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Fluctuation theorem for Hamiltonian systems: Le Chatelier’s principle
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For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of
probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a
specified value compared to the negative of that value. In the past, it has been generally thought that the
presence of some thermostating mechanism was an essential component of any system that satisfies a fluctua-
tion theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamil-
tonian systems, with or without applied dissipative fields.
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The fluctuation theorem@1–3# ~FT! gives a general for-
mula for the logarithm of the probability ratio that in a the
mostated dissipative system, the time-averaged entropy

duction S̄ t takes a valueA to minus the value,2A,

Pr~S̄ t /kB5A!/Pr~S̄ t /kB52A!5exp@At#. ~1!

From this equation it is obvious that as the averaging time
system size increases, it becomes exponentially likely
the entropy production will be positive. The fluctuation the
rem is important for at least three reasons: first, it gives
expression for the probability that in a finite system obser
for a finite time, the Second Law will be violated; second
it gives one of the very few exact fluctuation relations th
are known for nonequilibrium steady states, even far fr
equilibrium; thirdly, it can be derived using some of the sta
dard results of the mathematical theory of dynamical syste
theory @3#.

The theorem was initially proposed@1# for nonequilib-
rium steady states that are thermostated in such a way
the total energy of the system is constant. Subsequentl
was shown by Gallavotti and Cohen@3# that the theorem
could be proved for sufficiently chaotic, isoenergetic no
equilibrium systems using the Sinai-Ruelle-Bowen meas
@3#. For transient trajectory segments that start att50 from
an ensemble of initial phase-space vectorsG~0!, and evolve
in time under the influence of a reversible deterministic th
mostat and an applied dissipative field towards a unique n
equilibrium steady state, a transient fluctuation theorem
be derived using the Liouville measure@2,4#. It has also been
shown that the theorem is valid for a wide class of stocha
nonequilibrium systems@5#.

It has recently be shown@4# that if initial phases are
sampled from a knownN-particle phase-space distributio
function, f (G,0), and if we define a dissipation function
V~G!, by

tV̄ t[E
0

t

dsV„G~s!…

5 lnS f „G~0!,0…

f „G~ t !,0… D2E
0

t

L„G~s!…ds, ~2!
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whereL(G)[]/]G•Ġ is the phase-space compression fa
tor, then one can derive a transient fluctuation theorem,

Pr~V̄ t5A!

Pr~V̄ t52A!
5exp@At#. ~3!

Thermostats lead to nonzero expressions for the phase-s
compression factor. Equation~2! is consistent with all known
deterministic transient fluctuation theorems covering a w
variety of initial ensemble types and thermostating mec
nisms@4#.

This relationship ~3! has been tested using comput
simulations for a range of nonequilibrium steady-state s
tems in which the phase-space contraction is nonz
@2,4,5~b!,6#. It predicts that the dissipation function has
definite sign that is consistent with the Second Law of th
modynamics. In the present paper, we point out that Eq.~3!
can be applied to purely conservative systems where the
no phase-space contraction,L(t)[0.1 We consider two
cases in detail: the adiabatic~unthermostated! response of a
system to a dissipative applied field, and the free relaxa
of density inhomogeneities in a system to which no dissi
tive fields or thermostats are applied. These examples ar
general interest since the fine-grained Gibbs entropySG(t)
[*dG f „G(t)… ln@f„G(t)…# is a constant of motion in both
systems.

Consider a system ofN interacting particles subject to
color field Fc . The total Hamiltonian isH(G)5H0(G)
1Fc( i 51

N ciyi , whereci5(21)i and H0(G)5K(p)1F(q)
is the Hamiltonian forN particles interacting via the WCA
potentialF(q)5( i 51

N21( j . i
N f(uqi2qj u) with f(q)54@q212

2q26#, q,21/6; 50 otherwise. We assume theN particles

1We note that over many years there have been treatment
quasi-steady-state systems by modeling a small Hamiltonian d
pative subsystem in contact with alarge Hamiltonian thermal res-
ervoir. In the limit where the thermal reservoir has infinitely ma
degrees of freedom, the subsystem can be regarded as being
steady state. For example, see Ref.@7#.
©2001 The American Physical Society05-1
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populate a cubic cell of volumeV in d Cartesian dimension
and that the system is periodic in the spatial coordinatesq.

We assume that the initial ensemble of phases chara
ized by a normalizedN-particle phase-space distributio
f (G,0);exp@2bH0(G)#, where b is the usual Boltzmann
factor b51/kBT andT is the absolute temperature. The d

sipative flux J(G) is easily seen to beḢ0
ad[2J(G)VFc

52Fc(ci ẏi . The superscript ‘‘ad’’ denotes that the tim
derivative is taken in the absence of any thermostats.

Applying the master fluctuation equation~3! to this prob-
lem shows that

lnF Pr~2b J̄tVFc5A!

Pr~2b J̄tVFc52A!
G5At. ~4!

It is important to note that the Boltzmann factor appearing
this equation refers to the temperature of theinitial canonical
ensemble. It doesnot refer to the time-dependent temper
ture of the dissipative system. Because the color field d
work on the system, on average the system will heat up
time increases. The entropy production inferred from lin
irreversible thermodynamics @8# would be S(t)
52J(t)VFc /T(t), whereas Eq.~4! refers to the dissipation
function defined in Eq. ~2!, V[2bJ(t)VFc
52J(t)VFc /kBT(0). To stress the difference between th
dissipation function and the entropy production, we w
sometimes refer toV as the remnant entropy production.

The second system we consider is the same periodic s
interacting WCA particles, this time with no applied col
field. However, att50, the system is at equilibrium unde
the influence of a nondissipative sinusoidal gravity fie
Fg5( i 51

N g sinkyi (k52p/V1/d). This field establishes a
sinusoidal density variation across the unit cell in the limit
small g. At t50, this field is removed and the system
monitored as it relaxes to equilibrium. Asg becomes large
the particles become confined to the upper half of the bo
g is positive~see Fig. 1!. The initial distribution function for
this system is chosen to be canonical:

FIG. 1. The density profile for systems ofN532 particles in
two Cartesian dimensions atn50.4 and T51.0 with Fg

5( i 51
N g sinkyi , whereg50.5 ~dashed line! or 10.0~solid line! and

k52p/AV.
05110
er-

n

es
as
r

l

of

,

f

if

f ~G,0!;exp$2b@K~p!1F~q!1Fg~qy!#%. ~5!

For t.0, we observe the free relaxation of the density mod
lations towards equilibrium. It is straightforward, using E
~2!, to find that the dissipation function for this system is

tV̄ t[bg(
i 51

N

@sinkyi~ t !2sinkyi~0!#, ~6!

and from Eq.~3! the fluctuation theorem is

ln

PrS bg(
i 51

N

@sinkyi~ t !2sinkyi~0!#5AD
PrS bg(

i 51

N

@sinkyi~ t !2sinkyi~0!#52AD 5A. ~7!

In this equation,b again refers to the temperature of th
initial ensemble rather than the time-dependent tempera
of the relaxing system. Equation~7! shows that as time in-
creases, it becomes overwhelmingly likely that the init
density inhomogeneities will disappear. This particular pro
of Le Chatelier’s principle can be generalized to arbitra
nondissipative perturbing fields,Fg .

In order to test the fluctuation theorem for the two cas
we carried out molecular-dynamics simulations ofN532
Weeks-Chandler-Andersen particles in two Cartesian dim
sions. In both cases, the initial system had a particle den
of n50.4 and a temperature ofT51.0. Molecular-dynamics
simulations using a Nose´-Hoover thermostat@9,10# with a
heat bath of massQ510 were used to generate the initi
canonical ensembles for the two systems. Since the in
systems are ergodic, Monte Carlo techniques could also h
been used to generate the initial canonical distributions.

In the first case, we measure the adiabatic response o
system to a color field applied in thex direction. From a
single trajectory, initial canonically distributed phasesG~0!
were sampled at regular intervals. For these phases, a c
field was applied and the thermostat disabled and trans
trajectories were generated according to the equations of
tion:

q̇i5
pi

m
~8!

ṗi5Fi2 iciFc ,

whereFi52]F/]qi , Fc is the imposed color field, andci
5(21)i is the color of thei th particle, which determines its
response to the color field. Simulations were carried out
systems employing a color field ofFc50.4.

Figure 2 shows the probability histogram for the tim

averaged value of the remnant entropy production,V̄ t

52b J̄tVFc , for different trajectory segment lengthst
50.2, 0.8, 1.6, and 4.0. As the trajectory segment beco
longer, the average value of the remnant entropy produc
increases due to the work done by the field, and the stan
deviation of the distribution decreases due to the lon
5-2
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averaging time. In Fig. 3, the value of ln@Pr(A)/Pr(2A)#

is plotted as a function ofA, where A5V̄ t or A5S̄/kB

52bJtVFc . If the FT given by Eq.~4! is valid, a line of
slopet will be obtained. Clearly, as expected, Eq.~4! is veri-
fied. However, if we also test the relationship using the ir
versible thermodynamic entropy production rather than
remnant entropy production, a divergence from linear beh
ior is observed. We note that for the heating rates that oc
in this experiment, local thermodynamic equilibrium is
excellent approximation. We therefore use the instantane
kinetic temperature to estimate the thermodynamic temp
ture required in the thermodynamic definition of the entro
production@8#.

FIG. 2. Probability histograms for the time-averaged remn
entropy production obtained for a system ofN532 particles in two
Cartesian dimensions atn50.4 andT51.0 subject to a color field
of Fc50.4 and averaged over trajectory segments of lengtt
50.2, 0.8, 1.6, and 4.0.

FIG. 3. The logarithm probability ratio of the remnant entro
production~3! and the irreversible thermodynamic entropy produ
tion ~1! as a function of the time-averaged remnant entropy p
duction and the irreversible thermodynamic entropy production,
spectively, for a system ofN532 particles in two Cartesian
dimensions atn50.4 andT51.0, subject to a color field ofFc

50.4 and averaged over trajectory segments of lengtht50.8. If the
FT given by Eq.~4! is valid, then the data will fall on a straight lin
of slopet(0.8), as shown by the solid line.
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In the second case, we monitor a system with an initia
inhomogeneous density profile relaxing towards equilibriu
During this relaxation, the equations of motion for the pa
ticles are simply Newtonian~no thermostats or externa

fields!. The mean of the probability histogram forV̄t
5bg( i 51

N @sinkyi(t)2sinkyi(0)# shifts from zero whent ap-
proaches zero to2bg^sinky(0)& as t→` since we expect
that bg^sinky(t)& will approach zero as the density becom
homogeneous and the system approaches equilibrium. In
case, the variance of the distribution will approach a cons
value ast increases. We test the FT for this system, given
Eq. ~7!, in Fig. 4. The initial sinusoidal gravity field wasg
50.5 with trajectory segments of lengtht52.0 and 4.0. In
both cases, a straight line of slope unity is obtained, as
pected from Eq.~7!.

The FT given by Eq. ~7! suggests that if V̄t
5bg( i 51

N @sinkyi(t)2sinkyi(0)# is positive, the logarithm of

the probability ratio is positive and henceV̄t is more likely
to be positive than negative. This means that the initial d
sity fluctuation must decay from an inhomogeneous sys
where ifg.0, bg^sinky&,0 ~see the density profiles in Fig
1! to a homogenous system wherebg^sinky&50.

We have shown that phase-space compression that re
from the application of deterministic thermostats isnot an
essential element of systems that satisfy the fluctuation th
rem. We have developed a generalization of the fluctua
theorem that applies to an ensemble of adiabatic dissipa
systems. The FT so developed shows that with increas
system size and observation time, it becomes exponent
likely that the dissipative flux will flow in the direction pre
dicted by the Second Law of thermodynamics. However,
like the situation forthermostatednonequilibrium systems
the new adiabatic FT does not involve time averages of
entropy production that one would infer from standard ir
versible thermodynamics. Further, we have verified that

t

-
-
-

FIG. 4. A test of the FT given by Eq.~7! for a system ofN
532 particles in two Cartesian dimensions atn50.4 andT51.0,
initially subject to a gravity field ofg50.5. If Eq. ~7! is valid, a
slope of unity is obtained, which is shown by the solid line. T
trajectories were of lengtht52.0 (3) and t54.0 (1).
5-3
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corresponding FT, which employs the standard express
for the entropy production, is not valid.

We have also developed a version of the fluctuation th
rem that applies to the free relaxation of isolated Ham
tonian systems towards equilibrium. This constitutes a sta
tical mechanical proof of Le Chatelier’s principle, in th
sense that as the observation time and system size increa
becomes overwhelmingly likely that any initial deviation
from equilibrium will decay rather than grow spontaneous
This proof can trivially be generalized to arbitrary nondis
pative fields,Fg(q).

The fluctuation theorem would appear to run counter
Loschmidt’s Umkehreinwand@11#. There are two points we
make in this regard. First, in our proof,perfecttime-reversal
symmetry is broken by our assumption of causality@2~c!#.
We compute the required probabilities of phase-space tra
tory time averages frominitial rather than fromfinal states.
Few would object to this assumption. However, had we co
puted the required probabilities from the final rather than
initial states, we would have derived an antifluctuation th
rem @2~c!#, which would predict the overwhelming violatio
of the Second Law of thermodynamics.
et
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Second, since the equations of motion are time-reversi
as Loschmidt observed, for every phase-space trajectory
conjugate time-reversedantitrajectory is also observable dy
namically. The fluctuation theorem that we have deriv
gives an expression for the ratio of probabilities of observ
time-averaged properties that arise from these time-reve
trajectory pairs. Our computer simulation results confirm
validity of the theorem. The particular properties and ra
given by the fluctuation theorem confirm that in adiaba
dissipative systems, the sign of the entropy production
overwhelmingly likely to be in accord with the Second La
of thermodynamics. In isolated Hamiltonian systems, ti
evolution of initial inhomogeneities will, with overwhelming
likelihood, be in accord with Le Chatelier’s principle and th
system will, with overwhelming likelihood, relax towar
equilibrium.
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