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Steady states, invariant measures, and response theory
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Using the method of computer simulation we test the predictions of nonlinear response theory for
classical systems subject to dissipative external fields. We provide convincing numerical evidence that
Kawasaki methods agree with both the transient time correlation function predictions and with a direct
measurement of the nonlinear response. Furthermore, this numerical agreement is observed over a time
scale which is sufficiently long for the response to have relaxed to within —1% of its nonequilibrium
steady-state value. This is in spite of the fact that in the steady state the N-particle distribution function
ultimately becomes fractal. We discuss the normalization of the Kawasaki distribution and derive a
"Lagrangian form" of the Kawasaki response function, and show that it is consistent with predictions
that are obtained using a natural invariant measure for nonequilibrium steady states.

PACS number(s): 05.20.—y, 47.10.+g

I. INTRODUCTION

In recent years a number of numerical tests [1—3] have
been performed on response theory predictions of the
nonlinear thermostated response of classical systems to
applied dissipative fields. In the most stringent numerical
test [1] that has thus far been performed the nonlinear
response computed using the so-called [1] transient time
correlation function formalism (TTCF), has been shown
to be in agreement with the directly observed response to
an accuracy of better than 0.15%, for time scales that are
sufficiently long that the response has relaxed to within
l%%uo of its steady-state value. For this same system the
difference between the observed nonlinear response and
the extrapolated linear response was —30%%uo.

However, another formulation of nonlinear response
theory, the so-called Kawasaki formalism [1,4,5] has nev-
er been subject to a convincing numerical test. In the
same computer experiment as that used to test the TTCF
prediction, large statistical uncertainties in the Kawasaki
predictions made the test fairly meaningless [1,2]. How-
ever, of the two formalisms, the Kawasaki approach has
generally proven to be the more useful in terms of pre-
dicting new steady-state fluctuation inter-relations for
specific heats and compressibilities [1,6,7]. These fiuctua-
tion relations have been confirmed to reasonably high nu-
merical accuracy. It is against this background that we
present in this paper the first convincing numerical test of
the predictions of the Kawasaki response. We also dis-
cuss the Kawasaki normalization.

In order to test the predictions of nonlinear response
theory, we examine a model system that exhibits the
salient features of a general system undergoing non-
linear response. We consider an ensemble of systems
each of X particles in a volume V, interacting with an
external dissipative field F, (t) =F,B(t), where 6(t)
is a unit Heaviside step function. The initial phases
I =(x&,yi, z, . . . ,p~~,p,~) are assumed to be distrib-
uted according to a canonical distribution f(I,O)

q, = +C;F,(t),

p, =F, +D,F,(t) —ap;

where q, are the particle coordinates, p, are the peculiar
momenta, and C, ,D; are phase functions that describe
the coupling of the field to the system. The term involv-
ing e is known as the thermostat term since it is used to
maintain the internal energy Ho or the kinetic tempera-
ture T at a fixed value. It is determined using Gauss'
principle of least constraint [1]. The dissipative fiux J(I )

is defined in terms of the adiabatic (i.e. , unthermostated)
time derivative of the internal energy,

Ho = —J F, =agp;/m . (2)

The thermostat multiplier a that is required to fix the
internal energy is

—J.Fea-
gp,'/m

(3)

For an arbitrary phase function, B(I ), the nonlinear
thermostated response that is obtained under the com-
bined inhuence of the external field and the thermostat
can be written as the TTCF expression [2],

(B(t))=(B(0))—F, .J d (P(0)J(0)B( ))
0

=(B(0))+3NJ ds(a(0)B(s)) . (4)
0

Unless otherwise indicated, the time evolution is generat-
ed by the field-dependent thermo stated equations of

=exp[ —/3OH&(I ])/JdI exp[ —POHo(I )] with absolute
temperature To= 1/k~PO, where k~ is Boltzmann's con-
stant. The zero-field Hamiltonian is
Ho(I )=g;=jp; /2m+@, where m is the particle mass
and 4 the total interatomic potential energy.

For t ~ 0 the equations of motion for the system are
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(B(t))=(B(0)exp 3Nf dsa( —s)
)0

(7)

while the "renormalized, " RK, expression for the
Kawasaki nonlinear response is

B(0) exp 3N f dsa( —s)
(B(t))=

Z(&)

where the denominator, Z(t), defined as

Z(t)—:
(

exp 3N f 'dsa( —s)
0

= fdI exp —3N f ds a(s) f(I,O),
0

(8)

is the Kawasaki normalization factor. It is easy to show
that in the linear regime both the Kawasaki forms
[(7)—(9)] reduce to the Green-Kubo linear response ex-
pression (6).

When we say that each of these expressions [(4) and
(7)—(9)] are equivalent we mean that their identity can be
proven using the thermostated field-dependent Liouville
equation, Bf(I,t)/Bt = —B[f(I,t)I ] /Bt, where
f(I, t ) is the N-particle distribution function at time r

evaluated under the combined inhuence of the external
field and the thermostat. The identity of Eqs. (7) and (8)
follows from the fact that one can show from the Liou-
ville equation that Z( t) = 1 for all values of t.

Both the Kawasaki forms involve averages of exponen-
tials of integrals of extensive quantities and hence are
exceedingly difficulty to calculate. Typically averages
computed using the renormalized Kawasaki expression,
(8), have a smaller variance than those using the bare
form, (7). From previous numerical data it was by no
means obvious that Z(t)=1 at long times. Previous nu-
merical data seemed to indicate that Z(t) is a monotoni-

motion (1) and the brackets ( ) denote the ensemble aver-
age calculated at time t,

&B(t))= fdrB(I (t))f(r, o)

fdI B(I (t)) exp[ —P~ (I )]

fdl exp[ —P~o(I )]

In (4) we have used the fact that at constant internal ener-
gy /3(t)F, .J(t)= —3Na(t), where 13(t)= 3Nrn /gp2. We
note that for strong applied fields, F„(P(t))APo,since
Ho(t) =HO(0).

From (4) it is trivial to see that in the zero-field limit
the linear response (if it exists) can be written

lim (B(t) ) = (B(0)) —@OF, f ds( J(0)B(so)), (6)
F, ~O 0

where the zero subscript on the time argument denotes
the fact that the time dependence is generated by the
thermostated geld free equations of motion. Equation (6)
is a thermostated generalization of the well-known
Green-Kubo relation for the linear response.

An equivalent form for the nonlinear thermostated
response is the so-called "bare form, " BK, of the
Kawasaki response [5],

cally decreasing function of time. However, the extreme
difficulty of carrying out such calculations has meant that
the situation was largely unresolved.

Hoover, Morriss and co-workers have shown that in
the nonequilibrium steady state, the distribution function
becomes fractal [1,8-11]. Holian et al. [10] argued that
the fractal nature of the distribution function means that
although for finite times the TTCF expression is correct,
both of the Kawasaki forms for the nonlinear response
are incorrect. However, no numerical data were provid-
ed in support of this assertion.

In the present paper we present computer simulation
data comparing the directly observed transient nonlinear
response with the TTCF, Kawasaki and renormalized
Kawasaki theoretical predictions. Our results show, to
unprecedented accuracy ( ( l%%uo), that numerical agree-
ment between theory and experiments is excellent. We
argue that the concerns raised in [10] regarding the non-
analytic nature of the fractal steady-state distribution
function, although correct in principle, are not relevant
in practice. The reason is that nonlinear response theory
predictions are for the finite time tI"ansient response. The
distribution functions on the other hand only become tru-
ly fractal (to the arbitrarily small phase-space length
scales required for nonanalyticity) in the infinite time lim-
it. For any finite time, no matter how large, the distribu™
tion functions are analytic and only approximate the
steady-state fractal attractors. Hence for any finite time,
no matter how long, nonlinear response theory predic-
tions are correct.

In this work we also discuss the Kawasaki normaliza-
tion. This is the key to a clear understanding of non-
linear response theory. Finally we give a derivation of a
long sought connection between nonlinear response
theory and the dynamical systems theory description of
the fractal steady-state attractors.

Recently Evans, Cohen, and Morriss [12] have derived
a formula for the ratio of probabilities of observing, in a
steady state, finite duration trajectory segments and their
time-reversed trajectory antisegments. This ratio formu-
la was derived from a natural invariant measure (which
we shall call the Lyapunov instability measure), originally
proposed by Eckmann and Procaccia [13] for the steady-
state attractor. In the present paper we show that the ra-
tio formula for observing segments and antisegments can
also be derived from a new generalization of the
Kawasaki expressions of nonlinear response theory.
When combined with accurate numerical tests of non-
linear response theory predictions, this theoretical result
provides a long sort link between the two apparently
different approaches to describing nonequilibrium steady
states.

II. THE KAWASAKI NORMALIZATION

If the equations of motion are integrated exactly, the
Liouville equation can be used to show that the normali-
zation factor (9), Z(r), is unity. Since Z(0) is a phase in-
tegral of the normalized equilibrium distribution func-
tion, Z(0), is unity. The rate of change of Z(t) after the
external field is switched on and the thermostat applied,
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is given by

dZ(t) = fdI f(I,O) exp 3N f ds a( —s)
dt Bt 0

=3N fdI f(I, t)a( —t)

=3N dr I 0 a 0 =0. (10)

In deriving the last line of this equation we have used the
Schrodinger-Heisenberg equivalence [1] to show that
fdr f(r, t)a(I ( t))—= fdI f(I,O)a(I )=(a(0))=0
This implies that the bare Kawasaki distribution is nor-
malized for all times provided the dynamical equations of
motion are solved essentially exactly and the N-particle
distribution is therefore governed by the Liouville equa-
tion. Of course as time increases in any real system it will
eventually become impossible for the forward and reverse
propagators in line 2 of Eq. (10), f(I,t) and a(I ( t )), —
respectively, to annihilate each other. When this occurs,
the proof of normalization given in (10) breaks down.

The time over which the forward and reverse propaga-
tors annihilate each other can be measured by the so-
called lifetime of the antisteady state, t, &2. This lifetime
is defined in the following manner. In a typical non-
equilibrium steady state the average entropy production
is positive and the average dissipative Aux is negative.
Since the equations of motion are time reversible, wheri
we apply the time-reversal mapping to any typical phase,
sampled in the steady state, the trajectory will reverse it-
self exactly with negative entropy production. We call
such a trajectory segment an antisegment and we say that
the positive entropy producing trajectory segment from
which it was constructed is its conjugate. In reversible
systems with reversible thermostats every trajectory seg-
ment has a conjugate antisegment. The existence of this
conjugacy is a sufficient condition for the Kawasaki nor-
malization to be unity.

We will now consider the Kawasaki normalization in
more detail. Without the loss of generality we assume
the dissipative Aux J is odd under time-reversal mapping
M: M (q,p, F, )

—(q, —p, F, ). It is then straightforward
to show that M iL(I,F, )=iL(I,F, )= iL(I,F, ). —
From this it is easy to show that

J( —s, I,F, )= —J(s,I,F, ),

a( —s, I,F, ) = —a(s, I',F, ) .

Applying this to the Kawasaki normalization (9), gives

= —I ' +3Na(I )f(I, t)+O(1) . (13)ar
The formal solution of the Liouville equation can be writ-
ten in terms of the distribution function propagator,
exp[ iX(I—)t], as f(I, t)=exp[ iX(l —)t]f(I,O).
Clearly one can write

exp[i/(l )t]f(I,O)=f(I, —t) . (14)

However, since this equation is true for all r it must also
be true for I ( t ), so that—
exp[i'(r( —t))t]f(r( —t), 0)=f(r( —t), —t) .

Using a Dyson decomposition of the distribution function
propagator in terms of the phase function propagator,
exp[iL(I )t], where A(I (t))= exp[iL(I )t]A(I ), one
can show [1] that

exp[i'(I )t]= exp —f 3Na(I'(s))ds exp[iL(I )t] .
0

(16)

Substituting Eq. (16}into (15) gives

tropy increasing, which implies for each of these seg-
ments the time-averaged thermostat multiplier will be
positive and the dissipative Aux negative, leading to a
negative exponent in that segment's contribution to Z(t),
[see (12)]. Therefore, in the overwhelming majority of
trajectory segments, as t ~ oo, exp( —3N(a ), )t ~0,
where ( ), denotes a time average calculated over a
time t.

However, in those rare cases where an entropy reduc-
ing trajectory segment is observed, the exponent will be
positive and because of the highly nonlinear dependence
of an exponential upon its argument, such entropy reduc-
ing segments, although rare, will have a highly enhanced
effect on the determination of Z(t). It turns out that
these two effects cancel exactly: the rarity of observing
antisegments exactly cancels their exponential effect in
the Kawasaki exponent leading to the normalization be-
ing unity.

To show this, it is convenient to consider a small
phase-space volume V( I (0) ), about an initial phase,
I (0). We can analyze the time evolution of such a
volume by writing the solution of the Louiville equation,

af(r, t) —rf(r, t)= —r af(I., t) +f(I- t) a
Bt

= ' ' Br ' ar

Z(t) = f1I exp

= f dI'exp

=fdI exp

f( I ( t ), t ) =exp —f 3—Na( I—(s —t ) }ds
0

X exp[iL(I ( —t ) }t]f(I ( —t), 0}

=exp —f 3Na(I (s —t))ds f(I (0),0)
0

=exp f 3Na(I (s))ds f(I (0),0) (17)
0

(12)

3N f ds a(I (
—s) } f(I,O)

0

3N f ds a(I (s)—) f(I,O)
0

3N f dsa(I (s))—f(I,O)=Z( t), —
0

where we have used that ~BI' /BI'~ =1, in obtaining the
last line of (12).

Intuitively, Eq. (10) is somewhat unexpected since the
overwhelming majority of trajectory segments will be en-

and therefore,

f( I (t), t ) = exp f 3Na( I (s) )ds f(I (0),0) . (18)
0

We call this equation the Lagrangian form of the
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Kawasaki distribution, LK. It should be contrasted with
the usual Kawasaki expression for the nonlinear X-
particle distribution function which can easily be ob-
tained from (7):

f(r, t)=exp f 3Na(r( —s))ds f(I,O)
0

= exp —f 3Na(r(s))ds f(1,0) .

Equation (18) shows that from almost every initial phase,
I (0), the distribution function along the trajectory, I (t),
diverges to positive infinity. Equation (19) on the other
hand says that at time t, almost everywhere in phase
space, I, the distribution function collapses towards zero.
These two statements are consistent with the conserva-
tion of total probability.

Equation (18) enables us to characterize the time-
dependent evolution of a small, comoving, phase-space
volume, V(I (r)), about a moving phase vector, I (t). If
this volume initially contains M ensemble members then
V(I (t) ) =M/f (I (t), t ). Using (18) we can show

Vi(t)
T

I time reversal
I mapping
I

I

I

I

t

I

I

I

time

V;(2t)

2t

i*(2t) = Vi(0)

V;*(0) = V;(2i) Vi*(t) = Vi(t)

FIG. 1. A schematic diagram depicting the time evolution of
the dissipative fIux of a trajectory segment i and its antisegment
i*. Segment i* is constructed from segment i by applying a
time-reversal mapping to the phase, I;(~), of segment i at time
~. For convenience we denote I;(0) as I, I;(~) as 2, I;(2~) as
3, I. (0) as4, I . (~) as 5, andI; (2~) as6.

V(I (r)) = V(I (0))exp —f ds 3Na(r(s)) (20)

This equation shows that for normal positive entropy
producing trajectories ( ( a ), )0), which are produced
from almost all starting phases I (0), the streaming
phase-space volume element undergoes contraction. Sub-
stituting this equation into (12) shows

z(&)=( v(r(r))/v(r(0))) . (21)

We can now analyze the time evolution of the
Kawasaki normalization as a result of an individual tra-
jectory segment i and its conjugate antisegment i *. These
segments are depicted schematically in Fig. 1. Without
loss of generality the figure shows segment i as a positive
entropy producing segment with a negative value for the
average dissipative Aux. As was discussed in detail in
Ref. [14] segment i* can be constructed from segment i
by applying a time-reversal mapping I to the phase
r;(r) of segment i at time t Follow.ing this time-reversed
phase backwards in time to t =0 is equivalent to follow-
ing the original I, (0) phase forward in time from t to 2t

Because the Jacobian of the time-reversal map is unity,
V. ~(t)= V;(t), and from the reversibility of the equations
of motion V.+(0)= V;(2t) while V.+(2t) = V;(0).

The normalization Z(t) can be written in terms of
comoving Lyapunov volumes, as

v(r, (r)) v(r. .(r))z(r)-yv(r, (0)) ' + v(r. .(o))v(r, (o)) * v(r. „(o))'

(22)

where we have used the fact that in the microcanonical
ensemble the probability of observing phases inside a
volume is simply proportional to the magnitude of that
volume (in other ensembles this becomes asymptotically
true at t ~ oo ). Using the fact that
V(I . (0) ) = V(I, (0) )exp —f 3Na(s; )ds (see Fig. 1

0
and Ref. [14]),the last relation can be written as

Z(t) —QV(I,.(0))exp[ —3N(iz), t]+ V(I (0))exp[ —3N(a). ~t]

—QV(I;(0))exp[ —3N(a);t]+ V(I . ( 0))e px[ +3 N(a), t]

—g V( I;(0) )exp [ —3N ( a ); t ] + V( I;(0) )exp [
—3N ( a ),2t ]exp[ +3N (a ); t ]

-g V(I, (0))exp[ —3N(a);t]+ V(I, (0))exp[ —3N(a), t] . (23)

Thus the contribution of the antisegment i to the nor-
malization at time t is exactIy the same as that made by
its conjugate, namely, i. The rarity of observing antiseg-
ments is exactly canceled by the exponentially enhanced
eFect these expanding phase volumes have on the nor-
malization.

III. THE KAWASAKI NORMALIZATION:
WEAK FIELDS

It is often not realized that the problem of Kawasaki
normalization also arises in the linear response regime.
In this regime, we can, however, use the special results of
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linear response theory to analyze the function. Z(t) can
be expressed as p (J),

(&», , —J, )'
exp

&2mo. 2o' (26)

where

X exp(POF, (J ), F t ),
(24)

where JF is the mean of (J ), F, which is independent of
e e

t provided that t is sufficiently large that the contribu-
tions to averages caused by the initial transients are
insignificant. The variance of (J ), F is

e

'=(((J),—J )')

(J),~ =1/t f ds J(s).F, /F, (25)

e
(27)

is the time average value of the dissipative Aux, J, along
the trajectory segment of length t, in the presence of the
field F, and the thermostat. p(( J ), ~ ) is the probability

of observing a t segment with value (J),F . We note

that in Eq. (25), t =0 refers to the initial time when the
phases are distributed canonically. Thus as time in-
creases the ensemble passes from an equilibrium state
through a transient period into the steady state as t ~~.
In this limit we expect that the inhuence of the transient
states to the averages (J ), F will be statistically

insignificant. We also expect that in the same limit, suc-
cessive t averages of (J ), ~ will be uncorrelated.

The central limit theorem can be used to deduce the
distribution of (J ), ~,

Using a change of variables, ~&
=s, —s2 and

~2=s, +s2, and the fact that in the mixing steady state,
correlation functions only depend on the time differences,
we can see that

(J(s, )J(sz))= J + J

~2 ~2= J +w) J
2 2

1~2

=(J(r, )J(0)), Vr, .

If we invoke the assumption of local thermodynamic
equilibrium in the F,~0 limit, the variance [15] is given
by

T

r2 2
lim lim to=lim lim. t —f dr& f dr, [(J(r, )J(0) ) —Jo) = lim lim —f dr& f dr, (EJ(r, )bJ(0))
g~oo F taco F ~0 t 0 F 0 t 0 0

= lim lim —f dr& f dr&(rU(r&)b J(0)) = lim —f d (tr—r)(b J(ro)b J(0))
taboo F ~0 t 0 t~~ t 0e

2L (0) 2L '(0)
P lim Pot

f —+ oo

2JF= lim
F, ~0 l30F,

(29)

where L(s) = f o dt e "(bJ(to)b J(0) ) denotes a Laplace transform of an equilibrium time correlation function and we
have assumed that both the Laplace transform and its derivative with respect to s, exist.

The Green-Kubo expression for the transport coefficient L(F, =0) where (J ) = L(F, )F„is obta—ined from (6) by
setting 8—:J:L(0)= l3oIo"dt ( J—(to)J(0)).

Substituting (26) and (29) into (24) shows that, in the limits where r ))r~ and F,~0,

lim Z ( t ) = lim f d (J ), zF ~0 F —+0 27Toe e

= lim d&J), ~' ' +2m'o'

exp

exp

+P~,(J)„t
20 e

(&»,, +J, )'
=1.

267
(30)

Thus in the linear regime close to equilibrium, we see that
the Kawasaki normalization, Z(t~), can be expected to be
unity provided that the fluctuations in the dissipative Aux
satisfy the Green-Kubo relaxation. Sufficient conditions
for this to occur are that the derivative of the zero-
frequency Laplace transform exists and that the equa-

tions of motion are accurate over the time scale required
for the system to relax to the steady state, which is of the
order of the Maxwell relaxation time ~~. This is much
weaker than the requirement that the equations be accu-
rate for the times over which Z(to ) is actually calculated
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IV. NONEQUILIBRIUM MOLECULAR-DYNAMICS
SIMULATIONS

The validity of the TTCF and the Kawasaki expres-
sions for nonlinear response was examined using non-
equilibrium molecular-dynamics simulations of a system
that was subject to a color field. A two-dimensional sys-
tern of two disks with periodic boundary conditions was
studied using the self-diffusion algorithm [16]. The
response of the color current was observed when a con-
stant color field is applied to the equilibrium ensemble.
The disks were characterized by a simple short-ranged
pair potential, tt (r), which is, in reduced units,

P(r)= ' 4[r ' —r ]+1 for r (2'
0 ' for r ) 2, '

(31)

This potential is known as the WCA (Weeks-Chandler-
Andersen) potential [17]. Reduced units, where the mass
is unity, will be used throughout this section.

The self-diffusion algorithm assumes the system con-
sists of two species that differ only by a color label. The
equations of motion for an X-body system of color la-
beled species subject to a constant field, F„in the x direc-
tion can be derived from the color Hamiltonian [13] and
are given by

used the fourth-order Runge-Kutta method to integrate
the equations of motion with a time step At =0.005. The
Runge-Kutta method is self-starting, which is necessary
for an examination of the transient response. A density
of p=0. 396850 (which is sufficiently low that the box
length is greater than twice the range of the WCA poten-
tial) and a temperature of T= 1.0 was used. The color la-
bels for the two species were c

&

= + 1 and c2 = —1. After
equilibration a constant color field was applied.

The response of the color current density for the two-
particle periodic system calculated using the TTCF, the
bare Kawasaki, and the renormalized Kawasaki expres-
sions was compared with the direct ensemble average.
Color fields of F, =0. 1 and F, =1.0 were used. In each
case, the average was carried out over a set of 2X10
starting states from the isothermal equilibrium ensemble.
In the simulations these were generated as phase-space
points of a single trajectory, which are 4800 time steps
apart, which is sufficiently long that they are not correlat-
ed. For efficiency, phase-space maps were carried out at
each of the generated phases to produce additional start-
ing points from the isothermal equilibrium ensemble.
For each starting phase, I'=(q, q~,p,p ) a time-reversal
mapping M (I ) =(q, q, —p, —p ) was used.

Figure 2(a) shows the response of the color current

q, =p, /m,

p; =F;+ic,I', —a(p, —mu, ),
(32)

0 P10P s & s i I

( )

0.0080

where i is the unit vector in the x direction, c; =( —1)' is
the color label of particle i, p is the particle density, u, is

t

the streaming velocity of atom i and the term
a(p; —mu, ) is the Gaussian thermostat, which is used to

t

constrain the temperature. In the definition of the tem-
perature, the peculiar particle velocity relative to the
streaming velocity of each species is used. That is, the
constraint equation is given by

0.0060

0.0040

0.0020

0.0000
0.0 4.0 8.0 12.0 16.0

TTCF, BK and RK

20.0 24.0

g(p; —mu, ) Im =(2N —3)k Tii.

Hence, the thermostat multiplier is

gF (p —mu, )

i=1

gp (p /m —u, )

(33)

(34)

0.0096
b

Direct

0.0094

0.0092

0.0090

0.0088

BK and RK

I ~ r
/

~

In general, the streaming velocity, u, , is given by
1

ic;J /p, however, in the two-particle system it is not pos-
sible to define an instantaneous streaming velocity, there-
fore it is assumed to be zero.

A periodic system of WCA disks was studied and the
response of the dissipative Aux was monitored, which in
this case is the color current density J,

1 NJ„=—g c,q„
i=1

The nonequilibrium molecular-dynamics simulations

0.0086

0.0 4.0 12.0 16.0 20.0 24.0

FIG. 2. (a) The color current density response to a constant
field of 0.1 determined using nonequilibrium molecular-
dynamics simulation. The response calculated using a direct en-
semble average ( ———) is compared with that calculated us-

ing the TTCF ( — ), bare Kawasaki (BK) ( - - - - - - ) and re-
normalized Kawasaki (RK) ( —- —-) expressions. The color
field was applied to a microcanonical equilibrium ensemble of
2X 10 initial configurations. The system consisted of two WCA
disks in a periodic box at T=1.0 and p=0. 396850. (b) The
scale in (a) is expanded for part of the data.
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density to a color field of I', =0.1. The field was applied
at t =0 and averaged over 2X 10 starting states. In Fig.
2(b), a section of the same data is magnified. The figures
show that for a color field of 0.1 the bare Kawasaki (BK)
and renormalized Kawasaki (RK) expressions are in ex-
cellent agreement with each other (+0.05%) and with
the comparatively low accuracy (+5.0%) direct results.
The BK and TTCF results disagree with each other by no
more than 0.3%%uo. The ensemble averaged current is high-
ly structured and is not a monotonic increasing function
of time. This is a refIection of the growing underlying
complexity of the phase-space distribution function.

The half life of the antisteady state, which is a function
of our integration accuracy, for this system is —8.
Therefore the accuracy of the Kawasaki expressions and
the TTCF expression is maintained for times that are
much longer than the decay time of the antisteady state.
This decay time is a measure of the time over which mi-
croscopic reversibility holds. Throughout the time scale
shown on Fig. 2(a), the Kawasaki renormalization factor
is unity, within estimated statistical uncertainties
(+0.04%). Thus microscopic reversibility is apparently
not a necessary condition for the Kawasaki normalization
to be unity, at least for relatively weak fields. This is in
agreement with our theoretical discussion in Sec. III.

In Fig. 3(a) the response of the color current density of
the same system to a color field of 1.0 is shown. Averages
are carried out using 2X 10 initial configurations. For
F, =1.0, the results determined using the direct method
are more precise than for F, =0. 1 and these results are in
agreement to within 0.7% with those obtained using the
TTCF expression. For t (6.5, both the bare Kawasaki
and renormalized Kawasaki expressions agree with the
direct response to within 1.0% and 0.7%, respectively.
After this time, larger fluctuations occur with the renor-
malized Kawasaki expression generally in better agree-
ment than the bare expression. In Fig. 3(b) the deviation
of the results obtained using the TTCF, renormalized
Kawasaki, and bare Kawasaki response expression from
the direct response results are plotted. The deviation of
the TTCF expression has been magnified by 100 for clari-
ty and is just 0.2% at t =12. The agreement of the
TTCF expression and the directly calculated results indi-
cates that the Green-Kubo-type expressions are accurate
far from the thermodynamic limit —in this case for just 2
particles.

In Fig. 4 the time evolution of a selected region of the
coordinate space pair distribution function is shown for
this system with a field of F, =1.0 applied at t =0.
Clearly a developing structure is observed soon after the
field is applied and this structure becomes more distinct
as time progresses. The structure that is observed here in
the pair distribution function is a projection of the deve1-
oping fractal characteristics of the full phase-space distri-
bution. Importantly, the departure of the Kawasaki-
based averages from their directly computed counterpart
does not appear to correspond to the emergence of the
fractal characteristics in the projected phase-space distri-
bution function [10]. These results indicate that although
the phase-space distribution function approaches a frac-
tal in the long time limit, this is not directly related to the

apparent inaccuracy of the Kawasaki expressions for
phase-space averages.

We have shown in Sec. II that the Kawasaki normali-
zation factor, Z(t), is unity for all times t (t, &2 (i.e.,
while they are microscopically reversible). However, ex-
amination of molecular-dynamics simulation results
would appear to contradict this result. Figure 5 gives the
value of Z(t) obtained using a molecular-dynamics simu-
lation as described above with F, =1.0. Evidently, Z(t)
is unity until t =6, which is similar to the time for which
the Kawasaki response was observed to be accurate for
I,= 1.0 in molecular-dynamics simulations. For this
simulation t, &2

—8.0. This behavior is still observed
when the time step is halved, indicating that the effect is
not due to the microscopic reversibility of the simulation.
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FIG. 3. (a) The color current density response to a constant
field of 1.0 determined using nonequilibrium molecular-
dynamics simulation. The response calculated using a direct en-
semble average ( ———) is compared with that calculated us-
ing the TTCF ( ), bare Kawasaki (BK) ( - - - - - - ) and re-
normalized Kawasaki (RK) ( —-—-) expressions. The color
field was applied to a microcanonical equilibrium ensemble of
2 X 10 initial configurations. The system consisted of two WCA
disks in a periodic box at T=1.0 and p=0. 396 850. (b) Devia-
tion from the direct ensemble average of the color current den-
sity response calculated using the TTCF, bare Kawasaki and re-
normalized Kawasaki expressions for the system examined in
(a). The deviation of the TTCF results is magnified by 100 for
clarity.
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0.8
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x;,/r,
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FIG. 4. The time evolution of
the coordinate space distribution
function for a system to which a
constant color field of 1.0 is ap-
plied at t =0. The data was ob-
tained from a nonequilibrium
molecular-dynamics simulation
of two WCA disks in a periodic
box at T= 1.0 and p =0.396 850.

As predicted in the discussion of Sec. II, rarely observed
antisegments have an exponentially enhanced effect on
the value of Z(t), hence the departure from unity is likely
to be due to the improper sampling of statistically rare
events in the system.

The efFect of incomplete sampling of phase space (as
obtained in molecular-dynamics simulations) can be
demonstrated using Eq. (30) and Monte Carlo simula-
tions. Random r-averaged currents (J), were sampled
from a Gaussian distribution with (J )o

=0. 141 (which
corresponds to that obtained in the molecular-dynamics
simulation) and variance given by Eq. (29) (with the pa-
rameters set to those used in the molecular-dynamics
simulations). Equation (30) was then used to determine
the value of Z(t) for 0(t &12, using sets of 2X10,
2X10, 2X10, and 2X10 samples. The results are
shown in Fig. S for comparison with the molecular-
dynamics results obtained using 2 X 10 initial
configurations. As the number of samples increases
(which corresponds to a more thorough sampling of
phase space), Z(t) approaches unity for progressively
longer times. That the absence of rare antisegments is
usually responsible for the apparent departure of Z(t)
from unity is evidenced by the nonuniform approach of
Z(t) to unity with increasing numbers of samples. At
sufficiently long times Z(t) almost invariably approaches
unity from below. (At times longer than those shown in
the figure the 2X10 ) sample Monte Carlo run also de-
cays towards zero. ) Therefore, the reason molecular-
dynamics simulations have shown a departure from unity
of Z(t) at long times is due to insufficient sampling of
phase space and in particular of rare antisegments.

The explicit normalization of the Kawasaki distribu-
tion function improves the agreement of the RK results
because it introduces a "compensating error" to the
denominator of Eq. (8) which somewhat cancels with the
error in the numerator as it is subject to the same inade-
quate sampling of phase space. It thus provides a form of
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FICy. 5. The Kawasaki normalization factor determined us-

ing a nonequilibrium molecular-dynamics simulation with
2X10 initial configurations ( ) and Monte Carlo simula-
tions with 2X10 ( - - - - - - ), 2X10 ( ———), 2X10
( ), and 2X10' ( - - - - —- - - - - ) configurations. The
system consisted of two WCA disks in a periodic box at T= 1.0
and p=0. 396850 subject to a constant color field of 1.0. In the
molecular-dynamics simulation, the field is applied at t =0.

variance reduction.
To confirm the validity of Eq. (29) in the linear limit

(F,—+0), Fig. 6 shows the reciprocal of the normalized
variance of the current distribution, 2JF /Pter, as a func-

e

tion of I', for t = 1.0, 2.5, 5.0, and 10.0. A straight line of
unit slope is approached in the small field limit, indicat-
ing Eq. (29) is valid. Given that Eq. (29) is valid in the
t ~ ~ and F,~0 regime, it then follows that the
Kawasaki normalization must be unity in the same re-
gime. This again demonstrates that at least in the linear
response regime, microscopic reversibility is not a neces-
sary condition for the Kawasaki normalization to be uni-
ty.
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nonequilibrium molecular-dynamics simulation of an eight-
particle systems subject to a constant color 6eld. The results for
time segments of t =1.0(+),2.5 (O)5.0, (0), and 10.0 ( X) are
shown. The straight line of unit slope shows the results expect-
ed when Eq. (29) is valid. In the simulation T=1.0 and

p =0.396 850.

V. A CONNECTION BETWEEN DYNAMICAL SYSTEMS
THEORY AND NONLINEAR RESPONSE THEORY

Evans, Cohen, and Morris (ECM) [12] recently derived
an expression for the probability ratio of observing
phase-space trajectory segments that satisfy the second
law of thermodynamics and their time-reversed antiseg-
ments that violate the second law. This ratio formula
was based on a natural invariant measure (which we shall
call the Lyapunov instability measure), which was origi-
nally proposed by Eckmann and Procaccia [13] for the
steady-state attractor. We now show that the Lagrangian
form of the Kawasaki response distribution (18) can be
used to deduce the same expression for this ratio.

In the steady state ECM predicted that the probability,
p, , of observing a steady-state trajectory segment, i,
should, for long segments, be proportional to exponential
of the negative sum of segment i's local Lyapunov ex-
ponents, I,„,multiplied by the observation time v.,

I

exp — g A,„r
n ~A,„&o

lim p;=
+exp
J n~~„&o

J

(36)

We call this the ~-segment probability formula. The ob-
servation time ~ must be shorter than the lifetime of the
antisteady state, that is r (t,&2 (i.e., trajectories must be
accurate for a time r), however, the equation is supposed
to be valid arbitrarily long after the system was at equi-
librium.

Consider a microcanonical ensemble of initial, t =0,
phases, which is used to generate an ensemble of subse-
quent nonequilibrium trajectory segments. The ratio of
probabilities of observing a segment of duration 2~
(t r, t+r), namely, se—gment i, and its conjugate antiseg-
ment, i*, is

=exp gk, 2r =exp[ —3X(a }2,, 2r], (37)

where g„A,; is the sum of all Lyapunov exponents for

segment i and ( a }z, ; is the time average value of the
thermostat multiplier over the segment i. This result was
first accurately tested against simulation results in ECM
[12].

As ~ increases to the value of t, the starting time for
the segments approaches zero. We have shown [14] that
when ~=t, and the segments begin from microcanonical-
ly distributed equilibrium phases, the probability ratio
given above is exact for all r(=t) not just in the long
r( =t ) limit.

Following the arguments given in [14] for shear flow, if
we select an initial, t =0, phase, I (, ), and advance time
from 0 to r using the equations of motion (1) we obtain
I ~2~=I (r;I ~&~)=exp[iL(I ~&~, F, )r]I ~&~. Continuing
on to 2r gives I (3) exp[iL(I (2),F, )r]I'(~)
=exp[iL(I t, ~, F, )2r]I ~, ~

(see Fig. 1).
At the midpoint of the trajectory segment I (f 3) (i.e., at

t =r) we apply the time-reversal map to I'~2~ generating
M' 'I

~2~
=—I ~5~. (Note: we denote the trajectory

segment I ~, ~~I
~ ~, segment I ~, ~.) If we now

reverse time, keeping F, fixed, we obtain I (4)
=exp[ —iL(I ~5~,F, )r]I'~~~. I ~4~ is the initial t =0 phase
from which a segment I (4 6) can be generated with
I ~6~=exp[iL(I ~4~, F, )2r]I ~4~. (See Fig. 1 for details). By
construction, the segments I (1 3) and I (6 4) are conjugate.

We now discuss the ratio of probabilities of finding the
initial phases I (1),I (4) which generate these conjugate
segments. The probabilities of observing the segments
I

( 1 3 ) I (4 6) are of course proportional to the probabilities
of observing the initial phases that generate those seg-
ments. It is convenient to consider a small phase-space
volume, V(I ~;~(0)} about an initial phase, I ~,

.~(0). As
time evolves the number of ensemble members inside
V( I (, )( t ) ) is fixed.

Because the segment I (4 6) is related to I (, 3) by a
time-reversal mapping that is applied at t=~, and the
Jacobian of that mapping is unity, V2 = V5, V3 = V4, and
V&(0)= V6. However, since V&(0) and V4 are volumes at
t =0 and since the distribution of initial phases is as-
sumed to be microcanonical, we can compute the ratio of
probabilities of observing t =0 phases within V, (0) and
V4. This ratio is just the volume ratio,
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p, */p) = V4(0)/Vt(0) = V) (2~)/V) (0)
=f(I', (0),0)/f (l,(2r), 2r), Vr . (38)

VI. CONCLUSION

For the first time we have provided an accurate
confirmation of the validity of the Kawasaki expression
for nonlinear response. We have shown that the TTCF
and Kawasaki expressions for the nonlinear response in
autonomous systems are accurate for systems with as few
as two particles. For autonomous systems taking the
thermodynamic limit is not required. Although the bare
and renormalized Kawasaki expressions are formally ex-
act, it has been demonstrated that they are subject to
large (systematic) statistical errors and they are therefore
usually not of much direct computational use. This re-
mark must be qualified, however, for systems subject to
weak external fields. For example in Figs. 2(a) and 2(b)
we see a situation where the response computed using
both the Kawasaki forms (7) and (8) are in fact more ac-

Combining (37) and (38) we obtain an equation which is
identical to (18), except that this proof is valid only in the

limit. This limit is unnecessary for ~ segments
that extend back to, and include, the equilibrium phase.

This result shows that there is a deep connection be-
tween nonlinear response theory and recent work which
has used the mathematical machinery of dynamic sys-
tems theory to characterize the natural invariant measure
(i.e., the N-particle steady-state distribution function) of
nonequilibrium steady states [12,13].

curate than direct simulation.
We have shown that previous attempts to verify the

Kawasaki expressions have been unsuccessful due to
insufficient sampling of phase space, rather than the frac-
tal nature of phase space, as has been previously
presumed [10].

We have shown that microscopic reversibility is a
sufhcient condition for the Kawasaki normalization fac-
tor to be unity. This theoretical result is supported by
the present nonequilibrium molecular-dynamics simula-
tion results. However, these results suggest that micro-
scopic reversibility is not a necessary condition either for
the Kawasaki normalization to be unity or for the ability
of either the renormalized or of the bare Kawasaki
response to correctly predict the nonlinear response.
This empirical result mirrors that obtained many years
ago for the linear response [18]. In the linear regime we
have proved that microscopic reversibility is a sufficient
but not a necessary condition for the Kawasaki normali-
zation to be unity. A weaker sufficient condition is mi-
croscopic reversibility over the convergence time of the
Green-Kubo integrand for the dissipative Aux.

Finally we have shown that there is a deep connection
between the Lagrangian form of the Kawasaki distribu-
tion function and a recently proposed natural invariant
measure for the nonequilibrium steady state. Far from
being incompatible with the fractal nature of the non-
equilibrium steady-state distribution, nonlinear response
theory is consistent with it and leads to a better under-
standing of at least one of the invariant measures that
have been proposed for nonequilibrium steady states.
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