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This is our main result for the model and is plotted in 
Figure 2. It has in it the essential features of wave com-
pression, wave amplification and energy storage in the 
USWM, as stated above. It clearly shows the competition 
between the loss (1/τ) and the group velocity dispersion 
(η). Note the power-law divergence co-existing with the 
delta-function condensation (pile-up) of the wave inten-
sity at the point of accumulation x = Δ.  
 The intensity peaking (which in fact happens to be an 
integrable singularity for the above model choice of η(x)) 
is important to our phenomenological interpretation of 
any experiment on light storage in a USWM.  
 It is to be noted, however, that in the limit of τ → ∞ 
(that is, for no dissipation) and with a finite incoming  
optical pulse, the light wave simply piles up to a com-
plete stop at x = Δ. This should be the case for a USWM 
as realized in a Bose–Einstein Condensation (BEC)1, and 
will manifest as a bright spot appearing at the point of 
stoppage x = Δ.  
 It is important to emphasize here that the above phe-
nomena of wave compression, intensity growth and  
energy storage are generic to any USWM. One may note 
in passing that this phenomenon of wave compression 
and amplification is, of course, analogous to that of 
breaking of waves at the seashore: as the wave train  
approaches the shore, the leading edge (being in shal-
lower waters) advances slower relative to its trailing 
edge, resulting in wave compression. This in turn leads to 
amplitude growth or a pile-up of the compressed wave, 
and then to its eventual breaking close to the shoreline. 
The seashore acts as the slow wave medium here.  
 The above analytical treatment is, of course, readily 
generalized to the case of an arbitrary group velocity pro-
file other than the one shown in Figure 1. This may include, 
in particular, the case where the point of accumulation 
(complete stoppage) gets replaced by a broad maximum, 
allowing the transmission of light beyond the peak. 
 In conclusion, we have proposed and solved analyti-
cally a model for light propagation in USWM having a 
point of accumulation where the group velocity becomes 
extremely low, or even vanishes. Our solution explicitly 
displays wave compression (pile-up), optical energy stor-
age and a point of accumulation that characterize the 
USWM.  
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The scientific community has been putting in continu-
ous efforts to improve long-range forecast of Indian 
summer monsoon rainfall (ISMR). In this study we try 
to search for new predictors which may improve the 
prediction of ISMR. The shared nearest neighbour 
technique has been applied to surface temperature 
(ST) and sea-level pressure (SLP) to obtain the clus-
ters in pre-monsoon months (January through May) 
and seasons (winter, spring). The powers of time series 
averaged over the clusters are used as parameters for 
predicting ISMR. Instead of a single prediction equa-
tion, two separate equations are developed based on 
the positive and negative phase of effective strength 
index (ESI) tendency. Simple multiple regression 
equations are developed using these cluster para-
meters for predicting ISMR during the contrasting 
phases of ESI tendency. During positive (negative) 
phase of ESI tendency, the SLP (ST) cluster parame-
ters can predict ISMR. The prediction of ISMR is  
improved if we use the prediction equation depending 
upon the phase of ESI tendency. 
 
Keywords: Cluster parameters, effective strength index, 
rainfall prediction, sea-level pressure, surface tempera-
ture. 
 
INDIA being an agrarian country, the survival of its people 
mainly depends on the monsoon rains received during the 
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four-month period from June through September. It has 
been observed that there is a substantial loss in agricul-
tural output during severe droughts. There is also signifi-
cant reduction in gross domestic product (GDP) during 
the drought years1. The scientific community has been 
trying hard to improve the long-range forecast (LRF) of 
Indian summer monsoon rainfall (ISMR). The correct 
forecasting of Indian monsoon rainfall is important for 
agricultural and economic planning. The prediction of 
ISMR has a long history and most of the studies are pri-
marily based on statistical and empirical techniques. 
These studies have brought out several predictors for the 
ISMR. These parameters represent various forcings on 
the monsoon circulation system. Many earlier studies 
have found parameters based on surface temperature (ST) 
and sea-level pressure (SLP) for predicting ISMR. The 
northern hemisphere winter (January and February)  
surface air temperature anomaly was identified as an  
important predictor2. A predictor based on minimum tem-
peratures in May over the western Indian region has also 
been developed3. Three minimum temperature parameters 
over northern, central and eastern coastal areas of India 
have also been used as predictors4. It has been shown that 
the mean ST at six stations (Jodhpur, Ahmedabad, Mum-
bai, Indore, Sagar and Akola) during spring season 
(March–May) exhibited high correlation with subsequent 
ISMR5. A predictor parameter by averaging spring-time 
SLP at these six stations has been developed5,6. Two predic-
tors have been identified based on the minimum tempera-
tures during March over east peninsular India and during 
May over west central India7. Many recent studies8–13 have 
demonstrated the relationship between surface pressure/ 
temperature over Eurasia and ISMR. ISMR–sea-surface 
temperature (SST) relationship from three seasons to four 
years lag prior to monsoon seasons has been used for  
developing prediction equations14. SST-based multi-
model ensemble probabilistic forecast has also been 
made15. In all these studies, LRF parameters are obtained 
by first correlating the parameter field with ISMR and 
then averaging temperature/pressure field over the region 
of significant correlations. 
 In the present study we first obtain the clusters of ST 
and SLP during pre-monsoon months and seasons using 
the method of shared nearest neighbour (SNN). The tech-
nique was first developed to find the clusters in high-
dimensional data16. It has been applied to ocean tempera-
tures and the clusters have been used to predict land tem-
peratures17. An attempt has been made here to understand 
the temporal and spatial variability of ST and SLP in 
these cluster regions. It has been demonstrated that  
temperature evolution from winter to spring changes with 
phase of effective strength index (ESI) tendency18,19. 
Hence the relationship between the averaged ST and SLP 
over the respective cluster regions and ISMR is studied 
during the contrasting phases of ESI tendency. The highly 
correlated clusters are considered as parameters in multi-

ple regression equations to predict ISMR. The perform-
ance of these regression equations is also discussed. 
 The following data for the period 1951–2007 have 
been used in this analysis: 
 
(1) The time series of ISMR (June–September) have 

been taken from the website of the Indian Institute of 
Tropical Meteorology, Pune (www.tropmet.res.in). 
The percentage departure from long-term mean is 
calculated and these indices are used in further analy-
sis. 

(2) The gridded 2.5° × 2.5° lat./long. global ST and SLP 
data have been taken from NCEP/NCAR reanalysis 
dataset. The data have been interpolated on 5° × 5° 
lat./long. to apply SNN algorithm. 

(3) North Atlantic Oscillation (NAO) and Southern  
Oscillation (SO) data have been taken from 
www.cpc.ncep.noaa.gov. 

(4) ESI is defined as the algebraic difference between 
monthly indices of NAO and SO. The anomalies from 
the annual mean have been calculated for each month 
and these anomaly series are then divided by the 
standard deviation. These series are called the ESI  
series of the respective months. ESI tendency is the 
difference between April and January ESI values. 

 
Winter (December–February) and spring (March–May) 
time series are obtained by averaging the corresponding 
meteorological parameter values. 
 In order to find the parameters based on ST and SLP, 
we need to know the regions showing clustering of these 
meteorological parameters. Cluster analysis classified the 
data points into useful or meaningful groups. Clustering 
critically depends upon density and distance (similarity), 
but these concepts become more difficult to define as  
dimensionality increases. For high-dimensional data, a 
similarity measure has been used16. This is based on the 
number of neighbours that two points share and then den-
sity of a point is defined as the sum of the similarities of a 
point’s nearest neighbours. The algorithm based on these 
ideas eliminates noise (low-density points) and builds 
clusters by associating non-noise points with representa-
tive or core points (high-density points). This approach 
handles many problems like finding clusters in the pre-
sence of noise and outliers, finding clusters in data that 
have clusters of different shapes, sizes and density, etc. 
 In SNN, similarity is confirmed by the common nearest 
neighbours. If point A is close to point B and if both of 
them are close to a set of points C, then we can say that A 
and B are close with greater confidence since their simi-
larity is confirmed by the points in set C (ref. 20). 
 The steps involved in the SNN clustering algorithms 
are: 
 
(1) To compute the similarity matrix. The correlation  

coefficient (CC) or the Euclidean distance between 
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the time series over two grid points is the typical 
measure of similarity. 

(2) To sparsify the similarity matrix by keeping only its k 
strongest links. Here k is called the neighbourhood 
list size. It is the most important factor as it adjusts 
the focus of the clusters. If k is too small, even a  
uniform cluster will be broken up into pieces due to  
local variations in the similarity, and the algorithm 
will tend to find many small, but tight clusters. On 
the other hand, if k is too large, then the algorithm 
will tend to find only a few large, well-separated 
clusters and small local variations in similarity will 
not have an impact. In the SNN, a point can be simi-
lar to at most k other points. 

(3) To construct the SNN list from the sparsified similar-
ity matrix. At this point, we could apply a similarity 
threshold and find the connected components to ob-
tain the clusters (Jarvis–Patrick algorithm.) 

(4) To find the SNN density of each point. Here we con-
sider the sum of link strengths for every point in the 
SNN graph. The points having high total link strength 
will become candidates for representative points, 
while those having very low total link strength become 
candidates for noise points. 

(5) To find the core points. These are the points having 
SNN density greater than the threshold value. This 
value is to be decided by trial and error. (Here we 
have taken it to be 75.) 

(6) To form clusters from the core points by averaging 
the grids in the cluster. 

 
The SNN clustering technique has been applied16 to 
monthly SLP data over 2.5° × 2.5° lat./long. from 1950 to 
1994. Using these clusters the researchers16 have been 
able to reproduce NAO and SO indices. The performance 
of SST and SLP cluster-based indices have been com-
pared17 with respect to known climate indices like NAO 
and SO. We have used the same SNN clustering method 
to obtain ST and SLP clusters in pre-monsoon months 
and seasons. For this we have used 5° × 5° grid data for 
1951–2007. Generally in earth sciences CC is used as the 
measure of similarity between two grid points. 
 The CCs between ST/SLP of each grid point with all 
other grid points is computed for the period 1951–2007. 
The set of grid points showing significant CC (at 1% 
level) with a particular grid point forms the nearest 
neighbour list for that grid point. Such nearest neighbour 
lists are found for each grid point. For any two grid 
points P and Q, the common grid points in the nearest 
neighbour list of P and Q form the closest nearest 
neighbour list. These closest nearest neighbour lists at a 
particular grid point are arranged in decreasing order of 
their cardinality number. A link is created between points 
P and Q if and only if both P and Q have each other in 
their closest k nearest neighbour lists, where k is the near-
est neighbour size (here k = 100). 

 Let i, j be two points. Then strength of the link between 
i and j is calculated as 
 
 Str(i, j) = ( 1 ) ( 1 ),k m k n+ − × + −∑  
 
where k is the nearest neighbour list size, and m and n are 
positions of SNNs in the list of i and j. The strength at 
each grid point is computed using this formula. The grid 
points having strength greater than 75 are called as core 
points and then clusters are built around these core 
points. 
 Figures 1 and 2 show SLP and ST cluster regions  
respectively. There are 62 ST and SLP cluster regions in 
all pre-monsoon months and seasons. Averaged ST and 
SLP time series over corresponding cluster regions are 
prepared. In order to understand nonlinear impact of 
these cluster time series, CC between ISMR and different 
powers of cluster time series (index series) is computed. 
The index series showing significant CC at 5% level of 
significance is considered as the parameter for predicting 
ISMR. Table 1 describes five cluster parameters (CP1, 
CP2, CP3, CP4 and CP5) showing significant association 
 
 

 
 

Figure 1. Sea-level pressure clusters during pre-monsoon months and 
seasons. 
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Table 1. Cluster parameters for predicting ISMR 

 Correlation 
Abbreviation coefficient Description 
 

CP1  –0.35 May sea-level pressure anomaly over (Equator – 20N; 100–115E) 
CP2  0.33 Cube of January temperature anomaly over (20–30N; 5–35E) 
CP3  –0.31 Fifth power of spring sea-level pressure anomaly over (Equator – 40N; 85–180E) 
CP4  –0.31 Cube of April sea-level pressure anomaly over (Equator – 20N; 100–140E) 
CP5  –0.29 Square of winter sea-level pressure anomaly over (40–50N; 35–5W) 

 
 

 
 

Figure 2. Surface temperature clusters during pre-monsoon months 
and seasons. 

 
 

 
 

Figure 3. Locations of surface temperature/pressure cluster parame-
ters used for predicting ISMR. 

 
 

Figure 4. The 21-year sliding correlation coefficients between cluster 
parameters and ISMR. 
 
 
with ISMR. In order to formulate a multiple regression 
equation, we have found out other independent parame-
ters by computing CC among these cluster parameters. 
CP1 shows insignificant CC with CP5. The locations of 
CP1 and CP5 are depicted in Figure 3 by region-1 and  
region-5 respectively. The CP1 (CC = –0.35) and CP5 
(CC = –0.29) are inversely associated with ISMR and the 
relationship is significant at 5% level. The stability of  
relationship between ISMR and these cluster parameters is 
checked by computing 21-year sliding CC between ISMR 
and the respective cluster parameters. Figure 4 shows 21-
year sliding CC between ISMR and two cluster para-
meters. The probable physical explanation for this inverse 
relationship may be as follows: Region-1 is to the west of 
the Pacific Ocean and below-normal May SLP over this 
region can increase the number of remittances in the Bay 
of Bengal, which may increase the seasonal rainfall 
amount over India. Similarly, region-5 is influenced by 
Azores High in North Atlantic Ocean, which is one of the 
centres of action in the atmospheric oscillation (NAO). 
Winter SLP over this region does not show significant re-
lationship with ISMR but has a nonlinear relationship 
with it, since the square of this parameter shows signifi-
cant inverse association with ISMR (CC = –0.29). Below-
normal winter SLP over this region is linked with nega-
tive NAO, which drives weaker westerlies carrying warm 
maritime air over Eurasia. Hence winter-time snow depth 
over western Eurasia may increase, which may be condu-
cive for good monsoon activity over India21. 
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Table 2. Cluster parameters for predicting ISMR during positive effective strength index (ESI) tendency 

 Correlation 
Abbreviation  coefficient Description 
 

CPP1  –0.66 Fourth power of winter sea-level pressure anomaly over (40–50N; 70–40W) 
CPP2  –0.41 Square of winter sea-level pressure anomaly over (40–50N; 35–5W) 
CPP3  –0.40 Fourth power of May temperature anomaly over (60–75N; 50–15W) 

 
 

Table 3. Cluster parameters for predicting ISMR during negative ESI tendency 

 Correlation 
Abbreviation  coefficient Description 
 

CPN1  –0.57 Spring temperature anomaly over (5S–20N; 160–110W) 
CPN2  0.49 Square of April sea-level pressure anomaly over (Equator – 20N; 0–30E) 
CPN3  0.49 Fourth power of April sea-level pressure anomaly over (Equator – 20N; 0–30E) 
CPN4  –0.48 May sea-level pressure anomaly over (Equator – 40N; 0–80E) 
CPN5  0.46 Winter temperature anomaly over (20–35N; 60–70E) 
CPN6  –0.46 Fourth power of spring temperature anomaly over (20–40N; 45–160E) 
CPN7  –0.44 Winter temperature anomaly over (Equator – 20N; 160–110W) 
CPN8  0.43 Square of spring sea-level pressure anomaly over (Equator – 40N; 0–80E) 
CPN9  –0.42 Square of January temperature anomaly over (60–70N; 150–180E) 
CPN10  0.42 Cube of winter temperature anomaly over (10–45N; 0–30E) 
CPN11  0.41 January temperature anomaly over (50–90N; 45–5W) 
CPN12  –0.40 May sea-level pressure anomaly over (Equator – 20N; 100–115E) 
CPN13  0.40 Fifth power of January temperature anomaly over (20–30N; 5–35E) 
CPN14  0.38 January temperature anomaly over (20–35N; 30–10W) 
CPN15  –0.37 Square of April temperature anomaly over (20–35N; 75–85E) 
CPN16  –0.36 Fifth power of April sea-level pressure anomaly over (Equator – 20N; 0–30E) 

 
 

 
 

Figure 5. Actual and estimated ISMR using single multiple regression equation. 
 
 
 A multiple regression equation is formulated using 
CP1 and CP5 to predict ISMR. 
 
 Rainfall departure (%) = 0.82 – 3.37 (CP1) – 2.28 (CP5). 
 
Multiple correlation coefficient (MCC) is 0.44. The obser-
ved and estimated seasonal rainfall departure (%) over 
India is depicted in Figure 5. This model predicts below-

normal ISMR reasonably well. SLP over region-1 and  
region-5 in Figure 3 is a manifestations of SO and NAO 
respectively. Inclusion of these two cluster parameters 
(CP1 and CP5) in multiple regression equation suggests 
that other ST and SLP cluster parameters are linked  
with two large-scale oscillations NAO and SO. But evo-
lution of NAO and SO from winter to spring is opposite 
during contrasting phases of ESI tendency19. Hence the
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Figure 6. Actual and estimated ISMR departure (%) using two separate multiple equations for positive and 
negative phase of effective strength index tendency. 

 
 
relationship between cluster parameters and ISMR may 
change during contrasting phases of ESI tendency. 
 During 1951–2007, 27 years show positive ESI  
tendency and 30 years show negative ESI tendency. ESI 
tendency indicates how the relative strength of the two 
oscillations NAO and SO is evolved from winter to 
spring and hence evolution of ST and SLP may change 
during contrasting phases of ESI tendency. Winter-time 
anomalous trough/ridge over the Eurasian region is indi-
cated by the contrasting phases of ESI tendency19. There-
fore, we take different parameters for predicting ISMR 
during contrasting phases of ESI tendency. CC between 
62 cluster time-series and ISMR during contrasting 
phases of ESI tendency is computed. Table 2 describes 
three cluster parameters (CPP1, CPP2 and CPP3) show-
ing significant association with ISMR during positive ESI 
tendency. CPP1 and CPP2 are mutually independent and 
the CC with ISMR during positive ESI tendency is –0.66 
and –0.41 respectively. The locations of CPP1 and CPP2 
are depicted in Figure 3 by region-6 and region-5 respec-
tively. It reveals that during positive ESI tendency, SLP 
over North Atlantic Ocean is inversely associated with 
ISMR and the relationship is significant. A multiple  
regression equation for positive ESI tendency years is 
formulated using CPP1 and CPP2 to predict ISMR. 
 
 Rainfall departure (%) 

   = 1.18 – 1.46 (CPP1) – 2.4 (CPP2). 
 
MCC is 0.70. Table 3 describes 16 cluster parameters 
(CPN1–CPN16) showing significant relationship with 
ISMR during negative ESI tendency. It shows large num-
ber of ST and SLP cluster parameters for predicting 
ISMR. The highest CC with ISMR is found by CPN1 
(CC = –0.57) and its location is shown in Figure 3 by  

region-2. This region comprises of Nino region in the  
Pacific Ocean, which is known to affect ISMR inversely. 
Along with CPN1 two more independent cluster para-
meters, namely CPN9 and CPN15 show significant asso-
ciation with ISMR. Region-3 and region-4 in Figure 3 are 
the locations where CPN9 and CPN15 parameters are  
obtained respectively. Thus during contrasting phases of 
ESI tendency we have two different sets of cluster para-
meters. A multiple regression equation for negative ESI 
tendency years is formulated using CPN1, CPN9 and 
CPN15 to predict ISMR. 
 
 Rainfall departure (%) 

  = 6.64 – 36.04 (CPN1) – 4.85 (CPN9) – 6.7 (CPN15). 
 
 Multiple correlation coefficient = 0.70. 
 
Thus during positive (negative) ESI tendency, winter SLP 
over North Atlantic (spring temperature over equatorial 
Pacific) shows highest association with ISMR. This may 
be because relative strength of NAO tendency (SO ten-
dency) is more during positive (negative) ESI tendency. 
Figure 6 shows actual and estimated seasonal rainfall  
departure (%) using multiple regression equation depend-
ing on phase of ESI tendency. During 57 years from 1951 
to 2007, out of 31 above-normal rainfall years only 22 
years can be predicted as positive and out of 26 below-
normal rainfall years 22 years can be predicted as nega-
tive. This model seems to predict ISMR better than the 
previous one (CC between actual and estimated = 0.73). 
The increase in MCC from 0.44 to 0.73 suggests that pre-
dictors should be selected depending upon the evolution 
of ST and SLP from January to April. 
 The SNN algorithm provides a homogeneous cluster of 
the parameters which can be used as predictors. ST and 
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SLP cluster parameters for predicting ISMR are different 
in contrasting phases of ESI tendency. During positive 
(negative) ESI tendency, only SLP (ST) cluster parame-
ters are sufficient to predict ISMR. The skill in ISMR 
prediction can be improved using different prediction 
equations depending upon the phase of ESI tendency. 
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Plant height has always been a subject of research in 
forest and vegetation sciences. Space-borne LiDAR 
data of Geoscience Laser Altimeter System (GLAS) on 
the Ice, Cloud and land Elevation Satellite (ICESat) 
have opened up new possibilities to analyse vegetation 
height. Here, we have analysed the plant height pano-
rama for various forest vegetation classes of western 
India and understood their profile in terms of topo-
graphy, vegetation canopy density and presence of 
heterogeneous features within the LiDAR footprints. 
Of the total 14,230 LiDAR hits for western India fal-
ling in 32 forest vegetation classes, we eliminated ex-
treme plant height ranges to retain 9553 (67.13%) 
data points for further analysis. Maximum number of 
data points was observed over temperate coniferous 
forest, pine forest and desert dune scrub with 2119, 
936 and 1770 number of LiDAR hits respectively. The 
maximum and minimum plant height range varied  
between 70 and 2.2 m for temperate coniferous forest 
and alpine scrub. In general, we noticed inaccuracy in 
the plant height estimates from GLAS data points for 
higher slope and elevation. Overestimation in data 
points could be attributed to the presence of anthro-
pogenic features, viz. buildings, settlement and  


