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ABSTRACT 

In the last few decades, a number of experimental investigations of stepped spillways took place 

with a focus on the energy dissipation and air-entrainment processes on stepped spillways with flat 

horizontal steps. Recently some studies investigated the pooled stepped spillway configurations. 

Herein a physical study was performed on a relatively large size stepped spillway channel with a 

26.6° slope and 0.10 m high steps. Four stepped chute configurations were tested including a 

stepped spillway with flat horizontal steps, a pooled stepped spillway, and two stepped spillway 

configurations with in-line and staggered arrangements of flat and pooled steps. The flat stepped 

spillway showed some typical flow patterns with nappe, transition and skimming flow regimes 

depending upon the flow rate. Some similar flow regimes were observed on the pooled stepped 

spillway, although some pulsating flow was seen for some nappe flow rates associated with the 

downstream propagation of small instabilities. On the in-line and staggered configurations of flat 

and pooled steps, the flow was highly three-dimensional. Some strong instabilities and three 

dimensional flow motion were observed. For all stepped spillway configurations some detailed air-

water flow measurements were conducted downstream of the inception point of free-surface 

aeration. The experimental data showed similar void fraction distributions and mean air 

concentrations on both flat and pooled stepped spillways. The turbulence levels and the air bubble 

and water droplet chord sizes were also comparable between the two configurations. On the other 

hand, some larger bubble frequencies and integral turbulent length scales were observed on the flat 

stepped spillway, while larger velocities were recorded on the pooled stepped chute for identical 

flow rates. The measurements on the stepped spillways of in-line and staggered configurations of 

flat and pooled steps presented some significant transverse differences in terms of air-water flow 

properties between the flat and pooled stepped sides. Further data analyses showed that the rate of 

energy dissipation was smaller on the pooled stepped spillway compared to that on the flat stepped 

chute. Conversely the residual energy was larger at the downstream end of the pooled stepped 

chute. The data for the stepped spillway configuration with in-line and staggered configurations of 

flat and pooled steps showed large differences in the transverse direction, although the transverse 

averaged rates of energy dissipation and residual energy were comparable to the pooled stepped 

spillway results. Altogether the present study demonstrated that, on a 26.6 stepped chute, the 

designs with pooled steps and in-line and staggered configurations of flat and pooled steps did not 

provide any advantageous performances in terms of energy dissipation and flow aeration, while 

they were affected by flow instabilities and three-dimensional patterns leading to some flow 

concentration. 

 

Keywords: Air-water flow, Stepped spillway, Pooled stepped spillway, In-line stepped spillway, 

Staggered stepped spillway, Air entrainment, Energy dissipation, Residual head, Flow resistance, 

Turbulence, Cavity ejections, Pulsating flow, Instabilities. 
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LIST OF SYMBOLS 

The following symbols are used in this report: 

a dimensionless factor; 

b dimensionless factor; 

C void fraction defined as the volume of air per unit volume of air and water; it is also 

called air concentration or local air content; 

Cmean depth-average void fraction defined in terms of Y90: Cmean = 1 – d/Y90; 

Do dimensionless constant; 

DH hydraulic diameter (m); 

d equivalent clear water flow depth (m); 

dab characteristic bubble size (m); 

dc critical flow depth (m); 

dlocal  local flow depth (m); 

dSS height of the standing sidewall waves (m); 

F air bubble count rate or bubble frequency (Hz) defined as the number of detected air 

bubbles per unit time; 

Fej cavity ejection frequency (Hz); 

Fmax maximum bubble count rate in a cross-section (Hz); 

F* Froude number defined in terms of the step height; 

fe equivalent Darcy-Weisbach friction factor in air-water flows; 

g gravity constant: g = 9.80 m/s2 in Brisbane, Australia; 

H total head (m); 

Hdam dam height (m); 

Hmax maximum upstream head (m) above chute toe: Hmax = Hdam + 3/2×dc; 

Hres residual head (m); 

H1 upstream head (m) above crest; 

h vertical step height (m); 

K' dimensionless integration constant; 

ks step cavity roughness height (m): ks = (h+w)×cos; 

ks' equivalent sand roughness height of the step face surface (m); 

Lcavity length of the step cavity (m); 

Lcrest length of the broad-crested weir (m); 

LI longitudinal distance (m) measured from the weir crest to the inception point of free-

surface aeration; 

Lxz transverse integral turbulent length scale (m); 

(Lxz)max maximum transverse integral turbulent length scale (m) in a cross-section; 

l horizontal step length (m); 

lSS length of the standing sidewall waves (m); 

lw pool weir length (m); 
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N power law exponent; 

n number of detected air packets per position; 

Q water discharge (m3/s);  

qlocal local water discharge per unit width (m2/s); 

q water discharge per unit width (m2/s); 

Re Reynolds number defined in terms of the hydraulic diameter: Re = w×Uw×DH/w; 

Rxx normalised auto-correlation function (reference) probe; 

Rxy normalised cross-correlation function between two probe output signals in flow 

direction; 

Rxz normalised cross-correlation function between two probe output signals in transverse 

direction; 

(Rxy)max maximum cross-correlation between two probe output signals in flow direction; 

(Rxz)max maximum cross-correlation between two probe output signals in transverse direction; 

Sf friction slope: Sf = - ∂H/∂x; 

r radius of the upstream rounded corner of the broad-crested weir (m); 

T time lag (s) for which Rxy = (Rxy)max; 

Tu turbulence intensity;  

Tumax maximum turbulence intensity in a cross-section; 

Txx auto-correlation integral time scale (s); 

Txy cross-correlation integral time scale in flow direction (s); 

Txz cross-correlation integral time scale in transverse direction (s); 

Tint integral turbulent time scale (s); 

(Tint)max maximum integral turbulent time scale (s) in a cross-section; 

T0.5 characteristic time lag (s) for which Rxx = 0.5; 

t time (s) or video duration; 

Ulocal local mean flow velocity (m/s) 

Uw mean flow velocity (m/s): Uw = q/d; 

u' turbulent velocity fluctuations (m/s); 

V interfacial velocity (m/s); 

Vc critical flow velocity (m/s); 

V90 characteristic interfacial velocity (m/s) where the void fraction is 90%; 

W channel width (m); 

Ww widths of the pooled and flat part in the staggered and in-line configurations of flat and 

pooled steps (m); 

w weir height in pooled stepped spillway configuration (m), also called pool height; 

x distance along the channel bottom (m); 

Y90 characteristic depth (m) where the void fraction is 90%; 

y distance (m) measured normal to the invert (or channel bed); 

z transverse distance (m) in the channel; 

ΔH total loss (m): H = Hmax - Hres; 



 

vii 

Δx streamwise separation distance (m) between probe sensors; 

Δz transverse separation distance (m) between probe sensors; 

Δzo height from the weir crest to the calculated step edge (m); 

δ shockwave angle; 

 ratio of average cavity ejection period to burst duration; 

 ratio of average fluid ejection volume to total cavity volume; 

  dynamic viscosity (Pa.s); 

 angle between pseudo-bottom formed by the step edges and the horizontal; 

 density (kg/m3); 

σ surface tension between air and water (N/m); 

  time lag (s); 

0.5 characteristic time lag (s) for which Rxy = 0.5 × (Rxy)max; 

Ø probe sensor diameter (m); 

 

Subscript 

c critical flow conditions; 

max maximum value; 

mean mean signal component; 

xx auto-correlation of reference probe signal; 

xy cross-correlation in flow direction; 

xz cross-correlation in transverse direction; 

w water properties; 

 

Abbreviations 

NA nappe flow regime; 

PDF probability density function; 

SK skimming flow regime; 

TRA transition flow regime; 

TRA1 transition flow sub-regime 1. 
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1. INTRODUCTION 

1.1 PRESENTATION 

For the last decades, some experimental investigations of stepped spillway flows took place in 

several laboratory facilities around the world (e.g. HORNER 1969; SORENSEN 1985; CHANSON 

1995,2001; OHTSU & YASUDA 1997; BOES 2000; TOOMBES 2002; AMADOR et al. 2006; 

CHANSON & CAROSI 2007; MEIRELES & MATOS 2009; FELDER & CHANSON 

2009a,2011a; BUNG 2011). The studies provided insights into the energy dissipation and air-

entrainment processes on flat stepped spillways for a wide range of channel slopes. The 

understanding of the air-water flows advanced in the last decade and this included some detailed 

information about the microscopic air-water flow properties and the turbulence levels (e.g. 

CHANSON & TOOMBES 2002; GONZALEZ & CHANSON 2004; CHANSON & CAROSI 

2006; FELDER & CHANSON 2009b). However the design for stepped spillways is still relatively 

crude, often restricted to stepped chutes with flat horizontal steps in rectangular prismatic channels. 

Experimental studies with alternative designs might lead to some further optimisation (e.g. 

PEYRAS et al. 1992; GONZALEZ & CHANSON 2008; RELVAS & PINHEIRO 2008,2011; 

FELDER & CHANSON 2011b).  

In recent years, the air-water flows on pooled stepped spillways were researched in a few studies 

(Table 1-1). Table 1-1 lists the most important air-water flow studies on pooled stepped spillways 

and Figure 1-1 shows a number of prototype pooled stepped spillways. ANDRÉ (2004) and 

KÖKPINAR (2004) investigated the air entrainment processes on flat, pooled and a combination of 

flat and pooled steps on channel slopes of 18.6° and 30°. THORWARTH & KOENGETER (2006) 

and THORWARTH (2008) researched the self-induced instabilities on pooled stepped spillways 

with slopes of 8.9° and 14.6°. Recently FELDER & CHANSON (2012a) and FELDER et al. (2012) 

conducted a detailed study of the air-water flow properties, the turbulent properties and the 

instationarities on a stepped spillway with flat, pooled and combination of flat and pooled steps 

with a slope of 8.9°. 

A related form of pooled stepped chutes is some stepped fishway design. Figure 1-2 shows some 

fishways designed with a staggered combination of flat and pooled steps. These particular structures 

cannot be considered successful however. In one case, some flow concentration yielded some very 

high velocities at the downstream end of the fish passage which were detrimental to the upstream 

fish migration (Fig. 1-2A). The other example became fully-silted rapidly, while its downstream 

steps were heavily eroded by the river sediment bed load materials (Fig. 1-2B). 



2 

Table 1-1 - Summary of experimental studies of air-water flow properties on pooled stepped 

spillway configurations 

 

Reference θ 
[°] 

Step geometry Flow conditions Instrumen-
tation 

Comment

(1) (2) (3) (4) (5) (6) 
KÖKPINAR 
(2004) 

30 Flat steps: h = 6 cm, l = 10.4 cm 
Pooled steps: h = 6 cm, l = 10.4 cm, w 
= 3 cm 
Combination of flat/pooled steps: h = 
6 cm, l = 10.4 cm, w = 3 cm 

Q = 0.03 – 0.100 m3/s, 
Re = 2.4×105 – 8.0×105

Double-tip fiber-
optical probe  

(Ø = 0.08 mm) 

W = 0.5 m, 
64 steps, 
lw = 2.6 cm 

18.6 
 
 
 

 

Flat steps: h = 6 cm, l = 17.8 cm 
Pooled steps: h = 6 cm, l = 17.8 cm, w 
= 3 cm 
Combination of flat/pooled steps: h = 
6 cm, l = 17.8 cm, w = 3 cm 

ANDRÉ (2004) 

30 Flat steps: h = 6 cm, l = 10.4 cm 
Pooled steps: h = 6 cm, l = 10.4 cm, w 
= 3 cm 
Combination of flat/pooled steps: h = 
6 cm, l = 10.4 cm, w = 3 cm 

Q = 0.02 – 0.130 m3/s, 
Re = 1.6×105 – 1.0×106

Double-tip fiber-
optical probe  

(Ø = 0.08 mm) 

W = 0.5 m, 
42/64 steps, 
lw = 2.6 cm 

8.9 
 

Pooled steps: h = 5 cm, l = 31.9 cm, w 
= 0 – 5 cm 

THORWARTH 
(2008); 
THORWARTH 
& 
KOENGETER 
(2006) 

14.6 
 

Pooled steps: h = 5 cm, l = 19.2 cm, w 
= 0 – 5 cm 

Q = 0.025 – 0.117 m3/s, 
Re = 2.0×105 - 9.3×105 
 

Double-tip 
conductivity 

probe 
(Ø = 0.13 mm) 

W = 0.5 m, 
22/26 steps, 
lw = 1.5 cm 

Flat steps: h = 5 cm, l = 31.9 cm Q = 0.018 – 0.117 m3/s, 
Re = 1.4×105 - 9.3×105 

Pooled steps: h = w = 5 cm, l = 31.9 
cm 

Q = 0.027 – 0.117 m3/s, 
Re = 2.2×105 - 9.3×105 

FELDER & 
CHANSON 
(2012a) 
FELDER et al. 
(2012) 

8.9 

Combination of flat/pooled steps: h = 
w = 5 cm, l = 31.9 cm 

Q = 0.027 – 0.117 m3/s, 
Re = 2.2×105 - 9.3×105 

Double-tip 
conductivity 

probe 
(Ø = 0.13 mm) 

W = 0.5 m, 
21 steps, 
lw = 1.5 cm 

Flat steps: h = 10 cm, l = 20 cm Q = 0.030 – 0.113 m3/s, 
Re = 2.3×105 – 8.7×105

Pooled steps: h = 10 cm, l = 20 cm, w 
= 3.1 cm 

Q = 0.013 – 0.130 m3/s, 
Re = 1.0×105 – 9.9×105

In-line configuration (Pooled and flat 
steps in-line): h = 10 cm, l = 20 cm, w 
= 3.1 cm 

Q = 0.016 – 0.113 m3/s, 
Re = 1.4×105 – 8.7×105

Present study 26.6 

Staggered configuration (Pooled and 
flat staggered): h = 10 cm, l = 20 cm, 
w = 3.1 cm 

Q = 0.030 – 0.113 m3/s, 
Re = 2.3×105 – 8.7×105

Double-tip 
conductivity 

probe 
(Ø = 0.25 mm); 

Array of 2 single 
tip conductivity 

probes 
(Ø = 0.35 mm) 

W = 0.52 m,
10 steps, 
lw = 1.5 cm 

 

Notes: θ: channel slope; h: step height; l: step length; w: weir height; lw: pool weir length; W: 

channel width; Q: water discharge; Re: Reynolds number defined in terms of hydraulic diameter. 
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Fig. 1-1 - Photographs of pooled stepped spillways and pooled configurations 

(A) Sorpe dam pooled stepped spillway (Germany) in September 2003 (Courtesy of Dr Carlos 

GONZALEZ) - Left: View from the downstream end; Right: step details looking downstream; note 

the small drain 

  

(B) Pooled stepped spillway of Le Pont dam (France) in June 1998 - Left: looking downstream, 

Right: looking upstream 
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(C) Neil Turner weir in the Maranoa River (Qld, Australia) in July 2001 (Courtesy of Chris 

PROCTOR) - Weir height: 5.8 m, Storage capacity: 2 Mm3, overflow stepped weir with 5 steps 

equipped with small concrete blocks at downstream step edges 

 

 

Fig. 1-1 - Fishway structures on the Okura River (Japan) on 9 October 2012 - The stepped channel 

consists of a staggered combination of flat and pooled steps 

(A) Looking upstream of a structure 
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(B) Looking at the downstream end of a fully-silted fishway - Note the eroded step edges 

 

 

1.2 OUTLINE OF THE REPORT 

In the present study, some detailed air-water flow measurements were conducted on a stepped 

spillway with flat horizontal and pooled steps, as well as two configurations of in-line and staggered 

flat and pooled steps (Table 1-1). The experimental study focused upon the air-water flow patterns, 

the air-water flow properties and the energy dissipation processes for the investigated 

configurations. The experiments provided some new insights in alternative stepped spillway designs 

including staggered stepped spillways used in some fishways (Fig. 1-2). In section 2, the 

experimental facility, the instrumentation and the experimental flow conditions are described. Some 

detailed visual observations of the flow patterns were conducted and some characteristic results are 

illustrated in section 3 including the air-water flow regimes, the inception point of air-entrainment, 

some cavity ejection processes and free-surface waves. In section 4, the air-water flow properties 

for flat and pooled stepped spillways are compared. Section 5 shows a comparative analysis of the 

air-water flow properties on the two staggered and in-line stepped spillway configurations of flat 

and pooled steps. In section 6, the energy dissipation and the flow resistance for all configurations 

are shown and compared with other studies on pooled stepped spillways. Section 7 concludes the 

report. Some further results are presented in the Appendices A to F. 
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2. DIMENSIONAL ANALYSIS, EXPERIMENTAL FACILITY AND 
INSTRUMENTATION 

2.1 DIMENSIONAL ANALYSIS 

In free-surface flows, a Froude similitude is typically used to scale the flow motion. For the 

rectangular stepped chute, a simplified dimensional analysis leads to a number of relationships 

between the air-water flow properties, fluid properties, boundary conditions and channel 

geometries, as shown in Equation (2-1): 


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      (2-1) 

where C is the void fraction, V is the interfacial velocity, dc is the critical flow depth, DH is the 

hydraulic diameter, q is the water discharge per unit width, W is the channel width, h is the vertical 

step height, l is the step length, w is the pool weir height for a pooled stepped spillway, lw is the 

horizontal pool weir length, Ww is the width of the pooled and flat part in the staggered and in-line 

configurations of flat and pooled steps, g is the gravity acceleration, θ is the chute slope, u' is the 

characteristic turbulent velocity, Tint is the integral turbulent time scale, Lxz is the integral turbulent 

length scale, x, y, z are respectively the longitudinal, normal and transverse coordinates, μw is the 

dynamic viscosity of water, ρw is the water density, σ is the surface tension between air and water, F 

is the bubble count rate, dab is the characteristic bubble size and ks' is the equivalent sand roughness 

height of the step surface. 

Equation (2-1) expresses the dimensionless air-water flow properties at a location (x,y,z) as 

functions of the relevant dimensionless parameters, including Froude (1) and Reynolds numbers Re. 

Herein the same fluids were used in model and prototype: that is, the Morton number was an 

invariant (WOOD 1991; CHANSON 2009). Similarly, the chute slope h/l, the channel width W, the 

horizontal pool weir length lw and the step surface skin roughness ks' were kept constant during the 

experiments. Some experiments were conducted in the centreline, and others different transverse 

locations z/dc. Hence Equation (2-1) could be simplified into: 

 
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In the present study, the flow was gradually-varied for all configurations and a comparison of the 
                                                 
1 In Equation (2-1), the dimensionless discharge dc/h is proportional to a Froude number defined in terms of 

the step height: 3/23
c )hg/q(h/d  . 
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air-water flow properties must rely on the Froude similitude. The experiments were conducted in a 

large size facility operating at large Reynolds numbers (section 2.4, Table 2-1). These conditions 

may be representative of a full-scale storm waterway and ensure that the extrapolation of the data to 

prototype conditions is unlikely to be affected by scale effects. 

 

2.2 EXPERIMENTAL FACILITY 

New experiments were performed at the University of Queensland on a large size stepped spillway 

model with a slope of 26.6. The experimental facility was newly designed and the present study 

comprised the first air-water flow experiments in the stepped spillway test section (Fig. 2-1). The 

stepped spillway consisted of 10 steps with step height h = 10 cm, and step length of l = 20 cm. The 

chute had a width W = 0.52 m. The steps were made out of plywood and the channel walls out of 

perspex. Constant flow rates were supplied by a large upstream intake basin with a size of 2.9 m × 

2.2 m and a depth of 1.5 m. A smooth inflow was supplied by a 1.01 m long smooth sidewall 

convergent with a 4.23:1 contraction ratio. At the upstream end of a test section, the flow was 

controlled by a broad-crested weir with height of 1 m, width W = 0.52 m, length Lcrest = 1.01 m and 

an upstream rounded corner (r = 0.08 m). The broad-crested weir was previously tested and some 

detailed velocity and pressure measurements (FELDER & CHANSON 2012b) provided the 

discharge calibration curve used in the present study: 

 
3

1
crest

1 H
3

2
g

L

H
153.092.0

W

Q






 








  0.02 ≤ H1/Lcrest ≤ 0.3 (2-3) 

where Q is the water discharge and H1 is the upstream total head measured using a point gauge. 

At the downstream end, the stepped chute was followed by a smooth horizontal raceway ending 

with an overfall into the recirculation sump pit. The flow was supercritical in the horizontal raceway 

and did not interfere with the stepped chute flow. 
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Fig. 2-1 – Experimental test section in the present study: pooled stepped spillway configuration - 

Flow conditions: dc/h = 0.53, Q = 0.020 m3/s, Re = 1.54×105 (Note the broad-crested weir upstream 

of the first step edge) - Flow direction from left to right 

 

 

2.3 INSTRUMENTATION AND SIGNAL PROCESSING 

The air-water flow measurements were conducted with phase detection intrusive probes. Two types 

of conductivity probe systems were used. Measurements were conducted at all step edges 

downstream of the inception point of free-surface aeration with a double-tip conductivity probe 

with an inner tip diameter Ø = 0.25 mm and a separation of probe tips x = 7.2 mm in the 

longitudinal direction and z = 1.5 mm in the transverse direction (Fig. 2-2A). The probe was 

manufactured with two identical tips based upon a needle tip design. In Figure 2-2A, the double-tip 

conductivity probe is illustrated. Similar double-tip conductivity probes were used successfully in a 

number of air-water flow studies at the University of Queensland (e.g. CHANSON & TOOMBES 

2002; GONZALEZ 2005; CAROSI & CHANSON 2008; FELDER & CHANSON 2009a,2011b).  

Some additional measurements were conducted with an array of two single-tip conductivity probes 

(Ø = 0.35 mm) separated by a range of well-defined transverse distances 3.5 ≤ z ≤ 80.5 mm (Fig. 

2-2B). Both single-tip probes were positioned at the same vertical and horizontal positions. Some 

experiments with the two single-tip probes were performed successfully in some previous air-water 

flow studies (CHANSON & CAROSI 2007; FELDER & CHANSON 2009b,2011a). 

All measurements were conducted for a sampling duration of 45 s with a sampling frequency of 20 

kHz per probe sensor. Note that, for one discharge with a pulsating flow motion, a sampling 

duration of 180 s was used and the results are discussed in Appendix E. All conductivity probe tips 
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were mounted on a trolley and their elevation in the direction perpendicular to the pseudo bottom 

formed by the step edges (i.e. y-direction) was controlled by a fine adjustment screw-drive 

mechanism equipped with a MitutoyoTM digital ruler (accuracy < 0.1 mm). Each probe tip was 

excited with an electronic system, called an “air-bubble detector” (Ref. UQ82.518). The electronics 

translated the changes of the air/water phase resistance into a voltage signal which was sampled by 

a high-speed data acquisition system (National Instruments, USB-6251) and recorded to a 

laboratory computer. A data acquisition program was developed in LabVIEWTM which embedded a 

Fortran subroutine for online data analysis. 

 

Fig. 2-2 – Phase detection intrusive probes used in the present study 

(A) Double-tip conductivity probe (Ø = 0.25 

mm); x = 7.2 mm, z = 1.5 mm  

(Flow from right to left) 

(B) Two single-tip conductivity probes (Ø = 

0.35 mm); x = 0 mm, z = 50.1 mm 

(Flow from front to back) 

 

All air-water flow properties were post-processed with a Fortran code used in previous studies 

(FELDER & CHANSON 2011a,b,2012a; FELDER et al. 2012). Herewith the raw data recorded 

with the double-tip conductivity probe yielded the void fraction C, the bubble count rate F, the 

interfacial velocity V, the turbulence intensity Tu and the air bubble and water droplet chord sizes. 

The data for the array of the two single-tip probes provided further the transverse integral turbulent 

time and length scales Tint and Lxz (section 4.1). For all experiments, the void fraction C, bubble 

frequency and particle chord sizes were calculated based upon a single-threshold technique with a 

threshold set at 50% of the air-water range (TOOMBES 2002; CHANSON & FELDER 2010). The 

velocity turbulence and integral turbulent scales were calculated using some correlation technique 

(CHANSON 2002; CHANSON & CAROSI 2007). 

Further observations were conducted with a HD video camera SonyTM HDR-XR160E (Standard HQ 

HD quality 25 fps), two dSLR camera PentaxTM K-7 and CanonTM 450D, and further smaller digital 
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cameras. 

 

2.4 EXPERIMENTAL FLOW CONDITIONS 

The experimental study was conducted for four stepped spillway configurations (Fig. 2-3). In 

Figure 2-3, all four configurations are shown including a flat stepped spillway (Fig. 2-3A), a pooled 

stepped spillway with weir height w = 3.1 cm (Fig. 2-3B) and two stepped spillways with in-line 

and staggered configurations of flat and pooled steps (Fig. 2-3C and 2-D respectively). The in-line 

stepped spillway configuration consisted of pooled steps and flat steps in-line for exactly half the 

channel width (Fig. 2-3C). The staggered pooled stepped spillway configuration was characterised 

by alternating flat and pooled steps with width Ww = 0.26 m (Fig. 2-3D). The four stepped spillway 

configurations are sketched in Figure 2-4 where the measurement positions of the double-tip 

conductivity probe are shown. The distance y normal to the pseudo-bottom formed by the step 

edges was defined with y = 0 at the step edges. For the pooled steps, y = 0 was set at the pool weir 

edges. For the flat and pooled stepped spillways, the conductivity probe measurements were 

conducted on the channel centreline (Fig. 2-4). On the inline and staggered stepped spillway 

configurations, three transverse measurement locations were used: on the channel centreline (z/W = 

0.5) and at two further transverse positions in the middle of the flat and pooled halves (z/W = 0.25 

and z/W = 0.75) (Fig. 2-4). 

For the experiments with the array of two single-tip probes conducted on the flat and pooled 

stepped spillways, the reference probe was positioned on channel centreline and the second probe 

was separated by a transverse distance z. 

For all configurations, the flow patterns were observed for a wide range of discharges 0.002 m3/s ≤ 

Q ≤ 0.155 m3/s (see section 3). The air-water flow measurements were performed for a range of 

discharges between 0.4 ≤ dc/h ≤ 1.85 corresponding to Reynolds numbers within one order of 

magnitude (Table 2-1). Table 2-1 lists the experimental flow conditions for the air-water flow 

experiments with the double- and single-tip conductivity probes. Most experiments were conducted 

in the transition and skimming flow regimes. 
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Fig. 2-3 – Photos of stepped spillway configurations in the present study (θ = 26.6°) 

(A) Flat stepped spillway (B) Pooled stepped spillway  

 

(C) Stepped spillway with in-line configuration 

of flat and pooled steps  

 

(D) Stepped spillway with staggered 

configuration of flat and pooled steps 
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Table 2-1 - Experimental flow conditions for the air-water flow measurements with the conductivity 

probes for the stepped spillway configurations (θ = 26.6°) 

 

Configuration Q 
[m3/s] 

dc/h  
[-] 

Re 
[-] 

Instrumentation Measurement locations

(1) (2) (3) (4) (5) (6) 
0.030 – 
0.113 

0.7 – 
1.7 

2.3×105 – 
8.7×105 

Double-tip 
conductivity probe 

(Ø = 0.25 mm) 

Step edges downstream 
of inception point 

Flat stepped spillway 
(h = 0.1 m) 

0.063 
0.090 

1.15 
1.45 

4.9×105 
6.9×105 

Two single-tip 
conductivity probes 

(Ø = 0.35 mm) 

Step edge 10 

0.013 – 
0.130 

0.4 – 
1.85 

1.0×105 – 
9.9×105 

Double-tip 
conductivity probe 

(Ø = 0.25 mm) 

Step edges downstream 
of inception point 

Pooled stepped spillway
(h = 0.1 m, w = 0.031 

m) 
0.063 
0.090 

1.15 
1.45 

4.9×105 
6.9×105 

Two single-tip 
conductivity probes 

(Ø = 0.35 mm) 

Step edge 10 

Stepped spillway with 
in-line configuration of 

flat and pooled steps 
(h = 0.1 m, w = 0.031 

m, Ww = 0.26 m) 

0.016 – 
0.113 

0.5 – 
1.7 

1.4×105 – 
8.7×105 

Double-tip 
conductivity probe 

(Ø = 0.25 mm) 

Step edges downstream 
of inception point; three 

transverse positions 

Stepped spillway with 
staggered configuration 
of flat and pooled steps 
(h = 0.1 m, w = 0.031 

m, Ww = 0.26 m) 

0.030 – 
0.113 

0.7 – 
1.7 

2.3×105 – 
8.7×105 

Double-tip 
conductivity probe 

(Ø = 0.25 mm) 

Step edges downstream 
of inception point; three 

transverse positions 

 

Notes: dc: critical flow depth: 3 22
c )Wg/(Qd  ; Q: total discharge; Re: Reynolds number defined 

in terms of the equivalent pipe diameter. 
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Fig. 2-4 - Sketch of stepped spillway configurations and measurement positions ( = 26.6°) 
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3. FLOW PATTERNS ON THE STEPPED SPILLWAYS 

3.1 PRESENTATION  

In this section, the flow patterns are presented for the flat and pooled stepped spillways and for the 

stepped spillways with in-line and staggered configurations of flat and pooled steps. The visual 

investigations of the flow patterns included the observations of the air-water flow patterns for all 

stepped spillway configurations for a broad range of discharges 0.002 m3/s ≤ Q ≤ 0.155 m3/s. The 

observation comprised the mono- and two-phase flow regions, the air entrainment processes and the 

key characteristics for each stepped spillway configuration. For some flow rates, the air-water flows 

on the pooled stepped spillway included some small instabilities linked with some pulsations for 

small discharges. The flow processes on the stepped spillways with in-line and staggered 

configurations of flat and pooled steps showed some complex air-water flow features including 

standing sidewall waves and supercritical shock waves. Furthermore the location of the inception 

points of free-surface aeration was recorded for all stepped spillway configurations and presented 

below. Some detailed investigations of the cavity ejection processes were also conducted for the flat 

and pooled stepped spillways. 

Table 3-1 lists the experimental flow conditions for the visual observations of the flow patterns and 

the key characteristics for each stepped spillway configuration. Some further visual observations for 

all stepped spillway configurations are presented in Appendix A and some details about the ejection 

processes in Appendix B. 

 

Table 3-1 – Experimental flow conditions for the visual observations of the flow patterns for the 

stepped spillway configuration (θ = 26.6°) 

 

Configuration Q 
[m3/s] 

dc/h  
[-] 

Re 
[-] 

Observations  

(1) (2) (3) (4) (5) 
Flat stepped spillway 0.002 - 

0.148 
0.12 – 
2.02 

1.6×104 –
1.1×106 

Flow regimes, Inception point of air-
entrainment, Cavity ejection process 

Pooled stepped spillway  0.002 - 
0.139 

0.11 – 
1.94 

1.5×104 –
1.1×106 

Flow regimes, Inception point of air-
entrainment, Cavity ejection process, 

Instabilities linked with pulsating flow 
Stepped spillway with in-
line configuration of flat 

and pooled steps 

0.002 - 
0.146 

0.11 – 
2.01 

1.4×104 –
1.1×106 

Flow regimes, Inception point of air-
entrainment, Standing sidewall waves, 

Supercritical shock waves 
Stepped spillway with 

staggered configuration 
of flat and pooled steps 

0.003 - 
0.155 

0.15 – 
2.09 

2.3×104 –
1.2×106 

Flow regimes, Inception point of air-
entrainment, Standing sidewall waves, 

Supercritical shock waves 
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3.2 AIR-WATER FLOW PATTERNS ON THE FLAT STEPPED SPILLWAY 

The flat stepped spillway exhibited some typical flow patterns previously observed on other stepped 

spillway investigations with similar channel slopes (e.g. CHANSON & TOOMBES 2002; 

GONZALEZ 2005; CAROSI & CHANSON 2008; FELDER & CHANSON 2009a). For the 

smallest flow rates dc/h < 0.5, the water flowed down the steps as a succession of free-falling jets: 

i.e., a nappe flow regime (Fig. 3-1A) as described previously by CHANSON (1994) and 

TOOMBES & CHANSON (2008). With increasing discharges, the flow became more instable and 

some strong splashing was observed: i.e., the transition flow regime (Fig. 3-1B). The transition flow 

was observed for dimensionless flow rates 0.5 < dc/h < 0.9. The air-entrainment appeared at and 

downstream of the inception point of air entrainment. For dc/h > 0.9, a skimming flow regime was 

seen with some stable recirculation in the step cavities downstream of the inception point of free-

surface aeration (Fig. 3-1C). 

 

Fig. 3-1 – Air-water flow pattern on flat stepped spillway (θ = 26.6°) 

(A) Nappe flow regime: dc/h = 0.18, Q = 0.004 m3/s, Re = 3.1×104 

 

(B) Transition flow regime: dc/h = 0.66, Q = 0.027 m3/s, Re = 2.1×105 
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(C) Skimming flow regime: dc/h = 1.51, Q = 0.095 m3/s, Re = 7.3×105 

 

 

3.3 AIR-WATER FLOW PATTERNS ON THE POOLED STEPPED SPILLWAY 

On the pooled stepped spillway, the flow patterns exhibited some features comparable to the 

observations on the flat stepped spillway (section 3.2). The different flow regimes were clearly 

distinguishable: i.e., nappe, transition and skimming flow regimes. 

For the smallest flow rates dc/h < 0.45, a nappe flow regime was observed and the water discharged 

in a succession of free-falling nappes from one step pool to the following (Fig. 3-2). Figure 3-2 

shows the stability of the flow and suggests that most kinetic energy of the flow was dissipated 

above the steps. However, for a range of flow rates 0.30 ≤ dc/h ≤ 0.45, a pulsating flow was 

observed in the first step cavity leading to some small instabilities of the free-falling nappes (Fig. 3-

3). The pulsations in the first step cavity were periodic and had a frequency of about 1 Hz (1 s 

period) for dc/h = 0.3. The pulsation frequency was about 0.2 Hz for dc/h = 0.45. During the 

pulsations, some small waves were ejected from the first step cavity and caused some deviations to 

the lengths of the free jet nappes. With every pulsation, the nappe impact cavity shifted from the 

next step cavity to one step cavity further downstream (Fig. 3-3). The pulsating mechanism was 

comparable to the self-induced instabilities on pooled stepped spillways with 8.9° and 30º slopes 

observed by THORWARTH (2008) and FELDER & CHANSON (2012a) ( = 8.9°), and 

TAKAHASHI et al. (2008) ( = 30°). On the 8.9° pooled stepped spillways, the instabilities 

occurred in the transition flow regime for 1.08 ≤ dc/h ≤ 1.76, causing some significantly large flow 

disturbances including jump waves and instable cavity ejections. The instabilities were observed for 

0.3 < dc/h < 0.4 on the 30º slope chute. The instabilities on the pooled stepped spillway herein ( = 

26.6º) were smaller and did not cause as such significant disturbances. The flow pattern and the air-

water flow properties for a typical pulsating flow rate dc/h = 0.4 were investigated in details and the 

findings are reported in Appendix E. 
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Fig. 3-2 –Nappe flow regime on pooled stepped spillway: dc/h = 0.26, Q = 0.007 m3/s, Re = 5.1×104 

 

 

Fig. 3-3 – Instabilities caused by some pulsating flows in first step cavity in nappe flow regime on 

pooled stepped spillway: dc/h = 0.40, Q = 0.013 m3/s, Re = 1.0×105 – Chronological order from top 

left to bottom right corner 
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Fig. 3-4 – Transition flow regime on pooled stepped spillway: dc/h = 0.71, Q = 0.031 m3/s, Re = 

2.4×105 

 

 

Fig. 3-5 – Skimming flow regime on pooled stepped spillway: dc/h = 1.27, Q = 0.074 m3/s, Re = 

5.6×105 

 

 

For intermediate flow rates 0.45 ≤ dc/h ≤ 0.97, a transition flow regime was observed with some 

strong splashing in the air-water flow region downstream of the inception point of air-entrainment 

(Fig. 3-4). No pulsation in the first step cavity was observed. The transition flow regime was 

comparable to typical observations on the flat stepped spillway with some small instabilities in the 

air-water flows. 
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For larger discharges dc/h > 0.97, a skimming flow regime occurred with some stable recirculation 

motions in the step cavities. At the upstream end of the chute, the flow was transparent (clear-

waters) and the water surface was parallel to the pseudo-bottom formed by the pool step weirs 

equivalent to skimming flows on flat stepped spillways. The flow depth above the steps however 

was larger than on flat stepped chutes because of the pool weirs. Downstream of the inception point 

of free-surface aeration, the flow was highly aerated (Fig. 3-5). 

 

3.4 AIR-WATER FLOW PATTERNS ON THE STEPPED SPILLWAY WITH IN-LINE 

CONFIGURATION OF FLAT AND POOLED STEPS 

3.4.1 Presentation 

The flow over the stepped spillway with in-line configuration of flat and pooled steps was visually 

investigated for a wide range of dimensionless discharges 0.05 ≤ dc/h ≤ 2.0. The observations were 

conducted on both the flat and pooled sides of the channel with some distinct differences. A key 

feature for the air-water flow was the three-dimensional flow motion in the transverse channel 

direction and the flow disturbances caused by the different step shape. These were seen for all the 

flow rates. 

Some typical stepped spillway flow features such as the nappe, transition and skimming flow 

regimes were observed, but their appearance varied significantly between the flat and pooled side of 

the channel (see section 3.4.2). Hence some intermediate flow regions existed where a clear 

definition was not definite in terms of the flow regimes and patterns. 

Furthermore some distinct instabilities were documented, including standing sidewall waves, shock 

waves and transverse flow interactions on the channel centreline. They are documented in 

paragraph 3.4.3. Further photographs of the air-water flow patterns are presented in Appendix A. 

 

3.4.2 Flow regime observations 

The pool weirs contributed to larger air-water depths at the pooled side of the channel, while a 

faster flow motion was observed at the flat stepped side. As a result, significant instabilities were 

observed on the pooled side, yielding some strong droplet ejection and splashing on the channel 

centreline. With increasing discharges, the three-dimensional nature of the flow became less 

pronounced. Between step edges 1 and 4, some chaotic flow features including jet deflection and 

shock waves were observed for all flow regimes in the clear-water flow downstream of the broad-

crested weir. 

The formation of nappe, transition and skimming flows could be determined separately on both 

sections of the channel: i.e., flat and pooled side. The flow features within each flow regime were 
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somehow comparable to the observations on flat and pooled steps, despite some unsteady flow 

motion for some ranges of discharges.  

For small flow rates dc/h ≤ 0.46, a nappe flow regime was observed on both sides of the spillway 

chute with plunging jets from step to step on the flat side and from pool to pool on the pooled side. 

Some distinct jets on the pooled side and high velocities on the flat steps were seen in this flow 

regime as illustrated in Figure 3-6B. Figure 3-6A presents a side view on the pooled side, with a 

series of free-falling jets taking off from each pool weir. The nappe flow regime was significantly 

more unstable across the channel width than on the uniform flat and pooled stepped spillways. 

Some transverse flow motions as well as strong droplet ejections were seen along the entire channel 

length. The jets were highly aerated and singular air entrainment processes at the pooled side of the 

channel were observed.  

 

Fig. 3-6 – Nappe flow regime on the stepped spillway with in-line configuration of flat and pooled 

steps: dc/h = 0.39, Q = 0.013m3/s, Re = 9.6×104 

(A) Pooled stepped side (B) Flat stepped side 

 

With increasing discharges 0.46 ≤ dc/h ≤ 0.57, the flow became more unstable and could not clearly 

be identified as nappe or transition flow across the entire channel width. This intermediate flow 

domain was characterised by plunging jets interacting in channel centreline and chaotic flow 

behaviour (Fig. 3-7). On the flat stepped side, the water spilled downstream as some nappe flow 

(Fig. 3-7 B), whereas, on the pooled side, a succession of distinctive plunging jets impacting into 

water filled cavities featured the flow as transition flow (Fig. 3-7A). A simple definition of this 

intermediate flow regime was not possible for the entire channel width. Visually, the transverse 

profile of the water surface appeared inclined down towards the flat stepped side, and the air-water 

discharge took place mostly in the flat stepped section of the channel. The pools induced large flow 

disturbances and some three-dimensional flow motion was observed. The flow was highly aerated 
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by singular aeration processes of the jets which caused also some instabilities including jet 

deflection and cross-waves. The distinction between the air-water flow patterns in the transverse 

direction was not consistent with the previous observations on the flat and pooled stepped 

spillways. 

 

Fig. 3-7 – Nappe flows (flat stepped side) and transition flows (pooled stepped side) on the stepped 

spillway with in-line configuration of flat and pooled steps (θ = 26.6°): dc/h = 0.50, Q = 0.018 m3/s, 

Re = 1.4×105 

(A) Pooled stepped side (Transition flows) (B) Flat stepped side (Nappe flows) 

 

For discharges between 0.57 ≤ dc/h ≤ 0.86, a transition flow regime was observed on both sides of 

the channel with some distinct droplet ejection downstream of the inception point of aeration. In the 

upper section of the channel, some singular aeration processes were caused by some jets (Fig. 3-8). 

The air-water depths on the pooled stepped side were larger than on the flat stepped side. The 

transverse surface profile appeared to be inclined from the pooled stepped side down to the flat 

stepped side of the spillway. Some significant surface flapping was observed next to the inception 

point of free-surface aeration. In the clear-water region, the water surface was not parallel to the 

pseudo-bottom formed by the step edges. It showed some transverse flow features which led to a 

chaotic flow development at the inception point of free-surface aeration. 

Some transverse flow interactions took place on channel centreline and yielded some three-

dimensional flow motions along the entire channel downstream of the inception point (Fig. 3-8). 

The droplet ejections appeared moslty on the centreline and were consistently more intense than 

those observed on the flat stepped and pooled stepped spillways. The general appearance of the 

transition flow regime showed however some similar patterns as observed in other configurations, 

with some substantial free-surface aeration and the step cavities were consistently filled (i.e. no air 

cavity). 
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Fig. 3-8 – Transition flow regime on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°): dc/h = 0.70, Q = 0.030 m3/s, Re = 2.30×105 

 

 

An intermediate flow regime (0.86 ≤ dc/h ≤ 1.03) was characterised by a skimming flow regime on 

the pooled stepped side, and some transition flow on the flat stepped side of the spillway. On the 

pooled side of the stepped chute, the large air-water depth above the pool weir yielded some 

recirculation processes beneath the pseudo-bottom formed by the pool weir edges. At the flat side of 

the channel, the flow remained highly chaotic with some singular aeration processes caused by jets 

from the pooled side and air pockets in the cavities. These disturbances were caused by the three-

dimensional flow motion. Free-surface aeration and a flapping air-water surface at the inception 

point of air entrainment was clearly seen for this intermediate flow regime. The transverse slope of 

the free-surface became smaller compared to the transition flow regime. The air-water depths at the 

pool side of the channel were larger than on the flat side. In the clear-water flow region upstream of 

the inception point, the water surface appeared three-dimensional and was not parallel to the 

pseudo-bottom formed by the step edges. Generally, the three-dimensional flow motion and flow 

disturbances caused by the pools became comparatively less significant with increasing discharges. 

A consistent definition of the flow across the entire channel width was not possible.  

With increasing discharges dc/h > 1.03, a skimming flow was observed on both sides of the channel. 

Some recirculation processes in the step cavities were observed with some distinct free-surface 

aeration (Fig. 3-9). In the skimming flows, the singular aeration processes by jets were much less 

intense while, the flow became more uniform across the different channel sides downstream of the 

inception point of free-surface aeration. The free-surface was almost horizontal in the transverse 

direction and there was almost no flow motion in the transverse direction (Fig. 3-9). In Figure 3-9, 

some flow disturbances remained visible in the clear-water flow region upstream of the inception 

point together with some distinct surface flapping immediately upstream of the inception point. 
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Fig. 3-9 – Skimming flow regime on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°): dc/h = 1.15, Q = 0.063 m3/s, Re = 4.9×105 

 

 

The skimming flows showed some similarities to those observed on the flat and pooled stepped 

spillways. However the flow showed comparatively larger droplet ejections and the recirculation 

processes in the cavities appeared more irregular and disturbed compared to the uniform flat and 

pooled stepped spillways. 

 

3.4.3 Specific air-water flow features and instabilities 

For all flow rates, some standing sidewall waves and shock waves were observed on the stepped 

spillway with in-line configuration of flat and pooled steps. Examples of sidewall standing waves 

and shock waves on the channel centreline are shown in Figure 3-10. These instabilities were 

associated with discontinuities often observed in supercritical flows (TOOMBES 2002; TOOMBES 

& CHANSON 2008b). The sidewall standing waves and the shock waves in channel centreline led 

to some singular aeration processes by plunging jets. A clear separation between free-falling jets 

and standing sidewall waves was not always possible. 

A change in flow direction at the first step resulted in the formation of the sidewall standing waves. 

The water was forced against the wall and narrow standing waves formed similar to the bow-waves 

on a ship (TOOMBES 2002). SCHWALT & HAGER (1993) observed some similar patterns on the 

wall opposite to channel junctions and mitre bends. Abrupt channel expansions may also cause 

standing sidewall waves (HAGER & MAZUMDER 1992). Herein, the maximum height of the 

waves tended to decrease with increasing discharges. 

The different invert design between the two channel sides prevented a symmetrical behaviour. 

Sidewall standing waves were seen on the pooled side of the channel only. The sidewall standing 
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waves were not highly aerated but yielded some air entrainment in the downstream step cavity. In 

transition and skimming flows, some sidewall waves leaned inwards towards the centreline and 

caused some droplet spray and splashing. The height of the standing sidewall waves reached a 

maximum value of about three times the step height: that is, dSS ≈ 3×h = 0.3 m. The wave length 

varied from a minimum of one step length (lSS = 0.2 m) to a maximum wave length of over 3 steps 

(lSS > 3×l = 0.6 m). With increasing discharges, both the wave height and wave length decreased. 

 

Fig. 3-10 – Definition sketch and photograph of shock waves and standing sidewall waves for the 

stepped spillway with in-line configuration of flat and pooled steps (θ = 26.6°) 

(A) Sketch of dimensions of the sidewall 

standing waves and shock waves 

(B) Standing sidewall waves, dc/h = 0.50, Q = 

0.018 m3/s, Re = 1.4×105 

(C) Shockwaves, dc/h = 0.50, Q = 0.018 m3/s, 

Re = 1.4×105 

 

(D) Standing sidewall waves, dc/h = 0.50, Q = 

0.018 m3/s, Re = 1.4×105 

 

In addition, some shock waves, also termed cross-waves, were observed in the present study. They 

can be described as oblique waves that leaned inwards from the sidewalls and propagated across the 
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channel (TOOMBES 2002). They were flow discontinuities associated with large shear stresses. 

Figure 3-10 shows some example of shock waves on the spillway centreline, where δ1 and δ2 are the 

shock wave angles to the flow direction at the first and second pool weir respectively. Present 

observations yielded δ1 > δ2 while δ1 and δ2 varied between 5 and 30, becoming smaller with 

increasing discharges. Further downstream, the values of the angles became very close to each other 

between subsequent step edges. 

 

3.5 AIR-WATER FLOW PATTERNS ON THE STEPPED SPILLWAY WITH STAGGERED 

CONFIGURATION OF FLAT AND POOLED STEPS 

3.5.1 Presentation 

Detailed visual observations were conducted on the stepped spillway with a staggered arrangement 

of flat and pooled steps for a range of dimensionless discharges 0.02 ≤ dc/h ≤ 2.0. For all 

discharges, the flow was characterised by some relatively uniform flow features across the channel 

width. However some wavy flow patterns from side to side of the channel were seen. Typical flow 

regimes such as nappe, transition and skimming flows were distinguished, presenting some 

similarities to the observations on flat and pooled stepped spillway configurations. Details are 

presented in section 3.5.2. 

In the transverse direction, the flow was observed to be reasonably uniformly distributed in both 

sections of the channel for each second adjacent step edge for regions far downstream of the 

inception point of free-surface aeration. At the upstream end of the chute, the clear-water flow 

region between broad-crested weir and inception point showed some instabilities in terms of 

standing sidewall waves, shock waves and transverse interactions on the channel centreline 

depending on the discharge (see paragraph 3.5.3). Further photographs of the flow patterns are 

presented in Appendix A. 

 

3.5.2 Flow regime observations 

The staggered stepped spillway configuration yielded some significant droplet ejections as well as 

some differences in water depth on every second adjacent flat and pooled step edges. The flow was 

characterised by some unsteady air pocket distributions in the cavities and singular aeration 

processes could be observed. 

For small flow rates dc/h < 0.56, a nappe flow regime existed with a succession of free-falling jets 

(Fig. 3-11). For the lowest discharges dc/h < 0.40, the jets plunged from each step edge to the next 

adjacent pool, yielding some larger water depth upon the pooled step weirs (Fig. 3-11A). With 

increasing discharges 0.40 < dc/h < 0.56, the jets plunged over each second step from pool to pool 
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leading to distinct air pockets in the flat step cavities and the pooled step cavities were filled with 

air-water flows (Fig. 3-11B). The pools seemed to induce a succession of longer free-falling nappes 

along two step lengths. This feature was observed on both sides of the channel and yielded to some 

transverse interactions across the channel centreline.  

 

Fig. 3-11 - Nappe flow regime on the stepped spillway with staggered configuration of flat and 

pooled steps (θ = 26.6°) 

(A) dc/h = 0.29, Q = 0.009 m3/s, Re = 6.2×104 

 

(B) dc/h = 0.56, Q = 0.020 m3/s, Re = 1.64×105 

 

 

A wavy flow appearance from side to side was observed along the entire channel length. It was 

associated with distinctive jet flows which were highly aerated and induced some singular aeration 

in the downstream cavity. Some distinct ejected droplets and splashing featured the flow as chaotic 

and unstable. The resulting flow motion in the transverse direction with strong waving flow feature 
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was not comparable to the observations on the stepped spillways with flat or pooled stepped, or 

even in-line stepped, configurations. 

For larger discharges 0.56 ≤ dc/h ≤ 0.92, a transition flow occurred along the stepped chute. Some 

jets plunged over each second adjacent step edge. The step cavities of both flat and pooled steps 

showed no air pockets and some intense free-surface aeration was observed. However, the water 

depths at the pooled steps were consistently larger than those at the flat steps. The air-water mixture 

was highly aerated, showing some chaotic behaviour and transverse interactions on the channel 

centreline. The waving appearance of the flow from side to side became less significant than in the 

nappe flow regime. Distinct droplet ejection and spray were observed downstream of the inception 

point. The bulk of the flow appeared chaotic with lateral flow motion in the transverse direction 

across the channel width. Singular aeration processes were present mainly in the pooled step 

cavities. Some similarities of the transition flow regime on the staggered stepped spillway 

configuration were observed comparable to the flat and pooled stepped spillway flow patterns. 

For larger discharges dc/h > 0.92, a skimming flow regime was observed. The recirculation in the 

step cavities was clearly observed. The basic flow features were comparable to those on flat and 

pooled stepped spillways. However, the recirculation processes were unsteady and disturbed by the 

staggered stepped configuration. Some three-dimensional flow motion in the transverse direction 

was present leading to some distinct droplet ejection and spraying. The flow appeared highly 

aerated and the water depths above the pooled step weirs were larger than on the flat step edges. 

The air-water surface at the inception point of free-surface aeration showed some irregular flapping. 

Figure 3-13 shows a side view of the flow next to the inception point. Note the droplet ejection in 

the downstream section of the channel. 

 

Fig. 3-12 – Transition flow regime on the stepped spillway with staggered configuration of flat and 

pooled steps (θ = 26.6°): dc/h = 0.70, Q = 0.030 m3/s, Re = 2.30×105 
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Fig. 3-13 – Skimming flow regime on the stepped spillway with staggered configuration of flat and 

pooled steps (θ = 26.6°): dc/h = 1.45, Q = 0.090 m3/s, Re = 6.9×105 

 

 

3.5.3 Specific air-water flow features and instabilities 

The stepped spillway with staggered stepped configuration of flat and pooled steps showed some 

irregular occurrence of standing sidewall and shock waves for all flow regimes (Fig. 3-14). Figure 

3-14 illustrates some examples. An asymmetrical and three-dimensional flow motion was observed 

in the clear-water flow in the upstream part of the channel for all discharges. They caused some 

instabilities in the downstream air-water flow region. Further downstream some waves could be 

observed for each second adjacent step. The height of the standing sidewall waves showed a 

maximum value of about three times the step height: i.e., dSS ≈ 3×h = 0.3 m. The wave length varied 

from a minimum wave length of one step length (lSS = 0.2 m) and a maximum wave length over 3 

step lengths (lSS ≈ 3×l = 0.6 m). The sidewall standing wave lengths and heights were comparable to 

those observed on the stepped spillway with in-line configuration of flat and pooled steps. With 

increasing discharges, both wave height and wave length became smaller. 

The shock waves occurred predominantly on the spillway centreline and the direction of the shock 

waves differed between adjacent steps because of the staggered configuration of flat and pooled 

steps (Fig. 3-14A & 3-14C). Further downstream the shock waves intersected the downstream 

shock waves leading to some visible air-water mixing and air entrainment. Downstream of the 

shock wave intersection, the flow appeared almost uniform. 

The shock waves occurred mainly in the upstream part of the stepped spillway with nearly constant 

angles δ between adjacent pool weir edges (Fig. 3-14A). The cross-waves were seen for all flow 
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rates. The shock wave angle  ranged between δ = 5˚ to 20˚. Figure 3-14 illustrates some standing 

sidewall and shock waves for the staggered stepped configuration. 

 

Fig. 3-14 – Shockwaves and standing sidewall waves for the stepped spillway with staggered 

configuration of flat and pooled steps 

(A) Definition sketch of sidewall standing waves 

and shock waves 

(B) Standing sidewall waves, dc/h = 0.66, Q = 

0.028 m3/s, Re = 2.1×105 

(C) Shockwaves, dc/h = 0.86, Q = 0.041 m3/s, 

Re = 3.1×105 

 

(D) Standing sidewall waves, dc/h = 0.59, Q = 

0.023 m3/s, Re = 1.8×105 

 

3.6 INCEPTION POINT OF AIR ENTRAINMENT 

For all stepped spillway configurations, the location of the inception point of free-surface aeration 

was documented. Table 3-2 summarises further the changes in flow regimes for all configurations. 

For the stepped spillway with in-line configuration of flat and pooled steps, the changes in flow 

regimes are shown for both halves of the stepped chute, i.e. for the pooled stepped and the flat 

stepped sides respectively (Table 3-2). The changes in flow regimes were reasonably close for all 
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stepped spillway configurations, with some small differences for the stepped spillway geometries 

with in-line and staggered stepped configurations. Overall the changes in flow regimes in the 

present study were close to previous findings on stepped spillways with similar slopes 21.8° ≤ θ ≤ 

30° (CHANSON 2001; CHANSON & TOOMBES 2002b; CAROSI & CHANSON 2008; 

KÖKPINAR 2004; FELDER & CHANSON 2009a,2011b). 

The location of the inception points of free-surface aeration was recorded for 0.002 ≤ Q ≤ 0.155 

m3/s. The results are reported in Figure 3-15 in dimensionless terms, where LI is the distance from 

the first step edge (i.e. downstream end of broad-crest) to the inception point of free-surface 

aeration and ks is the step cavity height normal to the main stream flow: ks = h×cosθ for flat stepped 

spillway and ks = (h+w)×cosθ for the pooled stepped spillway. For the stepped spillway 

configuration with in-line configurations of flat and pooled stepped steps, the step cavity height was 

calculated with ks = h×cosθ for the inception point data on the channel half with flat steps and for 

the pooled stepped side ks = (h+w)×cosθ. It was not possible to identify a clear step cavity height for 

the staggered configuration of flat and pooled steps and the inception point data are presented for 

both cavity height definitions in Figure 3-15. The data are presented as a function of the Froude 

number F* defined in terms of the step cavity roughness: 
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The inception point data for all configurations were in good agreement (Fig. 3-15). Some small 

differences were visible for the side with flat steps in the stepped spillway configuration with in-line 

configuration of flat and pooled steps. For the smallest flow rates, the inception point location did 

not change on the flat stepped side in this configuration which was linked with a jet causing the air-

entrainment at step edges 4 to 5 for a range of discharges. Furthermore some small differences in 

the position of inception points were observed for the staggered configuration of flat and pooled 

steps calculated with step cavity height ks = (h+w)×cosθ and the air entrainment appeared further 

upstream compared to the other stepped spillway configurations. 

The present inception point observations were compared with two empirical correlations for flat 

stepped spillways by CHANSON (1995): 

 713.00796.0I *F)(sin719.9
cosh

L



 27° ≤  ≤ 53° (3-2) 

and by CAROSI & CHANSON (2008) for a flat stepped spillway with a slope of 21.8°: 

 *F11.505.1
cosh

LI 


 0.45 ≤ dc/h ≤ 1.6 (3-3) 
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Table 3-2 - Flow regime changes for the stepped spillway configurations investigated in the present 

study (θ = 26.6°) 

 

Configuration NA - TRA TRA - SK  
(1) (2) (3) 

Flat stepped spillway dc/h = 0.5 dc/h = 0.9 
Pooled stepped spillway  dc/h = 0.45 dc/h = 0.97 
Stepped spillway with in-line configuration of flat 
& pooled steps 

  

Pooled stepped side dc/h = 0.46 dc/h = 0.86 
Flat stepped side dc/h = 0.57 dc/h = 1.03 

Stepped spillway with staggered configuration of 
flat and pooled steps 

dc/h = 0.56 dc/h = 0.92 

 

Notes: dc: critical flow depth; h: vertical step height; NA: nappe flow regime; TRA: transition flow 

regime; SK: skimming flow regime  

 

Fig. 3-15 – Location of inception point of air entrainment for the stepped spillway configurations in 

the present study; Comparison with empirical correlations and pooled stepped spillway data  
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Both empirical equations are shown for the channel slope of 26.6° in Figure 3-15 and the results 

showed a reasonable agreement with Equation (3-2) and a close agreement for the correlation of 

CAROSI & CHANSON (2008). The present data are further compared with some inception point 

observations on a pooled stepped spillway with 8.9° slope by FELDER & CHANSON (2012a) (Fig. 

3-15). Overall there was a good agreement between all data sets, independently of the step type (flat 
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or pooled). 

 

3.7 CAVITY EJECTION PROCESSES ON FLAT AND POOLED STEPPED SPILLWAYS 

At large flow rates, the waters skimmed over the pseudo-bottom formed by the step edges with 

some cavity recirculation processes in the cavities underneath. The cavity recirculation was highly 

energetic and it was maintained by the transmission of shear stress from the main stream and some 

momentum exchanges between main stream and cavity flows (DJENEDI et al. 1999; CHANSON et 

al. 2002). At irregular time intervals, some air-water volume was ejected out and replaced by some 

fresh fluid flow into the step cavity. The present observations indicated that the ejection processes 

were comparable on both flat and pooled stepped spillway configurations. 

Herein the cavity ejection frequencies were visually observed for the flat and pooled stepped 

spillways and a detailed frame-by-frame video analysis was performed. Figure 3-16 illustrates the 

dimensionless cavity ejection frequencies Fej×dc/Vc as a function of the Reynolds number Re 

defined in terms of the hydraulic diameter for both flat and pooled stepped spillway data. For each 

discharge, the ejection frequencies were observed at several successive step cavities downstream of 

the inception point of air entrainment and at different positions within the step cavity. Figure 3-16 

includes also the longitudinally-averaged and median ejection frequencies. 

 

Fig. 3-16 - Average dimensionless ejection frequencies Fej×dc/Vc as function of the Reynolds 

number Re for flat and pooled stepped spillways (θ = 26.6°) in skimming flows 
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The data yielded on average a dimensionless cavity ejection frequency Fej×dc/Vc between 0.07 and 

0.03, with a decreasing frequency with increasing Reynolds numbers for both spillway 

configurations (Fig. 3-16). Further details about the experiments and the results can be found in 

Appendix B. 

 

3.8 SUMMARY AND DISCUSSION 

A number of visual observations were conducted on stepped spillways equipped with several step 

configurations: flat steps, pooled steps, in-line and staggered configurations of flat and pooled steps. 

For a relatively wide range of flow rates, the basic flow patterns were documented in nappe, 

transition and skimming flows. All stepped spillway flows showed some intense free-surface 

aeration downstream of the inception point of air entrainment. Some instabilities were observed for 

several stepped spillway configurations. 

The air-water flow patterns on the flat stepped spillway were identical to previous observations. The 

air-water flow patterns on the pooled stepped spillway were close to those observed on the flat 

stepped spillway, but with some stronger droplet ejections and instabilities. For the smallest flow 

rates in the nappe flow regime, some pulsating flow pattern was observed in the first pooled step 

cavity and the instabilities propagated downstream. Overall, however, the pooled stepped spillway 

with a slope of θ = 26.6° exhibited much smaller instabilities compared to those observed on a 

pooled stepped spillway with θ = 8.9° (THORWARTH 2008; FELDER et al. 2012, FELDER & 

CHANSON 2012a). 

Some cavity ejection frequencies were documented in some frame-by-frame video analyses for both 

flat and pooled stepped spillways in skimming flows. The ejection frequencies were close for the 

flat and pooled stepped spillway configurations. 

The stepped spillways with in-line and staggered configurations of flat and pooled steps showed 

much more complicated flow patterns. Some strong three-dimensional flow motion was seen for all 

flow rates. The flow motion in the transverse direction caused some strong instabilities along the 

stepped spillways as well as some shock waves on the channel centreline while some sidewall 

standing waves were observed along the stepped spillway walls. The instabilities led to some very 

strong splashing of droplets in all flow directions along the stepped spillways. Both the in-line and 

staggered stepped spillway configurations showed more irregular flow patterns compared to the flat 

and pooled stepped spillways. The findings suggest that the flat stepped spillway designs may be 

better suited for stepped spillway designs. For example, the sidewall standing waves would result in 

a larger sidewall height and an increased spillway cost. 

For all stepped spillway configurations, the location of the inception point of air entrainment was 

documented for a range of flow rates. Overall the results were in relatively close agreement with 
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some differences for the in-line and staggered configured stepped spillways. 

In conclusion, the flat stepped spillway appeared to be best suited in terms of the flow patterns for a 

practical design. The pooled stepped spillway showed some small differences, including some 

strong instabilities for a flow rate. The more complex in-line and staggered designs of stepped 

spillways showed some flow instabilities with some strong three-dimensional flow patterns 

including shock waves in centreline and standing sidewall waves at the channel walls. 
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4. AIR-WATER FLOW PROPERTIES ON THE STEPPED SPILLWAYS: 
FLAT VERSUS POOLED STEPS 

4.1 PRESENTATION 

The air-water flow measurements were performed on the flat and pooled stepped spillway 

configurations for 0.03 ≤ Q ≤ 0.13 m3/s. The stepped spillway flow was characterised by significant 

air entrainment downstream of the inception point and detailed two-phase flow measurements were 

conducted. Some experiments were performed with a double-tip conductivity probe at all step edges 

downstream of the inception point (Table 4-1). Table 4-1 lists the investigated flow conditions in 

transition and skimming flows for the experiments with the double-tip probe. The measurements 

yielded some air-water flow properties including the void fraction C, the bubble count rate F, the 

interfacial velocity V, the turbulence intensity Tu and the air bubble and water droplet chord sizes.  

Some additional experiments were conducted with an array of two identical single-tip conductivity 

probes for the flat and pooled stepped spillways. The measurements were conducted at the 

downstream end of the spillway (step edge 10) for two flow rates in the skimming flow regime 

(Table 4-2). Table 4-2 presents the flow conditions and lists the transverse distances between the 

two single-tip probes 3.5 ≤ z ≤ 81.3 mm. An integration of the maximum cross-correlation values 

(Rxz)max between the raw data of the two single-tip probes with various spacing z provided the 

integral turbulent length scale (CHANSON & CAROSI 2007):  
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The corresponding integral turbulent time scale was also calculated: 
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where Txz is the cross-correlation integral time scale calculated in an integration from the maximum 

of the cross-correlation function until the first crossing of the x-axis.  

A range of experiments was systematically conducted with the double-tip and the two single-tip 

conductivity probes. All probes were sampled for 45 s with a sampling frequency of 20 kHz. In this 

section, the characteristic results for the flat and pooled stepped spillways are compared and 

additional experimental data are shown in Appendix C. Some further flow features for the pulsating 

flow on the pooled stepped spillway (dc/h = 0.4) are presented and discussed in Appendix E. 
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Table 4-1 - Air-water flow measurements with a double-tip conductivity probe (Ø = 0.25 mm) for 

the flat and pooled stepped spillways (θ = 26.6°) 

 

Configuration dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Measurements
at step edge 

Inception point step 
edge 

Flow 
regime 

(1) (2) (3) (4) (5) (6) (7) 
0.7 0.030 2.30×105 4-10 3 to 4 TRA 
0.82 0.038 2.90×105 4-10 4 TRA 
0.96 0.049 3.71×105 5-10 5 SK 
1.15 0.063 4.85×105 5-10 5 to 6 SK 
1.29 0.075 5.73×105 6-10 6 SK 
1.45 0.090 6.87×105 7-10 7 SK 
1.52 0.097 7.39×105 8-10 8 SK 

Flat stepped 
spillway 

1.7 0.113 8.72×105 8-10 8 to 9 SK 
0.4 0.013 9.95×104 2-10 2 NA 
0.7 0.030 2.30×105 4-10 4 TRA 
0.82 0.038 2.90×105 5-10 4 to 5 TRA 
0.96 0.049 3.71×105 6-10 5 to 6 TRA/SK 
1.15 0.063 4.85×105 5-10 5 to 6 SK 
1.29 0.075 5.73×105 7-10 6 to 7 SK 
1.45 0.090 6.87×105 7-10 7 SK 
1.52 0.097 7.39×105 8-10 8 SK 
1.7 0.113 8.72×105 8-10 8 SK 

Pooled stepped 
spillway 

1.85 0.130 9.89×105 10 9 to 10 SK 
 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; SK: skimming flow regime; TRA: transition flow 

regime; NA: nappe flow regime. 

 

Table 4-2 - Air-water flow measurements with an array of two single-tip conductivity probes (Ø = 

0.35 mm) for the flat and pooled stepped spillways (θ = 26.6°) 

 

Configuration dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Measurement 
at step edge

Transverse distances between 
single-tip probes z (mm) 

(1) (2) (3) (4) (5) (6) 
1.15 0.063 4.85×105 10 3.5, 6.9, 10.5, 16.2, 21.6, 28.2, 

35.1, 41.4, 49.2, 61.2, 81.3 
Flat stepped 

spillway 
1.45 0.090 6.87×105 10 3.5, 6.5, 10.1, 15.1, 20.9, 27.8, 

34.4, 44.0, 50.1, 60.6, 80.5 
1.15 0.063 4.85×105 10 3.5, 6.5, 11.1, 15.7, 21.2, 26.5, 

34.7, 41.3, 50.1, 61.2, 80.1 
Pooled stepped 

spillway 
1.45 0.090 6.87×105 10 3.5, 6.5, 11.1, 15.7, 21.2, 26.5, 

34.7, 41.3, 50.1, 61.2, 80.1 
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4.2 COMPARISON OF AIR-WATER FLOW PROPERTIES 

4.2.1 Void fraction 

Some typical void fraction distributions in a skimming flow regime are illustrated in Figure 4-1 as a 

function of y/Y90 (Fig. 4-1A) and as a function of (y+w)/dc (Fig. 4-1B). Herein y is the distance 

perpendicular to the pseudo-bottom formed by the step edges, Y90 is the elevation y where the void 

fraction was 90%, dc is the critical flow depth and w is the pool weir height for the pooled steps. For 

the flat steps, y = 0 was located at the step edge. For the pooled steps, y = 0 was at the edge of the 

pool weir. 

The void fraction distributions for both stepped configurations showed some typical S-shapes which 

were observed in many previous studies on flat stepped spillways in transition and skimming flows 

(Fig. 4-1) (CHANSON & TOOMBES 2002; GONZALEZ 2005; BUNG 2011). Little difference 

was visible between flat and pooled stepped spillways (Fig. 4-1A). In Figure 4-1A, the distributions 

of void fraction are compared with the advective diffusion equation developed by CHANSON & 

TOOMBES (2002): 
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where K' is an integration constant and Do is a function of the depth-averaged void fraction Cmean 
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Figure 4-1B illustrated a different presentation of the void fraction distributions: i.e., in terms of 

(y+w)/dc. The results showed also little differences between the data, but an upward shift of the 

void fraction profile for the pooled steps by the dimensionless pool height w/dc. For the first two 

step edges immediately downstream of the inception point, some slightly different void fraction 

profiles were observed, but these were consistent with the rapidly varying nature of the flow in the 

vicinity the inception point of air entrainment. 

For the flat stepped spillway, the void fraction data seemed to suggest a local maximum in void 

fraction for y/Y90 = 0.1 to 0.2 at some step edge (Fig. 4-1). The cause of the local maxima was not 

entirely clear, but it might be linked with a longitudinal seesaw pattern earlier documented in terms 

of several characteristic air-water flow properties (BOES 2000; CHANSON & TOOMBES 2002; 

FELDER & CHANSON 2009b). 

Overall the present observations tended to confirm the comparative findings of FELDER & 

CHANSON (2012a) on a stepped spillway with 8.9° slope and of KÖKPINAR (2004) with a slope 
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of 30°. 

 

Fig. 4-1 – Comparison of void fraction distributions on the flat and pooled stepped spillways in 

skimming flows (θ = 26.6°) 

(A) dc/h = 1.52, Q = 0.097 m3/s, Re = 7.4×105 
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4.2.2 Bubble count rate 

Figure 4-2 shows some typical dimensionless distributions of the bubble count rate F×dc/Vc in 

skimming flows as functions of y/Y90 (Fig. 4-2A) and (y+w)/dc (Fig. 4-2B). Herein Vc is the critical 

flow velocity ( cc dgV  ). The distribution of bubble count rates showed typical shapes with 

maxima in the intermediate flow region for void fractions of about C = 0.4 to 0.5 for both flat and 

pooled steps. For all data sets, the number of entrained air bubbles was larger on the flat stepped 

spillway compared to the results on the pooled stepped configuration (Fig. 4-2). The differences 

between the two configurations tended to decrease with increasing distance from the inception point 

of air entrainment. Note that, for all experiments, the equilibrium flow conditions were not achieved 

and the bubble count rates increased monotonically with longitudinal distance for both flat and 

pooled steps along the stepped spillway. 

The present results were consistent with earlier experimental results on flat stepped spillways (e.g. 

CHANSON & TOOMBES 2002; BUNG 2011). Interestingly FELDER & CHANSON (2012a) and 

FELDER et al. (2012) observed also a larger numbers of entrained air bubbles on a flat stepped 

spillway with a slope of 8.9° compared to a pooled stepped spillway with the same ratio of w/l = 

0.16 as in the present study. On the other hand, however, KÖKPINAR (2004) observed much 

smaller differences in terms of bubble count rates between flat and pooled steps down a 30 stepped 

chute. This might be linked with the different cavity size on the pooled stepped spillway with a rate 

w/l = 0.29. 
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Fig. 4-2 – Comparison of dimensionless bubble count rate distributions on the flat and pooled 

stepped spillways in skimming flows (θ = 26.6°) 

(A) dc/h = 0.96, Q = 0.049 m3/s, Re = 3.7×105 
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4.2.3 Interfacial velocity 

The interfacial time averaged local velocity V was calculated based upon a cross-correlation 

analysis of the raw signals of the two tips of the double-tip conductivity probe. Some typical results 

for the skimming flow experiments are illustrated in Figure 4-3. In Figure 4-3A, some distributions 

of the dimensionless interfacial velocity V/V90 are illustrated as a function of y/Y90, where V90 is 

the characteristic velocity at C = 90%. All data on the flat and pooled stepped spillways were in 

good agreement and they compared very well with a power law (Fig. 4-3A): 

 
N/1

9090 Y

y

V

V








  0 ≤ y/Y90 ≤ 1 (4-4) 

The exact value of N may vary from one step edge to the next one for a given flow rate, with N = 

10 on average. In Figure 4-3, the data are compared with a 1/10 power law. For y/Y90 > 1, the 

velocity distributions had a uniform profile and were best correlated by: 

 1
V

V

90

  1 > y/Y90 (4-5) 

The observations were consistent with previous data on flat stepped spillways (GONZALEZ 2005; 

CHANSON & CAROSI 2007; FELDER & CHANSON 2009b). Furthermore the velocity data 

agreed well with the observations on flat and pooled stepped spillways with 8.9° slope by FELDER 

& CHANSON (2012a) and FELDER et al. (2012). KÖKPINAR (2004) observed a power law 

exponent of N = 6 for his data on flat and pooled steps with 30° slopes, together with a good 

agreement between flat and pooled step data. BUNG's (2011) approach yielded N = 8 for flat 

stepped spillways with a 26.6° slope. 
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Some differences were however visible in terms of the dimensionless interfacial velocity V/Vc in 

the present study (Fig. 4-3B). For all present experiments, the data implied larger interfacial 

velocities on the pooled stepped spillway (Fig. 4-3B). This finding was counter-intuitive and 

contradicted the observations on a 8.9º slope pooled stepped chute (FELDER & CHANSON 2012a; 

FELDER et al. 2012). The present observations nonetheless showed consistently a faster flow 

motion down the pooled stepped chute ( = 26.6) for a wide range of flow conditions (0.8 < dc/h < 

1.85). 

 

Fig. 4-3 – Comparison of dimensionless interfacial velocity distributions on the flat and pooled 

stepped spillways in skimming flows (θ = 26.6°) 
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4.2.4 Turbulence intensity 

The shape of the cross-correlation function of the double-tip conductivity probe provided some 

information about the turbulence levels in the two phase flow. Following CHANSON & 

TOOMBES (2002), the turbulence intensities were calculated as: 

 
T

T
851.0Tu

2
5.0

2
5.0 

  (4-6) 

where τ0.5 is the time scale for which the cross-correlation function is half of its maximum value 

such as: Rxy(T+ τ0.5) = 0.5×Rxy(T), Rxy is the normalised cross-correlation function and T0.5 is the 

characteristic time for which the normalised auto-correlation function equals: Rxx(T0.5) = 0.5. The 

turbulence intensity Tu is a measure of the turbulence levels within the air-water flows, although it 

might not be truly comparable to the turbulent intensity in monophase flows (CHANSON & 

TOOMBES 2002). 

Some typical turbulence intensity distributions are illustrated in Figure 4-4 as functions of y/Y90 and 
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(y+w)/dc. For all skimming flow data, little difference was visible qualitatively and quantitatively 

between flat and pooled stepped spillways (Fig. 4-4). Please note, that some local maxima in 

turbulence intensity were found for some step edges on the flat stepped spillway in a region close to 

the step face. These local maxima were consistent with some local maxima in void fraction and 

bubble count rate data on the same step edges (see above). It is believed that these were linked with 

some irregular impingement of air-water flow on the step face associated with a characteristic 

longitudinal seesaw pattern in skimming flows (CHANSON & TOOMBES 2002; YASUDA & 

CHANSON 2003; FELDER & CHANSON 2009b). 

The present findings indicated similar levels of turbulence on the flat and pooled stepped spillways. 

Such a result contradicted the observations of FELDER & CHANSON (2012a) and FELDER et al. 

(2012) on a stepped spillway with 8.9°. On the 8.9 chute, larger turbulence levels were observed 

on the pooled stepped spillway, and FELDER & CHANSON (2012a) showed that these were linked 

with some flow instabilities which enhanced the turbulent kinetic energy of the flow. 

 

Fig. 4-4 – Comparison of turbulence intensity distributions on the flat and pooled stepped spillways 

in skimming flows (θ = 26.6°) 

(A) dc/h = 1.52, Q = 0.097 m3/s, Re = 7.4×105 
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4.2.5 Integral turbulent time and length scales 

Some experiments were conducted using an array of two single-tip conductivity probes separated 

by various transverse distances between probe tips (3.5 ≤ z ≤ 81.3 mm) (Table 4-2). The 

experiments were performed with flat and pooled steps for two skimming flow rates at the 

downstream end of the stepped spillway, at about the same distance from the inception point of air 

entrainment for both stepped chute configurations. 

The results are presented in dimensionless terms in Figure 4-5 in terms of the integral turbulent 
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length scale Lxz and the integral turbulent time scale Tint. In Figures 4-5A and 4-5B, the 

dimensionless integral turbulent length scales are shown respectively as functions of y/Y90 and 

(y+w)/dc. The comparative results highlighted the larger integral turbulent lengths scales on the flat 

stepped chute suggesting larger transverse air-water vortices (Fig. 4-5A and 4-5B). 

The corresponding integral turbulent time scale data are presented in Figures 4-5C and 4-5D as 

functions of y/Y90 and (y+w)/dc respectively. The dimensionless time scales 90int YgT  (Fig. 4-

5C) were larger in the flat stepped spillway flow. However, the dimensionless turbulent time scales 

cint dgT  were almost identical for the flat and pooled stepped spillways (Fig. 4-5D). Simply the 

results were closely linked with the characteristic length scale used in the dimensionless 

presentations. 

The integral turbulent time and length scale data highlighted some maxima in the intermediate flow 

region (0.3 < C < 0.7) (Fig. 4-5). All distributions showed very small integral scale values in the 

bubbly flow region, while the values of Lxz decreased also in the upper spray region. On the other 

hand, some large integral turbulent time scale values were recorded in the upper spray region (C > 

0.97) for the pooled stepped spillway, while the values of Tint were smaller on the flat stepped 

spillway. The reason for the differences in the upper spray region are unknown. The finding might 

indicate a different nature of ejected droplets above the pooled stepped spillway, although the visual 

observations did not show any obvious difference in terms of droplet ejections and air-water free-

surfaces for both configurations. However some small differences in the upper spray region were 

also recorded in terms of some air-water flow properties including the bubble count rate and the 

water droplet chord sizes (see section 4.2.7). 

Some characteristic values in terms of maximum integral turbulent time and length scales are 

reported in Table 4-3 for both flat and pooled stepped spillways. The data highlighted the larger 

turbulent lengths and time scales in the flat stepped spillway flow. The integral time scale data 

cmaxint dg)T(  were very close for both stepped spillway configurations. 

The distribution of integral turbulent time and length scales for the flat stepped spillway had similar 

shapes to previous experimental studies on flat stepped spillways with 21.8 and 26.6 (CHANSON 

& CAROSI 2007; FELDER & CHANSON 2009b,2011a), although the present experiments 

showed some slightly larger integral turbulent time and length scales. Since the experiments were 

conducted on different physical facilities, further comparative analyses might provide some more 

insights into the cause of these differences. 
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Fig. 4-5 – Comparison of dimensionless integral turbulent length and time scales on the flat and 

pooled stepped spillways in skimming flows (θ = 26.6°) – Flow conditions: dc/h = 1.15, Q = 0.063 

m3/s, Re = 4.9×105 and dc/h = 1.45, Q = 0.090 m3/s, Re = 6.9×105 

(A) Integral turbulent length scales Lxz/Y90 
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Table 4-3 – Summary of characteristic integral turbulent time and length scales for the flat and 

pooled stepped spillways (θ = 26.6°) 

 

Configuration dc/h 
[-] 

(Lxz)max 

[mm] 
(Lxz)max/dc 

[-] 
(Lxz)max/Y90

[-] 
(Tint)max 

[ms] 
90maxint Yg)T(   cmaxint dg)T( 

(1) (2) (3) (4) (5) (6) (7) (8) 
1.15 20.1 0.17 0.28 4.1 0.050 0.039 Flat stepped 

spillway 1.45 21.2 0.15 0.23 3.8 0.041 0.033 
1.15 16.2 0.14 0.23 3.8 0.045 0.038 Pooled 

stepped 
spillway 

1.45 18.0 0.12 0.15 3.9 0.036 0.034 

 

Note: maximum values calculated for 0 < C < 0.97 
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4.2.6 Air-water flow properties in transition flows 

A small number of experiments were conducted in the transition flow regime and the data are 

discussed below. CHANSON & TOOMBES (2004) presented a seminal study of the transition flow 

regime, introducing the transition flow sub-regimes TRA1 and TRA2. Herein the observations for 

dc/h = 0.7 showed some typical features of the transition flow sub-regime TRA1. These data (dc/h = 

0.7) differed substantially from the air-water flow data observed for dc/h > 0.7 (see above). 

The air-water flow properties in the transition flow (dc/h = 0.7) are compared for the flat and pooled 

stepped spillways in Figure 4-6 as a function of (y+w)/dc. Figure 4-6A illustrates the void fraction 

distributions C for the flat and pooled steps. On the flat steps, the data showed typical void fraction 

distributions for the transition flow sub-regimes TRA1 (CHANSON & TOOMBES 2004). That is, 

two different types of void fraction distributions were observed, i.e. a flat, straight profile and the S-

shape distribution. The type of void fraction profile differed between adjacent step edges in the 

present study. For the pooled stepped configuration, the void fraction distributions exhibited a S-

shape as observed in the skimming flow regime (Fig. 4-6A). 

The dimensionless bubble count rate distributions are presented in Figure 4-6B. For all 

distributions, the maximum numbers of bubbles were observed in the intermediate flow region. The 

maximum bubble count rate increased with increasing distance from the inception point. The bubble 

count rate was about the same for the flat and pooled stepped configuration in the transition flow  

(dc/h = 0.7) (Fig. 4-1B). 

The dimensionless interfacial velocity distributions V/Vc are presented in Figure 4-6C for the flat 

and pooled stepped configurations. For both configurations, the interfacial velocities were about 

identical on flat and pooled steps. This observation contradicted the larger interfacial velocities for 

the pooled stepped spillway observed in skimming flows. The velocity profiles in the transition 

differed from the power shape seen in skimming flow. The transition flow data presented some 

smaller velocities in the spray region (Fig. 4-6C). 

In the transition flow (dc/h = 0.7), some differences were observed in terms of the turbulence 

intensity Tu distributions between the flat and pooled stepped spillways (Fig. 4-6D). The turbulence 

intensity distributions in the pooled stepped spillway flow were similar to those observed in the 

skimming flow regime: i.e., with a maximum of similar magnitude in the intermediate flow region. 

On the flat stepped spillway, the shapes of the turbulence intensity distribution were completely 

different, with the largest turbulence levels close to the step face for most step edges. This shape 

was typically observed at the step edges where a flat, straight void fraction profile was observed 

(Fig. 4-6A). At step edges where the void fractions exhibited a S-shape, the distributions of 

turbulence intensity were closer to the shapes observed in the skimming flow regime. Importantly, 

the turbulence levels on the flat stepped spillway were smaller than those observed on the pooled 
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stepped spillway. 

 

Fig. 4-6 – Comparison of air-water flow properties on the flat and pooled stepped spillways in 

transition flow sub-regime TRA1 (θ = 26.6°) - dc/h = 0.70, Q = 0.030 m3/s, Re = 2.3×105 
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(B) Bubble count rate distributions 
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(C) Interfacial velocity distributions 
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(D) Turbulence intensity distributions 
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4.2.7 Microscopic air-water flow property: air bubble and water droplet chord sizes 

The air bubble and water droplet chord sizes were calculated for all experiments. Some typical 

results are compared for the flat and pooled stepped spillway configurations in Figures 4-7 and 4-8. 

In Figure 4-7, some characteristic probability distribution functions (PDFs) of air bubble chord 

lengths are shown for two discharges. There was a close agreement between the air bubble chord 

sizes for the flat and pooled steps. Some typical results in terms of the water droplet chord lengths 

are illustrated in Figures 4-8 for two discharges. The water droplet chord sizes for both flat and 

pooled steps were in close agreement despite some small differences. 

The present findings were consistent with some observations on a 8.9° sloped spillway, showing 
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little difference between flat and pooled stepped spillways in terms of the bubble and droplet chord 

sizes (FELDER & CHANSON 2012a; FELDER et al. 2012). 

 

Fig. 4-7 – Comparison of probability distribution functions of air bubble chord sizes on the flat and 

pooled stepped spillways (θ = 26.6°): 

(A) dc/h = 0.82, Q = 0.038 m3/s, Re = 2.9×105; Step edge 10 
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(B) dc/h = 1.29, Q = 0.075 m3/s, Re = 5.7×105; Step edge 10 
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Fig. 4-8 – Comparison of probability distribution functions of water droplet chord sizes on the flat 

and pooled stepped spillways (θ = 26.6°) 

(A) dc/h = 0.82, Q = 0.038 m3/s, Re = 2.9×105; Step edge 10 
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(B) dc/h = 1.52, Q = 0.097 m3/s, Re = 7.4×105; Step edge 10 
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4.2.8 Longitudinal distributions of characteristic air-water flow parameters 

For all experiments, the longitudinal distributions of characteristic air-water flow properties were 

calculated, including the mean air concentration Cmean, the maximum bubble count rate in a cross 

section Fmax, the characteristic interfacial velocity V90 where C = 90%, the maximum turbulence 
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intensity in a cross section Tumax, the mean flow velocity Uw, the equivalent clear water flow depth 

d and the characteristic depth Y90 where C = 90%. The tabular data are presented in Appendix C 

(Tables C-1 and C-2). 

Figure 4-9 regroups some longitudinal distributions of dimensionless air-water flow parameters for 

several flow rates on the flat and pooled stepped spillway configurations. Figure 4-9A illustrates the 

mean air concentration Cmean as a function of the dimensionless distance from the inception point of 

air entrainment (x-LI)/dc, where x is the distance along the channel bottom and LI the longitudinal 

distance measured from the weir crest to the inception point of air entrainment. A comparison 

between the two stepped spillway configurations showed some small difference in terms of Cmean, 

but no clear trend (Fig. 4-9A). At some step edges, the mean air content appeared larger for the flat 

steps for a given flow rate, although the opposite trend was seen at the next step edge. For all 

experiments, The mean air content increased with increasing distance from the inception point and 

no uniform equilibrium value was reached in the present study (Fig. 4-9A). Overall, the mean air 

concentration data were in fairly close agreement between the flat and pooled stepped spillways, as 

previously shown with the comparison of the void fraction distributions (Fig. 4-1). 

A more distinctive difference was observed in terms of the maximum bubble count rate. Some 

longitudinal distributions of dimensionless bubble count rates Fmax×dc/Vc are illustrated as a 

function of (x-LI)/dc for several flow rates in Figure 4-9B. The bubble count rates were consistently 

larger on the flat stepped spillway for all flow rates and at all measured positions downstream of the 

inception point. This trend was consistent with the bubble frequency distribution data (Fig. 4-2). 

The present finding was consistent with some results on a slope of 8.9° (FELDER et al. 2012). 

Herein no uniform equilibrium was reached and the maximum bubble count rate increased with 

increasing distance from the inception point. 

Typical longitudinal distributions of the dimensionless interfacial velocity V90/Vc are illustrated in 

Figure 4-9C. For the pooled stepped spillway, V90 was larger for all discharges. The finding was 

consistent with the larger interfacial velocity distributions observed on the pooled stepped spillway 

(Fig. 4-3B). The result was significant and implied a lesser rate of energy dissipation on the pooled 

stepped spillway. This was in contrast to some findings on a 8.9° pooled stepped spillway 

(FELDER et al. 2012). 

Some longitudinal distributions of maximum turbulence intensity Tumax are shown in Fig. 4-9D as a 

function of the dimensionless distance from the inception point. As seen in Figure 4-9D, no 

significant differences between the two configurations were observed. Some data scatter existed and 

large turbulence levels were recorded. The findings were in contrast to the much larger turbulence 

intensities observed on a 8.9° pooled stepped spillway (FELDER & CHANSON 2012a; FELDER at 

al. 2012). 
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Fig. 4-9 – Comparison of longitudinal distributions of characteristic parameters for the flat and 

pooled stepped spillways (θ = 26.6°) 

(A) Mean air-concentration Cmean 
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(D) Characteristic maximum turbulence 

intensity Tumax 
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4.3 DISCUSSION 

The air-water flow properties on flat and pooled stepped spillways were compared systematically 

for a range of discharges 0.030 ≤ Q ≤ 0.113 m3/s in the transition and skimming flow regimes. The 

experiments demonstrated a strong flow aeration for both stepped spillway configurations 

downstream of the inception point. The comparative results showed similar void fraction 

distributions and mean air concentrations on the flat and pooled stepped spillways for the same flow 

rate. The turbulent intensities and the air bubble and water droplet chord sizes showed little 

difference between the flat and pooled steps. On the other hand, some large bubble count rates and 
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smaller interfacial velocities were observed on the flat stepped spillway for the same discharge. 

The results in terms of interfacial velocities were unexpected. For comparison, smaller interfacial 

velocities were observed on a 8.9° pooled stepped spillways (FELDER & CHANSON 2012a; 

FELDER et al. 2012), although the data of KÖKPINAR (2004) on a 30 stepped spillway showed 

some slightly larger interfacial velocities for the pooled stepped configurations. Table 4-4 

summarises the chute geometries tested with these three slopes: 8.9, 26.6 and 30. 

For all slopes, the data showed larger bubble frequencies on the flat stepped spillways. The largest 

differences were observed on the 8.9° stepped chute and the smallest on the 30° chute. Further 

differences were recorded in terms of the turbulence intensities on the 8.9° and 26.6° chutes. On the 

8.9° pooled stepped chute, some instationary air-water flow processes were observed associated 

with larger turbulence levels (FELDER & CHANSON 2012a). In the present study, the turbulence 

intensities were comparable for both stepped configurations. 

The data suggested that some differences between flat and pooled stepped spillway observations 

might be linked to the difference in slopes and in cavity shapes. Table 4-4 shows indeed the 

different ratios of pool weir height to step height w/h and weir height to step length w/l. For 

example, the ratio w/l was identical in the 8.9 and 26.6 slope studies, although the ratio w/h 

differed. 

The comparison of the air-water flow properties suggested the large impact of the channel slope on 

the air-water flow properties. The flat stepped chute was more exposed to flow instabilities in 

comparison to the steeper stepped spillways. The instabilities affected the flow velocities and the 

turbulent energy production processes as shown by FELDER & CHANSON (2012a). It is unknown 

if a stepped spillway with steep slope (e.g. θ = 26.6°) and a larger rate of pool weir height to step 

height (e.g. w/h = 1) would be subjected to similar instabilities. The poor weir length lw might also 

have a small effect on the air-water flow processes. 

 

Table 4-4 – Experimental investigations of pooled stepped spillway with comparative results 

between flat and pooled steps 

 

Reference Slope 
[°] 

h 
[m] 

l 
[m] 

w 
[m] 

lw 
[m] 

w/l 
[-] 

w/h 
[-] 

(1) (2) (3) (4) (5) (6) (7) (8) 
Present study 26.6 0.1 0.2 0.031 0.015 0.155 0.31 

FELDER et al. (2012) 8.9 0.05 0.319 0.05 0.015 0.157 1.0 
KÖKPINAR (2004) 30 0.06 0.104 0.03 0.026 0.288 0.5 

 

Notes: θ: channel slope; h: step height; l: step length; w: weir height; lw: pool weir length. 
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5. AIR-WATER FLOW PROPERTIES ON THE STEPPED SPILLWAYS 
WITH IN-LINE AND STAGGERED CONFIGURATIONS OF FLAT AND 

POOLED STEPS 

5.1 PRESENTATION 

Detailed air-water flow experiments were conducted on the stepped spillway configurations with in-

line and staggered configurations of flat and pooled steps (Fig. 5-1). The flow was complex, three-

dimensional and some flow instabilities in the form of sidewall standing waves and supercritical 

shock waves were observed (see section 3.3.4 and 3.5). The transverse variations of flow aeration 

led to some spatially-varying air-water flow properties in both longitudinal and transverse 

directions. Therefore the air-water flow measurements were conducted at three transversal locations 

(z/W = 0.25, 0.5 and 0.75) for each step edge. Fig. 5-1 shows a sketch of the stepped spillway 

configurations with in-line and staggered steps and highlights the measurement locations. 

For all experiments, the measurements in the direction y perpendicular to the spillway slope were 

performed from the step edge for the flat step section (y = 0) and from the pool weir edge for the 

pooled section (y = 0). On the channel centreline (z/W = 0.5), Figure 5-2 illustrates the position of 

the double-tip conductivity probe and the measurement started at the pool weir edge (y = 0). For all 

experiments, the absolute datum was set at the flat step edge and the air-water flow properties in 

this section are presented as functions of dimensionless distance perpendicular to the pseudo-bottom 

formed by the step edges (y+w)/dc. 

The air-water flow measurements were performed with a double-tip conductivity probe for 0.016 ≤ 

Q ≤ 0.113m3/s on both stepped spillway configurations. In section 5.2, the air-water flow properties 

are presented for the stepped spillway with in-line configuration of flat and pooled steps and in 

section 5.3 for the staggered configuration. A range of air-water flow properties were investigated 

including the distributions of void fraction, bubble count rate, interfacial velocity and turbulence 

intensity. The experimental results for the in-line and staggered stepped spillway configurations are 

compared with the air-water flow observations on flat and pooled stepped spillways respectively 

(section 4). Furthermore, some longitudinal distributions of characteristic air-water flow parameters 

are shown. The differences between the in-line and staggered stepped spillway configurations are 

discussed in section 5.4 and their performances are compared. All air-water flow properties for the 

stepped spillways with in-line and staggered configurations with flat and pooled steps are presented 

in Appendix D. 
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Fig. 5-1 – Sketch of stepped spillways with in-line and staggered configuration of flat and pooled 

steps (θ = 26.6°) and the three transverse measurement positions (z/W = 0.25, 0.5 and 0.75) 

 

 

Fig. 5-2 – Position of double-tip conductivity probe (Ø = 0.25 mm) on channel centreline (z/W = 

0.5) for the stepped spillways with in-line and staggered configurations of flat and pooled steps (θ = 

26.6°) 
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5.2 AIR-WATER FLOW PROPERTIES ON STEPPED SPILLWAY WITH IN-LINE 

CONFIGURATION OF FLAT AND POOLED STEPS 

5.2.1 Presentation 

The experiments on the stepped spillway with in-line configuration of flat and pooled steps were 

performed with a double-tip conductivity probe at three transverse positions for each step edge in 

the air-water flow region downstream of the inception point of free-surface aeration. The transverse 

locations on each step edge comprised the middle of the pooled stepped side (z/W = 0.25), the 

channel centreline (z/W = 0.5) and the middle of the flat step side (z/W = 0.75) (Fig. 5-1). The 

experiments were conducted in nappe, transition and skimming flows. Table 5-1 summarises the 

experimental flow conditions on the stepped spillway with in-line configuration of flat and pooled 

steps. Some characteristic results are presented in this section. The full data set is presented in 

Appendix D. 

 

Table 5-1 – Air-water flow measurements with a double-tip conductivity probe (Ø = 0.25 mm) for 

the stepped spillway with in-line configuration of flat and pooled steps (θ = 26.6°) 

 

Configuration dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Measurement 
at step edge 

Flow regime

(1) (2) (3) (4) (5) (6) 
0.5 0.016 1.39×105 2-10 NA 
0.7 0.030 2.30×105 2-10 TRA 
1.15 0.063 4.85×105 4-10 SK 
1.45 0.090 6.87×105 5-10 SK 

Stepped spillway with 
in-line configuration of 

flat and pooled steps 

1.7 0.113 8.72×105 7-10 SK 
 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; SK: skimming flow regime; TRA: transition flow 

regime; NA: nappe flow regime. 

 

5.2.2 Void fraction 

Some typical void fraction distributions are illustrated in Figure 5-3 for all step edges downstream 

of the inception point of air entrainment at the three transverse measurement locations. In Figure 5-

3A, the void fraction distribution is presented as a function of y/Y90 and compared with the 

advective diffusion equation for air bubbles (Eq. (4-3), section 4). The void fraction distributions 

for all transverse positions agreed well with the advective diffusion equation, but some differences 

in terms of void fraction distributions were observed in the transverse direction (Fig. 5-3A). The 
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data implied the largest depth-averaged void fraction in the pooled stepped side (lowest curves) and 

the lowest mean air content on the flat stepped side (upper curves). Some data scatter was observed 

for all data sets with the largest data scatter for the measurements on the pooled stepped side (Fig. 

5-3A). 

In Figure 5-3B, the void fraction data for the three transverse positions are shown as a function of 

(y+w)/dc for all step edges downstream of the inception point. The data sets were in reasonable 

agreement despite some scatter (Fig. 5-3B). The void fraction distributions were also compared 

with the corresponding data on flat and pooled stepped spillways for the same discharge. In Figure 

5-3B, these data are only shown at the downstream end of the spillway (step edge 10) on the 

channel centreline. The void fraction data for the in-line configuration were systematically in 

between the flat stepped spillway data and the pooled stepped spillway data. In the bubbly flow 

region (C< 0.3), the void fraction data tended to be larger on the flat stepped spillway compared to 

the data on the flat stepped side on the in-line configuration (Fig. 5-3B). The void fraction 

distribution for the pooled stepped spillway was above all other distributions including the pooled 

stepped side on the in-line configured stepped spillway (Fig. 5-3B). 

 

Fig. 5-3 – Void fraction distributions on the stepped spillway with in-line configuration of flat and 

pooled steps in skimming flows (θ = 26.6°) – Measurements at three transverse locations: z/W = 

0.25 (pooled stepped side), z/W = 0.5 (channel centreline), z/W = 0.75 (flat stepped side) 

(A) dc/h = 1.45, Q = 0.090 m3/s, Re = 6.87×105; Comparison with Eq. (4-3) 
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(B) dc/h = 1.15, Q = 0.063 m3/s, Re = 4.85×105; Comparison with flat and pooled stepped spillways 
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5.2.3 Bubble count rate 

The bubble count rate distributions showed characteristic shapes with a maximum bubble count rate 

in the intermediate flow region (0.3 < C < 0.7) and smaller levels of detected bubbles in the lower 

bubbly and upper spray regions. For all experiments, the maximum bubble count rates increased 

with increasing distance from the inception point of free-surface aeration. Some typical 

distributions of dimensionless bubble count rate F×dc/Vc are illustrated in Figure 5-4 as functions of 

y/Y90 and (y+w)/dc for all three transverse measurement positions. 

A comparison of bubble count rates in the transverse direction showed the largest bubble count 

rates in the pooled stepped side and the smallest for the flat stepped spillway side (Fig. 5-4). In 

Figure 5-4B, the bubble count rate distributions for the stepped spillway with in-line configuration 

with flat and pooled steps are further compared with some data sets at step edge 10 on the flat and 

pooled stepped spillways. Some differences were noted between the stepped spillway 

configurations (Fig. 5-4B). On the flat stepped spillway, the bubble count rates were significantly 

larger than on the flat stepped side of the in-line configuration for a given flow rate. The bubble 

count rates on the pooled stepped spillway were smaller compared to those on the pooled stepped 

side of the in-line stepped spillway for an identical discharge, but comparable in magnitude to the 

channel centreline data (Fig. 5-4B). 
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Fig. 5-4 – Dimensionless bubble count rate distributions on the stepped spillway with in-line 

configuration of flat and pooled steps in skimming flows (θ = 26.6°) – Measurements at three 

transverse locations: z/W = 0.25 (pooled stepped side), z/W = 0.5 (channel centreline), z/W = 0.75 

(flat stepped side) 
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5.2.4 Interfacial velocity 

The interfacial velocities were calculated for all data sets and some typical skimming flow data are 

shown in Figure 5-5. In Figure 5-5A, all dimensionless interfacial velocities V/V90 for all skimming 

flow data sets at the three transverse measurement positions are illustrated as a function of y/Y90. 

The distributions are compared with a 1/10th power law (N = 10) for y/Y90 < 1 and with a uniform 

profile for y/Y90 > 1 (Eq. (4-4) & (4-5), section 4). The interfacial velocity data were in relatively 

good agreement and compared well with the empirical equations indicating some form of self-

similarity. Some scatter was observed on the pooled stepped side for the smallest skimming flow 

rate. In the upper spray region, some deviation from the uniform profile was observed for the flat 

and pooled stepped sides (Fig. 5-5A).  

In Figure 5-5B, some typical dimensionless interfacial velocity distributions V/Vc are shown as a 

function of (y+w)/dc at the three transverse positions and for the corresponding flat and pooled 

stepped spillway experiments. For all data sets, the interfacial velocities increased with increasing 

longitudinal distance from the inception point of free-surface aeration. The largest velocities were 

observed on the flat stepped side and the slowest on the pooled stepped side of the in-line stepped 

spillway configuration. The velocity distributions showed some differences in the transverse 

direction. That is, the interfacial velocities on the flat stepped side for the in-line stepped spillway 

were consistently larger than those observed on the pooled stepped side. Lastly the data implied 

some discharge concentration on the flat side of the in-line stepped chute. 

 

5.2.5 Turbulence intensity 

The turbulence intensity data showed overall some large turbulent levels above the stepped chute 

with little difference between the transverse measurement locations on the in-line stepped spillway 

(Fig. 5-6). Figure 5-6 illustrates some typical data at several step edges, where Tu is shown as 

function of y/Y90 and (y+w)/dc (Fig. 5-6A & 5-6B respectively.) Some data obtained during the flat 

and pooled stepped spillway experiments are further included for comparison in Figure 5-6B. All 

data showed the largest turbulence levels in the intermediate flow region (0.3 < C < 0.7) and some 

smaller turbulence in the lower bubbly and upper spray regions. The turbulence intensity 

distributions for the flat and pooled stepped sides on the in-line stepped spillway showed similar 

results, with some larger turbulence levels at the first two step edges downstream of the inception 

point. Further downstream, the turbulence intensities on the flat and pooled stepped sides indicated 

smaller turbulence levels compared to the centreline data. 
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Fig. 5-5 – Dimensionless interfacial velocity distributions on the stepped spillway with in-line 

configuration of flat and pooled steps in skimming flows (θ = 26.6°) – Measurements at three 

transverse locations: z/W = 0.25 (pooled stepped side), z/W = 0.5 (channel centreline), z/W = 0.75 

(flat stepped side) 

(A) All skimming flow data sets; Comparison with Eq. (4-4) & (4-5) 
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Fig. 5-6 – Turbulence intensity distributions on the stepped spillway with in-line configuration of 

flat and pooled steps in skimming flows (θ = 26.6°) – Measurements at three transverse locations: 

z/W = 0.25 (pooled stepped side), z/W = 0.5 (channel centreline), z/W = 0.75 (flat stepped side) 

(A) dc/h = 1.45, Q = 0.090 m3/s, Re = 6.87×105 
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5.2.6 Longitudinal distributions of characteristic air-water flow parameters 

Some characteristic air-water flow properties were calculated for all skimming flow data, including 

the mean air concentration Cmean, the characteristic interfacial velocity V90 and the maximum bubble 

count rate Fmax. Their longitudinal distributions are illustrated in Figure 5-7 for all transverse 

positions. Note that Figure 5-7 includes both the transverse data and the transverse-averaged data 

(symbols & lines). The transverse averaging of the data is discussed in Appendix F. The 

corresponding air-water flow parameters on the flat and pooled stepped spillways are also included 

in Figure 5-7 for the same flow rates. All the air-water flow parameters are reported in a tabular 

form in Appendix D, together with further air-water flow parameters and data sets for the nappe and 

transition flow regimes. 

In Figure 5-7A, some longitudinal distributions of mean air concentration Cmean are presented for all 

step edges downstream of the inception point in the skimming flow regime. The observations 

showed some large differences of mean air content in the transverse direction with the largest 

values of Cmean on the pooled stepped side and the smallest for the flat stepped side. The comparison 

with flat and pooled stepped spillway data suggested that the transverse averaged data on the in-line 

stepped spillway yielded some mean void fraction levels close to the flat stepped chute results. 

The longitudinal distributions of the characteristic interfacial velocity V90 are shown in Figure 5-7B 

for all skimming flow data at the three transverse positions. The transverse averaged data are also 

included as well as some flat and pooled stepped spillway data. The results showed some large 

differences in interfacial velocity V90 between the transverse positions at each step edge. The largest 

velocities V90 were observed on the flat stepped side of the in-line configurations of flat and pooled 

steps and the smallest on the pooled stepped side. This finding was consistent with the velocity 

profiles shown in Figure 5-5. The transverse averaged velocity V90 data compared reasonably well 

with the data observed on the pooled stepped spillway (Fig. 5-7B). 

The maximum bubble count rate values Fmax for all skimming flow data are presented in Figure 5-

7C for all step edges downstream of the inception point. Some significant differences were seen 

between the transverse positions: much larger bubble count rates were recorded on the pooled 

stepped side compared to the flat stepped side (Fig. 5-7C). The transverse averaged data were 

relatively close to the maximum bubble count rate observed on channel centreline as well as to the 

pooled stepped spillway data. 

All data sets showed increasing values Cmean, Fmax and V90 with increasing distance from the 

inception point of air entrainment. That is, uniform equilibrium was not achieved at the chute 

downstream end for all investigated flow rates. 
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Fig. 5-7 – Longitudinal distributions of characteristic parameters on the stepped spillway with in-

line configuration of flat and pooled steps in skimming flows (θ = 26.6°) – Measurements at three 

transverse locations: z/W = 0.25 (pooled stepped side), z/W = 0.5 (channel centreline), z/W = 0.75 

(flat stepped side) - Comparison with transverse averaged parameters and flat and pooled stepped 

spillways 
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(B) Characteristic interfacial velocity V90 
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(C) Maximum bubble count rate Fmax 
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5.2.7 Air-water flow properties in nappe flows 

For a discharge in the nappe flow regime (dc/h = 0.5), the air-water flow properties were measured 

at the three transverse positions and the results are illustrated in Figure 5-8 in dimensionless form as 

a function of (y+w)/dc. In Figure 5-8, all air-water flow properties reflected the strong three-

dimensional and instable nature of the flow, earlier illustrated and discussed in section 3.4. 

The void fraction distributions are presented in Figure 5-8A at several step edges downstream of the 

inception point. For the flat stepped side (z/W = 0.75), the void fraction distributions exhibited 

similar shapes to those seen in transition flows on flat stepped spillways. On the channel centreline 

and pooled stepped side, the void fraction distributions showed some scattered profiles. The void 

fraction profiles seemed close to shaped observed in jets in the nappe flow regime (TOOMBES 

2002; TOOMBES & CHANSON 2008a) with high aeration levels for the entire air-water flow 

column. Similarly, the dimensionless bubble count rate F×dc/Vc distributions showed a broad range 

of shapes as illustrated in Figure 5-8B. The bubble frequency distributions showed profiles with 

high bubble count rates in the flow region close to the pooled step weir. On the flat stepped side, the 

bubble count rates were significantly larger and the distributions showed some shapes comparable 

to those observed on flat stepped spillways with maxima in the intermediate flow region (Fig. 5-

8B). 

The interfacial velocities on the flat stepped side showed some typical profiles with a shape close to 

a power law and with increasing velocity with increasing longitudinal distance from the inception 

point. On the pooled stepped side and channel centreline, the interfacial velocity data showed a 

slower flow motion. It is believed that the velocity data reflected the strong instabilities of the flow 

with jets impacting onto the pooled stepped side and the channel centreline. In Figure 5-8C, some 

typical dimensionless interfacial velocity V/Vc distributions are shown at the three transverse 
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positions. Figure 5-8C highlights also the significant differences in transverse direction for a given 

step edge and flow rate, highlighting the three-dimensional nature of the flow. 

Some turbulence intensity Tu data are presented in Figure 5-8D. On the flat stepped side, the 

turbulence intensity distributions showed some typical shapes observed in skimming flows on a flat 

stepped spillway with some large turbulence levels in the intermediate flow region and smaller 

values of Tu in the lower bubbly and upper spray regions. On the pooled stepped side and on the 

channel centreline, the turbulence levels were significantly larger with a lot of data scatter. The 

large turbulence levels were likely linked with the flow instabilities on the pooled stepped side of 

the in-line stepped spillway. 

 

Fig. 5-8 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps in nappe flows (θ = 26.6°) – Measurements at three transverse locations: z/W = 0.25 

(pooled stepped side), z/W = 0.5 (channel centreline), z/W = 0.75 (flat stepped side) - Flow 

conditions: dc/h = 0.50, Q = 0.016 m3/s, Re = 1.39×105 
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5.2.8 Air-water flow properties in transition flows 

The air-water flow properties were also measured in the transition flow regime and some results are 

presented in Figure 5-9. They are further compared with the corresponding air-water flow property 

distributions recorded on the channel centreline for the flat and pooled stepped spillways. 

The void fraction distributions are illustrated in Figure 5-9A for several step edges downstream of 

the inception point. The void fraction distributions on the flat stepped side showed a S-shape profile 

commonly observed in skimming flows. On the pooled stepped side, the distributions of void 

fraction showed a flat straight profile more typical of a transition flow sub-regime TRA1. The void 

fraction distributions on the channel centreline showed also some scatter. For the first step edges 

immediately downstream of the inception point, the void fraction distributions on the channel 

centreline and pooled stepped side exhibited a profile corresponding to a jet flow, which was 

consistent with the visual observations. 

The dimensionless distributions of bubble count rate F×dc/Vc are presented in Figure 5-9B. They 

showed some bubble frequencies at all transverse positions which were comparable to the flat and 

pooled stepped spillway observations. Larger bubble frequencies were seen on the flat stepped side 

of the in-line stepped spillway. On the pooled stepped side, the bubble count rates were 

significantly smaller and appeared not to increase with longitudinal distance at the downstream end 

of the channel. The bubble frequencies for the channel centreline were almost identical to the data 

on the flat and pooled stepped spillways. 

The dimensionless distributions of  interfacial velocity V/Vc showed some data scatter across the 

channel width (Fig. 5-9C). On the flat stepped side, some significantly larger velocities were 

recorded compared to the pooled stepped side. The velocities V/Vc on the flat stepped side were 

comparable to the velocities on the flat stepped spillway for the same flow rate. The interfacial 

velocity distributions on the channel centreline showed some large scatter and the velocities were 

much smaller than on the flat stepped side, as well as the flat and pooled stepped spillways. 

The turbulence intensity data exhibited some strong scatter (Fig. 5-9D) with much larger turbulence 

levels on the first flat and pooled step edges immediately downstream of the inception point. 

Further downstream, the turbulence levels on the channel centreline and the flat stepped side are in 

good agreement with the turbulences on the flat and pooled stepped spillways with some maxima in 

the intermediate flow region. The turbulence intensities for the pooled stepped side showed larger 

values for the entire flow column. 
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Fig. 5-9 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps in transition flow sub-regime TRA1 (θ = 26.6°) – Measurements at three transverse 

locations: z/W = 0.25 (pooled stepped side), z/W = 0.5 (channel centreline), z/W = 0.75 (flat 

stepped side) - Flow conditions: dc/h = 0.70, Q = 0.030 m3/s, Re = 2.30×105 
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5.3 AIR-WATER FLOW PROPERTIES ON STEPPED SPILLWAY WITH STAGGERED 

CONFIGURATION OF FLAT AND POOLED STEPS 

5.3.1 Presentation 

Some experiments were performed on the stepped spillway with staggered configuration of flat and 

pooled steps with the double-tip conductivity probe at three transverse positions in the air-water 

flow region. The transverse positions on each step edge comprised z/W = 0.25, z/W = 0.5 and z/W 

= 0.75. For the flat steps, the first measurement position (y = 0) was defined at the step edge while, 

for the pooled steps, the first measurement position was the pool weir edge. 

The experiments were conducted in transition and skimming flows. Table 5-2 summarises the 
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experimental flow conditions. The air-water flow properties were calculated and some characteristic 

results are presented in this section. The full data set is presented in Appendix D. 

 

Table 5-2 – Air-water flow measurements with a double-tip conductivity probe (Ø = 0.25 mm) for 

the stepped spillway with staggered configuration of flat and pooled steps (θ = 26.6°) 

 

Configuration dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Measurement 
at step edge 

Flow regime

(1) (2) (3) (4) (5) (6) 
0.7 0.030 2.30×105 3-10 TRA 
1.15 0.063 4.85×105 5-10 SK 
1.45 0.090 6.87×105 6-10 SK 

Stepped spillway with 
staggered configuration 
of flat and pooled steps 

1.7 0.113 8.72×105 7-10 SK 
 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; SK: skimming flow regime; TRA: transition flow 

regime. 

 

5.3.2 Void fraction 

Some typical void fraction distributions are illustrated in Figure 5-10 for the three transverse 

positions and at all step edges downstream of the inception point in skimming flows for the 

staggered stepped spillway configuration. In Figure 5-10A, the distributions of void fraction are 

shown as a function of y/Y90. In Figure 5-10B, they are presented as a function of (y+w)/dc. Overall 

the void fraction data reflected the staggered configuration of flat and pooled steps and the shapes 

of void fraction profiles tended to alternate from step edge to step edge at z/W = 0.25 and z/W = 

0.75. On the channel centreline (z/W = 0.5), the void fraction distributions were more uniform 

along the stepped chute. 

The void fraction data for the two outside channel positions were consistently above the channel 

centreline data indicating a larger mean air concentration on the centre of the spillway (Fig. 5-10A). 

The void fraction distributions matched closely the advective diffusion equation for air bubbles (Eq. 

(4-3), section 4) and the theoretical curves are added for some step edges in Figure 5-10A. The data 

presented in Figure 5-10B illustrated the alternation of flat and pooled steps every second step edge. 

The void fraction data in the staggered configuration tended to be close to the results observed in 

the pooled stepped spillway configuration (Fig. 5-10B). 
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Fig. 5-10 – Void fraction distributions on the stepped spillway with staggered configuration of flat 

and pooled steps in skimming flows (θ = 26.6°) – Measurements at three transverse positions: z/W 

= 0.25, z/W = 0.5 (channel centreline) and z/W = 0.75 

(A) dc/h = 1.70, Q = 0.113 m3/s, Re = 8.72×105; Comparison with Eq. (4-3) 
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5.3.3 Bubble count rate 

The shapes of bubble count rate distributions were typical to those seen in skimming flows with 

bubble count rate maxima in the intermediate flow region (0.3 < C < 0.7) and smaller bubble 

frequencies in the lower bubbly and upper spray regions. The elevation of the maximum bubble 

count rate varied in agreement with the alternation of flat and pooled steps every second step edge 

(Fig. 5-11A). Some differences were also visible between the three transverse positions, showing 

some larger numbers of entrained bubbles on the pooled steps and the smallest bubble count rate on 

channel centreline. For all experiments, the maximum bubble count rate increased with increasing 

downstream distance from the inception point. The comparison with the flat and stepped spillway 

data showed some much larger bubble count rates at all transverse positions on the stepped spillway 

with staggered configuration of flat and pooled steps (Fig. 5-11B). Some typical dimensionless 

bubble count rate F×dc/Vc distributions are illustrated in Figure 5-11 as functions of y/Y90 and 

(y+w)/dc, for the skimming flow experiments.  

 

Fig. 5-11 – Dimensionless bubble count rate distributions on the stepped spillway with staggered 

configuration of flat and pooled steps in skimming flows (θ = 26.6°) – Measurements at three 

transverse positions: z/W = 0.25, z/W = 0.5 (channel centreline) and z/W = 0.75 

(A) dc/h = 1.15, Q = 0.063 m3/s, Re = 4.85×105 
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(B) dc/h = 1.70, Q = 0.113 m3/s, Re = 8.72×105 - Comparison with flat and pooled stepped 

spillways 
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5.3.4 Interfacial velocity 

The interfacial velocities were calculated for all skimming flow discharges at the three transverse 

positions. Figure 5-12 presents some dimensionless results. For all interfacial velocities, some 

differences were observed between successive step edges at all transverse positions. In Figure 5-

12A, the dimensionless interfacial velocities V/V90 are shown as functions of y/Y90 and the data are 

compared with the 1/10th power law (Eq. (4-4), section 4). On the staggered stepped spillway, the 

velocity were in reasonably close agreement with the power law, despite some scatter especially for 

the data on the channel centreline.  

The dimensionless interfacial velocity V/Vc data are illustrated in Figure 5-12B as a function of 

(y+w)/dc. At a given step edge, the data showed some larger interfacial velocities on channel 

centreline. Further the interfacial velocities at z/W = 0.75 tended to be larger than those at z/W = 

0.25. This difference might be linked with the first step cavity configuration, being a flat step for 

z/W = 0.75 and a pooled step edge for z/W = 0.25. The corresponding interfacial velocities for the 

flat and pooled stepped spillways were added in Figure 5-12B. Overall the channel centreline 

velocities for the staggered stepped spillway were comparable to the pooled stepped spillway 

velocities. 
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Fig. 5-12 – Dimensionless interfacial velocity distributions on the stepped spillway with staggered 

configuration of flat and pooled steps in skimming flows (θ = 26.6°) – Measurements at three 

transverse positions: z/W = 0.25, z/W = 0.5 (channel centreline) and z/W = 0.75 

(A) All skimming flow data sets; Comparison with Eq. (4-4) & (4-5) 
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5.3.5 Turbulence intensity 

Some typical turbulence intensity distributions are illustrated in Figure 5-13 as functions of y/Y90 

and (y+w)/dc. All distributions showed some large turbulence levels in the intermediate flow region 

(0.3 < C < 0.7) and smaller values in the lower bubbly and upper spray regions. However the 

distributions of turbulence intensities exhibited some shapes which differed between the flat and 

pooled sides of the staggered stepped chute. The differences were mostly seen immediately 

downstream of the inception point and lesser transverse differences were seen further downstream. 

 

5.3.6 Longitudinal distributions of characteristic air-water flow parameters 

Some longitudinal distributions of characteristic air-water flow parameters are presented in Figure 

5-14 for the skimming flow data sets. All characteristic air-water flow parameters are listed in a 

tabular manner in Appendix D. 

The mean air concentration Cmean is shown in Figure 5-14A at the three transverse positions for all 

step edges downstream of the inception point. The transverse averaged data are added. The mean air 

concentrations showed some strong variations from step edge to step edge linked with the 

alternation of flat and pooled steps on each outside. On the channel centreline, the mean void 

fraction Cmean data were the largest highlighting the strong local aeration. The mean void fraction 

data for the flat and pooled stepped spillways are included in Figure 5-14A. Overall, the transverse 

averaged mean air concentration on the staggered stepped spillway exhibited larger values than 

those observed on flat and pooled stepped spillway configurations for the same flow rate. 

The characteristic interfacial velocity V90 data are shown in Figure 5-14B. The interfacial velocities 

showed some longitudinal variation from step edge to step edge linked with the alternation of flat 

and pooled steps. With increasing distance from the inception point, the interfacial velocities 

increased for all experiments. Some velocity differences were observed between the different 

transverse positions with some scatter for all data sets. Overall the characteristic velocity V90 was 

the largest on the channel centreline, while the data at z/W = 0.75 were mostly greater than those at 

z/W = 0.25. The finding was consistent with the velocity profile observations (Fig. 5-12B). The 

transverse averaged velocities V90 showed a relatively close agreement with the centreline 

interfacial velocity data. A comparison indicated a relatively close agreement between the 

transverse averaged data and the flat stepped spillway for the smallest skimming flows rates. For the 

largest flow rates, the transverse averaged values of V90 were closer to the pooled stepped spillway 

data (Fig. 5-14B). 
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Fig. 5-13 – Turbulence intensity distributions on the stepped spillway with staggered configuration 

of flat and pooled steps in skimming flows (θ = 26.6°) – Measurements at three transverse 

positions: z/W = 0.25, z/W = 0.5 (channel centreline) and z/W = 0.75 

(A) dc/h = 1.70, Q = 0.113 m3/s, Re = 8.72×105 
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The longitudinal distributions of maximum bubble count rate Fmax are presented in Figure 5-14C for 

the three transverse positions together with the transverse averaged data. The largest bubble count 
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rate data were observed at z/W = 0.25 and the smallest at z/W = 0.75 for all skimming flow data 

sets. The differences might be linked with the different first step cavity geometry: i.e., pooled step 

at z/W = 0.25 and flat step for z/W = 0.75. The transverse averaged values of Fmax were slightly 

smaller compared to the maximum bubble count rates on the channel centreline. The data for the 

flat and pooled stepped spillway configurations are included in Figure 5-14C. Overall the transverse 

averaged data showed relatively close agreement with the pooled stepped spillway data. For all data 

sets, the bubble count rates increased with increasing downstream distance from the inception point 

and no uniform equilibrium was achieved in the present configuration. 

 

Fig. 5-14 – Longitudinal distributions of characteristic parameters on the stepped spillway with 

staggered configuration of flat and pooled steps in skimming flows (θ = 26.6°) – Measurements at 

three transverse positions: z/W = 0.25, z/W = 0.5 (channel centreline) and z/W = 0.75 Comparison 

with transverse averaged parameters and flat and pooled stepped spillways 
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(C) Maximum bubble count rate Fmax 
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5.3.7 Air-water flow properties in transition flows 

For a transition flow rate (dc/h = 0.7), some detailed air-water flow measurements were performed 

at all step edges downstream of the inception point. The resulting distributions of void fraction C, 

bubble count rate F, interfacial velocity V and turbulence intensity Tu are illustrated in Figure 5-15 

as functions of (y+w)/dc. The flat and pooled stepped spillway data at the downstream end are 

added for comparison (Fig. 5-15). All the data presented a range of scatter reflecting the existence 

of flow instabilities as well as the wavy three-dimensional flow patterns in the transition flow. 

The void fraction distributions showed some profiles typical of transition flows with some flat 

shape (Fig. 5-15A). The alternation of flat and pooled steps induced some rapid changes in void 

fraction distribution shapes with downstream distance. 

In Figure 5-15B, some typical distributions of dimensionless bubble count rate F×dc/Vc are 

presented. The data showed some strong variations in the longitudinal and transverse directions. 

Close to the inception point of air entrainment, the shapes of bubble count rate distributions differed 

from most profiles observed next to the downstream end of the staggered configuration. At the 

downstream end, some larger bubble count rates were observed in the intermediate flow region (0.3 

< C < 0.7) as seen on flat and pooled stepped spillways (Fig. 5-15B). Interestingly the bubble count 

rates on the channel centreline did not increase with increasing downstream distance. At z/W = 0.25 

and 0.75, the bubble count rates were slightly larger, but the data did not show a typical increase in 

bubble count rates with increasing downstream distance as observed with other stepped 

configurations. 

The dimensionless distributions of interfacial velocity V/Vc are shown in Figure 5-15C at the three 

transverse positions. Some strong data was observed with the largest interfacial velocities for z/W = 

0.75, corresponding to the flat stepped side of the staggered stepped spillway at the first step cavity. 
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The interfacial velocities for z/W = 0.25 and on channel centreline were quantitatively close, and 

smaller than the velocities observed on both flat and pooled stepped spillways (Fig. 5-15C). 

The distributions of the turbulence intensities are illustrated in Figure 5-15D for all data sets in the 

transition flow rate. The largest turbulence levels were recorded for the pooled step edges just 

downstream of the inception point. Overall the turbulence intensities were slightly larger compared 

to those observed in skimming flows and transition flows on the flat and pooled stepped spillways. 

The turbulence intensity distributions changed with downstream distance in a manner reflecting the 

alternations of flat and pooled steps on the staggered stepped chute, while the centreline data were 

almost uniform. 

 

Fig. 5-15 – Air-water flow properties on the stepped spillway with stepped spillway with staggered 

configuration of flat and pooled steps in skimming flows (θ = 26.6°) – Measurements at three 

transverse positions: z/W = 0.25, z/W = 0.5 (channel centreline) and z/W = 0.75: dc/h = 0.70, Q = 

0.030 m3/s, Re = 2.30×105 
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(B) Bubble count rate distributions 
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(C) Interfacial velocity distributions 
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(D) Turbulence intensity distributions 
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5.4 SUMMARY AND DISCUSSION 

Some extensive air-water flow measurements were conducted on the stepped spillways with in-line 

and staggered configurations of flat and pooled steps. Most experiments were performed in the 

skimming flow regime, although a few experiments were conducted in transition and nappe flows. 

The flows were highly three-dimensional and the measurements were conducted at three transverse 

positions at each step edge downstream of the inception point. 

The physical experiments highlighted the complexity of the air-water flow and its three-dimensional 

nature. For all flow rates, some differences in air-water flow properties were recorded between the 

three transverse locations. With increasing discharges and increasing distance downstream of the 

inception point the differences tended to become lesser. In skimming flows, the void fraction and 

interfacial velocity distributions for both stepped spillways agreed well with the advective diffusion 

equation of air-bubbles and the power law respectively for all measurement locations. Some strong 

turbulence levels were observed reflecting the existence of flow instabilities and flow singularities 

on the complex stepped spillway configurations.  

For the smaller flow rates in the nappe and transition flow regimes, some strong instabilities and 

data scatter were observed, with significant differences in air-water flow properties across the chute. 

The differences in air-water flow properties across the channel width were observed for all 

discharges in both in-line and staggered stepped spillway configurations. Overall these complex 

stepped spillway designs cannot be recommended for a typical stepped spillway design because of 

the flow instabilities. 
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6. ENERGY DISSIPATION AND FLOW RESISTANCE ON THE STEPPED 
SPILLWAYS 

6.1 RESIDUAL HEAD AND ENERGY DISSIPATION 

For the design engineers, it is critical to quantify accurately the rate of energy dissipation above the 

stepped chute and the residual energy at the downstream end of the stepped spillway. In this section, 

the rate of energy dissipation and the residual energy were estimated for all stepped spillway 

configurations. The data were calculated based upon the detailed air-water flow measurements with 

the double-tip conductivity probe. The rate of energy dissipation H/Hmax expressed the percentage 

of total energy loss along the stepped spillway relative to the upstream total head Hmax: 

 damcmax Hd
2

3
H   (6-1) 

where Hdam is the dam height and dc the critical flow depth. The total head loss H was estimated 

as: H = Hmax – Hres in which the residual head Hres was: 
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where d is the equivalent clear water flow depth, θ the channel slope, Uw the flow velocity (Uw = 

q/d), w the pool weir height (w = 0 for a flat step), q is the water discharge per unit width. Note that 

the effects of velocity correction coefficient were neglected in first approximation, Equations (6-1) 

and (6-2) apply to the flat and pooled stepped spillways and the calculations were performed at the 

last step edge (i.e. step edge 10). 

For the stepped spillways with in-line and staggered configurations of flat and pooled stepped steps, 

the residual head was averaged in the transverse direction: 
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where the subscripts 0.25, 0.5 and 0.75 refer to the three transverse measurement locations, dlocal is 

the local equivalent clear water flow depth and Ulocal is the local flow velocity estimated as Ulocal = 

qlocal/dlocal with: 

  
90Y

0

local dy)C1(Vq  (6-4) 

A sensitivity analysis of the transverse averaging method was conducted and some details are 
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presented in Appendix F. 

The data in terms of rate of energy dissipation are presented in Figure 6-1 as a function of the 

dimensionless drop in elevation between the broad-crested weir and the measured step edge zo. In 

Figure 6-1, the present data are compared with the experimental data of FELDER et al. (2012) 

down 8.9 flat and pooled stepped spillways, and some reanalysed data of THORWARTH (2008) 

and KÖKPINAR (2004) on stepped spillways with 14.6° and 30° slope respectively (Table 6-1). 

The present data ( = 26.6º) showed a larger rate of energy dissipation on the flat stepped spillway 

compared to the other configurations in the skimming flow regime. In the transition flows, the 

pooled stepped spillway showed the largest rate of energy dissipation (Fig. 6-1). 

 

Fig. 6-1 - Rate of energy dissipation at the downstream end of the flat and pooled stepped chutes - 

Comparison of results between the present stepped spillway configurations, data of FELDER et al. 

(2012) and re-analysed data of THORWARTH (2008) and KÖKPINAR (2004) 
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Pooled steps  ( = 14.6°, w/h = 1, w/l = 0.26) - THORWARTH (2008)

 

 

The present findings contradicted the observations by FELDER et al. (2012) and THORWARTH 

(2008) on 8.9 and 14.6 stepped chutes: these studies observed the largest rate of energy 

dissipation rates on the pooled stepped spillway configurations. THORWARTH (2008) investigated 

different ratios of pool weir height w to step height h, and pool weir height w to step length l. The 

re-analysed data ( = 8.9 & 14.6) showed larger energy dissipation for all pooled stepped spillway 
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experiments. The re-analysis of KÖKPINAR's (2004) data showed on the other hand little 

difference between the flat and pooled stepped spillway performances. The data of KÖKPINAR 

(2004) showed a smaller decrease in energy dissipation rate with increasing discharge, compared to 

all other data sets (Fig. 6-1). On a 30º slope, TAKAHASHI et al. (2008) showed comparatively 

larger rate of energy dissipation on the flat stepped chute than on the pooled steps, and the finding 

was observed systematically for a range of relative pool heights (0.2 < w/h < 1). 

 

Table 6-1 - Experimental studies of flat and pooled stepped spillways: pooled step configuration 

details 

 

Reference Slope h w/h w/l W 
 [º] [m]   [m] 

(1) (2) (3) (4) (5) (6) 
KÖKPINAR (2004) 30.0 0.06 0.50 0.288 0.50 
THORWARTH (2008) 14.6 0.05 0.4 

0.6 
1 

0.105 
0.156 
0.261 

0.50 

TAKAHASHI et al. 
(2008) 

30 0.20 0.2 - 1 0.11 - 0.58 0.40 

FELDER et al. (2012) 8.9 0.05 1.0 0.157 0.50 
Present study 26.6 0.10 0.31 0.155 0.52 

 

The residual head data are illustrated in Figure 6-2, in which the present data are compared with 

earlier studies (Table 6-1). The dimensionless residual head Hres/dc is shown as a function of the 

dimensionless discharge dc/h (Fig. 6-2). The present data showed the smallest residual head for the 

flat stepped spillway: i.e., Hres/dc ≈ 3.1 in the skimming flow regime. On the pooled stepped 

spillway, the residual head was larger: i.e., Hres/dc ≈ 3.7. For the stepped spillways with in-line and 

staggered configurations of flat and pooled steps, larger residual head data were obtained, with a 

significant data scatter. 

The data of FELDER et al. (2012) and THORWARTH (2008) showed smaller residual heads on the 

pooled stepped spillways with 8.9 and 14.6 slopes, while the dimensionless residual head 

remained almost constant for the investigated discharges (Fig. 6-2). The data of KÖKPINAR (2004) 

yielded some much larger residual energy for both flat and pooled stepped spillways down the 30 

slope. The authors do not have a physical explanation to date. However the residual head for the flat 

stepped spillway was smaller for all discharges. This observation was in agreement with the present 

findings of smaller residual head for the flat stepped spillway. 

Overall the present analysis implied that the chute slope had a large impact upon the energy 

dissipation performances. On the steeper slopes (26.6° and 30°), a smaller residual energy was 
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achieved on the flat stepped spillway configuration, while the residual energy was smaller for the 

pooled stepped spillway configuration on the flat slopes (8.9° and 14.6°). 

 

Fig. 6-2 - Dimensionless residual energy at the downstream end of flat and pooled stepped chutes - 

Comparison of present results with data of FELDER et al. (2012) and re-analysed data of 

THORWARTH (2008), KÖKPINAR (2004) 
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Staggered configuration ( = 26.6°)
Flat steps ( = 8.9°) - FELDER et al. (2012)
Pooled steps  ( = 8.9°) - FELDER et al. (2012)

Flat steps  ( = 30°) - KÖKPINAR (2004)
Pooled steps  ( = 30°) - KÖKPINAR (2004)
Flat steps  ( = 14.6°) - THORWARTH (2008)
Pooled steps  ( = 14.6°, w/h = 0.4) - THORWARTH (2008)
Pooled steps  ( = 14.6°, w/h = 0.6) - THORWARTH (2008)
Pooled steps  ( = 14.6°, w/h = 1) - THORWARTH (2008)

 

 

6.2 FLOW RESISTANCE 

On stepped spillways, some significant form losses are caused by the steps (CHANSON 2001). 

Some additional flow resistance might be caused by the pool weir on pooled stepped spillways. The 

flow resistance is commonly expressed in the form of a Darcy-Weisbach friction factor fe 

(RAJARATNAM 1990; CHANSON 2001). The friction factor on a stepped spillway is a average 

dimensionless shear stress between the air-water main stream and the step cavities. Herein the 

Darcy-Weisbach friction factor was calculated as: 
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where the friction slope equals Sf = - ∂H/∂x, H is the total head, x is the distance in flow direction, 

C is the void fraction, Y90 is the flow depth where C = 90%, d is the equivalent clear water flow 

depth and Uw is the flow velocity (CHANSON 2001; CHANSON et al. 2002). Equation (6-4) was 

used to calculate the equivalent Darcy-Weisbach friction factors for the flat and pooled stepped 

spillway configurations. For the in-line and staggered configurations of flat and pooled stepped 

steps, the friction factor was based upon a transverse averaging of the air-water flow properties: 
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where the subscripts 0.25, 0.5 and 0.75 refer to z/W, and dlocal and Ulocal are the clear-water flow 

depth and flow velocity at the transverse location z/W. Further details on the transverse averaging 

approach are presented in Appendix F. 

The friction factor results are illustrated in Figure 6-3 as a function of the dimensionless step cavity 

roughness height (h+w)×cosθ/DH, where DH is the hydraulic diameter. For the stepped spillways 

with in-line and staggered configuration of flat and pooled steps, the step roughness cavity height 

was averaged in the transverse direction. All present data showed some scatter within typically 0.15 

< fe < 0.28 for the skimming flows (Fig. 6-3). There was no clear trend in terms of flow resistance. 

Larger friction factors were observed for the smallest flow rates for all stepped spillway 

configurations: i.e., fe ≈ 0.3 (small flow rates). 

The present data were compared with earlier studies on flat slopes (Fig. 6-3). On flat slopes (8.9 

and 14.6), the friction factors were significantly smaller on the flat stepped spillways compared to 

the pooled stepped spillways. That is, the friction factor on the flat stepped spillways was fe ≈ 0.1. 

For the 14.6° pooled stepped spillway, fe ≈ 0.19 and while fe  0.3 on the 8.9° pooled stepped 

spillway. 

In the present study ( = 26.6), the pooled weir did not increase the flow resistance, contrarily to 

earlier flat slope observations. That is, the present data showed little effect of the pools upon the 

friction factor despite some data scatter. Although the weir height did not affect the flow resistance 

for the slope of 26.6°, it would be interesting to investigate the effect of larger weir height for the 

same channel slope. 
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Fig. 6-3 - Darcy friction factors on flat and pooled stepped spillways - Comparison between present 

data and data of THORWARTH (2008) and FELDER et al. (2012) 
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6.3 DISCUSSION 

The present results indicated that the rate of energy dissipation was smaller on the pooled stepped 

spillway compared to the flat steps while the residual energy was larger. This finding was in 

contrast to experimental observations on 14.6° and 8.9° stepped chutes (THORWARTH (2008, 

FELDER et al. 2012). That is, the channel slope had a significant effect on the energy dissipation 

and the effect of the pool weir appeared to be reduced on steeper stepped chutes. On pooled stepped 

spillways with flat slopes ( = 8.9º & 14.6º), some instabilities were observed and these might have 

enhanced the energy dissipation performances. The studies of THORWARTH (2008) ad 

TAKAHASHI et al. (2008) showed that the pool weir height did not affect the rate of energy 

dissipation significantly. 

The interpretation of the experimental results for the stepped spillway configurations with in-line 

and staggered flat and pooled steps was more difficult. The flow was highly three-dimensional and, 

the residual energy varied significantly in the transverse direction. While some transverse averaging 



83 

was used herein to compare the energy dissipation performances, the residual energy at some 

transverse locations was much larger compared to the averaged values. Simply the present findings 

for the staggered and in-line stepped spillway configurations should not be used for design 

guidelines and can only provide a rough estimate of the average energy dissipation rate. These 

stepped spillway configurations are further affected by some flow instabilities and they should not 

be considered as a design option. If such complex in-line or staggered stepped spillway design is to 

be used, the present study demonstrated that a rigorous physical study is necessary to investigate in 

greater details the flow properties. 
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7. CONCLUSION 

A physical study was performed on a relatively large size stepped spillway channel with a 26.6° 

slope and 0.10 m high steps. Different stepped chute configurations were tested. These were a 

spillway chute with flat horizontal steps, a pooled stepped spillway with 0.031 m high pool weirs, 

and two stepped spillway configurations with in-line and staggered arrangements of flat and pooled 

steps. Note that the test section length was moderate and uniform equilibrium flow conditions were 

not achieved at the downstream end of the chute for all investigated flow conditions. 

For all stepped spillways, some visual observations of the flow patterns were performed for 

discharges 0.002 ≤ Q ≤ 0.155 m3/s. The flat stepped spillway showed some typical flow patterns 

with nappe, transition and skimming flow regimes depending upon the flow rate. Some similar flow 

regimes were observed on the pooled stepped spillway, although some pulsating flow was seen for 

some nappe flow rates associated with the downstream propagation of small instabilities. On the in-

line and staggered configurations of flat and pooled steps, the flow was highly three-dimensional. 

Some strong instabilities and three-dimensional flow motion were documented. Standing sidewall 

waves and shock waves were observed along the sidewalls and on the channel centreline 

respectively, and these instabilities were associated with some strong splashing. 

For all stepped spillway configurations some detailed air-water flow measurements were conducted 

downstream of the inception point of free-surface aeration. For the stepped spillways with in-line 

and staggered configurations of flat and pooled steps, the measurements were conducted at three 

transverse locations to document the three-dimensional nature of the flow. On the flat and pooled 

stepped spillway configurations, additional measurements were conducted with an array of two 

single-tip conductivity probes to estimate the integral turbulent time and length scales. 

The experimental data showed similar void fraction distributions and mean air concentrations on 

both flat and pooled stepped spillways. The turbulence levels, and the air bubble and water droplet 

chord sizes, were also comparable between the two configurations. On the other hand, some larger 

bubble frequencies and integral turbulent length scales were observed on the flat stepped spillway, 

while larger velocities were recorded on the pooled stepped chute for identical flow rates. The 

measurements on the stepped spillways of in-line and staggered configurations of flat and pooled 

steps presented some significant transverse differences in terms of air-water flow properties 

between the flat and pooled stepped sides. 

The rate of energy dissipation, residual head and Darcy-Weisbach friction factor were calculated 

based upon the air-water flow properties. The results showed that the rate of energy dissipation was 

smaller on the pooled stepped spillway compared to that on the flat stepped chute. Conversely the 

residual energy was larger at the downstream end of the pooled stepped chute. The experimental 
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data for the stepped spillway configuration with in-line and staggered configurations of flat and 

pooled steps showed large differences in the transverse direction, although the transverse averaged 

rates of energy dissipation and residual energy for the in-line and staggered configurations 

compared reasonably well with the observations on the pooled stepped spillway. 

Altogether the present study demonstrated that, on a 26.6 stepped chute, the designs with pooled 

steps and in-line and staggered configurations of flat and pooled steps did not provide any 

advantageous performances in terms of energy dissipation and flow aeration, while they were 

affected by flow instabilities and three-dimensional patterns leading to some flow concentration. 

Another outcome is that some detailed investigations for complex stepped spillway designs are 

strongly recommended before any implementation in a prototype environment. 
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APPENDIX A – PHOTOGRAPHS OF STEPPED SPILLWAY 
CONFIGURATIONS AND FLOW PATTERNS 

Visual observations were conducted for the stepped spillway configurations in the present study for 

a wide range of discharges (Table A-1). Table A-1 lists the experimental flow conditions for the 

visual observations of the flow pattern for the stepped spillway configurations. The experiments 

were conducted for flow rates of up to Q = 0.155 m3/s and for Reynolds numbers between 1.4×104 

and 1.2×106 (Table A-1). Herein most experiments were performed with Re > 1×105 for which 

scale effects might be considered small (FELDER & CHANSON 2009a). 

In this Appendix, photographs are presented of the experimental setup for the different stepped 

spillway configurations (Fig. A-1 to A-4). This Appendix comprises also a collection of 

photographs showing the flow patterns for a range of different flow rates for the configurations. For 

each stepped spillway configuration, a compilation of photographs is presented for the different 

flow regimes: i.e., nappe, transition and skimming flows. Furthermore, some details about some 

instabilities and special features of the flow pattern are shown in several series of photographs. The 

flow patterns for the flat stepped spillway are illustrated in Figure A-5 to A-7, for the pooled 

stepped spillway in Figures A-8 to A-12, for the stepped spillway with in-line configuration of flat 

and pooled steps in Figures A-13 to A-19 and for the stepped spillway with staggered configuration 

of flat and pooled steps in Figures A-20 to A-25. 

 

Table A-1 – Experimental flow conditions for the visual observations of the flow patterns for the 

stepped spillway configurations (θ = 26.6°) 

 

Configuration dc/h  
[-] 

Q 
[m3/s] 

Re 
[-] 

(1) (2) (3) (4) 
Flat stepped spillway 0.12 – 2.02 0.002 - 0.148 1.6×104 –1.1×106 
Pooled stepped spillway  0.11 – 1.94 0.002 - 0.139 1.5×104 –1.1×106 
Stepped spillway with in-line configuration 
of flat and pooled steps 

0.11 – 2.01 0.002 - 0.146 1.4×104 –1.1×106 

Stepped spillway with staggered 
configuration of flat and pooled steps 

0.15 – 2.09 0.003 - 0.155 2.3×104 –1.2×106 

 

Notes: θ: channel slope; dc: critical flow depth; h: step height; Q: water discharge; Re: Reynolds 

number defined in terms of the hydraulic diameter. 
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Fig. A-1 – Photos of the experimental setup of the flat stepped spillway (θ = 26.6°) 

 

Fig. A-2 – Photos of the experimental setup of the pooled stepped spillway (θ = 26.6°) 



A-3 

Fig. A-3 – Photos of the experimental setup of the stepped spillway with in-line configuration of 

flat and pooled steps (θ = 26.6°) 

 

Fig. A-4 – Photos of the experimental setup of the stepped spillway with staggered configuration of 

flat and pooled steps (θ = 26.6°) 
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Fig. A-5 – Nappe flow regime on the flat stepped spillway (θ = 26.6°) 

(A) dc/h = 0.018, Q = 0.004 m3/s, Re = 3.1×104 (B) dc/h = 0.018, Q = 0.004 m3/s, Re = 3.1×104 

 

(C) dc/h = 0.33, Q = 0.010 m3/s, Re = 7.5×104 

 

(D) dc/h = 0.33, Q = 0.010 m3/s, Re = 7.5×104 

 

(E) dc/h = 0.49, Q = 0.018 m3/s, Re = 1.4×105 

 

(F) dc/h = 0.49, Q = 0.018 m3/s, Re = 1.4×105 
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Fig. A-6 – Transition flow regime on the flat stepped spillway (θ = 26.6°) 

(A) dc/h = 0.57, Q = 0.022 m3/s, Re = 1.7×105 (B) dc/h = 0.57, Q = 0.022 m3/s, Re = 1.7×105 

 

(C) dc/h = 0.66, Q = 0.027 m3/s, Re = 2.1×105 

 

(D) dc/h = 0.66, Q = 0.027 m3/s, Re = 2.1×105 

 

(E) dc/h = 0.80, Q = 0.037 m3/s, Re = 2.8×105 

 

(F) dc/h = 0.84, Q = 0.039 m3/s, Re = 3.0×105 
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Fig. A-7 – Skimming flow regime on the flat stepped spillway (θ = 26.6°) 

(A) dc/h = 0.97, Q = 0.049 m3/s, Re = 3.8×105 (B) dc/h = 1.25, Q = 0.072 m3/s, Re = 5.5×105 

 

(C) dc/h = 1.37, Q = 0.083 m3/s, Re = 6.3×105 

 

(D) dc/h = 1.51, Q = 0.095 m3/s, Re = 7.3×105 

 

(E) dc/h = 1.73, Q = 0.117 m3/s, Re = 8.9×105 

 

(F) dc/h = 1.73, Q = 0.117 m3/s, Re = 8.9×105 
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Fig. A-8 – Nappe flow regime on the pooled stepped spillway (θ = 26.6°. w = 3.1 cm) 

(A) dc/h = 0.26, Q = 0.007 m3/s, Re = 5.1×104 (B) dc/h = 0.26, Q = 0.007 m3/s, Re = 5.1×104 

 

(C) dc/h = 0.33, Q = 0.010 m3/s, Re = 7.5×104 

 

(D) dc/h = 0.33, Q = 0.010 m3/s, Re = 7.5×104 

 

(E) dc/h = 0.36, Q = 0.011 m3/s, Re = 8.3×104 

 

(F) dc/h = 0.36, Q = 0.011 m3/s, Re = 8.3×104 
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Fig. A-9 – Pulsations in first step cavity in the nappe flow regime on the pooled stepped spillway (θ 

= 26.6°, w = 3.1 cm): dc/h = 0.40, Q = 0.013 m3/s, Re = 1×105 (order from top left to bottom right) 
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Fig. A-10 – Transition flow regime on the pooled stepped spillway (θ = 26.6°. w = 3.1 cm) 

(A) dc/h = 0.53, Q = 0.020 m3/s, Re = 1.5×105 (B) dc/h = 0.53, Q = 0.020 m3/s, Re = 1.5×105 

 

(C) dc/h = 0.71, Q = 0.031 m3/s, Re = 2.4×105 

 

(D) dc/h = 0.77, Q = 0.035 m3/s, Re = 2.6×105 

 

(E) dc/h = 0.77, Q = 0.035 m3/s, Re = 2.6×105 

 

(F) dc/h = 0.88, Q = 0.043 m3/s, Re = 3.3×105 
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Fig. A-11 – Small instabilities in the transition flow regime on the pooled stepped spillway (θ = 

26.6°. w = 3.1 cm): dc/h = 0.88, Q = 0.043 m3/s, Re = 3.3×105 (order from top left to bottom right) 
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Fig. A-12 – Skimming flow regime on the pooled stepped spillway (θ = 26.6°. w = 3.1 cm) 

(A) dc/h = 1.27, Q = 0.074 m3/s, Re = 5.6×105 (B) dc/h = 1.27, Q = 0.074 m3/s, Re = 5.6×105 

 

(C) dc/h = 1.52, Q = 0.096 m3/s, Re = 7.4×105 

 

(D) dc/h = 1.77, Q = 0.121 m3/s, Re = 9.3×105 

 

(E) dc/h = 1.94, Q = 0.139 m3/s, Re = 1.1×106 

 

(F) dc/h = 1.94, Q = 0.139 m3/s, Re = 1.1×106 
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Fig. A-13 – Nappe flow regime on the stepped spillway with in-line configuration of flat and pooled 

(w = 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 0.18, Q = 0.004 m3/s, Re = 3.1 ×104 (B) dc/h = 0.18, Q = 0.004 m3/s, Re = 0.3 ×104 

 

(C) dc/h = 0.23, Q = 0.006 m3/s, Re = 4.4 ×104 

 

(D) dc/h = 0.23, Q = 0.006 m3/s, Re = 4.4 ×104 

 

(E) dc/h = 0.31, Q = 0.009m3/s, Re = 6.8×104 

 

(F) dc/h = 0.31, Q = 0.009m3/s, Re = 6.8×104 
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Fig. A-14 – Nappe flow regime on the stepped spillway with in-line configuration of flat and pooled 

(w = 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 0.39, Q = 0.013m3/s, Re = 9.6×104 

 

(C) dc/h = 0.39, Q = 0.013m3/s, Re = 9.6×104 

(B) dc/h = 0.39, Q = 0.013m3/s, Re = 9.6×104 

 

(D) dc/h = 0.39, Q = 0.013m3/s, Re = 9.6×104 
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Fig. A-15 –Nappe flows (pooled step side) and transition flows (flat side) on the stepped spillway 

with in-line configuration of flat and pooled (w = 3.1 cm) steps (θ = 26.6°) for 0.46 ≤ dc/h ≤ 0.55 

(A) dc/h = 0.46, Q = 0.016m3/s, Re = 1.2×105 

 

(C) dc/h = 0.46, Q = 0.016m3/s, Re = 1.2×105 

(B) dc/h = 0.46, Q = 0.016m3/s, Re = 1.2×105 

 

(D) dc/h = 0.46, Q = 0.016m3/s, Re = 1.23105 

 

(E) dc/h = 0.50, Q = 0.018 m3/s, Re = 1.4×105 

 

(F) dc/h = 0.50, Q = 0.018 m3/s, Re = 1.4×105 
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Fig. A-16 – Nappe flows (pooled step side) and transition flows (flat side) on the stepped spillway 

with in-line configuration of flat and pooled (w = 3.1 cm) steps (θ = 26.6°) for 0.46 ≤ dc/h ≤ 0.55 

(A) dc/h = 0.50, Q = 0.018 m3/s, Re = 1.4×105 (B) dc/h = 0.50, Q = 0.018 m3/s, Re = 1.4×105 

 

(C) dc/h = 0.55, Q = 0.021 m3/s, Re = 1.6 ×105 

 

(E) dc/h = 0.55, Q = 0.021 m3/s, Re = 1.6 ×105 

 

(D) dc/h = 0.55, Q = 0.021 m3/s, Re = 1.6 ×105 

 

(F) dc/h = 0.55, Q = 0.021 m3/s, Re = 1.6 ×105 
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Fig. A-17 – Transition flow regime on the stepped spillway with in-line configuration of flat and 

pooled (w = 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 0.57, Q = 0.022 m3/s, Re = 1.7×105 (B) dc/h = 0.57, Q = 0.022 m3/s, Re = 1.7×105 

 

(C) dc/h = 0.65, Q = 0.027 m3/s, Re = 2.1×104  

 

(D) dc/h = 0.65, Q = 0.027 m3/s, Re = 2.1×104 

 

(E) dc/h = 0.70, Q = 0.030 m3/s, Re = 2.30×105 

 

(F) dc/h = 0.70, Q = 0.030 m3/s, Re = 2.30×105 
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Fig. A-18 – Skimming flow regime on the stepped spillway with in-line configuration of flat and 

pooled (w = 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 1.15, Q = 0.063 m3/s, Re = 4.9×105 (B) dc/h = 1.15, Q = 0.063 m3/s, Re = 4.9×105 

 

(C) dc/h = 1.15, Q = 0.063 m3/s, Re = 4.9×105 

 

(D) dc/h = 1.45, Q = 0.092 m3/s, Re = 6.9×105 

 

(E) dc/h = 1.45, Q = 0.092 m3/s, Re = 6.9×105 

 

(F) dc/h = 1.45, Q = 0.092 m3/s, Re = 6.9×105 
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Fig. A-19 – Transition and skimming flow regime on the stepped spillway with in-line 

configuration of flat and pooled (w = 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 0.7, Q = 0.0301 m3/s, Re = 2.3×105 (B) dc/h = 0.75, Q = 0.0337 m3/s, Re = 2.6×105 

(C) dc/h = 1.28, Q = 0.0742 m3/s, Re = 5.7×105 

 

(D) dc/h = 1.28, Q = 0.0742 m3/s, Re = 5.7×105 

(E) dc/h = 1.92, Q = 0.138 m3/s, Re = 10.5×105 

 

(F) dc/h = 1.92, Q = 0.138 m3/s, Re = 10.5×105 
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Fig. A-20 – Nappe flow regime stepped spillway with staggered configuration of flat and pooled (w 

= 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 0.15, Q = 0.003 m3/s, Re = 2.3×104 (B) dc/h = 0.15, Q = 0.003 m3/s, Re = 2.3×104 

 

(C) dc/h = 0.29, Q = 0.009 m3/s, Re = 6.2×104 

 

(D) dc/h = 0.29, Q = 0.009 m3/s, Re = 6.2×104 

 

(E) dc/h = 0.39, Q = 0.011 m3/s, Re = 9.6×104 

 

(F) dc/h = 0.39, Q = 0.011 m3/s, Re = 9.6×104 
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Fig. A-21 – Nappe flow regime stepped spillway with staggered configuration of flat and pooled (w 

= 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 0.44, Q = 0.015 m3/s, Re = 1.15×105 (B) dc/h = 0.44, Q = 0.015 m3/s, Re = 1.15×105 

 

(C) dc/h = 0.56, Q = 0.020 m3/s, Re = 1.64×105 

 

(D) dc/h = 0.56, Q = 0.020 m3/s, Re = 1.64×105 

 

(E) dc/h = 0.56, Q = 0.020 m3/s, Re = 1.64×105 

 

(F) dc/h = 0.56, Q = 0.020 m3/s, Re = 1.64×105 
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Fig. A-22 – Transition flow regime on the stepped spillway with staggered configuration of flat and 

pooled (w = 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 0.59, Q = 0.023m3/s, Re = 1.8×105 (B) dc/h = 0.59, Q = 0.023m3/s, Re = 1.8×105 

 

(C) dc/h = 0.59, Q = 0.023m3/s, Re = 1.8×105 

 

(D) dc/h = 0.59, Q = 0.023m3/s, Re = 1.8×105 

 

(E) dc/h = 0.66, Q = 0.028 m3/s, Re = 2.1×105 

 

(F) dc/h = 0.66, Q = 0.028 m3/s, Re = 2.1×105 
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Fig. A-23 – Transition flow regime on the stepped spillway with staggered configuration of flat and 

pooled (w = 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 0.66, Q = 0.028 m3/s, Re = 2.1×105 (B) dc/h = 0.66, Q = 0.028 m3/s, Re = 2.1×105 

 

(C) dc/h = 0.74, Q = 0.033 m3/s, Re = 2.5 ×105 

 

(D) dc/h = 0.74, Q = 0.033 m3/s, Re = 2.5 ×105 

 

(E) dc/h = 0.81, Q = 0.038 m3/s, Re = 2.9×105 

 

(F) dc/h = 0.81, Q = 0.038 m3/s, Re = 2.9×105 
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Fig. A-24 – Transition flow on the stepped spillway with staggered configuration of flat and pooled 

(w = 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 0.86, Q = 0.041 m3/s, Re = 3.1×105 (B) dc/h = 0.86, Q = 0.041 m3/s, Re = 3.1×105 
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Fig. A-25 – Skimming flow regime on the stepped spillway with staggered configuration of flat and 

pooled (w = 3.1 cm) steps (θ = 26.6°) 

(A) dc/h = 0.92, Q = 0.045m3/s, Re = 3.5×105 (B) dc/h = 0.92, Q = 0.045m3/s, Re = 3.5×105 

(C) dc/h = 1.42, Q =0.087 m3/s, Re = 6.7×105 (D) dc/h = 1.42, Q =0.087 m3/s, Re = 6.7×105 

(E) dc/h = 1.80, Q = 0.124 m3/s, Re = 9.5×105 (F) dc/h = 1.80, Q = 0.124 m3/s, Re = 9.5×105 
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APPENDIX B – CAVITY EJECTIONS ON FLAT AND POOLED STEPPED 
SPILLWAYS 

B.1 PRESENTATION 

In skimming flow, the water skims over a pseudo-bottom formed by the step edges. The 

recirculation process in the step cavities is maintained by the transmission of shear stress of the 

main flow and unsteady momentum exchanges by the main stream and cavity flows 

(RAJARATNAM 1990). In the present study, some cavities showed some distinct ejection 

processes with inward and outward cavity flow motion. These occurred at irregular time intervals 

and led to some additional air entrainment. The total entrained air in the cavities was enhanced by 

both the interfacial free-surface aeration and singular ejection processes. In previous studies, it was 

suggested, that the initiating mechanism takes place in the fully-developed main stream flow, not in 

the cavity itself (ELAVARASAN et al. 1995; DJENIDI et al. 1999; CHANSON et al. 2002). 

Velocity differences and vortices next to step edges may be the cause for cavity ejections (FELDER 

& CHANSON 2008). 

In the present study, the cavity ejections were documented thoroughly on the flat and pooled 

stepped spillways for three flow rates in the skimming flow regime (Table B-1). Table B-1 

summarises the flow conditions for the cavity ejection observations. The flow visualisations were 

recorded with a HD video camera SonyTM HDR-XR160E (Standard HQ HD quality 25 fps). 

 

Table B-1 - Experimental flow conditions for the visual observations of cavity ejection frequencies 

for the flat and pooled stepped spillways (θ = 26.6°) 

 

Configuration dc/h  
[-] 

Q 
[m3/s] 

Re 
[-] 

Investigated step 
cavities 

Inception 
point 

(1) (2) (3) (4) (5) (6) 
1.15 0.063 4.85×105 5 to 10 5 to 6 
1.33 0.079 6.04×105 5 to 10 6 
1.45 0.090 6.87×105 6 to 10 7 

Flat stepped spillway 

1.70 0.113 8.72×105 7 to 10 8 to 9 
1.15 0.063 4.85×105 4 to 10 5 to 6 
1.33 0.079 6.04×105 5 to 10 6 to 7 
1.45 0.090 6.87×105 6 to 10 7 

Pooled stepped spillway 

1.70 0.113 8.72×105 7 to 10 8 
 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter. 
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B.2 CAVITY EJECTION DEFINITION AND VIDEO ANALYSIS 

Detailed visual observations of cavity ejection processes were conducted for the flat and pooled 

stepped spillway configurations (Table B-1). The recirculation processes were observed for each 

step cavity at and downstream of the inception point of free-surface aeration. The clear-water 

surface upstream of the inception point appeared two-dimensional and parallel to the pseudo-bottom 

formed by the step edges and pooled weir edges respectively. Close to the inception point, the 

surface showed an irregular flapping mechanism (1) which led to some waving behaviour. Within 

the flapping surface patterns, the surface tended to lean inward the cavity at irregular intervals and 

caused an air packet ejection which was advected in the form of smaller and uniform shaped 

bubbles within the step cavities. This pattern was consistent with previous observations on flat 

stepped spillways (CHAMANI 2000; TOOMBES & CHANSON 2007). 

With increasing discharge, the flapping mechanisms of the free-surface became less distinct. 

Visually, the flow resistance caused by the next downstream step, or pool edge, yielded some 

ejection processes close to the respective step or pool edge. Figure B-1 illustrates the flapping 

mechanism and the cavity ejection processes on the flat and pooled stepped spillways, while Figure 

B-2 presents some photographic sequences. The cavity ejection processes were similar in 

appearance for the flat and pooled steps, although some slight differences could be seen. A 

comparative analysis between ejections in cavities on the flat and pooled stepped spillways is 

discussed later in this appendix. The ejections of air packets may yield to some larger air 

concentrations in the cavities. The air-water flow properties in step cavities were discussed by 

MATOS et al. (2001), GONZALEZ & CHANSON (2004) and FELDER & CHANSON (2011a). 

In the present study, a frame-by-frame video analysis was performed for the flat and pooled stepped 

spillways for all step cavities at and downstream of the inception point of free-surface aeration. The 

video duration was 60 s. The count of cavity ejections yielded information about the cavity ejection 

rate or frequency Fej [Hz]. The analysis was performed for skimming flows with dimensionless flow 

rates of dc/h=1.15, 1.33, 1.45 and 1.70, where dc is the critical flow depth and h is the step height. 

The distribution of ejected air packets in the cavity was performed at 5 detection locations 

illustrated in Figure B-3. Figure B-3 shows the positions for the cavity ejection analyses for the flat 

stepped spillway configuration. The positions were identical for the experiments on the pooled 

stepped spillway configuration. For both stepped spillway configurations, an ejection was counted 

when an air packet passed the red sections marked in Figure B-3. Please note, that the ejection 

video analysis was conducted manually in a frame-by-frame analysis and therefore some human 

error was present in the overall results. 

                                                 
1 The flapping mechanism was discussed by CHAMANI (2000) and CHANSON (2001). 
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Fig B-1 - Sketches of the ejection processes in step cavities on the flat and pooled stepped spillways 

(θ = 26.6°) 

(A) Ejection Process for low flow rates 

 

(B) Ejection Process for larger flow rates 

 

 

Fig B-2 - Photographs of sequential cavity ejections - (A1) to (A3): Flat stepped spillway 

configuration; (B1) to (B3): Pooled stepped spillway configuration; For each sequence, time 

between frames = 1/10 s 

(A1) Flapping surface 

 

 

(A2) Ejection process in cavity 

 

(A3) Distribution of air packet 

in cavity 

(B1) Visible flow resistance 

close to pool weir 

 

(B2) Ejection process in cavity  

 

 

(B3) Distribution of air packet 

in cavity 
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Fig B-3 - Recording positions for the cavity ejection video analysis on the flat and pooled stepped 

spillways (θ = 26.6°) 

 

 

B.3 CAVITY EJECTION FREQUENCIES ON THE FLAT AND POOLED STEPPED 

SPILLWAYS 

A summary of the ejection frequencies is given in Table B-2 for the flat stepped spillway and Table 

B-3 for the pooled stepped spillway respectively. In Table B-2, n is the number of detected air 

packets per position and Fej=n/t is the averaged ejection frequency. The shaded data correspond to 

the largest ejection frequencies for a given discharge. 

The dimensionless cavity ejection frequency data Fej×dc/Vc are plotted in Figure B-4 as a function 

of the dimensionless longitudinal distance from the upstream end of the channel x/dc for all data 

sets (2). The data in Figure B-4 include both flat and pooled stepped configurations in the skimming 

flow regime. The results indicated that the largest ejection frequencies could be seen at position 1 

and 2 for both the flat and pooled stepped spillways. They decreased with further distance from the 

inception point of air entrainment for all skimming flow discharges. They fluctuated between 

adjacent step edges. The frequencies on the flat stepped spillway were consistently higher than on 

the pooled stepped spillway, which may suggest an influence by the pools on the irregular 

occurrence of ejections in the cavity. With the pooled stepped configuration, the ejection process 

might be affected by the larger inertia of the large cavity volume. 

                                                 
2 Herein, x = 0 at the downstream end of the broad-crested weir (i.e. first step edge). 
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Table B-2 - Summary of cavity ejection frequencies on the flat stepped spillway (θ = 26.6°) 

 
   Position 1 Position 2 Position 3 Position 4 Position 5 
dc/h 
[-] 

Cavity 
position 

t 
[s] 

n 
[-] 

Fej 
[Hz] 

n 
[-] 

Fej 
[Hz] 

n 
[-] 

Fej 
[Hz] 

n 
[-] 

Fej 
[Hz] 

n 
[-] 

Fej 
[Hz] 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
1.15 5 to 6 60 45 0.75 42 0.70 23 0.38 45 0.75 18 0.30 
 6 to 7  49 0.82 35 0.58 19 0.32 38 0.63 23 0.38 
 7 to 8  24 0.40 41 0.68 31 0.52 37 0.62 25 0.42 
 8 to 9  55 0.92 48 0.80 49 0.82 43 0.72 30 0.50 
 9 to 10  66 1.10 55 0.92 40 0.67 55 0.92 36 0.60 
1.33 5 to 6 60 49 0.82 34 0.57 17 0.28 32 0.53 23 0.38 
 6 to 7  51 0.85 35 0.58 21 0.35 37 0.62 22 0.37 
 7 to 8  41 0.68 36 0.60 37 0.62 33 0.55 27 0.45 
 8 to 9  31 0.52 32 0.53 16 0.27 22 0.37 18 0.30 
 9 to 10  43 0.72 41 0.68 36 0.60 20 0.33 14 0.23 
1.45 6 to 7 60 39 0.65 23 0.38 15 0.25 15 0.25 8 0.13 
 7 to 8  36 0.60 33 0.55 34 0.57 42 0.70 30 0.50 
 8 to 9  28 0.47 22 0.37 19 0.32 21 0.35 13 0.22 
 9 to 10  35 0.58 28 0.47 38 0.63 20 0.33 16 0.27 
1.70 7 to 8 60 43 0.72 12 0.20 13 0.22 27 0.45 8 0.13 
 8 to 9  28 0.47 17 0.28 16 0.27 13 0.22 12 0.20 
 9 to 10  22 0.37 27 0.45 29 0.48 10 0.17 9 0.15 

 

Notes: Fej: average cavity ejection frequency; t: video duration; n: ejection count; Shaded data: 

largest ejection frequency for a given discharge. 

 

Table B-3 – Summary of cavity ejection frequencies on the pooled stepped spillway (θ = 26.6°) 

 
   Position 1 Position 2 Position 3 Position 4 Position 5 
dc/h 
[-] 

Cavity 
position 

t 
[s] 

n 
[-] 

Fej 
[Hz] 

n 
[-] 

Fej 
[Hz] 

n 
[-] 

Fej 
[Hz] 

n 
[-] 

Fej 
[Hz] 

n 
[-] 

Fej 
[Hz] 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
1.15 4 to 5 60 38 0.63 36 0.60 21 0.35 26 0.43 22 0.37 
 5 to 6  50 0.83 43 0.72 16 0.27 19 0.32 26 0.43 
 6 to 7  24 0.40 36 0.60 9 0.15 14 0.23 9 0.15 
 7 to 8  15 0.25 30 0.50 13 0.22 12 0.20 23 0.38 
 8 to 9  32 0.53 35 0.58 8 0.13 18 0.30 28 0.47 
 9 to 10  45 0.75 61 1.02 19 0.32 23 0.38 33 0.55 
1.33 5 to 6 60 22 0.37 39 0.65 24 0.40 35 0.58 41 0.68 
 6 to 7  24 0.40 30 0.50 21 0.35 27 0.45 29 0.48 
 7 to 8  22 0.37 81 1.35 35 0.58 56 0.93 92 1.53 
 8 to 9  37 0.62 38 0.63 16 0.27 16 0.27 13 0.22 
 9 to 10  25 0.42 27 0.45 16 0.27 12 0.20 18 0.30 
1.45 6 to 7 60 32 0.53 33 0.55 10 0.17 26 0.43 13 0.22 
 7 to 8  21 0.35 46 0.77 24 0.40 29 0.48 23 0.38 
 8 to 9  46 0.77 48 0.80 10 0.17 21 0.35 30 0.50 
 9 to 10  46 0.77 63 1.05 26 0.43 27 0.45 15 0.25 
1.70 7 to 8 60 33 0.55 40 0.67 16 0.27 30 0.50 27 0.45 
 8 to 9  23 0.38 30 0.50 8 0.13 15 0.25 13 0.22 
 9 to 10  26 0.43 28 0.47 25 0.42 14 0.23 10 0.17 
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Notes: Fej: average cavity ejection frequency; t: video duration; n: ejection count; Shaded data: 

largest ejection frequency for a given discharge. 

 

Fig B-4 - Dimensionless cavity ejection frequencies (Fej×dc)/Vc on the flat and pooled stepped 

spillways (θ = 26.6°) in skimming flows 
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(B) dc/h=1.33, Q=0.079 m3/s, Re=6.04×105 
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(C) dc/h=1.45, Q=0.090 m3/s, Re=6.87×105 
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(D) dc/h=1.70, Q=0.114 m3/s, Re=8.71×105 
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A local distinct peak could be observed for dc/h=1.33 at x/dc=11.5 for the pooled stepped spillway 

which corresponded to locations 2, 4 and 5 at the cavity between step edge 7 and 8 (Fig. B-4B). The 

cavity ejection frequencies were up to 2 times higher than those for adjacent cavities. This peak 

highlighted the irregular occurrence of ejections for some specific flow situations, and the entire 

reason for the local maximum remained unclear.  

Figure B-5 shows the relationship between the Reynolds number Re and the dimensionless cavity 

ejection frequency Fej×dc/Vc. The square and circle symbols indicate the average frequencies for a 
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given Reynolds number. The ejection processes in the cavities may be associated with regions of 

high shear stress along the cavity region and the Reynolds number was closely linked to turbulence 

properties. The results showed that the ejection frequencies decreased with increasing Reynolds 

numbers. 

 

Fig. B-5 - Relationship between average dimensionless cavity ejection frequencies Fej×dc/Vc and 

Reynolds number Re for the flat and pooled stepped spillway configurations (θ = 26.6°) in 

skimming flows 
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B.4 RELATIONSHIP OF CAVITY EJECTION FEQUENCY AND DARCY FRICTION FACTOR 

CHANSON & TOOMBES (2001) analysed the ejection processes in skimming flow on stepped 

spillways based upon energy considerations. The reasoning assumed that all the energy losses took 

place by viscous dissipation in the cavity, with some energy exchange between the main stream and 

the recirculation by irregular fluid ejection. The results yielded an expression of the averaged 

ejection frequency Fej as a function of the Darcy-Weisbach friction factor fe: 

 





2

f

U

)cosh(F e

w

ej  (B-1) 

where Uw is the flow velocity, h is the vertical step height,  is the angle between the pseudo-

bottom formed by the step edges and the horizontal,  is the ratio of average fluid ejection volume 
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to total cavity volume, and  is the ratio of average ejection period to burst duration. Equation (B-1) 

was developed for a wide chute with flat horizontal steps assuming a gradually-varied flow motion 

close to uniform equilibrium. CHANSON et al. (2002) reported that the ratio  of average fluid 

ejection volume to total cavity volume was  ~ 0.5 and the ratio  of average ejection period to 

burst duration was  ~ 7, yielding: 

 
5

f

U

)cosh(F
e

w

ej 


 (B-2) 

More generally the reasoning may be extended to a pooled stepped chute: 
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where w is the pool height. Equation (B-3) is valid for a wide chute with horizontal steps and 

vertical pool walls. 

In the present study, the air-water flow properties were recorded with detailed double-tip 

conductivity probe measurements for both the flat and pooled stepped spillway configurations with 

three flow rates in the skimming flow regime. The mean flow velocity Uw was calculated for all 

step edges as well as the friction factors fe for the air-water flow downstream of the inception point. 

The latter was estimated as: 
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where the friction slope Sf equals Sf = - ∂H/∂x, H is the total head, o is the boundary shear stress, x 

is the distance in the flow direction, w is the water density; C is the void fraction, Y90 is the flow 

depth where C = 90%, d is the equivalent clear water flow depth and Uw is the flow velocity 

(CHANSON 2001). 

The relationship between Darcy-Weisbach friction factors and dimensionless cavity ejection 

frequency Fej×((h+w)×cosθ)/UW was tested herein for the flat and pooled stepped spillway 

configurations. Some results are presented in Figure B-6, and the best fit correlations are listed in 

Table B-4. The present data were qualitatively comparable to Equation (B-3), but they differed 

quantitatively (Table B-4, column 6). The results of the present video analysis suggested that the 

dimensionless cavity ejection Fej×((h+w)×cosθ)/UW ranged between fe/25 and fe/12. The cavity 

ejection frequency tended to decrease with increasing discharges (Table B-4). 

Herein the average ejection period to burst duration was on average  = ejection/burst ~ 3.5. The 

present video analysis did not yield information about the average fluid ejection volume. 
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Fig. B-6 - Dimensionless cavity ejection frequency Fej×(h×cosθ)/UW as a function of the 

longitudinal distance x/dc from the crest with flat steps and pooled steps 
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dc/h=1.15, location 1, pooled config. A

dc/h=1.15, location 2, pooled config. A
dc/h=1.15, location 3, pooled config. A
dc/h=1.15, location 4, pooled config. A
dc/h=1.15, location 5, pooled config. A
fe/12, flat and pooled config. A

 

(B) dc/h=1.45 
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dc/h=1.45, location 1, pooled config. A
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dc/h=1.45, location 3, pooled config. A
dc/h=1.45, location 4, pooled config. A
dc/h=1.45, location 5, pooled config. A
fe/16, flat (upper), pooled config. A (lower)
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(C) dc/h=1.70 

x/dc [-]
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dc/h=1.70, location 4, flat steps
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Table B-4 - Relationship between Darcy-Weisbach friction factors and dimensionless cavity 

ejection frequency Fej×((h+w)×cosθ)/UW for the flat and pooled stepped spillway configurations (θ 

= 26.6°) 

 

Configuration dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

fe 
[-] 

Fej×((h+w)×cosθ)/UW ≈  

(1) (2) (3) (4) (5) (6) 
1.15 0.063 4.85×105 0.263 fe/12 
1.45 0.090 6.87×105 0.291 fe/16 

Flat stepped spillway 

1.70 0.113 8.72×105 0.343 fe/25 
1.15 0.063 4.85×105 0.278 fe/12 
1.45 0.090 6.87×105 0.247 fe/16 

Pooled stepped spillway

1.70 0.113 8.72×105 0.278 fe/25 
 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; fe: Darcy-Weisbach friction factor; Fej: cavity ejection 

frequency; h: step height; w: pool weir height; Uw: mean flow velocity. 

 

B.5 SUMMARY AND DISCUSSION 

Three-dimensional flow patterns on stepped spillways are highly complex and not trivial to 

describe. The physical processes are not sufficiently understood. Three-dimensional flow behaviour 
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could be observed for the flat and pooled stepped spillways in the present study and no significant 

differences in the flow patterns was observed across the channel width.  

The cavity ejection processes were investigated in a video analysis for the skimming flow regime 

on both stepped spillway configurations. Some differences in terms of frequencies and size of 

entrained air packets were observed. The pool weirs had an influence on the ejection and seemed to 

disturb a clear development of the mixing layer downstream of each pool edge for lower discharges. 

With increasing discharges, the ejection frequencies became more similar between the two stepped 

spillways. Some relationships to the turbulent dissipation were compared and showed some 

contributions. It may be associated that a clear mixing layer with large shear stress leading to a 

more constant turbulent dissipation on each adjacent step edge. The flat steps configuration showed 

some high energy dissipation along the channel, which may relate to some of the described 

processes. A clear validation was not possible by video analysis and air-water flow measurements. 

Some further investigations of the region of high shear stress along the cavity may lead to some 

coherence with previous research of processes in cavities at stepped hydraulics (e.g. GONZALEZ 

& CHANSON 2004; FELDER & CHANSON 2009b). 
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APPENDIX C –AIR-WATER FLOW PROPERTIES ON FLAT AND POOLED 
STEPPED SPILLWAYS 

C.1 PRESENTATION 

In this appendix, the air-water flow properties for the flat and pooled stepped spillway experiments 

of the present study are presented. The results comprise the distributions of void fraction, bubble 

count rate, interfacial velocity, turbulence intensity, auto- and cross-correlation time scales and 

maximum cross-correlation values. In section C.2, the results for the flat stepped spillway 

experiments are presented (Fig. C-1 to C-8) and section C.3 contains the air-water flow properties 

for the pooled stepped spillway (Fig. C-9 to C-18). In section C.4, some air bubble and water 

droplet chord sizes for the flat and pooled stepped spillways are presented (Fig. C-19 to C-26).  

Table C-1 summarises some basic air-water flow parameters for all experiments on the flat stepped 

spillway while Table C-2 regroups the characteristic parameters for the pooled stepped spillway 

experiments.  

 

Notation 

C void fraction defined as the volume of air per unit volume of air and water; 

Cmean depth-average void fraction defined in terms of Y90: Cmean = 1 - d/Y90; 

DH hydraulic diameter (m); 

d equivalent clear water flow depth (m); 

dc critical flow depth (m); 

F air bubble count rate (Hz) defined as the number of detected air bubbles per unit time; 

Fmax maximum bubble count rate in a cross-section (Hz); 

h vertical step height (m); 

l horizontal step length (m); 

Q water discharge (m3/s); 

qw water discharge per unit width (m2/s); 

Re Reynolds number defined in terms of the hydraulic diameter: Re = w×Uw×DH/w; 

Rxx normalised auto-correlation function (reference) probe; 

Rxy normalised cross-correlation function between two probe output signals; 

(Rxy)max maximum cross-correlation between two probe output signals; 

Tu turbulence intensity;  

Tumax maximum turbulence intensity in a cross-section; 

Txx auto-correlation integral time scale (s); 

Txy cross-correlation integral time scale (s); 

Uw mean flow velocity (m/s): Uw = qw/d; 

V interfacial velocity (m/s); 

Vc critical flow velocity (m/s); 
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V90 characteristic interfacial velocity (m/s) where the void fraction is 90%; 

w weir height in pooled stepped spillway configuration (m), also called pool height; 

Y90 characteristic depth (m) where the void fraction is 90%; 

y distance (m) measured normal to the invert (or channel bed); 

θ angle between pseudo-bottom formed by the step edges and the horizontal; 

Ø probe sensor diameter (m). 
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Table C-1 – Characteristic air-water flow parameters for the measurements on the flat stepped 

spillway (θ = 26.6°) with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Cmean 

[-] 
Fmax 

[Hz] 
V90 

[m/s] 
Uw 

[m/s] 
d 

[m] 
Y90 

[m] 
Tumax 

[-] 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

4 0.276 68.6 2.85 1.97 0.0294 0.0406 1.18 
5 0.678 119.8 2.47 2.35 0.0247 0.0768 1.37 
6 0.467 179.8 2.70 2.50 0.0232 0.0435 1.39 
7 0.592 193.8 2.70 2.35 0.0247 0.0605 1.15 
8 0.470 237.4 2.77 2.04 0.0284 0.0535 1.05 
9 0.373 251.8 2.92 2.11 0.0274 0.0438 1.64 

0.70 0.030 2.30×105 

10 0.561 223.3 2.92 2.29 0.0253 0.0576 1.19 
4 0.158 53.6 2.85 2.26 0.0323 0.0383 1.65 
5 0.360 117.4 2.78 2.13 0.0342 0.0535 1.35 
6 0.507 174.2 2.74 2.46 0.0296 0.0600 0.93 
7 0.369 186.6 2.92 2.32 0.0314 0.0497 1.70 
8 0.485 216.1 2.98 2.55 0.0286 0.0556 1.07 
9 0.349 252.6 3.11 2.21 0.0330 0.0507 1.85 

0.82 0.038 2.90×105 

10 0.503 243.8 3.14 2.37 0.0307 0.0618 1.07 
5 0.284 74.6 2.86 2.27 0.0412 0.0575 1.95 
6 0.333 148.0 2.90 2.48 0.0377 0.0565 1.44 
7 0.409 151.9 2.86 2.21 0.0423 0.0716 1.24 
8 0.308 198.7 3.08 2.23 0.0418 0.0605 1.22 
9 0.323 197.8 3.12 2.19 0.0426 0.0629 1.69 

0.96 0.049 3.71×105 

10 0.311 226.9 3.18 2.28 0.0409 0.0594 1.53 
5 0.206 44.8 2.99 2.46 0.0496 0.0624 2.42 
6 0.281 113.9 2.86 2.81 0.0434 0.0604 1.56 
7 0.360 113.8 3.03 2.44 0.0501 0.0782 1.88 
8 0.324 168.1 3.11 2.46 0.0496 0.0734 1.34 
9 0.321 173.6 3.12 2.51 0.0486 0.0717 1.59 

1.15 0.063 4.85×105 

10 0.302 202.4 3.25 2.48 0.0491 0.0704 1.79 
6 0.235 81.7 3.08 2.84 0.0508 0.0664 1.75 
7 0.308 101.3 3.25 2.57 0.0562 0.0812 1.89 
8 0.314 151.5 3.33 2.66 0.0543 0.0792 1.41 
9 0.303 144.9 3.29 2.52 0.0572 0.0820 1.53 

1.29 0.075 5.73×105 

10 0.282 181.6 3.39 2.58 0.0559 0.0778 1.63 
7 0.277 85.4 3.40 2.84 0.0609 0.0842 1.74 
8 0.300 131.0 3.35 2.90 0.0597 0.0852 1.44 
9 0.299 128.0 3.33 2.80 0.0617 0.0881 1.61 

1.45 0.090 6.87×105 

10 0.275 157.0 3.40 2.75 0.0629 0.0867 1.78 
8 0.284 114.3 3.55 3.03 0.0615 0.0858 1.48 
9 0.273 120.4 3.58 2.87 0.0649 0.0893 1.88 

1.52 0.097 7.39×105 

10 0.269 149.2 3.67 2.84 0.0655 0.0897 1.70 
8 0.240 93.0 3.51 3.25 0.0676 0.0889 1.64 
9 0.263 108.7 3.59 3.17 0.0692 0.0940 1.41 

1.70 0.113 8.72×105 

10 0.278 127.7 3.53 3.00 0.0733 0.1015 1.82 
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Table C-2 – Characteristic air-water flow parameters for the measurements on the pooled stepped 

spillway (θ = 26.6°, w = 3.1 cm) with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Cmean 

[-] 
Fmax 

[Hz] 
V90 

[m/s] 
Uw 

[m/s] 
d 

[m] 
Y90 

[m] 
Tumax 

[-] 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

2 0.487 16.4 0.84 0.58 0.0432 0.0843 2.47 
3 0.435 47.9 1.61 1.25 0.0200 0.0354 1.50 
4 0.592 55.4 0.98 0.83 0.0303 0.0743 3.24 
5 0.472 70.0 1.54 1.13 0.0222 0.0421 1.89 
6 0.594 65.7 1.25 0.87 0.0287 0.0706 3.07 
7 0.493 76.4 1.74 1.14 0.0220 0.0434 1.94 
8 0.593 77.9 1.46 0.89 0.0280 0.0688 2.97 
9 0.518 87.5 1.88 1.15 0.0217 0.0450 1.84 

0.40 0.013 9.95×104 

10 0.613 85.5 1.60 0.89 0.0280 0.0724 3.80 
4 0.325 25.3 2.60 2.51 0.0231 0.0342 3.30 
5 0.636 104.2 2.63 2.16 0.0269 0.0739 1.49 
6 0.644 145.9 2.69 2.07 0.0281 0.0789 1.77 
7 0.644 168.0 2.69 2.07 0.0281 0.0788 1.83 
8 0.638 194.4 2.82 2.13 0.0273 0.0753 1.81 
9 0.631 204.6 2.85 2.10 0.0276 0.0748 2.05 

0.70 0.030 2.30×105 

10 0.637 216.6 3.00 2.13 0.0272 0.0750 1.98 
4 0.347 62.9 2.75 2.18 0.0334 0.0511 1.60 
5 0.389 121.6 2.83 2.28 0.0319 0.0523 1.52 
6 0.418 146.0 2.86 2.06 0.0354 0.0607 1.46 
7 0.368 172.9 3.00 2.18 0.0334 0.0528 1.66 
8 0.346 188.2 3.18 2.16 0.0337 0.0516 1.98 
9 0.381 196.4 3.18 2.17 0.0336 0.0543 1.71 

0.82 0.038 2.90×105 

10 0.347 62.9 2.75 2.18 0.0334 0.0511 1.60 
5 0.340 87.6 2.93 2.48 0.0376 0.0570 1.84 
6 0.404 122.0 3.04 2.24 0.0416 0.0699 1.27 
7 0.377 151.1 3.25 2.35 0.0398 0.0638 1.42 
8 0.339 169.0 3.33 2.35 0.0398 0.0602 1.60 
9 0.365 183.8 3.40 2.43 0.0384 0.0605 1.44 

0.96 0.049 3.71×105 

10 0.340 87.6 2.93 2.48 0.0376 0.0570 1.84 
5 0.100 18.0 2.74 2.48 0.0492 0.0880 1.77 
6 0.155 41.6 3.09 2.70 0.0452 0.0890 2.63 
7 0.250 88.2 3.24 2.52 0.0484 0.1045 1.58 
8 0.257 117.8 3.45 2.61 0.0468 0.1033 1.50 
9 0.240 150.4 3.47 2.63 0.0464 0.1004 1.54 

1.15 0.063 4.85×105 

10 0.251 171.7 3.53 2.75 0.0443 0.0993 1.46 
6 0.279 62.1 3.49 2.66 0.0543 0.0753 1.44 
7 0.316 95.5 3.58 2.74 0.0527 0.0770 1.46 
8 0.321 130.3 3.66 2.72 0.0531 0.0781 1.43 
9 0.352 148.6 3.76 2.85 0.0506 0.0780 1.26 

1.29 0.075 5.73×105 

10 0.279 62.1 3.49 2.66 0.0543 0.0753 1.44 
7 0.430 42.1 3.47 2.89 0.0598 0.1049 2.10 
8 0.465 74.6 3.65 3.00 0.0577 0.1079 1.90 
9 0.320 107.6 3.75 3.03 0.0571 0.0840 1.61 

1.45 0.090 6.87×105 

10 0.355 136.8 3.85 3.10 0.0558 0.0865 1.38 
8 0.236 58.8 3.76 3.02 0.0616 0.0807 1.88 
9 0.282 93.2 3.83 2.95 0.0630 0.0877 1.37 

1.52 0.097 7.39×105 

10 0.318 119.2 3.97 3.04 0.0612 0.0898 1.23 
8 0.392 42.6 3.75 3.21 0.0683 0.1122 1.86 
9 0.422 72.2 3.95 3.22 0.0682 0.1179 1.65 

1.70 0.113 8.72×105 

10 0.456 96.8 4.07 3.26 0.0672 0.1236 1.50 
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1.85 0.130 9.89×105 10 0.234 79.1 4.21 3.39 0.0735 0.0960 1.43 

 

C.2 AIR-WATER FLOW PROPERTIES ON THE FLAT STEPPED SPILLWAY 

This section presents the vertical distributions of air-water flow properties for the experiments with 

a double-tip conductivity probe on the flat stepped spillway. Table C-3 summarises the 

experimental flow conditions the flow regime and the inception point of air entrainment for the flat 

stepped spillway experiments. Table C-4 details the data set presented in this section and it indicates 

the respective position of the six graphs in Figures C-1 to C-8. All air-water flow distributions are 

presented in terms of the dimensionless distance perpendicular to the pseudo-bottom formed by the 

step edges y/dc. The pseudo-bottom was defined as the zero position, i.e. y = 0.  

 

Table C-3 - Air-water flow measurements with a double-tip conductivity probe (Ø = 0.25 mm) for 

the flat stepped spillways (θ = 26.6°, h = 5 cm) 

 

Configuration dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Measurement 
at step edge

Inception point step 
edge 

Flow 
regime 

(1) (2) (3) (4) (5) (6) (7) 
0.7 0.030 2.30×105 4-10 3 to 4 TRA1 
0.82 0.038 2.90×105 4-10 4 TRA 
0.96 0.049 3.71×105 5-10 5 SK 
1.15 0.063 4.85×105 5-10 5 to 6 SK 
1.29 0.075 5.73×105 6-10 6 SK 
1.45 0.090 6.87×105 7-10 7 SK 
1.52 0.097 7.39×105 8-10 8 SK 

Flat stepped 
spillway 

1.7 0.113 8.72×105 8-10 8 to 9 SK 
 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; SK: skimming flow regime; TRA: transition flow 

regime. 
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Table C-4 - Summary of the air-water flow properties on the flat stepped spillway and positioning 

in the following figures (Fig. C-1 to C-8); Illustration as functions of y/dc 

 

Void fraction C  Dimensionless bubble count rate F×dc/Vc  

Dimensionless interfacial velocity V/Vc  Turbulence intensity Tu 

Dimensionless auto-correlation time scale 

cxx dgT   

Dimensionless cross-correlation time scale 

cxy dgT   

Maximum cross-correlation in a cross-

section (Rxy)max 

 

 

Notes: y: distance normal to the pseudo bottom; C: void fraction; F: bubble count rate; dc: critical 

flow depth; Vc: critical flow velocity; V: interfacial velocity; Tu: turbulence intensity; Txx: auto-

correlation time scale; Txy: cross-correlation time scale; (Rxy)max: maximum cross-correlation. 
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Fig. C-1 – Air-water flow properties on the flat stepped spillway (θ = 26.6°) as functions of y/dc – 

Transition flow sub-regime TRA1: dc/h = 0.7, Q = 0.030 m3/s, Re = 2.30×105; Step edges 4-10 
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Fig. C-2 – Air-water flow properties on the flat stepped spillway (θ = 26.6°) as functions of y/dc – 

Transition flow: dc/h = 0.82, Q = 0.038 m3/s, Re = 2.90×105; Step edges 4-10 
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Fig. C-3 – Air-water flow properties on the flat stepped spillway (θ = 26.6°) as functions of y/dc – 

Skimming flow:  dc/h = 0.96, Q = 0.049 m3/s, Re = 3.71×105; Step edges 5-10 

C [-]

y/
d c

 [
-]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

Fdc/Vc [-]

y/
d c

 [
-]

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

V/Vc [-]

y/
d c

 [
-]

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

Tu [-]

y/
d c

 [
-]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

Txxsqrt(g/dc) [-]

y/
d c

 [
-]

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

Txysqrt(g/dc) [-]

y/
d c

 [
-]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

(Rxy)max [-]

y/
d c

 [
-]

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

 



C-10 

Fig. C-4 – Air-water flow properties on the flat stepped spillway (θ = 26.6°) as functions of y/dc – 

Skimming flow: dc/h = 1.15, Q = 0.063 m3/s, Re = 4.85×105; Step edges 5-10 
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Fig. C-5 – Air-water flow properties on the flat stepped spillway (θ = 26.6°) as functions of y/dc – 

Skimming flow: dc/h = 1.29, Q = 0.075 m3/s, Re = 5.73×105; Step edges 6-10 
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Fig. C-6 – Air-water flow properties on the flat stepped spillway (θ = 26.6°) as functions of y/dc – 

Skimming flow: dc/h = 1.45, Q = 0.090 m3/s, Re = 6.87×105; Step edges 7-10 
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Fig. C-7 – Air-water flow properties on the flat stepped spillway (θ = 26.6°) as functions of y/dc – 

Skimming flow: dc/h = 1.52, Q = 0.097 m3/s, Re = 7.39×105; Step edges 8-10 
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Fig. C-8 – Air-water flow properties on the flat stepped spillway (θ = 26.6°) as functions of y/dc – 

Skimming flow: dc/h = 1.70, Q = 0.113 m3/s, Re = 8.72×105; Step edges 8-10 
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C.3 AIR-WATER FLOW PROPERTIES ON THE POOLED STEPPED SPILLWAY 

This section presents the air-water flow properties for the experiments with a double-tip 

conductivity probe on the pooled stepped spillway and Table C-5 lists the experimental flow 

conditions. Table C-6 summarises the presented data in this section and it indicates the respective 

position of the six graphs in Figures C-9 to C-18. All air-water flow distributions are presented in 

terms of the dimensionless distance from the pool weir height (y+w)/dc. The weir pool edge was 

defined as the zero position for the measurements with the conductivity probe, i.e. y = 0. 

 

Table C-5 - Air-water flow measurements with a double-tip conductivity probe (Ø = 0.25 mm) for 

the pooled stepped spillways (θ = 26.6°, h = 5 cm, w = 3.1 cm) 

 

Configuration dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Measurement 
at step edge

Inception point step 
edge 

Flow 
regime 

(1) (2) (3) (4) (5) (6) (7) 
0.4 0.013 9.95×104 2-10 2 NA 
0.7 0.030 2.30×105 4-10 4 TRA 
0.82 0.038 2.90×105 5-10 4 to 5 TRA 
0.96 0.049 3.71×105 6-10 5 to 6 TRA/SK 
1.15 0.063 4.85×105 5-10 5 to 6 SK 
1.29 0.075 5.73×105 7-10 6 to 7 SK 
1.45 0.090 6.87×105 7-10 7 SK 
1.52 0.097 7.39×105 8-10 8 SK 
1.7 0.113 8.72×105 8-10 8 SK 

Pooled stepped 
spillway 

1.85 0.130 9.89×105 10 9 to 10 SK 
 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number; SK: 

skimming flow regime; TRA: transition flow regime; NA: nappe flow regime. 

 

Table C-6 - Summary of the air-water flow properties on the flat stepped spillway and positioning 

in the following figures (Fig. C-9 to C-18); Illustration as functions of (y+w)/dc 

 

Void fraction C  Dimensionless bubble count rate F×dc/Vc  

Dimensionless interfacial velocity V/Vc  Turbulence intensity Tu 

Dimensionless auto-correlation time scale 

cxx dgT   

Dimensionless cross-correlation time scale 

cxy dgT   

Maximum cross-correlation in a cross-

section (Rxy)max 
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Notes: y: distance normal to the pseudo bottom; C: void fraction; F: bubble count rate; dc: critical 

flow depth; Vc: critical flow velocity; V: interfacial velocity; Tu: turbulence intensity; Txx: auto-

correlation time scale; Txy: cross-correlation time scale; (Rxy)max: maximum cross-correlation auto-

correlation time scale; w: pool weir height. 
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Fig. C-9 – Air-water flow properties on the pooled stepped spillway (θ = 26.6°) as functions of 

(y+w)/dc – Nappe flow: dc/h = 0.4, Q = 0.013 m3/s, Re = 9.95×104; Step edges 2-10 
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Fig. C-10 – Air-water flow properties on the pooled stepped spillway (θ = 26.6°) as functions of 

(y+w)/dc – Transition flow: dc/h = 0.7, Q = 0.030 m3/s, Re = 2.30×105; Step edges 4-10 
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Fig. C-11 – Air-water flow properties on the pooled stepped spillway (θ = 26.6°) as functions of 

(y+w)/dc – Transition flow: dc/h = 0.82, Q = 0.038 m3/s, Re = 2.90×105; Step edges 5-10 
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Fig. C-12 – Air-water flow properties on the pooled stepped spillway (θ = 26.6°) as functions of 

(y+w)/dc – Skimming flow: dc/h = 0.96, Q = 0.049 m3/s, Re = 3.71×105; Step edges 6-10 
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Fig. C-13 – Air-water flow properties on the pooled stepped spillway (θ = 26.6°) as functions of 

(y+w)/dc – Skimming flow: dc/h = 1.15, Q = 0.063 m3/s, Re = 4.85×105; Step edges 5-10 

C [-]

(y
+

w
)/

d c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

Fdc/Vc [-]

(y
+

w
)/

d c

0 2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

V/Vc [-]

(y
+

w
)/

d c

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

Tu [-]

(y
+

w
)/

d c

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

Txxsqrt(g/dc) [-]

(y
+

w
)/

d c

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.2

0.4

0.6

0.8

1

1.2

1.4

Step edge 5
Step edge 6
Step edge 7

Step edge 8
Step edge 9
Step edge 10

Txysqrt(g/dc) [-]

(y
+

w
)/

d c

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.2

0.4

0.6

0.8

1

1.2

1.4

Step edge 5
Step edge 6
Step edge 7

Step edge 8
Step edge 9
Step edge 10

(Rxy)max [-]

(y
+

w
)/

d c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Step edge 5
Step edge 6
Step edge 7
Step edge 8
Step edge 9
Step edge 10

 



C-22 

Fig. C-14 – Air-water flow properties on the pooled stepped spillway (θ = 26.6°) as functions of 

(y+w)/dc – Skimming flow: dc/h = 1.29, Q = 0.075 m3/s, Re = 5.73×105; Step edges 7-10 
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Fig. C-15 – Air-water flow properties on the pooled stepped spillway (θ = 26.6°) as functions of 

(y+w)/dc – Skimming flow: dc/h = 1.45, Q = 0.090 m3/s, Re = 6.87×105; Step edges 7-10 
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Fig. C-16 – Air-water flow properties on the pooled stepped spillway (θ = 26.6°) as functions of 

(y+w)/dc – Skimming flow: dc/h = 1.52, Q = 0.097 m3/s, Re = 7.39×105; Step edges 8-10 
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Fig. C-17 – Air-water flow properties on the pooled stepped spillway (θ = 26.6°) as functions of 

(y+w)/dc – Skimming flow: dc/h = 1.70, Q = 0.113 m3/s, Re = 8.72×105; Step edges 8-10 
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Fig. C-18 – Air-water flow properties on the pooled stepped spillway (θ = 26.6°) as functions of 

(y+w)/dc – Skimming flow: dc/h = 1.85, Q = 0.130 m3/s, Re = 9.89×105; Step edge 10 
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C.4 COMPARISON OF AIR BUBBLE AND WATER DROPLET CHORD SIZES ON THE 

FLAT AND POOLED STEPPED SPILLWAYS:  

 

Fig. C-19 Comparison of probability distribution functions of air bubble chord sizes on the flat and 

pooled stepped spillways: dc/h = 0.82, Q = 0.038 m3/s, Re = 2.90×105 

(A) Step edge 9 

Bubble chord length [mm]

P
D

F

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 16.5 18 19.5 21
0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

> 20 mm

y = 6 mm; C = 0.072; F = 130.6 Hz; flat steps
y = 24 mm; C = 0.181; F = 200.2 Hz; flat steps
y = 28 mm; C = 0.282; F = 234.2 Hz; flat steps
y = 7 mm; C = 0.067; F = 91.2 Hz; pooled steps
y = 24 mm; C = 0.177; F = 147.0 Hz; pooled steps
y = 28 mm; C = 0.276; F = 174.2 Hz; pooled steps

 

(B) Step edge 10 
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Fig. C-20 Comparison of probability distribution functions of air bubble chord sizes on the flat and 

pooled stepped spillways: dc/h = 0.96, Q = 0.049 m3/s, Re = 3.71×105 

(A) Step edge 9 
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(B) Step edge 10 
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Fig. C-21 Comparison of probability distribution functions of air bubble chord sizes on the flat and 

pooled stepped spillways: dc/h = 1.29, Q = 0.075 m3/s, Re = 5.73×105 
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(B) Step edge 10 
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Fig. C-22 Comparison of probability distribution functions of air bubble chord sizes on the flat and 

pooled stepped spillways: dc/h = 1.52, Q = 0.097 m3/s, Re = 7.39×105 - Step edge 10 
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Fig. C-23 Comparison of probability distribution functions of water droplet chord sizes on the flat 

and pooled stepped spillways: dc/h = 0.82, Q = 0.038 m3/s, Re = 2.90×105 

(A) Step edge 9 
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(B) Step edge 10 
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Fig. C-24 Comparison of probability distribution functions of water droplet chord sizes on the flat 

and pooled stepped spillways: dc/h = 0.96, Q = 0.049 m3/s, Re = 3.71×105 
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(B) Step edge 10 
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Fig. C-25 Comparison of probability distribution functions of water droplet chord sizes on the flat 

and pooled stepped spillways: dc/h = 1.29, Q = 0.075 m3/s, Re = 5.73×105 
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(B) Step edge 10 
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Fig. C-26 Comparison of probability distribution functions of water droplet chord sizes on the flat 

and pooled stepped spillways: dc/h = 1.52, Q = 0.097 m3/s, Re = 7.39×105 - Step edge 10 
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APPENDIX D –AIR-WATER FLOW PROPERTIES ON THE STEPPED 
SPILLWAYS WITH IN-LINE AND STAGGERED CONFIGURATIONS OF 

FLAT AND POOLED STEPS  

D.1 PRESENTATION 

In this appendix, the air-water flow properties for the stepped spillway with in-line and staggered 

configurations of flat and pooled steps for all experiments of the present study are presented. The 

results comprise the distributions of void fraction, bubble count rate, interfacial velocity and 

turbulence intensity at the three transverse measurement positions (z/W = 0.25, 0.5, 0.75) at each 

step edge. Figure D-1 shows a sketch of the stepped spillway configurations with in-line and 

staggered flat and pooled steps highlighting the measurement positions. 

In section D.2, the results for the stepped spillway with in-line configuration are presented (Fig. D-2 

to D-16) and section D.3 contains the air-water flow properties for the stepped spillway with 

staggered configuration of flat and pooled steps (Fig. D-17 to D-28). Furthermore some 

characteristic air-water flow parameters for all experiments on the in-line stepped spillway 

configuration and on the staggered stepped spillway configuration are presented in sections D.2 and 

D.3 respectively. 

 

Notation 

C void fraction defined as the volume of air per unit volume of air and water; 

Cmean depth-average void fraction defined in terms of Y90: Cmean = 1 – d/Y90; 

DH hydraulic diameter (m); 

d equivalent clear water flow depth (m); 

dc critical flow depth (m); 

F air bubble count rate (Hz) defined as the number of detected air bubbles per unit time; 

Fmax maximum bubble count rate in a cross-section (Hz); 

h vertical step height (m); 

l horizontal step length (m); 

lw pool weir length (m); 

Q water discharge (m3/s); 

q water discharge per unit width (m2/s); 

qlocal local flow rate per unit width (m2/s); 

Re Reynolds number defined in terms of the hydraulic diameter: Re = ×U×DH/; 

Tu turbulence intensity;  

Tumax maximum turbulence intensity in a cross-section; 

Ulocal mean flow velocity (m/s): Ulocal = qlocal/d; 

V interfacial velocity (m/s); 

Vc critical flow velocity (m/s); 
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V90 characteristic interfacial velocity (m/s) where the void fraction is 90%; 

W channel width (m); 

Ww widths of the pooled and flat part in the staggered and in-line configurations of flat and 

pooled steps (m); 

w weir height in pooled stepped spillway configuration (m), also called pool height; 

Y90 characteristic depth (m) where the void fraction is 90%; 

y distance (m) measured normal to the invert (or channel bed); 

z transverse distance (m) in the channel; 

μ dynamic viscosity (Pa.s); 

 density (kg/m3); 

θ angle between pseudo-bottom formed by the step edges and the horizontal; 

Ø probe sensor diameter (m). 
 

Fig. D-1 – Sketch of stepped spillways with in-line and staggered configuration of flat and pooled 

steps (θ = 26.6°) and the three transverse measurement positions (z/W = 0.25, 0.5 and 0.75) 
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D.2 AIR-WATER FLOW PROPERTIES ON STEPPED SPILLWAY WITH IN-LINE 

CONFIGURATION OF FLAT AND POOLED STEPS 

This section presents the air-water flow properties for the experiments with a double-tip 

conductivity probe on the stepped spillway with in-line configuration of flat and pooled steps. Table 

D-1 lists the experimental flow condition for the experiments including the flow regimes.  

In section D.2.1, some characteristic air-water flow parameters are presented for all discharges. The 

parameters are shown for three transverse positions at each step edge and the transverse averaged 

values are also included (see Appendix F for definition and discussion). Section D.2.2 presents the 

air-water flow properties for all experiments on the stepped spillway with in-line configuration of 

flat and pooled steps including the void fraction C, the dimensionless bubble count rate F×dc/Vc, 

dimensionless interfacial velocity V/Vc and turbulence intensity Tu. All air-water flow distributions 

are presented in terms of the dimensionless distance perpendicular to the pseudo bottom formed by 

the flat step edges (y+w)/dc.  

 

Table D-1 – Air-water flow measurements with a double-tip conductivity probe (Ø = 0.25 mm) for 

the stepped spillway with in-line configuration of flat and pooled steps (θ = 26.6°) 

 

Configuration dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Measurement 
at step edge 

Flow regime

(1) (2) (3) (4) (5) (6) 
0.5 0.016 1.39×105 2-10 NA 
0.7 0.030 2.30×105 2-10 TRA 
1.15 0.063 4.85×105 4-10 SK 
1.45 0.090 6.87×105 5-10 SK 

Stepped spillway with 
in-line configuration of 

flat and pooled steps 

1.7 0.113 8.72×105 7-10 SK 
 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; SK: skimming flow regime; TRA: transition flow 

regime; NA: nappe flow regime. 
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D.2.1 Longitudinal distributions of characteristic air-water flow parameters on the stepped spillway 

with in-line configuration of flat and pooled steps 

 

Table D-2 – Mean air concentration Cmean measured at three transverse positions and transverse 

averaged calculation on the stepped spillway with in-line configuration of flat and pooled steps (θ = 

26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Cmean at z/W = 
0.25 [-] 

Cmean at z/W = 
0.5 [-] 

Cmean at z/W = 
0.75 [-] 

Cmean (Transverse 
averaged) [-] 

(1) (2) (3) (4) (5) (6) (7) (8) 
2 0.419 0.540 0.108 0.333 
3 0.810 0.899 0.240 0.619 
4 0.581 0.609 0.408 0.523 
5 0.635 0.675 0.465 0.581 
6 0.502 0.747 0.419 0.532 
7 0.495 0.620 0.430 0.502 
8 0.471 0.646 0.460 0.511 
9 0.480 0.622 0.403 0.487 

0.50 0.016 1.39×105 

10 0.508 0.700 0.513 0.558 
2 0.294 0.212 0.098 0.200 
3 0.639 0.720 0.156 0.478 
4 0.606 0.687 0.267 0.499 
5 0.709 0.654 0.460 0.602 
6 0.567 0.563 0.345 0.483 
7 0.565 0.554 0.354 0.483 
8 0.571 0.612 0.357 0.501 
9 0.565 0.573 0.307 0.470 

0.7 0.030 2.30×105 

10 0.605 0.661 0.415 0.548 
4 0.303 0.246 0.120 0.220 
5 0.408 0.331 0.166 0.298 
6 0.431 0.395 0.200 0.335 
7 0.468 0.328 0.198 0.332 
8 0.457 0.355 0.189 0.331 
9 0.436 0.346 0.180 0.318 

1.15 0.063 4.85×105 

10 0.490 0.397 0.221 0.366 
5 0.187 0.167 0.104 0.151 
6 0.222 0.245 0.125 0.191 
7 0.326 0.273 0.153 0.248 
8 0.341 0.346 0.151 0.271 
9 0.382 0.307 0.170 0.284 

1.45 0.090 6.87×105 

10 0.424 0.314 0.179 0.305 
7 0.177 0.168 0.124 0.155 
8 0.268 0.239 0.122 0.206 
9 0.322 0.267 0.143 0.241 

1.70 0.113 8.72×105 

10 0.357 0.293 0.183 0.276 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; Cmean: mean air concentration; z/W = 0.25: pooled 

stepped side; z/W = 0.75: flat stepped side; Transverse averaging method defined in Appendix F. 
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Table D-3 – Maximum bubble count rate Fmax measured at three transverse positions and transverse 

averaged calculation on the stepped spillway with in-line configuration of flat and pooled steps (θ = 

26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Fmax at z/W = 
0.25 [Hz] 

Fmax at z/W = 0.5 
[Hz] 

Fmax at z/W = 
0.75 [Hz] 

Fmax (Transverse 
averaged) [Hz] 

(1) (2) (3) (4) (5) (6) (7) (8) 
2 103.9 35.2 20.0 55.3 
3 89.4 19.1 27.4 48.6 
4 43.7 76.5 97.7 72.2 
5 20.8 118.3 135.2 88.1 
6 29.6 88.4 162.3 94.1 
7 34.1 77.4 161.3 92.6 
8 103.9 81.8 204.6 136.1 
9 89.4 156.8 247.4 165.5 

0.50 0.016 1.39×105 

10 43.7 172.5 207.4 137.3 
2 36.8 23.0 8.8 22.9 
3 29.8 25.7 27.2 27.8 
4 96.6 87.0 58.9 80.1 
5 106.6 113.0 129.4 116.8 
6 96.6 127.9 174.5 133.6 
7 100.4 166.4 191.6 151.1 
8 93.4 177.9 217.9 161.2 
9 95.4 214.7 270.0 190.7 

0.7 0.030 2.30×105 

10 102.0 196.6 253.3 182.4 
4 69.0 21.7 12.6 36.0 
5 94.6 94.2 29.4 70.1 
6 142.1 127.6 53.4 105.2 
7 165.8 149.8 75.7 128.0 
8 202.8 149.4 89.4 146.9 
9 210.7 177.6 103.9 162.4 

1.15 0.063 4.85×105 

10 222.8 176.2 118.9 172.2 
5 32.1 19.6 12.3 21.6 
6 80.5 50.0 24.4 51.8 
7 117.7 90.7 34.1 79.6 
8 135.5 109.3 45.8 95.3 
9 173.0 127.0 60.4 119.3 

1.45 0.090 6.87×105 

10 191.4 145.7 79.3 137.9 
7 37.5 34.2 18.3 29.5 
8 67.6 61.5 29.7 51.9 
9 114.0 90.6 40.8 80.7 

1.70 0.113 8.72×105 

10 150.7 113.7 73.7 112.6 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; Fmax: maximum bubble count rate; z/W = 0.25: pooled 

stepped side; z/W = 0.75: flat stepped side; Transverse averaging method defined in Appendix F. 
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Table D-4 – Characteristic interfacial velocity V90 measured at three transverse positions and 

transverse averaged calculation on the stepped spillway with in-line configuration of flat and pooled 

steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

V90 at z/W = 
0.25 [m/s] 

V90 at z/W = 0.5 
[m/s] 

V90 at z/W = 
0.75 [m/s] 

V90 (Transverse 
averaged) [m/s] 

(1) (2) (3) (4) (5) (6) (7) (8) 
2 0.89 1.89 1.07 1.21 
3 1.64 1.83 2.01 1.83 
4 0.89 0.87 2.83 1.61 
5 1.79 1.92 2.18 1.97 
6 1.04 1.72 2.22 1.65 
7 0.90 1.38 2.20 1.51 
8 2.60 0.98 2.72 2.24 
9 0.96 2.20 3.04 2.05 

0.50 0.016 1.39×105 

10 1.30 2.41 3.02 2.22 
2 1.69 1.62 2.08 1.82 
3 1.96 2.01 2.23 2.07 
4 2.32 1.68 2.38 2.18 
5 2.04 2.05 2.32 2.15 
6 1.72 2.03 2.67 2.15 
7 1.80 2.23 2.82 2.29 
8 1.62 2.37 3.00 2.33 
9 1.40 2.54 3.27 2.39 

0.7 0.030 2.30×105 

10 1.45 2.49 3.39 2.44 
4 2.21 2.52 2.48 2.39 
5 2.54 2.71 2.82 2.69 
6 2.90 2.85 3.06 2.95 
7 2.76 3.16 3.27 3.05 
8 2.93 3.39 3.51 3.26 
9 3.04 3.56 3.69 3.41 

1.15 0.063 4.85×105 

10 3.06 3.75 3.96 3.57 
5 2.85 2.90 2.86 2.87 
6 3.13 3.35 3.27 3.24 
7 3.02 3.47 3.56 3.34 
8 3.43 3.73 3.79 3.64 
9 3.37 3.85 3.89 3.69 

1.45 0.090 6.87×105 

10 3.60 3.95 4.19 3.91 
7 3.52 3.60 3.60 3.57 
8 3.69 3.85 3.89 3.81 
9 3.89 4.07 4.00 3.98 

1.70 0.113 8.72×105 

10 4.00 4.07 4.24 4.11 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; V90: characteristic interfacial velocity where C = 90%; 

z/W = 0.25: pooled stepped side; z/W = 0.75: flat stepped side; Transverse averaging method 

defined in Appendix F. 
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Table D-5 – Local discharge per unit width qlocal for measurement at three transverse positions and 

transverse averaged calculation on the stepped spillway with in-line configuration of flat and pooled 

steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

qlocal at z/W = 
0.25 [m2/s] 

qlocal at z/W = 0.5 
[m2/s] 

qlocal at z/W = 
0.75 [m2/s] 

qlocal (Transverse 
averaged) [m2/s] 

(1) (2) (3) (4) (5) (6) (7) (11) 
2 0.1500 0.0662 0.0255 0.0824 
3 0.0334 0.0189 0.0448 0.0341 
4 0.0301 0.0521 0.0664 0.0492 
5 0.0185 0.0209 0.0524 0.0318 
6 0.0352 0.0150 0.0699 0.0432 
7 0.0190 0.0180 0.0735 0.0392 
8 0.0232 0.0208 0.0764 0.0426 
9 0.0208 0.0186 0.0698 0.0386 

0.50 0.016 1.39×105 

10 0.0146 0.0199 0.0730 0.0378 
2 0.0576 0.0498 0.0177 0.0407 
3 0.0625 0.0381 0.0834 0.0642 
4 0.0539 0.0448 0.0905 0.0654 
5 0.0412 0.0411 0.1003 0.0633 
6 0.0429 0.0399 0.1053 0.0656 
7 0.0371 0.0377 0.1106 0.0648 
8 0.0349 0.0296 0.1134 0.0630 
9 0.0366 0.0316 0.1223 0.0675 

0.7 0.030 2.30×105 

10 0.0359 0.0363 0.1155 0.0659 
4 0.0951 0.0934 0.1661 0.1213 
5 0.1032 0.0862 0.1730 0.1251 
6 0.0858 0.1163 0.1754 0.1270 
7 0.0823 0.1095 0.1947 0.1313 
8 0.0760 0.1011 0.1971 0.1277 
9 0.0741 0.0930 0.2022 0.1269 

1.15 0.063 4.85×105 

10 0.0747 0.1050 0.1828 0.1228 
5 0.1452 0.1387 0.0626 0.1126 
6 0.1475 0.1458 0.2240 0.1758 
7 0.1403 0.1479 0.2225 0.1730 
8 0.1395 0.1459 0.2326 0.1760 
9 0.1295 0.1485 0.2416 0.1763 

1.45 0.090 6.87×105 

10 0.1360 0.1545 0.2369 0.1785 
7 0.1773 0.1584 0.1676 0.1689 
8 0.1799 0.1720 0.2509 0.2046 
9 0.1883 0.1781 0.2512 0.2093 

1.70 0.113 8.72×105 

10 0.1952 0.1883 0.2971 0.2317 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; qlocal: local discharge per unit width; z/W = 0.25: pooled 

stepped side; z/W = 0.75: flat stepped side; Transverse averaging method defined in Appendix F. 
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Table D-6 – Local mean flow velocity Ulocal for measurement at three transverse positions and 

transverse averaged calculation on the stepped spillway with in-line configuration of flat and pooled 

steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Ulocal at z/W = 
0.25 [m/s] 

Ulocal at z/W = 
0.5 [m/s] 

Ulocal at z/W = 
0.75 [m/s] 

Ulocal (Transverse 
averaged) [m/s] 

(1) (2) (3) (4) (5) (6) (7) (11) 
2 2.06 1.75 1.15 1.64 
3 1.61 1.57 1.99 1.74 
4 1.01 1.32 2.24 1.55 
5 1.40 1.77 2.18 1.79 
6 1.16 1.66 2.48 1.78 
7 0.83 1.40 2.22 1.49 
8 1.02 1.36 2.63 1.71 
9 0.97 2.13 2.93 2.00 

0.50 0.016 1.39×105 

10 0.83 2.42 2.61 1.90 
2 1.68 2.06 0.50 1.33 
3 1.93 1.90 2.38 2.09 
4 2.05 1.96 2.26 2.11 
5 1.91 1.91 2.54 2.15 
6 1.69 1.98 2.75 2.16 
7 1.69 2.23 2.84 2.26 
8 1.51 2.46 2.88 2.26 
9 1.52 2.60 3.16 2.41 

0.7 0.030 2.30×105 

10 1.56 2.60 2.97 2.35 
4 2.70 2.33 2.29 2.45 
5 2.59 2.79 2.59 2.64 
6 2.91 2.84 2.75 2.83 
7 2.77 3.02 3.02 2.93 
8 2.78 3.21 3.06 2.99 
9 2.87 3.46 3.27 3.17 

1.15 0.063 4.85×105 

10 2.86 3.40 2.96 3.03 
5 2.74 3.00 0.77 2.07 
6 3.07 3.06 2.80 2.97 
7 3.29 3.19 2.95 3.14 
8 3.27 3.17 3.08 3.17 
9 3.42 3.38 3.34 3.38 

1.45 0.090 6.87×105 

10 3.31 3.37 3.18 3.28 
7 3.33 2.76 1.92 2.66 
8 3.45 3.36 2.85 3.20 
9 3.53 3.42 3.00 3.30 

1.70 0.113 8.72×105 

10 3.67 3.53 3.48 3.56 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; Ulocal: local velocity per unit width; z/W = 0.25: pooled 

stepped side; z/W = 0.75: flat stepped side; Transverse averaging method defined in Appendix F 
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Table D-7 – Characteristic flow depth Y90 for measurement at three transverse positions and 

transverse averaged calculation on the stepped spillway with in-line configuration of flat and pooled 

steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Y90 at z/W = 
0.25 [m] 

Y90 at z/W = 0.5 
[m] 

Y90 at z/W = 
0.75 [m] 

Y90 (Transverse 
averaged) [m] 

(1) (2) (3) (4) (5) (6) (7) (11) 
2 0.1251 0.0821 0.0250 0.0768 
3 0.1091 0.1185 0.0297 0.0817 
4 0.0713 0.1005 0.0501 0.0707 
5 0.0362 0.0362 0.0449 0.0395 
6 0.0609 0.0356 0.0484 0.0499 
7 0.0453 0.0340 0.0581 0.0473 
8 0.0430 0.0431 0.0538 0.0471 
9 0.0413 0.0231 0.0400 0.0363 

0.50 0.016 1.39×105 

10 0.0358 0.0273 0.0573 0.0417 
2 0.0487 0.0307 0.0394 0.0407 
3 0.0894 0.0715 0.0415 0.0670 
4 0.0668 0.0730 0.0545 0.0637 
5 0.0744 0.0622 0.0733 0.0709 
6 0.0587 0.0461 0.0584 0.0554 
7 0.0506 0.0378 0.0603 0.0510 
8 0.0538 0.0310 0.0613 0.0509 
9 0.0552 0.0284 0.0558 0.0487 

0.7 0.030 2.30×105 

10 0.0582 0.0412 0.0665 0.0571 
4 0.0504 0.0531 0.0823 0.0630 
5 0.0672 0.0462 0.0801 0.0668 
6 0.0517 0.0677 0.0798 0.0662 
7 0.0558 0.0539 0.0805 0.0646 
8 0.0504 0.0487 0.0795 0.0609 
9 0.0459 0.0410 0.0753 0.0557 

1.15 0.063 4.85×105 

10 0.0512 0.0512 0.0792 0.0617 
5 0.0653 0.0556 0.0907 0.0724 
6 0.0617 0.0631 0.0914 0.0732 
7 0.0632 0.0639 0.0891 0.0731 
8 0.0647 0.0704 0.0889 0.0752 
9 0.0613 0.0633 0.0871 0.0715 

1.45 0.090 6.87×105 

10 0.0712 0.0668 0.0907 0.0774 
7 0.0647 0.0689 0.0998 0.0789 
8 0.0712 0.0673 0.1003 0.0811 
9 0.0787 0.0710 0.0975 0.0838 

1.70 0.113 8.72×105 

10 0.0828 0.0755 0.1047 0.0892 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; Y90: characteristic flow depth where C = 90%; z/W = 

0.25: pooled stepped side; z/W = 0.75: flat stepped side; Transverse averaging method defined in 

Appendix F. 
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Table D-8 – Maximum turbulence intensity Tumax for measurement at three transverse positions and 

transverse averaged calculation on the stepped spillway with in-line configuration of flat and pooled 

steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Tumax at z/W = 
0.25 [-] 

Tumax at z/W = 
0.5 [-] 

Tumax at z/W = 
0.75 [-] 

Tumax (Transverse 
averaged) [-] 

(1) (2) (3) (4) (5) (6) (7) (11) 
2 6.10 4.77 2.31 4.35 
3 4.28 2.86 0.85 2.64 
4 3.57 2.65 1.74 2.65 
5 2.64 1.57 1.02 1.77 
6 3.24 2.33 1.27 2.27 
7 2.64 1.88 1.33 1.96 
8 5.50 2.65 0.94 3.08 
9 2.71 1.63 1.64 2.04 

0.50 0.016 1.39×105 

10 2.94 1.45 1.37 1.98 
2 8.46 5.99 5.16 6.61 
3 5.34 5.15 2.74 4.32 
4 6.22 6.02 2.40 4.74 
5 4.13 1.90 0.99 2.40 
6 2.47 1.94 1.59 2.01 
7 3.23 2.35 1.35 2.31 
8 3.35 1.94 1.21 2.20 
9 2.76 1.90 2.04 2.28 

0.7 0.030 2.30×105 

10 3.65 1.68 1.24 2.25 
4 4.10 1.82 1.69 2.63 
5 1.74 2.21 2.33 2.08 
6 1.40 1.05 1.82 1.47 
7 1.54 1.60 1.71 1.62 
8 1.41 1.45 1.29 1.38 
9 1.86 2.20 2.12 2.04 

1.15 0.063 4.85×105 

10 1.34 1.60 1.48 1.46 
5 2.71 2.72 1.86 2.39 
6 2.39 1.47 1.63 1.88 
7 1.69 1.64 1.74 1.70 
8 1.07 1.19 1.65 1.32 
9 1.52 1.75 1.70 1.65 

1.45 0.090 6.87×105 

10 1.59 1.39 1.88 1.65 
7 1.86 1.42 1.75 1.71 
8 1.96 1.82 1.85 1.88 
9 1.25 1.59 2.00 1.62 

1.70 0.113 8.72×105 

10 1.06 1.56 1.41 1.32 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; Tumax: maximum turbulence intensity in a cross-section; 

z/W = 0.25: pooled stepped side; z/W = 0.75: flat stepped side; Transverse averaging method 

defined in Appendix F. 
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D.2.2 Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps 

Table D-9 summarises the presented data in this section and it indicates the respective position of 

the graphs in Figures D-2 to D-16. All air-water flow distributions are presented in terms of the 

dimensionless distance perpendicular to the pseudo bottom formed by the step edges (y+w)/dc. The 

pseudo bottom formed by the flat step edges was defined as the zero position, i.e. y = 0. 

 

Table D-9 - Summary of the air-water flow properties on the stepped spillway with in-line 

configuration of flat and pooled steps and positioning in the following figures (Fig. D-2 to D-16); 

Illustration as functions of (y+w)/dc 

 

Void fraction C  Dimensionless bubble count rate F×dc/Vc  

Dimensionless interfacial velocity V/Vc  Turbulence intensity Tu 

 

Notes: y: distance normal to the pseudo bottom; C: void fraction; F: bubble count rate; dc: critical 

flow depth; Vc: critical flow velocity; V: interfacial velocity; Tu: turbulence intensity. 

 

Fig. D-2 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Nappe flows: dc/h = 0.50, Q = 0.016 m3/s, Re = 

1.39×105; Step edges 2-10; Transverse position z/W = 0.25 (pooled steps side) 
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Fig. D-3 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Nappe flows: dc/h = 0.50, Q = 0.016 m3/s, Re = 

1.39×105; Step edges 2-10; Transverse position z/W = 0.5 (channel centreline) 
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Fig. D-4 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Nappe flows: dc/h = 0.50, Q = 0.016 m3/s, Re = 

1.39×105; Step edges 2-10; Transverse position z/W = 0.75 (flat steps side) 
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Fig. D-5 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Transition flows: dc/h = 0.70, Q = 0.030 m3/s, 

Re = 2.30×105; Step edges 2-10; Transverse position z/W = 0.25 (pooled steps side) 
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Fig. D-6 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Transition flows: dc/h = 0.70, Q = 0.030 m3/s, 

Re = 2.30×105; Step edges 2-10; Transverse position z/W = 0.5 (channel centreline) 
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Fig. D-7 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Transition flows: dc/h = 0.70, Q = 0.030 m3/s, 

Re = 2.30×105; Step edges 2-10; Transverse position z/W = 0.75 (flat steps side) 
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Fig. D-8 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.15, Q = 0.063 m3/s, 

Re = 4.85×105; Step edges 4-10; Transverse position z/W = 0.25 (pooled steps side) 
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Fig. D-9 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.15, Q = 0.063 m3/s, 

Re = 4.85×105; Step edges 4-10; Transverse position z/W = 0.5 (channel centreline) 
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Fig. D-10 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.15, Q = 0.063 m3/s, 

Re = 4.85×105; Step edges 4-10; Transverse position z/W = 0.75 (flat steps side) 
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Fig. D-11 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.45, Q = 0.090 m3/s, 

Re = 6.87×105; Step edges 5-10; Transverse position z/W = 0.25 (pooled steps side) 
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Fig. D-12 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.45, Q = 0.090 m3/s, 

Re = 6.87×105; Step edges 5-10; Transverse position z/W = 0.5 (channel centreline) 
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Fig. D-13 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.45, Q = 0.090 m3/s, 

Re = 6.87×105; Step edges 5-10; Transverse position z/W = 0.75 (flat steps side) 
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Fig. D-14 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.70, Q = 0.113 m3/s, 

Re = 8.72×105; Step edges 7-10; Transverse position z/W = 0.25 (pooled steps side) 
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Fig. D-15 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.70, Q = 0.113 m3/s, 

Re = 8.72×105; Step edges 7-10; Transverse position z/W = 0.5 (channel centreline) 

C [-]

(y
+

w
)/

d c
 [

-]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

z/W = 0.5
Step edge 7
Step edge 8
Step edge 9
Step edge 10

Fdc/Vc [-]

(y
+

w
)/

d c
 [

-]

0 2 4 6 8 10 12 14 16
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

z/W = 0.5

Step edge 7
Step edge 8

Step edge 9
Step edge 10

V/Vc [-]

(y
+

w
)/

d c
 [

-]

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

z/W = 0.5
Step edge 7
Step edge 8
Step edge 9
Step edge 10

Tu [-]

(y
+

w
)/

d c
 [

-]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

z/W = 0.5

Step edge 7
Step edge 8
Step edge 9
Step edge 10

 



D-21 

Fig. D-16 – Air-water flow properties on the stepped spillway with in-line configuration of flat and 

pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.70, Q = 0.113 m3/s, 

Re = 8.72×105; Step edges 7-10; Transverse position z/W = 0.75 (flat steps side) 
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D.3 AIR-WATER FLOW PROPERTIES ON STEPPED SPILLWAY WITH STAGGERED 

CONFIGURATION OF FLAT AND POOLED STEPS 

This section presents the air-water flow properties for the experiments with a double-tip 

conductivity probe on the stepped spillway with staggered configuration of flat and pooled steps. 

Table D-10 lists the experimental flow condition for the experiments including the flow regimes. 

In section D.3.1, some characteristic air-water flow parameters are presented for all discharges. The 

parameters are shown for three transverse positions at each step edge and the transverse averaged 

values are also included (see Appendix F for definition and discussion). Section D.3.2 presents the 

air-water flow properties for all experiments on the stepped spillway with staggered configuration 

of flat and pooled steps including the void fraction C, the dimensionless bubble count rate F×dc/Vc, 

dimensionless interfacial velocity V/Vc and turbulence intensity Tu. All air-water flow distributions 

are presented in terms of the dimensionless distance perpendicular to the pseudo bottom formed by 

the flat step edges (y+w)/dc. The pseudo bottom was defined as the zero position, i.e. y = 0.  

 

Table D-10 – Air-water flow measurements with a double-tip conductivity probe (Ø = 0.25 mm) for 

the stepped spillway with staggered configuration of flat and pooled steps (θ = 26.6°) 

 

Configuration dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Measurement 
at step edge 

Flow regime

(1) (2) (3) (4) (5) (6) 
0.7 0.030 2.30×105 3-10 TRA 
1.15 0.063 4.85×105 5-10 SK 
1.45 0.090 6.87×105 6-10 SK 

Stepped spillway with 
staggered configuration 
of flat and pooled steps 

1.7 0.113 8.72×105 7-10 SK 
 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; SK: skimming flow regime; TRA: transition flow 

regime. 
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D.2.1 Longitudinal distributions of characteristic air-water flow parameters on the stepped spillway 

with staggered configuration of flat and pooled steps 

 

Table D-11 – Mean air concentration Cmean measured at three transverse positions and transverse 

averaged calculation on the stepped spillway with staggered configuration of flat and pooled steps 

(θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Cmean at z/W = 
0.25 [-] 

Cmean at z/W = 
0.5 [-] 

Cmean at z/W = 
0.75 [-] 

Cmean (Transverse 
averaged) [-] 

(1) (2) (3) (4) (5) (6) (7) (8) 
3 0.572 0.712 0.301 0.505 
4 0.573 0.761 0.636 0.644 
5 0.590 0.702 0.549 0.603 
6 0.509 0.590 0.535 0.539 
7 0.514 0.544 0.528 0.527 
8 0.496 0.712 0.667 0.614 
9 0.670 0.693 0.604 0.651 

0.7 0.030 2.30×105 

10 0.521 0.611 0.562 0.559 
5 0.356 0.505 0.254 0.355 
6 0.319 0.572 0.447 0.430 
7 0.538 0.500 0.340 0.454 
8 0.365 0.477 0.457 0.428 
9 0.494 0.486 0.314 0.425 

1.15 0.063 4.85×105 

10 0.357 0.532 0.508 0.457 
6 0.203 0.433 0.230 0.271 
7 0.401 0.486 0.252 0.366 
8 0.345 0.453 0.355 0.376 
9 0.453 0.414 0.284 0.380 

1.45 0.090 6.87×105 

10 0.341 0.413 0.424 0.390 
7 0.223 0.359 0.175 0.239 
8 0.268 0.367 0.248 0.285 
9 0.368 0.368 0.238 0.319 

1.70 0.113 8.72×105 

10 0.355 0.371 0.363 0.362 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; Cmean: mean air concentration; Transverse averaging 

method defined in Appendix F. 
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Table D-12 – Maximum bubble count rate Fmax measured at three transverse positions and 

transverse averaged calculation on the stepped spillway with staggered configuration of flat and 

pooled steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Fmax at z/W = 
0.25 [Hz] 

Fmax at z/W = 0.5 
[Hz] 

Fmax at z/W = 
0.75 [Hz] 

Fmax (Transverse 
averaged) [Hz] 

(1) (2) (3) (4) (5) (6) (7) (8) 
3 44.4 49.3 28.4 39.6 
4 78.9 81.4 69.4 76.0 
5 97.9 118.4 118.6 110.8 
6 122.9 134.2 148.1 135.2 
7 123.0 147.9 146.8 138.2 
8 199.1 153.9 242.4 204.0 
9 158.9 156.0 268.5 199.3 

0.7 0.030 2.30×105 

10 157.8 159.8 153.6 156.7 
5 84.8 114.9 46.1 77.8 
6 119.8 169.8 98.6 124.4 
7 131.2 179.8 138.0 145.9 
8 220.0 199.2 220.0 214.8 
9 213.1 218.7 315.0 252.7 

1.15 0.063 4.85×105 

10 299.5 231.2 249.6 263.7 
6 41.5 92.1 40.2 53.7 
7 99.9 133.8 76.4 99.6 
8 153.1 157.8 163.5 158.2 
9 203.5 184.7 233.7 210.1 

1.45 0.090 6.87×105 

10 258.8 196.8 208.1 224.3 
7 62.9 71.9 32.4 53.7 
8 109.9 111.1 88.2 102.1 
9 184.7 138.6 187.8 174.3 

1.70 0.113 8.72×105 

10 217.0 160.2 189.4 192.5 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; Fmax: maximum bubble count rate; Transverse averaging 

method defined in Appendix F. 
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Table D-13 – Characteristic interfacial velocity V90 measured at three transverse positions and 

transverse averaged calculation on the stepped spillway with staggered configuration of flat and 

pooled steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

V90 at z/W = 
0.25 [m/s] 

V90 at z/W = 0.5 
[m/s] 

V90 at z/W = 
0.75 [m/s] 

V90 (Transverse 
averaged) [m/s] 

(1) (2) (3) (4) (5) (6) (7) (8) 
3 1.90 1.91 3.13 2.36 
4 2.86 2.68 2.29 2.60 
5 2.16 2.05 2.48 2.25 
6 2.48 2.39 2.62 2.51 
7 2.21 2.21 4.49 3.07 
8 2.48 2.38 2.33 2.40 
9 2.03 2.28 2.89 2.42 

0.7 0.030 2.30×105 

10 2.41 2.70 2.53 2.53 
5 2.88 2.87 3.28 3.03 
6 3.10 3.13 2.95 3.05 
7 3.02 3.09 3.28 3.14 
8 3.17 3.20 3.13 3.16 
9 2.77 3.30 3.31 3.11 

1.15 0.063 4.85×105 

10 3.24 3.56 3.07 3.26 
6 3.16 3.51 3.42 3.35 
7 2.99 3.55 3.53 3.33 
8 3.35 3.58 3.69 3.54 
9 3.17 3.69 3.69 3.50 

1.45 0.090 6.87×105 

10 3.43 3.89 3.51 3.58 
7 3.47 3.69 3.79 3.65 
8 3.51 3.89 3.89 3.75 
9 3.64 3.98 3.89 3.82 

1.70 0.113 8.72×105 

10 3.69 4.18 3.79 3.85 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; V90: characteristic interfacial velocity where C = 90%; 

Transverse averaging method defined in Appendix F. 
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Table D-14 – Local discharge per unit width qlocal for measurement at three transverse positions and 

transverse averaged calculation on the stepped spillway with staggered configuration of flat and 

pooled steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

qlocal at z/W = 
0.25 [m2/s] 

qlocal at z/W = 0.5 
[m2/s] 

qlocal at z/W = 
0.75 [m2/s] 

qlocal (Transverse 
averaged) [m2/s] 

(1) (2) (3) (4) (5) (6) (7) (8) 
3 0.0705 0.0387 0.0686 0.0618 
4 0.0541 0.0724 0.1155 0.0817 
5 0.0742 0.0478 0.1066 0.0798 
6 0.0683 0.0514 0.0947 0.0740 
7 0.0731 0.0634 0.1373 0.0948 
8 0.0937 0.0432 0.1060 0.0857 
9 0.0881 0.0503 0.0928 0.0804 

0.7 0.030 2.30×105 

10 0.0961 0.0596 0.0776 0.0800 
5 0.1718 0.0905 0.1407 0.1398 
6 0.1405 0.1273 0.1693 0.1480 
7 0.1570 0.1339 0.1487 0.1481 
8 0.1424 0.1417 0.1648 0.1506 
9 0.1432 0.1375 0.1419 0.1413 

1.15 0.063 4.85×105 

10 0.1301 0.1353 0.1514 0.1394 
6 0.1283 0.1384 0.2270 0.1678 
7 0.2248 0.1749 0.2092 0.2065 
8 0.1875 0.1986 0.2156 0.2008 
9 0.2126 0.2252 0.1909 0.2076 

1.45 0.090 6.87×105 

10 0.1835 0.2163 0.1894 0.1939 
7 0.2548 0.2039 0.2556 0.2424 
8 0.2350 0.2298 0.2643 0.2447 
9 0.2756 0.2693 0.2495 0.2642 

1.70 0.113 8.72×105 

10 0.2330 0.2786 0.2678 0.2575 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; qlocal: local discharge per unit width; Transverse 

averaging method defined in Appendix F. 
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Table D-15 – Local mean flow velocity Ulocal for measurement at three transverse positions and 

transverse averaged calculation on the stepped spillway with staggered configuration of flat and 

pooled steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Ulocal at z/W = 
0.25 [m/s] 

Ulocal at z/W = 
0.5 [m/s] 

Ulocal at z/W = 
0.75 [m/s] 

Ulocal (Transverse 
averaged) [m/s] 

(1) (2) (3) (4) (5) (6) (7) (8) 
3 1.52 2.10 2.25 1.94 
4 2.31 2.75 1.92 2.27 
5 2.20 2.16 2.37 2.25 
6 2.13 1.97 2.61 2.27 
7 2.05 2.30 3.19 2.54 
8 2.26 2.22 1.99 2.15 
9 2.05 2.25 2.46 2.25 

0.7 0.030 2.30×105 

10 2.48 2.41 2.31 2.40 
5 2.49 3.04 2.93 2.79 
6 3.04 2.85 2.48 2.78 
7 2.70 3.11 3.06 2.94 
8 2.92 3.18 2.61 2.87 
9 2.37 3.42 2.41 2.65 

1.15 0.063 4.85×105 

10 2.76 3.53 2.57 2.88 
6 2.28 3.09 2.53 2.58 
7 2.71 3.33 3.35 3.11 
8 3.21 3.39 2.84 3.12 
9 2.90 3.64 2.88 3.08 

1.45 0.090 6.87×105 

10 3.29 3.68 2.52 3.10 
7 2.68 3.61 3.48 3.21 
8 3.29 3.62 2.97 3.25 
9 3.21 3.81 3.42 3.44 

1.70 0.113 8.72×105 

10 3.61 3.87 3.07 3.47 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; qlocal: local discharge per unit width; Transverse 

averaging method defined in Appendix F. 
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Table D-16 – Characteristic flow depth Y90 for measurement at three transverse positions and 

transverse averaged calculation on the stepped spillway with staggered configuration of flat and 

pooled steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Y90 at z/W = 
0.25 [m] 

Y90 at z/W = 0.5 
[m] 

Y90 at z/W = 
0.75 [m] 

Y90 (Transverse 
averaged) [m] 

(1) (2) (3) (4) (5) (6) (7) (8) 
3 0.1083 0.0640 0.0437 0.0730 
4 0.0548 0.1099 0.1650 0.1099 
5 0.0823 0.0745 0.0998 0.0869 
6 0.0654 0.0636 0.0780 0.0697 
7 0.0732 0.0604 0.0910 0.0767 
8 0.0823 0.0675 0.1693 0.1112 
9 0.1300 0.0728 0.0952 0.1027 

0.7 0.030 2.30×105 

10 0.0809 0.0635 0.0767 0.0750 
5 0.1072 0.0603 0.0645 0.0795 
6 0.0678 0.1046 0.1234 0.0979 
7 0.1258 0.0861 0.0736 0.0963 
8 0.0768 0.0851 0.1162 0.0937 
9 0.1192 0.0783 0.0860 0.0965 

1.15 0.063 4.85×105 

10 0.0733 0.0821 0.1198 0.0929 
6 0.0707 0.0792 0.1167 0.0901 
7 0.1386 0.1021 0.0834 0.1088 
8 0.0892 0.1072 0.1176 0.1044 
9 0.1340 0.1057 0.0926 0.1114 

1.45 0.090 6.87×105 

10 0.0846 0.1002 0.1303 0.1056 
7 0.1223 0.0885 0.0891 0.1014 
8 0.0977 0.1012 0.1199 0.1069 
9 0.1360 0.1120 0.0961 0.1150 

1.70 0.113 8.72×105 

10 0.1002 0.1155 0.1372 0.1179 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; Y90: characteristic flow depth where C = 90%; 

Transverse averaging method defined in Appendix F. 
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Table D-17 – Maximum turbulence intensity Tumax for measurement at three transverse positions 

and transverse averaged calculation on the stepped spillway with staggered configuration of flat and 

pooled steps (θ = 26.6°); Measurements with a double-tip conductivity probe (Ø = 0.25 mm) 

 

dc/h 
[-] 

Q 
[m3/s] 

Re 
[-] 

Step 
edge 

Tumax at z/W = 
0.25 [-] 

Tumax at z/W = 
0.5 [-] 

Tumax at z/W = 
0.75 [-] 

Tumax (Transverse 
averaged) [-] 

(1) (2) (3) (4) (5) (6) (7) (8) 
3 3.54 8.73 9.90 7.22 
4 7.04 5.89 2.96 5.22 
5 2.72 2.98 5.00 3.64 
6 3.61 2.28 1.99 2.67 
7 1.96 3.41 6.93 4.19 
8 6.54 1.58 3.09 4.01 
9 2.69 2.40 3.04 2.75 

0.7 0.030 2.30×105 

10 4.56 2.37 1.89 3.01 
5 1.26 1.81 4.85 2.74 
6 2.36 0.95 1.70 1.76 
7 1.40 1.28 2.37 1.73 
8 2.55 1.37 1.37 1.81 
9 1.58 1.69 2.39 1.91 

1.15 0.063 4.85×105 

10 2.21 1.31 1.25 1.63 
6 4.19 1.76 1.40 2.54 
7 1.60 1.10 2.84 1.94 
8 2.72 1.18 1.44 1.86 
9 1.27 1.13 2.69 1.77 

1.45 0.090 6.87×105 

10 2.23 1.05 1.41 1.63 
7 1.65 1.88 3.86 2.54 
8 3.33 1.58 1.46 2.19 
9 1.31 1.49 2.87 1.94 

1.70 0.113 8.72×105 

10 2.55 1.10 1.43 1.77 

 

Notes: dc: critical flow depth; h: vertical step height; Q: water discharge; Re: Reynolds number 

defined in terms of the hydraulic diameter; Y Tumax: maximum turbulence intensity in a cross-

section; Transverse averaging method defined in Appendix F. 
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D.3.2 Air-water flow properties on the stepped spillway with staggered configuration of flat and 

pooled steps 

Table D-18 summarises the presented data in this section and it indicates the respective position of 

the graphs in Figures D-17 to D-28. All air-water flow distributions are presented in terms of the 

dimensionless distance perpendicular to the pseudo-bottom formed by the step edges (y+w)/dc. The 

pseudo bottom formed by the flat step edges was defined as the zero position, i.e. y = 0. 

 

Table D-18 - Summary of the air-water flow properties on the stepped spillway with staggered 

configuration of flat and pooled steps and positioning in the following figures (Fig. D-17 to D-28); 

Illustration as functions of (y+w)/dc 

 

Void fraction C  Dimensionless bubble count rate F×dc/Vc  

Dimensionless interfacial velocity V/Vc  Turbulence intensity Tu 

 

Notes: y: distance normal to the pseudo bottom; C: void fraction; F: bubble count rate; dc: critical 

flow depth; Vc: critical flow velocity; V: interfacial velocity; Tu: turbulence intensity. 

 

Fig. D-17 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Transition flows: dc/h = 0.70, Q = 0.030 

m3/s, Re = 2.30×105; Step edges 3-10; Transverse position z/W = 0.25 
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Fig. D-18 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Transition flows: dc/h = 0.70, Q = 0.030 

m3/s, Re = 2.30×105; Step edges 3-10; Transverse position z/W = 0.5 (channel centreline) 
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Fig. D-19 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Transition flows: dc/h = 0.70, Q = 0.030 

m3/s, Re = 2.30×105; Step edges 3-10; Transverse position z/W = 0.75 
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Fig. D-20 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.15, Q = 0.063 

m3/s, Re = 4.85×105; Step edges 5-10; Transverse position z/W = 0.25 
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Fig. D-21 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.15, Q = 0.063 

m3/s, Re = 4.85×105; Step edges 5-10; Transverse position z/W = 0.5 (channel centreline) 
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Fig. D-22 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.15, Q = 0.063 

m3/s, Re = 4.85×105; Step edges 5-10; Transverse position z/W = 0.75 
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Fig. D-23 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.45, Q = 0.090 

m3/s, Re = 6.87×105; Step edges 6-10; Transverse position z/W = 0.25 
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Fig. D-24 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.45, Q = 0.090 

m3/s, Re = 6.87×105; Step edges 6-10; Transverse position z/W = 0.5 (channel centreline) 
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Fig. D-25 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.45, Q = 0.090 

m3/s, Re = 6.87×105; Step edges 6-10; Transverse position z/W = 0.75 
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Fig. D-26 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.70, Q = 0.113 

m3/s, Re = 8.72×105; Step edges 7-10; Transverse position z/W = 0.25 
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Fig. D-27 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.70, Q = 0.113 

m3/s, Re = 8.72×105; Step edges 7-10; Transverse position z/W = 0.50 (channel centreline) 
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Fig. D-28 – Air-water flow properties on the stepped spillway with staggered configuration of flat 

and pooled steps (θ = 26.6°) as functions of (y+w)/dc – Skimming flows: dc/h = 1.70, Q = 0.113 

m3/s, Re = 8.72×105; Step edges 7-10; Transverse position z/W = 0.75 
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APPENDIX E – AIR-WATER FLOW PROPERTIES IN A PULSATING 
FLOW ON A POOLED STEPPED SPILLWAY 

E.1 PRESENTATION 

In the present study, experiments were conducted on a pooled stepped spillway (h = 10 cm, w = 3.1 

cm) for a range of flow rates 0.002 ≤ Q ≤ 0.139 m3/s (0.11 ≤ dc/h ≤ 1.94). For the smallest flow 

rates dc/h < 0.45, a nappe flow regime existed and the water discharged in a succession of free-

falling nappes from one step pool to the following. However, for a flow rate 0.30 ≤ dc/h ≤ 0.45, a 

pulsating flow was observed in the first step cavity which led to some small instabilities of the free-

falling nappes. The pulsations in the first step cavity were periodic with a frequency of about 1 Hz 

for dc/h = 0.3 while they were observed about every 5 seconds for dc/h = 0.45. The pulsating 

mechanism was somehow comparable to the self-induced instabilities on a pooled stepped spillway 

with a slope of 8.9° observed by THORWARTH (2008) and FELDER & CHANSON (2012a). On 

the 8.9° pooled stepped spillway, the instabilities occurred in the transition flow regime for 1.08 ≤ 

dc/h ≤ 1.76 and caused some significant flow disturbances including jump waves and instable cavity 

ejections. The instabilities on the pooled stepped spillway in the present study were much smaller 

and did not cause significant disturbances of the flow. The flow pattern and the air-water flow 

properties for a typical flow rate in the pulsating flow Q = 0.013 m3/s (dc/h = 0.4) are presented in 

this Appendix. 

 

Notation 

C void fraction defined as the volume of air per unit volume of air and water; 

Cmean depth-average void fraction defined in terms of Y90: Cmean = 1 – d/Y90; 

DH hydraulic diameter (m); 

Do dimensionless constant; 

d equivalent clear water flow depth (m); 

dc critical flow depth (m); 

F air bubble count rate (Hz) defined as the number of detected air bubbles per unit time; 

Fmax maximum bubble count rate in a cross-section (Hz); 

h vertical step height (m); 

K' dimensionless integration constant; 

l horizontal step length (m); 

N power law exponent; 

Q water discharge (m3/s); 

qw water discharge per unit width (m2/s); 

Re Reynolds number defined in terms of the hydraulic diameter: Re = w×Uw×DH/w; 

Tu turbulence intensity;  
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Tumax maximum turbulence intensity in a cross-section; 

Uw mean flow velocity (m/s): Uw = qw/d; 

V interfacial velocity (m/s); 

Vc critical flow velocity (m/s); 

V90 characteristic interfacial velocity (m/s) where the void fraction is 90%; 

w weir height in pooled stepped spillway configuration (m), also called pool height; 

Y90 characteristic depth (m) where the void fraction is 90%; 

y distance (m) measured normal to the invert (or channel bed); 

θ angle between pseudo-bottom formed by the step edges and the horizontal; 

Ø probe sensor diameter (m). 
 

E.2 AIR-WATER FLOW PATTERNS 

Some typical air-water flow patterns of the pulsating flow on the stepped spillway are illustrated in 

Figures E-1 to E-3 for the dimensionless flow rate dc/h = 0.4. Figure E-1 shows a series of photos of 

the pulsations in the first step cavity in a side view highlighting the changes in free-surface within 

the step cavity. During the pulsations, some small waves were ejected from the first step cavity and 

caused some deviations to the lengths of the free-falling nappes impacting on the next step edges. 

Figure E-2 shows the pulsations in the first step cavity in a view in flow direction. In Figure E-2, 

the free-falling nappes are also visible downstream of the first step cavity. With every pulsation, the 

nappe impact cavity was shifted from the successive step cavity to one step cavity further 

downstream (Fig. E-3). In Figure E-3, the changes of the nappe flow are illustrated in a view of the 

whole spillway showing the impact of the pulsations upon the downstream air-water flow patterns. 

Some deviations of the shapes of the nappes and of the impact area of the free-falling nappes are 

visible. 
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Fig. E-1 – Side view of pulsating flow in first step cavity on the pooled stepped spillway (dc/h = 0.4, 

Q = 0.013 m3/s, Re = 1.0×105) - Chronological order from top left corner to bottom right corner 
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Fig. E-2 – View of pulsating flow in first step cavity in downstream direction on the pooled stepped 

spillway (dc/h = 0.4, Q = 0.013 m3/s, Re = 1.0×105) - Chronological order from top left corner to 

bottom right corner 

 

Fig. E-3 – Pulsating flow on the pooled stepped spillway (dc/h = 0.4, Q = 0.013 m3/s, Re = 1.0×105) 

- Chronological order from left to right 
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E.3 CHARACTERISTIC FREQUENCIES 

Some detailed analyses of the pulsation frequencies were conducted for 0.30 ≤ dc/h ≤ 0.45. Using 

some video analysis, the frequencies of the pulsations in the first step edge were visually observed. 

For the lower boundary of the pulsating flow rates (dc/h = 0.3), the pulsations appeared about every 

second while, at the upper boundary (dc/h = 0.45), the pulsations were seen about every 5 seconds. 

The pulsating flow was quasi-periodic for all flow rates. 

This section presents the characteristic frequencies for dc/h = 0.4. In a video analysis, the pulsation 

frequency was identified as about 0.33 Hz (i.e. 3 seconds period). For this flow rate, some detailed 

air-water flow experiments were conducted with a double-tip conductivity probe for a sampling 

duration of 180 s with a sampling frequency of 20 kHz per sensor. Some detailed analyses of the 

raw signals of the double-tip conductivity probe confirmed the visual observations for this flow 

rate. In Figure E-4, some raw signals of the leading tip conductivity probe are illustrated for two 

vertical measured positions at step 2, i.e. at the first pooled weir edge downstream of the step cavity 

with the pulsating flow. The raw signals (Fig. E-4) highlighted the changes in air-water interphases 

within the pulsating flow. A simple manual count of the phase changes indicated a frequency of the 

pulsating pattern of about 0.29 to 0.31 Hz which was very close to the characteristic frequencies 

observed visually. 

Please note that it was not possible to observe the interphase changes in any raw signal at any other 

step edge. From step 3 downstream, the raw signals of the conductivity probe showed a larger 

number of air-water interface changes linked with a strong aeration of the flow. However, it was 

possible to notice some characteristic frequencies in a spectral analysis (FFT) of the probe raw 

signals (Fig. E-5). Figure E-5 shows some typical power spectrum density functions of raw signals 

of the leading tip of the conductivity probe at several vertical positions and at different step edges. 

The power spectrum density functions highlighted some characteristic troughs and peaks in a range 

of about 0.3 to 0.34 Hz (Fig. E-5). These findings confirmed the characteristic pulsation frequencies 

found during the visual observations and the raw signal analysis at step edge 2. 

At the downstream end of the pooled stepped spillway, the pulsating nature of the flow was less 

pronounced (e.g. Fig. E-3). The FFT spectral analyses at step edges 9 and 10 did not show any 

characteristic frequencies. 
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Fig. E-4 – Raw signals of leading tip of double-tip conductivity probe in the pulsating flow on the 

pooled stepped spillway (dc/h = 0.4, Q = 0.013 m3/s, Re = 1.0×105):  

(A) Step edge 2, y = 10 mm, C = 0.881, F = 9.89 Hz 

(B) Step edge 2, y = 26 mm, C = 0.548, F = 15.4 Hz 
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Fig. E-5 – Spectral analysis of the pulsations of the raw phase detection probe signal of the leading 

tip of a double-tip conductivity probe in the pulsating flow on a pooled stepped spillway (dc/h = 0.4, 

Q = 0.013 m3/s, Re = 1.0×105):  

Step edge 3, y = 25 mm, C = 0.670, F = 38.6 Hz 
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E.4 AIR-WATER FLOW PROPERTIES 

For a typical pulsating flow dc/h = 0.4, some detailed analyses of the air-water flow properties was 

conducted including the void fraction, the bubble count rate, the interfacial velocity and the 

turbulence intensity. In the section, the characteristic results are presented. Furthermore, some 

characteristic air-water flow parameters are shown for all step edges. 

 

E.4.1 Void fraction 

The void fraction distributions are shown in Figure E-6 as functions of the dimensionless distance 

perpendicular to the pseudo-bottom formed by the step edges y/Y90 (Fig. E-6A) and (y+w)/dc (Fig. 

E-6B). Herein Y90 is the vertical position where C = 90% and dc is the critical flow depth. The void 

fraction distributions showed two different shapes with alternations at every second step edge (Fig. 

E-6). For step edges 2, 4, 6, 8 and 10, the shapes of the void fraction distributions were qualitatively 

similar to the observations of TOOMBES & CHANSON (2008) in a free-falling jet. At the other 

step edges, the void fraction distributions showed some typical S-shapes which were observed in 

skimming flows in many previous studies on stepped spillways (e.g. CHANSON & TOOMBES 

2002; GONZALEZ 2005; BUNG 2011). In Figure E-6A, the S-shaped distributions of void fraction 

matched very well the advective diffusion equation developed by CHANSON & TOOMBES 

(2002): 
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where K' is an integration constant and Do is a function of the depth-averaged void fraction Cmean 

only: 
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Fig. E-6 – Void fraction distributions in the pulsating flow on the pooled stepped spillway (dc/h = 

0.4, Q = 0.013 m3/s, Re = 1.0×105):  

(A) C as function of y/Y90 
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(B) C as function of (y+w)/dc 
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E.4.2 Bubble count rate 

The dimensionless bubble count rate F×dc/Vc distributions are illustrated in FigureE-7 for all step 

edges as functions of y/Y90 and (y+w)/dc. Vc is the critical flow velocity corresponding to dc. The 

distribution of bubble count rates showed typical shapes with maxima for void fractions of about C 

= 0.3-0.45. A different shape was observed for step edge 2 with a much smaller number of detected 

bubble and a second smaller peak in the bubble count rate distribution. With increasing distance 

downstream from the inception point of air entrainment, the bubble frequency increased and no 

uniform equilibrium flow was observed (Fig. E-7). 

 

Fig. E-7 – Dimensionless bubble count rate distributions in the pulsating flow on the pooled stepped 

spillway (dc/h = 0.4, Q = 0.013 m3/s, Re = 1.0×105):  

(A) F×dc/Vc as function of y/Y90 

Fdc/Vc [-]

y/
Y

90
 [

-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Step edge 2
Step edge 3
Step edge 4
Step edge 5
Step edge 6

Step edge 7
Step edge 8
Step edge 9
Step edge 10

(B) F×dc/Vc as function of (y+w)/dc 
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E.4.3 Interfacial velocity 

A further air-water flow property is the interfacial time averaged local velocity V which was 

calculated based upon a cross-correlation analysis of the raw signals of the two tips of the double-

tip conductivity probe. The dimensionless interfacial velocity distributions are illustrated in Figure 

E-8. In Figure E-8A, some distributions of the dimensionless interfacial velocity V/V90 are 

illustrated as a function of y/Y90. Two different shapes of the velocity distributions are visible (Fig. 

E-8). For the step edges 2, 4, 6, 8 and 10, the interfacial velocity distributions had some shapes 

similar to those observed at the impact of nappe flow jets (TOOMBES & CHANSON 2008). At the 

other step edges where some S-shaped void fraction distributions were observed (Fig. E-6), the air-

water velocity profiles exhibited a typical power law shape observed in skimming flows. The data 

there compared well with a power law with exponent of N = 10 (Fig. E-8A): 
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For y/Y90 > 1, the velocity distributions had a uniform profile and were best correlated by: 

 1
V

V

90

  1 > y/Y90 (E-5) 

The distributions of dimensionless interfacial velocity V/Vc (Fig. E-8B) showed similar shapes of 

V/Vc in the region close to the pool weir edge and some large variations of V/Vc in the flow regions 

closer to the free-surface.  

 

Fig. E-8 – Dimensionless interfacial velocity distributions in the pulsating flow on the pooled 

stepped spillway (dc/h = 0.4, Q = 0.013 m3/s, Re = 1.0×105):  

(A) V/V90 as function as y/Y90 
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(B) V/Vc as function of (y+w)/dc 
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E.4.4 Turbulence intensity 

The distributions of the turbulence intensity Tu are illustrated in Figure E-9 as functions of y/Y90 
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and (y+w)/dc. Similarly to the observations of void fraction and interfacial velocities, two different 

shapes of the turbulence levels are visible (Fig. E-9). For the step edges with S-shaped void fraction 

profile, the turbulence intensity distributions showed characteristic shapes similar to skimming flow 

data with turbulence intensity maxima in the intermediate flow region. For the step edges with void 

fraction and interfacial velocity distributions similar to impacting nappe flow jets, the turbulence 

intensities were much larger. The maxima of Tu were about twice as large as on the other step 

edges and observed also in the intermediate flow region. 

Very large turbulence intensities were also observed by FELDER & CHANSON (2012a) and by 

FELDER et al. (2012) on a pooled stepped spillway with 8.9°. FELDER & CHANSON (2012a) 

linked the large turbulence levels to some instabilities in the flow on the pooled stepped spillway. 

They showed that the instationary flow processes contributed significantly to the turbulent kinetic 

energy of the flow. The large turbulence levels in the present study seem to be linked with the 

instabilities of the air-water flows caused by the pulsations in the first step cavity. The application 

of the triple decomposition approach to air-water flows by FELDER & CHANSON (2012a) might 

identify the contribution of the flow pulsations to the overall turbulence velocity fluctuations. 

 

Fig. E-8 – Turbulence intensity distributions in the pulsating flow on the pooled stepped spillway 

(dc/h = 0.4, Q = 0.013 m3/s, Re = 1.0×105):  

(A) Tu as function of y/Y90 
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(B) Tu as function of (y+w)/dc 
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E.4.5 Longitudinal distributions of characteristic air-water flow parameters 

Some characteristic air-water flow parameters were calculated for all step edges for the pulsating 

flow rate dc/h = 0.4. The results are listed in Table E-1 including the mean air concentration Cmean, 

the maximum bubble count rate Fmax, the characteristic interfacial velocity V90, the mean flow 

velocity Uw, the equivalent clear-water flow depth d, the characteristic flow depth Y90 and the 

maximum turbulence intensity Tumax. The values in Table E-1 tended to confirm the alternating 



E-12 

pattern of air-water flow properties every second step edge for all investigated parameters. 

Some seesaw pattern was observed in several previous studies in skimming flows (BOES 2000; 

CHANSON & TOOMBES 2002; YASUDA & CHANSON 2003; FELDER & CHANSON 2009b). 

It was believed to be a characteristic feature of skimming flows on flat stepped spillway (FELDER 

& CHANSON 2009b). Herein the results were further emphasised by the pulsating nature of the 

flow. The present findings for the present flow rate on pooled steps highlighted the existence of a 

strong seesaw pattern of all air-water flow parameters and properties on the pooled stepped 

spillway. 

 

Table E-1 – Summary of characteristic longitudinal air-water flow parameters in the pulsating flow 

on the pooled stepped spillway (Q = 0.013 m3/s, dc/h = 0.40, Re = 1×105) 

 

Step edge Cmean 

[-] 
Fmax 

[Hz] 
V90 

[m/s] 
Uw 

[m/s] 
d 

[m] 
Y90 

[m] 
Tumax 

[-] 
(1) (2) (3) (4) (5) (6) (7) (8) 
2 0.487 16.4 0.84 0.58 0.0432 0.0843 2.47 
3 0.435 47.9 1.61 1.25 0.0200 0.0354 1.50 
4 0.592 55.4 0.98 0.83 0.0303 0.0743 3.24 
5 0.472 70.0 1.54 1.13 0.0222 0.0421 1.89 
6 0.594 65.7 1.25 0.87 0.0287 0.0706 3.07 
7 0.493 76.4 1.74 1.14 0.0220 0.0434 1.94 
8 0.593 77.9 1.46 0.89 0.0280 0.0688 2.97 
9 0.518 87.5 1.88 1.15 0.0217 0.0450 1.84 
10 0.613 85.5 1.60 0.89 0.0280 0.0724 3.80 

 

Notes: Cmean: mean void fraction; Fmax: maximum bubble count rate; V90: characteristic interfacial 

velocity; Uw: mean flow velocity; d: equivalent clear water flow depth; Y90: characteristic flow 

depth; Tumax: maximum turbulence intensity. 
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APPENDIX F – TRANSVERSE AVERAGING OF AIR-WATER FLOW 
PROPERTIES 

F.1 PRESENTATION 

Experiments were conducted on a  = 26.6° stepped spillway with in-line and staggered 

configurations of flat and pooled steps. The air-water flow was characterised by some air 

entrainment by free-surface aeration and some singular aeration processes. Three-dimensional flow 

motion across the channel width necessitated some air-water flow measurements by double-tip 

probes at three transverse locations, z/W = 0.25, 0.5 and 0.75, where z is the transverse distance 

measured from the right sidewall and W is the channel width. The measurements delivered a 

comprehensive data set of the air-water flow properties including distributions of void fraction, 

bubble count rate, interfacial velocity and turbulence intensity across the channel width W. 

Some examples of the unstable and chaotic flow behaviour across the channel width are given in 

Figure F-1. Note the instabilities in the form of shockwaves and interactions in channel centreline 

which led to distinct droplet ejection and splashing. 

 

Fig. F-1 - Three-dimensional flow motions on the stepped spillways with non-uniform step shape 

across the channel width 

(A) Stepped spillway with in-line configuration 

of flat and pooled steps 

(B) Stepped spillway with staggered 

configuration of flat and pooled steps 

 

The air-water flow measurements with a double-tip probe showed some significant differences 

between the three transverse measurement positions. The results for the stepped spillway model 

with in-line configuration were significantly different between the two sections of the channel. 

The measurement positions for the two configurations are shown in Fig. F-2. The double-tip probe 
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was set at the step or pool edge respectively as the reference position. Some significant differences 

in terms of the air-water flow properties were presented in chapter 5 and the complete data set was 

summarised in Appendix D. 

 

Fig. F-2 - Three-dimensional flow motion of the stepped spillway with non-uniform step shape 

across the channel width 

 

 

F.2 SENSITIVITY ANALYSIS OF TRANSVERSE AVERAGING APPROACHES 

The air-water flow parameters on the stepped spillways with in-line and staggered configuration of 

flat and pooled steps showed some significant differences in transverse direction at the same step 

edge for the same low rate. These differences were seen in terms of the air concentration, the 

velocity and the flow depth and consequently the residual head and the energy dissipation along the 

stepped spillway. A transverse averaging approach was used to quantify an average air-water flow 

parameters and the energy dissipation across the channel width. Several transverse averaging 

approaches were tested using a factored approach for the air-water flow parameters. Herein the 

mean air concentration Cmean could be averaged in transverse direction: 

 75.0mean5.0mean25.0meanmean )C(a)C(b)C(aC   (F-1) 

with 2×a + b = 1. Equation (F-1) represents the transverse averaged value Cmean with (Cmean)0.25 the 

mean air concentration measured at the transverse position z/W=0.25, (Cmean)0.5 measured at 

z/W=0.50 and (Cmean)0.75 measured at z/W=0.75. The effects of the factors a and b were tested with 

a sensitivity analysis (Table F-1). Table F-1 lists the values of the coefficients a and b which were 

investigated in terms of the mean air concentration Cmean and characteristic interfacial velocity V90.   

The results for the sensitivity analysis are shown in Figure F-3 for V90 and Cmean for two 

characteristic flow rates in transition and skimming flows at all step edges downstream of the 
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inception point. Figure F-3 illustrates the values of Cmean and V90 at the three transverse positions as 

well as the different transverse averaging results for experiments on the stepped spillway with in-

line configuration of flat and pooled steps. 

Figure F-3 highlights the clear differences between the air-water flow parameters in transverse 

direction. Furthermore, it shows that several transverse averaging approaches lead to similar results 

close to the air-water flow measurements in channel centre line. In the present study, the transverse 

averaging approach 4 with values of a = 0.375 and b = 0.25 was identified as providing a 

meaningful transverse averaging results.  

 

Table F-1 – Summary of investigated factors a and b for the sensitivity analysis for the transverse 

averaging approach 

 

Approach No. 1 Approach No. 2 Approach No. 3 Approach No. 4 Approach No. 5 Approach No. 6
a b a b a b a b a b a b 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
0 1 0.25 0.5 0.33 0.33 0.375 0.25 0.4375 0.125 0.5 0 

 

Fig. E-3 – Effect of the transverse averaging factors a and b on the air-water flow parameters on the 

stepped spillway with in-line configuration of flat and pooled steps (θ = 26.6°) 

(A) Mean air concentration Cmean: dc/h = 0.70, Q 

= 0.030 m3/s, Re = 2.30×105 
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(B) Characteristic interfacial velocity V90: dc/h = 

1.15, Q = 0.063 m3/s, Re = 4.9×105 
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F.3 TRANSVERSE AVERAGING OF LOCAL FLOW RATE, RESIDUAL HEAD AND 

FRICTION FACTORS 

The transverse averaging approach was applied to all air-water flow parameters in the present study. 

It was used for the calculation of the residual energy and the Darcy friction factors for the stepped 

spillways with in-line and staggered configurations of flat and pooled steps. The transverse-
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averaged residual head for these configurations was calculated as: 
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where the numbers in subscript indicated the residual energy at the three transverse measurement 

locations z/W on the in-line and staggered stepped spillway configurations, dlocal is the local flow 

depth for each measurement location and Ulocal is the local flow velocity. The calculation of Ulocal 

was based upon the calculation of local flow rates: 

 locallocal

90Y

0

local dUdy)C1(Vq    (F-3) 

Similarly the Darcy-Weisbach friction factors for the stepped spillways with in-line and staggered 

configurations of flat and pooled stepped steps were calculated using the transverse averaging 

approach of the air-water flow properties: 
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 (6-3) 

where the friction slope equals Sf = - ∂H/∂x, H is the transverse-averaged total head, x is the 

distance in flow direction, C is the void fraction, Y90 is the flow depth where C = 90%, d is the 

equivalent clear water flow depth and Uw is the flow velocity (HENDERSON 1966; CHANSON 

2001). 
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