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Induction in the Timed Interval Calculus

Axel Wabenhorst

Abstract

The Timed Interval Calculus, a timed-trace formalism based on set theory,
is introduced. It is extended with an induction law and a unit for conca-
tention, which facilitates the proof of properties over trace histories. The
effectiveness of the extended Timed Interval Calculus is demonstrated via
a benchmark case study, the mine pump. Specifically, a safety property
relating to the operation of a mine shaft is proved, based on an imple-
mentation of the mine pump and assumptions about the environment of
the mine.

1 Introduction

One successful approach to modelling real-time systems has been via the rep-
resentation of physical variables as functions which vary over time. Examples
include the Duration Calculus (DC) [11, 12], the Temporal Agent Model [10] and,
more recently, Temporal Algebra [4] and the Timed Interval Calculus (TIC) [2].
These languages are used to express and reason about dynamic properties of
variables. They and their predecessors [7] showed how concatenation of time
intervals can form the basis of an effective real-time modelling and reasoning
capability.

TIC and DC differ in that TIC is founded in set theory, while DC is logic-
based. In addition, DC does not distinguish between predicates which are the
same “almost everywhere”, whereas in TIC, predicates are distinguished even
if they are different at only one point in time.

Section 2 presents the syntax and semantics of the Timed Interval Calculus.
TIC is extended with a unit for concatenation and temporal operators O (“al-
ways”) and & (“sometime”). In addition, transformation laws for the Calculus
are presented, in particular a new induction law which facilitates reasoning over
trace histories.

Section 3 discusses the specification and verification of the mine pump case
study [1, 5] in the Timed Interval Calculus. This case study is sufficiently
complex to render the verification of its safety properties a challenge, and is
therefore seen as a benchmark case study. We provide a complete formal proof
and motivate the proof strategy wherever possible, so that the reader might
gain an intuition about how to approach such a proof in an analogous situation.

Liu [5] has also provided a specification and verification of the mine pump
using the Duration Calculus. That approach assumes that the mine pump



has the capacity to reduce the water level in the mine below danger within a
fixed time period regardless of how high the water level is initially. Thus, it is
not necessary to specify an initial condition and induction over trace histories
is not required. As a result, the proof is greatly simplified. Our analogous
constraint, condition 11, is weaker (and more realistic) in that it only assumes a
minimum rate of water outflow once the pump has been switched on. Another
previous approach [6] to the mine pump example contains only informal proofs
and stipulates stricter conditions for the pump, so that there are no delays
between detection of high water levels and low methane, and no flags.
Conclusions are drawn in Section 4.

2 Notation and Laws for Timed-Trace Predi-
cates

The Timed Interval Calculus is a simple set-theoretic notation for concisely
expressing properties of time intervals [2]. We present the existing foundations,
the extensions and transformation laws.

2.1 Time

Let T be the time domain, denoting the real numbers R. Time intervals will
be specified as real intervals: for a,z : T with a < z, the left-open, right-closed
interval between a and z is

(a..z] = {t:T|a<t<z}.

Similarly for left and right-open (a ... z), left and right-closed [a ... 2], and left-
closed, right-open [a ... z) endpoint brackets. For left and right-closed intervals,
we also allow @ = z, so that a single point is a special case. However, the empty
set is not an interval. The set Tis the set of all (finite) non-empty time intervals
just defined.

We reason about real-time systems by considering predicates on variables
which vary with time. Thus, variables have the form v : T — V. For example,
H>0 : T — R might represent the water level in a mine shaft. So the property
that the water level is greater than some danger level DangerH, O at time ¢ is
expressed by Hy O(t) > DangerH>O. Since DangerH, O is a constant, it may be
considered as a constant function over time, so the property may be expressed as
H>0(t) > DangerH> O(t), or (H2O > DangerHy O)(t). Therefore, the property
that the water level is greater than the danger level is a function, the truth value
of which varies over time: HyO > DangerH; O : T — B. Thus, predicates can
be considered to be functions P : T — B.

2.2 Sets of Time Intervals

We now introduce the set of all time intervals during which some predicate is
true everywhere [2, 6], which will be used to reason about real-time systems.



To increase the expressiveness of the reasoning, we permit the specification of
features of the intervals themselves, specifically their infimum «, supremum w,
and duration § = w—a. Thus, we allow free occurences of & and w (and therefore
§ in predicates. In this case, predicates are functions T2 — B, depending on
t, @ and w. For instance, the property that the water level in a mine shaft is
greater than the danger level for a period of at least one time unit is expressed

by
H;0 > DangerH, O A § > 1.
Sets of time intervals are expressed by special brackets as follows.

Definition 1 (Sets of time intervals) For a predicate P : T° — B, we define
the left-open, right-closed intervals where P holds as

(tPl={(a..w]|a,w:T A a<w A Vit:(a...w] P(t,a,w)}.

The abbreviation § = w — a is often made. Defined similarly are the left and
right-open {(P), the left-closed, right-open [P), and, with the condition a < w
instead of @ < w, the left and right-closed [ P] brackets. Define right-open
intervals

kPy = EPYULR),

similarly for sets of right-closed [[ P{, left-open { P}, and left-closed [ P} intervals.
Define

kPl = (PYUEPJUCPIUEPR).
[m]

Subsequently, we will state examples and laws using particular brackets, but in
many cases there are analogous results with different bracketing which we omit
for brevity.

While predicate P may contain free occurrences of a and w, these variables
are bound in {P4.

For example,

¢H2O > DangerH O A 6 > 1)
= {le..w)]|ow: TAw—a>1
AVt:(a..w) HO(t) > DangerHy O}.

is the set of all open intervals of length at least one, during which the water
level is above the danger mark.

2.3 The Concatenation Operator

Since properties are expressed as sets of time intervals, conventional set opera-
tors can be used for manipulating them. However, it is often useful to connect



intervals end-to-end, in order to reason about sequences of behaviours. In the
Duration Calculus, this is achieved by the chop operator, denoted by ™ [3, 11]
or 3 [5, 8]. We use a similar operator, called concatenation and denoted by 3 [2].
However, unlike previously, we allow concatenation with the set {@}. While the
empty set is not a time interval, we will see shortly that it is useful to reason
with. It will be so useful, in fact, that we make two special definitions:

1 = {o}

s = Sutl
where 5 : PI, and P denotes the powerset operator.
Definition 2 (Concatenation) Let X,Y : PTU {1}. Then
X3Y2{zUy|oz: XAy:Y AzUy:T AVth:zVih:y t <t}
O

Thus, X ;Y : PIU{1}. If X, Y : PL then an interval  : X can be joined to an
interval y : Y to form a new interval z Uy, if # occurs strictly before y, and the
two intervals meet exactly with no overlap or gap. If there are no such intervals,
then X 3 Y = @; in any case, X 3 YV : PI. If X : PT, then X 31 =13 X = X,
and 131 = 1. Thus, 1 is the unit of sequential composition in PTU {1}.

It is useful to be able to express the condition that a property P holds
somewhere in a given interval. In the Duration Calculus, the property that P
holds on a subinterval of a given interval is expressed by &P, defined to be
true ™ P " true [11]. Observe that concatenation with respect to two non-empty
intervals returns an interval which is not a point. Therefore, [truey;[Py;[truel
does not express the property that “P holds somewhere” in the case where the
interval is a point. In addition, it excludes the possibility that P holds only at
the left or right endpoint of an interval. Thus, rather than making the definition

fOPY = (Rtrued s kP35 Rirued) U (Rerued 5 fPY) U (RPY 5 Rrued) U R P,
which would include all possibilities, it is more convenient to make the equivalent
but more succinct definition

fOP] = [true) s [P s ftrue).
We also define fO0P] =1\ [O-P].
Note that fOP] is not necessarily the same as [ PJ: while [ = 1} is the set
of all intervals of length one, 08 = 1] is the empty set, as every interval has a

subinterval of length less than one. However, fO0P) = [P] if whenever P holds
on an interval, it holds on every subinterval also [11].

We illustrate concatenation with the following example. Suppose that if the
water level in a mine has been above the danger level for at least Delay time
units, then the mine pump must be switched on. This is expressed by

tH,0 > DangerH,O A § > Delay) C [truey 5 fPump = Onj.

Note that the unspecified brackets permit the join to be either open-closed or
closed-open concatenation.



2.4 Laws

In Figure 1 we present a selection of laws applicable to reasoning about the
above specification notation, in addition to the usual laws of set theory. Law 13
is an existing law, but its proof differs from that in the Duration Calculus. This
is because endpoints of intervals are fixed in DC, with the result that there is
an upper bound on the number of alternations of P and =P in the interval. On
the other hand, endpoints are arbitrary in TIC, so there is no upper bound on
the number of alternations. For this reason, there are restrictions on H which
do not exist in DC. For example, H(X) = —(I C X) satisfies all conditions in
Law 13 except that it contains negation, and fails the conclusion. The law is
proved in Appendix A.

Laws 14 to 18 are new, with proofs in Appendix B, while the others are
analogous to laws in the Duration Calculus [3, 9]. In Figure 1, P, ) and R are
predicates that may contain, unless otherwise stated, free occurrences of a, w
and §. Also, S, T, U and V are sets of time intervals, i.e. they are of type P1T.

The induction law on trace histories, Law 14, will form the basis of the proof
in the mine pump case study. The induction law on interval lengths, Law 13, will
not be used in the mine pump case study. The main difference between the two
laws is that instead of the induction being over intervals with arbitrary starting
point, the intervals have starting point o < 0 since ffw < 0 = a < 0] = [Ftrue].

Law 15 will be important in the mine pump example, where {I} will repre-
sent an arbitrary history of the property S C T which we wish to prove. This
arbitrary history will be constructed by induction (Law 14). Note that the law
would not hold if we replaced {I} by an arbitrary set U C [fa < rJ: for exam-
ple, fa < 03 fa=1Aw =3] C fa < 0] ; fo = 2 Aw = 3] because both sides
equal fa < 0Aw =3}, but fa=1Aw=3] ¢ fa=2Aw =3J.

The finite variability property is defined to hold for a property P if there
exists duration ¢ > 0 such that [—~P]; fFOPY; [P C [0 > &). In Law 17, this
property is not necessary for closed right endpoints. For open right endpoints,
define predicate Q : T®> — B by Q(t,a,w) =t € Q, where Q is the set of rational
numbers. Then

ktrue) # @ = [ftrue) s @ = ftruey 5 (FQ) U ~Q)).

3 Application: A Mine Pump

Consider the case of a mine [1], where miners work in a confined space and there
is danger of mine collapse, flooding and the accumulation of gases. Here, the
operation of the mine is considered only as it relates to the level of water in the
mine. A pump operates to remove water from the mine if the water reaches a
certain level, but only if the concentration of methane in the mine is sufficiently
low to permit the safe operation of the pump: a high level of methane combined
with a spark from the pump may result in an explosion. OQur aim will be to prove
that the water level in the mine will not be at a level which prevents mining
too long or too often. This will be done using the property that the level of



Law 1 (Monotonicity) If for all o, w and § in T and al t : (o ... w]
P(t,o,w) = Q(t,o,w), then {P] C (Q].
Law 2 (True and false) [true] = 1 and [false] = @.
Law 3 (And) [PIN[Q] = [P A Q).
Law 4 (0r) FPJUEQ) C §P v QJ.
Law 5 (Not) - P] C I\[P).
Law 6 (Concatenation monotonicity) If S C S’ and T C T', then
SyT C ST,
Law 7 (Concatenation associativity) (S;7);U = S;(T;U).
Law 8 (Concatenation zero and unit) S;@=0;5 =0 and
S351=1;5=25.
Law 9 (Concatenate union) (SUT);U = (S;U)U(T;U) and
S3(TUU) = (S;T)U(S;U).
Law 10 (Concatenate intersection) (SN T);U C (S;U)N (T3 U) and
Us(SNT) C (U8 N(U;T). Equality holds in the first case if w and & are
not free in S and T, and in the second case if « and § are not free in S and T.
Law 11 (Concatenate property) If «, w and § do not occur free in P, then
EPA6>0] = EPY;[EPY.
Law 12 (Always) If o, w and § are not free in P, then fOP) = [PJ.
Law 13 (Induction on Lengths) Let H(X) be a formula containing X : PTU
{1}, but no occurrence of negation or the complement of X . Let P be a predicate
for which the finite variability property holds. If

e H(1) and

o H(X) = H(XU(X3EP]) U (X ;[-PY)
then H(T).
Law 14 (Induction on Histories) Let H(X) be a formula containing X :
P, but no occurrence of negation or the complement of X. Let P be a predicate
for which the finite variability property holds. If

o H([fw < 0)) and

o H(X) = H(XU(X;EPD) U (X ;[-PD)
then H(fa < 03).
Law 15 (Ignore Prefix) Suppose that there exists v : T such that for all I :
fa<r), {I};S5C{1};T. Then SC T.
Law 16 (Distribute Intersection) If a, w and ¢ are not free in P, then
fPIN(S; T) = (kPIn S); (RPN T).
Law 17 (Endpoints) If «, w and § are not free in P and Q, and if P or Q
is finitely variable, then
EPV QY = PV Q3 (EPIUEQY) = (EPTUEQY); PV QL.
Law 18 (Implicit Duration) If a, w and § are not free in P and @, then
EPAG> 1} C Firucl s FQ] & FPAS> 1§ C F5 <15 QL.

Figure 1: Laws for manipulating timed traces.




methane is not high too long or too often, permitting the timely operation of
the mine pump.

3.1 Specification: The Environment

The levels of water and methane in the mine are represented by the continuous
functions H20O : T — R and CH4 : T — IR respectively. The methane level
below which the mine pump may be switched on safely, if required, is HighCHy,
and the water level above which it is desirable to switch the mine pump on is
HighH> 0. We wish to prevent the water level from reaching the dangerous level
DangerHs O, where DangerHs O > HighH> O, whenever possible. We make the
abbreviations

HH,O = Hy0 > HighH,0
DH>0 Hy0 > DangerH,O.

Note that DH,O = HH,O0.

We need some assumptions on the environment, without which we cannot
prove the desired property. Specifically, these are the initial conditions of the
system, the constraints on the frequency and duration of high methane levels,
and a constraint on the rate of inflow of water into the mine. We require that
initially, the water level of the system is low. Otherwise, there may not be
enough time for the pump to be switched on before the water level becomes
dangerous, so that the condition on the frequency or the duration of dangerous
water levels may be violated. We begin to observe the system at time 0, so we
stipulate that up to and including time 0, the water level is low:

fo<0] C [-HHA,0J (1)

I

The rate of inflow of water into the mine is constrained to be at most MazInflow:
I = [H;0(w)— H;0(a) < Mazinflow.5). (2)

This will prevent the water from rising to the dangerous level too quickly, thus
allowing sufficient time for the pump to switch on. The top of Figure 2 depicts a
possible variation of the water level, with this condition restricting the gradient
of the water level. Note that the condition allows for the possibility of the water
level falling, even when the mine pump is off; this is reflected in the oscillation
of the water level around DangerH;O.

The duration and frequency of high methane levels directly determine when
the pump is prevented from being turned on, so the constraints on them must
be specified. The methane level may not be high for more than F time units
at once, while any two periods of high methane levels must be separated by at
least ¢ time units:

FHCHs C [d<Ej (3)
FHCH ; [-HCHJ; fFHCH] C |6 > &Y. (4)

Section 3.3 will place constraints on ¥ and &.
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Figure 2: A possible mine pump behaviour.



3.2 Specification: The Desired Property

We will show that periods of dangerous water levels are either within one time
unit of each other, or they are far apart. In the former case, the water level may
be continually dangerous, or interspersed with times when the water level is not
dangerous. This reflects the possibility that the water level oscillates around the
dangerous level when the pump has not yet been switched on (see Figure 2).
Formally, the condition which we wish to prove is

EDH, 01386 > 133 [DH0] C F6>€— A —1], (5)

where A (and £) will be constrained in Section 3.3. This condition literally states
that if two periods of dangerous water levels are separated by at least one time
unit, then they must be separated by at least £ — A — 1 time units. Therefore in
Figure 2, less than one time unit separates the time when the water level first
reaches DangerHs; O and the time the water level last drops below DangerHs; O.

While the condition would be satisfied by a long time period for which the
water level is continually dangerous, such a long time period will have a subpe-
riod for which the condition fails.

The proof of the condition will rely on an implementation of the mine pump
which ensures that the mine pump is switched on when the water level is high,
but before the water level has had time to rise to dangerous, provided that the
methane level is sufficiently low to allow safe operation of the pump.

3.3 Implementation: The Pump

The mine pump operates to remove water from the mine if the water reaches a
high level (HighH> O), but only if the level of methane in the mine is sufficiently
low to permit the safe operation of the pump: a high level of methane combined
with a spark from the pump may result in an explosion.

The levels of water and methane are measured by sensors, and reaction-time
delays may occur between a high level occurring and the mine pump registering
this high level. High levels of water and methane have been registered when
flags HyOFlag : T — B and CHyFlag : T — B respectively have been set. The
delays are no more than DelayH; O time units in the case of the water sensor and
DelayCHy time units in the case of the methane sensor. These delay constraints
are expressed in our notation as:

EHH>O A é > DelayH, O] C  [true) ; [[H2 OFlag) (6)
f~HCHy A6 > DelayCHy C  [truey s f-CHyFlagy. (7)

Thus, if the water level is high for at least DelayH;O time units, the flag
H;OFlag must be set after at most DelayH, O time units. A similar consid-
eration applies to the methane level.

Once the appropriate flags have been set for the operation of the mine pump,
a further delay may occur before the mine pump starts. This is expressed by

EH;OFlag A ~CHsFlag A § > DelayPump) C  [true] ; fPumpOnj, (8)



where PumpOn : T — B holds if the mine pump is operating, and DelayPump
is the delay between the appropriate flags being set and the mine pump being
switched on.

Appendix C shows that conditions 6 to 8 can be combined to yield

EHH,O A—=HCHy A8 > A) C |6 < AJ; fPumpOny, (9)
where
A =  maz(DelayCHs, DelayH> O) + DelayPump.

We now state some constraints on the operation of the mine pump, which will
facilitate the proof later. We constrain the delay in the operation of the pump
as follows:

DangerHy O — HighHy O (10)
MazInflow '

E+A <

Thus, the delay in the operation of the pump (resulting from high methane
levels and sensor delays) can be no higher than the minimum time taken for the
water level to rise from HighH; O to DangerH; 0.

Once the mine pump has been switched on, the level of water in the mine
decreases at a rate of at least MinQutflow > 0; this is expressed in our notation
as follows:

[PumpOn) C [H20(w)— HyO(a) < —MinOutflow.dy. (11)

The constraint

1

MaziInflow
1+ MinOutflow

E+A < (12)

ensures that MinQutflow is large enough to limit the period where the water
level is dangerous to one time unit, thereby compensating for both the maximum
rate MazInflow of water and the delay E + A in switching the mine pump on.
The constraint

DangerH, O — HighH, 0O
MinQutflow

& > 1+42A+4 (13)
ensures that the gap £ between dangerous methane concentrations is large
enough to compensate for the time required to reduce the water level from
dangerous to low.

It is reasonable to constrain the mine pump’s operation so that it is switched
off if the water level is sufficiently low or the methane level is high. Otherwise,
the property that the water level is not too high too often could be satisfied
easily by leaving the pump on permanently. This trivial solution can be ruled

10



out (perhaps because the pump might be damaged by running dry) by imposing
conditions on the mine pump’s operation:

[-HH,0 NS > DelayH, 0y C  [truey 5 f-H2 OFlag)
fHCH4 A § > DelayCHs) C  [true) s fCHsFlag)
E(—H2OFlag vV CH4Flag) A § > DelayPump) C  [true) ; f-~PumpOnj.

These conditions are analogous to conditions 6 to 8, except that they relate
to the mine pump being switched off rather than on. We will not use these
conditions in our proof: by ignoring them, we implicitly assume the worst case
that the mine pump is off unless conditions 6 to 8 result in the pump being on.
This shows that there is no disadvantage in underspecification.

3.4 Proof: Induction Law

We show that conditions 1 to 4 on the environment and conditions 6 to 13 on
the mine pump imply the goal condition 5. Central to the proof is the idea that
before any period when the water level is dangerous (i.e. DHO holds), there
must have been a period when the water level was low (i.e. “HH>O held). As
a result, the time taken for the water level to rise from low to dangerous gives
the pump sufficient time to switch itself on and restrict the period of time when
the water level is dangerous. This suggests that a proof using induction on the
history of the water level is required.
Thus, it suffices to show that for all intervals I : fa < 0],

{I};EDH20) ;6 > 13 fDH,0) C {I};f6>&—-A-1] (14)

since then Law 15 can be applied to achieve the desired result. Law 14 is an
induction law on histories rather than interval lengths, so it seems like a suitable
law to use. The most obvious induction hypothesis is

H(X) = VI:X {I};fDH,0¥;[s > 1J;DH,0]
C{I};p6>¢6-A—-1)

as then the conclusion of the induction law corresponds to condition 14.

However, it turns out that this proposed induction hypothesis is not strong
enough, and that it is necessary to incorporate the consideration that before
any period when the water level is dangerous, it must have been low previously.
The strengthened induction hypothesis is

H(X) = VI:X {I};fDH;0);[é > 1);[DH:0)
C{I}; fDH20¥ ;6 2 &~ A —1]; fDH, O
AX ; fHH,0J C [truey s [-HH, 0 3 [ HH» O).

Note that the first conjunct of the induction hypothesis is stronger than the
required conclusion; this facilitates the proof of the induction step for the first
conjunct with I : X 5 [DH,0j.

11



The application of the induction law on trace histories (Law 14) could occur
with P = DH2 0 or P = = HH> O, but we choose the latter as the resulting proof
is slightly simpler. The finite variability property necessary for the application
of the induction law does not follow from the specification or from the continuity
of HyO. However we assume the finite variability property here, as it seems like
a reasonable property to hold in the physical world, being a constraint on how
rapidly the water level can oscillate.

Note that high methane levels and high water levels do not necessarily co-
incide: while a high water level must be preceded by a high methane level,
there may or may not be overlap. Each case must be considered, and for this
reason, the proof is intrinsically non-trivial. However, motivation for the proof
strategy will be provided wherever possible, and steps are presented in detail
for completeness. The proof relies largely on the lemmas to be proven in the
next section. The monotonicity law (Law 6) is used so often that instances of
its use will not be mentioned.

For the first conjunct of the base step, with I : fw < 0],

{1} [PH, 05 6 > 15 [DH2 O]

N

condition 1
K—|HH2 0§| H KDHQ 0§| H KJ Z lﬂ H KDHg Oﬂ
= continuity of H» O (see Section 3.1)
%]

N

{I};EDH20) ;5[0 > & — A —1);5EDH20].

For the second conjunct of the base step,

fw < 0); [HH,0)

N

condition 1

f-HH, 0] ; [HH> O}

N

definition of 1 and Law 9
[true] ; f-HH,0Y ; {HH 03.
For the first conjunct of the induction step, let
I:XU(X;[~HH,0)) U (X ; fHH,0)).
If I:X, then

{1} fPH2 056 > 1 5 [DH, O
C {I};EDH0¥5[0 > € - A—1];[DH,0]

follows immediately from the induction hypothesis. If I : X ; f-HH>0}, then
there exist I; : X and I : [ HH,0J such that {I} = {L};{L} and

12



{15 EPH 0] 5 k6 > 1] 5 [ DH2 O]

{h};{kL};fDH20); [ > 1] ; fDH2 0]

N

b [~HH 03
{h};[-HH:0) 5 fDH O 5 (6 > 1] 5 [ DH2 O]

= continuity of Hs O

N

{[};KDHzOﬂ;Kdzg—A—]ﬂ;KDHzOﬂ.

If I: X 3 fHH,0J, then from the induction hypothesis there exists I : ftruej
and I : [~HH>0) ; fHH, O] such that {I} = {L1}; {L} and

{1} 5 kPH2 0456 > 1] 5 kDH2 0]

{h}s{k};EDH20Y ;580 > 195 fDH2 0]

N

Theorem 1 below
{h}s{k};EDH0)5F0 2 — A= 1];fDH, 0]
{I};EPH, 0Y5 0 > € = A = 1] 5 [ DH; 0.

The second conjunct of the induction step is shown by

(X U (X5 [-HH:0]) U (X ; [HH:0])) 5 [HH2 O]

C Law 9
(X 5 FHH, 0)) U (X 5 [ HH, 0 5 [ HH, 0Y)

C induction hypothesis
(Ftruey ; f=HH, 03 5 [HH> 03) U (X ;5 [—~HH,0) 5 LHH, 0Y)

C X C Flrue]

ktruey ;s f-HH2O0J s fHH, O).

This completes the main part of the proof. Note that the proof uses only
one condition explicitly, 1; the other conditions are used in proving the lemmas
of the next section.

The following theorem corresponds to a single step in the proof above.

Theorem 1 For all I : [~HH,0J ; [ HH; 0},

{1} EPH, 0] 5 |6 > 1 5 fDH2 0]
C {I};kpH 03580 > € — A =15 FDH, 0

13



Proof: Figure 2 suggests that the separation of periods of dangerous water
levels depends on whether or not the water level is low in between: if it is low in
between, then we aim to show that the separation is at least £ — A — 1. On the
other hand, if the water level is not low in between, then we aim to show that the
separation cannot be 1 or more. These two cases are covered by Lemmas 1 and
2 in the next section, and depend on the separation of periods of high methane
levels (condition 13) to permit the timely operation of the pump. Formally, let
I:{—HH>0) ; [[HH>0). Then

{1} EDH 04506 > 1 5 fDH2 0
= By definition of O and Law 12, fHH,0J U [O-HH.0) =1
{I}; KDH2 O;' H (KJ > 1;' N (KHHQO% U K<>—|HH20§|)) 3 KDHQO]
Laws 9 and 3

N

({1} EDH,0y 56 > 1 A HH, 0 5 DH, 03)
U({1}; EDH, 0] 5 [O-HH,0) 5 {DH, 0))

Lemmas 1 and 2

N

{I}; fDH, 036 > € — A — 133 [ DH,0). O

3.5 Proof: Lemmas

In this section, we prove the results necessary in the application of the induction
law in the previous section. The first two lemmas correspond to the two cases
in Theorem 1, while Lemma 3 is a technical lemma used in their proof.

The first lemma states that two times when the water level is dangerous
cannot be separated by a period of length one or more where the water level is
high continually.

Lemma 1 For all I : [-HH,0); [HH> 0],
(I} IPH, 035 |6 > 1 A HH,0) ; [DH, 0} = o.

Proof: First we sketch the proof informally. Assume that two times when the
water level is dangerous are separated by a period of length one or more where
the water level is high continually. Then, by Lemma 3, the methane level must
have been high at most A time units before the first time when the water level
was dangerous. As a result, the pump must be switched on at most £ + A
time units after the water level first became dangerous. There are two cases
to consider: first, the pump remains on until the last time the water level is
dangerous, which is ruled out because this would mean that the pump has been
on sufficiently long for the water level to drop below dangerous. In the second
case, the pump is switched off before the last time the water level is dangerous
because of high methane levels, but has been on sufficiently long for the water
level to drop below high. This is also a contradiction.

14



Formally, first consider the special case where I : [-=HH,0J 5 [-DH20 A
HH,0J. Then there exist I : f[-HH,0) and I, : f-DH>, O A HH; O} such that

{1} ={h};{L}and
{I}; FDH,0Y 3 6 > 1 A HH,0Y ; [ DH, 0]

- Lemma 3
{h} s ({R} N (Ftrue) s FHCHSY s [~HCHy A6 < AJ));s
KDHQ Oﬂ 3 KJ > 1A HH, Oﬂ H KDH2 Oﬂ
- condition 3
{L} s ({E}N (ftrue) s FHCH) 5 [-HCHy A6 < AY));
((|§DH2 03 [6 > 1 A HH,0 ; [ DH,0))
N(FHCH; NS < EY ; f~HCH4 3 Ktrue]))
- conditions 4 and 12
{h};({L} N (Ftrue) ;s FHCH4) ; f-~HCH4 A6 < A));
(kP03 516 > 1 A HI,03 5 DA, 0) 0 (FACH, A G < F;
(E~HCHs A6 > € — AY 3 Ftruc]) U [=HCHy A 5 > A]_)))
C
{h}s{k}
((KDHQ 03; 6 > 1 A HH,0 3 [ DH,0))
N(F < B3 (B~HCHi A6 > € — A5 Firue]) U [-HCH; A6 2 AD)))
- condition 9 and Law 16
{h}s{kl;
((EDH: 03316 > 1 A 0,03 5 DA, 0F)
N(ES < EY 5[0 < AY 5 (FPumpOn Ad > & —2A) 5 ftrue)) U KPumpOn{D))
- condition 2
{1}; ((EP 035 16 = 1 A 1,085 {0, 09) 1 (B < 1 + A3
((FPumpOn A6 > £ —2A A HyO(a) < DangerHz O + (E + A).MazInflow);
Etrue)) U fPumpOn A H>O(a) < DangerH, 0 + (E + A).Z\la.r[nﬂowﬂ)))
- condition 11

{135 ((k0m: 035 19 > 1 A HH,0 3 (0B, 03) 0 (B8 < B + AT;

((EPumpOn A§ > & —2A A HighH,0 < H; O(w) < DangerHy O
+(E + A).MazInflow — MinOutflow.6 ; ftruey)

U PumpOn A DangerH, O < Hy0(w) < DangerH, O

+(F + A).MazInflow — MinOutflow.43)) )

15



N

{1}; (g6 2130 (B < F+Aj;
((K(s Z 5 _9A NS S Dangeero—Hith20+(E+A).MazInﬁow7} ;W)

MinOutflow
E+A). MazInflow

UKJ S -iI-\/IinOutﬂouj? ﬂ)))
-

{1}; (IEff > 13N

(Ko(a Z 5 —92AAS S DangerzO—sz"gllzfégt-}%g)i+A).Masznﬁow)§|

UBS < (F + A).(1 + pzinfion )g))
- condition 12

{I}5 (B8 > 13N (FO(6 > & —2A A6 < 1 Panagls 8ROV U |5 < 1))
- condition 13

{1} (k6 = Y0 (fOfalse] UES < 1))

a.

Now consider the general case where I : [-HH,0J ; f[HH;0). From the
continuity of Hy 0, there exist Iy : [~HH;0) ; [~DH,0 A HH;0) and I :
EDH, 0 ; [HH; O] such that {I} = {L};{L} . So

{I};EDH,0Y 56 > 1 A HH,0Y 5 fDH, O]

{hts{L};EPH 056 > 1 A HH 0 5 {DH2 O

N

{L}; KDHQ O§| 3 K(S > 1A HHQOE' H KDHQ Oﬂ
= special case above and Law 8

9. 0

The second lemma states that if the water level is low between two periods
when the water level is dangerous, then the two periods must be separated by
at least £ — A — 1 time units.

Lemma 2 For all I : [-HH,0J ; fHH,0],

{I} H KDHz Oﬂ H K<>—|HH2 O] H KDHQ OE‘
C {I};EDH,0}5F6 > & — A —1];FDH, 0]
Proof: First we sketch the proof informally. By Lemma 3, both periods of

dangerous water levels must have been preceded (within A time units) by peri-
ods of high methane. By condition 13, these periods of high methane must be
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separated by at least £ time units. The resulting arithmetic leaves £ — A — 1
time units between periods of dangerous water levels.

Formally, let I : f-HH>0J ; fHH>0). Then there exist I : [-HH,0], L :
f-DHyOAHH,0J and I3 : fDH, O 5 fHH, O such that {1} = {L};{L}; {5}

and
{I} H KDH2 Oﬂ H K<>—|HH2 Oﬂ H KDH2 Oﬂ
definition of K<>—|HH2 0§| and continuity of Hy O

{1}; [DH2 O} ; [true) s [=HH20} 5 f=DH, O A HH3 O 5 [ DH2 O3
KHHQ Oﬂ H KDHQ Oﬂ

N

N

Lemma 3

{h}s ({2} N (Ftrue] s FHCHA) 5 f2HCHL A6 < AJ)) 5 {13}
EDHy 0 ; [ftruey ;s f-HH, 0 5 [~ DH,O A HH, O 5 fDH, O35
KHH2 0;' H KDHQ 0;‘

N

Lemma 3

{1} 5 ({0 (Btrued s FHOH,Y s FRHCH; A8 < A) 5 {Ls )
[DH; 03 ftrued ; -HH, 03 ; ([-DH; O A HH 0]

N(EO-HCH ; FHCH4Y 5 Ktrueﬂ)) s LDH, 0] ; [HH, 03 ; [DH; 0]

N

Lemma 1

{h}s ({R} N (Ftrue) s FHCHAY s [=HCHy A6 < A})) 5 (({13};
[0, 03) N6 < 13) 5 Ftrue] ; (§-DH; O A HH, O
N(EFO-HCH ; FHCH4Y 5 Ktrueﬂ)) s LDH, 0] ; [HH, 0 ; [DH, 0]

N

condition 4

{h}s ({R} N (Ftrue) s FHCHAY s [=HCHy A6 < AY)) 5 (({13};
D0 NS < 1) 59 2 € — A= 1]; ([=DH0 A HH 0]
N(FO-HCH,) 3 FHCHSY 3 Ktrueﬂ)) s LDH, 0) ; [THI, 0] ; [DH, O]

IN

{I};EDH0Y 56 > (= A= 1]5fDH,0). O

We prove these results using the following lemma, which states that if the
water reaches a dangerous level, the methane level must have been high within
A time units previously.

Lemma 3 Let I : [-HH,0) ; [-DH,O A HH,0j, I : [—-HH,0) and L :
[—DH,O A HH,0) such that {I} = {h};{L}. Then

{1} fDH, 0}
C {h};({L}N(FO-HCH4 ; fHCHL 5 f[mHCH4 A6 < AY)) 5 EDH, 0]

17



Proof: All intervals can be characterised in the following way:

I

= Laws 17 and 9; finite variability follows from condition 4
(Etrue] s RHCH4) U (ktruey 5 f-HCH4))

— Law 9
(Etrue) s FHCHY) U (Ftrue) s f[-~HCH4 A > AJ)
U([ftrue) s fF-HCHy A S < AJ)

= Laws 17 and 9

(Etruey s FHCHLY) U (Ftruey s f-HCH4 A6 > AJ)
U(Ftrue) s FHCH4) 5 f~HCH4 A S < AY) U F-HCH4 AN 6 < AJ

N

(Ftrue] ; FHCHY 5 F=HCH4 A S < A)
U(ftruey s fF-HCHy, NS > AY) U S < A

N

definition of O and Law 12

(FO-HCH,) s fHCH,) 3 [-HCH4 A6 < A))
U(FHCH4) s f~HCH4 A § < AY)
U(ftruey s fF-HCHL NS > AJ) UES < AJ.

The proof strategy is to apply Law 9 to {I1 }; ({2} NT);f DH; 0}, with the above
characterisation of T, and show that the term corresponding to [O-HCH,] ;
fHCH4] ;s [~ HCHy A6 < A] is the only one which is not empty.

If the methane level has been low and the water level has been high for
sufficiently long, then the pump must have been switched on, with the result
that the water level is being reduced:

{h}s ({R} 0 (ftrue] s f-HCHy NS > AY)) 5 FDH2 O

IN

condition 9

{h}s ({B} N (Rtrue} s fPumpOn)) s fDH, O}

IN

condition 11
{n}; ({n}
N(ftruey ;s fPumpOn A H,O(w) < H,O(e) < DangerH, O]));
EDH,0 A HyO(a) > DangerH; O
= continuity of H» O and Law 8
.

The maximum rate of water inflow prevents the water level from rising from
HighH; O to DangerH, O in too short an interval:

18



{h}s ({RIN((FHCHL s f-HCHL NG < A}) U RS < Af)) 5 fDH2 0]

condition 3

N

{hls (RN (k0 < EY5(6 < A)) URS < A})) ;5 fDH2 0

{h};({BL}NES < E+Af); fDH, 0

IN

continuity of H>(Q and condition 2
{(h}; ({R} NI < F +AAH0(0) = Highth,0 A H;0(w) < Highth, 0
+MazInflow.(E + A)]) s EDH2 0 A HyO(a) > DangerH; O

= condition 10; continuity of H,Q
.

Applying the proof strategy mentioned previously to {1 }; ({L}NI);fDH,0J
yields the desired result. O

4 Conclusion

We have presented the set-theoretic Timed Interval Calculus, and demonstrated
its use in specification and reasoning about the mine pump case study. We have
introduced new concepts and transformation laws to this end. In particular,
the induction law on trace histories was the basis of the verification of the
safety property. This verification is difficult, which raises the practical issue of
whether or not one would attempt such a proof if faced with the budget and
time constraints of industrial verification. While tool support would aid in the
verification, the particular challenge in this case study was designing the proof
strategy, a problem which a tool does not help with.

Many real-world computer systems will be at least as complex as the mine
pump case study, and this is a challenge which must be faced. We believe
that the verification proof in the case study is intrinsically complex, given the
different timing combinations of high water and methane levels which must be
considered. For this reason, substantial case studies such as the mine pump
offer valuable guidance to programmers about to tackle similar challenges.
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A Proof of Law 13

Let H(X) be a formula containing X : PTU {1}, but no occurrence of negation
or the complement of X. More precisely, define formula H(X) in terms of
expressions as follows. For arbitrary sets of intervals $*, expressions E(X),

E1(X) and F3(X) are defined by
E(X) 2 X | S | Ei(X)UEy(X) | Ex(X)NEy(X) | E1(X) ;5 E2(X)

and formulae H(X), Hi(X) and H>(X) are defined by

| Hl(/Y) V Hz(zY).
Note that Fy(X) = Ey(X) is equivalent to Ey(X) C Fa(X) A Ex(X) C Ey(X).
For predicate P which satisfies the finite variability property, define

X = 1

‘Yi+1 = X;U (in H KP;D U (in H K—!Pﬂ).

Thus, we have H(Xo) and H(X;) = H(X;41) for all i € N, and so by induction
H(X;) for all i € N. From the finite variability property for P, I = Uien Xi-

The proof is the same as that in DC, and will not be shown here. ~
We have seen that Vi € N H(X;), and that I = UieN Xi, so that H(I) =

H(J;ey Xi)- Thus to prove that H(I), it suffices to show that
(VieN H(X:)) = H(U;ex Xi)-
The following two lemmas are proven first.
Lemma 4 If E(X) is an expression and i < j, then E(X;) C E(Xj).

Proof: The proof is by induction on the construction of E(X). For the case

where E(X) = X, X; C X; by the definition of X; and X;. For E(X) = §*,

where X does not occur in $¥, the result is trivial. For E(X) = F; (X )U Fz(X),
E(X;)

= definition of E(X;)
El(/Yi) U E2(/Yz)

N

induction hypothesis

= definition of E(Xj)

The proof for E(X) = E;(X)NEy(X) is exactly the same, except that N replaces
U in the proof. The proof for E(X) = Ei(X) ; E2(X) is also the same, except
that ;5 replaces U, and the step which uses the induction hypothesis also requires
the use of Law 6. O
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Lemma 5 For any expression E(X), E(U;en Xi) = Ujen F(Xi)-

Proof: The proof is by induction on the construction of E(X). The cases where
E(X) = X and E(X) = S* (X not occurring in $*) are entirely trivial. For
the case where E(X) = FEi(X)U Ey(X),

E(UieN Xi)

= definition of E(UieN Xi)
El(UieN Xi) U E2(UieN Xi)

= induction hypothesis
(UieN Ey (Xi)) U (UieN E2(Xi))

Uien(F1(Xi) U B3 (X))
— definition of E(X;)

Uien E(X3).

For the case where E(X) = FE1(X) N Bz (X),
E(Uien Xi)

= definition of E({J,y X1)
By (Uien Xi) N B2 (Ui en Xi)

= induction hypothesis

(Uien B1(X3)) N (Usen E2(X3))

UieN UjeN(El(Xi) n E2(XJ'))

= the D direction is trivial; for C, use Lemma 4

Usen(F1(X3) N B3 (X))
= definition of E(X;)

UieNE(Xi)'

The proof for E(X) = E1(X); Ey(X) is the same as for E(X) = E1(X)NEy(X),
except that § replaces U. In addition, the third of the five proof steps requires
the generalisation of Law 9 to infinite unions, and the fourth of the five proof
steps also requires the use of Law 6. O

The result which we wish to show, namely (Vi € N H(X;)) = H(U;cy Xi),
follows from Theorem 2.

Theorem 2 For a formula H(X) not containing negation or the complement

of X, (VieN 3j>i H(X;)) = H(Usey Xi)-

Proof: The proof is by induction on the construction of H(X). For the case
where H(X) & E1(X) C Eo(X),
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VieN 3j>i H(X))

& definition of H(X;)
VieN 3j>i Ei(X;) C Ea(X;)

= Lemma 4
(UjeN El(Xj)) - (UjeN E2(Xj))

o Lemma 5
Er(Ujen X5) € B2(Ujen X5)

& definition of H ({J; ¢y Xi)
H(UjeN Xj)-

For the case where H(X) & VI € X Hi(X),
VieN 3j>1 H(X;)

& definition of H(Xj)
VieN 3j>iVIeX H(X)

VIie X VieN 3j>i Hi(X;)

= induction hypothesis
VIEX H(Uien X

& definition of H (| J
H(Usen Xi)-

ieN /Yz)

For the case where H(X) < (Hi(X) A Hy(X)),
VieN 35 >i H(X;)

= definition of H(Xj)
VieN 3j>i (Hi(X;) A Hy(X5))

(VieN 3Ij>1i H1(Xj)) ANVIieN 35> HQ(XJ'))
= induction hypothesis

H1(UieN Xi) A H2(UieN Xi)
R definition of H(UlEN Xi)

H(UieN Xz)

For H(X) & (Hy1(X)V Hy(X)), the proof is exactly the same as for H(X) <

(H1(X) A Hy(X)), except that A is replaced by V. O
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B Proofs of New Laws

Proof:[Law 14]
Define H'(X) = H([fw < 0] 5 X), and apply Law 13 to H'(X). The base case
follows immediately from H'(1) & H([fw < 0)). For the step case,

H/(X)

& definition of H'(X)
H(fw < 05 X)

= induction step for H
H((fw <033 X) U (fw <035 X 5 FPY U (fw < 035 X ; [-P))

= Law 9
H (ko < 035 (X U (X5 EPJ) U (X 5 f-PY)

= definition of H'

H'(XU(X;5EP) U X 5E-P)).

From Law 13, H'(T). So H(fw < 0§;T). Since fw < 031 = fa < 0], we have
H(fa<0]). O

Proof:[Law 15]
Suppose that there exists r : T such that for all I : fa < 7}, {I};5 C{I}; T.
Let I' : S. Choose [ : fa < r) such that {I};{I'} # @. Since {I};{I'} C {I};5,
{I}s{I'YC{I};T. Since {I};{I'} #2,1': T. DO

Proof:[Law 16]
Suppose «, w and § are not free in P, and let I : . Then

IePIN(S;T)

TefPIn3gJes T e T {1} ={J};{J'}
f= «, w and § are not free in P

JJ€PINS 3J € fPINT {1} = {J};1J'}
e (FPINS) 5 (FPINT)
a

Proof:[Law 17]
First we show

EPvel=(EPIVEQ)) ;s kP Vv Q1.
For D in this equality,
(EPIVEQD) PV QY
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N

Laws 1 and 6

fPv QI kP v Q)

Law 11

N

kP v Q)
For C in the equality, we use Law 13 with

H(X)2XNEPVQJC (FPIUEQD)EPV Q).
For the base case, clearly H(1) holds because 1N [PV @ = @. For the step

case,

X UXsEPHU =P NEP Y Q)

- set theory
(XNEpveNU(XsEPDNEPV QY UIXsE-PYNEPV QY

- Laws 16, 3 and 1
Xngpvepu(xnkpvel);krp)u((X nkrv el); kel

- induction hypothesis and Law 6
(EPIVEQD) s kP YV QI U ((FPIVEQT) s kP Vv Q15 EPY)

U((EAIVEQD kP YV QY5 EQD)

- Laws 1 and 6
(FPIVEQY) s EPV QD U(EPIVEQD 5 EP V QY5 PV Q)

- Law 11

(EPIUEQY) s EPV QT
The proof that
EPVQI=FPVQT; (FPIVEQY)
is very similar, but uses a variation of Law 13 with
H(X)= H(X U(FP]; X) U (F-P]; X))

as the proof obligation for the step case. O

Proof:[Law 18]
The <« direction follows from [ < r] C [ftrue] and monotonicity (Law 6).

For the = direction, let I € [P A > r). Consider first the case where
sup I —inf I = r. By hypothesis, I = I; U I, where I; € [ftruej and I, € [Q],
and where for all ¢4 € I and all ¢, € I, t; < t3. Since supI —inf I = r and
L CIlysuph —infh <r.Soh €fd<rjand I€[d<r];[EQY.

The case where sup I — inf I > r remains to be considered. In this case,
there exist Iy € [f[d = r] and I» € [true) such that I = LU L and for all t; € It
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and all ty € I, t1 < ty. Since I; € [ < r), it suffices to show that I, € [QJ.
Since a, w and § are not free in @, it suffices to show that for all t € L, Q(¢).

So choose any t € Iy, and let I3 be the prefix of Iy with right closed endpoint .
Then

IN

N

N

N

IN

IN

true

ITefPAS>1]

I=hLUL

LULePAI>T]
I € f6 = r]; Iz is a prefix of L; and «, w and § are not free in P

LhULEFPAS>r)
hypothesis

LUk € ftrucY s FQY
I3 has right closed endpoint ¢

Q(1)-

Proof of condition 9

EHH,O A—HCH4 N6 > A)
definition of A
6 > AYN[HH20 AJ > DelayH O N [~HCH4 A6 > DelayCHa)
conditions 6, 7 and Law 18
t6 > AN (6 < DelayH, 0 5 [ Hz OFlag) N (6 < DelayCHa] 5 f— CHy Flag))
Law 10
(6 > AYN (6 < maz(DelayH2 O, CH4Flag)) 5 [[H2 OFlag A ~CH4Flag))
definition of A
ké < maz(DelayH, O, CHsFlag) ; [H2OFlag A = CHsFlag A § > DelayPump)
condition 8 and Law 18
kd < maz(DelayH, O, CH4Flag)) ; [0 < DelayPump) ; [ PumpOn)
definition of A

ks < AY 5 fPumpOn) 0



