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Abstract  

We investigate aerosol and cloud forcing on the surface energy balance over selected regions in 

India. Four regions were selected with different surface characteristics and have considerable 

differences in the long term trends, seasonal distribution of clouds and aerosols. These regions are 

described as (1) Northern semi-arid, (2) Humid subtropical, (3) Populated central peninsula, and (4) 

North-east monsoon impacted. Modern Era Retrospective-analysis for Research and Applications 

(MERRA) data and climate forecast system Reanalysis version 2 (CFSR) data are used in this 

study. An inter-comparison of cloud fractions from both datasets shows that CFSR systematically 

underestimates high cloud fraction during pre-monsoon and monsoon seasons. However, there are 

fewer low cloud fraction biases.  The positive temporal trend over 31 years (1979-2009) from 

MERRA in high clouds is greater than that of low clouds. This is due to positive anomalies in the 

cloud ice and super cooled liquid water content in the MERRA. Biases in the radiative fluxes and 

surface fluxes show a strong relationship (correlations exceeding 0.8) with cloud fraction biases, 

more so for the high clouds. During the pre-monsoon season, aerosol forcing causes a change in 

surface shortwave radiation of -24.5, -25, -19 and -16 Wm-2 over the above regions 1-4, 

respectively. The corresponding longwave radiation decrease is -9.8, -6.8, -4.5 and -1.9 Wm-2 over 

these same regions, respectively.  The maximum surface shortwave reduction due to clouds, which 

is observed during the monsoon season, is -86, -113, -101 and -97 Wm-2, for these same regions, 

respectively.  A decreasing trend in the boundary layer height is noticed both in MERRA and CFSR. 

Variation in the Bowen ratio and its relation to aerosol and cloud effect anomalies is also discussed. 

1. Introduction 

 The changes in the net incoming solar radiation and net outgoing radiation at the surface 

due to anthropogenic activities affect the strength of the hydrological cycle [Trenberth, 1999; 

Ramanathan et al., 2001; Ramanathan et al., 2005; Wild et al., 2004; Andrews et al., 2008; Wild et 



al 2008; Liepert and Previdi 2009]. Several studies [Allen and Ingram 2002; Liepert et al., 2004; 

Andrews et al., 2009] have indicated that radiation forcing is more effective in altering the intensity 

of hydrologic cycle than thermal forcing due to changes in the greenhouse gases. Numerical 

modeling studies have also suggested that aerosols in the atmosphere can affect water cycle by 

altering the regional energy balance in the atmosphere and at the Earth's surface by modulating 

cloud and rain processes [Ramanathan et al., 2001; Rosenfeld et al., 2008]. Many recent studies 

have documented variations in aerosol loading, surface cooling and their possible relationships with 

rainfall in the monsoon regions of India and East Asia [Krishnan and Ramanathan, 2002; Menon et 

al., 2002; Lau et al., 2006; Huang et al., 2006]. Solar dimming over India has been studied by 

several authors [Padmakumari et al., 2007; Padmakumari and Goswami, 2010; Badrinath et al., 

2010; Soni et al., 2011].  Padmakumari and Goswami [2010] showed that the contribution to the all 

sky dimming rate (-0.89 W m-2 per year) from clouds (-1.19 W m-2 per year) is twice as large as that 

from the aerosols (- 0.61 W m-2 per year).   

Most of the numerical models are unable to account for observed dimming and brightening effects 

[Wild and Liepert 2010]. In the recent reanalysis products such as (Modern Era Retrospective-

analysis for Research and Applications; MERRA), aerosol and cloud effects could be isolated.  

How the total surface energy balance (including the radiation balance) responds to cloud and 

aerosol forcing is of interest in this study.  Clouds produce more cooling effect in shortwave band 

and warming effect in longwave band for which both middle and high clouds contribute more to 

shortwave cloud radiative forcing. Over the monsoon region, large areas of high clouds with 

enhanced optical depth are found [Balachandran and Rajeevan 2007]. Also, large negative forcing 

occurs in regions with large amounts of optically thick high clouds [Rajeevan and Srinivasan 

2000].  Though radiation budget over the region has been studied, the modulation of total energy 

budget due to external forcing such as the presence of clouds and aerosols has not been documented 

over Indian region. Especially, effects on different components of energy balance and the boundary 



layer characteristics are not investigated. Studies also suggests that aerosols may impact land 

surface response on the surface energy balance [Hollinger et al.1994; Niyogi et al. 2004].   These 

aerosol effects are explicit in the surface fluxes.  

Several observational campaigns were carried out in India, focusing on the understanding of 

energy balance and boundary layer characteristics, for example, Monsoon Trough Boundary Layer 

Experiment (MONTBLEX) in 1990 [Narasimha et al., 1997], Land Surface processes Experiment 

(LASPEX) during 1997-98 [Vernekar et al., 2003]. Bhat and Arunchandra [2008] measured energy 

balance over Bangalore, India was the first experiment carried out in India that addressed the 

surface energy balance on seasonal time scale. However studies on long term surface energy budget 

over the Indian subcontinent are lacking. Also, long term observational data is not available for 

sufficient duration for any verification studies.  This situation demands that intercomparison of 

different datasets also be carried out.  

Present study aimed at partially filling this gap, utilizing some of the long period datasets 

available from satellite derived products (Modern Era Retrospective-analysis for Research and 

Applications; MERRA). Main objective of the study is to investigate the cloud and aerosol effect 

on the surface energy budget using MERRA dataset. Second objective is to compare it with the 

Climate Forecast System Reanalysis dataset (CFSR) which does not include the effect of aerosols 

explicitly. Reanalysis products are used to study climatic variability and trends The reanalysis 

products are typically also used as a forcing for the land surface models to estimate surface fluxes. 

Thus it is important to investigate the energy balance components in the two recently introduced 

reanalysis products. This study examines the energy budget at selected regions over India which has 

distinct aerosol and cloud characteristics. We analyzed the time series of shortwave, longwave, high 

and low cloud fraction, surface fluxes, and planetary boundary layer height to study inter-annual 

variability in both datasets (MERRA and CFSR).  The CFSR biases were also estimated and their 

inter relationship with low and high cloud cover was also examined.  



1. Data and Methods: 

2.1. MERRA Data: 

Modern Era Retrospective-analysis for Research and Applications (MERRA) 2D data is used in this 

study. It is a National Aeronautics and Space Administration (NASA) atmospheric reanalysis 

project based on a new version of the Goddard Earth Observing System Data Assimilation System 

Version 5 (GEOS-5), with the adoption of a joint analysis with the National Centers for 

Environmental Prediction (NCEP) and of a new set of physics packages for the atmospheric general 

circulation model (AGCM). MERRA focuses on historical analyses of the hydrological cycle on a 

broad range of weather and climate time scales. MERRA data is available from 1979 through 

present. For this study we used data from 1979 to 2009. The analysis performed at a horizontal 

resolution of 2/3 degrees longitude by ½ degree latitude and 72 vertical levels, extending to 0.01 

hPa. Detailed documentation of the data access and procedures can be found at 

http://gmao.gsfc.nasa.gov/MERRA. This dataset provides, net downward shortwave (SW) flux, and 

net downward longwave (LW) flux, for clear sky (no clouds), clean sky (no aerosols) and clean 

clear sky (no aerosols and no clouds).  Aerosol monthly climatology in MERRA is derived from 

Colarco et al., (2010) and includes dust, sea salt, carbonaceous aerosols, sulfate, etc. It also 

provides surface turbulent fluxes like sensible heat flux (H), latent heat flux (LH) and ground heat 

flux (G). Cloud fractions for low and high level clouds (in percent), planetary boundary layer height 

(in meters) are also used.  In MERRA data clouds heights are same as ISCCP. High clouds are those 

which are above 400 hPa, mid level clouds are between 700 – 400 hPa and low clouds have cloud 

tops below 700 hPa. High cloud fraction includes convective clouds when appropriate. High cloud 

and low cloud fraction datasets are also used in this study. This study used monthly average data 

over whole Indian region (6 oN-35 oN and 68 oE-97 oE) and detailed study is done over selected 

locations as described below, for a period of 31 years. 

2.2. Climate Forecast System Reanalysis Data: 



 The National Center for Environmental Prediction (NCEP) Climate Forecast System 

Reanalysis version 2 (CFSR) uses NCEP coupled forecast system model [Saha et al., 2010]. It is a 

global, high resolution coupled atmosphere-ocean-land-surface-sea ice system to provide the best 

estimate for the 31-yr period from 1979 to 2009. New features of CFSR include (1) coupling of 

atmosphere and ocean during the generation of the 6 hour guess field, (2) an interactive sea-ice 

model, and (3) assimilation of satellite radiances by the Grid-point Statistical Interpolation (GSI) 

scheme over the entire period. The CFSR global atmospheric resolution is ~ 38 km (T382) with 64 

levels extending from the surface to 0.26 hPa. The global ocean’s latitudinal spacing is 0.25 degree 

at the equator, extending to a global 0.5 degree beyond the tropics, with 40 levels to a depth of 4737 

m. The global land surface model has 4 soil levels and the global sea ice model has 3 layers. The 

CFSR atmospheric model has observed variations in carbon dioxide (CO2) over the 1979-2009 

period, together with changes in aerosol and other trace gases and solar variations. 

2.3 Selection of regions:  

 Surface Energy budget depends on the climatic condition and surface characteristics such as 

soil moisture, vegetation, soil type, land use, industrialization, precipitation etc. For this study we 

have selected four regions of different climates, contrast aerosol and cloud concentrations over 

Indian subcontinent as shown in Figure 1. 

R1:   (73-79) E & (22-28) N 

R2:   (81-86) E & (20-25) N 

R3:   (75-80) E & (15-20) N 

R4:   (77-81) E & (10-14) N 

R1 is identified as ‘Northern semi-arid region’ with arid to semi-arid climate where the rate 

of moisture loss through evapotranspiration exceeds that from precipitation. Summers are 

exceptionally hot (mean temperature 35o C and daily maxima 45o C) and dry.  Average annual 

rainfall is 730 millimeters (TRMM 1998-2009) and mostly accounted by south-west monsoon.  



Maximum rainfall over this region is noticed during July and August months mainly from the 

westward moving stratiform cloud systems. However, during this period Iran, Afghanistan and 

Arabia (with the exception of the Arabian Sea coast) remain hot and dry under the influence of 

Asiatic continental air.  This hot dry air and moist air meet and form an Intertropical Front [Sawyer, 

1947] and this region is known as transition region. Aerosol optical depth (AOD) varies between 

0.4 - 0.5, likely due to dust particle transport from Thar Desert [Habib et al., 2006], long range 

transport from the middle eastern desert region and also due to other local sources of agricultural 

burning. Cloud fraction is 0.38 (MODIS TERRA 2000-2009).  

Second region R2, identified as ‘Humid subtropical’, experiences very hot and dry summer 

(maximum temperature 42 oC) and cold winter (minimum temperature ranges from 4-10 oC). It 

receives very heavy rainfall (1200 millimeters) during southwest monsoon months (Jun, Jul, Aug, 

and Sept). Agriculture continues to be of primary importance in this region despite its recent 

advances in industrial sector due to abundance of natural resources like huge iron ore, coal and 

mineral reserves etc.  Emission of black carbon and inorganic oxidized matter, which is mostly fly 

ash from coal based power plants, is more in this area. Crop waste, fossil fuel burning contributes to 

the aerosol load. Annual average AOD varies between 0.3 – 0.4 in this region [Reddy and 

Venkataraman, 2002a; Ramachandran and Cherian, 2008]. In this region cloud fraction is 0.47. 

Third region R3, which can be identified as ‘Populated central peninsula’ has mainly 

tropical wet and dry climate with some semi-arid rain shadow region. This has moderate 

temperatures (maximum temperature is between 30-38 oC and minimum between 18 – 22 oC). The 

rainy season lasts from June to September; annual rainfall average is 880 millimeter across the 

region. Population is very dense in this region; the main source for aerosols is biofuel and biomass 

burning.  Also, long range dust transport from Persian Gulf and Arabian Sea region contributes to 

the pollution [Badrinath et al., 2010]. Annual average of AOD varies between 0.3-0.4 [Reddy and 

Venkataraman, 2002b; Ramachandran and Cherian, 2008]. Cloud fraction is 0.52 during last 10 



years.  

Fourth region R4, which is ‘North-east monsoon impacted’ has tropical wet to semi-arid 

climate with daily maximum temperatures range between 32 and 43o C. This region gets rain from 

northeast monsoon occurring during October and November, with annual mean rainfall of 1195 

millimeter.  The main influence is man-made pollutants and strong presence of sea spray aerosols. 

Annual average of AOD varies between 0.2-0.3 [Ramachandran and Cherian, 2008] and cloud 

fraction is 0.67. For this region 8 years of data is missing in MERRA dataset.  

2.4 Methods: 

The surface energy budget equation is given by, 

 *Q H LH G           (1) 

 
Where,  H is Sensible heat, LH is Latent heat and G is Ground heat flux at the surface.   

* ,   and -SW LW sw LWQ Q Q where Q SW SW Q LW LW          

In Equation 1, *Q  is positive as a gain and negative when loss, terms on the right hand sides are 

positive when they represent losses of heat for the surfaces. The exact partitioning of the radiative 

surplus or deficit is governed by the nature of the surface, radiative abilities of soil and atmosphere 

through transport of heat. 

 Aerosol effect is estimated from MERRA data as the difference between clear sky (no 

clouds but aerosols present) and clean-clear sky (no aerosols and no clouds) radiation components.  

The cloud effect is defined as the difference in radiation between clean sky (no aerosols but clouds 

present) and clean-clear sky (no aerosols and no clouds). This aspect is important to determine how 

much solar radiation gets attenuated by aerosol and clouds.  Biases for the low cloud and high cloud 

fractions and surface fluxes are found from the difference between the CFSR and MERRA datasets.  

 Bowen ratio (B) is defined as the ratio of sensible heat flux to latent heat flux [Stull, 2000]. 

A value of Bowen ratio greater than one is typically found over surfaces where available water is 



limited. On the other hand if B is less than unity, LH is greater than H, and the heat input to the 

atmosphere is mainly in the latent form. Therefore the climate is likely to be relatively cool and 

moist. Typical average values for B are; 0.1 over the sea, 0.2 over irrigated crops, 0.5 over 

grasslands, 5 over semi-arid regions and 10 over deserts [Stull, 2000]. 

The present study is organized as follows. Annual surface energy budget over selected 

regions are described in Section 3.1. Aerosol and cloud effects on incoming and outgoing radiation 

are discussed in Section 3.2. In Section 3.3, time series of SW, LW fluxes, high and low clouds for 

MERRA and CFS Reanalysis datasets are compared.  Correlation of CFSR cloud fraction bias (high 

and low level) with the surface fluxes and PBL height biases are discussed in the same section.  In 

Section 3.4 deviation of cloud water and cloud ice mixing ratios are presented for R2 and R3. In the 

last section 3.5, the effect of aerosols and clouds on Bowen ratio is examined for annual and 

seasonal aspect. Aerosol and cloud effect anomalies are found by removing the annual cycle from 

this data and the deviation is found from the difference between original time series and the annual 

cycle. 

3. Results and Discussions: 

3.1 Total surface energy budget:  
  

The average spatial distribution of energy budget components over the period of study from 

CFSR and MERRA are presented in Figure 2. The spatial distribution of SW and LW is similar in 

both the datasets, while CFSR showed more spatial variations. However SH and LH have different 

energy partition for MERRA and CFSR. MERRA showed long term decreasing trends in the SW, 

LW, and SH fluxes and increasing trend in the LH fluxes over the whole Indian region. CFSR 

showed no specific trend. Trends in SW, LW, high cloud and low cloud amount are also 

investigated over Indian region (Figure 3). LW flux shows increasing trend over Indo Gangetic 

plain and over coastal areas in both datasets. MERRA data characterize a dimming over the central 

and east peninsular region. There are strong horizontal gradients in the distribution of SW trend. 



Strong gradients in SW trend are noted over all the four selected regions, from arid, semi arid to 

moist conditions.  In the MERRA data, there is remarkable resemblance between the locations of 

maximum trends of SW radiation and high cloud amount over land.  The negative trend in the 

MERRA SW extends north westwards over the convergence region.  

 The energy balance over the selected locations is analyzed using MERRA (1979-2009) 

dataset. The annual averages of radiative fluxes are presented in Table I. Over R4 region, lower 

value for net LW is due to higher cloud cover for longer duration compared to other regions; 

attributed to the coastal effects. The presence of clouds decreases downward SW and hence upward 

LW. Also, it increases downward LW radiation through reflection and reemission [Devasthale and 

Grassl, 2009], thus the net LW (outgoing-incoming) flux decreases. On the annual mean basis G is 

very small. The partitioning of heat in the form of LH is more for all regions except for R1 due to 

the availability of soil moisture. R1 characterizes arid to semi-arid climate with very less 

precipitation (annual average ~ 730 mm) hence partitioning of available energy to LH is less and 

most energy is transferred as H. Long term annual average cloud fractions are 0.38, 0.47, 0.52, 0.67 

and AODs (over 2000-2009 from MODIS) are 0.41, 0.35, 0.36, 0.27 at R1, R2, R3 and R4 

respectively. 

Monthly variation of surface radiative fluxes for four selected locations averaged over 31 

years is presented in Figure 4. Cloud fraction from MERRA data set and AOD from MODIS 

TERRA (2000-2009) are also presented in the same figure.  AOD peaked for R1 region during the 

month of June and July. The annual cycle of AOD became weaker from R1 to R4. Cloud fraction 

increased from May to September in R1 region. The distribution of cloud fraction became wider 

from R1 to R4 with peak during monsoon season.  An increase in the cloud fraction over R3 region 

during pre-monsoon season is mainly associated with thunderstorm events.  

Net downward SW radiation at the surface is maximum during the pre-monsoon season 

(Mar, Apr, May) for all the regions. Net downward SW radiation decreases during the monsoon 



season due to increase in cloud fraction and also possibly due to the increased AOD. Net downward 

LW radiation (negative values show loss of heat from the surface) increases during pre-monsoon 

due low cloudiness. Sensible heat (H) and ground heat flux (G) also show maximum value in pre-

monsoon season as they are directly dependent on the incoming solar radiation (latent heat flux 

(LH) is minimum during the pre-monsoon). Maximum incoming radiation is noted in April or in 

May at all locations except over the coastal region R4. For R1, maximum value of SW, LW, H and G 

is noticed in the month of May, for R2 and R3 the peak is noted in April while for R4 it is in March.  

As soil being dry, sensible heat flux dominates during the pre-monsoon months.  Latent heat 

is more during the monsoon months due to increased rainfall and thus soil moisture content is more. 

LH is maximum during June to November at all locations except for the arid region R1. It may be 

noted that cloudiness over R1 is noticed from June to September, thus precipitation and water 

available for evaporation are less compared to other regions. Cloudiness over R4 is noticed 

throughout the year due to the presence of land-sea breeze circulations.  Over R4 region, LH is 

maximum during October-November, as maximum rainfall is received under the influence of 

northeast monsoon (60 % of the annual).  

In pre-monsoon R1 shows small LH and LW is large compared with other locations. Over 

R4 region this behavior is exactly opposite.  R2 and R3 show intermediate characteristics that of R1 

and R4. LW and LH are negatively correlated. Earth emits LW radiation, depending on the surface 

temperature. Similar behavior of the annual cycle of LW to that of SW is due to its dependency of 

surface temperature, which again depends on the net input of energy. In the monsoon months, less 

amount of LW is emitted as less amount of SW reaches the surface due to the presence of clouds. 

Also the amount of longwave emitted by surface partially depends on LH. When evaporation takes 

place, some heat is removed from the surface as LH, surface cools and upward LW decreases; 

additionally, the presence of clouds and aerosols increases the amount of LW in downward direction 

(reflection, emission).  It is apparent that there is influence of clouds and aerosols over the four 



regions, which are distinct with their forcing on the surface energy budget and needs further 

investigation. 

CFSR dataset also shows similar monthly distribution of all the fluxes but values differ from 

MERRA data. In Figure 5, monthly variations of flux biases (CFSR – MERRA) are presented for 

energy balance components (SW, LW, H, LH and G). The biases are very high and also show large 

monthly variations. Bias is less at R4 compared with other regions and maximum over R3 region. 

CFSR overestimates LW and H. It underestimates SW, LH and G over all the regions.  Negative 

biases in the LH flux in the CFSR are especially dominant over the R3 region. 

3.2 Aerosol and cloud forcing/effect: 
 

Aerosols have a much shorter lifetime (days to weeks) than most greenhouse gases (decades 

to centuries), and, as a result, their concentrations respond much more quickly to changes in 

emissions [Houghton et al., 2001].  Consequently, they alter the net radiation by scattering and / or 

absorbing both at the top and bottom of the atmosphere, causing dimming at the surface, which is 

the direct effect of aerosols [Ramanathan et al., 2001; Krishnan  and Ramanathan, 2002; Huang et 

al., 2007; Padma Kumari et al., 2007;  Panicker et al., 2010].   Such a reduction has been observed 

in industrial regions of the Northern Hemisphere [Menon, 2002]. Any change in the incoming 

radiation over a period of time will influence the radiation budget and surface temperature 

distribution. In order for the surface energy balance to reach a new equilibrium state, the surface 

energy has to be redistributed which will introduce changes in the components of energy balance.   

Figure 6 shows annual cycle of aerosol (for SW and LW) and cloud (for SW) forcing 

averaged over 31 years. The maximum attenuation of the fluxes due to aerosol and cloud forcing is  

presented in Table II.   The negative sign shows a reduction in the received energy at the surface 

and thus a dimming effect. Aerosols cool the surface by reflecting, scattering and absorbing 

incoming solar radiation, known as aerosol direct effect. All these regions show maximum 

attenuation in pre-monsoon, as aerosol loading builds up in this season due to convective and dust 



storm activities, forest fires, open burning of crop waste [Ramachandran and Cherian, 2008; Habib 

et al., 2006].  R1 (AOD ≈ 0.45) and R2 (AOD ≈  0.58) show significant effect of aerosols.. In case 

of R1, dust particles contribute to solar dimming at the surface, air masses carry the dry dust 

particles from the Middle East and western Thar Desert during pre-monsoon season [Tripathi et al., 

2005; Bollasina et al., 2007; Aloysius et al., 2008].  While R2 is highly populated and industrialized 

regions so it shows strong aerosol effect on SW and LW. Black carbon (BC) absorbs SW radiation, 

heats the atmosphere and exerts negative forcing at the surface due to a dimming effect. These 

changes have an additional influence on the thermodynamic structure of the atmosphere which 

becomes more stable and may resist cloud development [Ramanathan et al., 2005].  On average, 

BC atmospheric forcing contributes around 55 % of total aerosol atmospheric radiative absorption 

integrated over all seasons [Panicker et al., 2010]. Region R4 shows smallest value, as this region 

has much clearer environment (AOD ≈  0.35) compare to other regions. Additionally, this region 

gets rainfall from both southwest and northeast monsoon thus washout and scavenging influence 

reduces the aerosol burden [Chate et al., 2003]. We emphasize that aerosol induced dimming effect 

dominates during the pre-monsoon season R1, R2 and R3 regions. Meanwhile, cloud effect 

dominates during the monsoon months.   

LW aerosol forcing is of comparable magnitude as that of greenhouse gases in warming the 

earth’s surface and in modifying the earth’s energy balance [Vogelmann et al., 2003].  Maximum 

aerosol effect on net LW is in April month over all regions. LW effect over R1 is large compared to 

other regions due to the presence of dust particles over this region and high AOD (≈ 0.75).  

Aerosols with coarse particles, such as dust or sea salt can exert direct LW forcing (reflection, 

scattering and absorption) at the surface [Dufrensne et al., 2002; Vogelmann et al., 2003; Lubin and 

Vogelmann, 2004; Xia and Zong, 2009]. In spite of being a coastal region, R4 does not show large 

LW forcing. Panicker et al. [2008] suggested that about 25 % of the aerosol SW cooling is being 

compensated by increase in LW radiation (8.2 Wm-2) due to aerosol absorption and reemission. 



These results were derived from ground based observations during December 2004 to February 

2005, a short period of time compared to the one presented in the current study. Our results during 

pre-monsoon season also conform to this finding especially over regions R1 and R2. These studies 

indicate that higher the aerosol loading, higher is the downward LW flux observed at the surface. 

This increase reduces the net LW (outgoing-incoming) at the surface.  

Clouds reflect the incoming solar radiation (cloud albedo effect) back into the space. Since 

aerosols act as a cloud condensation nuclei, large number of aerosols create more cloud droplets, 

which increases reflection of radiation back to space, leading to a net climate cooling (aerosol 

indirect effect) and may also slow the hydrological cycle [Ramanathan et al., 2001; Lohmann and 

Feicher, 2005; Huang et al., 2006; Rosenfeld et al., 2008].   In Figure 6, reduction in the SW due to 

the presence of clouds is very large due to the  reflection of incoming radiation. Maximum 

reduction is seen in the monsoon months (JJAS). R2 shows highest attenuation by clouds.  

3.3 Comparison of MERRA and CFSR datasets: 

A linear regression is carried out on the average low and high cloud fraction during Jan-Dec, 

pre-monsoon and monsoon periods from MERRA and CFSR and estimates of slopes are presented 

in Table III (Figure is not shown). Both high and low clouds show positive trend during the past 31 

years. MERRA data show increasing trend during Jan-Dec for high cloud fraction 0.23, 0.20, 0.30 

and 0.05 per year; and for low cloud fraction 0.07, 0.16, 0.08 and 0.26 per year for R1, R2, R3 and 

R4 respectively. It is seen that the increase in the annual high-level cloud cover is more than that of 

low-level cloud cover for all regions except at R4, thus more positive LW feedback at the surface. 

LW cloud forcing in the tropical region primarily associated with high clouds [Hartmann et al., 

1992]. Forcing of the albedo (cooling at the surface) is contributed primarily by clouds with larger 

optical depth and by low clouds which has negative SW feedback [Hartmann et al., 1992]. Increase 

in LW flux at the surface can offset SW cooling and warm the earth’s surface. The increasing cloud 

amount during the past 31 years may be due to increasing concentration of aerosols and thus the 



indirect effect; as aerosols serve as a CCN, more number of aerosols reduce cloud droplet size 

hence precipitation efficiency by increasing cloud lifetime [Ramanathan et al., 2001, Huang et al., 

2006].  CFSR data also showed the increasing trend in high cloud is more than that of low clouds. 

However, the rate of increase in the case of CFSR is less in comparison with MERRA data. 

A linear regression analysis was done for average SW and LW fluxes over different 

averaging period; Jan- Dec, pre-monsoon and monsoon season. Estimated slopes are presented in 

Table IV (Figure is not shown). MERRA-SW flux decreasing trends are -0.48, -0.59, -0.64 and -

0.57 Wm-2 per year R1, R2, R3 and R4 respectively. These trends are in general, in close agreement 

with the SW radiation trends presented by Padma Kumari et al. [2007] which are -1.17, -1.28, -0.48 

and -0.22 Wm-2 per year for the period 1981- 2004 and Soni et al. [2011] found -0.92, -0.87, -0.37 

and -0.42 Wm-2 per year for 1971-2005 period at Jodhpur, Kolkata, Pune and Chennai which are the 

closest stations to the present study. MERRA- LW flux decreasing trends are -0.42, -0.43, -0.41 and 

-0.39 Wm-2 per year for R1, R2, R3 and R4 respectively. Trend in SW flux is more compared to that 

of LW flux. CFSR shows negligible decreasing trend for all regions. Decreasing trend in LW 

(outgoing-incoming; note that MERRA sign convention is followed; where negative value indicates 

gain at the surface) is attributed to increase in the downward LW at surface due to the presence of 

aerosols and clouds; this extra greenhouse effect increases surface temperature, resulting in the 

increased evaporation and fractional cloudiness.  

A similar analysis was also carried out for H, LH fluxes and Planetary Boundary Layer 

(PBL) height and estimated slopes are presented in Table V. Changes in SW and LW can affect the 

partitioning of heat at the surface. Reduced SW at the surface will reduce H and evaporation (LH). 

H shows decreasing trend for MERRA data (Jan-Dec) which is -0.59, -0.49, -0.52 and -0.71 Wm-2 

per year for R1, R2, R3 and R4 respectively. CFSR shows negligible increasing trend. LH shows 

increasing trend of 0.52, 0.31, 0.28 and 0.67 Wm-2 per year for R1, R2, R3 and R4 respectively. 

This increase is may be due to increase in LW at the surface due to enhanced Green House effect by 



clouds and aerosols. CFSR shows insignificant trend for LH.  Increase in LH and decrease H is 

more for R4 in MERRA data, attributed to presence more cloud cover over that region.  

PBL over land rapidly responds to incoming solar radiation. Heating at the surface will 

initiate convective mixing and will increase PBL height. Shallow convection derives energy from 

the boundary layer mixing and their representation in the climate models is closely linked to the 

PBL characteristics. This is important since there are significant feedbacks between boundary layer 

clouds and climate [Stull, 2000]. PBL height shows decreasing trend (-4.48, -3.98, -3.65 and -4.33 

m per year) for R1, R2, R3 and R4 respectively in Jan-Dec season. The decrease is due to reduced 

SW and hence sensible heat at the surface. Trends in CFSR data for PBL are smaller.  

3.3.1. Model biases in cloud cover and their relationships  

A relationship between the cloud fraction bias (CFSR-MERRA) and bias in the SW, LW, H, 

LH fluxes and PBL height are presented in Figure 7 for high clouds and in Figure 8 for low clouds. 

We note that, For Jan–Dec period, high cloud bias is negative except at R4 i.e. CFSR 

underestimates high clouds for R1, R2 and R3 but overestimates for R4 during all seasons.  In case 

of low cloud fraction, CFSR low clouds bias is very less except for R4 where it underestimates in 

all seasons. In CFSR product low cloud errors are considerably minimized. CFS forecast model 

version 1.0 was also compared with MERRA (results are not presented), which showed an 

overestimation of low clouds and high clouds during pre-monsoon and an underestimation during 

monsoon. However no such differences in the biases exist for the CFSR data.  

Annual SW bias is negative over all regions. In pre-monsoon and monsoon SW bias is 

negative (it underestimates SW by ≈ 40 Wm-2) except for R4 (where the values are scattered on the 

both sides of zero). LW bias is also negative for all seasons. In case of H, CFSR overestimates for 

all regions during Jan-Dec, pre-monsoon and monsoon. CFSR underestimates LH for all regions 

during all seasons. PBL heights from CFSR are overestimated by approximately 200 m for all 

regions during Jan-Dec, pre-monsoon and monsoon period. Biases in SW, LW, H and PBL height 



decreases with increase in high cloud bias and LH bias decreases with decrease in high cloud bias. 

Relation of these fluxes with low cloud fraction bias is very less. 

Cirrus cloud amount is a dominant high cloud type over the Indian region, approximately 65 

% of all cloud grids [Tang and Chen, 2006]. It was also noted that the cirrus reflectance from the 

MODIS data products showed a strong latitudinal dependence (Figure 9). Selected regions fall in 

the high to low cirrus reflectance regions as indicated in the figure.  Hence, it is necessary that good 

estimation of high cloud fraction in climate models and reanalysis products for the prediction of 

other fluxes.   

SW, LW, H and PBL height biases are negatively correlated and LH is positively correlated 

with both high and low cloud fraction biases. In pre-monsoon season all parameters are highly 

correlated to low cloud bias than that of high cloud bias except at R3. In monsoon season, 

correlation of all parameters (except at R3) with high cloud bias is stronger than that of low cloud 

bias. The CFSR has higher PBL heights than that of MERRA and PBL bias is well correlated with 

high cloud fraction biases. 

3.4 Cloud water and cloud ice mixing ratio 
 

In Section 3.3, it is seen that increasing trend in high level cloud is more than that of low-

level cloud, which is able to explain the bias in the radiation and other surface fluxes. There are 

studies discussing the indirect effect of aerosols on the cloud microstructure; however consensus on 

the gross effect of aerosols is still to be uncovered [Levin and Cotton, 2008]. Several studies have 

reported the importance of supercooled liquid in the deep convective clouds [Rosenfeld and 

Woodley, 2000; Khain et al., 2001; Fan et al., 2010] in the presence of high CCN concentrations. 

Vertical profiles of Cloud liquid water (LWC) and ice water content (IWC) from MERRA dataset is 

used in this section. The annual cycle of LWC and IWC are removed from the dataset and the 

anomalies of LWC and IWC are presented in Figure 10 for R2 and R3. LWC anomaly is positive 

since 1999 over both R2 (a) and R3 (b) at elevated layers. This indicates that super cooled liquid 



increased in these regions, more so over R3 region.  This may be attributed to more number of 

aerosol particles present over R3 than R2.  One pathway for high liquid water content at elevated 

layers is through nucleation of aerosol particles at higher levels in the deep convective clouds. This 

leads to supercooled liquid and is typically observed [Prabha et al., 2011] and modeled in several 

cloud microphysical studies.  The CCN concentration at elevated layers could vary from few 

hundred to thousand cm-3, depending on the location, and the airmass trajectories [Kulkarni et al., 

2011].  The other pathway for high liquid water content at elevated layers is that through inhibition 

of precipitation, where aerosols can increase the cloud liquid water content. High concentration of 

small cloud droplets decrease the collision-coalescence efficiency hence no homogeneous 

nucleation takes place and also the scarcity of Ice Nuclei (IN) is one of the reasons [Rosenfeld and 

Woodley, 2000]. But above that level super cooled water suddenly disappears due to homogeneous 

freezing, which shows elevated IWC at 200 hPa. This increase in IWC leads to reflection of more 

LW radiation back to the surface and thus more infrared warming at the surface. Presence of high 

level supercooled water clouds indicate that, clouds are not precipitating earlier due to increase in 

the number of small liquid droplets. 

Increased cloud ice and cloud water mixing ratio for R3 indicates that, more downward LW 

radiation reaches the surface over R3 compared to R2.  Hence net LW (up – down) decrease for R3 

is less than that over R2 as seen in Figure 6. Increase in cloud ice mixing ratio is more compared to 

cloud water mixing ratio. This may be attributed to increased cloud lifetime and cloud water/ice 

path could increase the amount of high clouds 

3. 5. Effect of aerosol (AE) and clouds (CE) on Bowen Ratio (B): 
  
 Figure 11 represents the Bowen ratio relationship with cloud and aerosol effect anomalies. 

The aerosol or cloud effect anomaly is found by removing the annual cycle (presented in Figure 6) 

from the estimated monthly values of aerosol or cloud effect. This analysis is carried out to 

investigate the net effect of aerosol and cloud on the partitioning of the surface fluxes.  



In pre-monsoon B is more as H is more than LH. During monsoon, Latent heat flux dominates and 

B is less.  Over annual mean, B is less than 1 at R2, R3 and R4 and more at R1. R1 has an arid to 

semi-arid type climate and has less soil moisture therefore; value of H is more than LH. Cloud and 

Aerosol effect anomaly show strong negative correlation with B.  As CE or AE decreases, B 

increases.  Decrease in clouds or aerosols allow more radiation to reach the surface hence H 

increases due to this B increases. Partitioning of heat at the surface changes by increase or decrease 

in amount of aerosols and/or clouds.   

The estimated slopes and correlation coefficients between the aerosol or cloud effect 

anomaly and Bowen ratio are presented in Table VI. Decrease in aerosols and clouds for all seasons 

are more for R2 compared to all regions. In monsoon, change in B with AE anomaly is more (-1.24, 

-3.81, -0.25 and 0.04) compared to pre-monsoon (-0.01, -10.4, -0.04 and -0.16). Similarly, change 

in CE anomaly with bowen ratio is more in monsoon (-76.35, -151.83, -154.85 and -42.87) than 

pre-monsoon (-0.16, -45.35, -4.02 and -13.42) for R1, R2, R3 and R4 respectively. Correlation 

coefficient of B with annual aerosol effect is, - 0.76, -0.75, -0.38 and -0.58; and with cloud effect it 

is -0.87, -0.84, -0.88 and -0.82 for R1, R2, R3 and R4 respectively.  Correlation between B and 

Cloud effect is stronger than that of aerosol effect. These results indicate that aerosol forcing 

anomaly is strongly correlated for the northern locations (R1 and R2) where there is a distinct 

seasonal variation of the aerosol optical depth. This may also result from higher amounts of 

absorbing aerosols. In the presence of absorbing aerosols, warmer boundary layer with higher 

albedo modifies the cloud cover and impacts boundary layer moisture, leading to a shallow 

boundary layer, which further change the surface energy fluxes [Pielke et al. 2002]. 

4. Conclusions:   

Following conclusions are drawn from the present study. 

1. MERRA dataset showed a dimming trend in the SW in the central and north eastern part of 

peninsular India.  



2. Aerosol induced dimming effects dominate during the pre-monsoon season at R1, R2 and 

R3 regions. Observed dimming due to the presence of aerosols is maximum in pre-monsoon 

which is ≈ -24.5, - 25, - 19 and -16 Wm-2, where as due to clouds it is maximum in monsoon 

≈ -86, -113, -101 and -97 Wm-2. LW surface warming due to aerosols is found to be 

maximum in pre-monsoon ≈ 9.8, 6.8, 4.5 and 1.9 Wm-2 for R1, R2, R3 and R4 respectively 

and in conformance with an earlier study [Paniker et al., 2009] that it compensates for the 

20-25 % of the SW dimming effect. 

3. Both net SW and net LW fluxes from MERRA show decreasing trend during 1979-2009 for 

all seasons, however CFSR does not show such a trend possibly due to inadequate aerosol 

representation in CFSR. In comparison with MERRA, CFSR data underestimates SW and 

LW fluxes in pre-monsoon and monsoon.  

4. High and low cloud fraction from MERRA showed increasing trend during all seasons. 

Trend in high clouds is more than that of low clouds. CFSR underestimates high clouds in 

comparison with MERRA as a result of significant under prediction of cloud amount during 

pre-monsoon and monsoon season (except over R4 region). In the case of low clouds, it 

overestimates low clouds as a result of significant over prediction of low cloud amount 

during the pre-monsoon and monsoon season (except for R4 region).   

5. An analysis of IWC and LWC profiles over two locations indicated that supercooled water 

increased in the recent years and the IWC also followed a similar behavior at 200 hPa in 

association with the cirrus cloud cover.  

6. PBL height from CFSR is higher (200-600 m) than that of MERRA, and PBL bias is well 

correlated with the high cloud biases. Low cloud biases are very less compared to high 

cloud biases.  

7. Sensible heat flux from MERRA has a decreasing trend which is ~ -0.59, -0.49, -0.52 and -

0.71 W m-2 per year; and latent heat flux showed an increasing trend ~ 0.52, 0.31, 0.28 and -



0.67 W m-2 per year for R1, R2, R3 and R4 respectively.  CFSR product shows negligible 

and insignificant trend for H and LH.   

8. Bowen ratio shows strong negative correlation with aerosol and cloud effect anomalies. 

Thus, as aerosol effect or cloud effect increases B decreases due to less radiation reaching 

the surface. Correlation between B and cloud effect is stronger than that with the aerosol 

effect. 

Evaluation of energy budget components using direct observations is not addressed in this study 

due to lack of such long period observations. However, such evaluations could be carried out in 

short period datasets at a seasonal scale.  

5. Acknowledgements: 

The authors thank MODIS and The Global Modelling and Assimilation Office (GMAO) and 

the GES DISC for the dissemination of the MERRA data. CFSR data were developed by the 

NOAA’s National Centers for Environmental Prediction (NCEP). The data for this study are 

from the Research Data Archive (RDA) which is maintained by the Computational and 

Information Syatems Laboratory (CISL) at the National Center for Atmospheric Research 

(NCAR). NCAR is sponsored by the National Science Foundation (NFS). We thank Bob 

Dattore for his help with the CFSR datasets. Two anonymous reviewers and editor Prof. 

Steven Ghan are thanked for valuable suggestions that lead to improvement of the 

manuscript.  

References: 

Allen M. R. and Ingram W. (2002), Constraints on future changes in climate and the hydrologic 

cycle, Nature, 419 224–32 

Aloysius M.  , M. Mohan, K Parameswaran, S. K. George and P. R. Nair (2008), Aerosol transport 

over Gangetic basin during ISRO-GBP land campaign-II, Ann. Geophys., 26, 431-440. 



Andrews T., Piers M. Forster and Jonathan M. Gregory (2008), A Surface Energy Perspective on 

Climate Change, J. Climate, DOI: 10.1175/2008JCLI2759.1. 

Badrinath K. V. S., A. R. Sharma, D. G. Kaskautis, S. K. Kharol, and H. D. Kambezidis (2010), 

Solar dimming over the tropical urban region of Hyderabad, India: Effect of increased 

cloidiness and increased anthropogenic aerosols, J. Geophys. Res., 115, D21208, 

doi:10.1029/2009JD013694. 

Badrinath K. V. S., S. K. Kharol, D. G. Kaskautis, A. R. Sharma., V. Ramaswamy, H. D. 

Kambezidis (2010), Long-range transport of dust aerosols over the Arabian Sea and Indian 

region – A case study using satellite data and ground-based measurements., Global Planet 

Change, v.72, iss. 3, p. 164-181. 

Balachandran S., and M. Rajeevan (2007), Sensitivity of surface radiation budget to clouds over the 

Asian monsoon region. J. Earth Syst. Sci., 116, No. 2, 159-169. 

Bhat G. S. and S. C. Arunchandra (2008), On the measurement of the surface energy budget over a 

land surface during the summer monsoon, J. Earth Syst. Sci., vol 117, No. 6, pp. 911-923. 

Bollasina Massimo, Sumant Nigam and K.M. Lau (2008), Absorbing Aerosols and Summer 

Monsoon Evolution over South Asia: An Observational Portrayal. J. Climate, 21, 3221–

3239.  

Chate D. M., P. S. P. Rao, M. S. Naik, G. A. Momin, P. D. Safai, K. Ali  (2003), Scavenging of 

aerosols and their chemical species by rain, Atmos. Environ., Vol 37, Issue 18, Pages 2477-

2484, ISSN 1352-2310, DOI: 10.1016/S1352-2310(03)00162-6. 

Colarco P., Da Silva A., Chin M., and  Diehl T. (2010), Online simulations of global aerosol 

distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based 

aerosol optical depth. J. Geophys. Res, 115, –. doi:10.1029/2009JD012820 



Devasthale A. and H. Grassl (2009), A daytime climatological distribution of high opaque ice cloud 

classes over the Indian summer monsoon region observed from 25-year AVHRR data, 

Atmos. Chem. Phys. Discuss., 9, 23–58. 

Dufresne J., C. Gautier, P. Ricchiazzi and Y. Fouquart (2002),  Longwave Scattering Effects of 

Mineral Aerosols, J. Atmos. Sci., Vol: 59, 1959-1966. 

Fan J., Jennifer M. Comstock and Mikhail Ovchinnikov (2010), The cloud condensation nuclei and 

ice nuclei effects on tropical anvil characteristics and water vapor of the tropical 

tropopause layer, Environ. Res. Lett., 5(2010) 044005(6pp). 

Habib G.,  C. Venkataraman, I. Chiapell, S. Ramachandran, O. Boucher and M. S.  Reddy (2006), 

Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: 

Relationship to regional meteorology and emissions. Atmos. Envir., 40, 1909-1921. 

Hartmann D., E. Maureen, Ockert-Bell, Marc Michelsen (1992), The effect of cloud type on Earth’s 

energy balance: Global analysis, J. Climate, Vol. 5, 1281-1304. 

Hollinger D. Y., Kelliher F. M., Byers J. N., Hunt J. E., McSeveny T. M., Weir P. L. (1994) Carbon 

dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. 

Ecology, 75:134–150. doi:10.2307/1939390 

Houghton J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A.  

Johnson (2001), Climate Change 2001:  The Scientific Basis, Published for the 

Intergovernmental Panel On Climate Change, Cambridge University Press: New York. 

Huang Y., Robert E. Dickinson and William L. Chameides (2006), Impact of aerosol indirect effect 

on surface Temperature over East Asia, PNAS, vol. 103, 4371–4376. 

Khain, A. P., D. Rosenfeld, and A. Pokrovsky (2001), Simulating convective clouds with sustained 

supercooled liquid water down to −37.5°C using a spectral microphysics model, Geophys. 

Res. Lett., 28(20), 3887–3890, doi:10.1029/2000GL012662. 



Krishnan R. and V. Ramanathan (2002), Evidence of surface cooling from absorbing aerosols, 

Geophys. Res. Lett., VOL. 29, NO. 9, 1340, 10.1029/2002GL014687. 

Kulkarni, J. R., Maheshkumar, R. S., Morwal, S. B; Padma Kumari, B., Mahen Konwar, Deshpande 

C. G., Joshi R. R., Bhalwankar R. V., Pandithurai G., Safai P.D., Narkhedkar S. G., Dani K. 

K., Nath A., Sathy Nair., Sapre V. V., Puranik P. V., Kandalgaonkar S., Mujumdar V. R., 

Khaladkar R. M., Vijayakumar R., Thara V. P. and B. N.Goswami, 2011, The Cloud 

Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX): Overview 

and Preliminary Results, under review, Current Science  

Lau K.M., M. K. Kim,  K. M.  Kim (2006), Asian summer monsoon anomalies induced by aerosol 

direct forcing: The role of Tibetan plateau, Clim. Dynam., Vol. 26, 855–864, DOI 

10.1007/s00382-006-0114-z. 

Levin Z. and W. R. Cotton (2008), Aerosol Pollution Impact On Precipitation: A Scientific Review, 

Springer Press. 

Liepert B. G., Feichter J., Lohmann U. and Roeckner E. (2004), Can aerosols spin down the water 

cycle in a warmer and moister world?, Geophys. Res. Lett. 31 L06207. 

Liepert B. G. and Previdi M. (2009), Do models and observations disagree on the rainfall response 

to global warming?, J. Climate, 22 3156–66. 

Lohmann U. and J.  Feichter (2005), ‘Global indirect aerosol effects: a review’, Atmos. Chem. 

Phys., 5, 715–737. 

Lubin D. and A. Vogelmann (2004), Longwave Aerosol Direct and Indirect Radiative Effects at the 

NSA Site, Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New 

Mexico, March 22-26. 

Menon S., J. Hansen, L. Nazarenko, Y. Luo (2002), Climate Effects of Black Carbon Aerosols in 

China and India, Science, 2002 Sep 27; 297(5590), 2250-3. 



Narasimha R, D. R. Sikka and A. Prabhu (1997), The monsoon through boundary layer (Bangalore, 

India: Indian Academy of Sciences), 422 pp.  

Niyogi D, Chang H et al. (2004) Direct observations of the effects of aerosol loading on net 

ecosystem CO2 exchanges over different landscapes. Geophys Res Lett 31:L20506 (doi: 

10.1029/2004GL020915) 

Padma Kumari  B., A. L. Londhe, S. Daniel and D. B.  Jadhav (2007), Observational evidence of 

solar dimming: Offsetting surface warming over India, Geophys. Res. Lett., 34, L21810, 

doi: 10.1029/2007GL031133.  

Padma Kumari B. and  B. N. Goswami (2010), Seminal role of clouds on solar dimming over the 

Indian monsoon region, Geophys. Res. Lett., 37, L06703, doi: 10.1029/2009GL042133. 

Panicker A. S., G. Pandithurai, P. D. Safai, and S. Kewat (2008), Observations of enhanced aerosol 

longwave radiative forcing over an urban environment, Geophys. Res. Lett., 35, L04817, 

doi: 10.1029/2007GL032879. 

Panicker A.S., G. Pandithurai, P.D. Safai, S. Dipu, Dong-In Lee (2010), On the contribution of 

black carbon to the composite aerosol radiative forcing over an urban environment, Atmos. 

Environ., 44, 3066-3070. 

Prabha T. V., Khain, A., Maheshkumar, R. S., Pandithurai, G., Kulkarni, J. R., Konwar, M. and 

Goswami, B. N., Microphysics of pre-monsoon and monsoon clouds as seen from in situ 

measurements during CAIPEEX. J. Atmos. Sci., 2011, doi: 10.1175/2011JAS3707.1. 

Pielke RA Sr (2002) Mesoscale meteorological modeling, 2nd edn. Academic Press, San Diego 

Rajeevan M., and J. Srinivasan (2000), Net cloud radiative forcing at the top of the atmosphere in 

the Asian monsoon region, J. Climate, 13(3), 650-657. 



Ramanathan V., P. J. Crutzen, J. T. Kiehl and D. Rosenfeld (2001), Aerosols, Climate, and the 

Hydrological Cycle, Science, 294, 2119.  

Ramanathan V., C. Chung, D. Kim, T. Bettge, L. Buja, J. T. Kieh, W. M. Washington, Q. Fu, D. R. 

Sikka and M. Wild (2005), Atmospheric brown clouds: Impacts on South Asian climate 

and hydrological cycle, PNAS, 5326–5333, vol. 102, no. 15. 

Ramchandran S. and R. Cherian (2008), Regional and seasonal variations in aerosol optical 

characteristics and their frequency distributions over India during 2001-2005, J. Geophys. 

Res., 113, D08207, doi:10.1029/2007JD008560. 

Reddy M. S. and C.  Venkataraman (2002a), Inventory of aerosol and sulphur dioxide emissions 

from India: I-Fossil fuel combustion, Atmos. Environ., 36, 677-697. 

Reddy  M. S. and C. Venkataraman (2002b), Inventory of aerosol and sulphur dioxide emissions 

from India: II-Biomass combustion, Atmos. Environ., 36, 699-712. 

Rosenfeld D., and W. L. Woodley (2000), Deep convective clouds with sustained supercooled 

liquid water down to _37.5_C, Nature, 405, 440–441, doi:10.1038/35013030. 

Rosenfeld D., Ulrike Lohmann, Graciela B. Raga, Colin D. O'Dowd, Markku Kulmala, Sandro 

Fuzzi, Anni Reissell, and Meinrat O. Andreae (2008), Flood or Drought: How Do Aerosols 

Affect Precipitation?, Science, 321 (5894), 1309. DOI: 10.1126/science.1160606. 

Saha S. et al (2010), The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 

91:1015-1057. 

 Sawyer J. S. (1947), The structure of the intertropical front over N.W. India during he S.W. 

Monsoon, Quart. J. Roy. Meteor. Soc., 73: 346-369. Doi: 10.1002/qj.49707331709. 

Soni V. K., G. Pandithurai and D. S. Pai ( 2011), Evaluation of long-term changes of solar radiation 

in india. Int. J. Climato., n/a. doi: 10.1002/joc.2294. 



Stull R. B. (2000), Meteorology for scientists and engineers, second edition, Brooks/Cole 

publications. 

Tang Xu and Baode Chen (2006), Cloud types associated with the Asian summer monsoon as 

determined from MODIS/TERRA measurements and a comparison with surface 

observations, Geophys. Res. Lett., 33, L07814, doi: 10.1029/2006GL026004. 

Trenberth K. (1999), Conceptual framework for changes of extremes of the hydrological cycle with 

climate change, in Climatic Change, 42: 327-339, Kluwer Academic publishers. Printed in 

Netherlands. 

Tripathi S. N., Sagnik Dey, A. Chandel, S. Srivastava, Ramesh P. Singh, and B. N. Holben (2005), 

Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga 

Basin, India, Ann. Geophys., 23, 1093–1101, 2005. 

Vernekar K. G., S. Sinha, L. K. Sadani, S. Sivaramakrishnan, S. S. Parasnis, Brij Mohan, S. 

Dharmaraj, M. N. Patil, J. S. Pillai, B. S Murthy., B. Debaje and A. Bagavathsingh (2003), 

An overview of the Land Surface Processess Experiment (Laspex) over a Semi-Arid 

Region of India, Bound-Lay. Meteorol., 106, 561-572  

Vogelmann A., Piotr J. Flatau, Malgorzata Szczodrak, Krzysztof M. Markowicz, and Peter J. 

Minnett (2003), Observations of large aerosol infrared forcing at the surface, Geophys. 

Res. Lett., VOL. 30, NO. 12, 1655, doi:10.1029/2002GL016829. 

Wild M., Grieser J. and Schär C. (2008), Combined surface solar brightening and increasing 

greenhouse effect support recent intensification of the global land-based hydrological 

cycle, Geophys. Res. Lett. 35 L17706. 

Wild M. and Beate Liepert (2010), The Earth radiation balance as driver of the global hydrological 

cycle, Environ. Res. Lett. 5, 025203, doi:10.1088/1748-9326/5/2/025203. 



Wild M.,  Atsumu Ohmura, Hans Gilgen and D. Rosenfeld (2004), On the consistency of trends in 

radiation and temperature records and implications for the global hydrological cycle, 

Geophys. Res. Lett., VOL. 31, L11201, DOI: 10.1029/2003GL019188. 

Xia X., and X. Zong (2009), Shortwave versus longwave direct radiative forcing by Taklimakan 

dust aerosols, Geophys. Res. Lett., 36, L07803, doi:10.1029/2009GL037237.  

Zelinka M. D. and D. L. Hartmann (2010), Why is longwave cloud feedback positive?,  J. Geophys. 

Res., 115, D16117, doi: 10.1029/2010JD0138 

Figure captions:  

Figure 1: Selected study regions over Indian subcontinent.  

Figure 2: Spatial distribution of fluxes averaged over 31 years and respective anomaly (third 

column) over the Indian land region. 

Figure 3: Spatial distribution of trend in SW, LW (Wm-2yr-1) and high and low cloud fraction. Top 

panel is for MERRA and lower panel for CFSR 

Figure 4:  Annual surface energy budget averaged over   1979 – 2009. Cloud fraction (1979-2009) 

and AOD (2000-2009) is presented on right Y axis 

Figure 5:  Annual bias (CFSR –MERRA) in the surface energy budget fluxes averaged over  1979 – 

2009. 

Figure 6:  Annual cycle of aerosol and cloud Effect averaged over   1979 – 2009. 

Figure 7: Relationship between high cloud fraction bias and biases in the fluxes (SW, LW, H, LH) 

and PBL height. 

Figure 8: Relationship between low cloud fraction bias and biases in the fluxes (SW, LW, H, LH) 

and PBL height. 

Figure 9:  Latitudinal distribution of cirrus reflectance from MODIS dataset averaged over Indian 

region from 2001 to 2005 JJAS. Error bars give the standard deviation. 

Figure 10:  Anomaly of cloud water over regions R2 (a) and R3 (b) and cloud ice mixing ratios over 



R2 (c) and R3 (d). 

Figure 11: Bowen ratio relationship with cloud and aerosol effect anomaly. 

Table captions: 

Table I: Annual radiative fluxes at the surface averaged over 31 years in Wm-2 

Regions 
Net SW  

(down - up) 
Net LW  

(up - down) 
SH LH GH 

R1 194 89 54 50 -0.031 

R2 191 73 41 75 -0.055 

R3 200 71 49 78 -0.012 

R4 195 58 44 91 -0.053 

Table II: Maximum attenuation in SW and LW fluxes due to aerosol and clouds (Wm-2 ).  

Region 
Aerosol 

effect on SW 
Aerosol 

effect on LW 
Cloud effect 

on SW 
R1 -24.5 -9.82 -86.31 
R2 -25.3 -6.87 -112.91 
R3 -19.02 -4.50 -101.21 
R4 -16.29 -1.93 -97.18 

Table III:  Observed trend in High and Low cloud cover (in percent) for MERRA and CFSR. 

MERRA values are significant at 95% . CFSR values are significant at 80% . Numbers with an * 

represent not significant. 

Region Seasons 
High Clouds 
(MERRA) 

High Clouds 
(CFSR) 

Low Clouds 
(MERRA) 

Low Clouds 
(CFSR) 

R1 

Annual 0.23 0.08* 0.07 -0.05 

Pre-monsoon -0.07* -0.04* 0.03  -0.02* 

Monsoon 0.62 0.23* 0.25 0.05* 

R2 

Annual 0.20 0.07 0.16 -0.06 

Pre-monsoon 0.22 -0.01* 0.08 0.01* 

Monsoon 0.23 0.22* 0.32 0.03* 

R3 
Annual 0.30 0.31* 0.08 -0.07 

Pre-monsoon 0.39 0.05* 0.14 0.06* 
Monsoon 0.30 0.01* 0.11 0.02* 

R4 
Annual 0.04 -0.05* 0.26 0.04 

Pre-monsoon 0.13 0.09 0.46 0.10 
Monsoon -0.04 -0.23 0.09 0.07 

 



Table IV: Observed trend in SW and LW flux for MERRA and CFSR in Wm-2 yr-1. 

MERRA values are significant at 95% . CFSR values are significant at 80% . Numbers with an * 

represent not significant. 

Region Seasons 
SW 

(MERRA) 
SW (CFSR) 

LW 
(MERRA) 

LW (CFSR) 

R1 

Annual -0.48 +0.07* -0.42 _-0.03* 

Pre-monsoon -0.16 +0.09* -0.24 +0.10* 

Monsoon -1.28 -0.15* -0.72 -0.16 

R2 

Annual -0.59 +0.04* -0.43 -0.01* 

Pre-monsoon -0.53 -0.03* -0.67 -0.04* 

Monsoon -1.09 -0.05* -0.40 -0.09 

R3 

Annual -0.64 -0.07 -0.41 +0.07 

Pre-monsoon -0.73 +0.05 -0.78 -0.04* 

Monsoon -1.04 -0.05* -0.35 +0.05* 

R4 

Annual -0.57 +0.1 -0.39 -0.11 

Pre-monsoon -1.23 0.28 -0.80 -0.28 

Monsoon -0.39 -0.01* -0.23 -0.01* 
 

Table V: Observed trend in Sensible Heat (H), Latent Heat (LH), Bowen Ratio (B) and PBL height 

over all regions in Wm-2 yr-1. MERRA values are significant at 95% . CFSR values are significant 

at 80% . Numbers with an * represent not significant. 

Region  
H LH PBL Height 

MERRA CFSR MERRA CFSR MERRA CFSR 

R1 

Annual -0.59 +0.03* 0.52 0.02* -4.48 -0.15* 

Pre-monsoon -0.122 +0.06 0.31 -0.03* -1.69 -1.90 

Monsoon -0.95 -0.16* 0.41 0.19* -7.02 -1.45* 

R2 

Annual -0.49 -0.001* 0.31 0.07* -3.98 -0.93 

Pre-monsoon -0.71 -0.02* 0.89 0.01* -5.67 -0.56* 

Monsoon -0.47 -0.11* -0.23 0.15* -3.91 -0.69* 

R3 

Annual -0.52 -0.12 0.28 -0.01* -3.65 -0.34* 

Pre-monsoon -0.85 -0.04* 0.95 0.10 -6.37 -1.40 

Monsoon -0.59 -0.19* -0.12* -0.04* -4.13 -1.68 

R4 

Annual -0.71 0.02* 0.67 -0.10 -4.33 -0.75 

Pre-monsoon -1.48 0.16 1.27 -0.05* -5.81 -1.02 

Monsoon -0.72 -0.07* 0.58 -0.31 -4.11 -0.60* 
 



Table VI:  Observed correlation between aerosol effect (AE) and cloud effect (CE) with Bowen 

ratio, where R is correlation coefficient (Figure 11). 

Region 
 Annual Pre- monsoon Monsoon 

 Slope R Slope R Slope R 

R1 
AE  -0.24 - 0.76 - 0.001 - 0.30 - 1.24 - 0.85 

CE -16.29 - 0.87 - 0.16 - 0.54 - 76.35 - 0.87 

R2 
AE   -1.04 - 0.75 - 1.04 - 0.75 - 3.81 - 0.79 

CE - 45.35 - 0.84 - 45.35 - 0.83 - 151.53 - 0.78 

R3 
AE  - 0.27 - 0.38 - 0.04 - 0.67 - 0.25 - 0.15 

CE -53.29 - 0.88 - 4.02 - 0.88 - 154.85 - 0.85 

R4 
AE   - 0.25 - 0.58 - 0.16 - 0.82 + 0.04 + 0.04 

CE - 33.64 - 0.82 - 13.42 - 0.79 - 42.87 - 0.77 
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