
 1

Author version: Meteorol. Atmos. Phys., vol.109(3-4); 2010; 91-106 

 

Simulation of coastal winds along the central west coast of India using MM5 mesoscale model 

Dhanya Pushpadasa* , P. Vethamonya,  K.Sudheesha, Smitha Georgeb, M. T. Babua and Balakrishnan Nair T.M.c 

 

a National Institute of Oceanography, Dona Paula, Goa 403 004, India 
b Space Applications Centre, Ahmedabad,  380015, India 
c Indian National Centre for Ocean Information Services, Hyderabad  500 055, India 

 

* Dhanya Pushpadas 

  National Institute of Oceanography, Dona Paula, Goa 403 004, India 

  Email: dhanyapushpadas@gmail.com 

  Phone: +91 8322450541 

  Fax: +91 8322450608 

 

Abstract 

High resolution mesoscale model (MM5) has been used to study the coastal atmospheric circulation of central west coast 

of India, and Goa in particular. The model is employed with three nested domains. The innermost domain of 3km mesh 

covers Goa and the surrounding region. Simulations have been carried out for three different seasons – northeast (NE) 

monsoon, transition period and southwest (SW) monsoon with appropriate physics options to understand the coastal wind 

system. Simulated wind speed and direction match well with the observations. The model winds show the presence of sea 

breeze during the NE monsoon season and transition period, and its absence during the SW monsoon season.  In the 

winter period, the synoptic flow is northeasterly (offshore) and it weakens the sea breeze (onshore flow) resulting in less 

diurnal variation, while during the transition period, the synoptic flow is onshore and it intensifies the sea breeze. During 

the northeast monsoon at an altitude of above 750 m wind direction reverses, and this is the upper return current, 

indicating the vertical extent of sea breeze. Well developed land sea breeze circulation occurs during the transition 

period, with vertical extension of 300 m and 1100 m, respectively. 
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1.  Introduction 

  

Coastal winds play a key role in controlling weather, transporting pollutants and generating several oceanic phenomena 

such as circulation and upwelling. Coastal wind circulation in the tropical region is dominated by thermally driven sea 

breeze-land breeze circulation, which is a mesoscale phenomenon that arises from the differential heating along the land-

sea interface. Land breeze and sea breeze are more frequently and prominently observed in the tropical coastal region due 

to strong radiative heating, convection, and weak Coriolis force. It has been shown that direction (offshore, parallel, 

onshore) and strength of the synoptic flow affects structure and evolution of the sea breeze (Wexler 1946; Frizzola and 

Fisher 1963;  Pielke 1974; Bechtold et al. 1991). The sea breeze system is also influenced by the prevailing large-scale 

wind, surface heating, latitude, and topographic friction (Atkinson 1981; Rotunno 1983; Yan and Anthes 1987; Atkins 

and Wakimoto 1997). The study of sea breeze finds applications in air pollution transport, location and initiation of 

convection, aviation safety, gliding and sailing, forest fire forecasting and impact on coastal processes (Simpson 1995; 

Lu and Turco 1994; Rao and Fuelberg 2000). For example, transport of pollutants in the marine boundary layer (MBL) 

depends on the extent and intensity of coastal wind circulation.   

 

Several researchers have studied the sea breeze circulation theoretically and numerically (Haurwitz 1947; Mak and 

Walsh 1976; Arrit 1989; Dalu and Pielke 1989; Bechtold et al. 1991).  Some of these studies focus on the effect of 

topography, land cover and vegetation on the land-sea breeze system and modelling of sea breeze circulation in a 

complex coastal environment (Cai and Steyn 2000; Sicardi et al. 2005). Franchito et al. (1998) confirmed that there is a 

positive feedback between sea breeze and coastal upwelling along the Cabo Frio coast, Brazil. Gilliam et al. (2004) 

indicated that the coastline shape and coast-relative flow direction are important factors in determining how the sea 

breeze circulation evolves spatially. Gille et al. (2003) used QuikSCAT data to determine a statistically significant signal 

along most of the world’s coastline based on changes in wind direction between morning and evening, which is one of 

the characteristics of the sea-breeze system.  

 

Sea breeze and land breeze circulation along certain regions of the Indian coast have been studied using numerical 

modelling and field data collected during INDOEX IP-99 (Subrahamanyam et al. 2001; Jamina and  Lakshminarasimhan 

2004; Simpson and Raman 2006;  Srinivas et al. 2006;  Srinivas et al. 2007). Sea breeze circulation was shown to be the 

dominant mechanism initiating rainfall over the east coast of India during the Indian southwest monsoon (Simpson et al. 

2007). Aparna et al. (2005) presented an objective method for quantifying the seaward extent of sea breeze using 

QuikSCAT data. 

 

Land-sea breeze, being a local circulation, is not captured in the operational weather observations; hence mesoscale 

modellling is essential to study its influence on various coastal processes. As fine resolution winds are required for many 

coastal studies along the Indian coast, this present study has been taken up  in order to examine the aptness of a high-

resolution mesoscale atmospheric model PSU/NCAR MM5 (Grell et al. 1994) for the simulation of coastal winds along 

the central  west coast of India. The details of the model are described by Grell et al. (1994). MM5 has been increasingly 

used in operational numerical weather forecasting (Kotroni and Logouvardos 2004; Zhong et al. 2005) and air quality 

studies (Grell et al. 2000; Chandrasekar et al. 2003; Jackson et al. 2006; Mao et al. 2006). MM5 includes nested domains 

and necessary physics for convection, radiation and boundary layer turbulence. No study has been conducted using multi 
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day MM5 performance with higher resolution (a few km for horizontal resolution) over the central west coast of India. 

The primary objective of this numerical study is to validate the model for the central west of India for different seasons 

so that it can be used to provide fine resolution meteorological parameters to wave models and water quality models 

which are currently in operation at National Institute of Oceanography. Since mixing in the ocean is proportional to the 

third power of the wind speed, it is important to use fine resolution wind fields to force ocean models. The synoptic 

winds over India vary according to the prevailing northeast (NE) monsoon (October to February), southwest (SW) 

monsoon (June to September) and westerlies during pre-monsoon (March to May). In this paper, simulated coastal winds 

for the above three seasons are studied and the simulation results are validated with both offshore and inland 

observations. Further, characteristics such as onset, intensity, duration, and horizontal extent of land-sea breeze 

circulation off Goa have been analyzed. As land-sea breeze is a vertical circulation, in order to estimate the ‘Return 

current’ which is the compensatory flow for the thermally driven land-sea breeze circulation at higher altitudes, higher 

level winds were also analysed. This study also attempts to identify the synoptic wind patterns favoring the sea breeze - 

land breeze development along the central west coast of India. The aim of this study is to enhance the knowledge of 

coastal wind circulation, its onshore and offshore extent over central west coast of India. 

 

2.   Area of study and data used 

 
Goa is situated on the central west coast of India and the coastline is oriented to approximately 340º�N. The terrain is, in 

general, sloping and hilly, and the elevation is about 20 m above MSL near the coast and increases to 600m above MSL 

towards 100km inland (Fig.1). Strand vegetation is prominent along the coastal belt with a corresponding roughness 

length of 1m. The study region frequently experiences the land-sea breeze circulation due to difference in land and sea 

temperature and large-scale geostrophic winds. Time series wind data were obtained from the moored shallow water 

buoy (SW3; location: 15º 23'N, 73º 44'E) and deep water buoy (DS1; location: 15º29'N, 69º16'E) deployed off Goa by 

the National Institute of Ocean Technology (NIOT), Chennai. The stated accuracies for wind speed and direction for 

NIOT buoys are ± 1.5% with resolution of 0.07m/s for wind speed and 0.1º for direction (Premkumar et al. 2000). Eight 

observations are obtained every day. Post calibration and error flagging of data are carried out by NIOT before the buoy 

data is released. Wind data have also been obtained from the Autonomous Weather Station (AWS) installed at Dona 

Paula, in proximity to the coast of Goa (15º 27'N, 73º 48'E). The height of the AWS is about 50m above sea level. The 

recorded data were ten-minute vector averages of wind speed and direction.  Upper wind observations for the Goa region 

were obtained from the website http://weather.uwyo.edu/upperair/sounding.html.  

 

3.   Numerical model set-up 

 

The non-hydrostatic Penn State/NCAR mesoscale model MM5 (Grell et al. 1994) is used for the present study. The 

model is employed with three nested domains (Fig.1) having horizontal grid resolutions of 27km, 9km, and 3km and 23 

vertical levels. The outermost domain (27km mesh) covers the Indian Peninsula and Eastern Arabian Sea and the 

innermost domain (3km mesh) covers the Goa region (central west coast). Goa region has been selected for the following 

two reasons: (i) effect of land –sea breeze system is strongly experienced and (ii) time series AWS and buoy data are 

available for validation of model results. The model has a number of options for physical processes for radiation, 

convection, atmospheric boundary layer and surface processes. The present study offered the most desirable physics 
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options for the model after studying the sensitivity of different schemes using observations at various stations in Goa 

region.  For PBL parameterization, MRF scheme is used in the model. It is a non-local first-order scheme in which the 

vertical transfers are dependent on the bulk characteristics of the PBL, and include counter gradient transports of 

temperature and moisture that account for the contributions from large-scale eddies. The eddy diffusivity coefficient for 

momentum is a function of the friction velocity and the PBL height, while those for temperature and moisture are 

computed using a Prandtl number relationship. Details of the model domains, grid cell size, parameterization scheme 

used for atmospheric boundary layer, convection, radiation and surface physics are given in Table 1.  

 

The surface temperature is predicted using a Five Layer Soil Model (Dudhia 1996). Grell scheme is employed for 

cumulus parameterization (Grell 1993), and Simple Ice explicit scheme for moisture (Dudhia 1989). The National Center 

for Environmental Prediction (NCEP) global final analyses data (FNL 6 hourly and 10x10) is used to initialize the model, 

and provide continuous lateral and lower boundary conditions. This contains horizontal and vertical winds, sea level 

pressure, surface pressure, temperature, specific humidity, geopotential height, soil moisture, soil temperature, sea 

surface temperature, skin temperature, precipitable water, etc. The model is initialized at 0000 UTC on each of the 

selected days and integrated for the next five days.  The lateral and bottom boundary conditions in the model are updated 

at 6 h intervals. The forecast variables include the three wind components (u, v, w), air temperature, atmospheric 

moisture, turbulence kinetic energy (TKE), vorticity, divergence, precipitation, etc. among a host of meteorological 

parameters. The surface boundary values for terrain height, albedo, moisture availability, emissivity, roughness 

coefficient and thermal diffusivity of soil are specified from USGS data, and interpolated to the model grids.  The USGS 

data are specified at 19km, 4km and 0.9km resolution for 27km, 9km and 3km grid meshes, respectively. Atmospheric 

radiation and cooling rates are calculated every 30 min using RRTM long wave scheme. Nested domains with two way 

interaction are used for the simulation. For the intermediate and innermost domains, the meteorological fields are 

interpolated from the coarse mesh, but terrain and land-use data are replaced with higher resolution fields from its own 

mesh. The default value of roughness length over ocean (z0) is changed to tune up the model and the value is calculated 

based on Charnock relationship (Charnock 1955).     
z0 = a τ/ ρag 

where, τ �is the total stress,  ρa is the air density, a (=0.0185) is the Charnock parameter and g is acceleration due to 

gravity. 
 

The synoptic wind is dominated by monsoon winds. It varies according to the southwest (SW) monsoon (June to 

September), northeast (NE) monsoon (October to February) systems and the transition period (March to May) 

predominantly as westerlies. These synoptic flow situations are relevant to the development of land-sea breeze 

circulation. Earlier studies showed that sea breeze along the Goa coastal region exists during the northeast monsoon and 

the transition period only, and during the southwest monsoon season, the wind field is dominated by the large-scale 

atmospheric circulation and there is practically no existence of  land or sea breeze when the SW monsoon is active. 

 

The simulation was carried out for the period 8-13 January 2006, 10-15 March 2006 and 15-20 July 2006, representing 

winter monsoon (northeast), transition between winter and summer monsoons and summer monsoon (southwest), 

respectively. The period of simulation is chosen in such a way that measured data should be available for validation of 

model results and well developed land-sea breeze circulation with its diurnal characteristics should be present. The 
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forecast variables include many meteorological parameters. Since both the buoy and AWS observations are of 10 minute 

and 3h intervals respectively, the model output is saved every hour so that the interval lies between both observations and 

also captures the diurnal characteristics of the variables well.  The observed winds were reduced to 10 m winds using the 

equation of Liu et al. (1979).  Early calculations showed that the wind speed errors using above equation were less that 

2%.  The model was initialized at 00UTC of 8 January, 10 March and 15 July 2006 and integration carried out for 5 days.  

But, for the present analysis, the horizontal components of winds at 10m height, surface temperature and relative 

humidity and upper layer horizontal wind components were extracted. 
 

4.   Results and discussions 

 

The MM5 model incorporates most of the atmospheric dynamics and physics, and is suitable for the simulation of 

synoptic winds. While analyzing the nested model simulation, significance is mainly attached to the results of the 

innermost nest. However, as outer domain simulations influence the results of inner domain, and outer domain covers a 

wider perspective of the thermally induced coastal circulations, the results of the outermost nest are also discussed 

briefly. The present section describes the statistical analysis carried out for hourly simulations of MM5 surface winds 

along and very near to the Goa coastal region for three different seasons and observed wind data from AWS, available 

for the same period. The results are summarised in Table II. The statistical parameters evaluated are: (i) bias, (ii) standard 

deviation; (iii) the root mean square error (RMSE) and (iv) correlation coefficient between the observed and simulated 

hourly wind speeds. It may be noted that model values are in 3 km grid size and observations are point measurements. 

Hence, the bias between both the data sets as shown in Table II. Yet, the model has reproduced the average features and 

patterns of the hourly wind vector. This statistical analysis also showed that MM5 performance is more coherent when 

the mesoscale circulation dominates over the synoptic flow. The simulation results and circulation features of different 

seasons are discussed below.  

 
4. 1. Circulation features during the northeast monsoon 

 

Simulation for the winter season (NE monsoon) was carried out when the prevailing synoptic wind was northeasterly and 

offshore in the study region. The strength of the large scale wind ranges between 2 and 4 m/s. The simulated surface 

wind in the morning hours in the outermost domain is northeasterly and speed is of the order of 2-3 m/s {Fig. 2(a)}. It is 

difficult to differentiate the land breeze in this case as it is masked by the prevailing synoptic wind. The flow shifts to 

westerly at 1130 h indicating onset of sea breeze (not shown). This flow becomes stronger (>4 m/s) and moves 

northwesterly over land after 1330 h (Fig. 2b), indicating sea breeze circulation. The onset timing and extent of sea 

breeze circulation is clear in the simulation carried out for the innermost domain covering Goa region (Fig. 3). The 

westerly flow gains its maximum speed around 1630 h. The extent of sea breeze is about 120 km by 1630 h. It spreads 

inland 50 to 80 km from the coast.  This result agrees with earlier studies carried out using QuikSCAT data and 

observations (Aparna et al 2005; Subrahmanyam et al. 2001). The simulation shows that sea breeze strikes the coast in a 

northwest-west direction. Apart from the change in direction, the onset of sea breeze can be understood from the gain in 

wind speed in the afternoon hours. During late night hours, wind direction along the coast changes and it becomes 

parallel to the coast indicating dissipation of sea breeze. 
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Model results (surface winds at 10m level at Goa) of the innermost domain are used for comparison with observations.  

Fig. 4 shows comparison of simulated surface wind and AWS observations. While the simulated onshore velocity 

component (u10) and direction very closely match with the observations (Fig. 4a&d), the simulated alongshore velocity 

component (v10) and wind speed (Fig. 4b&c) show deviation from the observations. This  deviation of simulated v10  

wind speeds could be due to (i) polarization of observed winds in the alongshore direction because of blocking effect of 

western Ghats and (ii) limitation of the model to catch topographic control very near to the coast (Stanton 1998). 

Furthermore, Halliwell and Allen (1987) explained that coastal mountain blocking can cause wind measurements to be 

strongly polarized in the alongshore direction. The model slightly under-estimates the higher values and overestimates 

the lower values of the observations. In the afternoon hours, the wind gains speed due to sea breeze circulation, and this 

can be explained based on u10 velocity component (Fig. 4a) and direction change (Fig. 4d). Simulated air temperature and 

relative humidity follow the trend of observed values even though the model underestimates the peak values {Fig. 

4(e&f)}. As the sea breeze front passes, the relative humidity drops first, and then increases rapidly (Fig. 4f). Fig. 5 

shows comparison of simulated surface wind and moored buoy (shallow water buoy, SW3, deployed off Goa) 

observations. The buoy observations are three hourly averages. The discontinuity in observed values indicates no data 

points at the particular time. As in the previous comparison, while simulated onshore velocity component (u10) (Fig. 5a) 

and direction (Fig. 5d) closely match with the buoy observations, alongshore velocity component (v10) (Fig. 5b) and wind 

speed (Fig. 5c) show deviation from the observations. These results also show the sea breeze characteristics: gain in wind 

speed in the afternoon hours and change in direction from morning to evening. During this period, the synoptic flow is 

northeasterly (offshore) and it weakens the sea breeze (onshore flow), resulting in less diurnal variation.  

 

The model results from the inner domain are examined in detail to study the vertical wind profile of the Goa region. 

Vertical profiles of simulated and observed winds at 00UTC (0530 h) and 1200 UTC (1730h) on 12 January 2006 are 

shown in Fig. 6.  Simulated wind matches well with observations. In the morning hours the winds are northeasterly and 

offshore, and the direction does not vary with altitude(Fig. 6b); however, in the afternoon hours (development of sea 

breeze), at a height of above 750m, wind direction reverses and  this is the upper  return current (sea breeze aloft Fig. 6d). 

Thus, the vertical extent of sea breeze during the northeast monsoon period is ~750m. From Fig. 6, it is evident that 

during NE monsoon, there exists a low-level sea breeze system and an upper level return current system from land to sea. 

 

4. 2. Circulation features during the transition period  

 

The simulation was performed from 10 to 15 March 2006, when the prevailing synoptic wind was northwesterly and 

onshore in the study region. The strength of the large scale wind was 3-5 m/s. The simulated surface wind in the morning 

hours in the outermost domain is northeasterly (~3m/s) on the west coast (not shown). It becomes westerly at 1230 h, 

indicating onset of sea breeze. This flow becomes stronger and northwesterly over land after 1400h. The circulation 

features are very clear from the simulation results of innermost domain (Fig. 7). In the morning hours, flow direction is 

northeast to east. The onset of land breeze (offshore) can be easily differentiated since the synoptic flow is onshore (Fig. 

7a). An organized flow from sea to land in the northwesterly to westerly direction is established after 1030h. This flow 

becomes stronger after 1430h, and reaches upto 5m/s in the evening hours (Fig. 7c). The extent of sea breeze is about 

160km by 1630h.  The inland penetration of sea breeze obtained in the present numerical study matches with the 

experimental studies conducted at various locations all over the world (Buckley and Kurzeja 1997; Kottmeier et al. 
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2000). The simulation shows that surface winds are onshore about 60% of the daytime.  The sea breeze strikes the coast 

in the northwesterly direction. It is difficult to differentiate the sea breeze in this case as it is masked completely by the 

prevailing synoptic wind. However, the onset time of sea breeze can be understood from the gain in wind speed at the 

coast as well as from direction. Late in the night, wind direction reverses to northeasterly along the coast which is an 

indication of well developed land breeze during this period (Fig. 7d). 

 

Fig. 8 shows comparison of simulated surface winds, air temperature and relative humidity with AWS observations 

during the simulation period. As is the case in winter, here also simulated onshore velocity component (u10) and direction 

closely follow the observations, while the simulated alongshore velocity component (v10) and wind speed show 

deviations from the observation, but the deviation is small compared to that of the northeast monsoon. Diurnal variation, 

which is a characteristic of land-sea breeze system, is well developed during this period as is evident in the direction plot 

(Fig. 8d). Also, the wind speed during afternoon hours is higher than in winter. This is because of the intensification of 

sea breeze strength by the prevailing synoptic flow, which is also onshore. Simulated air temperature and relative 

humidity also follow the trend of observed values even though the model underestimates the higher values {Fig. 8(e&f)}. 

 

Comparison of vertical profiles of simulated and observed winds at 00UTC (0530 h) and 1200 UTC (1730 h) on 12 

March 2006 is shown in Fig. 9. Simulated wind follows the trend of observations. In the morning hours, the winds are 

northeasterlies and offshore (well developed land breeze) and at a height of 300m wind direction reverses to the upper 

return current (land breeze aloft) (Fig. 9b). In the afternoon hours, winds are well developed northwesterlies and onshore 

and at a height of 1100m wind direction reverses due to the significance of upper return current (sea breeze aloft, Fig. 9d) 

. So the vertical extent of sea breeze during the transition period is ~1100m and that of land breeze is ~300m. It is clear 

that a well developed land-sea breeze circulation occurs during the transition period. Even though there prevails a sea 

breeze circulation during northeast monsoon, its strength and, horizontal and vertical extends of land-sea breeze 

circulation are higher during the transition period. 

 

4. 3.  Circulation features during southwest monsoon 

 

The simulation for the south-west monsoon season was performed from 15 to 20 July 2006 when the prevailing synoptic 

wind was westerly and onshore in the study region. In this case, wind speeds are dominated by large scale atmospheric 

circulation.  There is no land or sea breeze when the monsoon is active. Simulated surface winds of outer domain (not 

shown) shows strong south westerly winds from the ocean to the continent.  Previous studies reported that during 

summer monsoon (June to August) a low level atmospheric jet, known as Findlater jet with a broad region of strong 

southwesterly winds with remarkable steadiness in direction and strength blows from ocean to continent.  Simulated 

surface winds from the innermost domain also show strong winds (~10m/s) during this period (Fig. 10).   

 

Fig. 11 shows comparison of simulated surface wind, air temperature and relative humidity with AWS observations. In 

this case, simulated winds almost follow the observations. The speed and direction are maintained almost the same 

during the whole day which indicates the absence of sea breeze circulation. Fig. 12 shows comparison of simulated 

surface winds and observations of moored buoy DS1, deployed off Goa. As in the AWS comparison for the same period, 

in this case also simulated winds almost match with the observations. Simulation results show the absence of sea breeze 
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circulation during the south-west monsoon. During the monsoon period, the coast is dominated by large scale 

atmospheric circulation and the winds are onshore along the west coast of India. 

 

Comparison of vertical profiles of simulated and observed winds at 00UTC (0530 h) on 17 July 2006 is shown in Fig. 13. 

Afternoon observations were not available for the same day. During this period, direction is nearly the same for surface 

and upper air. This is due to the absence of mesoscale circulation (land- sea breeze) during this period. 

 

5.   Conclusions 

 

High resolution mesoscale simulations with the PSU/NCAR MM5 model were performed to study the coastal 

atmospheric circulation of the west coast of India, and Goa region in particular. MM5 model results were compared with 

AWS and moored buoy measurements. The study provided a successful multi-day simulation of coastal wind circulation 

for three different seasons. Onshore and alongshore wind components show diurnal variation which are due to land-sea 

breeze circulation. The seaward extent of the onshore (sea breeze) flow estimated from the simulation agrees with earlier 

studies. Statistical analyses provided an intangible indication of model’s ability to reproduce the observed circulation 

characteristics of the coastal winds. The results show that MM5 is able to simulate magnitude, direction, timing and 

vertical extent of the coastal atmospheric circulation accurately. However, more analyses are needed to study the 

influence of the coastal winds with the complex terrain. It is proposed to couple MM5 model with other hydrodynamic 

models in order to study coastal waves, wind induced coastal circulation and oil spill dispersion of the west coast of 

India. 
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Fig. 1 Domains used in MM5 model (left panel). The inset figure in the right panel shows the innermost 

domain covering Goa and surrounding region with topographic details where the elevation contours are 

drawn at 50m interval 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 



 12

 
 
Fig. 2 Simulated surface winds of outer domain at (a) 0530 h, (b) 1330 h, (c) 1730 h and (d) 2130 h (IST) on 10 January 

2006 
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Fig. 3 Simulated high resolution surface winds in the Goa region at (a) 0530 h, (b) )1330 h, (c) 1730 h and (d) 2130 h 

(IST) on 10 January 2006 
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Fig. 4 Comparison of simulated and AWS observed (a) u-velocity component at 10m height, (b) v-velocity component at 

10m height, (c) wind speed (d) wind direction, (e) air temperature and (f) relative humidity (time in UTC) of January 

2006 
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Fig. 5 Comparison of simulated and moored buoy (SW3) observations: (a) u-velocity component, (b) v-velocity 

component, (c) wind speed and (d)  wind direction (time in h) of January 2006 
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(d) 

Fig. 6 Comparison of simulated and observed vertical profile of (a)wind speed at 00GMT, (b)wind direction at 00 

GMT, (c) wind speed at 1200GMT and (d) wind direction at 1200GMT of 12 January 2006 
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Fig. 7  Simulated high resolution surface in the Goa region at (a) 0530 h, (b) 1330 h, (c) 1730 h, and (d) 2130 h 

respectively on 12 March 2006 
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Fig. 8 Comparison of simulated and AWS observed (a) u-velocity component at 10m height, (b) v-velocity component at 

10m height, (c) wind speed (d) wind direction, (e) air temperature and (f) relative humidity (time in UTC) of March 2006 
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(d) 
Fig. 9 Comparison of simulated and observed vertical profile of (a) wind speed at 00GMT, (b)wind direction at 00 

GMT, (c) wind speed at 1200GMT and (d) wind direction at 1200GMT of 12 March 2006 
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Fig. 10 Simulated high resolution surface in the Goa region at (a) 0530 h, (b) 1330 h, (c)1730 h, and (d) 2130 h 

respectively on 17 July 2006 
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Fig. 11 Comparison of simulated and AWS observed (a) u-velocity component at  10m height, (b) v-velocity component 
at 10m height, (c) wind speed and (d) wind direction, , (e) air temperature and (f) relative humidity (time in UTC) of July 
2006 



 22

 

 

 

 

 
 

Fig. 12 Comparison of simulated and moored buoy (SW3) observations (a) u-velocity component at 10m height, (b) v-

velocity component at 10m height, (c) wind speed and  (d) wind direction (time in UTC) of July 2006 
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Fig. 13 Comparison of simulated and observed vertical profile of (a)wind speed at 00GMT and (b) wind direction 

at 00 GMT of 17 July 2006 
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              Table I. Detail of  grids and physics options used in the MM5 model 
 

Dynamics                              Primitive equation, non-hydrostatic 
Vertical resolution                23 σ levels 
Horizontal resolution            27 km                      9km                             3km 
Domains of integration         65.8ºE-81.8 ºE      68.8 ºE-78.8 ºE        71.8 ºE-75.8ºE 
                                              7.45 ºE-23.45 ºE   10.45 ºE-20.45 ºE    13.45 ºE-17.45ºE 
Radiation                               Rapid radiation transfer model (RRTM) for long wave      
radiation  
Surface processes                   Five-layer soil model 
Planetary boundary layer       MRF PBL 
Convection                            Grell scheme 
Explicit moisture                   Simple ice (SI) scheme 

                                                                                
                                                                   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 25

Table II. Statistical parameters of hourly MM5 surface wind simulations and AWS measurements for 
different seasons 

 
 

 Bias (m/s) Standard 
Deviation (m/s) 

RMSE (m/s) Correlation 
Coefficient 

NE monsoon u10 (aws)  =-0.37 
v10(aws)   =  0.41     

u10 (aws)  = 1.591 
v10(aws)   = 0.9987

u10 (aws)  =1.269 
v10(aws)   = 1.261            

u10 (aws)  =0.7337 
v10(aws)   =  0.631    

Transition period u10 (aws) =0.1619 
v10(aws)  =0.318 

u10 (aws) =1.8709 
v10(aws)  =0.921

u10 (aws) =1.129 
v10(aws)  =1.004

u10 (aws) =0.8419 
v10(aws)  =0.6512 

SW monsoon u10 (aws) =0.1342 
v10(aws)  =0.431 

u10 (aws) =1.824 
v10(aws)  =0.901

u10 (aws) =1.201 
v10(aws)  =1.12

u10 (aws) =0.703 
v10(aws)  =0.602 


