using two 

dimensional numerical simulations (Rowland et al., 1995; Inan et al., 1996; Veronis et 

al., 1999). Cho and Rycroft (1998), using electrostatic and electromagnetic codes, 

simulated the electric field structure from the cloud top to the ionosphere and tried to 

explain the observation of a single red sprite. To explain clusters of sprites, they 

suggested that the positive charges are distributed in spots and so may lead to clusters of 

sprites. The numerical simulations are based on the finite difference time domain 

treatment of Maxwell’s equations. The redistribution of charge and the electromagnetic 

pulse from the lightning discharge may accelerate electrons, heat and ionize the 

atmosphere, which will result in nonlinear phenomena such as runaway breakdown 

(Rycroft and Cho, 1998; Rowland, 1998). The lightning generated electromagnetic pulse 

modifies the electron density and collision frequency of the ionosphere which changes 

the electrical conductivity of the atmosphere (Holzworth and Hu, 1995); this change may 

be used to explain the generation of elves (Nagano et al., 2003).  

 Observations support the idea that all the processes discussed above could play 

role in the generation of sprites and other luminous events above thunderstorm. Neubert 
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et al. (2008) have discussed the merits and limitations of these processes and the 

additional observations needed to ascertain efficacy of these processes.  

 

3.2 Effects of TLEs on Mesosphere (ionization, infrasound, NOx production, and 

atmospheric dynamics): 

 Transient luminous events (sprites, elves, jets, etc.) perturb the upper atmosphere 

by changing its electrical properties, perturbing atmospheric constituents and altering 

atmospheric dynamics. The perturbation in electrical conductivity of the mesosphere can 

be evaluated by measuring changes in the amplitude of VLF waves from transmitters and 

propagating in the Earth-ionosphere waveguide. Amplitude perturbations in 90 % cases 

were observed when sprites were generated by +CG discharges. In the case of + CG and 

– CG discharges which were not associated with sprites, an amplitude perturbation was 

observed only in a few cases. The sprite related VLF waves had long recovery times (~ 

30 - 300 s), which suggests spatially extended and diffuse regions of electron density 

increases at altitudes higher than 75 km. This agrees with the theoretical prediction of air 

breakdown in the upper D-region during sprite occurrence triggered by strong quasi-static 

electric fields (Mika et al., 2005). Mika (2007) has discussed experimental data in which 

the incident VLF transmitter signal seems to be scattered from horizontally extended 

diffuse regions of electron density enhancements, most likely associated with halos or 

diffuse regions of the upper part of carrot sprites, rather than small scale streamers 

observed at lower altitudes. 

 The electromagnetic pulse (EMP) generating elves also create ionization 

(Taranenko et al., 1993; Rowland, 1998), which depends on its intensity. The EMP may 

be sufficient to cause elves and ionization at ~90 km altitude but not ionization at lower 

altitudes which affects VLF wave propagation.  

Liszka (2004) suggested the generation of infrasound waves by sprites, whose 

signatures were detected by a network sensors in Sweden (Liszka and Hobara, 2006). The 

shape of the chirp signature in the spectrograms of infrasound can be explained by the 

horizontal size of the sprite (Farges et al., 2005). A theoretical model based on heating a 

vertical region in the mesosphere has been proposed to explain the amplitude of 

infrasound from a sprite (Pasko et al., 1998; Farges et al., 2005; Pasko and Snively, 



 25

2007). Measurements of the rotational intensity distribution of N2 molecular bands may 

be potentially used for remote sensing of variations of gas temperature in sprite 

discharges (Pasko, 2007). Neubert et al. (2008) have concluded that sprite detection by 

infrared is an attractive alternative to optical detection, because it is not limited by clear 

viewing condition or by the absence of daylight. The infrasound signature makes 

automatic detection of sprites possible (Ignaccolo et al., 2008). 

Pasko (2006) summarized the optical emissions associated with sprites, which 

include the first positive (1PN2) and second positive (2PN2) band systems of N2, Lyman-

Birge-Hopfield band system of N2 (LBHN2) and the first negative band system of N2
+
 

(1N N2
+
), which have excitation energy thresholds in the range ~ 7.35 – 18.8 eV and 

lifetimes at 70 km altitude in the range ~ 69 ns – 14 µs. Green et al. (1996) using energy 

dependent electron excitation cross sections and laboratory data analyzed the spectrally 

resolved emission obtained by Mende et al. (1995) and Hampton et al. (1996) and 

concluded that the sprite electrons have sufficient energy to dissociate and ionize N2. 

They also estimated the electric field driving sprite phenomenon to be 100 – 200 Vm
−1

 at 

70 km altitude. 

The strong blue emissions associated with 1NN2
+
 and 2PN2 band systems 

originating in the streamer heads are expected to be produced during the early sprite 

development period. This is in agreement with narrow band photometric and blue light 

video observations of sprites (Armstrong et al., 1998; 2000; Suszcynsky et al., 1998; 

Morrill et al., 2002) indicating short duration bursts of blue optical emissions appearing 

at the initial stage of sprite formation. The time averaged optical emissions are dominated 

by red emissions associated with the 1PN2 band having the lowest energy excitation 

threshold (~ 7.35 eV) which can be produced by relatively low electric fields in the 

streamer channels. This is in agreement with reported sprite observations (Mende et al., 

1995; Bucsela et al. 2003; Morrill et al., 1998; 2002; Takahashi et al., 2000). Pasko 

(2007) has documented important similarities between optical emissions associated with 

streamers in sprite discharges and emissions from pulsed corona discharges in laboratory 

experiments and emphasized need for further studies of processes related to the 

vibrational excitation of the ground state of N2 molecules to understand emissions 
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originating from the B
3Πg and C

3Πg states of N2 and NO γ-bands emissions, during both 

initial and post discharge stages of a sprite discharge. 

The sprites provide a link between tropospheric processes in the thunderstorms 

and mesospheric processes in the upper atmosphere. Hiraki et al. (2002) suggested that 

sprites may change the concentration of NOx and HOx in the mesosphere and lower 

atmosphere. These chemical changes have impact on the global cooling or heating in the 

middle atmosphere (Galloway et al., 2004; Singh et al., 2005; Schumann and Huntrieser, 

2007). Nitrogen oxides are critical components of the troposphere which directly affect 

the abundance of ozone and hydroxyl radicals (Crutzen, 1974). Ozone absorbs solar 

ultraviolet radiation and controls the dynamic balance of the atmosphere. NOx creates 

ozone in the troposphere and destroys it in the stratosphere and mesosphere. The 

concentration of NOx in the mesosphere is enhanced by transient events such as auroras 

and solar proton events (Crutzen and Solomon, 1980). The vertical transport of NOx by 

the neutral wind is an important process to control NOx concentration in the 

thermosphere (Saetre et al., 2007). TLEs also affect the concentration of NOx in the 

stratosphere and mesosphere and the processes involved could be similar to those in the 

aurora. The production of NOx is through energetic neutral atom conversion where the 

heating of the atmosphere by the continuing current in the ion channel of the lightning 

stroke allows suprathermal oxygen atoms to react directly with N2 (Balakrishnan and 

Dalgarno, 2003). 

The effects of TLEs on the chemistry of the middle atmosphere have been studied 

using theoretical models and simulation codes. Enell et al. (2008) have used a particle 

code based on independent streamer propagation models whereas Sentman et al. (2008) 

used a fluid code for streamer propagation. Gordillio-Vazquez (2008) used a plasma code 

with a Boltzmann solver. In the computation it is assumed that suprathermal atoms do not 

occur in a sprite, although they may occur in the longer-lived blue jets and gigantic jets 

(Su et al., 2003). Enell et al. (2008) estimated that the total production of NOx is around 5 

times the background in the streamers, whereas the model of Gordillio-Vazquez (2008) 

predicts NO and NO2 enhancements of a factor of 10. Neubert et al. (2008) estimated the 

total number of NO molecules produced in a streamer ~ 1.5 × 10
19

, with an estimated 

average total production on the order of 10
23

 – 10
25

 molecules per event. The estimate is 
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based on the dimensions of a typical sprite event (Gerken et al., 2000). Sentman et al. 

(2008) estimated a production on the order of 5 × 10
19

 molecules per streamer, which is 

consistent with the above results. Neubert et al. (2008) have shown that considering the 

global occurrence rate of sprites to be 3/minute, the total global production of NOx ~ 10
31

 

molecules per year, which is of the same order as the minimum production of NOx, N2O, 

N2O5 and HNO3 by solar proton events during a quiet year. The stratospheric production 

by oxidation of N2O is ~ 10
34

 molecules per year. This shows that the production of NOx 

by sprites on the global scale is quite small. However, during an intense thunderstorm, 

there can be a significant impact on the local production and budget of NOx. Enell et al. 

(2008) discussed that the NO enhancement (2 – 10%) in the 50 – 60 km altitude range 

could decrease the ozone concentration by a few percent. However, significant ozone 

perturbations by sprites are unlikely. Measurements from the GOMOS instrument on 

ENVISAT showed enhancements on local basis but these were not found on the larger 

regional scale (Rodger et al., 2008). 

The perturbations in ozone affect the atmospheric dynamics in two ways, namely 

by perturbation in the absorption of solar radiation and secondly by affecting the local 

strength of the zonal winds which affects the propagation of planetary waves in the 

stratosphere. Sprites could affect the circulation in the middle atmosphere, which may 

also control the downward propagation of stratospheric temperature anomalies into the 

troposphere (Christiansen, 2001), which imply a possible impact of stratospheric ozone 

changes on the tropospheric climate. Several model computations have been made to 

assess the strength of ozone perturbation needed to produce a significant change in the 

stratospheric dynamics and the extent to which this change propagates down to the 

troposphere (Christiansen et al., 1997; Berg et al., 2007). The computations show that the 

response of ozone perturbations on the middle atmosphere dynamics is nonlinear 

(Neubert et al., 2008).  

Pasko et al. (2002) have reported a video recording of a blue jet propagating 

upwards from a small thundercloud cell to an altitude of about 70 km. As relatively small 

thundercloud cells are very common in the tropics, it is probable that optical phenomena 

from the tops of the clouds may constitute an important component of the GEC. Because 

optical phenomena occur in the upward branch of the global electric circuit above the 
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thunderstorms they are likely to influence only the upper atmosphere conductivity. 

Moreover, since they occur much less frequently (only one sprite out of 200 lightning 

discharges), because of their association with intense lightning discharges (Rycroft et al., 

2000; Siingh et al., 2005a; Siingh et al., 2007), they may not play a major role in the GEC 

(Rycroft et al., 2000). Further research activity in this area is required. 

 

4. Electromagnetic radiation from lightning and TLEs 

 Lightning and TLEs are the results of discharges between the charges inside the 

cloud and below the cloud on the surface of the Earth and above the cloud. According to 

classical electrodynamics, electric discharges radiate electromagnetic waves, whose 

frequency bands are determined by the time scales of different processes acting in the 

discharges. Cloud-to-ground lightning discharges radiate electromagnetic waves over a 

wide frequency range from a few Hz to several hundred MHz. However, the maximum 

energy is radiated in the VLF range, especially between 1 and 10 kHz. The intensities of 

electromagnetic waves generated during lightning discharges decrease with frequency f 

as f
−2

 at lower frequencies and as f
−1

 at higher frequencies. The dominant time scales of 

lightning discharge and sprite processes, which are responsible for the broadband 

electromagnetic emissions, vary from microseconds to some tens of ms (Fullekrug et al., 

2006). The electromagnetic radiation from lightning discharges propagates to long 

distances and can be a powerful tool for studying the lightning, TLEs and the parameters 

of the medium through which it propagates. However, a sprite is triggered by a lightning 

discharge and occurs almost simultaneously with it; therefore it is difficult to separate the 

electromagnetic wave signature of a sprite from that of the causative lightning discharge. 

 

4.1 ULF Waves 

 Ultra low frequency (ULF) waves (< 3 Hz) radiated by +CG lightning discharges 

and propagated to long distances have been recorded and analyzed. Even though the 

magnetometer could record traces of lightning discharges around the world (Fukunishi et 

al., 1997), this could be due to secondary/tertiary processes having much longer time 

scales which emit electromagnetic waves as well (Neubert et al., 2008). The general 

properties of ULF waves from the sprite associated lightning discharges were compared 
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with those of a control group not associated with sprites, but a unique and identifiable 

difference could not be obtained (Bosinger et al., 2006; Neubert et al., 2008). All 

responses represent single, isolated, strong events called Q bursts (Ogawa et al., 1967), 

which exceed the average natural background noise level caused by world-wide 

thunderstorm activity at least by an order of magnitude. 

 

4.2 Schumann resonances 

 Tropical lightning discharges excite the Earth-ionosphere cavity which resonates 

at the fundamental frequency and its harmonics, known as Schumann Resonances (SR), 

with the fundamental mode having an eigenfrequency of 8 Hz (Sentmann, 1995; Huang 

et al., 1999; Barr et. al., 2000; Singh et al., 2002). The amplitude of the Schumann modes 

is similar at all places. Variations in solar activity or nuclear explosions produce 

disturbances in the ionosphere and may also affect SR (Schlegel and Fullekug, 1999). 

Solar proton events cause an increase of frequency, Q-factor (i.e. reduced bandwidth of 

the resonance mode) and amplitude of the SR mode (Schlegel and Fullekrug, 1999). 

Sentman et al. (1996) examined SR measurements from California and Australia during 

the large solar storms in the fall of 1989 and found no measurable difference in SR 

intensities, although they found a sudden decrease in Q-factor of the second mode, which 

was attributed to small changes of middle atmospheric conductivities by energetic 

charged particles. The SR intensity depends upon the height of the ionosphere (Sentman 

and Fraser, 1999). It has solar cycle dependence and responds to solar flares, magnetic 

storms (Hale and Baginski, 1987) and solar proton events (Reid, 1986).  

The principal features of SR are used to monitor global lightning activity 

(Heckman et al., 1998; Barr et al., 2000; Rycroft et al., 2000; Siingh et al., 2007), global 

variability of lightning activity (Satori, 1996; Nickolaenko et al., 1996) and sprite activity 

(Boccippio et al., 1995; Cummer et al., 1998a; Rycroft et al., 2000). Apart from locating 

the parent lightning flashes, Schumann resonance methods have been used to evaluate 

their vertical charge moments. Williams et al. (2007a) evaluated the charge moment 

threshold for a sprite located at a distance of ~ 16.6 Mm and showed that their results 

were consistent with similar measurements using identical methods made at a 

considerably closer distance (~ 2 Mm). The vertical charge moment change of the 
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lightning is the key source parameter in the initiation of sprite (Huang et al., 1999; Hu et 

al., 2002). Williams et al. (2007b) have shown that the current moment spectra of sprite 

producing +CG lightning are redder than that of those which were not associated with 

sprite. This shows that SR can be successfully used to study the location as well as the 

properties of the sprite-associated lightning. 

Recently Simoes et al. (2008) have used SR as a tool for exploring the 

atmospheric environment and the subsurface of the planets and their satellites. In fact the 

knowledge of the frequencies and attenuation rates of the principal eigenmodes provides 

unique information about the electrical properties of the cavity. They have developed 

models for selected inner planets, gaseous giants and their satellites and have reviewed 

the propagation process of SR waves in their atmospheric cavity so as to infer the 

subsurface properties.  

Since thunderstorms are the main source of energy for SR and the GEC, their link 

with weather and climate should be developed (Williams, 1992; Price, 1993; Price and 

Rind, 1994). Such links could be in the form of electromagnetic, thermodynamic, climate 

and climate-change characteristics of the atmosphere. The physico-chemical processes 

involved in these phenomena should be studied both empirically and theoretically. If 

lightning is the main source for maintaining the ionospheric potential, the measurements 

of SR and ionospheric potential should produce identical results.  The differences 

between the two results will indicate the contribution to ionospheric potential of other 

processes, such as corona discharge from elevated objects above the ground (Rycroft et 

al., 2007) or any other unknown process. 

 

4.3 ELF Waves 

 Extremely low frequency (ELF, 3 Hz – 3 kHz) electromagnetic radiation in the 

frequency range 8 – 100 Hz propagates over long distances within the Earth-ionosphere 

cavity without significant attenuation. Hence observations of ELF waves can be used to 

monitor the global occurrence rate of lightning and sprites. ELF waves are generated by 

sprites during mesospheric breakdown (Fullekrug et al., 2001), with sprites appearing ~ 5 

ms after the causative +CG lightning discharge having a strong continuing current. The 

generation of sprite-associated ELF waves is not clearly understood. Fullekrug (2006) 
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developed a model of lightning electric fields above a thunderstorm to study the charge 

transfer within intense lightning. Based on the analysis of a large number of intense 

lightning discharges, Fullekrug et al. (2006) showed that current decays with an initial 

time constant of ~ 2 ms for 10 second and transfers ~ 60 C charge from cloud to the 

ground. Later on the time constant becomes ~ 40 ms and transfers the remaining charge 

(~ 170 C). The current associated with the total charge transfer heats the middle 

atmosphere.  

 The measurement of ELF waves at large distances from the source is used to 

derive information about sprites. The measured electromagnetic signal in a known 

frequency range is used to derive the source waveform current moment of the lightning 

discharge (Cummer, 2003), using a numerical propagation model (Cummer, 2000). The 

waveguide propagation effects and bandwidths of digital filters used in the evaluation of 

ELF spectrum limit the narrowness of the current pulse to be resolved. It is shown that 

sub-millisecond variations are not very important in the study of sprites; however, the 

short time scale information is relevant for elves and the sprite halo (Barrington-Leigh et 

al., 2001; Cummer, 2003). 

 A combination of high speed video images and ELF magnetic field measurements 

showed that most sprites were initiated when the lightning charge moment exceeded 300 

– 1100 C km (Cummer and Stanley, 1999). Stanley et al. (2000) reported larger charge 

moment changes (~ 6000 C km) required to initiate day time sprites, which is expected 

because the higher daytime mesospheric conductivity inhibits the penetration of quasi-

electrostatic fields to higher altitudes. Cummer (2003) presented a case where the charge 

moment charge was 120 C km and a weak sprite was observed.  Thus the generation of 

the sprite and its delay time are dependent in a complex manner on the charge moment 

change, charge transfer rate, mesospheric conductivity and maybe on many other local 

parameters, which either may create substantial ionization in the mesosphere or may help 

in the mesospheric ionization process. For example, the gravity waves produced during 

thunderstorm convective motions may propagate up to the mesosphere, where they may 

decay and produce heating which may help in the ionization of mesospheric constituents. 

If this is true, then one may look for a possible relation between sprites and the 

temperature inversion at the mesosphere (Fadnavis et al., 2007). Observations also show 
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that a significant fraction of sprites (~ 10%) contain a clear sprite current ELF signature, 

which is distributed evenly across lightning-sprite delays. This suggests that there may be 

some processes which are present in those sprites which contain strong sprite currents 

and that they may be absent in the remaining cases. 

 

4.4 VLF Waves 

 Apart from ULF and ELF waves, lightning discharges are the source of VLF (3 – 

30 kHz), LF (30 – 300 kHz), MF (0.3 – 3 MHz), HF (3 – 30 MHz) and UHF (> 30 MHz) 

electromagnetic waves. Whistlers were observed by Storey (1953) and Helliwell (1965). 

The collected vertical electric field data were analyzed to derive information about the 

lightning discharges (source properties), propagation features and parameters of the 

medium through which the waves have propagated (Storey, 1953; Helliwell, 1965; Singh 

et al., 1998a). Later on, the horizontal components of the wave fields were measured 

along with the vertical components. These measurements were used to determine the 

polarization and arrival direction of the waves (Sagredo and Bullough, 1973; Hayakawa 

et al., 1986) and used to pin-point where the downcoming whistler entered the Earth-

ionosphere waveguide (Hayakawa, 1993). 

 In recent years during the Eurosprite 2003 campaign, the vertical electric fields 

across the frequency range from 3 kHz to 30 MHz were measured at a number of places 

in France (Neubert et al., 2008) and attempts were made to correlate the radio emissions 

with CG discharges and with optical observations of sprites. HF emissions were 

measured during the time interval when sprites were observed. The radiation from a 

lightning discharge and a sprite was separated, and they clearly showed that HF bursts 

were associated with sprites.  

Whistler mode waves are right hand polarized with the upper frequency cutoff as 

either the local electron plasma frequency or gyrofrequency, whichever is less (Stix, 

1992). Ionospheric plasma consists of electrons and different types of ions having 

different ion gyrofrequencies. Hydrogen ion whistlers, oxygen ion whistlers, and helium 

ion whistlers have been observed on satellites.   
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4.4.1 VLF sferics 

            Sferics (short for atmospherics, radio signals from lightning discharges) propagate 

in the Earth-ionosphere waveguide with low attenuation, typically ~ 2-3 dB/1000 km 

(Davies, 1990). The waveform, spectrogram and power spectrum of a typical sferic is 

shown in Figure 3 (a-c); this was recorded on 23 March 2008 at Allahabad, India. The 

spectrum shows greater dispersion at lower frequencies. The power spectra show that the 

major portion of the wave energy lies in the frequency range 5 – 15 kHz. The waveform 

is identical to that reported by Singh and Singh (2005a) using numerical simulation. 

The dynamic spectra of sferics are explained by considering propagation though 

the Earth-ionosphere waveguide, where the D-region of the ionosphere acts as the upper 

boundary of the waveguide. Because of their reflection from the D-region sferics are 

widely used for D-region studies, which is one of the least studied regions because it is 

inaccessible by satellites (altitude range is too low) and by balloon-borne equipment 

(altitude range is too high). To obtain D-region electron density profiles rockets are used 

(Smith, 1969; Danilov and Vanina, 2001), but these have their own limitations as rockets 

cannot be launched frequently. Ground-based active measurements include HF-VHF 

incoherent scatter radars; however, these techniques are difficult to apply due to the low 

electron densities (< 10
3
 el/cm

3
) at night (Hargreaves, 1992). Cummer et al. (1998b) 

developed a technique, which is based on wideband, long distance VLF propagation 

effects observed in sferics. This technique measures average electron density profile 

across the entire path and is therefore capable of estimating the electron density of large 

region. Using the same technique, Cheng et al. (2006) derived the night-to-night 

variations of the D-region ionosphere electron density over the East coast of the United 

States and compared the measurements to the results of past nighttime rocket experiments 

made at similar latitudes. Some recent work with sferics has focused on understanding 

the delayed sferic component called a “tweek” (Outsu, 1960; Yamashita, 1978; Yano et 

al., 1989; Yedemsky et al., 1992). Ohya et al. (2003) estimated equivalent nighttime 

electron densities at reflection heights in the D-region ionosphere at low-middle latitudes 

by accurately reading the cut-off frequency of tweek atmospherics. They reported the 

equivalent electron densities ranged from 20-28 el/cm
3
 at ionospheric reflection height of 

80-85 km. Ohya et al. (2006) examined the response of the nighttime D-region 
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ionosphere to the great magnetic storm of October 2-11, 2000, using an accurate analysis 

of the cut-off frequency of tweek atmospherics. 

The morphological features of sferics have also been used to estimate the distance 

and geographic bearing of the source discharges and the ionospheric reflection height 

along the propagation path (Kumar et al., 1994; Hayakawa et al., 1994). Wood and Inan 

(2002), using VLF magnetic field measurements at Palmer, Antarctica, calculated the 

azimuths of sferics originating in North America (~ 10,000 km range). Furthermore, they 

compared arrival azimuth with flash level data from the National Lightning Detection 

Network (NLDN) and showed that 83.6% of the cases matched the reported NLDN 

flashes to within 2 degrees. Several ground-based networks have been developed to 

determine the time and location of individual lightning strokes and flashes accurately 

using the characteristics of sferics, such as Lightning-Mapping Arrays (Rison et al., 1999; 

Thomas et al., 2000), UK Met Office VLF system (Lee, 1986a, b, 1989), and Los Almos 

Sferic Array (LASA) (Smith et al., 2002).  

 

4.4.2  Whistler Phenomena 

 Whistler phenomena discuss wave propagation and related properties of VLF 

waves having right hand polarization and wave frequency smaller than the electron 

gyrofrequency and electron plasma frequency. These waves have been received both on 

the Earth’s surface as well as onboard satellites. The waves can propagate through the 

magnetospheric plasma in a ducted mode, a non-ducted mode and a prolongitudinal 

mode. Waves propagating in the non ducted mode can be received only onboard 

satellites.  

 

4.4.2.1 Ducted Mode of Propagation: 

Whistler mode waves entering the ionosphere/magnetosphere with small wave-

normal angles are trapped in a geomagnetic field aligned duct formed by the 

enhancement/depletion of electron density. Three dimensional ray tracing computations 

using realistic modes for the plasma density and geomagnetic field show that the waves 

with wave-normal angles less than 4
0
 could be trapped in the duct and received on the 

Earth’s surface (Walker, 1976; Ohta et al., 1997). Strangeways (1999) showed a 
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reduction in wave path excursions both in latitude and longitude as rays propagate 

upwards in a duct from low altitudes (~ 1000 km) to the equatorial plane. The ray tracing 

method is applicable when the duct radius is greater than the characteristic wave-length 

(Strangeways, 1999). Pasmanik and Trakhtengerts (2005) have studied whistler mode 

wave propagation in magnetospheric ducts of enhanced cold plasma density for the 

arbitrary ratio of the duct radius to the whistler wavelength (where the ray tracing method 

is not applicable). They have showed that in the case of the source exciting 

simultaneously several duct eigenmodes, the receiver should register the set of discrete 

signals each corresponding to one of the excited eigenmodes. The interval between the 

arrivals of the different eigenmodes depends on the duct parameters, especially on the 

width. The interval is longer for a narrow duct and smaller in the case of a wide duct, and 

the interval can vary up to some hundreds of milliseconds.  

The above results have been used to explain the trace splitting reported by Hamar 

et al. (1992) for whistlers recorded at the ground station Halley, Antarctica, as well as on 

the satellite Intercosmos 24 (Lichtenberger et al., 1996). This result can also be used to 

explain the reported trace splitting in the whistler data recorded at Varanasi (Singh, 1999; 

Singh et al., 1999a) and at Jammu (Singh et al., 2004b). Recently, Streltsov et al. (2006) 

presented a numerical study of whistler propagation in the presence of plasma density 

gradients transverse to the geomagnetic field with parameters typical of the equatorial 

magnetosphere of the Earth. Their results showed that low frequency whistlers can be 

trapped and guided by these narrow channels both in the case of reduced density channels 

and enhanced density channels. They further showed that energy can leak from the 

channel in the case of high density ducting because it is impossible for the whistler inside 

the duct to couple to a propagating wave outside the channel. 

When a lightning discharge is composed of multiple flashes and VLF energy 

propagates in the same duct, the series of whistlers having the same dispersion and 

separated in time are called “multiflash” whistlers. When a lightning discharge 

illuminates more than one duct simultaneously in the magnetosphere then “multi-path” 

whistlers are produced. The dynamic spectra of whistlers are controlled by the path-

length, the distribution of electron density and the magnetic field along the path of 

propagation. In figure 4 we present dynamic spectra of four whistlers recorded at 
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Allahabad (geomagnetic latitude = 16.49
0 

N, longitude = 155.34
0
 E, L = 1.09), which is a 

newly set up low latitude Indian station on 17 June, 2008, at 12:40 UT. The lower and the 

upper cut off frequencies are 2.28, 2.03, 1.68, 3.12 kHz and 7.12, 7.86, 5.63, 5.63 kHz, 

respectively. The dispersion of the whistlers is 18.26, 15.72, 16.41 and 17.25 sec
1/2

, 

respectively. 

The characteristic difference between low and mid-high latitude whistler spectra 

is (a) the upper cut-off frequency of low latitude whistler is higher than those observed at 

mid-high latitudes, (b) the nose-frequency ( ~ 0.4 fHe, where fHe is the equatorial electron 

gyrofrequency) for low latitude whistler is ~ 100 kHz or more and hence is not observed 

due to heavy attenuation (the absorption coefficient is minimum ~ 5 kHz and increases 

with frequency), and (c) the dispersion is smaller than for mid-high latitude whistlers.  

 It is expected that a lightning discharge may illuminate a large area in the 

ionosphere through which wave energy may enter the magnetosphere to appear as a 

whistler wave in the conjugate region. Chum et al. (2006) have studied the penetration of 

lightning induced whistler waves through the ionosphere by investigating the 

correspondence between the whistlers observed on the DEMETER and MAGION-5 

satellites and the lightning discharges detected by the European lightning detection 

network EUCLID. They demonstrated that the area in the ionosphere through which the 

electromagnetic energy induced by a lightning discharge enters the magnetosphere is up 

to several thousand kilometers wide. This suggested that stations situated within 1000 km 

could record the same whistlers. Using a statistical approach they assigned causative 

lightning discharges to the observed whistlers both on the Low Earth Orbit (LEO) 

satellites and to the whistlers observed at satellites orbiting at altitudes of ~ 5000 km. The 

results show that positive and negative lightning discharges have approximately the same 

efficiency in producing whistlers. However, no information could be obtained about the 

intra-cloud discharges, because the EUCLID network is rather insensitive to them. 

Comparing lightning data and one-hop whistlers obtained from an automatic detection 

system on the ground, Lichtenberger et al. (2005) and Collier et al. (2006) showed that 

the primary source of whistlers are cloud-to-cloud lightning and only a minor part of the 

whistler events are excited by cloud-to-ground discharges. 
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Recently, Ferencz et al. (2007) have presented dynamic spectra containing 

numerous fractional-hop whistlers recorded onboard DEMETER satellite and termed 

them “spiky whistlers”. They appear to be composed of a conventional whistler 

combined with multimode sferics propagating in the Earth-ionosphere waveguide. To 

explain the dynamic spectra it is proposed that a part of energy from the cloud-to-ground 

lightning discharge propagating in multimodes in the Earth-ionosphere waveguide may 

leak from the waveguide and propagate upwards through the ionosphere/magnetosphere. 

These signals can be recorded on board DEMETER satellite. Ferencz et al. (2007) have 

presented a full wave numerical model to explain the observed dynamic spectra taking in 

to account the above concept. 

Singh et al. (2008) recently presented unusual dynamic spectra of doublet and 

triplet whistlers recorded at the low latitude station Jammu during a daytime disturbed 

magnetic activity period. The analysis showed that these doublets and triplets belonged to 

mid latitudes having paths of propagation L = 2.63 and 2.67 for the whistler elements 

constituting doublets and L = 4.35, 4.39 and 4.43 for the triplet components. However, 

dispersion values for the doublets are 16.8 and 18.6 sec
1/2

, whereas for the triplets they 

are 81.9, 95.2 and 100.2 sec
1/2

, respectively. This shows that there is no correspondence 

between the L-value and dispersion of doublets. According to the dispersion of the 

doublets, the L-value is ~ 1.4, which is much less than the estimated value. This 

discrepancy may be due to the fact that the propagation path may not be along the 

geomagnetic field line. A similar discrepancy between L-value and dispersion has also 

been reported by Singh et al. (2004c, 2006a). In fact low dispersion may arise if the 

propagation path is small. In that case the total propagation path may lie in the 

ionosphere. In such a situation, the analysis method involving matched filtering technique 

may not be valid, because it requires a propagation path along the field lines and the 

electron density distribution is considered to be that for a diffusive equilibrium model. If 

the path lies in the upper ionosphere (L < 1.5) then plasma density irregularities and 

plasma blobs are frequently present there; these may affect wave propagation through the 

processes of scattering, diffraction, reflection and non-linear interaction (Sonwalker and 

Harikumar, 2000).  
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 Singh et al. (2007a) analyzed whistlers recorded during the period January 1990 – 

December 1999 and showed the maximum monthly occurrence rate to be during January 

to March. The dependence of occurrence rate on geomagnetic disturbances was analyzed 

using the variation of KP index. They showed that the occurrence rate probability 

monotonically increases with Σ KP (daily sum) values. The occurrence rate is found to be 

greater than the average value for Σ KP ≥ 20. The results are in good agreement with the 

earlier studies from low latitude stations (Helliwell, 1965; Hayakawa, 1991; Singh, 

1993). They have also shown that, as the intensity of a magnetic storm increases, the 

probability of whistler occurrence decreases. The enhancement in the whistler occurrence 

rate during geomagnetic disturbances at low latitudes is attributed to the formation of 

additional field aligned ducts (Somayajulu et al., 1972; Singh, 1993). 

A marked seasonal variation is observed at every latitude. This is obviously due to 

the seasonal asymmetry of sources (lightning activity) in the conjugate hemisphere. The 

solar cycle variation exhibits a smaller occurrence rate during high solar activity and an 

enhanced one during low solar activity, in which D-region absorption might play a 

significant role. The latitudinal dependence of whistler occurrence rate shows a 

maximum around ~ 45
0 

geomagnetic latitudes (Helliwell, 1965). The lower latitude cut-

off of whistlers is found to be ~10
0
 geomagnetic latitude (Hayakawa et al., 1990). Below 

this latitude, the field aligned path is in the ionosphere where ionospheric plasma 

turbulence may affect field aligned wave propagation. 

The analysis of whistlers recorded at a ground station yields information about the 

duct properties through which it has propagated. The analysis of occurrence rate and 

diffuseness of the whistler trace give an estimate of the lifetime and width of the duct. 

The lifetime of ducts may vary from a few minutes to many hours (Singh, 1993). 

However, statistical analysis suggests that the duct formation and decay are cyclic 

phenomena with the time scale of an hour (Hansen et al., 1983; Hayakawa et al., 1983; 

Singh and Singh, 1999). At low latitudes duct formation is difficult due to the required 

density enhancement (~ 100%), the presence of curvature in geomagnetic field, and 

plasma turbulence. In the absence of a duct, the observation of small dispersion low 

latitude whistlers are proposed to be due to propagation in the prolongitudinal (PL) mode 

with the angle between the wave normal and the geomagnetic field almost tending to zero 
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(Singh, 1976; Singh et al., 1992; Singh, 1993). Recently, Kumar et al. (2007) reported an 

observation from the low latitude station Suva, Fiji, and interpreted the propagation 

mechanism to be PL mode, supported by the negative electron density gradient in the 

ionosphere that is enhanced during magnetic storms.  

 

4.4.2.2  Non-Ducted Mode of Propagation 

VLF waves entering the ionosphere/magnetosphere with large wave-normal 

angles to the geomagnetic field cannot be trapped in the field aligned ducts; they 

propagate in a non-ducted mode. Such waves suffer reflection at the point where the 

wave frequency equals the lower hybrid resonance frequency (Stix, 1992), and they do 

not reach the Earth’s surface. They can only be received onboard satellites. Such 

whistlers are called as magnetospherically reflected (MR) whistlers and are composed of 

multiple discrete components (Smith and Angermi, 1968). Sometimes waves of higher 

frequency while propagating downward may not undergo lower hybrid resonance 

reflection; they propagate with their wave normal nearly perpendicular to the 

geomagnetic field but their ray direction remains nearly parallel to the Earth’s magnetic 

field. Such a mode of propagation is called the proresonance (PR) mode, and the whistler 

traces are called walking trace whistlers (Walter and Angerami, 1969). When the wave 

frequency is lower than the lower hybrid resonance frequency and the wave normal angle 

is relatively small (but not small enough to be trapped in ducts) the waves propagate in 

the prolongitudinal mode (PL) and such whistlers can be received on low altitude 

satellites. They are called PL whistlers (Morgan, 1980) and they are considerably 

different from PR whistlers. 

The other class of whistlers observed on satellites is proton/ion whistlers, 

propagating in the ion-cyclotron mode. The propagating frequency lies in the range 

between the proton gyrofreqency and the crossover frequency characterized by the 

frequency where the polarization becomes linear during the transition from right to left 

handed. Observed whistler traces are proton whistlers, helium whistlers, deuterium 

whistlers, etc. (Gurnett et al, 1965; Barrington et al., 1966). The crossover frequency 

yields information on ion composition (relative ion concentrations) (Gurnett and 

Shawhan, 1966; Shawhan and Gurnett, 1966). 
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4.4.2.3  Modeling whistler wave propagation 

 

 Whistler wave simulations for different plasma conditions have been carried out 

using Maxwell’s equations, and the continuity and conservation of momentum equations 

(Ferencz, 1994; Ferencz et al., 2001; Singh et al., 2004c; Singh and Singh, 2005a,b,c). In 

these simulations, the lightning excitation source was represented by a Dirac delta 

function and the whistler’s dynamic spectrum was obtained. Singh and Singh (2005a), 

using full wave analysis, derived equations for the whistler-mode signal propagating 

longitudinally through a one dimensional, inhomogeneous, weakly ionized 

magnetoplasma, in which wave-energy dispersion is caused by the interaction between 

electrons and wave fields, and dissipation of energy is caused by collisions between 

electrons and neutrals. The commonly known whistler spectrum is obtained from the 

space-time dependent wave field at a given point in space by the Fast Fourier Transform 

method. It is interesting to observe that the technique used under various conditions 

simultaneously explains low dispersion whistlers, nose whistlers, precursors (see later) 

and proton whistlers. 

Singh and Singh (2005c) extended the results and included the effect of inter-

particle collisions on the amplitude of the excited signals in different frequency ranges in 

terms of charge per unit length of the excitation source and the distance of propagation of 

the signal. It was shown that the amplitude of the signal depends upon the polarization 

mode, distance from the current source, the shape of the excitation current and frequency 

range considered. The technique has also been used to explain trans-ionospheric pulse 

pairs, TIPPs (Singh and Singh, 2005b). Singh et al. (2006b) used this technique to 

simulate the whistlers recorded at low latitudes and extended the frequency range to 

estimate the nose frequency, not experimentally observed on the dynamic spectra which 

are limited to <10 kHz. They showed that the method permits one to study nose 

frequency variations, which can be used to deduce electric fields in the magnetosphere 

(Singh et al., 1998 a,b). 

Using two dimensional numerical simulations, the space and time evolution of the 

lightning generated pulse in the lower ionosphere was studied and the optical emissions 

generated were explained (Rowland et al., 1995; Inan et al., 1996; Veronis et al., 1999). 
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Cho and Rycroft (2001) developed a three dimensional code to calculate the optical 

emissions created by the electromagnetic pulse from a horizontal cloud-to-cloud 

discharge. These numerical simulations are based on the finite difference time domain 

treatment of Maxwell’s equations. Nagano et al. (2003) using full wave analysis studied 

the ionospheric propagation of the lightning-generated electromagnetic pulse with a 

model including a horizontally stratified ionosphere, free space and the ground using 

Fourier spectral analysis and the plane wave expansion technique. 

 

4.4.3  VLF Emissions 

 VLF emissions are whistler mode signals having complex structured and 

unstructured dynamic spectra observed both on the ground and onboard satellites. 

Unstructured emissions are characterized by a band limited spectrum for times ranging 

from a few milliseconds) to a few hours; they are called hiss emissions. Hiss emissions 

can be observed at repeated time intervals as pulsing hiss (Singh et al., 2008). Structured 

emissions exhibit coherent discrete frequency-time characteristics; these are emissions 

like chorus, periodic emissions, and quasi periodic emissions (Helliwell, 1965; Singh, 

1993). VLF emissions may be generated following lightning discharges, or triggered by 

VLF waves of natural origin or by transmitted signals. Simultaneous measurements of 

VLF waves and charged particles onboard rockets and satellites suggest that the main 

source of energy for VLF emissions is the energetic electrons in the magnetosphere 

(Cornilleau-Wehrlin et al., 1985; Siingh et al., 2005a).  

 To pinpoint the generation mechanism of these emissions, it is essential to know 

the mode of propagation from the source region to the observation point, the source of 

energy and the mechanism which converts part of the energy into VLF emissions. Several 

theories have been proposed from time to time to explain the origin of these emissions. 

They differ significantly and can be classified into the following categories: Cerenkov 

radiation (incoherent and coherent), traveling wave tube mechanism, backward wave 

oscillator, cyclotron radiation and transverse resonance instability (Rycroft, 1972; 

Sonwalkar and Inan, 1989; Trakhtengerts, 1995; Singh et al., 1999b; Singh and Patel, 

2004; Singh et al., 2007b).  
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4.4.3.1  Hiss Emissions 

The spectral form of hiss emissions is a band limited non-dispersive signal. Its 

global distribution is characterized by three principal zones of intense activity, namely 

auroral hiss located around 70
0
 latitude, mid-latitude hiss near 50

0
 latitude and equatorial 

hiss observed below 30
0
 latitude. The intensity of the equatorial/low latitude hiss is less 

than those observed at middle and high latitudes (Hayakawa and Sazhin, 1992; Sazhin et 

al., 1993; Singh 1999; Singh et al., 1999b, 2001, 2007b). Recent observations clearly 

suggest that the equatorial region from low altitudes to the inner plasmasphere is an 

intense source of hiss emissions (Singh et al., 1999b; 2000, 2001; 2002; 2007b; Singh 

and Singh, 2002). Based on dynamic spectrum hiss emissions are classified in to 

continuous hiss and impulsive hiss. The occurrence probability of auroral hiss and 

equatorial hiss is increased when the KP index increases from 0 to 5 (Hayakawa et al., 

1975; Singh and Singh, 2002). Impulsive hiss was reported during the expansion phase of 

a substorm in the midnight sector, whereas continuous hiss did not show any correlation 

with the local magnetic disturbances (Makita and Fukunishi, 1973). This shows that 

magnetospheric conditions control the generation and propagation of hiss emissions. 

The early observations of hiss emissions were interpreted in terms of a wave-

particle interaction mechanism where background noise could be amplified to the level of 

the observed hiss intensity (Solomon et al., 1988; Singh et al., 2001, 2007b). Santolik and 

Gurnett (2002) using spacecraft data concluded that hiss could arise from an extended 

sheet source. Santolik et al. (2001) analyzed high-rate waveform data of plasmaspheric 

hiss collected by the POLAR plasma wave instrument at high altitudes in the equatorial 

plasmasphere and suggested that waves with wave normals both parallel and anti-parallel 

to the geomagnetic field were generated through the gyroresonant interaction process 

with energetic electrons. Their amplification leads to the loss of resonantly interacting 

electrons from the radiation belts, particularly in the slot region 2 < L < 3.  However, 

typical wave growth rates inside the plasmasphere are not sufficient (Church and Thorne, 

1983) to generate the observed intensity of hiss emissions (Singh et al., 2001). 

Whistler mode waves propagating back and forth along geomagnetic field lines 

may undergo interference and diffraction processes to produce a hiss like spectrum 

(Dragonov et al., 1992; Bortnik et al., 2003 a,b). Sonwalkar and Inan (1989), analyzing 
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DE-1 satellite data, argued that the wave energy introduced in the magnetosphere by 

atmospheric lightning might play an important role in the embryonic generation of hiss 

emissions. Green et al. (2005) also discussed that hiss could be produced from lightning 

generated whistlers. However, the intensity distribution of hiss over the land mass and the 

ocean does not correlate with the distribution of lightning activity which shows stronger 

activity over the land mass than over the oceans (Green et al., 2005, 2006; Thorne et al., 

2006). An extensive study showed that hiss intensity below 2 kHz has no correlation with 

land mass (Meredith et al., 2006). 

Meredith et al. (2006) analyzed CRRES wave data together with the global 

distribution of lightning to test both the theories. They suggested that in situ amplification 

of wave turbulence in space seems to be the main source of wave power below 2 kHz, 

whereas wave power above 2 kHz is more likely to be related to lightning-generated 

whistlers. They further suggested that natural plasma turbulence should dominate the loss 

of relativistic (~ MeV) electrons in the slot region 2 < L < 3. Meredith et al. (2007) 

estimated radiation belt electron loss time scales due to plasmaspheric hiss and lightning 

generated whistlers in the slot region. They showed that plasmaspheric hiss propagating 

at small and intermediate wave normal angles is a significant scattering agent in the slot 

region and beyond. In contrast, plasmaspheric hiss propagating at large wave normal 

angles and lightning generated whistlers do not contribute significantly to radiation belt 

loss. They further showed that plasmaspheric hiss may be an important loss process in the 

inner region of the outer radiation belt during magnetically disturbed periods.  

Chorus emissions propagating long distances can also transform into hiss 

emissions. Santolik et al. (2006) using different plasma density models and reverse ray 

tracing computations showed that the observed low altitude hiss on the dayside at 

subauroral latitudes may have a possible source region near the geomagnetic equator at a 

radial distance between 5 and 7 Earth radii which is consistent with the source region of 

chorus. Thus they suggested that ELF hiss is nothing but chorus propagating to low 

altitudes, with their dynamic spectra being modified during propagation. Recently 

Bortnik et al. (2008) proposed a new explanation for the generation of plasmaspheric hiss 

that reproduces its fundamental properties. In this mechanism they argued that high 

intensity narrow band chorus can evolve into low intensity broadband noise filling the 
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plasmasphere, ultimately being observed as hiss. Rodger and Clilverd (2008) commented 

that this modeling of hiss generation from chorus requires experimental confirmation. 

isThe connection between chorus and hiss is very interesting because chorus helps in the 

formation of high energy electrons (by acceleration) outside the plasmasphere (Horne et 

al., 2005) whereas hiss depletes these electrons at lower equatorial altitudes (Abel and 

Thorne, 1998). 

 

4.4.3.2  Chorus Emissions 

 Chorus emissions are natural wave emissions generated by plasma instabilities in 

the Earth’s magnetosphere observed first on the ground at middle and high latitudes 

(Helliwell, 1965). They occur in the frequency range from hundreds of Hz to several kHz 

and can have complex frequency spectra resembling a riser, faller, hook, inverted hook or 

even more complex structures on time scales of a fraction of second. Chorus is also 

observed at low latitude ground stations (Singh et al., 2000). Pickett et al. (2004) have 

reported remarkable cases of risers, fallers and hooks in the frequency range 1.5 - 3.5 kHz 

at and near the plasmapause observed on the four Cluster spacecraft wideband plasma 

wave receivers. Singh et al. (2004b) have also reported a rare observation of hisslers 

(LaBelle and Treumann, 2002) from a low latitude station, a quasi periodic falling noise 

which is feature of auroral broadband VLF hiss. Figure 5 shows the dynamic spectrum of 

chorus between 0.75 and 3.2 kHz recorded at Allahabad on 12 August 2007. Mid latitude 

chorus observed on the ground is correlated with X-ray bursts caused by 30 keV electrons 

(Rosenberg et al., 1990) and is mostly observed during disturbed period accompanied by 

hiss type emissions (Dowden, 1971). 

 Satellite observations have shown that chorus power fluxes increase outside the 

plasmasphere during enhanced geomagnetic activity (Meredith et al., 2001). However, 

Smith et al. (2004) showed that chorus power is initially depressed from the storm onset, 

reaching a minimum at about the time of the Dst minimum. This decrease in power on 

the ground surface may be due to propagation. In the recovery phase of the storm, chorus 

wave power rises above the prestorm level by as much as 40 dB. 

 The importance of chorus arises because these waves are believed to accelerate 

electrons outside the plasmasphere. Studies have shown that relativistic electron 
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enhancements are associated with elevated fluxes of lower energy electrons and 

prolonged periods of enhanced chorus amplitudes lasting for few days (Meredith et al., 

2002, 2003; Miyoshi et al., 2003). The observations of a local peak in phase space 

density (Miyoshi et al., 2003), flat top pitch angle distributions (Horne et al., 2003) and 

energy dependence in particle spectrum (Summers et al., 2002) support the idea that 

electrons are accelerated by the chorus emissions during wave (chorus) – particle 

(electron) interactions. 

 The other effect of chorus is to cause burst precipitation (Horne and Thorne, 

2003) and the depletion of radiation belt electrons. These precipitated energetic electrons 

create additional ionization in the lower atmosphere (Rodger et al., 2007) and cause the 

absorption of whistler mode waves as they propagate through the medium (Smith et al., 

2004). Rodger et al. (2007) computed the energy spectra of precipitated electrons based 

on current models of chorus propagation and wave-particle interaction theory. They 

showed that the results are not consistent with the experimentally observed radio wave 

perturbations. Chorus can act as a mediating agent transferring energy from the lower 

energy (~ 10 – 100 keV) electrons which are predominantly precipitated to the relativistic 

(~ MeV) electrons which are accelerated (Meridith et al., 2002; Horne et al., 2005; 

Bortnik et al., 2007). 

 The generation mechanism of chorus has been extensively studied in the past 

(Sazhin and Hayakawa, 1992 and references theirin). The nonlinear cyclotron resonance 

interaction between whistler mode waves and counter streaming electrons is most widely 

used theory (Trakhtengerts, 1999; Singh et al., 2000; Singh and Patel, 2004; Titova et al., 

2003). During the development of the cyclotron instability, a singularity in the form of 

the step on the distribution function of the energetic electrons is formed at the boundary 

in velocity space between resonant and non-resonant electrons, and the backward wave 

oscillator (BWO) regime is realized; discrete emissions such as chorus are generated. 

Singh and Patel (2004) used the BWO mechanism to explain some features of chorus 

observed at the Indian Antarctic Station, Maitri. 

 Chorus is believed to be generated near the geomagnetic equator, where the first 

derivative of the magnetic field strength along the field line is nearly zero (Helliwell, 

1967; Lauben et al., 2002). The analysis of multi satellite Cluster data of chorus 
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emissions (Parrot et al., 2003; Santolik et al., 2003; 2005; 2006) show that the generation 

region is localized near the equatorial cross-section of the L~4 magnetic flux tube, and 

has a typical scale size of ~ 2000 km along the magnetic field lines. The source center is 

defined by the balance of the Poynting flux parallel and antiparallel to the field line 

(Santolik et al., 2005; Santolik, 2008). The central position is found to move randomly 

back and forth over a few thousand of kilometers on time scales of minutes. The chorus 

waves propagating along geomagnetic field lines may be reflected back to the source 

region (Parrot et al., 2004; 2006). The intensity ratio between the magnetic components 

of waves coming directly from the equator and waves returning to the equator was 

observed to be between 0.005 and 0.01 (Santolik, 2008).  

            Ray tracing results show that the chorus waves are generated with oblique wave 

vectors pointing towards the Earth in an equatorial region between 5 and 7 Earth radii 

from the Earth (Chum and Santolik, 2005). Moreover, the wave normals are nearly field 

aligned when the waves again cross the equator inside the plasmasphere which is 

consistent with the observed wave normal of plasmaspheric hiss and which makes further 

amplification of these waves possible (Santolik et al., 2001). This also shows that waves 

generated with finite wave normal angle can, after one/two reflections, have wave 

normals almost parallel to the geomagnetic field line and so could be received on the 

Earth’s surface (Singh et al., 2000; Singh and Patel, 2004). 

Trakhtengerts et al. (2007) analyzed Cluster data obtained on two different 

geomagnetically active days of April 18, 2002 and March 31, 2001 and showed that the 

frequency spectrum of individual chorus elements depends on the position of the 

observation point in and near the generation region. Breneman et al. (2007) reported 

correlated chorus elements with different frequency/time characteristics as seen on the 

four different Cluster spacecraft. They used a cross-correlation analysis to quantify the 

dispersive time delay between each frequency of a chorus element as it arrives at Cluster 

spacecraft pairs; this is compared with ray-tracing results in order to identify source 

locations that are consistent with the observed delays. Chum et al. (2007) have shown 

that a quasi-stationary, or static, source that varies in time can reproduce chorus 

observations.  



 47

Satellite data, showing internal fine structure of each wave packet consisting of a 

sequence of separate sub-packets, has been explained by the generation of sidebands 

during the evolution of a chorus wave packet and by the beating effect of simultaneously 

present signals at closely separated frequencies (Nunn et al., 2005). Waveform analysis 

shows that the duration of sub-packets is variable from a few milliseconds to a few tens 

of milliseconds (Santolik et al., 2003; 2006; Santolik, 2008). 

Systematic observations have confirmed that in most cases the amplitudes of 

chorus emissions are indeed sufficiently high to be governed by nonlinear effects. The 

measured amplitudes of the sub-packets reached more than 30 mV/m (Santolik, 2008). 

Cattell et al. (2008) reported maximum amplitude of dawnside chorus to be 240 mV/m 

from the S/WAVES instrument onboard STEREO spacecraft. The high amplitudes and 

fine structures clearly suggest that nonlinear effects play an important role in the 

microphysics governing the interaction of these waves with charged particles populating 

the interaction region in particular and the magnetosphere in general. 

 

4.4.3.3  Periodic and Quasiperiodic Emissions 

VLF emissions of short bursts repeated at regular intervals of the order of few 

seconds termed periodic emissions are observed both on the ground as well as onboard 

satellites. They are classified as either dispersive or as non-dispersive. In the dispersive 

type the period between bursts varies systematically with frequency whereas in the non 

dispersive type there is a little or no observable systematic change in period with 

frequency (Helliwell, 1965; Sazhin and Hayakawa, 1994). Considering the periodicity to 

be associated with the generation process, two models were suggested, one involving the 

bounce period of the charged particles and the other involving the two-hop whistler 

transit time (Dowden and Helliwell, 1962).  

Quasi periodic emissions (QP) are VLF emissions with periods of 20-50 s 

(Helliwell, 1965). Kitamura et al. (1968) were the first to subdivide QP emissions into 

those which were associated with corresponding geomagnetic pulsation activity (QP1), 

and those which were not associated with pulsation activity (QP2). Both QP1 and QP2 

were further classified according to the form of their spectrograms (Sazhin and 

Hayakawa, 1994 and references therein). Smith et al. (1998) analyzed data from South 
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Pole, Halley and found a strong association between periodic emissions (PE) and the 

simultaneous appearance of QP2. Incorporating a larger data set from a latitudinal array 

of Antarctic stations, Engebretson et al. (2004) studied latitudinal and seasonal variations 

of quasi-periodic and periodic emissions. PEs and QPs of type I was found to have 

different latitudinal, seasonal and diurnal occurrence patterns. PEs occurred more around 

60
0
 geomagnetic latitude whereas QPEs occurred around 65

0
-70

0
 geomagnetic latitude. 

PEs occurred at all local times but the diurnal variation was latitude dependent. PEs were 

more common during the months of May to September whereas QPEs were observed 

during the months of October to March.  Pasmanik et al. (2004) presented the results of a 

case study of quasi-periodic (QP) ELF/VLF hiss emissions detected on board the Freja 

and Magion 5 satellites. They reported an event with an increase in the frequency drift 

rate during the generation of a single element of QP elements having different frequency 

drift rates. They have also shown that the generation of QP emissions can be 

accompanied by the generation of discrete emissions. 

 

4.4.3.4 Triggered Emissions 

Triggered emissions exhibit a bewildering variety of dynamic spectral forms 

(Helliwell, 1965; Nagano et al., 1996; Nunn et al., 1997; Smith and Nunn, 1998; Singh et 

al., 2003a; Singh and Patel, 2004; Siingh et al., 2005b) and follow a source which could 

be a whistler (Storey, 1953; Nunn and Smith, 1996), discrete emissions (Helliwell, 1965), 

signals from VLF transmitters (Helliwell, 1965; Bell et al., 1982), power line radiation 

from the world’s power grids (Helliwell et al., 1975; Park and Change, 1978; Luette et 

al., 1979) and the upper frequency boundary of hiss (Helliwell, 1969; Reeve and Rycroft, 

1976 a,b; Koons, 1981; Hattori et al., 1989, 1991; Singh et al., 2000; Singh and 

Ronnmark, 2004). The observations in general support the idea that strong VLF 

emissions may be triggered by a very weak signal. Perhaps even sometimes the triggering 

source may be invisible. The dynamic spectra of triggered emissions are complex and the 

complexity of the problem can be appreciated from the fact that (a) triggered emissions 

are non-stationary/transient phenomena, (b) the variation of frequency varies widely from 

event to event and (c) the frequency of these emissions can differ considerably from that 

of the triggering signals. 
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 A number of nonlinear processes have been suggested to explain the phenomena 

(Helliwell, 1967, Omura et al., 1991; Nunn and Smith, 1996; Smith and Nunn, 1998; 

Hobara et al., 1998). The nonlinear effect can be categorized into wave-wave interactions 

(Harker and Crawford, 1969) and wave-particle interactions. There seems to be general 

agreement that the mechanism responsible for the generation of triggered emissions is a 

nonlinear interaction between a finite amplitude wave-train and the particles that happen 

to be in resonance with it. The nonlinear interaction produces phase bunching of the 

resonant and nearly resonant electrons, thus giving rise to a current, which acts like an 

antenna and generate VLF waves/emissions (Helliwell, 1967; Dysthe, 1971). 

 The second order resonance condition close to the geomagnetic equator in the 

magnetosphere is valid for this slowly varying inhomogeneous interaction region, and 

determines the frequency spectrum of the discrete emissions generated by the energetic 

electron beam. Roux and Pellat (1978) discussed a self sustaining theory in which 

particles which are detrapped at the triggering wave termination are phase organized and 

act coherently for a while they therefore give rise to an emission with either falling or 

rising frequency, depending upon the sign of the inhomogeneity variation. Further, the 

spatially averaged part of the distribution function of these suddenly detrapped electrons 

generates an instability, which amplifies the emitted waves. Helliwell and Inan (1982) 

have discussed a feedback model in which the interaction region centered on the 

magnetic equator is treated like an unstable feedback amplifier. Molvig et al. (1988) have 

developed a self-consistent theory of triggered whistler emissions, which is capable of 

predicting the observed dynamic spectrum of the emissions. In the feedback model 

constant frequency oscillations are generated on the equator, risers and fallers are 

generated on the downstream and upstream sides of the magnetic equator, respectively 

(Helliwell, 1967; Helliwell and Inan, 1982).  

 Pickett et al. (2004) reported multipoint Cluster observations of remarkable cases 

of triggered emissions of VLF risers, fallers and hooks in the frequency range of 1.5 to 

3.5 kHz with a frequency drift for the risers on the order of 1 kHz/s. These emissions 

appear to be triggered out of the background hiss. Trakhtengerts et al. (2003) considered 

the effect of initial phase bunching of energetic electrons on the generation of triggered 

ELF/VLF emissions in the magnetosphere. They showed that the electrons interacted 
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with the primary whistler wave packet to form a phase-bunched beam in velocity space, 

which serves as a traveling wave antenna. 

 

4.4.3.5 VLF Waves as Magnetospheric Probes 

 Waves propagating through different regions of space carry information about the 

medium through which they travel. By analyzing the received wave features, it is 

possible to derive information about the medium such as the electron and proton density, 

temperature, and electric and magnetic field distributions in the medium (Helliwell, 1965; 

Singh et al., 1998 a,b, and references therein ). Apart from these diagnostic features, these 

waves carry thunderstorm energy from the lower atmosphere to the plasmasphere and 

magnetosphere and thus couple the atmosphere to the plasmasphere and magnetosphere 

(Siingh et al., 2005a).   

The dispersion property of whistlers is widely used to yield information about the 

medium parameters such as electron density and total electron content of a flux tube 

(Sazhin et al., 1992; Singh, 1993; Singh et al., 1993; Singh and Singh, 1997; Singh et al., 

1998a),  and electron temperature (Scarf, 1962; Guthart, 1965; Sazhin et al., 1990, 1993). 

Similarly the analysis of ion whistlers provides information about ion density and ion 

temperature (Singh et al., 1998b). During continuous whistler monitoring if one finds 

changes of nose frequency with time, it is possible to estimate the large scale electric 

fields (Bernard, 1973; Block and Carpenter, 1974; Park, 1976, 1978; Singh, 1993) 

present in the magnetosphere. Coupling of the ionosphere and protonosphere was also 

studied using whistler data (Park, 1978; Lalmani et al., 1992; Singh, 1993). One of the 

important findings of the whistler studies was the discovery of the plasmapause where the 

electron density suddenly decreases by an order of magnitude or more within a fraction of 

an Earth’s radius (Park and Carpenter, 1978). In low latitude regions non-nose whistlers 

are observed; using the extension method the full dynamic spectra can be constructed to 

determine the path of propagation (Singh et al., 2006b). 

 The electron density, electron temperature and other parameters derived from 

whistler measurements compare well with direct rocket/satellite measurements (Park et 

al., 1978; Singh et al., 1998 a, b). The study of the latitudinal and longitudinal 

distribution of electron density and its long term variations using rockets/satellites is 
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financially and technically challenging, whereas these can be studied very readily by the 

whistler technique at a number of stations spread in latitude and longitude. Singh et al. 

(2006a) analyzed diffuse whistlers recorded at the low latitude station Varanasi, India, on 

January 11, 1998 using matched filtering technique to estimate parameters of the 

medium. They showed that the diffuse whistlers are formed due to merging of a large 

number of fine structure traces. 

 The remote sensing method based on ground-based measurements provides 

average information and is model dependent. It does not yield the local value of the 

electron density in the magnetosphere. Trakhtengerts and Rycroft (1998) suggested a 

method based on the phenomena of nonlinear whistler wave reflection from the lower 

hybrid resonance level (Trakhtengerts et al., 1996). This allows one not only to measure 

the local value of electron density but also localizes the place of measurement in the 

magnetosphere. Using this method, one can obtain important information about short 

scale low frequency turbulence (ion-cyclotron waves) present in the magnetosphere. 

Considering the upper cut-off frequency of the nose whistler to be due to thermal 

attenuation, the electron temperature has been estimated to vary between 1.7 eV (2 × 10
6
 

K) and 4 eV at L = 4. The method was not widely used because it is difficult to 

distinguish whether the upper cut-off in the spectrum was due to thermal attenuation or to 

propagation effects (Sazhin et al., 1990). Attempts have also been made to infer 

magnetospheric electron temperature from whistler dispersion measurements (Sazhin et 

al., 1993). 

 The diffuse nature of whistler traces yields information about duct width (~100 

km). Duct life time usually varies between 30 minutes and 2 hours, although duct life 

times as high as 1-2 days have been reported (Singh et al., 1998a; Singh and Singh, 

1999). Ducts occupy a relatively small volume (0.01%) in the magnetosphere. The 

electric field from a lightning discharge penetrates the ionosphere and can create a 

density channel in the magnetosphere along geomagnetic field lines. Park and 

Dejnakarintra (1973) computed high altitude electric fields due to thunderclouds taking 

into account the presence of ionosphere. They showed that the flux interchange 

mechanism of duct formation is plausible. Rodger et al. (1998) have shown that under 

‘typical’ atmospheric conductivity conditions the high altitude electric fields from even 
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giant thunderclouds are too small to create a realistic whistler duct in a realistic period, 

during both day and night conditions.   

 
4.5 HF, VHF and UHF Waves 

 VHF and UHF radiation from lightning yields rich information about the 

morphology of separate micro-discharges, pulse trains and bursts, their connection with 

different phases of a lightning flash, and individual and averaged frequency spectra of 

radiation from the discharge (Rakov and Uman, 2003). In fact, the elementary micro 

discharges with the front duration ~ 10 ns and complete duration ~ 1 µs (Rakov and 

Uman, 2003) are the elementary emitters in the VHF/UHF band. The contribution of the 

return stroke in this very high frequency range is small (Rakov and Uman, 2003).  

             Hayakawa et al. (2008) have developed a three dimensional simulation of micro-

discharge activity in thunderstorm clouds. They showed that the simulated waveforms are 

close to those observed and the temporal development, with the duration of pulse trains 

from tens to hundreds of microseconds and the micro-discharge number rate being in 

agreement with the corresponding experimental data. During the Euro-sprite campaign 

high frequency (3 – 30 MHz) electromagnetic signals were recorded at four stations in 

France (Neubert et al., 2008) and were correlated with cloud-to-ground discharges and 

sprites; they reported weak high frequency emissions during the time interval when 

sprites were observed.  

 VHF signals were also observed onboard the ALEXIS satellite in the form of 

pulse pairs, called as Trans-Ionospheric Pulse Pairs (TIPPs) (Holden et al., 1995; Mossy 

and Holden, 1995). The dynamic spectra of these signals resemble whistlers, each with a 

uration of a few microseconds separated by some tens of microseconds. Holden et al. 

(1995) proposed that TIPPs are generated during electrical activity of clouds and the 

dispersion is accounted for by the signal passing through the ionosphere. It was proposed 

that the first signal could be associated to the cloud-to-ground discharge and the second 

with the cloud-to-ionosphere discharge (Roussel-Dupre and Gurevich, 1996). The 

observed bifurcation at lower frequencies was attributed to the propagation of both 

ordinary and extraordinary modes (Holden et al., 1995; Singh and Singh, 2005b). 

Representing the CG and high altitude discharge currents by a combination of Dirac delta 
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functions separated in the time domain, Singh and Singh (2005b) simulated the dynamic 

spectra of the TIPPs. Details of simulation technique are given by Singh and Singh 

(2005a). The spectrograms of TIPPs depend on the high altitude current, the time lag of 

the high altitude discharge and the electron density of the F2 layer.  

 

5. Summary and Conclusions 

 In this paper, we have summarized certain aspects of electrical discharges in 

thunderstorms and associated phenomena. Both the evolution and electrification of 

thunderstorms are briefly discussed. However, the microphysics of charge separation in 

thunderclouds under different meteorological conditions is not fully understood. This 

requires further investigations using field and laboratory data and three dimensional 

simulations of the microphysical processes involved.  

 The bidirectional (cloud-to-ground and cloud-to-high altitude) discharges from 

thunderclouds lead to many spectacular phenomena, and represent an energy source in a 

planetary atmosphere coupling different layers to the outermost regions (ionosphere, 

magnetosphere). This is still an active research field, especially on discharges in the 

mesosphere. Various optical bands in the mesospheric discharges (TLEs) have been 

observed, but distribution of intensities as a function of wavelength is not precisely 

known. Further experimental measurements and modeling work is required. The 

observations of sprites have revealed that many processes are involved. Observations 

show an asymmetry in cloud-to-ground discharges which generate sprites; negative CG 

discharges are rarely associated with sprites. Further model computations could show that 

sprite sizes are connected with the lightning’s charge moment change.  

 The infrasound observations show that the energy input during sprites is quite 

high, ~ 0.4 – 40 GJ (Farges et al., 2005), and this energy would produce perturbations in 

the atmosphere. This speculation has to be explored further. The infrasound can 

propagate to long distances and hence the perturbations might also be over a wide area. 

 The upward discharge creates a conducting path in the upper atmosphere so that 

the role of sprites and TLEs in the global electric circuit becomes important. The electric 

fields established in the mesosphere following a lightning discharge are not properly 

understood, and the relaxation time scale of quasi-electrostatic fields and its dependence 



 54

on the ambient parameters of the medium are not well known. A complete understanding 

of the electric fields generated during intra-cloud, cloud-to-cloud, cloud-to-ground and 

cloud-to-ionosphere discharges remain a problem which requires both experimental and 

theoretical modeling efforts. 

 The electrical processes acting in thunderstorms control the flow of vertical 

current, which near the cloud surface create space charges which rapidly attach to 

droplets, aerosol particles and ice forming nuclei and affect storm dynamics. The 

charging time constant ranges from minutes to hours, which are comparable to typical 

convection and turbulence characteristics times. Therefore, time dependent cloud 

charging models, including turbulence and convection, are required for detailed study. 

 Upward discharges and their associated electromagnetic radiation modify 

mesospheric and stratospheric processes by changing the concentration of different 

constituents such as NOx and HOx. Streamers in sprites produce heat in the neutral 

atmosphere and aid in the generation of NOx. Thus perturbations in mesospheric 

chemical constituents require further study. TLE discharges in the mesosphere provide an 

opportunity to probe this region which remains inaccessible except using rockets. Hence 

in-depth studies of TLEs become more relevant and important. 

 Processes involving nonlinear behavior, e.g., wave-particle interactions and wave-

wave interactions, still require further studies. The role of space weather parameters on 

the generation and propagation of ELF/VLF emissions have not been comprehensively 

studied. Their fine structure and other morphological features observed by various 

satellites, including Cluster, is an important area to be explored. ELF waves have been 

widely used to monitor the global occurrence of lightning and sprites. However, the 

mechanism by which sprites generate ELF waves is not properly known and hence 

further study in this area is suggested.  

 The thunderstorm electrification process and downward lightning discharges play 

a significant role in the Earth’s climate. They also couple the troposphere to higher 

regions of the atmosphere and to the ionosphere and magnetosphere. Many complex 

processes are involved which warrant detailed study.  
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Captions to Figures: 

 

Fig. 1. Various currents that flow in the vicinity of an active thundercloud; there are five 

contributions of the total current. In the same figure are shown the various 

Transient Luminious Emissions (TLEs) of the stratosphere and mesosphere  

 

Fig. 2. Schematic of a section through the global atmospheric electric circuit in the dawn–

dusk magnetic meridian (Tinsley, 2008). The tropospheric and stratospheric 

column resistances at a given location are represented by T and S, with subscripts 

referring to equatorial, low, middle, high, and polar latitudes. The geometry is 

essentially plane-parallel, with only small changes in T due to changes in cosmic 

ray fluxes at low latitudes, but large changes in T and S due to cosmic ray and 

other energetic space particle fluxes at high latitudes. The variable solar wind 

generators affect Vi at high latitudes, and the variable highly electrified cloud 

generators, represented by the generator symbol in the equatorial plane, affect Vi 

globally, and volcanic aerosols as well as the energetic particles affect T and S; 

with all acting together to modulate the ionosphere-Earth current density Jz. 

 

 

Fig. 3. (a) Waveform, (b) spectrogram, and (c) power spectrum of a sferic recorded on 23 

March, 2008 at Allahabad (India). 

 

Fig. 4. Dynamic spectra of four whistlers recorded at Allahabad, (India) a low latitude 

Indian station on 17 June, 2008 at 12:40 UT. 

  

Fig. 5. Two typical spectrogram of chorus emissions recorded at an Indian ground station 

Allahabad (India)  on 12 August, 2007 at 19:30 UT. 

 

 

 

 



 93

 

 

 

 

Figure-1 

 

 



 94

 

Figure-2 



 95

 

 

 

 

Figure-3 
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Figure-4 
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