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Application of the Gallavotti-Cohen fluctuation relation to thermostated steady states
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The fluctuation relation of the Gallavotti-Cohen fluctuation theo&€FT) concerns fluctuations in the
phase-space compression rate of dissipative, reversible dynamical systems. It has been proven for Anosov
systems, but it is expected to apply more generally. This raises the question of which non-Anosov systems
satisfy the fluctuation relation. We analyze time-dependent fluctuations in the phase space compression rate of
a class ofN-particle systems that are at equilibrium or in near equilibrium steady states. This class does not
include Anosov systems or isoenergetic systems; however, it includes most steady-state systems considered in
molecular-dynamics simulations of realistic systems. We argue that the fluctuations of the phase-space com-
pression rate of these systems at or near equilibrium do not satisfy the fluctuation relation of the GCFT,
although the discrepancies become somewhat smaller as the systems move further from equilibrium. In con-
trast, similar fluctuation relations for an appropriately defined dissipation function appear to hold both near and
far from equilibrium.
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[. INTRODUCTION though the whole systerfdriven system plus reservojrgs
Hamiltonian, the driven system by itself is hon-autonomous
In 1993, Evans, Cohen, and Morriss proposed a relatiomnd non-Hamiltonian.
meant to describe the fluctuation propertiedNegparticle sys- One way of modeling such systems is to replace the large
tems in nonequilibrium steady states that were maintained atumber of reservoir particles by a much smaller number of
constant energy by an appropriate deterministic time revergeservoir particles, each of which is subject to a time-
ible ergostat[1]. This relation was based on heuristic theo-reversible deterministic force that imposes a constraint on
retical arguments and supported by computer simulatiofheir equations of motion. Among the most common con-
data. The authors of Refl] borrowed an idea from the Straints are those which constrain the internal energy of the
theory of nonlinear dynamical systems, that the expandingysStem, called an “ergostat,” and those that constrain the pe-
rates of trajectory separation along the unstable directions diuliar kinetic energy, called a “thermostat.” These modified
the phase space in chaotic systems can be used to Comp&guatlons of motion were proposed simultaneously and inde-

. dently by Hooveet al. [6] and Evand7] in the mid-
the steady-state averages of smooth phase functions. For tREN : .
first time they tested this idea in numerical calculations of1§803 and they have been studied theoretically and success-

nonequilibrium many-particle systerfet that time, the same ;glrlﬁ(r)ng‘le%);%de;n molecular-dynamics computer simulations
had been done using periodic orbit expansions, but only in In the Iiteratur.e, the term “thermostat” is sometimes used

calculations concerning low-dimensional dynamlcalto refer to a constraint on the energy, kinetic energy, or tem-
systems—seg2], for instancg. Evans, Cohen, and Morriss paratyre of a system. In this paper we are careful to differ-
[1] used the symmetry properties of these expansion rates fQiiate these, and only use the term “thermostat” to refer to a
time reversible systems, to propose a relation that we refer tggnsiraint that is explicitly placed on the kinetic temperature
as a steady-state fluctuation relatiéiR). Referencg1] mo-  of the system and the term “ergostat” to a constraint on the
tivated a number of papers in which various fluctuation theointernal energy. If the constrainfix the kinetic temperature
rems were derived or tested, the first of which were thepr the internal energy to a specified value at all times, so that
Evans-Searles transient fluctuation theoré@®$TFT) [3,4],  these quantities do not fluctuate, we refer to the constraints
and the Gallavotti-Cohen fluctuation theoré®CFT) [5] de-  as isokinetic thermostat®r isoenergetic ergostatgespec-
scribed in Secs. Il and Ill. tively. Alternatively the constraints might allow the kinetic
A typical nonequilibrium system may consist of a rela- temperature or internal energy to fluctuate about a specified
tively small number of particles that interact with each othervalue, but ensure that there is no drift in that value. The
and with an external fieldF, (the driven system This sys- Nosé-Hoover thermostat is an example of this type of ther-
tem may be in thermal contact with a very much larger num-mostat. The way in which the constraint is incorporated into
ber of particles on which no external field acts. The reservoithe equations of motion can also vdg;9]. If Gauss’s prin-
particles could act as a heat bath effectively maintaining theiple of least constraint is satisfied by the constraint, then this
smaller system of interest at a constant average temperatuiereferred to as a Gaussian thermostat or ergostat.
at least over the characteristic relaxation time required for Referencél] considered a very long phase-spésteady-
the system of interest to relax to(quas) steady state. Al- state trajectory of a Gaussian ergostattge., isoenergetic
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N-particle systenf10]. This long trajectory was divided into ady )

(nonoverlapping segments of duratioh Along each of the Hod(F) =~ JOV-Fe ®

trajectory segments, the instantaneous phase-space comprgis shows how for Gaussian isoenergetic dynamics, the

sion rateA, instantaneous phase-space compression rate can be
equated with a physical quantity, which is recognizable as

Ja - the (instantaneoys irreversible entropy productior®(T")

a T @) =-[BJI|(I')V-F,=—-A(T"). This rate is a product of a thermo-
dynamic forceF, a thermodynamic fluy3J, and the system

was calculated. Here we denote the phase-space vectgplume V. In Ref. [1] both ways of writing the FR were

describing the microstatécoordinates and momentaf  exploited almost interchangeably.

the N-particle system ind Cartesian dimensions by’ In subsequent papers on fluctuation relations for non-

=(qy,9, ... 0N, Py ---,PN). In [1], the dynamics is as- €quilibrium steady states, a range of different thermostatting

sumed to be chaotic and therefore the averaged value of tHgethods have been considered, and in many of these

phase-space compression rate computed along the trajectdJ]J(IV-Fe and A(I") are not equivalent. For some steady-

segments of duration A,, can be considered to be a random state systems the long-tineverages 8J],V-F and A, are

variable whose probability distribution G?_ft) can be con- equal, whereas the instantaneous values and finite tim_e aver-

structed from the histogram of its observed values. Becausddes o BI(INV-F. and A(T) are not equale.g., Gaussian

of time reversibility of the dynamics, if the compression rate!SOKinetic thermostatted dynamjcsThis means that the

takes a valud\, then it can also take the valuéralbeit with ~ Probability ratios

different probability. The FR tested in Réfl] states that

A

PAILY Fe=A) _ PA=A)

1 PrA=A) Pr[BILV -Fe=-A) PriA=-A)

—In————=-A forlarget. (2)

t Pr(A=-A) are not simply related, even asymptotically, and one cannot

Remark 10ne may find it odd to consider fluctuations in the substitute one for the oth_er in Eq2) and(_3). In th‘?se cases
tréere are at least two different fluctuation relations to con-

phase-space volume elements of mechanical systems. As L or one for the bh moression rate and the other
matter of fact, although the phase-space compression rate der. one lor the phase-space compression rate a € othe
or the dissipative flux, and the two relations might not be

identically zero for Hamiltonian particle systems, it is non- . . )

zero for the(nonautonomoysdynamical systems obtained related. The phase-space compression rate is the Sl.JbJeCt of

by restricting one’s attention to an arbitrary subset of par—Eq' (2) and O.f the FR qf the GCFT12] (see Sec. )| wh|!e
[BII(IN)V-F, is the subject of Eq(3) and of the fluctuation

ticles of that Hamiltonian systeril], (i.e., projecting out ) .
the coordinates and momer¥ta orfmscgm(e of tﬁe Jparbic?ﬁais relations of Evans and Searles for nonequilibrium steady
! gtates(see Sec. Il

is the case for the Hamiltonian system described abo ; L . .
! ron y I v The FR inferred from Eq(2) (in its dimensionless form

(driven system plus reservojrsf the degrees of freedom of . A
the reservoirs are projected out. One finds that heat is 0[112]) has been obtained within the context of the GQEY

average removed from the non-Hamiltonian reduced systeri! Which the average of the phase-space compression rate
and that the corresponding phase-space compression ratei$s bounded by appropriate limitgA, lies in the range
nonzero and on average is negatiog (—A* ,A*), with 0<A" <o [13]], as discussed in Sec. Il. The
In Ref. [1], Eg. (2) was verified in nonequilibrium GCFT has been proven for time-reversible, dissipative, tran-
molecular-dynamics computer simulations where a fleld sitive Anosov systems, but it has been argued that the FR
induced a dissipative flud. Because the system studied in should apply more generally to systems of physical interest.
[1] was maintained at constant energy using a Gaussialost of these systems can hardly be thought to be of the
isoenergetic ergostaty(I")=[BJ](I")V-F,, and Eq.(2) can  Anosov type in a mathematical sense, just as they cannot be
be written in an alternative but mathematically equivalentconsidered ergodic. Therefore, the chaotic hypoth€sts)
form was proposed 5] in the hope that the class of systems
satisfying the FR would be significantly larger than the class
1 PH[BILV -Fe=A) of Anosov systems. In a similar way the ergodic hypothesis
" In PHIBILN Fo=—A) =-A forlarget, (3) justifies the equality of the time averages and ensemble av-
t e erages of macroscopic variables to classes of system that are
not strictly speaking ergodic. This raises the question of
which non-Anosov systems satisfy EH@) and the CH.
To address this question, we analyze time-dependent fluc-
[BI]() = dNJ(F)' (4) tuations in the phase-space compression rate for a class of
2K(TI") thermostattednot ergostattedsystems of particles that are at
equilibrium or in steady states close to equilibrium. The par-
K is the (peculia) kinetic energy. The dissipative flukxis ticles are assumed to interact via potentials that are normally
defined in the usual way in terms of the adiabatic derivativeused to realistically model atomic and molecular interactions
of the internal energy,, and the system volum [10], in statistical mechanics and molecular modeling. The equi-

where for systems id Cartesian dimensions,

056120-2



APPLICATION OF THE GALLAVOTTI-COHEN... PHYSICAL REVIEW E 71, 056120(2009

librium dynamics for this class of system does not generat&nown Green-Kubo relations for transport coefficients in
the uniform phase-space density of the microcanonical enthermostatted systems. Section VI summarizes our results.
semble, but rather generates the smooth but nonuniform
phase-space density of the canonical or isokinetic ensemble.

Therefore, although there is no long-tineerage phase- Il. GALLAVOTTI-COHEN FLUCTUATION

space contraction or expansion, the instantaneous phase- THEOREM

space compression rate fluctuates at equilibrium as the tra-

jectory moves through phase space. In 1995 Gallavotti and Cohep5] derived an equation

We begin by observing that numerical data do not seem tequivalent to Eq(2) within the framework of modern dy-
satisfy the FR of Eq(2) if the state of the systems under namical systems theory. For a dynamical system in phase
consideration is thermostatted and close to an equilibriungpaceC, whose time evolution is governed by a m@pthey
state. The discrepancies in the test of this FR seem to becomgsumed the followingp. 936 of[5)).
smaller as the external field increases and the system moves (a) Dissipation The phase-space volume undergoes a
further from equilibrium[14-17. Alternatively one may in-  contraction at a rate, on the average, equabDi(@(X)),,
terpret the numerical data as an indication that for these sy$ipare 1 is the phase-spacé dimension ando(x) is a

tems the convergence times of E@) are so long that the ot
fluctuations, which become smaller as the averaging timgwodel—dependent rate” per degree of freeddiote that

grows, become unobservable before E3).can be verified.  for almost every initial condition, lim... A; in our notation
In this paper we consider both possibilities and provide twoequates to B(a(x)). in the notation of5]. In other places in
theoretical arguments to explain the numerical results ofhis paper we follow standard practice and (ise to denote
[14-17. an ensemble average.

We consider the possibility that the GCFT does not apply (B) Reversibility There is an isometry—i.e., a metric-
to our systems. We try to identify reasons why the FR giverpreserving map in phase space—which is a map— ix
in Eg. (2) and the CH might not apply by analyzing the proof such that ift— x(t) is a solution, theri(x(-t)) is also a so-
of the FR of the GCFT, under the assumption that it can béution and furthermoré? is the identity.
extended to equilibrium systems. Since the Anosov property (C) Chaoticity The above chaotic hypothesis holds and
is strictly violated even in systems in which E@) has been we can treat the systefd,S) as a transitive Anosov system.
verified (e.g.,[1,18,19), we consider the characteristics of = The chaotic hypothesis that they proposed states the fol-
the Anosov property that our system does not have, bubwing (p. 935 of[5]):
which are attributes of systems for which E®) is verified. Chaotic hypothesisA reversible many-particle system in
We also consider the possibility that the FR of E8) is  a stationary state can be regarded as a transitive Anosov sys-
valid for our systems, but that it can only be verified attem for the purpose of computing the macroscopic properties
exceedingly long times. We find that this producesof the system.

a difficulty in the derivation of the Green-Kubo relations.  Gallavotti and Cohen then showed the followifiy 963

We show that for the correct Green-Kubo relations to hold of [5]).

it is necessary for the fluctuations in the time-averaged “Fluctuation theorem Let (C,S satisfy the properties
phase-space compression rate to converge to those @&)—(C) (dissipativity, reversibility, and chaoticityThen the
[BI]I(I")V-F, at a sufficiently rapid rate. probability 7.(p) that the total entropy productiddrtyo,(X)

In this paper we also note that the fluctuation relation ofover a time intervat=rt, (with t, equal to the average time
Eq. (3) has been numerically and experimentally verified forbetween timing eventshas a valueDt(a(x)).p satisfies the
the class of systems considered here, at equilibrium and fagrge-deviation relation
from equilibrium. Furthermore, the correct Green-Kubo rela-
tions can be derived from E¢3). We discuss how Eq3) TP _ por,p (6)
can be obtained without recourse to the Anosov propeity m(-p) ’

Sec. Il and20]). Combining these results and in accordance . ) . .

with the discussions on the meaning of the CH given in RefsWith @n error in the argument of the exponential which can
[5,21], we are led to théperhaps surprisingconclusion that € estimated to bp, 7independent.

the CH does not apply to thermostatted systems. This means that if one plots the logarithm of the left-hand

In Sec. Il we give a brief description of the CH and si_de of Eq.(6) as afunctior_1 _ob, one observes astr?ight line
GCFT, including a discussion of the conditions necessary foWVith more and more precision asbecomes large. .
the GCFT. In Sec. Ill we describe the Evans-Searles FT's Note that if A;=A thenp=-A/(D(0).).
and highlight the differences between these theorems and the The above theorem is known as the Gallavotti-Cohen
GCFT. In Sec. IV we investigate the possibility of extendingfluctuation theoreni22]. It should be noted that the GCFT
the proof of the GCFT to equilibrium dynamics and discussonly refers to the phase-space compression (ea#ed the
which violations of the Anosov property may differentiate “entropy production” rate in5]; cf. p. 936 and only to
our systems from those in which the FR of E&) has been steady states. Apparently there is no direct requirement that
verified. In Sec. V we show that the CH does not appear tdhe system should be maintained at constant energy, constant
be appropriate for a class of thermostatted systems that are kinetic energy, or even that it be maintained at constant vol-
the linear response regime close to equilibrium. We showme. The GCFT only seems to require dynamics that is time
that, for those systems, E) is in contradiction with the reversible, smooth, and to some degree hyperbolic, which
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makes the system behave as though it was a time reversibleacroscopic observables. In particular, the CH allows one to
Anosov diffeomorphism. Therefore, E(B) or, equivalently, describe the steady state of a give+particle system as if it

its logarithm equation(2) should in principle apply to a was given by a Sinai-Ruelle-Bowd®8RB) measure—i.e., a
rather wide class of dynamical systems, including, for in-probability distribution which is smooth along the unstable
stance, isothermal-isobaric as well as isoenergetic-isochoridirections of the dynamics and which can be approximated
N-particle systems, and also nonparticle systems as long d means of dynamical weights attributed to the cells of finer
their dynamics is sufficiently similar to that of reversible, and finer Markov partitions.

transitive Anosov systems. As a matter of fact, Gallavottiand However, at the present time the only test that has been
Cohen, on p. 939 of5], state, “The details of the models attempted to determine whether a dissipative system satisfies
described heravill not be used in the following, since our the CH is the numerical or experimental check of whether

main point is the generality of the derivation of a fluctuationthe system satisfies E¢2) (or an equivalent relationship
formula from the chaotic hypothesis and (&nsuing model ~ Within accessible times. Different tests of the CH need to be

independence.” They then give various examples of modeldesigned to determine which physical systems it can be ap-
for which the CH is expected to hold. plied to. Until recently, all numerical evidence suggested that

P time-reversible steady-state systems that were “chaotic” to
In a separate papdr3] Gallavotti pointed out thap - . :
should belong to an intervdkp’,p’), wherep’ is the dy- some degree, satisfy the CH. Indeed, strict ch@oasaning

namically determined positive number, given below &7) the presence of at least one positive Lyapunov exporiit

. o o e not even seem to be necessary for expressions such &2 Eq.
in [13]. This important restriction on the application of the to be verified in numerical simulations of simpkeparticle

theorem was not mentioned [B]. In our present paper we gysiems as long as the dynamics are sufficiently random
include the statement of these bounds as a formal part of tl“[q8 19.

as long as one takes=A=-D(o),p, with pin (-p",p") and  suggest that this view might not be correct. Referefricg
provided the system is dissipatiyiee., (o), is positive. gives numerical evidence that thermostatted systems satisfy

Remark 2 Equation(2) does not reveal three fundamental Ed- (2) at very high shear rates, while at small shear rates

aspects of the GCFTa) It is only expected to be valid with 14,18l it becomes very problematic or even impossible to
Ain a given interval—A",A"); thus, the domain of validity verify it. As a matter of fact, the numerical results[d#,16]

. X uggest that as the system departs further from equilibrium,
of thg GCFT does not necessqnly c;on'gam the full range o he data become more consistent with B). If Eq. (2) (or
possible values of the fluctuations in time averages of th

; " n equivalent relationaffords the only possible test of the
phase space contractmn_ractk_t) _lf A becomes zero, the FR CH, these results appear in contradiction with the expecta-
inferred from the GCFT is trivial(c) If convergence to the

; ) X ’ S tion that the CH should be satisfied better as the system
long-time asymptotic expressid@) is too slow, verification  55nr0aches the equilibrium state and therefore becomes more
of Eq. (2) would be impossible. In the latter two cases, thechaotic (i.e., has a larger sum of positive Lyapunov expo-
predictions of the GCFT may be formally correct, but inap-pentg.
plicable in practicgas discussed in Sec.) VHowever, once This is rather puzzling because there seems to be no ob-
this is clear, it is convenient to consider H@) as the pre- vious reason why thermostattédonstrained temperatyre
diction of the GCFT, and this is commonly done in the lit- systems should behave so differently from ergostatted sys-
erature(e.g., [23]). The values ofA" and the convergence tems[29,30. Although there are many differences between
rates to Eq.(2) are normally difficult, if not impossible, to the two, it is unclear what effect these could have on the
predict(cf. [13]) and will not be the subject of this paper. applicability of the CH. Furthermore, it is our impression
Referencd 5] motivated testge.g.,[24-26) in different  that the distance from equilibrium or the precise amount of
types of dynamical systems, where H8) or similar rela- dissipation which is invoked in the proof of the GCFT does
tions were verified. The Gallavotti-Cohen work also moti- not make any difference to the derivation of Eg), as long
vated attempts at experimental verifications of the GCFTas this dissipation is not exceedingly hig4]. Therefore,
(see, for example, Ref§27,28)), even though these experi- close to equilibrium and far from equilibrium thermostatted
mental systems cannot be considered isoenergetic and tisgstems should not behave as differently as they do.
precise relationship between the instantaneous phase-spaceThus, the domain of applicability of E¢2) and the CH is
compression rate and the measured properties in these esxn open and quite intriguing question. In this paper we argue
periments was not then known. that Eq.(2) and the CH do not apply to thermostatted sys-
Quite obviously, realistic models of physical systems cartems[31] that are near equilibrium. Also note that for hard
hardly be expected to be transitive Anosov dynamical syseisks or spheres, fixing the kinetic energy or the total energy
tems. Nevertheless, just as the mathematical notion of ergodre equivalent and therefore E@®) is expected to apply to
icity is known to be violated by most common physical mod- hard N-particle systems under these forms of thermostat
els and yet turns out to be extremely useful foactical  since for hard systems both thermostats are in fact identical.
purposesthe CH of[5] should be interpreted as saying that Referencg24] gives evidence for the validity of the GCFT
deviations from the transitive Anosov property cannot be obfor one such system—i.e., for a system of thermostatted and
served at the macroscopic level. The CH then allows the usergostatted hard disks. However, if the kinetic energy is con-
of the techniques of differentiable dynamics in the descrip-strained using a Nosé-Hoover thermostat, our arguments im-
tion of the steady states for a class of systems of physically that the CH does not apply to systems of hard-core par-
interest, as long as one is only interested in the behavior dicles.
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ll. EVANS-SEARLES FLUCTUATION THEOREMS For ergostatted dynamics conducted over an ensemble of
A number of authors, inspired HL,5], have obtained a trajectories which is initially microcanonical, the dissipation
range of fluctuation relations for steady-state systems whicfinction is identical to the phase-space compression rate,
are similar in form to Eq(2), but have different content and Q@) =-A) =-TBIIHV -F. whendHJ/di=0. (9
are applicable to either deterministic or stochastic systems. ® ® (A1 e o » ©
See, for example, Ref$32—36. Still other authors refined while for thermostatted dynamidgboth isokinetic and Nosé-

the GCFT; cf. Refs[37-39. Hooven, the dissipation function is subtly different,
Independently of this activity, in 1994 Evans and Searles

derived the first of a set of fluctuation theore(E&SFT'g for Q) =-pIHV-Fe, constantT,

nonequilibriuml\_l-parti(_:le systems which focus on a quantity .

Q, called the “dissipation function,” rather than on the phase- #— A(t) == BI()V - Fo— BHo(1). (10)

space compression rat® [3,4]. For thermostatted or er-

gostatted nonequilibrium steady-state systems the time avelror isokinetic and isoenergetic dynamic8=2K(I')/dN
age “dissipation function” is identical to the average rate ofwhered is the Cartesian dimension of the space in which the
entropy absorptioripositive or negativeby the thermostat. system exists. For Nosé-Hoover dynam@s1/kgT where
For homogeneously thermostatted systems the average eksis Boltzmann's constant anflis the absolute temperature
tropy absorbed by the thermostat is equal and opposite to thgppearing in the Nosé-Hoover equations of motion—see Eq.
so-called spontaneous entropy production rate defined in lin20) below. It is clear that for constant-temperature dynamics
ear irreversible thermodynamics=oV, whereo is the “en-  the dissipation function is different from the phase-space
tropy source strength” defined by de Groot and MdA@].  compression rate. However, in all cases, in the long time
Further, for homogeneously thermostatted systems Evangyit the magnitude of the time-averaged dissipation function
and Rondon[11] have recently shown that the entropy pro- s equal(with probability 3) to the magnitude of the average

duction rate is also equal and opposite to the rate of chang§,,se-space compression rate since for thermostatted Svs-
of the fine-grained Gibbs entropy. These ESFT's apply a P P — 4

all times to given ensembldgtl] of transient trajectories €MS:  IM_o[Q+Ad=lim_.A[Hol=Ot Y. Thus

(ESTFT'9 or given ensembles of steady-state trajectories ifim,_ .. Q,==lim,_ A;=-8lim;_..J;V-Fc=lim_ .2, where,

the long-time limit[4] (ESSFT’3. The form of the resulting is the extensive entropy production that one would identify

FR’s is similar to Eq/(2), but they contain different informa- for near equilibrium systems from the theory of irreversible

tion since the)_/ are _based on the statistics of the given enhermodynamics. The spontaneous entropy production is a

sembles of trajectories. product of the thermodynamic forde and the time average

Jarzynski and Crooks have taken an approach similar t8f its coniugate thermodvnamic fluﬁ,l_ [40]

that of Evans and Searles, to calculate the free-energy differ- i Y t o .

ESTFT’s have been derived for an exceedingly wide va-

ence between equilibrium statge2,43. riety of ensembles, dynamics, and proceggdsand using

To derive the ESTFT one considers an ensemble of tr L ) ;
jectories that originate from a known initial distributionabc’th Liouville weights and Lyapunov weightg},44]. For

(which may be an equilibrium or nonequilibrium distribu- €xample, ESTFT's have been derived for dissipative isother-
tion, it does not matt¢rand proceeds under the possible mal |sopar|c systems and for relaxing systems \_Nhere there is
application of external fields and/or thermostats. One theff© @pplied external field, but where the system is not at equi-

obtains general transient fluctuation theorefESTFT'S librium by virtue of its initial distributionf(I",0). In all cases
stating that the ESTFT’s have been verified in numerical experiments.
_ Two ESTFT’s have recently been confirmed in laboratory
n PrQ.=A) — At ) experiments: one involving the transient motion of a colloid

Pr((_l —_A) particle in a moving optical trap45], another involving the
t relaxation of a particle in an optical trap whose trapping
which is of similar form to Eq.(2), but where the time- constant is suddenly changéd6]. One should not be sur-
averaged phase-space compression rate is replaced by tp@sed by the diversity of FT's—they refer fluctuationsand
so-called time-averaged dissipation functiyT) and Pr fluctuations are well known to be ensemble and dynamics

, P dependent—even at equilibrium.
represents the probability which is influenced by the en-
semble. In all the ESTFT'’s the time averages are computed The ESTFT can be stated as follows. . .
from t=0 when the system is characterized by its initial dis- The_orem (Evans-Searles) For any t|me-revers_|ble
tribution (I, 0) to some arbitrary later time The dissipa- \-Particle system and for all positive times %, there exists
tion function depends on the initial probability distributions @ dissipation functiorf; and a smooth probability distribu-
(different ensemblésand on the dynamics, and is defined by tion du(I')=f(I')dI" in phase space, such that

the equation . Pr(ﬁ (A—dAA+dA)
f(r(o>,o>>_f‘A Fied TIn—— ‘ =A+0(dA), (11)
HT®.0) ; (I'(s))ds P e (-A-dA-A+dA)

t
f dsQu(I'(s);I'(0)) = In(

0 _
— where P¢(), € (A—dA,A+dA)) is the probability assigned by
= QIO (8) w to the set of initial conditiond™ for which the dissipation
for all positive timest. ), lies in the rangeA+dA.

056120-5



EVANS, SEARLES, AND RONDONI PHYSICAL REVIEW E1, 056120(2005

It is interesting to observe that the probability measureserved. Therefore, the phase-space compression rate of such
u—i.e., its density—is not necessarily unique and that dif-systems can be nonzero at instants in time, although it will
ferent probability measures lead to the same result as long asnish on average. The models used in molecular-dynamics
In[f(I")/f(ST)], whereS is the time evolution operator, ex- simulations of such systems make use of thermostatting
ists for all initial conditionsI" in the support ofu and for all  mechanisms which generally produce non-Hamiltonian dy-
te[0,»). namics and generate equilibrium distribution functid(E)

In contradistinction to the GCFT, these ESTFT's are notthat are not uniform in phase space. For example, when ap-
only true asymptotically in time, but rather are valid for all plied to field-free Newtonian equations of motion, the Gauss-
timest. ian isokinetic thermostat generates the isokinetic distribution

Evans and Searles have also argl#dthat for transitive  function and the Nosé-Hoover thermostat generates the ex-
chaoticsystems, where thsteady state exists and is unique tended canonical distribution functiga0]. These dynamics
the statistics of properties averaged over trajectory segmenge nondissipative, have an ensemble-averaged phase-space
selected from a single steady-state trajectory are equivaleebntraction which is zero, generate ensemble-averaged state
to a carefully constructed ensemble of steady-state trajectonyariables that are constant, and are invariant under a time-
segmentg[4], Sec. 2.2 reversal magand therefore their properties will be time re-

Assuming the arguments d#] hold, one can derive versal invariant10]). Yet since they are non-Hamiltonian
asymptotic steady-state FTE&ESSFT'S that apply to seg- and their phase-space density is nonuniform, their instanta-
ments along a single trajectory from the relevant ESFT'sneous energy and phase-space compression rates both fluc-
The corresponding fluctuation formula for an ergostatteduate in time.
steady-state system is then identical Etj.and contains the As a result of the time-reversal invariance of all properties
same informatio21,47). That is, the FR’s of the GCFT and of the equilibrium state, we know that
ESSFT are the same for isoenergetic-ergostatted steady-state —
systems. It should also be noted that for systems that are not PriA(Fe=0)=A) =1 0Ot (12)
isoenergetically ergostatted, the predictions of the ESSFT's pr(xt(pe: 0)=-A) '

[given by Eq.(7) which becomes equivalent to E)] are _ ) o o
different in general from the corresponding predictions of thel his equation states that for all averaging times, the distribu-
FR of the GCFT. This is because in general the dissipatioion of time averaged values of the phase-space compression
function is different from the phase-space compression ratdS Precisely symmetric about zero. This is a special property
To check the validity of the ESSFT’s, numerical simulationsOf any equilibrium state. Equatiod2) is a necessary but not
have been performed for various ensembles and dynamicgufficient condition for thermodynamic equilibrium—see
showing that numerical results are indistinguishable wherRef. [48] for detailed discussions of E¢12) and how it is
sampling either from a single, long steady-state trajectory opatisfied by both Gaussian isokinetic and Nose-Hoover ther-
from an ensemble of steady-state trajectory segniddis mostats. . _

Remark 3 This equivalence of statistics requires a suffi- Comparing Eq.(2) with Eq. (12), one can see that in
ciently long relaxation time to allow an accurate representagquilibrium systems for which values 6f# 0 are allowed at
tion of the steady state and long trajectory segments. Thus @81 finite averaging time (no matter how large Eq. (2)
is the case for the GCFT, the ESSFT's, in contradistinction tdncorrectly predicts an asymmetry in the equilibrium distri-
the ESTFT'’s, apply to steady states and are only valid apution of time-averaged values of the phase-space compres-
larget. sion rate. This would mean that in such systems, if they exist,

The dissipation function that appears in the ESSFT for 0me assumptions that are invoked in the derivation of Eq.
single steady-state trajectory is defined by @), where the (2) (i.e., in the derivation of the FR of the GCFTnust not
initial distribution function is the equilibrium distribution hold (i.e., the CH of[ 5] does not apply Below we consider
function generated by the same dynamics that is responsibf€e possibility that the systems modeled by equilibrium ther-
for the steady state except that the dissipative field is set tB10statted dynamics are of this type.
zero[4]. This requires that the zero-field system be ergodic For simplicity, let us focus on systems whose equations of

and at equilibrium. motion are
4=t
IV. EQUILIBRIUM FLUCTUATIONS ''m’
Equilibrium systems that exchange energy with their sur- b= F; - ap;, (19

roundings (such as those described by the canonical en-
semble or the grand canonical ensemblave fluctuations in  where« is a reversible thermostat multiplier that constrains
their instantaneous energy and their phase-space distributidghe kinetic energy. Let us adapt the usual derivation of the
function is nonuniform in phase spaga contrast to that of FR to the case of nondissipative systems of the Kihg),

the microcanonical ensembldf the dynamics of such equi- assuming that the CH holds for thdm9]. In particular, let
librium systems are modeled by autonomous differentiaus consider the proof of the GCFT given by Ruelle in Sec. llI
equations that contain terms that aim to mimic the energwf Ref.[37]. In the notation of Ref[37], the dimensionless
exchange with the environment, the dynamics will not bephase-space compression ratexaver time 7, ,(x) is de-
Hamiltonian and the phase-space volumes will not be prefined by Ruelle as
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17t not expected to be uniformly hyperbolic, those[©8,19,24
e (x) = —>, InJ(f%7, (14  have singularities, and the flat billiards pf8,19 are not
€ k=0 even chaotidthat is, have no positive Lyapunov expongnts

where e is the average phase-space contraction per umEUt for them the FR has been shown to hold and the CH
f - i i i .
time, f< gives the time evolution of, andJ is the Jacobian of onsidered appropriate to describe them. In other words, al

i . i ) though the Anosov property is violated for these systems,
f with respect to the chosen metric. Comparing with they,ig violation did not appear substantial. Therefore we must

notation introduced above, we have=t, ¢,(x)=A{/A and  find possible reasons for the substantial violations of the
e;=-(A). Equation(14) excludes the cases wity=0 and  Anosov property which would make the CH inapplicable to
normalizes the phase-space contraction rate socthaas a  our systemde.g.,[14,16,17).
mean of 1. Nevertheless, the division &ydoes not seemto ~ For equilibrium Gaussian isokinetic dynamics, the value
be necessary for the proof [87] to be carried out, and the Of p- (=A"), which delimits the range of admissible fluctua-
calculations presented in Secs. 3.6-3.9 of R&T] can ap- tions, can be easily estimated. In fact, from E#0), one
parently be repeated even when the phase-space contractifinds that the average phase-space contractionNateer a
rate is not normalized. Assuming that this is the case, dynantime t is proportional to[®(t)-®(0)]/t, where ®(t) is the
ics with ;=0 can be considered under the assumption thavalue of the interaction potential energy at titielong the
the CH holds for them, and Ruelle’s derivation may then begiven phase-space trajectasee, e.g., Ref§50,51]).
repeated for the non-normalized phase-space compression The Anosov condition implies that the instantaneous
rate, phase-space compression rate is bounded; hence, for Anosov
equilibrium Gaussian isokinetic dynamic® must be
oo 1 Knel bounded and the asymptotic range of admissible fluctuations
&,(X) = ;Z In J(F%)~, (15 shrinks to zero. In this case the FR’s for the phase-space
k=0 contraction rate, Eqg2) and (16), both make a completely

instead of thedimensionlesphase-space compression ratetrivial but correct prediction lim... 1/t IN[PrA,=0)/Pr(A,

e In general,s (X) takes a range of values for any system,=0))=0. This prediction is “completely trivial” because pro-

even for equilibrium systems, but not for isoenergetic equi- . N ) Lo i
librium systems which yield1/7)=7-2 In J(f)1=0 for any vided P(A;=0) is defined, the prediction is always true re

7 and anyx, The range of admissible values .o:f(x) can be gardless the form of the probability distribution, or the CH

. 1 which i ic ab d . or, indeed, even time reversibility itself. The phase-space
written as[-p., p.] which is symmetric about O due to time compression rate is also bounded for non-Anosov isokinetic

reversibility. If our assumption is correct, then, following the G4 ssjan thermostatted dynamics if the interaction potential
same steps of Ruelle’s proof, one would obtain a relationg 1,4 nded. Strictly speaking, these systems are not Anosov,
formally identical to that reported in Sec. 3.9 [#7]. The |yt they verify the FR of the GCFT, because that relation

only difference to Ruelle’s result would be that this proce-,qmits onlyA=0. These systems may therefore look suffi-
dure does not yield a dimensionless expression, but wheth%genﬂy similar to Anosov systems to be called “Anosov

& is equal to zero or not would seem to make no differencejyq » and the CH may adequately characterize them.
to the adapted derivation. One could then write However, if® is not bounded and the dynamics is isoki-

~1

1 " = St S netic, as is commonly the case in npngquilibrium molecqlar

p-—8<Ilim —In pf({XOST(X) cp p-+9))) dynamics models, the range of admissible fluctuations might
e T pi({Xie(X) € (=p-= 6= p-+)}) not shrink to a unique zero value; it might be finite or even

<p-+3. (16)  infinitely large. In such cases, the FR for the phase-space

contraction rate is incorrect.

Here, as in Ruellg37], pr would be the probability, under  For Nosé-Hoover thermostatted dynamics, which is a
the dynamics specified by, that &(x) took on a value much better model of a real thermostatted system, the range
p- € [-p-, p-], while 6> 0 would be an arbitrarily small con- of possible values for the phase-space compression factor is
stant. always infinite, regardless of whether the potential function

To obtain Eq.(16) the dynamics is assumed to be of theis bounded or not. Hence, in this case, the FR for the phase-
Anosov type, which implies that the phase-space comprespace contraction is also either incorrect or trivial.
sion rate is a bounded functidiolder continuous iH37]) Moreover, if the possible violation of CH is attributed to
and thatp. <. If, however,p. # 0 and an equilibrium sys- the singularities of the phase-space contraction rate, this vio-
tem is considered, E16) is absurd, proving that these sys- lation persists at small fields, where the new nonequilibrium
tems substantially violate the hypothesis on which the GCFphenomena cannot remove the effect of the singularities. In
is based. Then the question as to which hypothesis is violateféct, for sufficiently small fields, the probability distribution
needs to be addressed. for averages of the phase-space contraction rate is expected

Before focusing on this question, we note that the equito be little different from that at equilibrium. This could ex-
librium systems considered in this paper are clearly noplain the results of14,16,17, in which the FR of the GCFT
Anosov; however, Eq2) [or Eq. (16)] has been tested nu- could not be verified.
merically for a wide range of systems, none of which, to the Many other scenarios are consistent with the available
best of our knowledge, meets all the conditions that the proofiumerical evidence. For instance, one subtle, but dramatic,
[37] requires. For instance, the models[Gf15,25,26 are  violation of the CH could be inferred from the fact that the
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number of positive finite-time Lyapunov exponents fluctu-for linear (near-equilibrium transport coefficients53]. Later

ates along phase-space trajectories of the thermostatted sy@earles and Evari$4] showed that the ESSFT for thermo-
tems. This indicates that the continuous splitting of the tanstatted systems could also be used to derive correct Green-
gent space of our dynamics, required by the Anosowubo relations for linear transport coefficie&b]. We now
condition, does not hold even approximately for our systemsargue that in the Nosé-Hoover thermostatted case where

If this is the case, close to equilibrium systems would violate

.1 2K
the CH for the same reason. _ a==(2K - dNkgT) = —O(K/Ko— 1) = (KIKg - 1)/72
Another possible scenario concerns the times for conver- Q Q
gence of Eq(2). If these times are too long, the CH will be (20)

invalid in a practical sense, as discussed in Sec. V.

The discrepancy between Eq8) and(12) for isothermal  (whereQ=2K,7? is related to the arbitrary relaxation time
systems can be contrasted to the agreement betwee3Eqgs. of the thermostatk is the peculiar kinetic energy, and}, is
(7), and(12), for an ensemble of isothermal systems. Apply-some chosen fixed value of the peculiar kinetic engrtie
ing the ESTFT for arbitrary phase functiofgq. (4.19 of  FR for phase-space compressidy. (2)] is not applicable,
[4]] to the dissipative flux] gives since it is inconsistent with the correct Green-Kubo relations
for linear transport coefficients.

1 PrJ=A ‘. ieeduilibrium) distri-
1, P=A _ _ BAVF., (17 The Nosé-Hoover extended canonigaduilibrium) distri
t o prJ=-A bution is

where the trajectory segments begin from the isokinetic equi- exnl — ,B(H + lQa2>

librium ensemble and proceed for a tirheunder zero field 072

(21)

external field is zero, Eq(17) predicts that at equilibrium
time averages of the dissipative flux are as expected, equally

likely to be positive or negative, regardless of the duration Offrom which the distribution ofa} can be obtained by inte-

the averaging time. gration,
_ . 1BQ p(_ 1 2>
> " Nog ex 2,3Qa ’

F.=0, isokinetic thermostatted dynamics. However, since the fo(l, ) = 1 '
f daf dr exp{— ,B(H0+ EQoﬂ)]

In summary, the FR given in Eq2) does not apply to
thermostatteequilibrium systems, while Eq$3) and(7) do. 1
However, forisoenergeticequilibrium states, Eq(2), the exp(—E,BQaZ)
ESTFT [Eq. (7)], ESSFT, Eq.(17), and Eq.(3) all make fo(a)=

correct statements about the equilibrium symmetry of fluc- Jda exd - }BQQ’Z
tuations. For Eq(2) this is due to the fact thah can only 2
take the value 0 in this system, while the ESTFT yields (22)
1 In M =—AVF.. (18)  Which is Gaussian with a varianeg =1/(8Q) [56]. Assum-
t  Pr(pJ=-A) ing Egs.(21) and(22) hold for our equilibrium systems, the

In Eq. (18), J refers to the component dfthat is parallel to distribution of o is also Gaussian because it is just the time
e @average ofa.

Fe, SO when the field is zero, the ESTFT states that tim ™ . ot h , fibri
averages of the thermodynamic fligJ] are equally likely e variance oty for systems that are in near-equilibrium
teady states can also be considered. For simplicity we as-

to be positive as negative, regardless of the averagin timé . .
This ispobviously a cgorrect stagtement. ging sumeF.=(F¢,0,0; however, the following can be readily

In the next section we discuss the application of the FR tfdapted to apply more generally. From the equations of mo-

- tion (19) and (20) we see that the rate of change of the
thermostatted near-equilibrium steady states.
a Y extended Nosé-Hoover Hamiltonidt,=Hy+1/2Qa? is

V. APPROACH TO EQUILIBRIUM dH(’)
— ==JVFR, - dNksTa. (23
Consider a thermostatted or ergostatted dissipative system dt

described by the equations of motion The external field contributes to the fluctuations in the phase-

) space compression rate. This contribution cannot be expected
Qi :a+ci -Fe, to be Gaussian except when long-time averages are made,
near the mean of the distribution.
) From Eg.(23) we see that
Pi=Fi+D;i-Fe—ap. (19
For typical interatomic force§;, the system is time revers- [Ho(t) — Ho(0) ]/t = AHg(t)/t = = JVFe — dNksT .
ible and chaotic. Gallavottfin 1996 [52] was the first to (24)
point out that(at least in the case of ergostatted dynamics—
see beloy, the GCFT(and hence equivalently the ESSFT So the variance of time-averages @fcontains, to leading
can be used to derive the well-known Green-Kubo relation®rder, two contributions
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— 2 2 22 2 2 =2 F4
o (O'AH[,)(t)/t +V Fea'J—t)/(deBT) . (25) 2= a_z _ a/t2+(;)|:2/t' (30)
a, <

a;

-

Here and below, we used the fact that many properties, in-

cludlnga must be even functions of the field. Because we'herea, b are constants independent ©ofFe. Solving this

assume a steady state, in the long-time llmﬁ is inde- quadratic equation foFg shows that we must take the limit
H (1)

pendent of t. In fact near equilibrium IlmﬂxoiH 50 t(—>_1/2)°0,
Fe=ct
=2kgT?C,+O(F2) whereC), is the extensivéO(N)], isoch- ¢
oric specific heat of the extended systghd]. wherec is a constant. To simplify notation we denote this
From[54] we know that for sufficiently long times, limit simply as
2 _ 2{_1 1 lim .
to;t—ZL(Fe)kBT/V+ O(Fgt™N™), (26) to
Fe—0

whereL(F,) is the zero-frequency Green-Kubo transform of ~ Remark 4 A more conservative procedure which ensures
the dissipative flux, L(F¢)=pV/[odt{(J(0)—(I)e )(.J(t) that the distribution is Gaussian for typical fluctuations is to
—<J)F >F We also know from the Green-Kubo relations that keepa/a— rt1-™ constant wheren> 1 [57]. This implies
limg _,OL(F )=L(0) is the linear transport coefficient defined that the Ilmlt is taken such that,=(ct™¥?)™,
by tF]e linear constitutive relation Using this procedure, the distribution of will be
Gaussian near the typical valuesffequired by Eq(2) for
- longer and longet. This gives

-J
lim lim — =L(0). (27) _ _
FeOtox Fe 1 Pre=A) 2Aa(F,)
lim ¥In P 2
We note that at nonzero field$F.) has no simple relation to t;jo (o=~ A) Tt
the nonlinear transport coefficient for the procgs4]. ¢
Subst|tut|ng Eq(26) into Eq.(25) and using the relation- _ dNA

ship betweertfAH 10 and C,, gives, at long times and small TC{,/[VFﬁL(O)t] +1
fields, dNA

=—————— (3
% = 2kgT?CU/(ANKgTH? + 2VF2L(Fo) [thaT(AN)?] Tnc/[cL(0)]+ 1
t A 2n =1 — 2R =1 21N -1 In this equationc,, is the intensive specific heat per particle
+O(F™NT) =0t N +O(Ft™N™).  (28)  andn=N/V is the number density of the system.
We now show that Eq.31) contradicts the result inferred

In the weak-field limit the mean of is from Eq.(2). If we assume Eq2) is correct both at and near
) equilibrium, then, for some sufficiently large timg(F,), the
a(Fo) = — BIVFJ(dN) ~ BL(F.= O)VFg/(dN) difference between the two sides of E@) is A or smaller

B ) than A. In the weak-field regime, close to equilibrium, one
=0(Fg) forsmallFe. (29  may expect that (Fe) = 75 (Fe=0)+O(F2). If this is the case,

. . . Eq. (2) implies
Now we would like to consider the limit— <, so that we
can simultaneouslyi) ensure that is as large as required by 1 Pria;=A)
the FR of Eq.(2), (ii) ensure that the central limit theorem tL'T 1 In———- Pra=—A) =dNA (32

(CLT) applies, and hence near the mean, the distribution of

o, can be described by a Gaussian, diid generate fully Fem0

converged Green-Kubo integrals. This result is in contradiction with Eq31). Since in our
However, as we increase the integration titméhe vari-  limit

ance of the distribution of; gets ever smaller. This implies )

that for fixedF,, the mean of the distribution af;, which lim

t—oo

has a fixed mean value, moves more and more standard -
e*)

deviations away from zero. This means that symmetric fluc-
tuations, like &, which are the object of Eq2), need not be the central limit theorem and the Green-Kubo relations can-
described by a Gaussian distribution at long times with fixechot be called into question, we conclude that E8R) is
F.. To ensure that the typical fluctuations af—namely, incorrect and therefore the FR inferred from the Bj.can-
+a—nhave their distribution described accurately by a Gaussnot be applied to Nosé-Hoover thermostatted systems. Simi-
ian, we propose to take the following limits simultaneously:lar conclusions are reached even if, for any fix&d0,
t— o andF,— 0 while keepingo‘?/o-;fr constant. 7A(F¢) cannot be simply expressed agF.=0)+O(F2), but
Substituting from Eqs(28) and(29) gives rather does not grow faster th@(l/Fg).
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The other possibility suggested by Rdfs4,16,17 is that  state system whose energy is not a strict constant of the
there is aA >0 such thatr,(F.) — « faster tharO(l/Fi) as motion. For systems at or near equilibrium, EE) only
Fe— 0. In this case, although E() might be formally cor- gives correct, useful predictions for the time-averaged fluc-
rect, it is not able to be verified at low enough fields, and uations in the phase-space compression factor if the energy
above all, it cannot be used to derive the GK relations. In facts fixed. o o

the validity of the CLT is required for GK to be derivésee, This conclusion is supported by the inability of computer

e.g., Refs[17,52), but the CLT does not apply to the time- simulation calculations to verify E¢2) for non-constant-

dependent probability distribution functions if the times

grow faster tharO(l/Fg), as discussed above.

We now repeat these arguments assuming that the ESS
holds. The steady-state version of the ESFT for thermostattelglq

systems states,

1 PrJ,=A
In M=—BAVF9

- — for larget. (33
b PHy=-A)

energy, near-equilibrium particle systefd},16,17, in con-
trast to the ease with which the FR for the dissipation func-

I_Ei}fns are verified in these systems. The calculations show
t

at the discrepancies between the data and the predictions of
. (2) become greater in relative magnitude as the dissipa-
tive field strength is reduced and the steady state approaches
the equilibrium state. No such difficulties are encountered in
the tests of the ESFT’s.

Because Eq(2) is an asymptotic relation expected to be
valid only at sufficiently long times, one could argue that the

Using the same procedure as above, we can apply the CLT somputer data have not been tested at sufficiently long times.
show that the distribution of, will be Gaussian near the However, in tests of Eq2) and the integrated version of Eq.

mean and at typical values of the fluctuations, at lanthat

(2) [14], the computer tests have been carried out at times

is, taking the long-time, small-field limit as above—i.e., which are very long indeed—of the order of 1000 Maxwell

keeping|j|/ajt=
flux one obtains

1 P=A) 2A]

lim —In—— 5. (34)
ot Pr(J;=-A) oyt
Fe—0 t

r—and applying the CLT to the dissipative relaxation times. Even at this long time the disagreement for

Eg. (2) is an order of magnitude larger than the numerical
errors[see Fig. ) of Ref.[14]]. However, the data cannot
rule out the possibility that at some extremely long time
which is completely inaccessible to computer simulation or
experiment, the two sides of E¢R) do indeed converge to
the same value.

Note that taking the limits simultaneously, so that we keep Our theoretical analysis does not provide definitive rea-

|5|/ajtzr constant, implies=2t is constant. This is the same

limit as that taken in Eq(31). Combining Eqs(33) and(34)

and using the linear constitutive relation for the linear trans

port coefficien Eq. (31)] gives

L(Fe=0) = lim — = lim L (35)

t—oo e t—oo 2
Feo Feo

After some tedious manipulations of the integrase[54])
we find that

o0

ua:m:ﬁyfdxum%@»@,

0

v=X,Y,Z. (36)

sons as to why the FR inferred from the GC&J cannot be
applied to the thermostatted steady-state systems and equi-
librium systems we study. We have discussed a number of

possibilities.

(i) The errors in Eq(2) may go to zero more slowly than
the standard deviation of the fluctuations in the time average
of the phase-space compression rate, in which case the fluc-
tuations may become unobservable before thd BRs veri-
fied;

(ii) The range of fluctuations in phase-space compression
within which the GCFT is valid, may be zero at equilibrium.

(iii) The chaotic hypothesis may be substantially violated
by any system which is not maintained at fixed energy.

In relation to the first possibility, away from equilibrium
the standard deviation of the probability distributions appear-

The notation(. ..>Fe:0 denotes an ensemble average takering in Eq(Z) is of Ordert_llz. If the difference between both

over thermostatted trajectories with the external field set t&ides of Eq(2) vanishes more slowly than'’?, then as the
zero. This is the correct Green-Kubo expression for a lineafme increases the fluctuations become unobservable before

transport coefficientL(F,=0), of a thermostatted system Ed-(2) can be verified. In such a case it would be impossible
[10], and shows that a FR for the dissipative flux does nof&ven in principlg to confirm the validity of Eq(2).

suffer from the difficulties of the FR for the phase-space

compression rate.

VI. CONCLUSION

In contrast, all numerical and experimental tests have
validated the ESFT’'s within accessible observation times.
Moreover, when a corresponding theoretical analysis is made
of the near-equilibrium fluctuations, this analysis yields the
well-known Green-Kubo expressions for the relevant linear
transport coefficients. This indicates that for thermostatted

Our theoretical analysis indicates that the fluctuation relanonequilibrium steady states, a FR for the dissipative flux
tion inferred from the Gallavotti-Cohen fluctuation theorem(like Eq. (3)] is useful, in contrast to the FR in terms of the
does not apply to thermostatted equilibrium states or neaphase-space contraction given by E2). The practical rel-
equilibrium thermostatted steady states. The same holds favance and utility of the ESTFT’s and ESSFT'’s has recently
the isothermal isobaric systems and for any other steadyseen confirmed in laboratory experimehd$,46,58.
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Recently van Zon and Cohen have shown that the phassill be increasingly dominated by the second, field-
function that is the subject of their “generalized fluctuationdependent term. In that case, even if we do not separate the
theorem”[23] fails to satisfy a relationship of the form given explicit field-dependent contribution from the phase-space
in Eq. (2). Evans has recently pointed d&9] that this prop-  compression rate, it is clear that as the field increases the
erty corresponds to the phase-space contraction con;ideredérgumem of the FR will be increasingly dominated by the
the GCFR. The conclusion of van Zon and Cohen is theregxpiicitly field-dependent term. Hence the relation given in
fore quite consistent with the present paper. . Eq. (2) will be approximated more and more accurately by

We find it hard to understand why changing the constrainie FR of Eq.(3) as the field strength is increas@arovided

hmechanisr?] dfm”.‘ a ﬁGaussian ergostat 1o c?s thermostﬁt C3fat negative fluctuations remain observable as the field in-
ave such drastic effects, since fergostattedsystems, the creasep The fact that the error in Eq2) decreases as the

GCFT seems to correctly describe equilibrium and N€altia|d increases is not because the CH is more likely to apply

equilibrium fluctuations. This puzzle is not resolved by com- : . g :
: it large fieldg(in fact the opposite is trgebut is related to
paring the Lyapunov spectra for thermostatted and ergost@&e simple fact that, at larger field strengths, fluctuations in

ted systems. At the same thermodynamic state point, the t ) ;
spectra are remarkably similar. the phase-spa_ce.compressm.n rate more closely approximate
We interpret our results as implying that the natural meathose of the dissipation functiof}), which is the subject of
sures of thermostatted systems at or close to equilibrium af&@® ESFT's. These fluctuations are well behaved and satisfy
quite different from the SRB measures, from which thethe ESFT'’s. This is consistent with the nL!merlca! .res_ults
GCFT is derived. This is undoubtedly related to the fact that14,16,17 and may explain the better numerical verification
at equilibrium, instantaneous phase-space compression ratekEd. (2) for some systems as the field strength increases
of the thermostatted dynamics can be nonzero, although trnd chaoticity decreas¢4-17. All the arguments consid-
implications of this fact are not fully understood yet. ered above for the thermostatted systems lead to the conclu-
We can demonstrate this quite clearly through the follow-sion that Eq(2) and the CH on which it is based are not of
ing example. Consider a Gaussian isokinetic-thermostattegractical use, even if Eq2) eventually converges to a cor-
system(rather than the Nosé-Hoover thermostatted systemeect result. In other words, our analysis suggests that the CH
considered previously in this paperFor such a system is not an appropriate characterization of thermostatted sys-

where the equations of motion take the form given in Eq.tems, except perhaps for ergostatted isoenergetic systems.
(19), consider the particular case whe&Eg=0. We can sepa-
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