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Abstract. The stochastic dynamic method of weather prediction (SDP) has been
suggested recently for better understanding of the numerical weather prediction. The SDP
is described using a simple one-dimensional advection equation. The salient features of
the method, its scope and limitations, are discussed.

Keywords. Stochastic dynamic prediction; weather prediction.

1. Introduction

The deterministic method of weather prediction (usually referred as NWP models)
requires a knowledge of the initial state of the atmosphere. Time evolution of this
state, governed by the dynamical laws, is essentially the aim of these models. In the
absence of any contrary evidence the dynamical equations of fluid mechanics are
extended to atmospheric systems with apparent modification and parametrization
of certain physical features whose explicit inclusion in the dynamical laws is
neither possible for want of adequate data nor desirable for want of economy of
computational time (e.g. sub-grid scale processes). The dynamical laws are of
highly nonlinear nature. Even if we assume that dynamical laws are known
perfectly, the knowledge of the initial atmospheric state puts considerable
constraints on the weather prediction, because of a significant uncertainty involved
in prescribing the atmospheric state uniquely. To start with, the observations of
meteorological variables are available at some discrete points which contain some
degree of systematic and random errors. Subjective and objective methods of
analysis are used to derive the initial state of the atmosphere at regularly spaced
grid points from the discrete observations. In the subjective methods, given the
same observations, different analysts may arrive at somewhat different values at
the grid points. Similarly when different objective methods are utilized to analyze
the same data, differences among the grid point values may result due to the
interpolation schemes or weighting functions. The differences among the analyses
depend to a large extent on the density of the observations available for analyses.
Experiments have been reported by several workers for the estimation of the
differences among different objective analysis schemes (contours and winds) as
applied over mid latitude regions (Kruger 1969, Otto-Bliesner et al 1977,
Gustafsson 1981, etc.). Vincent and Borenstein (1980) also conducted experi-
ments concerning variability among subjective analysis schemes over the North
American mid-latitudes. Over the Indian tropical region, the-objective analysis
schemes used follow the successive correction methods (Sikka and Ramanathan
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1970; Mukherjee and Datta 1972; Ramanathan et al 1973). The variability that
exists in the tropical wind analyses was discussed by Sikka and Joshi (1983).

‘Since each analysis (subjective or objective) is consistent with the corresponding
set of observed data, there is no a priori method available to say that a particular
state is the ‘true’ initial state of the atmosphere. The non-linear dynamics when
applied to prediction problem with two nearly similar initial states may lead to two
different states as integration in time advances. It can be seen in some typical
nonlinear problems that (Lorenz 1976; 1982) if there is some uncertainty about the
initial state, then in finite time this uncertainty may blow upto such a large
magnitude that the prediction to satisfactory accuracy becomes impossible. Thus
besides the limitation of forecast model, the variability among the so-called
imperfect initial state may also impact on the perfectness of the forecast.

The stochastic dynamic method of weather prediction (Epstein 1969a) explicitly
considers this inherent limitation. Instead of a single initial state we consider an
infinite ensemble of initial states where each of the analyzed state is a member of
this ensemble. The time evolution of this ensemble in phase space consistent with
dynamical laws then depicts the real representation of the weather prediction. The
ensemble is characterized by a probability density function in phase space. The
probabilistic initial state so obtained makes the forecast also probabilistic in nature
hence the name ‘stochastic dynamic’ given by Epstein. In this scheme the statistics
are used only in describing the uncertainty in the initial state and the evolution of
the atmospheric state is governed by deterministic physical laws.

Our objective in this study is to review the stochastical-dynamical weather
prediction approach with its possible application to the tropics. Section 2 discusses
the basic equations and the methodology of the stochastic-dynamic prediction
(SDP). In §3 we illustrate the stochastic dynamic prediction method by using a
simple example of one dimensional advection equation. Section 4 briefly
summarizes the work done by various workers using SDP for both the barotropic
and the baroclinic atmospheres. The limitations of the SDP and the possible
improvement of these through the Monte Carlo methods are discussed in §§5 and 6
respectively, The conclusions are summarized in section 7.

2. Methodology of stochastic dynamic prediction

2.1 Stochastic dynamic equations

Suppose N parameters X, .X; . . . X, are needed to describe the atmospheric state.
These parameters may be the coefficients of the orthogonal functions in the
spectral representation of concerned meteorological field or may be the values of
meteorological field at different grid points. Thus the atmospheric state can be
represented as a point in the N-dimensional phase space. Let us represent this point
by the tip of the vector X in phase space. The ensemble of initial states will consist
of a cloud of points in the phase space. The probability density of the ensemble can
be represented as ¢(X,f). On the basis of the total probability being always one,
the following continuity equation could be easily obtained (Gleeson 1968, 1970):
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N
99, > % (X,6) = 0. (1)

The solution of (1) is physically not possible for atmospheric system and hence
Epstein suggested the following procedure by which one may make use of (1) in
prediction problems.

- The full probability function contains much more details than of usual interest.
Therefore, instead of full function one can study the various moments of this
function. The expectation value of a stochastic variable is defined as:

E[f(X)] = | f(X)(X,0)dX, - )

where integration is over full phase space. The first and second moments of the
distribution are defined as:

wit) = | Xid(X,0)dX (3)

pi() = | X,X; $(X,1)dX. (4)
Instead of the second moment expressed by (4), one is generally more concerned
with:

oy = py—mipy; = E[(X;— ) (X;— )] (5)_

which are variances (i = j) and the covariances (i # j). Similarly other moments
about the mean, viz. 7 (third), A, (fourth) etc. can be defined. Taking the time
derivative of (2), making use of (1) one can show that:

arEvoo = g 42 | ©
Cﬁnsequently:

= E(X), - (7

p = E(XX;+ X, X)), (8)

oy = E(XEX;' +X:.j;}) = i — gy )

Also, Lorenz (1963) has shown that every forced dissipative system of which the
atmosphere may be presumed to be one, is typified by prognostic equations of the
form

Xi=Y apXXe—ShiXi+6 (10)
ik I
where
z a,}'k X,X!Xk =0 and Zb;‘,‘X;X); = 0. (11)
ij.k ij

Obviously the forms of a, b, ¢ depend on the dynamics of the atmosphere used. The
second term on the right hand side represents the dissipation and the third term
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represents the forcing. Using (10) Epstein derived the equations for the different
moments as follows:

dp;
e > e (pipe+ oja) — Dbyipi+ ¢ (12)
gk i
dO’g'
— = > (@i pacoji + i + Tjsg)
df k,f
+ @i (s + i + Tigr)) (13)
= > (biojx+ bjxoi),
k
il (14)
dr

These equations are the basic stochastic dynamic equations.

2.2 Moment closure problem

Equations (12)—(13) reveal that the prognostic equation for each moment contains
a moment of next higher order. These equations do not form a closed finite set,
which is required of a set of prognostic equations containing nonlinear terms. Even
to predict the mean of the distribution, all the moments of the distribution must be
known. Accordingly one is forced to make certain assumptions for the higher order
moments to close the system. The following assumptions are in use.

2.2a Third-moment discard: Epstein (1969a) observed the following points

(i) Expressing p,(f) as a Taylor series in time, one finds that the higher order
moments enter only in the terms containing higher powers of (1—ty). Hence the
higher order moments may not be important for short range prediction.
(ii) For many operational purposes the first two moments are generally required.
Further a knowledge of the first two moments may be a reasonable limit as to what
one can expect to derive with confidence, from the observational data.

On the basis of his earlier work, Epstein (1969b) suggested that we can neglect
the third moments without sacrificing too much. More specifically he assumed:

> (@t + @i i) = 0. (15)
kd

With this assumption (13) reduces to:

oy = > [@ia(paoj+ o)
k0l

+ @ (o + o) |

— D(buojc+bjxoik) =0 (16)
k
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Equations (12) and (16) are now prognostic equations in the closed form.

2.2b Quasi-normal-eddy-damped closure: Fleming (1971a.b) examined in detail
the effects of third moment discard. He did not agree with the assumption that the
third moments, which are initially small or zero would not significantly alter the
forecast of the first moment until the former becomes large. He suggested that the
sum effect of many small third moments may be significant and also the third
moments directly affect the second moments. In order to overcome this difficulty
Fleming retained the third moments equation and closed the set of equations by
making assumptions analogous to the quasi-normal theory used in turbulence
studies (Orszag 1970). Assuming initial values are multivariate normally distri-
buted, one finds:

Akipg = OkiOpq+ OipOig + Opqyy - (17)

In a multivariate normal distribution, the third moments are identically zero.
However in the approach suggested by Fleming, the third moment equations have
been retained and normality has only been assumed for expressing the fourth order
moments in terms of the second order moments. Hence the name ‘quasi-normal’
has been used. However there is always some problem in verifying the validity of
the closure schemes. Fleming compared the results of different closure schemes
with that obtained by considering a great many samples in a Monte Carlo
calculations as used by Epstein (1969a); obviously the Monte Carlo estimates are
treated as standard solutions. The quasi-normal closure scheme also showed a
significant change from the Monte Carlo solutions after few days. Taking analogy
from turbulence theories, Fleming considered the eddy-damping of third moments
i.e. the prognostic erquation for third moments is written in the form:

Tige = . . . +[quasinormal] — k7, (18)

where «, the damping coefficient is a positive constant. The damping coefficient
would be a function of time, energy density and other statistical quantities; k was
taken as an empirical constant by Fleming. This scheme was found to give solutions
comparable to those expected from Monte Carlo estimates.

Though the retention of third moments has been necessitated by Fleming's study,
most of the studies for the short range prediction until now have been made using
the third moment discard, mainly because of avoiding excessive computations.

2.3 Stochastic analysis of meteorological fields

The SDP technique has the potential of combining the present and the past
information in depicting the ‘truer’ atmospheric state. The forecasts based on SDP
technique for a particular time give the moments of probability density function—
called ‘prior estimates’. These forecasts are obviously made on the basis of past
data. The observation at the initial time of the atmospheric state also gives the
estimates of first two moments. The forecast estimates can be revised on the basis
of observed estimates ‘through the use of Baye’s theorem (Epstein 1962). Epstein



490 P C Joshi and D R Sikka

and Pitcher (1972) named this procedure as the stochastic analysis. The steps
involved are as follows (Pitcher 1977):

If B is a row vector of parameters of dimensions N (implying N terms are retained
in the orthogonal expansion), the atmospheric state can be written as

Y = BX, (19)

where X is a PX N matrix of functions (implying observations are made at P
points). The SD-prediction precisely gives

d = E(B) (20)
§=[(B-d) (B=d)], (1)

where a dash represents the transpose of the matrix. These we call as the prior
mean and the covariance matrix for 8. The true values and their unbiased estimates
are denoted by 8 and jB respectively. The revised ]udgements in view of the
information contained in observations, called posterior means d and covariance $
can be obtained with the help of Baye’s theorem (Epstein 1962). Baye’s theorem
reads that the posterior probability distribution function is proportional to the
product of the likelihood function and the prior probability distribution function.
The likelihood function is a conditional probability of the occurrence of the
observed data given 8. The likelihood function can always be linked with the
probability density of observations errors for which a normal distribution is quite
befitting. However, Baye’s theorem requires full knowledge of prior probability
distribution and only the first two moments of them are known. The normal
distribution has the unique property that it can be described by its first two
moments. Thus, if only first two moments are considered, the prior distribution,
which because of non-information of higher moments, could be taken as the normal
distribution. Epstein and Pitcher (1972) argued that with the knowledge of only two
moments, we cannot distinguish the ‘prior’ distribution from a normal distribution.

Taking prior also as multivariate normal distribution, it is seen that (for proof see
Pitcher 1977):

d=(dS'+YX' 07?8, (22)
S =~ ve i ERY (23)
where
0*2——52—— = (y—-XB)' (y-X, 24
=p-n’ S = O-XB) (y—Xp). (24)
Thus if P= N

d= S(s—1d+sg‘f3)

Ay
i.e. the inverses of the covariance matrices are direct measures of the precision
associated with d and B. In stochastic analyses these matrices become the
appropriate weighting factors based on the stochastic weighting factor and the
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particular arrangement of stations in the observing network. If no stochastic
forecast is available, then the prior is considered to be vague, or non-informative
and S™' is taken as the zero matrix. In this case d and 8 reduce to simple least
squares solutions.

By making simulated observations of a predefined atmosphere (Epstein and
Pitcher 1972) and the real data (Pitcher 1977) it was found that the uncertainty in
analyzed values is substantially less than either the uncertainty in the forecast or in
the observation. Thus the stochastic analysis offers a unique way of making use of
both the past and the present available information for determining the ‘true’ state
of the atmosphere.

2.4 Procedures of calculations

The various steps involved in SDP are as follows:

(i) The set of dynamic equation is converted in the generalized canonical form
(equation (10)) through some spectral representation. .

(if) Using one of the above mentioned closure approximations, the corresponding
stochastic dynamic equations are derived.

(iii) With some suitable numerical schemes the SDP equations are integrated.
However for the integration the initial values of the first and the second moments
are required. This is one of the difficult problems of SDP. Most of the calculations
(Pitcher 1977) are made by using these moments obtained through least squares
procedures by fitting the spectral decomposition of equation for the variables to the
corresponding observed fields.

The results obtained by various workers are described in the following sections.

3. A simple illustration of SDP

From the above discussion it is obvious that in SDP the number of equations is
considerably increased in comparison to deterministic prediction. One of the
simplest prediction equation in meteorological problems has been the use of one
dimensional advection equation (Platzman 1964). Wiin-Nielsen (1979) recently
studied the asymptotic behaviour (large time) of the stochastic dynamic solutions of
this equation, by taking a Gaussian function for characterizing the ensemble of
initial states. Joshi (1981) compared the SD solutions as given by Wiin-Nielsen with
the deterministic solutions of the advection equation for illustrating the salient

features of SDP. In the following the methodology of SDP is explained using these
examples.

The one-dimensional advection equation without the forcing and the dissipation
terms is as follows

c9u+6‘u_0 26
at uax_’ (26)

where u is the meteorological variable of interest. For the purpose of SDP, the
above equation is transformed into spectral domain as follows:



49 P C Joshi and D R Sikka

u(x,t) = > U-(n,t) sin nKx; K = 2n/L, 27

n=1

where an interval 0 <x < L and the boundary conditions # = 0 at x = 0 and
x = L have been assumed. Using

U(n) = U.(n)/(2Ey)"?
T=E)" Kt (28)
ZEU = i U%(”)

n=1

and also retaining only two components in the expansion i.e. X, = U(1) and
Y. = U(2), the prognostic equation for X, and Y, are found to be

dx, 1

ar "3 X ¥ (29)
dY, 1

T Tk (0)

The variables X, and Y,, become the parameters defining the atmospheric state and
the above equations as the predictive equations. These equations have analytic
solutions in terms of hyperbolic functions. The stability of the deterministic
solutions of the equations (29)—(30) is very much sensitive to the initial conditions
(Xy,, Y, ). With different initial values of X, and Y, and oy, = 05 = 01,
a2 = 0 the different phase space trajectories have been derived. The results are
shown in figure 1 which also gives the deterministic solutions. The SD solutions
correspond to the exact solution of the SD equations.

Figures 1(a) and 1(c) show that the two trajectories are very nearly the same.
Thus, as far as the first order moments are concerned, no new information over the
deterministic ones has been obtained. In such cases the advantage of the stochastic
dynamic prediction lies in the prediction of the second order moments (which has
not been shown in the figure) i.e. the uncertainties in the prediction variables are
also obtained. However, the stochastic trajectories deviate very much from the
deterministic ones (figures 1b and 1d). The deterministic trajectories show that
both the X, and Y,, components are equally significant for most of the time (i.e. the
energy is nearly equally distributed in wave number one and two) whereas the
stochastic dynamic trajectory clearly shows that for most of the time Y, component
(wave number two) is predominant. Since X,, and Y, are further used in predicting
physical variables, errors in X, and Y, will also lead to errors in the physical
variables.

Since the stochastic dynamic solutions have been obtained by considering a small
spread (uncertainty) in the initial state, which in actual cases is always present, the
SD solutions are expected to be more realistic than the deterministic solutions.
Thus from the above simple example, it is evident that in some circumstances the
deterministic solutions may give misleading information after some time interval.
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Figure 1. Deterministic and stochastic dynamic trajectories in the phase space for
different initial conditions. The entries in the bracket with arrow-mark show the time in
hours.

Such situations occur more prominently (Epstein 1969a) for the unstable initial
conditions. Interestingly these unstable situations are of greater importance in
meteorological phenomena. It should also be noticed that the time interval is
crucial. For short times the differences between SDP and deterministic values will
be small for a good forecast model and there would be no advantage in using SDP.

4. Review of other results with the SbP
4.1 Barotropic atmosphere
4.1a Synthetic data The first illustration of SD prediction and their utility was

made by Epstein (1969a) by taking the Lorenz’s minimum equations (Lorenz 1960)
for the prediction and with pre-assigned values of the model parameters. This
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prediction equation is closer to the atmospheric prediction equations with several
assumptions and simplifications. However, even after a decade of initiation of SD
prediction scheme, most of the studies in SD prediction use these minimum
equations, mainly because they are simplest in nature and their deterministic
solutions are available in the analytical forms.

Assuming a simplified barotropic atmosphere and a spatial domain of dimension
(27/k, 2m/l) over which the double Fourier expansion of vorticity field has been
made viz.

V2 = A, cosly+ A,cos kx+2As sin Iy sin kx (31)
Lorenz obtained the following prognostic equations for the parameters

d4, dA; dA;

T C1AzA3; T A1A3; ro c3A14; . (32)

The first term in (31) represents the zonal flow and the second and the third terms
represent the eddies superimposed over this. These equations are called Lorenz’s
minimum equations. Solutions of these equations are elliptic functions. Epstein
(1969a) made the stochastic dynamnic calculations (with third moment discard) for
these equations with two extreme situations—one in which initial conditions are
stable and the other in which they are unstable. The stable and unstable conditions
are determined by relative magnitudes of different coefficients i.e. A, , A, and A;.
For a stable condition 4, = 0:12, 4, = 0-24, A3 = 0-0 as initial condition with
o;=10"* (3 hr)~! and oy = 0:0i # j), the results are shown in figure 2. Monte
Carlo solution with a sample size of N = 500 is treated as standard to compare the
SD solutions. On the scale of the graph it is not possible to distinguish between the
SD solutions and Monte Carlo solutions. The deterministic solution is also very
close to these solutions. In this example, the initial uncertainties were relatively
small, i.e. they did not have severe effects on the forecasts of the parameters. In

030
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0.0

-010
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-0-30

0 1 2 3 4 5 6 days

Figure 2. SDP solutions for . and g5 and the deterministic solutions for 4, and A, for
stable imitial conditions (after Epstein 1969a).




Stochastic dynamic. prediction 495

such cases the utility of the stochastic procedure lies in the information about the
uncetainties.

For an unstable initial condition A, = 0:12, A, = 0-00, A; = 0-66 and all
covariances as zero and variances as earlier, the representative result for the
parameter A, is shown in figure 3. The sign of A, becomes negative after three
days. The SDP solution g, remains positive throughout the period. The differences
between the two stochastic solutions (i.e. SD and Monte Carlo) are certainly real
after the third day. The difference may be attributed to the third moment discard.
The deterministic solution shows departures from the Monte Carlo solution after
24 hr and is very misleading after about 3 days. Epstein also showed that the
solutions for A,(u») and A;(u3) tend to emphasize these differences It should be
noted here that the implication here is not this that the forecast is wrong, only that
it is a poor forecast.

Assuming that for sufficiently small times the deviations from the deterministic
results are small, Laurman (1978) linearized the SDP equations using small
perturbation approximations. This appproximation is applied to both the cases of
Epstein (i.e. applying to Lorenz's minimum equations) and it is seen that a
substantial reduction in computational time is possible. However, as described

earlier, for smaller times SDP hardly gives any new information over deterministic
formulation.

4.1b Real data

An attempt for the real atmospheric data was first made by Pitcher (1977). For
predicting the height of 500 mb level he used a simple barotropic vorticity equation

at

i(ﬁ% ¢) = V-V(L+f+ch), (33)
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Figure 3. SDP solutions for x; and ¢}? and the deterministic solution for A, for
unstable initial conditions (after Epstein 1969a).



496 P C Joshi and D R Sikka

where ¢ = stream function

{ = vertical component of relative vorticity

f = coriolis parameter

V = horizontal wind

h = the smoothed terrain height

¢ = parameter measuring the effectiveness of the
orographically induced vertical velocity
parameter to reduce retrogression of long waves
earth’s radius

#
g

I

The vorticity equation is transformed into spectral form by expanding ¢ and 4 in
terms of spherical harmonics

[roa| -1

J
W00 =3 X ap¥r() Y(s.0) (34)

m=—J n=|m)|

and similarly for h(¢,8), where ' is an expansion coefficient, 6 the longitude, ¢
the latitude, Y’} are spherical harmonics, a is the radius of the earth and J is the
wave number at which expansion has been truncated. Restricting the studies to the
northern hemisphere, Pitcher has taken the period of 1-4 December 1969.
Geopotential heights were available from approximately 450 radiosonde stations.
Less thanh 10% of the data was located south of 20°N. The method of least squares
was used to extract the moments directly from observations. In order to stabilize
the least squares fit in the tropical region, it was found necessary to insert artificial
data there. Approximately twenty points were added and assigned climatological
values appropriate for the month of December. The expansion was terminated at
J = 10. This limited the spectral coefficients to 105. Thus a total of 5670 numbers,
the parameters and their variance-covariance information, formed the initial
conditions for a stochastic prediction. The height fields were presented as the least
squares estimated, the stochastically forecasted and the stochastically analyzed (as
described in §2.3) fields for all the four days. It was found that the uncertainty in
the stochastically analyzed height fields was much less than the observed height
field. The standard error of the forecast (second moment) was greater than the
corresponding uncertainty associated with the observed expected state. Qualita-
tively, this would indicate that the forecast expected state would be given less
weight than the least-squares estimations in arriving at a stochastically analyzed
expected state. They also found that at some points the uncertainty in the
forecasted field was less than the uncertainty in the initial field. This result is
possible and is a manifestation of the detailed influence of the correlations between
the spectral amplitudes in the model. The uncertainty of each model parameter is
not necessarily a monotonically increasing function of time throughout the forecast
period. The examination of the standard error field and the observed data field
after few days also revealed that some times the subsequent analysis placed more
credence in the forecast expected state. They concluded that the validity of the
analyzed uncertain information depends crucially upon the extent to which the
uncertainty in the observed and forecast expected states is faithfully represented.
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4.2 Baroclinic Atmosphere

Fleming (1971a,b) made the SD calculations using a baroclinic model by
considering a simple two-layer model having 28 degrees of freedom.

The two-level model used was taken from Lorenz (1965). In this model the basic
equations are the quasi-geostrophic vorticity equation and the thermal equation
that could be written with x,y as horizontal coordinates and pressure p as the
vertical coordinate. The equations of the model in spectral form are:

¥ = ﬂz [a i—z(ajz_ —da i)cijk('ﬁ'jwk +6,6:)] — ' (¢ — 6;)

et (35)

) i oo(ai—az)+1 o
’ }.,k'l [ " D’nﬂ?"'l
k>j

Uo(a}—ai)_l

apat+1

k' opa’t

Cijkc Wi (36)

¢j9k:|+

D’oa% +1

oa(k' +26")+h
_oai( IR . B

i
opat+1 opa?+1

where ¥ and @ are the non-dimensional dependent variables representing the mean
wind and mean potential temperature and C, are constants depending upon the
choice of the orthogonal functions used to represent the space domain. Qualities
had been made dimensionless by appropriate scale factors including a length L and
a time f~! (f is the coriolis parameter assumed constant here). A frictional drag
with coefficient 2«’ is introduced at the lower surface, proportional to the velocity
in the lower layer. A frictional drag at the boundary separating the two layers with
coefficient k” is introduced proportional to the difference between the temperature
of the lower layer and a preassigned temperature field 6", characterized by a
coefficient 2h. A coefficient for heat exchange between the layers cancels out when
o (a measure of static stability) is considered constant. The choice of the functions
depends upon the geometry of the space domain in which the model equations are
applied. In the present case the functions were given over an infinite channel of
width «rL having walls at the surfaces y = 0 and y = wL where the flow in the
channel is periodic along the length with a specified fundamental wavelength. The
model had 28 variables (14 orthogonal functions for s and 8).

Fleming studied the stochastic dynamic effects by considering the energetics of
the atmosphere. For the deterministic model referred above the kinetic energy K
and the available potential energy (hereafter referred to as APE) A could be

derived as:
K=:5 ai(yi+67), (37)

[

] =
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S o
A=t se (38)
20

However if we apply the stochastic dynamic equations to the above model, the
energies are given by

2
aj o x 1
K = Y — [Wi+6]+variance (y)+variance (6,)], 9
A=>3 ;— (62 + variance (6;)], (40)

Thus it appears that the stochastic dynamic equations provide for a partitioning of
the energy. There is a ‘certain’ energy associated with the expected components of
the ensemble and ‘uncertain’ energy associated with the variances. The initial
uncertain energy may represent, in part, some of the actual energy of the
atmosphere; that is, energy is lost by smoothing the data or turbulent energy, or
any small-scale energy unresolved by the deterministic initial conditions. Thus the

quantity E%a% (3 +03%) is the certain kinetic energy; I +a; [variance(y)+
: >3

variance (6,)] is the uncertain kinetic energy, = 67/2¢ is the certain APE; and

T Variance(#)/2o is the uncertain APE. It is to be mentioned here that ; and 6, in

(37) and (38) are deterministic stream function and potential temperature whereas
they refer as ensemble mean values in (39) and (40).

Fleming derived the expressions for different energy parameters viz. the zonal
APE, the eddy APE, the zonal K.E. and eddy K.E. with both ‘certain’ and
uncertain components as well as generation, dissipation of different kinds of
energies and also the various conversions from one kind of energy to the other. His
results showed that the third moments do not affect energy conservations but they
affect energy conversions between uncertain components. The change in ‘uncertain
components’ eventually lead to altering the forecast of the mean. Considering
various stable and unstable initial conditions and their certain and uncertain
components of energies, Fleming found that the third moment discard stochastic
dynamic forecast of the mean of the stream function and potential temperatures are
different from more accurate Monte Carlo calculations. As an example the stream
function coefficient corresponding to wave number 4 and its prediction is shown in
figure 4. Here the SDP corresponds to third moment discard, approximation. The
deviations between Monte Carlo and the SDP for this component start becoming
important after 13 days. Figure 5 shows the results for the same component using
eddy-damped quasinormal scheme described in §2.2. The calculations of SDP now
seem to be in very close agreement with the Monte Carlo upto 18 days. In a
subsequent study Fleming (1973) investigated the balance of wind and the mass
field in the phase space by suggesting a stochastic balance equation. He found that
the adjustment of the fields could not take place with the third moment discard
approximation.
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Figure 4. Comparison of SDP (third moment discard) with the Monte Carlo ealculations

in a baroclinic atmosphere for a stream function component corresponding to wave
number 4 (after Fleming 1971a)
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Figure 5. Same as in figure 4 but with eddy damped quasi-normal closure scheme in
SDP (after Fleming 1971a)

5. Limitations of SD predictions

Except for the study of low order systems, the approach outlined above has the
following rather severe limitations if application to current NWP models is
contemplated.

(i) Foremost among these is the excessive computation time required over a
conventional forecast for a system with reasonably large number of parameters. In
an N-parameter system the total number of equations (corresponding to the first
and second moments) comes out to be N (N+3/2) i.e., an increase in computation
time of roughly N orders of magnitude.



500 P C Joshi and D R Sikka

(ii) The above formulation is limited to quadratically nonlinear systems and while
this appears to be the dominant nonlinearity in atmospheric prediction models, a
reformulation taking into account higher order nonlinearities, as are present in
certain local physical processes would pose some severe mathematical difficulties
and an extra computational burden.

(iti) SDP models ought to be spectral rather than grid point to reduce the total
number of covariance quantities.

(iv) The SDP equations require some closure approximation. Various closure
approximations made to solve the system may not be valid for some situations,

6. Monte Carlo forecasting

Many of the practical difficulties associated with the solution of the SD equations
may be substantially alleviated, if not eliminated entirely, by utilising a Monte
Carlo approach. Leith (1974, 1980) advocated such an alternative and investigated
the theoretical skill of the Monte Carlo procedure by application to a two-
dimensional turbulence model. Instead of predicting the moments of the forecast
ensemble directly, one draws a sample of mm members from the initial ensemble and
integrates each member forward in time with the governing dynamical equation.
Later, the m members continue to serve as a sample drawn from the evolved
ensemble and the ensemble moments may be estimated from averages over the
sample still consisting of original m members. Of course such a calculation could be
repeated with a different sample, thereby obtaining a different set of statistical
estimates. The hope, however, is that we may choose, within the limits of computer
resources, a sample size m sufficiently large to produce stable statistics. Thus we
have

_ m
i = X, oy = m—1 (Xi— w) (X;— 1), (1)

where overbar denotes an average over the sample of m members.

The total computation involved is proportional to mN, but if m < N we may
capture the advantage of SDP without the penalty of excessive arithmetic.

Other limitations of the stochastic-dynamic system of equations discussed above
are not present with the Monte Carlo procedure. However, in the procedure
advocated the problem of moment closure is replaced by the sampling problem in
deciding what value to choose for m, which is done essentially by experimentation.

Pitcher (1979) investigated the design of the Monte Carlo forecasting technique
by taking a case study of generating an initial sample. He considered a relatively
straightforward manner of generating an initial sample that possess a statistical
structure reflecting inhomogeneity and spatial correlations among analysis errors.
Assuming existence of an unbiased initial state vector X, the initial sample was
generated by choosing X; = X+¢g; (i = 1,2, ... m); where & were chosen at
random. Choosing spherical harmonics as basis functions the error field &, were
represented as
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e =) (A7 cos mA+ B sin mA)P7(p) (43)
m.n
= 3 C% cos(mh—07)P7(p), (44)
m.n

where A™ = C7 cosfy; and for B > 0 B = Cy, sinféy:. If 87, and C’; are assigned
at random, then permits the calculation of random vector field. A series of five-day
Monte Carlo forecasts were made for a three-month winter period. The forecasts
were for the 500 mb height field. The three-month period thus consisted of 18
pentads. The results were given by averaging over these 18 independent
calculations. The dynamical component was a spectral barotropic model with
triangular truncation at wave number eighteen. A choice of m = 10 was found to
give relatively stable statistical estimates of second moment quantities. The results
are shown in figure 6. Figure 6 gives the RMS error of sample mean and the sample
standard deviation for 18 Monte Carlo forecasts. The difference between the
respective curves is indicative of the external error growth for this model, as SDP
predicts only the internal error growth. As pointed out by Pitcher the model used
here was a simple one, however dramatic improvements are not expected even if
we use existing operational forecasting models. After a few days the error growth,
because of model imperfections, vitiated the advantage obtained by SDP.

It is a common experience of meteorologists that atmospheric flow patterns
under certain situations become rather stable from one day to the other
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Figure 6. RMS error of sample mean (solid line) and sample standard deviation (dashed
line) for 18 Monte Carlo forecasts. The error of a forecast based on climatology is
designated by M (after Pitcher 1979).
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(quasi-persistent) over a limited region. In other words, we can say that the
predictability of local synoptic features gets enhanced under special atmospheric
conditions. For example, the blocking situation which tends to persist over a region
for a few weeks is easily distinguishable from the situations in which short-waves
follow each other in quick succession. The former situation becomes a stable flow
pattern and is thus a priori more predictable than the less predictable situation
characterised by the later situation. Leith (1979) applied the Monte Carlo
technique to provide an estimate of the local synoptic scale predictability. He
conducted a numerical experiment in which random perturbations for a sample of

= 100 perturbations, were imposed on the vorticity field and the effect of these
perturbanons in the forecast through a non-divergent spectral barotropic model
was investigated. He found that the error sensitivity on the forecast was higher in
the region of maximum wind speed which was expected from the error advection
effects.

The Monte Carlo alternative for the solutions of SD equations suggests a
promising alternative and further investigation in this direction may lead to its
applications to realistic forecasts. Recently another technique called Lagged
Average Forecasting (LAF) has been proposed by Hoffman and Kalnay (1983) as
an alternative to Monte Carlo forecasting also. The utilization of LAF in stochastic
dynamic prediction may make it more feasible for practical forecasting problems.

7. Conclusions

The SDP technique is based on some sound principles and has the capability of
quantifying the uncertainty in the forecast field caused by the uncertainty in the
initial field. However after nearly 15 years since the technique was first suggested,
it has been applied only to a single realistic case study and all other studies are
based mainly on the applications to the Lorenz’s minimum equations. The major
factor responsible for this has been the excessive computational time. The
enhanced computational time arises because of the simultaneous calculations of
large number of covariance parameters. Greater effort is required, even with the
simplified situations, to find ways for reducing the computational time so that it
may be used for operational purposes.

Depending on the numerical methods used, the simplicity the dynamical models
has been put into, the incorrect mathematical representations of certain physical
processes, the imperfect parameterisation of sub-grid scale processes, a substantial
contribution to the growth in forecast error is unavoidable. This is generally
referred as external growth. The SDP technique predicts the internal error growth.
The quantitative estimation of uncertainty by SDP may get overmasked by the
external error growth also. Hence any attempt in making use of SDP for
operational use will have to assess the external growth also.
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