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Abstract. The present study suggests that aerosols play a
major role in cloud formation and affect significantly the pre-
cipitation over a regional scale. The study reveals that there is
a high variability of aerosol index during a bad monsoon year
2002, indicating an extension of cycle to more than 100 days
from a normal 50 day cycle of absorbing and non-absorbing
aerosols over a tropical urban station Pune. Pre-monsoon
of 2002 shows a high loading of coarse-mode aerosols (ab-
sorbing dust aerosols) which indicate vertical and horizon-
tal temperature variations in turn affecting the seasonal rain-
fall at a regional scale. Cloud formation highly depends on
aerosol concentration, but the activation process is not mono-
tonic. The surface meteorological features help to initiate the
cloud process. The surface temperatures were high during
the pre-monsoon of 2002 leading to increase of aerosol op-
tical depth as compared to 2001. The effect of surface wind
speed, though, complicated to understand, results in low val-
ues in 2002 with high aerosol optical depth and vice-versa in
2001.

1 Introduction

The Indian summer monsoon rainfall (ISMR), defined as
the cumulative rainfall over continental India during June-
July-August (JJA), having important implications for the
socio-economic system of the subcontinent. The JJA rain-
fall in 2002 was only about 78% of the seasonal average
(679.2 mm, for the period 1871–2002) (Parthasarathy et al.,
1995). This affected very severely the agricultural system
(http://www.agjournal.comandhttp://www.fao.org). This is
one of the highest deficit monsoon rainfall years in the last
hundred years.
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Aerosols originate from a variety of natural and anthro-
pogenic sources and thus exhibit a great variability in both
space and time. Airborne particles comprising of dust
aerosols alter the local climatic conditions by intercepting
sunlight and modifying the energy budget through their be-
havior of cooling and heating the atmosphere (Liepert, 2002).
The presence of an absorbing dust layer results in a substan-
tial decrease in the incoming short-wave radiation, resulting
in a major change to the surface energy balance. Results from
Indian Ocean Experiment (INDOEX) have already shown
that large amount of wind-blown dust particles and other an-
thropogenically produced aerosols get transported from the
Asian landmasses over the ocean surface up to thousands
of kilometers away from their sources during the Northern
Hemisphere winter seasons (e.g., Ramanathan et al., 2001;
Clarke et al., 2002).

Although the main component of atmospheric aerosol that
is responsible for the generation and maintenance of the hy-
drological cycle is not yet clear, it is evident that aerosols
are effective agents (Sue et al., 2008, and references therein)
and hence, reliable data as well as, systematic study is
needed to understand these complex processes (Rosenfeld,
2000, 2008; Devara et al., 2003). Each cloud drop requires
an aerosol particle (nucleus) for water vapour to condense
upon; clouds could not form otherwise. Thus, aerosols act
as Cloud Condensation Nuclei (CCN) or Ice Nuclei (IN).
Aerosols affect precipitation in two ways; the presence of
more aerosols leads to formation of smaller cloud droplets re-
sulting in brighter clouds that reflect more solar energy back
into space. While numerous smaller cloud droplets tend to
reduce precipitation and change the extent of cloud cover
(Rosenfeld, 2000). Moreover, the aerosol optical depth is
one of the parameters that contributes to the radiative forc-
ing at all time and spatial scales, and its mean value at a
given location is highly dependent on prevailing environmen-
tal/meteorological conditions and altitude. Thus, influence of
surface-meteorological parameters, particularly humidity on
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aerosol composition, play a significant role in the concen-
tration and size distribution of aerosols (Leob and Schuster,
2008). A study in this direction has been carried out using
the lidar derived aerosol vertical distributions acquired over
Pune (Devara et al., 1994). Thus till present, aerosols mostly
have been considered as a problem of climate change which
reduces the global warming by their radiative properties, and
in air-chemistry by intensifying the pollution and having pos-
sible impacts on clouds and rainfall (Podgorny, 2003). Ef-
fects of aerosols on atmospheric hydrological cycle in the
Asian monsoon region are also investigated by researchers
(Lau et al., 2006; Breon, 2006). The successive contrasting
monsoon years provide, good opportunity to study various
phenomena involved in monsoon dynamics. In the present
study, the importance and behavior of aerosols during two
consecutive years of active and weak monsoon activity has
been highlighted. The focus will be in terms of aerosol op-
tical, physical and radiative properties, derived from coin-
cident ground-based multi-filter solar radiometer, satellite-
borne measurements and meteorological conditions over a
tropical urban station Pune. The study reported over the sta-
tion, Pune (18◦32′ N, 73◦51′ E, 559 m a.m.s.l.), India in this
paper has an urban environment and the aerosol type present
over this site is considered to be a mixture of water-soluble,
dust and soot-like aerosols. Soil dust is the major source of
aerosol pollutants present over the experimental station. The
experimental site is located at an elevation of 573 m above
mean sea level and surrounded by hillocks forming a valley
like configuration. Because of the typical terrain the circu-
lation processes show its effect mostly in the lower levels of
the atmosphere.

2 Data deduction

The data used in the present study comprise of a
MICROTOPS-II solar radiometer (MTP)-observed aerosol
optical depth, Total Ozone Mapping Spectrometer (TOMS)-
derived aerosol index (AI) and concurrent meteorological pa-
rameters recorded during two successive contrasting mon-
soon seasons of 2001 and 2002 over Pune, India. The cloud
effective radius and cloud optical depth derived from MODIS
sensor also have been utilized to study the indirect effect of
aerosols. The MTP is a portable, hand-held, multi-channel
solar radiometer, which had been operated at the Indian In-
stitute of Tropical Meteorology (IITM), Pune. MTP provides
columnar: aerosol optical depth (AOD), ozone (TCO) and
precipitable water content (TWC) (Morys et al., 2001; De-
vara et al., 2001). It measures the extinction of solar radia-
tion through atmosphere by aerosols against the incident so-
lar radiation and gives AOD at 380, 440, 500, 675, 870 and
1020 nm. The uncertainties involved in sun-photometer cal-
ibration typically range between 0.005 and 0.02. When the
accuracy in the aerosol optical depth measurement is 0.005
the error in calibration of the sun-photometer should be less

than±0.5% when the air mass is unity (Shaw, 1983; Har-
rison et al., 1994; Ehsani et al., 1998; Holben et al., 1998).
TheV0 measurements taken from selected clear-sky Langley
plots fit the line to within 0.1%. This implies that calibrations
remain constant for more than a year. The MICROTOPS-II
has been used in varied temperatures and humidity ranges
and also on ship cruises, but due to the presence of Barr filters
which are supposed to have unlimited lifetime the calibra-
tions show no sign of filter decay. The error which results in
the aerosol optical depth measurements for land based mea-
surements for 380, 440, 500, 675 and 870 nm is 0.023, 0.018,
0.021, 0.012 and 0.023, respectively (Morys et al., 2001; De-
vara et al., 1996). The MICROTOPS-II-derived AODs at dif-
ferent wavelengths were utilized to calculate the size index
(ν) parameter and aerosol loading over the station.

Space-borne sensors provide a good temporal and spa-
tial coverage. The satellite based TOMS sensor has been
flown aboard since 1978 on various platforms for monitor-
ing global total column ozone by studying both incoming so-
lar radiation and back-scattered radiation in the UV-region.
The algorithm for TOMS detection of aerosol and clouds
from the back-scattered UV radiance measurement is based
on the residue theory described in Herman et al. (1997) and
Torres et al. (1998). The residue method is based on the
principle that for fixed 380 nm radiance theI340/I380 spec-
tral contrast is largest for non-absorbing aerosol and clouds
and decreases with increasing absorption. UV absorbing
aerosols (dust, smoke, soot) produce smaller contrast than
predicted by pure Rayleigh scattering atmospheric model,
consequently they yield positive residues. In contrast the
non-absorbing aerosols (sulfate and sea-salt particles) pro-
duce greater contrast and negative residues. As suggested
by Herman et al. (1997), TOMS data can be used to derive
Aerosol Index (AI).

AI = −100[log10(I331/I360)meas− log10(I331/I360)cal]

where,Imeasis the measured back-scattered radiance andIcal
is the calculated radiance for a pure Rayleigh atmosphere.
The positive AI represents absorbing aerosols while negative
AI corresponds to less-absorbing or non-absorbing aerosols.
TOMS used the radiance in UV wavelengths as it is advan-
tageous to characterize aerosols over all surface types. The
effective Lambertian equivalent surface reflectivity and the
aerosol index are not physical quantities. Because of this,
no algorithmic error sources have been included. Nominal
instrument calibration errors of 1.5% at 360 nm and 0.75%
at 331 nm relative to 360 nm have been assumed. Evidence
of uncorrected diffuser degradation drives the errors in long-
term mean for the reflectivity and aerosol index, but there
is no significant effect on derived ozone (http://jwocky.gsfc.
nasa.gov/eptoms/dataqual/nominal.html).

MODIS (MODerate resolution Imaging Spectroradiome-
ter) was flown on Terra and Aqua platforms in 1999 and
2002 respectively. It monitors the Earth in 36 discrete bands
with a high spatial resolution of 250 m, 500 m and 1000 m
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Figure 1: Aerosol index variations over Pune during two contrasting monsoon years, 2001 and 

2002.  

Moreover, most important feature that can be seen in the figure is that the variation in AI is 

significantly large in the year 2002 (drought) as compared to that in 2001 (active monsoon). In 

order to examine the size distribution of aerosols in 2001 and 2002 the Angstrom parameters 

were studied.  

Variations in Aerosol Size Distribution  

                Monthly mean values of α and β obtained from the relation, τ = βλ-α, where α is 

wavelength exponent, while  β  is Angstrom coefficient are seen plotted in figure 2 for both 2001 

and 2002. The α value is an indicator of size while β indicates the loading of aerosols. Angstrom 

wavelength exponent gives an indication of the origin or type of aerosol. Aerosols of maritime, 

desert, or volcanic origin, for example, are relatively large and are associated with smaller values 

of α (von Hoyningen-Huene et al., 1999; Chiapello et al., 2000; Maring et al., 2000; Smirnov et 

al., 2000; Holben et al., 2001). Aerosols from biomass burning or anthropogenic sources (e.g. 

industrial or vehicular emissions), in contrast, are typically relatively small and are thus 

represented by higher values of α (e.g. Deuz´e et al., 2001; Eck et al., 2001; Formenti et al., 

2001; Holben et al., 2001). The parameters α and β were calculated using the spectral 

distribution of AOD obtained from MICROTOPS-II. The gap in the data during the monsoon 

months is due to unfavourable sky conditions under which reliable data from MICROTOPS-II 

could not be obtained due to presence of clouds. Both plots show larger size index, (ν = α+2) 
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Fig. 1. Aerosol index variations over Pune during two contrasting monsoon years, 2001 and 2002.

in different bands. The aerosol optical thickness products
obtained from MODIS over land are accurate within their
calculated uncertainties (±0.05±0.20 tau), except in situa-
tions when there is cloud cover (cloud contamination), over
surfaces with sub-pixel surface water such as coastal areas
and marshes, and over surfaces with sub-pixel snow or ice
cover. Complete details of the original algorithms and pa-
rameters derived over land and/or ocean are given in the work
of Kaufman et al. (1997a, b) and Tanré et al. (1997). The
near-infrared total-column precipitable water is very sensi-
tive to boundary-layer water vapor since it is derived from
attenuation of reflected solar light from the surface. This data
product is essential to understanding the hydrological cycle,
aerosol properties, aerosol-cloud interactions, energy budget,
and climate (Remer et al., 2005). The cloud effective radius
(CER), which is an area-weighted mean radius of the cloud
droplets, is determined as;

re =

∞∫
0

r3n(r)dr

∞∫
0

r2n(r)dr

wherer = particle radius;n(r) = particle size distribution
(number of particles per cm2 with radius in the ranger and
r +dr microns). Thus derived CER from MODIS is consid-
ered to strengthen the quantification of the aerosol effect on
cloud cover (Kaufman et al., 1997a, b).

3 Discussion of results

In addition to the time series of AI for the entire year, both
TOMS and MICROTOPS-II data are also grouped under dif-
ferent months and seasons separately for each year. The be-
haviour of optical and physical properties of aerosols in con-
junction with concurrent meteorological parameters during
2001 and 2002 is discussed in the sub-sections to follow.

3.1 Variations in aerosol composition

Figure 1 illustrates the time evolution of AI over Pune, a fast
growing urban station, during 2001 and 2002. The variations
in AI exhibit, by and large, bell-shape with maximum (posi-
tive AI) during the pre-monsoon and minimum (negative AI)
during the winter months for both the years. Broadly, the
plot clearly shows the dominance of absorbing aerosols dur-
ing the pre-monsoon and less- or non-absorbing aerosols dur-
ing winter. The negative values indicate the non-absorbing
aerosols (such as sulphate and sea salt) while positive val-
ues indicate absorbing aerosols (such as mineral dust and
smoke), and the near-zero values of AI are due to presence
of clouds. In 2001 (50 day oscillation) the variation starts
with non-absorbing aerosols in winter followed by absorbing
aerosols during summer, while in monsoon it has a mixed
type of situation with near-zero values indicating mostly the
presence of clouds. But for 2002 three prominent cycles,
each of more than 100 days are observed; it starts with non-
absorbing switching to more absorbing aerosols and back to
non-absorbing aerosols. The presence of absorbing aerosols
in summer months over Pune is mostly due to the dust trans-
port from the semi-arid region (Pandithurai et al., 2004). The
absorbing dust aerosols cause the vertical and horizontal tem-
perature variations during pre-monsoon season, which in turn
alter the seasonal rainfall over the particular region. They
also tend to suppress precipitation under certain meteorolog-
ical conditions. The dust events lead to enhanced heating
rates in the lower troposphere (Pandithurai et al., 2008).

Moreover, most important feature that can be seen in the
figure is that the variation in AI is significantly large in the
year 2002 (drought) as compared to that in 2001 (active mon-
soon). In order to examine the size distribution of aerosols in
2001 and 2002 the Angstrom parameters were studied.

www.atmos-chem-phys.net/10/29/2010/ Atmos. Chem. Phys., 10, 29–37, 2010
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values indicating greater concentration of sub-micron aerosol particles during the winter and 

smaller ν values suggesting coarse-mode particles during the pre-monsoon months.  

  

  

 

   

 

 

 Figure 2: Monthly mean variation in α and β observed during 2001 and 2002.  
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Fig. 2. Monthly mean variation inα andβ observed during 2001 and 2002.

3.2 Variations in aerosol size distribution

Monthly mean values ofα and β obtained from the rela-
tion, τ = βλ−α, whereα is wavelength exponent, whileβ
is Angstrom coefficient are seen plotted in Fig. 2 for both
2001 and 2002. Theα value is an indicator of size whileβ
indicates the loading of aerosols. Angstrom wavelength ex-
ponent gives an indication of the origin or type of aerosol.
Aerosols of maritime, desert, or volcanic origin, for exam-
ple, are relatively large and are associated with smaller val-
ues ofα (von Hoyningen-Huene et al., 1999; Chiapello et
al., 2000; Maring et al., 2000; Smirnov et al., 2000; Hol-
ben et al., 2001). Aerosols from biomass burning or an-
thropogenic sources (e.g. industrial or vehicular emissions),
in contrast, are typically relatively small and are thus repre-
sented by higher values ofα (e.g. Deuźe et al., 2001; Eck et
al., 2001; Formenti et al., 2001; Holben et al., 2001). The pa-
rametersα andβ were calculated using the spectral distribu-
tion of AOD obtained from MICROTOPS-II. The gap in the
data during the monsoon months is due to unfavourable sky
conditions under which reliable data from MICROTOPS-II
could not be obtained due to presence of clouds. Both plots
show larger size index, (ν = α+2) values indicating greater
concentration of sub-micron aerosol particles during the win-
ter and smallerν values suggesting coarse-mode particles
during the pre-monsoon months.

Besides the usual behaviour of aerosol loading (largerβ

value) during pre-monsoon months and relatively smaller
values during winter, larger values ofβ and smaller values
of α during winter as compared to the pre-monsoon months
in certain years are attributed partly due to intense haze for-
mation due to elevated temperature inversions and associated
trapping of local anthropogenic aerosols. A significant dif-
ference is seen between 2002 and 2001. The value ofα in
pre-monsoon is 0.2 for 2002 as compared to 0.8 in 2001,
which implies presence of more accumulation-mode parti-

cles in 2001 than in 2002 suggesting more loading of coarse-
mode aerosols in 2002 than in 2001 during pre-monsoon.
Thus more number of accumulation-mode particles; ade-
quate loading of aerosol amount in atmosphere during pre-
monsoon triggered a good cloud formation process in 2001
which yielded a good amount of precipitation. In 2002, the
situation was exactly opposite with presence of coarse-mode
particles; absorbing dust aerosols as seen from AI data from
TOMS. The interesting finding is that more absorbing dust
aerosols were present in 2002, but the total columnar water
vapour content was also low by almost 0.5 to 1 cm in 2002
than in 2001 as obtained from MODIS satellite data (Bhawar,
2008). Large number of absorbing dust aerosols, heat the
lower troposphere but cool surface, and they compete for
small amount of water vapor resulting in less amount of rain
(Ramanathan et al., 2001). In order to further strengthen and
confirm, the above point, monthly mean variations in cloud
effective radius (CER) for 2001 and 2002 are shown plotted
in Fig. 3, where three epochs are seen in Fig. 3. In 2001
and 2002 the CER goes on increasing from pre-monsoon to
monsoon months as during the monsoon months the cloud
formation starts, with a further decrease of CER in winter
months.

But the CER in 2002 during the monsoon months is less
as compared to 2001 which suggests that the cloud forma-
tion was less in 2002 as opposed to 2001. Rather we can
say clouds formed but dissipated in shorter period. It is
observed at Pune, that after the onset of monsoon in June,
there is more rain in July and August in the normal years
and then intensity decreases in September. It is evident in
the CER plot that there is a decrease in CER in 2002 for the
July and August months. Larger the CER, more the size of
cloud droplet and more chances for rain occurrence, while
less CER leads to cloud dissipation and hence less rain. Fig-
ure 4 shows monthly mean variation in cloud optical depth
(COD) during 2001 and 2002. As suggested by Storelvmo

Atmos. Chem. Phys., 10, 29–37, 2010 www.atmos-chem-phys.net/10/29/2010/
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et al. (2006), COD directly correlates with rainfall. In the
present study, as the CER increases COD also increases and
more COD results in more rainfall and vice-versa. It is dis-
tinctly seen from the Fig. 4 that in the month of July, when
maximum rainfall occurred in Pune COD was less in 2002
as compared to 2001, and amounts to rainfall of 118 mm in
2001 and 26 mm in 2002. As the processes responsible for
these differences have an important bearing on the regional
atmosphere, the local meteorological conditions are also im-
portant, which are discussed below.

3.3 Variations in concurrent meteorological parameters

The normal weather at the experimental site during the pre-
monsoon season (March, April, May) is very hot with mostly
gusty surface winds and the dust content in the atmosphere is
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Fig. 5. Day-to-day variations in both AOD and temperature range
during pre-monsoon, post-monsoon and winter season.

at a maximum. The air flow in the lower troposphere is pre-
dominantly westerly during the south-west (SW) monsoon
season (June, July, August, September), which brings a large
influx of moist air from the Arabian Sea. Fair-weather con-
ditions with clear skies, light surface winds and very low hu-
midity exist during the winter season (December, January,
and February). Low-level inversions during the morning and
evening hours, and dust haze during the morning hours oc-
cur during this season (Devara et al., 2005). In Figs. 5, 6 and
7 in the x-axis the numbers of days are the available num-
ber of days in terms of AOD and temperature range, relative
humidity and wind speed respectively starting from 1 March
and ending on 28 February. The monsoon period when the
AOD is not available is not included in the Figs. 5, 6 and
7. The daytime diurnal variations in surface temperature
range, which is difference between maximum and minimum
temperature, for the pre-monsoon, post-monsoon and winter
months of 2001 and 2002 are shown plotted in Fig. 5. A
significant annual variation in all the above three parameters
with maximum AOD in pre-monsoon months and relatively
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Figure 6:  Day-to-day variations in both AOD and relative humidity during pre-monsoon, post-

monsoon and winter seasons of 2001 and 2002.  

Fig. 6. Day-to-day variations in both AOD and relative humidity
during pre-monsoon, post-monsoon and winter seasons of 2001 and
2002.

minimum in winter months is quite clear from the figure.
The high convective activity and frequent occurrence of dust
storms are responsible for the higher AODs during the pre-
monsoon. Subsequently, the AOD values attain minimum
due to cloud-scavenging and rain-washout processes during
the monsoon, and thereafter they slowly build-up during
post-monsoon and winter months (due to haze) and becomes
maximum again in summer. The influence of temperature
on AOD is quite clear from the figure. Normally, increase
in surface temperature causes lifting of aerosols that effects
size distribution and results in higher AOD. The variations
in AOD at 380 nm and concurrent surface-level temperature
range for 2001 and 2002 seem to follow each other. In the
2001 plot for variations of AOD with surface temperature
range during the pre-monsoon, there is a steep decrease in
surface temperature from 23◦C to 8◦C (circled in the fig-
ure). From the post-monsoon to winter there is again an
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Fig. 7. Day-to-day variations in both AOD and wind speed during
pre-monsoon, post-monsoon and winter seasons of 2001 and 2002.

increase in surface temperature from 8◦C to 28◦C. Corre-
spondingly there are larger AOD variations associated with
surface temperature variations. The plot for AOD and sur-
face temperature range for 2002 shows a drastically different
behaviour. There is very less variation in surface tempera-
ture range from 16◦C to 24◦C throughout the pre-monsoon,
post-monsoon and winter. The higher value of surface tem-
perature in the pre-monsoon supports the presence of absorb-
ing dust aerosols from the AI values of TOMS. The surface
temperature is high during 2002 compared to 2001, and AOD
also shows a continuous increase in 2002 than in 2001.

The variations in daily mean AOD at 380 nm and surface
relative humidity during pre-monsoon, post-monsoon and
winter seasons of 2001 and 2002 are depicted in Fig. 6. Con-
densation of water vapour takes place on the aerosols with
increasing relative humidity and evaporation of water vapour
in aerosols takes place with decreasing relative humidity. In
general, increase in relative humidity leads to particle growth
and hence an increase in AOD. Thus the aerosol particles
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grow as relative humidity increases and shrink as relative hu-
midity decreases. But the rate of growth in response to in-
crease in relative humidity is not equal to rate of shrink in
response to decrease in relative humidity. Due to growth of
particle the surface area increases and in turn reflects in high
AOD. As the surface relative humidity increases the AOD
also increase for hygroscopic aerosols, which are observed
mostly during March and April months of 2001. In 2001
plot, for AOD and surface relative humidity there is a rise
of relative humidity from 20% to about 60% in pre-monsoon
and post-monsoon while it drops down to 20% in winter. In
2002, the surface relative humidity during pre-monsoon is
between 20% and 30% with a high aerosol loading, while in
post-monsoon and winter it varies between 35% and 50%.
During winter months the surface relative humidity is less
and AOD shows an increase which is due to the presence of
haze in atmosphere.

Figure 7 displays the daily mean variations in concurrent
AOD and surface wind speed during pre-monsoon, post-
monsoon and winter months of 2001 and 2002. The influ-
ence of wind speed on aerosol optical depth in the whole
atmospheric column is complex (Platt and Patterson, 1986;
Villevalde et al., 1994; Smirnov et al., 1995; Moorthy et al.,
1997; Kusmierczyk-Michulec et al., 1999). The correlation
between wind speed and aerosols also depends on the size of
aerosols. Different wind speed affects different size of par-
ticles (Smirnov et al., 2003). Overall comparison of surface
wind speed for pre-monsoon of 2001 and 2002 shows higher
surface wind speed values, varying from 4 m/s to 10 m/s in
2001 as compared to those from 1 m/s to 6 m/s in 2002. The
variation in surface wind speed for post-monsoon and winter
is almost same in both the years. The association between
AOD and surface wind speed is complicated, because it may
either remove aerosols from or may bring in fresh aerosols to
the experimental site. The correlation between aerosol con-
centration and surface wind speed is relatively high in lower
altitudes, which implies that the effect of surface wind speed
on aerosol concentration is more significant at lower altitudes
(Parameshwaran et al., 1995). In the present study, it is found
that whenever the surface wind speed is high the AOD value
is low and vice-versa. Thus higher surface wind speed val-
ues are associated with removal of aerosols and lower sur-
face wind speed with addition of aerosols in both the years.
Thus compared to 2001, 2002 was associated with slightly
more aerosol loading. In 2001 pre-monsoon though the sur-
face wind speeds are high the AOD is not as high as expected
which indicates the removal of aerosols from the experimen-
tal site. While in the post-monsoon and winter there is a
build up of aerosol loading with low surface wind speed val-
ues indicating inflow of aerosols from the neighbouring ar-
eas. There is an opposite correlation between AOD and wind
speed in 2002 same as seen in 2001. In 2002 pre-monsoon
surface wind speed is not as high as it was in 2001 but AOD
is high as compared to 2001. There is also high aerosol load-
ing throughout post-monsoon and winter months.

4 Conclusions

It may be concluded that the influence of aerosols on mon-
soon activity mainly depends on dynamics or microphysics
or both. From the present study, it may be inferred that
the impact of aerosols on the hydrological cycle, in some
sense, is a region-specific phenomenon, and it primarily re-
lies on relative dominance of the type (scattering/absorbing
and the associated mixing due to transport processes) and
composition of aerosols at a particular location. Moreover,
it depends on which process (whether dynamics or micro-
physics) ultimately drives the monsoon circulation. Keeping
in view of large heterogeneity in aerosol production/removal
processes and short lifetime in the troposphere, it is difficult
to generalize the impact of aerosols on the hydrological cy-
cle. Such studies need dense network of observations besides
the satellite data in order to isolate the regional effects from
the global and also the anthropogenic effects from the natural
ones. Thus, this study shows role of aerosols through their
optical and micro-physical properties and their effects on the
hydrological cycle; more work in this direction is planned
in the future studies. The present study helps understand-
ing the importance of aerosols in the hydrological cycle on
a regional scale over a tropical station, Pune, India. More-
over, the study reveals a cycle of 50 days in the variations in
the absorbing dust aerosols and non- absorbing aerosols dur-
ing the normal monsoon condition while during the weak
monsoon, this cycle extends to more than 100 days. Larger
variations in the aerosol index values was observed during
weak monsoon year (2002) as compared to active monsoon
year (2001). As estimated from the Angstrom coefficient,
more loading of absorbing dust aerosols was found in 2002
as compared to 2001. The CER showed smaller values, im-
plying less cloud formation or early dissipation of clouds and
hence less precipitation in 2002. The surface meteorologi-
cal features showed different behaviour in the two successive
contrasting monsoon years; particularly surface temperature
showed increase in 2002 and hence increase in AOD than
in 2001; and surface wind speed exhibited higher values in
2001 resulted in removal of aerosols from the site than in
2002.
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