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Fluctuation theorem for Hamiltonian systems: Le Chatelier’s principle
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For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of
probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a
specified value compared to the negative of that value. In the past, it has been generally thought that the
presence of some thermostating mechanism was an essential component of any system that satisfies a fluctua-
tion theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamil-
tonian systems, with or without applied dissipative fields.
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The fluctuation theorerl-3] (FT) gives a general for- \yhare A ()= /41T is the phase-space compression fac-
mula for the logarithm of the probability ratio that in a ther- tor, then one can derive a transient fluctuation theorem,
mostated dissipative system, the time-averaged entropy pro-

duction; takes a valué\ to minus the value;- A, _
PrQ,=A) At 3
PI(S, /ke=A)/PK3 ko= —A)=exgAt]. (1) PO A eXHAL.
From this equation it is obvious that as the averaging time or
system size increases, it becomes exponentially likely tharhermostats lead to nonzero expressions for the phase-space
the entropy production will be positive. The fluctuation theo-compression factor. Equati@8) is consistent with all known
rem is important for at least three reasons: first, it gives amleterministic transient fluctuation theorems covering a wide
expression for the probability that in a finite system observedariety of initial ensemble types and thermostating mecha-
for a finite time, the Second Law will be violated; secondly, nisms[4].
it gives one of the very few exact fluctuation relations that This relationship(3) has been tested using computer
are known for nonequilibrium steady states, even far fromsimulations for a range of nonequilibrium steady-state sys-
equilibrium; thirdly, it can be derived using some of the stan-tems in which the phase-space contraction is nonzero
dard results of the mathematical theory of dynamical systemg2,4,5b),6]. It predicts that the dissipation function has a
theory[3]. definite sign that is consistent with the Second Law of ther-
The theorem was initially proposed] for nonequilib-  modynamics. In the present paper, we point out that(Bx.
rium steady states that are thermostated in such a way thean be applied to purely conservative systems where there is
the total energy of the system is constant. Subsequently, o phase-space contraction,(t)=0.! We consider two
was shown by Gallavotti and CohdB] that the theorem cases in detail: the adiabationthermostatedresponse of a
could be proved for sufficiently chaotic, isoenergetic non-system to a dissipative applied field, and the free relaxation
equilibrium systems using the Sinai-Ruelle-Bowen measuref density inhomogeneities in a system to which no dissipa-
[3]. For transient trajectory segments that start=ad from tive fields or thermostats are applied. These examples are of
an ensemble of initial phase-space vect(®), and evolve general interest since the fine-grained Gibbs entrBgft)
in time under the influence of a reversible deterministic ther= [dI" f(I'(t)) In[f(I'(t))] is a constant of motion in both
mostat and an applied dissipative field towards a unique norsystems.
equilibrium steady state, a transient fluctuation theorem can Consider a system dfl interacting particles subject to a
be derived using the Liouville measyiz4]. It has also been color field F.. The total Hamiltonian isH(I")=H(I)
shown that the theorem is valid for a wide class of stochastic- chi’\': 1CiYi, Wherec;=(— 1) and Ho(I) =K(p) +®(q)
nonequilibrium systemgs]. - is the Hamiltonian foN particles interacting via the WCA
It has recently be showﬁ{l] that if initial phases are potentiaICD(q)=E!\‘:’1121N>i¢(|qi—qj|) with ¢(q)=4[q~ 12
sampled from a knowm-particle phase-space distribution _4-61 q<216 =0 otherwise. We assume theparticles
function, f(I',0), and if we define a dissipation function,
Q), by

_ t We note that over many years there have been treatments of
tQtEf dsQ(I'(s)) quasi-steady-state systems by modeling a small Hamiltonian dissi-
0 pative subsystem in contact withlarge Hamiltonian thermal res-
ervoir. In the limit where the thermal reservoir has infinitely many
f(I'(0),0) t o
=In| ——=———=1|— [ A(s))ds, 2) degrees of freedom, the subsystem can be regarded as being in a
f(I'(1),0) 0 steady state. For example, see R&l.
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1 f(I',00~exp{— B[K(p) + P (q) +Dg(ay)}. (5

Fort>0, we observe the free relaxation of the density modu-
lations towards equilibrium. It is straightforward, using Eq.
(2), to find that the dissipation function for this system is

N

n(y) _
’ t0,= g, [sinky () ~sinky(0)], ©)

and from Eq.(3) the fluctuation theorem is

N
Pr( ,39_21 [sinky;(t) —sinky;(0)]=A

y In =A. (7)

N
FIG. 1. The density profile for systems df=32 particles in Pr( ,392 [sinky;(t)—sinky;(0)]= —A)
two Cartesian dimensions ab=0.4 and T=1.0 with @, i=1

=3N .gsinky,, whereg= 0.5 (dashed lingor 10.0(solid line) and ) ) )
k=2m/ V. In this equation,8 again refers to the temperature of the

initial ensemble rather than the time-dependent temperature
g Of the relaxing system. Equatidi@) shows that as time in-
creases, it becomes overwhelmingly likely that the initial
gensity inhomogeneities will disappear. This particular proof
er- - e ; !
of Le Chatelier's principle can be generalized to arbitrary

populate a cubic cell of volum¥ in d Cartesian dimension
and that the system is periodic in the spatial coordingtes
We assume that the initial ensemble of phases charact
ized by a normalizedN-particle phase-space distribution S S
f(I',0)~exd —BH(I) ], where B is the usual Boltzmann nondissipative perturbing fieldd, .

factor 5=1/kgT andT is the absolute temperature. The dis- In order to test the fluctuation theorem for the two cases,
. we carried out molecular-dynamics simulations & 32

sipative flux J(I') is easily seen to bé"SdE—J(F)VFg Weeks-Chandler-Andersen particles in two Cartesian dimen-
=—F¢2cy;. The superscript “ad” denotes that the time sjons. In both cases, the initial system had a particle density

derivative is taken in the absence of any thermostats. of n=0.4 and a temperature 3= 1.0. Molecular-dynamics
Applying the master fluctuation equati@8) to this prob-  simulations using a Nosdoover thermostaf9,10] with a
lem shows that heat bath of mas®=10 were used to generate the initial
o canonical ensembles for the two systems. Since the initial
Pr(—BJ,VF.=A) systems are ergodic, Monte Carlo techniques could also have
In p— =At. (4) been used to generate the initial canonical distributions.
Pr(—BJVF.=—-A) In the first case, we measure the adiabatic response of the

. _ . system to a color field applied in the direction. From a
Itis important to note that the Boltzmann factor appearing ingingle trajectory, initial canonically distributed phadé®)
this equation refers to the temperature ofitfigal canonical  \ere sampled at regular intervals. For these phases, a color
ensemble. It doesot refer to the time-dependent tempera- fio|q was applied and the thermostat disabled and transient

ture of the dissipative system. Because the color field doegjectories were generated according to the equations of mo-
work on the system, on average the system will heat up ag

on:
time increases. The entropy production inferred from linear
irreversible  thermodynamics [8] would be 3(t)

. P
=—J(1)VF./T(t), whereas Eq(4) refers to the dissipation qi=al
function defined in Eq. (2), =—-BI(t)VF, 8
=—J(t)VF./kgT(0). To stress the difference between the bi=F —icF ®)
i— i iTco

dissipation function and the entropy production, we will

sometimes refer té) as the remnant entropy produpnqn. whereF, = — g®/4dq;, . is the imposed color field, and|
The second system we consider is the same periodic set 0:(_ 1)1 is the color of theith particle, which determines its

:(.rltﬁjrag[mg WCA Eirgclﬁs, th|st time W';[h no.lgtl)pphed cglor response to the color field. Simulations were carried out for
ield. However, at=0, the system is at equilibrium under o 0o employing a color field &,=0.4.

the influence of a nondissipative sinusoidal gravity field, . o : o
q)g:EiN:lg sinky (k=2m/VY). This field establishes a Figure 2 shows the probability histogram for the._t|me
sinusoidal density variation across the unit cell in the limit ofaveraged value of the remnant entropy productiéh,

small g. At t=0, this field is removed and the system is = —BJ;VF., for different trajectory segment lengths

monitored as it relaxes to equilibrium. Asbecomes large, =0.2, 0.8, 1.6, and 4.0. As the trajectory segment becomes
the particles become confined to the upper half of the box ifonger, the average value of the remnant entropy production
g is positive(see Fig. 1 The initial distribution function for increases due to the work done by the field, and the standard
this system is chosen to be canonical: deviation of the distribution decreases due to the longer
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FIG. 2. Probability histograms for the time-averaged remnant F|G. 4. A test of the FT given by Eq7) for a system ofN
entropy production obtained for a systemNof 32 particles in two =32 particles in two Cartesian dimensionsnat 0.4 andT=1.0,
Cartesian dimensions at=0.4 andT=1.0 subject to a color field jnjtially subject to a gravity field ofy=0.5. If Eq. (7) is valid, a
of F;=0.4 and averaged over trajectory segments of lerigth sjope of unity is obtained, which is shown by the solid line. The
=0.2,0.8, 1.6, and 4.0. trajectories were of length=2.0 (X) andt=4.0 (+).

averaging time. In Fig. 3, the value of[Rr(A)/Pr(—A)] In the second case, we monitor a system with an initially
is plotted as a function oA, where A= or A=3/kg inhomogeneous density profile relaxing towards equilibrium.
=—BJ;VF.. If the FT given by Eq.4) is valid, a line of  During this relaxation, the equations of motion for the par-
slopet will be obtained. Clearly, as expected, E4) is veri-  ticles are simply Newtoniar(no thermostats or external
fied. However, if we also test the relationship using the '”e'fields). The mean of the probability histogram fdit

versible thermodynamic entropy production rather than the

= N i . _ 1 . 1 -
remnant entropy production, a divergence from linear behav- ,BgEhi:l[smky,(t) smlfy,l((O)g)shlfts from £€ro whert ap
ior is observed. We note that for the heating rates that occ roaches zero te- fg(sinky(0)) ast—e since we expect

in this experiment, local thermodynamic equilibrium is an that Bg(sinky(t)) will approach zero as the density becomes
excellent approximation. We therefore use the instantaneol¥omogeneous and the system approaches equilibrium. In this
kinetic temperature to estimate the thermodynamic temper&2se, the variance of the distribution will approach a constant
ture required in the thermodynamic definition of the entropyvalue ast increases. We test the FT for this system, given by
production[8]. Eq. (7), in Fig. 4. The initial sinusoidal gravity field wag
=0.5 with trajectory segments of lengtk-2.0 and 4.0. In
both cases, a straight line of slope unity is obtained, as ex-

6 pected from Eq(7).
41 The FT given by Eq.(7) suggests that if Qt
\ =,BgEiN:l[sinkyi(t)—sinkyi(O)] is positive, the logarithm of
Pra + the probability ratio is positive and hen€kt is more likely
ln[ﬁ] or to be positive than negative. This means that the initial den-

sity fluctuation must decay from an inhomogeneous system
where ifg>0, Bg(sinky)<0 (see the density profiles in Fig.
1) to a homogenous system wheBg(sinky)=0.
We have shown that phase-space compression that results
from the application of deterministic thermostatsnist an
12 essential element of systems that satisfy the fluctuation theo-
rem. We have developed a generalization of the fluctuation
FIG. 3. The logarithm probability ratio of the remnant entropy theorem that applies to an ensemble of adiabqtic Qissipat_ive
production(x) and the irreversible thermodynamic entropy produc-SYStéms. The FT so developed shows that with increasing
tion (+) as a function of the time-averaged remnant entropy proSyStem size and observation time, it becomes exponentially

duction and the irreversible thermodynamic entropy production, reln_(e|y that the dissipative flux will flow in th_e direction pre-
spectively, for a system oN=32 particles in two Cartesian dicted by the Second Law of thermOdynamlcs. However, un-

dimensions an=0.4 andT=1.0, subject to a color field of, like the situation forthermostatedhonequilibrium systems,
=0.4 and averaged over trajectory segments of lengt®.8. If the  the new adiabatic FT does not involve time averages of the
FT given by Eq(4) is valid, then the data will fall on a straight line entropy production that one would infer from standard irre-
of slopet(0.8), as shown by the solid line. versible thermodynamics. Further, we have verified that the
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corresponding FT, which employs the standard expressions Second, since the equations of motion are time-reversible,
for the entropy production, is not valid. as Loschmidt observed, for every phase-space trajectory, its
We have also developed a version of the fluctuation theoeonjugate time-reverseshtitrajectoryis also observable dy-
rem that applies to the free relaxation of isolated Hamil-namically. The fluctuation theorem that we have derived
tonian systems towards equilibrium. This constitutes a statisgives an expression for the ratio of probabilities of observing
tical mechanical proof of Le Chatelier's principle, in the time-averaged properties that arise from these time-reversed
sense that as the observation time and system size increasey#jectory pairs. Our computer simulation results confirm the
becomes overwhelmingly likely that any initial deviations yqjigity of the theorem. The particular properties and ratio
from equilibrium will decay rather than grow spontaneously.given by the fluctuation theorem confirm that in adiabatic
This proof can trivially be generalized to arbitrary ”O”diSSi'dissipative systems, the sign of the entropy production is

pative fields,®4(q). overwhelmingly likely to be in accord with the Second Law

The f_Iuc,:tuation theorem would appear to run counter toyf thermodynamics. In isolated Hamiltonian systems, time
Loschrnldt.s Umkehre|'nwa'nﬁ11]. There are tyvo poInts We  eyolution of initial inhomogeneities will, with overwhelming
make in this regard. First, in our progierfecttime-reversal |ielihood, be in accord with Le Chatelier’s principle and the

symmetry is broken by our assumption of causal@c)].  system will, with overwhelming likelihood, relax toward
We compute the required probabilities of phase-space trale%'quilibrium.

tory time averages fromnitial rather than fronfinal states.

Few would object to this assumption. However, had we com- We would like to thank the Australian Research Council
puted the required probabilities from the final rather than thdor the support of this project. We would also like to thank
initial states, we would have derived an antifluctuation theoProfessor E. G. D. Cohen for helpful discussions. D.J.E.
rem[2(c)], which would predict the overwhelming violation would like to thank NIST, Boulder, CO for partial support of

of the Second Law of thermodynamics. this research.
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