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Abstract. We present the application of a global carbon cy-
cle modeling system to the estimation of monthly regional
CO2 fluxes from the column-averaged mole fractions of CO2
(XCO2) retrieved from spectral observations made by the
Greenhouse gases Observing SATellite (GOSAT). The re-
gional flux estimates are to be publicly disseminated as the
GOSAT Level 4 data product. The forward modeling com-
ponents of the system include an atmospheric tracer trans-
port model, an anthropogenic emissions inventory, a terres-
trial biosphere exchange model, and an oceanic flux model.
The atmospheric tracer transport was simulated using isen-
tropic coordinates in the stratosphere and was tuned to repro-
duce the age of air. We used a fossil fuel emission inventory
based on large point source data and observations of night-
time lights. The terrestrial biospheric model was optimized
by fitting model parameters to observed atmospheric CO2
seasonal cycle, net primary production data, and a biomass
distribution map. The oceanic surfacepCO2 distribution was
estimated with a 4-D variational data assimilation system
based on reanalyzed ocean currents. Monthly CO2 fluxes
of 64 sub-continental regions, between June 2009 and May
2010, were estimated from GOSAT FTS SWIR Level 2XCO2

retrievals (ver. 02.00) gridded to 5◦
× 5◦ cells and averaged

on a monthly basis and monthly-mean GLOBALVIEW-CO2
data. Our result indicated that adding the GOSATXCO2 re-
trievals to the GLOBALVIEW data in the flux estimation
brings changes to fluxes of tropics and other remote regions

where the surface-based data are sparse. The uncertainties of
these remote fluxes were reduced by as much as 60% through
such addition. Optimized fluxes estimated for many of these
regions, were brought closer to the prior fluxes by the ad-
dition of the GOSAT retrievals. In most of the regions and
seasons considered here, the estimated fluxes fell within the
range of natural flux variabilities estimated with the compo-
nent models.

1 Introduction

The recent increase in atmospheric CO2 concentration is par-
tially abated by carbon uptake by ocean and land, which
indicates disequilibrium in CO2 exchanges between the at-
mosphere and oceans and between the atmosphere and the
terrestrial biosphere (Keeling et al., 1995). The disequilib-
rium in the terrestrial carbon cycle can be attributed to 20th
century warming leading to enhanced nitrogen recycling in
the biosphere, coincident with an increase in CO2 concentra-
tions that facilitates photosynthesis and vegetation function-
ing (Melillo et al., 2002; Grant et al., 2009). In some regions
vegetation recovery is also considered as an important mech-
anism for net long-term carbon sink (Caspersen et al., 2000;
Pacala et al., 2001). The sustainability and amount of the ter-
restrial sink is still difficult to assess on large regional scales
(e.g. Dolman et al., 2012; Gloor et al., 2012). The inverse
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modeling of carbon exchange at the Earth’s surface plays an
important role in the quantification of the distribution of ter-
restrial carbon sinks. Analyses of the regional CO2 fluxes
using inverse models of atmospheric transport have proven
useful for quantifying the spatial distribution and interannual
variability of surface CO2 fluxes on both global and regional
scales (Bousquet et al., 2000; Peters et al., 2007). One par-
ticularly important topic under investigation is partitioning
the terrestrial carbon sink into (1) sinks in mid and high lati-
tude regions of the Northern Hemisphere, where the warming
is most pronounced (Jones and Briffa, 1992), and (2) those
in wet tropical and subtropical regions, such as in southern
China forests, where net ecosystem production is high (Piao
et al., 2009). It was initially found that latitudinal CO2 gra-
dient suggested stronger Northern Hemisphere sinks (Tans et
al., 1990). A more detailed analysis with atmospheric trans-
port and inversion models allocated a large sink to the US
(Fan et al., 1998), a result supported by a bottom-up esti-
mate (Pacala et al., 2001). Later, the US sink estimate was
reduced in a multi-model inverse modeling study (Gurney et
al., 2002) in which a significant net tropical source was also
projected. Based on inverse model estimates of the vertical
CO2 gradients, Stephens et al. (2007) supported more mod-
erate estimates of Northern Hemisphere extratropical sinks
and near-neutral net CO2 fluxes in the tropics. However, on
a global scale, many gaps appear in remote areas that are
not covered by conventional atmospheric CO2 observation
networks (mostly tropical regions), leaving space for large
uncertainties in the reconstructed fluxes (Gloor et al., 2000).
Rayner and O’Brien (2001) suggested an unconventional so-
lution to the problem of data gaps, arguing that a large num-
ber of relatively low-precision satellite observations of atmo-
spheric CO2 concentration can be used to fill those gaps. This
suggestion raised high expectations for the usefulness of re-
mote sensing observations of atmospheric CO2.

The launch of the Greenhouse gases Observing SATellite
(GOSAT) in 2009, which observes high-resolution spectra
of reflected light (Kuze et al., 2009), was followed by con-
tinuous efforts to refine retrievals of CO2 and CH4 column
abundances (Yokota et al., 2009; Bösch et al., 2011; Butz et
al., 2011; Yoshida et al., 2011, 2013; O’Dell et al., 2012; Os-
hchepkov et al., 2012). The availability of GOSAT retrievals
validated with Fourier Transform Spectrometer (FTS) ob-
servations collected in the Total Carbon Column Observing
Network (TCCON) (Morino et al., 2011) provides the scien-
tific community with an opportunity to apply GOSAT data
to carbon cycle studies. Theoretical studies on the utility of
GOSAT retrievals by Chevallier et al. (2009), Kadygrov et
al. (2009), and others suggested that the data can help to fill
the gaps in observation coverage if sufficient retrieval accu-
racy and precision are achieved.

This paper provides an overview of a carbon cycle mod-
eling system that consists of components for modeling at-
mospheric transport, anthropogenic CO2 emissions, and ter-
restrial and oceanic CO2 exchanges. It further describes the

application of the system to the estimation of surface CO2
fluxes from GOSAT retrievals. The carbon cycle modeling
system was developed specifically to utilize the GOSAT data
in the inverse model analysis with a delay of a year or less.

In our study, we assessed the utility of the GOSAT
XCO2 retrievals in inverse modeling of surface sources and
sinks. We used a recently-improved version of GOSAT
XCO2 retrievals (version 02.00; Yoshida et al., 2013) and
the GLOBALVIEW-CO2 ground-based data (2011, hereafter
denoted as GV). We estimated monthly regional fluxes and
their uncertainties from (1) the ground-based GV data only
and (2) both GV and GOSATXCO2 retrievals, and compared
these two sets of results. The present study used GOSAT
data obtained during a one-year period between June 2009
and July 2010, the first year of GOSAT sounding. Section 2
introduces the components of the modeling system. Sec-
tion 3 briefly describes the GOSAT retrievals and the in-
verse model. Section 4 presents the results, and Section 5
concludes the paper.

2 Inverse modeling system components

In this section, we present the components of the inverse
modeling system, which are models for simulating (1) at-
mospheric transport of CO2, (2) CO2 exchange between
the atmosphere and oceans, (3) CO2 exchange between the
atmosphere and terrestrial biosphere, and (4) emissions of
CO2 by fossil fuel consumption and cement manufactur-
ing. The a priori flux dataset used in this study is com-
prised of four components: daily net ecosystem exchange
(NEE) predicted by the terrestrial biosphere process model
VISIT (Vegetation Integrative SImulator for Trace gases)
(Ito, 2010; Saito, M. et al., 2011); monthly ocean-atmosphere
CO2 fluxes generated by an oceanpCO2 data assimila-
tion system (Valsala and Maksyutov, 2010); monthly CO2
emissions due to biomass burning stored in the Global Fire
Emissions Database (GFED) version 3.1 (van der Werf et
al., 2010); and monthly fossil fuel CO2 emissions obtained
via combining the high-resolution Open source Data Inven-
tory of Anthropogenic CO2 emission (ODIAC) dataset (Oda
and Maksyutov, 2011) and the Carbon Dioxide Informa-
tion Analysis Center’s (CDIAC) monthly 1◦ × 1◦ resolution
dataset (Andres et al., 1996, 2011). Each of these component
flux datasets was prepared specifically for this 2009–2010
analysis period.

2.1 Model of the carbon cycling in the terrestrial
biosphere

VISIT is a prognostic biosphere model (Ito, 2010; Saito, M.
et al., 2011) that simulates carbon exchanges between the at-
mosphere and biosphere and among the carbon pools within
terrestrial ecosystems at a daily time step. The carbon pools
in the model consist of five compartments: foliage, stem and

Atmos. Chem. Phys., 13, 9351–9373, 2013 www.atmos-chem-phys.net/13/9351/2013/



S. Maksyutov et al.: Regional CO2 flux estimates for 2009–2010 9353

branch, root, litter, and soil. Modeling of plant CO2 assim-
ilation in VISIT is based on a model of light extinction in
the canopy, following the formulation of Monsi and Saeki
(1953). Maximum photosynthetic uptake rate is influenced
by temperature, atmospheric CO2 concentration, and soil
moisture. Autotrophic respiration is formulated as the sum
of growth respiration and maintenance respiration. Growth
respiration is simulated as the cost to produce new biomass,
while maintenance respiration is represented as a function
of ground surface temperature. Heterotrophic respiration is
the sum of respiration from two layers, litter and humus,
which is regulated by soil temperature and soil moisture at
each depth. Litterfall from foliage, stems and branches, and
roots is calculated by a simple parameterization on the basis
of the carbon mass of each component. NEE, which is one
of the a priori fluxes required in forward CO2 concentration
simulations with an atmospheric transport model, is given as
the difference between ecosystem respiration and gross pri-
mary productivity. Here, ecosystem respiration is the sum of
autotrophic respiration and heterotrophic respiration. A pos-
itive value of NEE indicates CO2 release to the atmosphere
from the terrestrial biosphere, whereas a negative value indi-
cates CO2 uptake from the atmosphere.

VISIT is driven by reanalysis/assimilation climate datasets
provided by the Japan meteorological Agency (JMA): the
Japan 25-year reanalysis (JRA-25)/JMA Climate Data As-
similation System (JCDAS) (Onogi et al., 2007) for the pe-
riod 1979 – present. The meteorological data that drives
VISIT include downward shortwave radiation at the surface,
total cloudiness, 2 m air temperature, ground surface tem-
perature, soil temperature at depths of 10 cm and 200 cm,
specific humidity, precipitation, and wind velocity. The JRA-
25/JCDAS data are provided at a T106 spatial resolution at
6 h temporal resolution. All of the JRA-25/JCDAS data were
converted to daily mean values at a 0.5◦

× 0.5◦ grid reso-
lution using an interpolation, and then used as forcing data
for VISIT. Biases in JRA-25/JCDAS precipitation data were
corrected following the method of Saito, M. et al. (2011).
The model was initially run for a spin-up of approximately
2000 yr to reach equilibrium in the carbon pools, by repeat-
ing JRA-25/JCDAS forcing with varying atmospheric CO2.
Then the daily physiological processes were simulated for
the period starting in 1979. Global vegetation was classi-
fied into 16 plant functional types at a 0.5◦

× 0.5◦ grid res-
olution using the Moderate Resolution Imaging Spectrora-
diometer (MODIS) land cover product (Friedl et al., 2002).
At each model grid, all physiological processes involve the
effect of vegetation fractional coverage up to the fourth dom-
inant biome.

We used an optimized VISIT model to simulate daily
NEE variability. The optimization method and results are de-
scribed in detail by Saito et al. (2013), and are presented only
briefly here. Physiological parameters of the model were op-
timized to fit the observational data using a Bayesian in-
version approach, which is an extension of a method by

Nakatsuka and Maksyutov (2009). Thirteen selected physi-
ological parameters were optimized for 16 plant functional
types. The application of GV CO2 seasonal cycle as the
only constraint led to low biased net primary productiv-
ity (NPP). Accordingly, biomass and NPP observations had
to be included as additional constraints in order to repro-
duce the seasonal cycle of CO2 while keeping NPP and
biomass within observed parameter ranges. Data of seasonal
variability in atmospheric CO2 concentrations, annual mean
aboveground biomass (AGB), and NPP were assimilated into
VISIT. These data were derived from GV, International Insti-
tute for Applied Systems Analysis (IIASA) global biomass
map (Kindermann et al., 2008), and Global Primary Produc-
tion Data Initiative (GPPDI) (Scurlock et al., 1999; Olson
et al., 2001), respectively. An atmospheric tracer transport
model (Maksyutov et al., 2008) was used for the computation
of atmospheric CO2 variability. Both VISIT and the atmo-
spheric transport model were run on 2.5◦

× 2.5◦ grid resolu-
tion for the optimization. The misfits between the simulated
and observed monthly mean CO2 concentrations and other
parameters (NPP and AGB) were minimized iteratively. In
each iteration, the Jacobian matrix was first estimated by cal-
culating the sensitivity of the simulated monthly concentra-
tions, NPP and AGB to small changes in the VISIT param-
eters. Then an optimal set of parameters was found by solv-
ing a linear inverse problem. The iterations were repeated
several times because the VISIT parameters and the model-
simulated CO2 fluxes are not linearly related.

The VISIT model is under continuing development and
validation against observations. Biomass amounts, plant pro-
ductivities and the temporal variations of NEE simulated by
VISIT were discussed in multi-year and multimodel compar-
ison studies by Ito and Sasai (2006), Ito et al. (2010), Ichii
et al. (2010), Ichii et al. (2013), Piao et al. (2012). Saeki et
al. (2013), in their forward transport and inverse modeling
study, demonstrated that the seasonal cycles of CO2 concen-
tration simulated with VISIT NEE at selected mid to high
latitude sites and those of observed values were in reasonable
agreement. The modeled amplitudes of the seasonal cycles at
some high latitude sites were, however, shown to be smaller
than the observed. Valsala et al. (2013) compared the intra-
seasonal variability of NEE simulated by VISIT and Carbon-
Tracker (Peters et al., 2007) over Indian monsoon season and
found that the two estimates were similar in intra-seasonal
variability but different in seasonality.

For the analysis period from 2009/06 to 2010/05 the an-
nual net flux was−0.7 GtC yr−1. The time series of model
simulated CO2 concentration at Mauna Loa Observatory,
based on VISIT NEE, is compared with corresponding
GLOBALVIEW data in Fig. 1. Also shown in the figure are
biomass maps simulated by VISIT and estimated by IIASA.

www.atmos-chem-phys.net/13/9351/2013/ Atmos. Chem. Phys., 13, 9351–9373, 2013
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Fig. 1.Comparison of the optimized VISIT model results to the ob-
servations. Top: forward simulation of atmospheric CO2 (ppm) at
Mauna-Loa (red circles), and GLOBALVIEW (blue triangles). Be-
low: global map of gridded mean biomass (Mg C ha−1): (middle)
IIASA database, (bottom) optimized VISIT.

2.2 Variational assimilation system for simulating the
global pCO2 maps and surface ocean-atmosphere
fluxes of carbon

The magnitude of annual atmospheric CO2 flux into the
oceans is estimated to be 1.5 to 2 PgC yr−1 (Gurney et al.,
2004, Gruber et al., 2009). Therefore, considerable efforts
have been given to the preparation of the oceanic fluxes used
in this study.

The air-sea CO2 flux component used in this study was
taken from an optimal estimate of oceanic CO2 fluxes derived
from the original work of Valsala and Maksyutov (2010).
This dataset was produced by simulating dissolved inorganic
carbon (DIC) with a simple ocean biogeochemical model and
constraining DIC to observations through a variational as-
similation method. The data is available from 1996 to near

real-time. The essential components of the oceanic model are
described in below.

In the work of Valsala and Maksyutov (2010), a sim-
ple offline ocean tracer transport model (OTTM) described
by Valsala et al. (2008) was coupled with a simple one-
component ecosystem model based on phosphate cycling
(McKinley et al., 2004) and an abiotic carbon cycle model
of OCMIP-II (Ocean Carbon Cycle Intercomparison Project,
Orr et al., 1999), and was used to simulate the air-to-sea
CO2 fluxes. The model surface ocean DIC values were then
constrained with corresponding observational values that
were derived from the observed partial pressure of surface
ocean CO2 (pCO2) obtained via numerous ship-underway
sampling summarized in Takahashi et al. (2011) database.
The assimilation scheme, which consists of a variational
method derived from the work of Ikeda and Sasai (2002),
minimizes model-observation differences in surface ocean
DIC (or pCO2). The transport model was run with offline
ocean currents provided by GODAS re-analysis data prod-
ucts (Behringer and Xue, 2004). The offline data fed into
the system are ocean current velocities, temperature, salin-
ity and other physical parameters that were derived from the
re-analysis data at a five-day time interval. The OTTM tracer
transport model was run at 1◦

× 1◦ resolution and 40 ver-
tical levels. The first 26 levels are in upper 300 m of the
ocean. The use of the offline re-analysis input fields for run-
ning the transport model enabled us to simulate the air-sea
CO2 flux in near real-time. The simulated ocean DIC values
were then corrected with observational data of surface ocean
pCO2 using a two-way constraining process in the assimila-
tion. The model surface oceanpCO2 are constrained strongly
whenever the ship-track underway sampling is available. In
addition to this rather “strong” constraint, the climatologi-
cal maps of monthly meanpCO2 derived from Takahashi
et al. (2009) were also used to constrain the surface ocean
pCO2 as a “weak” constraint. This two-way correction ap-
plied to model surface oceanpCO2 (i.e. effectively to the
DIC) reduces the model biases as well as DIC errors. 60% of
the annual mean model biases were eliminated in the assim-
ilation, and 40–60 % of the cumulative seasonal errors were
also reduced at regional scales (see also Valsala and Maksyu-
tov, 2010).

Valsala and Maksyutov (2010) used offline data from the
Geophysical Fluid Dynamics Laboratory (GFDL) re-analysis
products to drive the transport model. However, because the
GODAS re-analysis dataset is updated and made available
in near real-time, we chose to use this data set for our op-
erational estimates of air-sea CO2 fluxes. Two main advan-
tages of employing the OTTM-derived optimal air-sea CO2
fluxes can be summarized as follows: (1) OTTM-derived
fluxes are monthly varying and available in near real-time,
and (2) the air-sea CO2 fluxes thus have signatures of in-
terannual variability, as compared to the monthly climato-
logical maps of air-sea CO2 fluxes based on Takahashi et

Atmos. Chem. Phys., 13, 9351–9373, 2013 www.atmos-chem-phys.net/13/9351/2013/
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Fig. 2. Top: June 2009 to May 2010 averaged air-to-sea CO2 prior
fluxes (gC m−2 day−1) used in the inversion. Bottom: global inte-
gral of air-to-sea CO2 fluxes (PgC yr−1) and corresponding global
mean data uncertainties used in the inversion.

al. (2009), which are often employed in inversion setups
(e.g. Gurney et al., 2004).

The interannual variability of the ocean-atmosphere ex-
change simulated with OTTM has been analyzed by Valsala
et al. (2012a), who found a persistent quadra-pole pattern
of CO2 flux interannual variability (IAV) in the North Pa-
cific varying at Pacific Decadal Oscillation scale. Valsala and
Maksyutov (2013) and Valsala et al. (2012b) analyzed the
flux IAV in the northern Indian ocean. Ishii et al. (2013) com-
pared the assimilated flux dataset with multiple bottom-up
and inverse modeling estimates within a framework of REC-
CAP (REgional Carbon Cycle Assesment and Processes)
project (Canadell et al., 2011), and showed that the interan-
nual variation of the tropical Pacific fluxes correlates with
atmospheric inverse model estimates.

Figure 2 shows the global average of air-to-sea CO2 fluxes
from June 2009 to May 2010, global integrated CO2 sink and
data uncertainties for individual months, used in this study.
An annual mean of 2.02 PgC yr−1 of CO2 sink is resolved in
the optimized flux for the period of inversion.

2.3 Emissions dataset for fossil fuel CO2 emissions

Similar to many other inversion studies (e.g. Gurney et al.
2002), fossil fuel CO2 emissions (emissions due to combus-
tion of fossil fuels and cement manufacturing) in our inverse
estimation are not solved, but rather prescribed. Thus, fos-
sil fuel CO2 emissions need to be accurately given for better
flux estimation (Gurney et al. 2005).

To prescribe fossil fuel CO2 emissions, we used an up-
dated version of the ODIAC dataset (Open-source Data
Inventory for Anthropogenic CO2; Oda and Maksyutov
(2011)) prepared at 1× 1 degree resolution on a monthly ba-
sis. Monthly estimates of national total emissions are avail-
able from the Carbon Dioxide Information and Analysis Cen-
ter (CDIAC) of the U.S. Department of Energy (Boden et al.,
2011;http://cdiac.ornl.gov/trends/emis/overview2008.html,
last access: Aug 2, 2012). These emissions estimates are pro-
jected up to year 2010 using British Petroleum statistical data
(British Petroleum p.l.c., 2011) and CDIAC’s preliminary es-
timate (http://cdiac.ornl.gov/trends/emis/prelim20092010
estimates.html, last access: 2 August 2012). The CDIAC es-
timates comprise of emissions from several categories: fuels
(solid, liquid, and gas), cement production, gas flaring, and
international bunkers. Emissions from solid, liquid, and gas
fuels and cement production were then spatially distributed
using power plants profiles (geographical location and emis-
sions) given by CARMA database (CARbon Monitoring and
Action, www.carma.org, last access: 6 August 2012) and
satellite-observed nightlight data collected by U. S. Air force
Defense Meteorological Satellite Project (DMSP) satellites
(Elvidge et al. 1999). The nightlight data were processed by
National Oceanic and Atmosphere Administration (NOAA)
National Geophysical Data Center (NGDC) (Ziskin et al,
2010). This distribution method, compared to previous stud-
ies such as Andres et al. (1996), allows us to map emissions
over land at a high spatial resolution (up to 1km) (Oda and
Maksyutov, 2011). At spatial resolutions of global transport
simulation, the resulting spatial distribution agrees well with
that of North American emissions data product Vulcan (Gur-
ney et al., 2009) (Oda and Maksyutov, 2011).

For other emission categories, emissions from gas flar-
ing are distributed using nightlights dataset specifically pro-
cessed for gas flaring by NOAA/NGDC (Elvidge et al.,
2009, data available fromhttp://www.ngdc.noaa.gov/dmsp/
interest/gasflares.htmllast access: 6 August 2012). Inter-
national bunker emissions are distributed using EDGAR
v. 4.1 data (http://edgar.jrc.ec.europa.eu/index.phplast ac-
cess: 2 August 2012) for marine bunkers, and AERO2k in-
ventory (http://www.cate.mmu.ac.uk/aero2k.asp, last access:
Aug 2, 2012) for aviation.

In addition to spatial distribution, seasonality in land emis-
sions (solid, liquid, gas and cement) was adopted from
CDIAC’s monthly 1◦ × 1◦ emissions dataset (Andres et al.,
2011; data available at:http://cdiac.ornl.gov/epubs/fossil
fuel CO2 emissionsgriddedmonthly v2011.html last ac-
cess: 2 August 2012). Similarly, AERO2k inventory was used
for emissions from aviation. As a simplification, aviation
emissions are treated as surface emissions in the transport
model, as it is a minor component of the total emissions. Gas
flaring and marine bunker emissions do not have seasonality
in ODIAC dataset.

A global picture of fossil fuel CO2 emissions is shown in
Fig. 3. The figure was drawn using emission data reduced to
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Fig. 3. Global distribution of the annual mean CO2 emissions due
to burning fossil fuels.

5 km× 5 km (2.5 arc min) resolution. Similarly to the emis-
sion map by (Oda and Maksyutov, 2011) intensive emissions
are found in northern hemisphere especially over industrial-
ized countries and regions.

2.4 Emissions of CO2 by biomass burning and forest
fires

Large contribution of fire processes to the interannual vari-
ability of the global carbon cycle is known from high cor-
relation between inversion-reconstructed flux anomalies and
satellite based fire estimates (Patra et al., 2005a). Satel-
lite based estimates of carbon emissions due to forest fire
and biomass burning are provided by Global Fire Emis-
sions Database (GFED 3.1) as described in van der Werf et
al. (2010) and Giglio et al. (2010).

GFED 3.1 used a combination of active fire observations
from multiple satellites, 500 m MODIS burned area maps,
local regression, and regional regression trees to produce a
hybrid, global, monthly burned area data set from July 1996
to December 2010. Annual totals derived from these data
show good agreement with independent annual estimates
available for Canada and the United States (Giglio et al.,
2010), and Russia (Shvidenko et al, 2011). The global an-
nual burned area for the period 1997–2008 varied between
330 and 431 Mha, with a maximum occurring in 1998 and
the minimum in 2008. The most extensive burning consis-
tently occurred in Africa, with an average of 250 Mha burned
on the continent each year. This represents about 70 % of
the total area burned worldwide annually. The lowest inter-
annual variability in the extent of burned areas occurred in
the African savannas. Regions of high interannual variability
included Australia, the United States, and the boreal forests
of both Asia and North America. Burned area maps were
produced from the 500-m MODIS atmospherically-corrected
Level 2G surface reflectance product (Vermote et al., 2002),
the MODIS Level 3 daily active fire products (Justice et
al., 2002) and the MODIS Level 3 96-day land cover prod-

uct (Friedl et al., 2002), by finally applying the Giglio et
al. (2009) burned area mapping algorithm. Algorithm vali-
dation for 500-m burned area maps is completed for South-
ern Africa, Siberia, and the Western United States through
comparison with Landsat imagery (Giglio et al., 2009). For
active fire counts a MODIS monthly Climate Modeling Grid
(CMG) fire product at 0.5 deg spatial resolution was used.
Detection of fire and burnt area, as well as fraction of the
biomass and biomass debris is accompanied by relatively
large uncertainties (Giglio et al., 2010) and contribute to the
overall uncertainty of the inverse model estimates.

2.5 Atmospheric tracer transport model

We used the National Institute for Environmental Studies
global atmospheric tracer Transport Model (NIES-TM) to
run forward simulations of atmospheric CO2 for the inverse
modeling of surface CO2 fluxes. NIES-TM is an off-line
model driven by reanalysis data, which combines JRA-25
for the period 1979–2004 and a real-time operational anal-
ysis by the JMA Climate Data Assimilation System (JC-
DAS) for the period 2005–present (Onogi et al., 2007). The
JRA-25/JCDAS data used in our model is provided on T106
Gaussian horizontal grid (320× 160 grid points) with 40
hybrid σ -p levels and the 6-hour time step. In the version
used in this study (version NIES-08.1i), a flexible hybrid
sigma-isentropic (σ -θ) vertical coordinate system was im-
plemented, which combines terrain following vertical coor-
dinate in the troposphere and isentropic vertical coordinate in
the stratosphere above the level of 350K to ensure that isen-
tropic surfaces do not intersect the Earth’s surface (Belikov
et al., 2013a).

A scheme based on radiative heating and cooling was im-
plemented to calculate vertical transport in the stratosphere,
because such a scheme produces a better representation of
the meridional circulation for long-term simulations, as com-
pared with use of vertical winds from reanalysis (Weaver
et al., 1993). Air-ascending rates controlled by climatologi-
cal heating rate derived from JRA-25/JCDAS reanalysis data
were adjusted to fit to the observed mean age of the air
in the stratosphere. The model employs a reduced latitude-
longitude grid scheme in which the grid size is doubled ap-
proaching the poles. This approach overcomes the Courant
condition limitation on a model time step in the polar re-
gions, caused by small grid size associated with meridional
convergence, maintains a reasonably high integration time-
step and ensures adequate model performance (Belikov et
al., 2011). The model uses a flux-form advection algorithm
with a second-order van Leer scheme. To obtain mass conser-
vation in the numerical scheme, the horizontal mass fluxes
derived from the meteorological dataset are balanced with
the surface pressure tendency using the method developed by
Heimann and Keeling (1989). As in previous model versions
(Maksyutov et al., 2008; Belikov et al., 2011) the parame-
terization of the turbulent diffusivity follows the approach
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used by Hack et al. (1993). Under the assumption that the
planetary boundary layer (PBL) is well mixed the turbu-
lent diffusivity is set to a constant value of 40 m2 s−1 in
the PBL. The free-tropospheric diffusivity is estimated as a
function of the Richardson number. To separate the trans-
port processes in the PBL and above it we used 3-hourly
PBL height data obtained from the European Centre for
Medium-Range Weather Forecasts (ECMWF) Interim Re-
analysis dataset (Dee et al., 2011).

We implemented the Kuo-type penetrative cloud convec-
tion scheme proposed by Tiedtke (1989), with entrainment
and detrainment processes on convective updrafts and down-
drafts to simulate deep convection (Belikov et al., 2013b).
Calculation of cumulus mass-flux is based on the method de-
veloped by Austin and Houze (1973), in which the amount of
air lifting in an updraft core of a cumulus cell is related to the
amount of precipitation the cumulus cell produces. The mass
of air transported upward within the cells was computed from
the conservation of moisture, using the convective precipita-
tion rate from the JRA-25/JCDAS dataset.

The model was evaluated against GLOBALVIEW-CO2,
GLOBALVIEW-CH4, World Data Centre for Greenhouse
Gases (WDCGG), balloon-borne and aircraft observation
data (Belikov et al., 2011, 2013a), as well as through the
Comprehensive Observation Network for Trace gases by
AIrLiner (CONTRAIL) (Niwa et al., 2011) and TransCom-
CH4 transport model intercomparison (TMI) studies (Patra
et al., 2011, Belikov et al., 2013b). Implementation of hy-
brid sigma-isentropic vertical coordinates with a radiative
balance scheme for vertical transport allows simulation of
vertical profiles and vertical propagation of seasonal varia-
tions of tracers in the free troposphere and in the lower strato-
sphere which appears to be in good agreement with aircraft
and balloon-borne observations. In general NIES-TM per-
formance is consistent with the TransCom-CH4 and CON-
TRAIL intercomparison participating models (Niwa et al.,
2011; Patra et al., 2011). Comparisons with balloon-borne
observations over Sanriku, Japan in 2000–2007 revealed that
the tracer transport simulations in the upper troposphere and
lower stratosphere are performed with accuracies of∼ 5 %
for CH4 and SF6, and∼ 1 % for CO2 compared with the ob-
served volume-mixing ratios (Belikov et al., 2013a).

The model is able to reproduce the seasonal variations in
CO2 and CH4 surface concentrations. More accurate results
were obtained for CH4 at regions located some distance away
from multiple emission sources. For other sites, where high
emissions and local meteorology play a major role, it proved
difficult to reproduce the CH4 surface concentrations, espe-
cially in winter, which indicates excessive near-surface verti-
cal mixing under stable conditions.

Modeled dry-air column-averaged CO2 and CH4 values
(XCO2 andXCH4) were also evaluated against daily ground-
based high-resolution FTS observations measured at 12 sites
of the Total Carbon Column Observing Network (TCCON)
for the period from January 2009 to January 2011. Modeled

data convolved with scene-dependent averaging kernels were
able to reproduce the seasonal and inter-annual variability
of XCO2 andXCH4 with correlation coefficients of 0.8–0.9
and 0.4–0.8, and biases±0.2 % and±0.5 % (without So-
dankyla’s data), respectively (Belikov et al., 2013a).

Modelled XCO2 and XCH4 were also evaluated against
daily ground-based high-resolution FTS observations mea-
sured at 12 sites of TCCON for the period from January
2009 to January 2011. Modeled data convolved with scene-
dependent averaging kernels were able to reproduce the sea-
sonal and inter-annual variability ofXCO2 and XCH4 with
correlation coefficients of 0.8–0.9 and 0.4–0.8, and biases
±0.2 % and±0.5 % (without Sodankyla’s data), respectively
(Belikov et al., 2013a).

The atmospheric transport was simulated at resolution of
2.5◦

× 2.5◦ on 32 vertical levels. The model can use sur-
face fluxes at hourly, daily and monthly temporal resolu-
tions and 1◦ × 1◦ spatially. The fluxes simulated by surface
flux models were converted to 1◦

× 1◦ resolution when nec-
essary. The OTTM oceanic fluxes come as monthly mean
data.VISIT model was run at 0.5◦

× 0.5◦ resolution at a daily
time step. The VISIT fluxes were converted to 1◦

× 1◦ daily
fields. Use of daily mean fluxes as a substitute for diurnally
varying fluxes is supported by estimates by Olsen and Ran-
derson (2004), who found that early afternoon satellite obser-
vations ofXCO2 represent well the daily mean fluxes. GFED
and ODIAC fluxes were provided to the transport model
at 1◦

× 1◦ resolution and a monthly time step. The 1◦
× 1◦

fluxes were remapped to 2.5◦
× 2.5◦ fields inside the trans-

port model.

3 Inverse modeling scheme

The theoretical basis for the technique is Bayes’ theorem (see
e.g. Tarantola, 2005), with which the “optimal” or a poste-
riori state of a set of parameters is deduced from a priori
knowledge about those parameters and measured data val-
ues. For the case of estimating surface fluxes of CO2, which
is approximated to be chemically inert, the relationship be-
tween the measured data values and their theoretical predic-
tions based on physical process modeling is linear. The rela-
tionship can be expressed in matrix form as

dobs= Gm + v (1)

wheredobs is the concentration vector recorded at measure-
ment locations,m denotes modeled source strengths in pre-
defined regions, and is a matrix that maps the source strength
field onto that of concentrations. The elements of matrixG
are given as changes in concentrations at each of measure-
ment sites with respect to unit pulse emissions from each
of the pre-defined regions. These elements are obtained by
running forward a set of unit pulse emissions with an at-
mospheric tracer transport model (e.g. Rayner et al, 1999).
Vector v is the misfit between the observations and the
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model-predictions, which is comprised of measurement un-
certainty and error in the simulation of atmospheric trans-
port. The aim here is to findm that best describesdobs. In the
context of Bayesian inference, where Gaussian probabilities
are assumed for measurements and a priori parameters, the
measure of the fit between modeled source strengthsm and
measurements is expressed as a cost functionL(m) (also see
Tarantola, 2005):

L(m) =
1

2
(Gm − dobs)C−1

D (Gm − dobs) (2)

+
1

2

(
m − mprior

)
C−1

M

(
m − mprior

)
,

where mprior denotes the vector of the a priori source
strengths, andCD andCM are the error covariance matrices
of the measurements and the a priori source strengths, respec-
tively. The optimal state of the modeled source strengths,m′,
exists at the minimum of this measure. Taking the derivative
of L with respect tom′ and setting it to zero yields

m′
= mprior (3)

+

(
GTC−1

D G + C−1
M

)−1
GTC−1

D

(
dobs− Gmprior

)
.

Further, differentiatingL with respect tom for the second
time gives the a posteriori error covariance,C′

M ,

C′
M =

(
GTC−1

D G + C−1
M

)−1
, (4)

which is a measure of the convexity of the functionL .
The values assigned to the elements of vectordobs in

the present study were monthly-mean, surface-based GV
data and bias-corrected GOSATXCO2 retrievals gridded to
5◦

× 5◦ cells and averaged on a monthly basis. The GV
data are a product generated with a technique developed by
Masarie and Tans (1995), which incorporates interpolated
and/or extrapolated values with measurements such that the
resulting smoothed concentration time series become seam-
less in time. The reason behind the choice of monthly mean
GV data, instead of using simple averages of available flask
observations in each month, as in a study by Rödenbeck et
al. (2003), is to minimize the impact of temporal disconti-
nuities among those observations on the flux estimation. The
model simulated concentration at each observation location
of GV and GOSATXCO2 was obtained by performing linear
interpolation, in space and time, of the model-predicted con-
centration field (updated at a time step of 10-15 min). Cells
with three or moreXCO2 retrievals per month were selected.
Prior to monthly averaging, large GOSATXCO2 outliers were
removed via comparisons with climatologicalXCO2 values,
derived from an ensemble of forward simulation results by
six different transport models (Gap-filled and Ensemble Cli-
matology Mean: GECM) that was nudged to surface-based
observations (Saito, R. et al., 2011). The observation errors
for the monthly meanXCO2 retrievals, specified in the diag-
onal elements of matrixCD, were determined as the stan-
dard deviations of GOSATXCO2 retrievals found in each of

the 5◦ × 5◦ grid cells in a month. We took account of er-
rors associated with the retrieval ofXCO2 values and the for-
ward atmospheric transport simulation by setting the mini-
mum of the observation error for GOSATXCO2 retrievals at
3 ppm, which consists of an uncertainty associated with the
retrieval of GOSATXCO2 (2 ppm) and that of forwardXCO2

modeling (1 ppm) The GV sites were selected by comparing
GV data against concentrations predicted by NIES-TM over
the analysis period. We picked the sites whose RMS model–
observation misfits were less than 2 ppm. As an observation
error estimate, the GV residual standard deviation (stored in
the GV dataset) was assigned to each of the selected sites.
We gave less weight at GV sites whose observational record
completeness was less than 70 % by tripling their data errors.
The minimum error for the GV data was set at 0.3 ppm. Al-
together, 220 GV data time series were selected for this esti-
mation. Some sites such as aircraft observation sites contain
several time series per site.

The diagonal elements of the matrixCM were prescribed
as follows. The uncertainty of the terrestrial a priori flux
was set at twice the standard deviation of the VISIT model
monthly NEE (1◦ × 1◦ resolution) values for the past 30 yr.
The uncertainty of the oceanic a priori flux was determined
as the standard deviation of the OTTM-assimilated oceanic
flux (1◦

× 1◦ resolution) for the period 2001–2009, and the
climatological mean data of Takahashi et al. (2009).

In the TransCom 3 CO2 inversion intercomparison, Gur-
ney et al. (2003) assigned growing season net fluxes (GSNF;
the sum of monthly-mean exchanges for months exhibiting
net uptake) as terrestrial prior flux uncertainties (GSNF were
based on NEE predicted by the CASA model). The reason
behind it was that GSNF provide ecologically relevant upper
bounds for annual-mean terrestrial flux. For oceanic fluxes,
Gurney et al. (2003) set the uncertainties at 140 % of the cli-
matological net oceanic exchanges, which are approximately
double the amount suggested by Takahashi et al. (2002). Our
approach of using standard deviations of VISIT NEE and
OTTM oceanic fluxes is similar to their case in finding rea-
sonable upper limits of naturally varying fluxes and assigning
them as boundaries in the flux estimation. Our boundaries re-
flect natural variability in the past several decades (30 yr for
terrestrial biosphere and 10 yr for ocean).

The size of vectorm in the present study was set to the
number of source regions (64 regions) times the number of
analysis months (14 months). The 64 source regions consist
of 42 subcontinental-scale terrestrial regions and 22 ocean
basins (Patra et al. 2005b). The boundaries of these source
regions are shown in Fig. 4. The dimension of matrixG is
then determined as the size of vectorm multiplied by that
of vectordobs. For implementing matrix operations involved
in Eq. (3) efficiently, we employed a variant of the fixed-lag
Kalman Smoother scheme (FLKS) formulated by Bruhwiler
et al. (2005). The basis for this scheme is the fact that in
atmospheric tracer transport simulations, the signals of unit
pulse emissions detected at measurement sites decay rapidly
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Fig. 4. Boundaries of the 64 source regions adopted in this study.
The numbers on the figure are the region IDs. Regions shaded with
dark blue are not considered in the flux estimation.

within the first few months and are blended into the back-
ground state thereafter. The idea is to obtain a posteriori
fluxes via estimatingm′ incrementally with a subset ofG and
dobs in a specified time-window. Using the FLKS setup with
the same 64 source region boundaries, Koyama et al. (2009)
evaluated the influence that differences in the length of the
time window have on a posteriori monthly flux estimates.
Comparing results obtained using window lengths of 1 to
6 months, they concluded that a posteriori fluxes and their
uncertainties estimated with three-month or longer windows
converged quite strongly; Bruhwiler et al. (2005) arrived at
a similar conclusion. Based on these findings, we chose to
use a three-month duration of monthly observations and at-
mospheric transport simulations in each time window.

In implementing the scheme, only random errors associ-
ated with the prior fluxes and observations, as specified in
matricesCD andCM , are accounted for. Thus, biases in the
observations need to be removed prior to the optimization.
We placed two additional columns in matrixG that corre-
spond to global CO2 offsets of (1) the initial model concen-
trations with respect to GV data, and (2) the initial model
concentrations with respect to GOSATXCO2 retrievals. In an
initial optimization run, these two offsets were determined
separately every month. The averages of the monthly offset
values were then used in the subsequent run to remove the
global offsets.

3.1 GOSATXCO2 retrievals

The main observational instrument aboard GOSAT is the
Earthward-looking TANSO-FTS that measures surface-
reflected sunlight and emitted thermal infrared radiation at
wavelengths in the range 0.76–14.3 µm. The design and func-
tions of the instrument are described in detail by Kuze et
al. (2009). Sampled spectra recorded in the 0.76 µm oxygen
absorption band and the 1.61 µm CO2 absorption band were
used in an earlier version of the NIES Level 2 operational

retrieval algorithm (version 01; described by Yoshida et al.,
2011) to retrieveXCO2 global distributions. The retrieved
XCO2 values exhibited promising characteristics, including
distinct north–south gradients and seasonal variability. How-
ever, theXCO2 values were found to contain a significant neg-
ative bias of 8.85±4.75 ppm (Morino et al., 2011) as com-
pared with reference data collected at TCCON sites (Wunch
et al., 2011a), where sun-viewing high-resolution FTSs are
installed. Later, Uchino et al. (2012), using their lidar obser-
vations of aerosol particles, showed that assumptions made in
version 01 of the retrieval algorithm on the vertical distribu-
tions of thin cirrus and aerosols are oversimplified, thereby
contributing to the large bias. They proved that the issue
could be mitigated significantly by the use of aerosol/cirrus
optical properties retrieved simultaneously with spectra in
the 2.06 µm band. Further, through investigating GOSAT
spectra sampled over 2.5 yr, Yoshida et al. (2012) discovered
a time-dependent degradation of TANSO FTS’s radiometric
accuracy, which they successfully modeled for use in the re-
trieval algorithm implementation. These new findings, along
with other improvements, were incorporated into the NIES
Level 2 operational retrieval algorithm. The updated Level 2
XCO2 retrievals (version 02.00), processed from an improved
GOSAT spectral dataset (Level 1B data, version 141.141,
covering 14 months from June 2009 to July 2010) were
shown to have a much smaller bias of−1.20± 1.97 ppm.
However, the causes of the remaining bias require further in-
vestigation.

Wunch et al. (2011b) made an attempt to assess and correct
spatially- and temporally-varying biases in GOSATXCO2 re-
trievals using an empirical regression model with which they
correlated spurious variabilities inXCO2 retrievals with sur-
face albedo, difference between the analyzed and retrieved
surface pressure, airmass, and the oxygen A-band spectral ra-
diance. A similar analysis is being performed on the GOSAT
Level 2 XCO2 retrievals used in this study. The correc-
tions obtained through the regression analysis, however, still
need improvements before being applied to inverse modeling
since the derived parameter regression slopes have large un-
certainty due to the fact that the number of GOSAT retrievals
that match TCCON data is limited. From the view point of
global-scale flux estimation, it is critical and highly desired
that biases coming from the dependence ofXCO2 retrievals
on airmass characteristics, which can change with time and
location over the globe, are well-compensated. More detailed
regression analyses may be possible by using either data
from the newly established TCCON sites and/or well char-
acterized model-simulated CO2 fields. In addition to the on-
going bias analysis, efforts are also being made at reducing
the bias itself through improving theXCO2 retrieval algo-
rithms. The outcome of these efforts will be reflected in the
future updates of theXCO2 retrieval dataset. For this study,
we therefore corrected the bias by raising eachXCO2 value
by the global mean GOSAT-TCCON difference of 1.20 ppm
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 Fig. 5.The number of GOSAT Level 2XCO2 data records per each of 5◦
× 5◦ grid cells during the months of August 2009, November 2009,

February 2010, and May 2010. Red circles indicate the locations of the GV measurement sites chosen for this study.

prior to the use in inverse modeling, assuming that the bias is
uniform throughout the globe and the observation period.

Figure 5 shows the number of GOSATXCO2 retrievals
per each of 5◦ × 5◦ cells counted during the months of Au-
gust 2009, November 2009, February 2010, and May 2010.
The distribution of the data number density changes with sea-
son owing to the occurrence of clear sky days and local solar
zenith angle that determines the northern- and southern-most
bounds of the GOSAT measurement. Note here that regions
above∼ 50◦ N latitude (the northern parts of North America
and Eurasia) during fall and winter months saw very small
numbers of GOSAT retrievals therefore the flux inference
for those regions during these months was reliant on the GV
data. Figure 6 displays GOSATXCO2 retrievals in the form
of input to the inverse modeling scheme (gridded to 5◦

× 5◦

cells and averaged on a monthly time scale). Only the cells
with three or more retrievals per month are shown here. The
monthly mean GV values are also shown in the figure in cir-
cles. Prior to monthly averaging, we corrected the bias in
the GOSATXCO2 retrievals by raising eachXCO2 value by
1.20 ppm, assuming that the bias is uniform throughout the
globe and the observation period. Evaluating the reasonable-
ness of this assumption is a subject of ongoing studies.

3.2 Treatment of GOSAT averaging kernel

To account for the vertical sensitivity of the GOSAT mea-
surement in the inverse modeling, we applied the averaging
kernel, derived in the retrieval ofXCO2, to each of the verti-
cal concentration profiles simulated with NIES-TM. As was
described by Connor et al. (2008), a model-simulatedXCO2

concentrationXm
CO2

, which reflects the measurement vertical
sensitivity, is given as:

Xm
CO2

= Xa
CO2

+

∑
i

(
hTA

)
i
(xm − xa)i , (5)

whereXa
CO2

denotes a prioriXCO2 values defined in theXCO2

retrieval,A is a matrix containing the CO2 elements of the
averaging kernel,xm andxa denote the elements of the mod-
eled and the a priori vertical CO2 profile, respectively.h is
the pressure weighting function, a vector containing the dry
air partial column abundance of each retrieval layer normal-
ized to the total dry air column abundance. The calculation
of the pressure weighting function is described in Appendix
B of a report by Yoshida et al. (2009).

4 Results and discussion

Using the 14-month-long GOSAT Level 2XCO2 retrievals
(version 02.00) and the GV data in the 3-month-window
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Fig. 6.GOSATXCO2 retrievals in the form of input to our inverse modeling scheme (gridded to 5◦
× 5◦ cells and averaged on a monthly time

scale). Cells with three or more retrievals per month are shown here. The bias was corrected by raising eachXCO2 retrieval by 1.20 ppm.
Overlaid are GLOBALVIEW values (in circles; monthly means). Values for the months of August 2009 (summer in the Northern Hemi-
sphere), November 2009 (fall), February 2010 (winter), and May 2010 (spring) are shown.

FLKS scheme, we inferred monthly fluxes for the 64 sub-
continental regions for 12 months between June 2009 and
May 2010. The forward concentration simulation was initial-
ized with a GECM-derived 2-D global concentration field,
and then pre-run was performed for 3 months before the
start of the inversion period. A total of 9106 observations
were available for estimating 768 monthly fluxes (64 regions
×14 months), of which 6125 were gridded monthly-mean
GOSAT XCO2 retrievals and 2981 were monthly-mean GV
data.

The reduction in the a priori flux uncertainty corresponds
to the degree to which observations used in the inference
contributed to constraining the surface fluxes. The reduc-
tion is often expressed by contrasting the diagonal parts
of the a posteriori error covariance matrix,C′

M , to that of
the a priori one,CM . Here, we rather chose to consider
the uncertainty reduction attained by the addition of the
GOSAT XCO2 retrievals to the GV data. Following Rayner
and O’Brian (2001) and Takagi et al. (2011), we express the
uncertainty reduction (UR) as:

UR =

(
1−

σGV+GOSAT

σGV

)
× 100, (6)

where the units of UR are in %, andσGV andσGV+GOSAT
denote the uncertainties in the monthly fluxes estimated from
the GV data only and those from both the GV data and the
GOSAT retrievals, respectively. For this evaluation, we im-
plemented the inversion scheme using only the GV data to
obtain flux estimates and the value ofσGV. Figure 7 presents
the UR values for August 2009, November 2009, Febru-
ary 2010, and May 2010. As indicated in Eq. (4), the value
of UR is affected by three factors: (1) the uncertainty in the
observations and a priori fluxes, given byCD and CM , re-
spectively; (2) the sensitivity of observations to surface fluxes
(determined by atmospheric transport and stored inG); and
(3) the size ofCD, which reflects the number of observations
available for constraining the fluxes. Note that in the current
inversion setup the uncertainties specified for GV data and
that for GOSAT retrievals can differ by as much as one or-
der of magnitude (e.g. the minimum uncertainty set for GV
data and GOSAT retrievals is 0.3 and 3.0 ppm, respectively).
This implies that the GV data have much greater weight in
constraining regional fluxes. Also, we consider that there
is approximately one-order-of-magnitude difference between
the uncertainties prescribed to land and ocean fluxes. These
differences contribute to creating strong region-to-region or
land-to-ocean contrasts in UR values, as observed in Fig. 7.
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Fig. 7. Percent reduction in the uncertainty of monthly surface flux estimates, attained by adding the GOSATXCO2 retrievals to the GLOB-
ALVIEW dataset.

Regions that are far from ground-based observation networks
but are covered by GOSAT retrievals (e.g. regions 29 and 17;
see Fig. 4 for identifying the regions) show higher UR val-
ues, with a maximum UR of 61 % for region 29 in October
2009 (not shown in the figure). However, the UR values for
the North American and Australian regions (regions 5–8 and
35–38) barely exceed∼ 15 %, despite the fact that GOSAT
retrievals were constantly available within and around these
regions throughout the 1-year analysis period (see Fig. 6).
This represents a case in which the constraint provided by
the GV data prevails over that provided by the GOSATXCO2

retrievals. Thus, higher URs in the figure highlight regions
whose a posteriori fluxes were constrained by the GOSAT
retrievals more strictly than those in other regions (Mid-
dle East, Asia, Africa, and South America). In light of the
GOSAT mission objectives, Fig. 7 indicates what the satel-
lite was designed to perform in complementing the ground-
based observations. However, care must be taken in evaluat-
ing the flux values, as these remote regions coincide with
locations where the validation of GOSAT retrievals is not
currently possible and the retrieval ofXCO2 values itself is
challenged by higher local surface albedo and/or contamina-
tion by aerosols.

Figure 8 shows the monthly a posteriori fluxes described
above. The quantity presented here is the sum of a priori
fluxes (terrestrial biosphere exchange or ocean exchange+

anthropogenic emissions+ forest fire emissions) and the cor-
rection to the a priori flux determined via the optimization.
The net influence of the addition of the GOSATXCO2 re-
trievals to the GV data on the flux estimation is made visible
by taking the difference between the flux correction obtained
with GV data only and that with both the GV data and the
GOSAT retrievals (see Fig. 9). As indicated by the distribu-
tion of UR rates shown in Fig. 7, the major changes in the
correction fluxes occurred in the data-poor regions of surface
observation networks. Among the changes, those associated
with very low URs (< ∼ 15 %; e.g. tropical America, central
Africa, and southern Asia in summer and spring) need to be
isolated as they are most likely the result of flux balancing
or compensation that took place through the optimization of
neighboring regional fluxes. The remaining changes, which
are associated with higher URs (e.g. northern Eurasia during
summer, the Middle East, southern Africa, and central Asia)
and therefore more strongly linked to the GOSATXCO2 re-
trievals, are explored further here. The site-by-site GOSAT
data validation activities showed that theXCO2 retrievals now
agree reasonably well with the TCCON reference dataset,
with a global mean bias of−1.20± 1.97 ppm. Evaluating the
validity of spatiotemporal changes in the global distribution
of GOSAT-basedXCO2 concentrations will, however, con-
tinue to present challenges, perhaps until the cross-validation
of similar space-based CO2 measurements is possible.
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Fig. 8.Monthly fluxes (g C m−2 day−1) estimated for the 64 subcontinental regions using GV data and GOSATXCO2 retrievals. Results for
the months of August 2009 (summer in the Northern Hemisphere), November 2009 (fall), February 2010 (winter), and May 2010 (spring are
shown. The values presented here are the sum of a priori fluxes (terrestrial biosphere exchange or ocean exchange+ anthropogenic emissions
+ forest fire emissions) and the correction to the a priori flux determined via the optimization. Note the different color-coded scales used for
land and ocean regions.

Table 1. Root-mean-square differences (RMS difference) between TCCON and modeled concentrations (in ppm) over one year between
June 2009 and May 2010. Also listed is the RMS of TCCON observation uncertainty (TCCON uncertainty in ppm).

SITE LAT LON TCCON RMS diff. RMS diff.
uncertainty GV only GV+ GOSAT

Białystok, Poland 53.23 23.03 0.91 0.93 0.81
Bremen, Germany 53.10 8.85 0.90 1.28 1.26
Darwin, Australia −12.43 130.89 0.44 0.30 0.29
Garmisch, Germany 47.48 11.06 1.32 1.68 1.39
Izana, Tenerife 28.30 −16.48 0.43 0.97 0.96
Lamont, USA 36.60 −97.49 1.27 0.36 0.33
Lauder, New Zealand −45.04 169.68 1.07 0.40 0.37
Ny Alesund, Spitsbergen 78.92 11.92 1.58 1.20 1.25
Orleans, France 47.97 2.11 0.69 0.73 0.64
Park Falls, USA 45.94 −90.27 1.01 0.60 0.60
Sodankyla, Finland 67.37 26.63 0.62 1.13 1.11
Tsukuba, Japan 36.05 140.12 1.96 0.61 0.51
Wollongong, Australia −34.41 150.88 0.77 0.51 0.58

Here, we describe attempts to perform such an evalua-
tion using a model-simulated 3-D CO2 field as an indepen-
dent reference. We constructed this reference field by run-
ning forward with NIES-TM a posteriori fluxes estimated

from the GV data only (mentioned earlier in this section).
The quality of this GV-based global CO2 field was ex-
amined with the TCCON references. Figure 10 shows the
monthly time series data collected at five TCCON sites

www.atmos-chem-phys.net/13/9351/2013/ Atmos. Chem. Phys., 13, 9351–9373, 2013
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Fig. 9. Differences between the fluxes estimated from GV data only and those from GV and GOSATXCO2 retrievals. Note that different
color-coded scales are used for land and ocean regions.

(Ny Alesund, Norway; Białystok, Poland; Park Falls, USA;
Tsukuba, Japan; and Wollongong, Australia; described in:
Wunch et al., 2011a; Washenfelder et al., 2006; Messer-
schmidt et al., 2010, 2011; Deutscher et al., 2010; Ohyama
et al., 2009, respectively) and the corresponding forward
simulation results. As summarized in Table 1, the differ-
ence between TCCON (version GGG 2009) and GV-based
model predictions are mostly within the range of observa-
tional uncertainties. The addition of GOSAT retrievals de-
creases the differences at TCCON sites. The effects of dif-
ferences in a priori concentration vertical profiles and col-
umn averaging kernels between TCCON and GOSAT re-
trievals were not taken into account, as their influence (es-
timated to be on the order of 0.1 ppm by Reuter et al., 2011)
appear to be minor. Figure 11 compares the distribution of
the 5◦ × 5◦ GOSAT XCO2 values with the reference field
(monthly-mean GOSATXCO2 minus the corresponding ref-
erenceXCO2 concentrations). Positive or negative deviations
from the GV-based CO2 reference greater than 2 ppm, which
is larger than the range of TCCON uncertainty and model-
observation misfits, are found in lower South America (Au-
gust and May), equatorial Africa (November and February),
and central Asia (August and May).

When compared with the distributional patterns ofXCO2

values shown in Fig. 7, the locations of enhanced devia-

tions from the reference coincide well with regions of higher
UR values, which are indicative of greater involvement of
GOSATXCO2 retrievals in the flux estimation. From the lim-
ited view point of this particular GV-based CO2 concentra-
tion reference, we note that the changes in fluxes observed in
Fig. 9 are likely induced by the GOSATXCO2 retrievals. This
point is, of course, strictly subject to changes made in the cur-
rent minimum observational uncertainty settings, which can
increase the competition between GV data and GOSAT re-
trievals in constraining fluxes, or to improvements made in
constructing the modeled CO2 reference field (e.g. augment-
ing the GV data used in estimating the surface-based fluxes
by adding other available surface observations).

To illustrate the effects of adding GOSAT retrievals to the
GV data on the seasonality of the estimated fluxes, we plotted
time series of fluxes for June 2009 to May 2010 for southern
Africa (regions 21–24) and boreal Eurasia (region 25–28) in
Fig. 12. These regions are underconstrained by the surface
data and the fluxes change with the addition of GOSAT re-
trievals. The fluxes for most regions and seasons remained
within natural variability bounds, which also served as a pri-
ori constraints. Winter fluxes of northern boreal Eurasia ap-
pear variable and underconstrained as the seasonality was not
imposed in the a priori flux uncertainties.
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Fig. 10.Time series of data collected at five TCCON sites (green),
and corresponding forward simulation results based on a posteriori
fluxes estimated from GV alone (red) and GV and GOSAT retrievals
(blue). The five TCCON sites are NẙAlesund, Norway (78.55◦ N,
11.55◦ E), Białystok, Poland (53.23◦ N, 23.03◦ E), Park Falls, USA
(45.95◦ N, 90.27◦ W), Tsukuba, Japan (36.05◦ N, 140.12◦ E), and
Wollongong, Australia (34.41◦ S, 150.88◦ E).

The practical value of GOSAT retrievals to the inverse
modeling of surface fluxes can be confirmed if the fluxes es-
timated from GV and GOSAT retrievals are more accurate
than those from GV only. Direct validation with independent
regional flux estimates, such as those being developed by
Canadell et al. (2011), is an attractive option, as they combine
a number of top-down and bottom-up regional CO2 flux es-
timates based on flux tower observations, terrestrial ecosys-
tem models, forest carbon inventories, and multiple inverse
model outputs (e. g. Gloor et al, 2012, Dolman et al, 2012).
However, those flux data for our analysis period are not yet
available. Another approach, common in inverse modeling, is
to examine statistics of differences between the a priori and a
posteriori fluxes (Tarantola, 2005). In our case we evaluated
changes in the differences between the a priori and a posteri-
ori fluxes brought by the addition of GOSAT retrievals. In 12
land regions (05, 06, 09, 10, 12, 14, 15, 26, 29, 32, 33, and
39), the addition of GOSAT retrievals brought the a posteri-
ori fluxes closer to the a priori values, thereby reducing the
differences between them. However, the opposite was seen
in 7 regions (16, 17, 18, 22, 25, 27, and 42). It is not always
clear if the deviations from the a priori fluxes are in the right
or wrong direction. For instance, in regions 25 and 27 (south-
ern boreal Asia), the addition of GOSAT retrievals increases
summer uptake, while evidence indicates that use of our a
priori fluxes in forward concentration simulations results in

underestimation of the amplitude of CO2 seasonal cycle ob-
served in Siberia (Saeki et al., 2013).

Fig. 13 shows the regional flux changes relative to the a
priori fluxes for those regions and months whose URs were
larger than 20 % (a total of 80 monthly regional flux values).
The change in the fluxes is expressed as

1m2
=

(
mGV − mprior

)2
−

(
mGV+GOSAT− mprior

)2
, (7)

where mGV is the flux estimated from GV only, and
mGV+GOSAT is the flux estimated from GV and GOSAT re-
trievals. A positive value of1m2 means that the deviation
from the a priori value is reduced (i.e., the a posteriori flux
becomes closer to the a priori), and a negative value indi-
cates that the addition of GOSAT retrievals moves the es-
timated flux away from the a priori value. Small changes in
fluxes (∼ 1 PgC yr−1 region−1) show that the effect of adding
GOSAT retrievals is statistically similar in both positive and
negative changes. In contrast, large positive1m2 values in-
dicate that the addition of GOSAT retrievals acts to suppress
many large and likely erroneous deviations from the a priori
fluxes in the underconstrained regions for which estimations
are made with GV data alone.

As discussed by Gurney et al. (2002, 2004), the problem
of estimating fluxes for unconstrained regions is not only
limited to large flux uncertainties; departures of the a pos-
teriori fluxes from a priori values vary largely with different
transport models used even if observation data are the same.
GOSAT-induced reductions in differences between the a pos-
teriori and a priori fluxes seen in underconstrained regions
may confirm two points. First, a reduction in the estimated
flux uncertainty corresponds to a reduction in the deviation
of the a posteriori fluxes from the a priori values. Second,
GOSAT retrievals on average do not contradict the a priori
flux estimates; otherwise, the addition of GOSAT retrievals
to GV data would increase deviations of the a posteriori flux
estimates from the a priori, while claiming a reduction in flux
uncertainty at the same time.

Annual global total flux can be used for evaluating
the validity of the estimated fluxes. For this 1 yr period
(June 2009 to May 2010), the values of the global to-
tal flux, estimated from the GV data only and both the
GV and GOSAT retrievals turned out to be 4.75 GtC yr−1

(land/ocean: −2.09/−2.00 GtC yr−1) and 5.18 GtC yr−1

(land/ocean:−1.19/−2.48 GtC yr−1), respectively. The fos-
sil fuel emissions for the period was 8.64 GtC yr−1, and the
a priori uptakes by the terrestrial biosphere and the ocean
are:−0.70/−1.71 GtC yr−1, respectively. The difference in
global total fluxes based on the two sets of observational data
may come from regionally and temporally varying differ-
ences between GOSAT retrievals and model-simulatedXCO2

values based on the GV-only a posteriori flux data, as seen
in Fig. 11. The characterization of the temporal and spatial
distribution of CO2 growth rate for this period (2009–2010)
is complicated by high temperatures observed in the North-
ern Hemisphere during the first half of 2010 (Galarneau et al.,
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Fig. 11.Monthly mean GOSATXCO2 retrievals in 5◦ × 5◦ grid cells minus the corresponding referenceXCO2 concentrations. See text for
explanation.

2012), which were followed by a heat wave and a large forest
fire in western Russia (Barriopedro et al., 2011; Shvidenko
et al., 2011). Further investigations are needed regarding the
spatiotemporal variability of biases in the currentXCO2 re-
trievals.

5 Summary and conclusions

We developed a global carbon cycle modeling system de-
signed specifically for the analysis of GOSATXCO2 re-
trievals and the estimation of regional CO2 fluxes and their
seasonal and interannual variabilities. The components for
the forward modeling, NIES-TM, ODIAC fossil fuel emis-
sion inventory, VISIT terrestrial biosphere model, and the
oceanicpCO2 data assimilation system, were optimized to
reproduce the seasonal, interannual, and spatial variability of
atmospheric CO2 and surface CO2 fluxes. To simulateXCO2

with better accuracy, stratospheric transport in NIES-TM was
simulated on an isentropic grid, and the model was tuned
to reproduce the age of stratospheric air. Using large point
source data and night light observations, we improved the
spatial distribution of fossil fuel CO2 emissions. We con-
firmed that the ODIAC high-resolution emissions correlate
well with detailed bottom up inventories at the horizontal
resolutions of 0.5◦ to 1◦. VISIT was optimized by simultane-
ously fitting selected physiological parameters to observed

atmospheric CO2 seasonal cycle, net primary production,
and biomass distribution. Oceanic surface CO2 fluxes were
simulated with a 4-D variational data assimilation system
which is forced by reanalyzed ocean currents and uses avail-
ablepCO2 observations and global oceanicpCO2 climatol-
ogy as constraints. A recent version of GFED data was used
to account for fire emissions.

The capability of an inverse modeling scheme that op-
timizes monthly mean fluxes for 64 regions (Patra et al.,
2005b) was expanded to handle GOSATXCO2 retrievals.
The scheme takes into account the vertical sensitivity of
GOSAT measurement stored in column averaging kernel data
and the effects of a priori CO2 vertical profiles on model-
predictedXCO2 values. Globally constant offsets of GV data
and GOSAT retrievals were estimated as optimized parame-
ters. Screening of GOSAT retrievals was implemented using
an observation-adjusted 3-D CO2 concentration climatology.
To confirm the consistency between the simulated variations
of the ground based and total column data, model-predicted
XCO2 concentrations based on the GV-only a posteriori flux
data were compared with TCCON observations, and they
were in good agreement.

The inverse modeling scheme was then applied to the esti-
mation of surface CO2 fluxes from ground-based and aircraft
data in the GV data and GOSAT FTS SWIR Level 2XCO2

data (ver. 02.00). The a posteriori fluxes based on both GV
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Fig. 12. Time series of monthly fluxes (g C m−2 day−1) for
June 2009 to May 2010, for quadrants (top to bottom: SW, SE, NW,
NE) in the South Africa (left column), boreal Eurasia (right col-
umn) subcontinental regions. The graphs show a prior fluxes (green
lines), fluxes estimated from GV data alone (red lines), and fluxes
estimated from GV and GOSAT retrievals (blue lines). The error
bars show flux uncertainties. The gray vertical bars represent per-
cent reduction in the uncertainty (UR, Eq. 6; scale on right side of
graphs). Figures for all 64 regions are available in the supplemen-
tary information.

and GOSAT data were found to be close to those based on
GV data only in regions that are well constrained by GV data.
On the other hand, the fluxes estimated for remote regions
away from the GV sampling networks showed considerable
changes when GOSATXCO2 retrievals were added. Sizeable
reductions in flux uncertainties were observed in those cases.

The a posteriori fluxes for most regions and seasons fell
within the range of natural flux variability estimated with the
terrestrial and oceanic component models. The analysis of
the a posteriori regional flux data and annual mean flux sug-
gests that more improvements in the quantification and cor-
rection of biases in GOSATXCO2 retrievals are necessary.
Also, there is a need for a coordinated effort to check and
validate the regional monthly CO2 flux estimates.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/13/
9351/2013/acp-13-9351-2013-supplement.zip.
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